WO2015103845A1 - 一种含铅原料的处理方法 - Google Patents

一种含铅原料的处理方法 Download PDF

Info

Publication number
WO2015103845A1
WO2015103845A1 PCT/CN2014/079338 CN2014079338W WO2015103845A1 WO 2015103845 A1 WO2015103845 A1 WO 2015103845A1 CN 2014079338 W CN2014079338 W CN 2014079338W WO 2015103845 A1 WO2015103845 A1 WO 2015103845A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
solution
sulfate
carbonate
liquid
Prior art date
Application number
PCT/CN2014/079338
Other languages
English (en)
French (fr)
Inventor
张超
Original Assignee
张超
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张超 filed Critical 张超
Publication of WO2015103845A1 publication Critical patent/WO2015103845A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/04Obtaining lead by wet processes
    • C22B13/045Recovery from waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of recycling treatment, and in particular relates to a method for treating lead-containing raw materials. Background technique
  • Recycling is the use of physical, chemical and biological methods to purify energy waste, reduce pollution, and at the same time recycle and regenerate to achieve energy recycling.
  • Lead-acid batteries are irreplaceable as car starter batteries, electric bicycle batteries and backup power supply calcium. In 2012, China's refined lead consumption exceeded 4.5 million tons, of which about 70% was consumed as lead-acid battery raw materials.
  • Raw materials for refined lead mainly include primary and lead waste.
  • Lead waste includes used lead-acid batteries, waste lead, lead-containing flue ash, etc.
  • the primary ore mainly includes lead sulfide or lead oxide.
  • waste lead in waste lead-acid batteries mainly includes plate grids, tabs and positive and negative lead pastes.
  • the cabinet and the ear are metal lead or lead alloy, which can be recovered by smelting or the like. Lead paste accounts for about 50% of the weight of lead-acid batteries.
  • Lead is often associated with a variety of metals.
  • Lead ore often contains a variety of metals.
  • the main associated elements are silver, copper, zinc, cadmium, and antimony. This makes it difficult to recover valuable metals in lead ore, and the exhaust waste is lost.
  • a large amount of metal resources causes serious environmental pollution.
  • wet lead smelting refers to the process of lead ore or lead-containing waste being subjected to leaching or molten salt electrolysis to produce lead or available lead.
  • lead-containing waste is difficult to be wet-processed because it contains various forms of lead compounds and insoluble substances.
  • lead-containing primary ore and lead-containing flue ash contain various impurities.
  • Chinese Patent 201310084392 discloses a method for producing lead oxide by recycling lead-acid batteries based on an atomic economic route, which uses a NaOH solution to desulfurize a lead paste in a lead-acid battery, and converts lead sulfate in the lead paste.
  • a NaOH solution to desulfurize a lead paste in a lead-acid battery
  • converts lead sulfate in the lead paste 4 by-product sulfuric acid is obtained, and the lead paste after desulfurization is subjected to high temperature treatment to convert lead dioxide and lead into lead oxide, and lead oxide is used as a negative electrode material for lead-acid batteries.
  • This method consumes less desulfurizing agent and lowers the processing cost, but this method cannot separate the impurities in the lead paste, so it can only handle lead-acid batteries using lead-calcium alloy plate with less impurity metal, and lead paste.
  • the barium sulfate cannot be effectively separated.
  • the lead oxide needs to be purified by the concentrated sodium hydroxide solution for purification and recrystallization, so that it can be used as a positive electrode material for lead-acid batteries, and the energy consumption is high, and sodium hydroxide is an important chemical raw material. The price is much higher than its desulfurization product sodium sulfate, so the resources in the lead paste cannot be fully utilized.
  • the technical problem to be solved by the present invention is to provide a method for treating lead-containing raw materials, and the treatment method provided by the present invention can make various contents including lead-containing primary ore, lead-containing flue ash and lead paste.
  • the lead material is processed to separate excess impurities to obtain a reusable lead material.
  • the invention discloses a method for treating a lead-containing raw material, comprising the following steps:
  • the first pH value is 7.0-10.5; the second pH value is 4.5-9.5;
  • the acidic oxide is carbon dioxide or sulfur dioxide.
  • the reusable lead material is one or more of lead carbonate, basic lead carbonate and lead sulfite; the solid precipitate is lead carbonate, basic lead carbonate, lead sulfite and lead sulfate One or more of them.
  • the lead-containing raw material comprises lead-containing metal ore, lead oxide ore, lead-zinc ore, white lead ore, galena oxidation product, lead-containing flue ash, lead-acid battery production process lead-containing waste, lead-acid battery One or more of a lead paste and a thermal decomposition product thereof, and a desulfurization product of a lead acid battery lead paste;
  • the complexing agent A is an acetic acid solution, a malonic acid solution, an ethylenediamine solution, a propylenediamine solution, an ethanolamine Solution, imidazole solution, diethylenetriamine solution, triethylenetetramine solution, ethylenediaminediacetic acid solution, ammonia triacetic acid solution, glutamic acid solution, proline solution, histidine solution, aspartic acid solution, One of alanine solution proline solution, serine solution, phenylalanine solution, arginine solution, threonine solution, glycine solution lysine solution
  • the reducing agent is one or two of lead, iron, hydrogen peroxide, sulfur dioxide and sulfite;
  • the catalyst is one or two of an iron salt solution, a cobalt salt solution and a manganese salt solution, the catalyst Molar concentration is less than or equal to 0, lmoi / L;
  • the inorganic base is one or more of sodium hydroxide, potassium hydroxide and ammonia.
  • the sulfate A is one or more of an ammonium sulfate solution, a sodium sulfate solution, and a potassium sulfate solution, and the sulfate A has a molar concentration of 0.4 to 4,0 mol/L.
  • the step B) is specifically:
  • the third pH value is 7.0 9.5;
  • the acidic oxide is carbon dioxide or sulfur dioxide
  • One or more of the regeneration reaction liquid A, the regeneration reaction liquid B, and the lead-containing reaction liquid B are used in the step A) to prepare the lead-containing reaction liquid A.
  • the lead-containing raw material is obtained by pre-treating a lead-containing masterbatch, and the specific process of the pre-treatment is:
  • Lead-containing masterbatch, sulfate B, complex cross-section B and buffer solution at the fourth pH Carrying out a reaction to obtain a metal complex solution and a lead-containing raw material;
  • the fourth pH value is 8.0 to 11, 0.
  • the lead-containing masterbatch includes lead-containing metal ore, lead oxide ore, lead-zinc ore, white lead ore, galena oxidation product, lead-containing flue ash, lead-acid battery production process lead-containing waste, lead-acid battery lead paste And one or more of its thermal decomposition products, desulfurization products of lead acid battery lead paste;
  • the sulfate B is an ammonium sulfate solution, a sodium sulfate solution or a potassium sulfate solution, and the molar concentration of the sulfate B is 0.05 to 3.0 mol ZL;
  • the complexing agent B is one or both of ammonia water, imidazole solution, ethylenediamine solution, ethylamine solution, ethanolamine solution, and methylamine solution, and the complexing agent B has a molar concentration of 0.1-6.0 mol ZL;
  • the buffer solution is an ammonia-ammonium salt solution, a hydrogencarbonate-sodium hydroxide solution, a boric acid-borax solution, a sodium borate solution or a hydrochloric acid-ethanolamine solution, and the molar concentration of the buffer solution is 0 till01 ⁇ 3.0 mol/L;
  • the metal complex solution is processed according to the following steps:
  • the metal complex solution obtained in the above step is reacted with carbon dioxide to obtain a regeneration pretreatment liquid A and a solid precipitate A;
  • the compound of the metal A is an oxide of metal A or a hydroxide of metal A, the metal A lead, one or more of the words;
  • the solid precipitate A is one or two of a metal hydroxide, an oxide, a carbonate, and a basic carbonate, and the metal is one of silver, copper, cadmium, nickel, cobalt, and zinc. Or a variety;
  • the solid precipitate B is a carbonate of a metal A and/or a reduced carbonate
  • the regeneration pretreatment liquid A and/or the regeneration pretreatment liquid D are used in the pretreatment to prepare a metal complex solution and a lead-containing raw material.
  • said step b) is:
  • the regeneration pretreatment liquid B is reversed with carbon dioxide, and the regeneration pretreatment liquid C and calcium carbonate are obtained; B3) reacting the regeneration pretreatment liquid C with lead oxide to obtain a regeneration pretreatment liquid D and lead carbonate;
  • the calcium-containing compound is calcium oxide or calcium hydroxide.
  • the regeneration pretreatment liquid C is used in the step bl) to prepare a regeneration pretreatment liquid B and calcium sulfate.
  • the solid precipitate is subjected to a desulfurization treatment, and the specific steps of the desulfurization treatment are as follows: 1) the solid precipitate, the sulfate C, the buffer substance, the carbonate A and the sixth pH value Desulfurization solution is reacted to obtain desulfurization waste liquid A and solid precipitate C;
  • the calcium-containing compound is calcium hydroxide or calcium oxide
  • the sixth H value is 8, 5 to 13.5.
  • the sulfate C is one or more of an ammonium sulfate solution, a sodium sulfate solution, and a potassium sulfate solution, and the molar concentration of the sulfate C is 0, l ⁇ 4, 0 mol/L;
  • the carbonate A is one or two of a platinum carbonate solution, a sodium hydrogencarbonate solution, a potassium carbonate solution, a potassium hydrogencarbonate solution, a carbonic acid ammonium solution, and an ammonium hydrogencarbonate solution, and the carbonate A mole
  • the concentration is 0,01,.3,0 mol/L;
  • the buffer substance is one of an organic acid, an inorganic acid, an inorganic base or an organic base having an acid-base buffering capacity between pH 8.5-13.5, and the molar concentration of the buffer substance is 0.1 to 3.0 mol ZL;
  • the desulfurization solution is one or more of a sodium hydroxide solution, a potassium hydroxide solution and an ammonia water;
  • the solid precipitate C is a lead carbonate, a basic lead carbonate, a lead sulfate, a basic lead sulfate, or a lead oxide.
  • the solid precipitate D is a mixture of calcium sulfate and calcium hydroxide and/or calcium sulfate.
  • the regenerated desulfurization liquid is used in the step 1) to prepare a desulfurization waste liquid A and a solid precipitation C.
  • the invention provides a method for treating a lead-containing raw material, which comprises a lead-containing raw material, a sulfate A, a complex cross section A, a reducing agent, an inorganic base and water under the action of a catalyst under a first pH condition.
  • the reaction is carried out to obtain a lead-containing reaction liquid A; the lead-containing reaction liquid A obtained in the above step is reacted with an acidic oxide at a second pH value to obtain a regeneration reaction liquid A and a solid precipitate; at the first pH value
  • the regeneration reaction liquid A is reacted with lead oxide to obtain a regeneration reaction liquid B and a recyclable lead substance.
  • the treatment method provided by the present invention utilizes the characteristics of easy decomposition of carbonated and basic carbonates, by controlling the pH value of the reaction system, and by using carbonate and basic carbonic acid. Salt is an intermediate transition product. Based on non-toxic carbon dioxide or industrial by-product sulfur dioxide cycle, it realizes the recycling process of lead-containing raw materials with environmental protection, low pollution and low energy consumption.
  • the invention provides a method for treating lead-containing raw materials, comprising the following steps:
  • the first pH value is 7.0 ⁇ 10,5; the second pH value is 4.5 ⁇ 9,5;
  • the acidic oxide is carbon dioxide or sulfur dioxide.
  • All the raw materials of the present invention are not particularly limited in their source, and are prepared by a method well known to those skilled in the art or commercially available.
  • the raw materials are widely used, some of the raw materials are complex, and there are many associated metals, such as lead-zinc ore.
  • the main components of the stone are lead oxide, zinc oxide, and a small amount of metals such as silver, copper, antimony, tin, arsenic, antimony, cadmium, nickel, cobalt; some raw materials are relatively simple, such as waste lead-acid electric lead paste mainly contains a lead compound and a small amount of an oxide or a sulfate of a metal impurity such as ruthenium, osmium, tin, arsenic or cadmium.
  • the leaching pretreatment of the lead-containing masterbatch having a high content of silver, copper, cadmium, nickel, cobalt and the like is preferably carried out in terms of reuse, impurity type, impurity content, etc., and the method for leaching pretreatment is not particularly limited.
  • the pretreatment method well known to those skilled in the art may preferably be carried out according to the following steps: under the condition of the fourth pH, the lead-containing masterbatch, the sulfate B, the complexing agent B and the buffer solution are reacted to obtain a metal complex. a solution and a lead-containing material; the fourth pH is 8.0 to 11.0.
  • the present invention has no particular limitation on the order of addition in the above reaction, and may be carried out in the order of addition well known to those skilled in the art, preferably in the following order.
  • the present invention firstly mixes the sulfate B and the complexing agent B to prepare a pretreatment liquid. Then, the lead-containing masterbatch is pretreated with a pretreatment liquid, and a buffer solution is added to adjust the reaction at the fourth H value, so that the soluble metal element therein is fully complexed and dissolved, and the lead-containing raw material and the metal network are obtained after separation. Mix solution.
  • the complexing agent B in the pretreatment liquid has a strong complexing ability to silver, copper, cadmium, nickel, cobalt, and zinc ions, and converts the oxide or sulfate of these metals with the complexing agent B.
  • the content of silver, copper, cadmium, nickel, cobalt and zinc in the solution reaches 0,5 mol/L or more.
  • the complexing ability of the complexing agent B to lead ions is weak, and the lead ion in the solution
  • the content of the lead compound does not exceed 0,01moI/L, and the lead compound remains as a solid in the filter residue, and the separation of lead from silver, copper, cadmium, nickel, cobalt and zinc is efficiently achieved.
  • the fourth pH value is preferably 8,0 to 11.0, more preferably 8.5 10.5;
  • the lead-containing masterbatch preferably comprises lead-containing metal ore, lead oxide ore, lead-zinc ore, white lead ore, galena oxidation product
  • lead-acid battery lead paste desulfurization product more preferably including lead-containing metal ore, Lead oxide ore, lead-zinc ore, white lead ore, galena oxidation products, lead-containing flue ash, lead-acid waste in lead-acid battery production, lead-acid battery paste and its thermal decomposition products or lead-acid battery paste
  • the product is most preferably a lead-containing metal ore, a lead ore oxidation product, a lead-containing flue ash or a lead-acid battery lead paste desulfurization product.
  • the sulfate salt B is preferably an ammonium sulfate solution, a sodium sulfate solution or a potassium sulfate solution, more preferably a sulfuric acid ammonium solution or a sulfuric acid pin solution; and the sulfate B has a molar concentration of preferably 0.05 to 3.0 mol/L. More preferably, it is 0.1-2.5 mol/L; the complex remaining B is preferably one or two of ammonia water, imidazole solution, ethylenediamine solution, ethylamine solution, ethanolamine solution, methylamine solution, more preferably ammonia water.
  • the ethylenediamine solution, the ethylamine solution, the ethanolamine solution or the methylamine solution is most preferably an ammonia water or an ethylamine solution;
  • the molar concentration of the complexing agent B is preferably 0, l ⁇ 6, 0 mo] [/L, more Preferably, it is 0,5 ⁇ 5,0 mol/L;
  • the buffer solution is preferably an ammonia-ammonium salt solution, a hydrogencarbonate-sodium hydroxide solution, a boric acid-borax solution, a boric acid-platinum hydroxide solution or a hydrochloric acid-ethanolamine solution.
  • ammonium ammonium salt solution wherein the ammonium salt is preferably ammonium sulfate or ammonium chloride; the molar concentration of the buffer solution is preferably 0.01 to 3.0 mol/L, more preferably 0.2 to 2.8 mol/L.
  • the temperature of the reaction is preferably from 5 to 80, more preferably: [0 to 70 ° C; the reaction time is preferably from 0.1 to 10 hours, more preferably from 1 to 8 hours; the quality of the lead-containing masterbatch
  • the total volume ratio of the pretreatment liquid and the buffer solution is preferably 10 to 200 g/L, more preferably 20 to 180 g/L; the amount of the sulfate B and the complexing agent B added in the present invention is not particularly limited.
  • the amount of the buffer solution to be added is not particularly limited in the present invention, and the effect is to adjust the pH to maintain a constant pH during the reaction.
  • the present invention The other conditions of the reaction are not particularly limited, and the reaction conditions of such reactions well known to those skilled in the art may be used; the reaction apparatus of the present invention is not particularly limited, and may be a conventional reaction apparatus well known to those skilled in the art;
  • the lead-containing raw material of the invention can also be used or sold directly as a product.
  • the pH of the above reaction step is controlled within a preferred range, in which the complex cross section B itself has a certain acid-base buffering capacity, and a buffer solution is added to make the pretreatment liquid in the lead-containing raw material.
  • the pH of the solution does not change drastically during the leaching process, so that the complexing agent B reacts rapidly and efficiently with the silver, copper, cadmium, nickel, cobalt, and zinc compounds in the lead-containing masterbatch.
  • the metal complex solution is preferably further processed to achieve the purpose of full recycling and reuse. The specific steps are as follows:
  • the metal complex solution obtained in the above step is reacted with carbon dioxide to obtain a regeneration pretreatment liquid A and a solid precipitate A;
  • the compound of the metal A is an oxide of the metal A or a hydroxide of the metal A, the metal A is one or more of silver, copper, cadmium, nickel, cobalt, lead, and zinc; the fifth pH is 4.0-9.0
  • the invention firstly introduces carbon dioxide gas into the metal complex solution at the fifth pH value.
  • the metal ion in the metal complex solution is converted into a solid precipitate of one or two forms of metal hydroxide, oxide, carbonate or basic carbonate, and the regeneration pretreatment liquid is separated.
  • the compound of the metal A is added, and all the carbonates therein are converted into the solid precipitate B, and the regeneration pretreatment liquid D and the solid precipitate ⁇ 3 are separated.
  • the metal ruthenium compound is preferably an oxide of metal A or a hydroxide of metal A, and the metal A is preferably one or more of silver, copper, cadmium, nickel, cobalt, lead, and zinc, more preferably Is silver, copper, cadmium, nickel, cobalt, lead or zinc; the fifth ⁇ value is preferably 4,0 to 9.0, more preferably 4.5 8.5; the solid precipitated ruthenium is preferably a metal hydroxide, oxidized One or two of the substance, the carbonate and the basic carbonate, more preferably a metal hydroxide, an oxide, a carbonate or a basic carbonate; the metal is preferably silver or copper One or more of cadmium, nickel, cobalt and zinc, more preferably silver, copper, cadmium, nickel, cobalt or zinc; the solid precipitate B is preferably a carbonate of a metal A and/or a basic carbon The acid salt is more preferably a carbonate or a basic carbonate.
  • the temperature of the reaction is preferably 5 to 80 ° C, more preferably 10 to 70 ° C; the reaction time is preferably 0.1', 10 hours, more preferably 1 to 8 hours; the lead-containing masterbatch
  • the ratio of the mass to the total volume of the pretreatment liquid and the buffer solution is preferably 10 to 200 g/L, more preferably 20 to 180 g/L; the other conditions of the above reaction are not particularly limited, and the present technology is
  • the reaction conditions of such anti-reactions are well known to those skilled in the art; the present invention is not particularly limited to the above-mentioned anti-reaction apparatus, and conventional reaction equipment well known to those skilled in the art can be used; It is particularly limited to be a purification method in such a treatment method well known to those skilled in the art.
  • the invention introduces carbon dioxide into the metal complex solution, and the carbon dioxide is an acid gas, which causes the solution to be acidified and the pH to decrease.
  • Complexing agent B is an amine compound.
  • the amine compound forms a complex with lead ions in the form of an electrically neutral molecule.
  • the amine compound will exhibit an acid effect. , that is, the amine will form carbonate with carbon dioxide as the pH value of the solution decreases, the concentration of the amine compound decreases, and the complexing ability to lead ions is weakened.
  • the reaction produces carbonate and bicarbonate, the pH value of the solution gradually decreases, and the apparent complexing ability of the amine compound gradually decreases.
  • the metal oxide, hydroxide When the carbonate or bicarbonate is dissolved, a solid precipitate is formed, thereby separating the metal ion from the solution, and the regeneration pretreatment liquid A and the solid precipitate A are obtained.
  • the present invention adds the oxide of the metal A or the hydroxide of the metal A to the regeneration pretreatment liquid A, and reacts the residual carbonate in the solution with the oxide of the metal A or the hydroxide of the metal A to form the carbonic acid of the metal A.
  • the salt or basic carbonate, the regeneration pretreatment liquid is fully purified, and the precipitation and regeneration pretreatment liquid are separated.
  • the lead-containing material is mainly composed of a metal oxide and may contain a certain amount of metal sulfate, the sulfuric acid in the solution may be formed during the complexation-carbonization precipitation; the concentration of f ⁇ in the root is continuously increased, and the pretreatment liquid is Gradual acidification, the present invention is a better separation of the metal complex solution, preferably the regeneration pretreatment liquid A and the compound containing 4 are reacted.
  • the above step b) is preferably:
  • the regeneration pretreatment liquid C is reacted with lead oxide to obtain a regeneration pretreatment liquid D and lead carbonate; the compound is calcium oxide or calcium hydroxide.
  • the invention adds calcium oxide or calcium hydroxide to the regeneration pretreatment liquid A to cause calcium sulfate and calcium ions to form calcium sulfate precipitate, and the obtained hydroxide radical eliminates acidification of the pretreatment liquid, and separates calcium sulfate and regeneration pretreatment liquid.
  • a part of calcium hydroxide remains in the regeneration pretreatment liquid carbon dioxide gas is introduced into the solution or a saturated aqueous solution of carbon dioxide is added to convert the residual calcium hydroxide in the regeneration pretreatment liquid into calcium carbonate solid, and after separation, calcium carbonate solid is obtained.
  • regeneration pretreatment liquid C With regeneration pretreatment liquid C.
  • the temperature of the reaction is preferably from 5 to 80 ° C, more preferably from 10 to 70 ° C.
  • the reaction time is preferably from 0 to 1 to 10 hours, more preferably from 1 to 8 hours;
  • the other conditions are not particularly limited, and the reaction conditions of such reactions well known to those skilled in the art may be used; the reaction apparatus of the present invention is not particularly limited, and may be a conventional reaction apparatus well known to those skilled in the art.
  • the invention makes the pretreatment process more favorable for recycling and recycling, and the whole lead-containing raw material processing process forms a closed-loop process flow, preferably the regeneration pretreatment liquid A and/or regeneration pre-production produced by the above steps.
  • the treatment liquid D is recycled to the above pretreatment process, and participates in the reaction together with the remaining raw materials to prepare a metal complex solution and a lead-containing raw material.
  • the regeneration pretreatment liquid C is preferably recycled for use in the above step bl), together with the remaining raw materials, to prepare a regeneration pretreatment liquid B and calcium sulfate.
  • the invention removes the silver, copper, cadmium, nickel, cobalt and lead impurities present in the solution by the above-mentioned replacement, and the complexing agent B has weaker ability to complex iron ions, and the iron precipitates in the form of hydroxide, thereby obtaining Pure zinc complex solution.
  • the solid precipitate A1 is preferably one or both of zinc hydroxide, oxide, carbonate and basic carbonate, more preferably zinc hydroxide, oxide, carbonate or mechanical Carbonate.
  • the solid precipitate A1 is an oxide or hydroxide or a carbonate or a basic carbonate, which is thermally decomposed to obtain oxidation. Zinc and carbon dioxide.
  • the metal complex solution is not decomposed by metal zinc.
  • Step a) gives solid precipitate A, ie silver, copper, cadmium, nickel, cobalt, zinc and traces of lead oxides, hydroxides, carbonates or basic forms. Carbonate, thermally decomposed to give silver, copper, cadmium, nickel, cobalt, and traces of lead and carbon dioxide.
  • Step b) is obtained as a solid precipitate B, that is, a carbonate or a basic carbonate of metal A, that is, a carbonate or a basic carbonate of silver, copper, cadmium, nickel, cobalt, lead, zinc, Thermal decomposition yields oxides of silver, copper, cadmium, nickel, cobalt, zinc, lead and carbon dioxide.
  • the method for treating the above metal carbonate and the basic carbonate is not particularly limited, and may be directly sold, used, or decomposed by the above heat treatment to obtain a metal oxide and carbon dioxide, and the carbon dioxide may be recycled after being collected. use.
  • the method for treating the carbonate and the reduced carbonate of the above metal A is not particularly limited, and may be directly sold, used, or decomposed by the above heat treatment to obtain an oxide of the metal A and carbon dioxide, carbon dioxide. It can be recycled after collection.
  • the first carbon dioxide cycle is established, and carbon dioxide is used as a medium to oxidize silver, copper, cadmium, nickel, cobalt and zinc in the lead-containing raw material by means of leaching carbonization-thermal decomposition.
  • the separation of the form of the substance is essentially a purification process, which has the advantages of low energy consumption, thorough separation and fast reaction speed compared to the prior art.
  • sulfur dioxide and carbon dioxide The same technical effect can be achieved, the method of use, the order of addition, and the related process flow are all consistent with carbon dioxide, so the specific method of using sulfur dioxide is no longer described.
  • the pretreatment process of the present invention is used to separate silver, copper, cadmium, nickel, cobalt, zinc from lead and other impurities in lead-containing raw materials, and thus has low contents for silver, copper, cadmium, nickel, cobalt and zinc.
  • the lead-containing raw material is preferably subjected to leaching without the above-described pretreatment step, and the lead extraction process is directly performed.
  • the lead-containing raw material subjected to the leaching pretreatment is placed in a reaction liquid formed by a catalyst, a sulfate A, a final agent A, a reducing agent, an inorganic base and water under a first pH condition, and the reaction is carried out.
  • the regeneration reaction liquid A is reacted with lead oxide under the strip of the first pH to obtain a regeneration reaction liquid B and a lead material which can be left over.
  • the first pH is preferably 7brushed0 ⁇ 10,5, more preferably 7,0 ⁇ 9,5; the second pH is preferably 4.5-9.5, more preferably 4.0 9.0; the acidic oxide Preferably, it is carbon dioxide or sulfur dioxide, more preferably carbon dioxide; and the recyclable lead material is preferably one or more of lead carbonate, basic lead carbonate and lead sulfite, more preferably lead carbonate or basic lead carbonate.
  • lead sulfite most preferably lead carbonate or basic lead carbonate
  • the solid precipitate is preferably one or more of lead carbonate, lead carbonate, lead sulfite and lead sulfate, more preferably lead carbonate, Basic lead carbonate, lead sulfite or lead sulfate is most preferably lead carbonate, basic lead carbonate or lead sulfate.
  • the lead-containing raw material preferably comprises lead-containing metal ore, lead oxide ore, lead-zinc ore, white lead ore, galena oxidation product, lead-containing flue ash, lead-acid battery production process lead-containing waste, lead-acid battery lead paste And one or more of its thermal decomposition products, desulfurization products of lead acid battery lead paste, more preferably including lead metal ore, lead oxide ore, lead-zinc ore, white lead ore, galena oxidation product, lead-containing Flue ash, lead-acid battery production process lead-containing waste, lead-acid battery lead paste and its thermal decomposition products or lead-acid battery lead paste desulfurization products, most preferably including lead-containing metal ore, lead ore oxidation products, lead-containing flue Desulfurization product of lead paste for ash or lead acid batteries.
  • the complexing agent A is preferably an acetic acid solution, a malonic acid solution, an ethylenediamine solution, a propylenediamine solution, an ethanolamine solution, an imidazole solution, a diethylenetriamine solution, a triethylenetetramine solution, an ethylenediaminediacetic acid solution.
  • ammonia triacetic acid solution glutamic acid solution, proline solution, histidine solution, aspartic acid solution, alanine solution, proline solution, serine solution, phenylalanine solution, arginine solution , one of a threonine solution, a glycine solution, a lysine solution, an asparagine solution, and a glutamine solution or Two kinds, more preferably acetic acid solution, malonic acid solution, ethylenediamine solution, propylene diamine solution, ethanolamine solution, imidazole solution, diethylenetriamine solution, triethylenetetramine solution, ethylenediamine diacetic acid solution, - Nitrotriacetic acid solution, glutamic acid solution, proline solution, histidine solution, aspartic acid solution, alanine solution, proline solution, silk solution, phenylalanine solution, refined ammonia An acid solution, a threonine solution, a glycine solution, a lysine solution, an as
  • the molar concentration of the complexing agent A is preferably from 0.5 to 5.0 mol/L, more preferably: ⁇ 4,0 molZL;
  • the reducing agent is preferably one or two of lead, iron, hydrogen peroxide water, sulfur dioxide and sulfite, more preferably lead, iron, hydrogen peroxide, sulfur dioxide or sulfite, most preferably It is lead or iron;
  • the catalyst is preferably one or two of an iron salt solution, a cobalt salt solution and a manganese salt solution, more preferably an iron salt solution, a cobalt salt solution or a manganese salt solution, and most preferably an iron salt solution.
  • the molar concentration of the catalyst is preferably 0.1 mol/L or less, more preferably 0 Eck08 mol/L;
  • the inorganic base is preferably one or more of sodium hydroxide, potassium hydroxide and ammonia, Preferably, it is sodium hydroxide, potassium hydroxide or - ammonia;
  • the sulfate A is preferably one or more of an ammonium sulfate solution, a sodium sulfate solution and a potassium sulfate solution, more preferably an ammonium sulfate solution, a sodium sulfate solution or The potassium sulfate solution;
  • the molar concentration of the sulfate A is preferably 0.4 to 4.0 mol/L, more preferably 0, 8 to 3, 2 mol/L.
  • the temperature of the reaction is preferably 5 to 85 ° C, more preferably 10 to 75 ° C; the reaction time is preferably 0.1 10 hours, more preferably ⁇ 8 hours; the quality and the quality of the lead-containing raw material
  • the total volume ratio of the reaction liquid is preferably 20 to 400 g/L, more preferably 50 to 350 g/L; the amount of the catalytic cross section, sulfuric acid A, complexing agent A, reducing agent, and water added is not particularly limited.
  • the molar concentration in the reaction liquid is used as a reference; the amount of the inorganic base to be added in the present invention is not particularly limited, and its effect is to adjust the pH to maintain a constant pH during the reaction.
  • the other conditions of the above reaction are not particularly limited, and the reaction conditions of such reactions well known to those skilled in the art may be used; the reaction apparatus of the above reaction is not particularly limited, and conventional reaction equipment well known to those skilled in the art is used. Just fine.
  • the step B) preferably further comprises the following steps: B1) the lead-containing reaction liquid A obtained by the above step and the acidity under the condition of the third pH value.
  • the oxide is reacted to obtain a lead-containing reaction liquid B and a recyclable lead substance;
  • B2) the lead-containing reaction liquid B obtained in the above step is reacted with the acidic oxide under the strip of the second pH value to obtain Regenerating reaction solution A and solid precipitation;
  • said third pH value is 7.0 9.5; said acidic oxide For carbon dioxide or dioxide.
  • the third pH is preferably 7.0 to 9.5, more preferably 7,5 to 9,0; the acidic oxide is carbon dioxide or sulfur dioxide, more preferably carbon dioxide; the temperature of the reaction is preferably 5 to 85 ° C. More preferably, it is 10 to 75r:; the reaction time is preferably 0.1 to 10 hours, more preferably 1 to 8 hours; the other conditions of the above reaction of the present invention are not particularly limited, and are well known to those skilled in the art.
  • the reaction conditions of such a reaction may be:
  • the present invention is not particularly limited to the above-mentioned reverse reaction apparatus, and may be a conventional reaction apparatus well known to those skilled in the art.
  • the whole lead-containing raw material processing process forms a closed-loop process flow, preferably in the regeneration reaction liquid A, the regeneration reaction liquid B and the lead-containing reaction liquid B produced in the above steps.
  • the present invention uses a sulfate complexing agent A, a reducing agent, an inorganic base and water to leach the lead-containing substance at a first pH; the purpose of adding the reducing agent is to lead-containing
  • the lead dioxide which may be present in the substance is reduced to a soluble lead salt. After the lead dioxide or other lead compounds in the lead-containing substance are all dissolved, the solution is filtered to separate the lead-containing reaction liquid A and the insoluble matter.
  • complexing agent A in the solution, lead sulfate is dissolved in the form of lead complex, and after the solution is gradually acidified, the apparent complexing ability of complexing agent A on lead ions is gradually weakened until complexing agent A The apparent complexing ability to lead ions is insufficient to dissolve lead sulfate, and the lead complex precipitates as lead sulfate.
  • the tin, antimony, arsenic, antimony, aluminum, silicon and antimony compounds in the lead-containing filter residue are not dissolved, and other soluble impurities are removed in advance in the pretreatment process, only the lead compound can be dissolved, so
  • the lead complex solution can be used to separate impurities in the lead-containing raw material by filtration, and a pure lead complex solution is obtained.
  • the precipitate form of the lead complex is composed of lead carbonate or a basic form.
  • Lead carbonate is converted to lead sulfate.
  • the pH of the lead-containing reaction solution A is between ⁇ . 9.5
  • the lead complex in the solution is converted into a solid precipitate by the form of lead carbonate or basic lead carbonate, and the pH of the lead-containing reaction solution is 4.5 ⁇ Between 9.5, the lead complex in the solution precipitates as lead sulfate.
  • Lead carbonate and lead citrate are thermally decomposed to obtain lead oxide and carbon dioxide gas, and carbon dioxide can be recycled.
  • the lead compound is a mixture of lead oxide and lead sulfate, lead oxide is a basic oxide, lead sulfate is a neutral salt, lead-containing reaction solution can be regarded as a solution of lead oxide and lead sulfate, in the process of introducing carbon dioxide
  • the alkaline lead oxide is first reacted with acidic carbon dioxide to form lead carbonate or basic lead carbonate, so that the pH of the solution is continuously decreased until the lead oxide reaction is complete. At this time, the pH of the solution is close to neutral, and lead sulfate begins to precipitate.
  • the lead sulfate is controlled to be dissolved and precipitated by the change of the pH of the reaction liquid, so that the lead sulfate which is difficult to be treated in the lead-containing waste is separated.
  • the present invention can be obtained by using two filtration methods to obtain lead carbonate, basic lead carbonate or lead sulfate, respectively.
  • the elemental or compound of iron, tin, arsenic, antimony, bismuth, antimony is insoluble, and impurities such as alumina and silica remain in the form of insoluble matter in the residue, copper, silver, cadmium, nickel, cobalt, zinc.
  • the present invention preferably adopts constant current or constant pressure electrolysis.
  • the method removes the impurity metal in the reaction liquid. Therefore, the essence of the carbonization process of the lead-containing reaction liquids A and B is to separate lead oxide, lead sulfate and impurities in the lead-containing raw material from each other to obtain lead oxide and lead sulfate, respectively.
  • this patent establishes a second carbon dioxide cycle, using carbon dioxide as a medium, to remove non-lead impurities in lead-containing raw materials by means of dissolution-step precipitation-thermal decomposition.
  • the separation of lead oxide and lead sulfate is essentially a purification process, which has the advantages of low energy consumption, complete separation and fast reaction speed compared with the prior art.
  • sulfur dioxide and carbon dioxide can achieve the same technical effect, and the method of use, the order of addition, and the related process flow are all consistent with carbon dioxide, so the specific method for using sulfur dioxide is no longer described.
  • the invention obtains lead oxide and lead sulfate after purifying lead in the lead-containing raw material.
  • lead oxide is an important raw material for chemical and battery production, and the application range of lead sulfate is limited, and the above is preferred for all of the above.
  • the separated precipitate containing lead sulfate is subjected to desulfurization treatment.
  • the present invention is applicable to lead-containing materials containing less impurities, such as lead paste in lead-acid batteries, lead-containing waste in the production process of lead-acid batteries, or lead-containing materials requiring desulfurization, such as lead-containing flue ash and square lead.
  • the mineral oxidation product is also preferably subjected to a desulfurization process.
  • the specific steps of the desulfurization process of the present invention are not particularly limited, and such a desulfurization process well known to those skilled in the art may be preferably carried out according to the following steps:
  • the calcium-containing compound is calcium hydroxide or calcium oxide; the sixth pH is 8.5 to 1.13 clay5.
  • the sulfate C is preferably one of an ammonium sulfate solution, a sodium sulfate solution, and a potassium sulfate solution.
  • an ammonium sulfate solution a sodium sulfate solution or a potassium sulfate solution, most preferably a potassium sulfate solution
  • the molar concentration of the sulfate C is preferably 0.1 to 4.0 mol/L, more preferably 0, 5 to 3,5 mol/L
  • the buffer substance is one of an organic acid, an inorganic acid, an inorganic base or an organic base having an acid-base buffering capacity between 8.5-13.5, and the molar concentration of the buffer substance is O.] ⁇ 3.0 mol / L
  • a more preferred buffer material is one of taurine, butyrolactam, N-methylpyrrolidinium, ascorbic acid, propionate t, betaine
  • the salt A is preferably one or two of a sodium carbonate solution, a sodium hydrogencarbonate solution, a carbonic acid clock solution, a potassium hydrogencarbonate solution, an ammonium carbonate solution, and an ammonium hydrogencarbonate solution, and more preferably
  • ammonium hydrogencarbonate solution is most preferably a potassium carbonate solution; the molar concentration of the citrate A is preferably 0.01 to 3,0 mol/L, more preferably 0.1 to 0.9 mol; the desulfurization solution is a sodium hydroxide solution.
  • the solid precipitate C is preferably lead carbonate, basic lead carbonate, lead sulfate, basic type One or more of lead sulfate, lead oxide, more preferably lead carbonate, basic lead carbonate, lead sulfate, basic lead sulfate or lead oxide;
  • the solid precipitate D is preferably a mixture of calcium sulfate and calcium hydroxide And/or calcium sulphate, more preferably a mixture of calcium sulphate and calcium sulphate or calcium sulphate.
  • the temperature of the reaction is preferably 0 to 90 ° C, more preferably 5 to 85 ° C; the reaction time is preferably 0.01 10 hours, more preferably 0.5 to 9 hours; the quality and the quality of the lead-containing raw material Reaction
  • the total volume ratio of the liquid is preferably from 10 to 400 g/L, more preferably from 30 to 350 g/L; the other conditions of the above reaction are not particularly limited, and the reaction conditions of such reactions well known to those skilled in the art may be used;
  • the reaction apparatus of the present invention is not particularly limited, and may be a conventional reaction apparatus well known to those skilled in the art.
  • the whole lead-containing raw material processing process forms a closed-loop process flow, and the regenerated desulfurization liquid produced in the above step is preferably recycled to the above step 1), together with the remaining raw materials. Participate in the reaction to prepare desulfurization waste liquid A and solid precipitate C.
  • the invention adopts a desulfurization liquid containing sulfate and carbonate to desulfurize the lead sulfate-containing material, and converts lead sulfate and carbonate into lead carbonate or basic lead carbonate and sulfate, and the carbonate concentration of the solution continuously in the desulfurization process Decreased, the sulfate concentration is continuously increased until the carbonate is completely reacted with lead sulfate to obtain desulfurization waste liquid A and solid precipitate C, namely lead carbonate, basic lead carbonate, lead sulfate basic lead sulfate or lead oxide.
  • a buffer substance to the desulfurization liquid, thereby increasing the absorption amount of carbon dioxide by the solution by increasing the buffer substance, further improving the treatment efficiency, and then adding calcium oxide to the desulfurization waste liquid A after the lead removal.
  • calcium hydroxide calcium sulfate has a solubility product constant of 2.5 10" 5
  • calcium hydroxide has a solubility product constant of 3.7 X 10" 6
  • the solubility product constant of calcium sulfate and calcium hydroxide is relatively close, so the concentration is In the higher sodium sulphate solution, calcium oxide or calcium hydroxide reacts partially with sulphate to form sulphuric acid, calcium and sodium hydroxide, until the equilibrium is reached. At this point, the concentration of cesium hydroxide in the solution is 0.05-2.5. Between mol/L, after separation, the waste liquid B and the solid precipitate D, that is, a mixture of calcium sulfate and calcium hydroxide or calcium sulfate are obtained.
  • the purity of the calcium sulfate is high, and the industrial or food grade purity is achieved.
  • Carbon dioxide gas is introduced into the desulfurization waste liquid B, and carbon dioxide reacts with sodium hydroxide to form sodium carbonate, which generates carbonate, which causes the residual trace calcium ions in the solution to precipitate as calcium carbonate, so that the desulfurization waste liquid B is completely purified.
  • the regenerated desulfurization liquid is obtained, and the regenerated desulfurization liquid is returned to the step 1) for recycling.
  • the total or partial desulfurization product of lead sulfate is thermally decomposed to obtain basic lead sulfate, lead oxide or a mixture thereof and carbon dioxide, and carbon dioxide can be recycled.
  • the desulfurization waste liquid A contains a trace amount of lead ions
  • the present invention preferably adds an excessive amount of metal zinc to the desulfurization waste liquid A.
  • iron a trace amount of lead ions in the solution is removed by displacement, and then iron or zinc is precipitated as a hydroxide, thereby completely removing lead from the desulfurization waste liquid A.
  • this patent establishes a third carbon dioxide cycle, using carbon dioxide as a desulfurization medium to desulfurize the lead sulfate-containing material.
  • the essence of the reaction is that calcium oxide or calcium hydroxide reacts with lead sulfate to obtain calcium sulfate or
  • the mixture of basic lead sulfate, lead oxide, basic lead sulfate and lead oxide solves the difficulty in separating the products of calcium oxide and lead sulfate after desulfurization.
  • Calcium oxide has a wide range of sources, and the price is far lower than the commonly used desulfurization agent sodium hydroxide and carbonic acid.
  • the obtained desulfurization by-product calcium sulfate lead content is 0,0001%, reaching the industrial or food grade calcium sulfate standard, which can greatly reduce the current The cost of lead sulfate desulfurizer.
  • sulfur dioxide and carbon dioxide can achieve the same technical effect, the method of use, the order of addition, and the related process flow are all consistent with carbon dioxide, so the specific method for using sulfur dioxide is no longer described.
  • the lead-containing raw material or the intermediate solid product of the above-mentioned process may not be suitable for the separation treatment because it may contain an organic component, so it is preferred to carry out a heat treatment process for fully decomposing the organic matter therein, and the process of the heat treatment of the present invention It is not particularly limited, and it may be a heat treatment process well known to those skilled in the art. At the same time, in the process of heat treatment, it is also preferred to react the elemental metal which may be contained therein with oxygen to form a metal oxide, and the lead dioxide is decomposed into lead oxide. For the lead-containing raw material with a large content of lead dioxide, under decompression conditions Heat treatment is performed to increase the decomposition rate of lead dioxide.
  • the heat treatment temperature of the present invention is preferably 200 to 650 ° C, more preferably 250 to 600 ° C; the other conditions of the heat treatment of the present invention are not particularly limited, and may be the heat treatment conditions well known to those skilled in the art.
  • the treatment method provided by the invention utilizes the characteristics that the carbonate and the basic carbonate are easily decomposed, and controls the pH value of the reaction system, and uses carbonate and basic carbonate as intermediate transition products to be non-toxic. Based on the sulfur dioxide cycle of carbon dioxide or industrial by-products, the recycling of lead-containing raw materials with environmental protection, low pollution and low energy consumption is realized by the different effects of complexing agents on different components.
  • the present invention sequentially processes the lead-containing raw materials, lead extraction, and desulfurization processes, and establishes three closed carbonate circulation systems, using carbonate as a desulfurization carrier, and carbon dioxide to achieve carbonate cycle, so that the lead-containing raw materials are
  • the valuable metal element is sufficiently separated and purified in the form of an oxide or a hydroxide, and low-priced calcium oxide is used as a desulfurizing agent to realize a desulfurization process of the lead sulfate-containing material.
  • the energy consumption is extremely low, the energy consumption per ton of metal does not exceed 50kg standard coal, the desulfurization agent in the desulfurization process uses calcium oxide or calcium hydroxide, the cost is low, and the by-product calcium sulfate lead content is extremely low.
  • the sulfate in the lead sulfate is fully reused, changing the current status of relying on sodium hydroxide or sodium carbonate as a desulfurizer, the cost of desulfurization dramatically drop.
  • the experimental results show that, in the lead-containing raw material treatment method provided by the present invention, the lead oxide obtained by the quantitative analysis of the lead is analyzed, the purity of the metal lead is 99,9991%, and the content of the remaining metal impurities is () 88.
  • step 5 Dispose 10L reaction solution containing 1 mol/L serine, 0.5 mol/L ethylenediamine, 2 mol/L sodium silicate, adjust the pH of the reaction solution to 9,5 10.0 with sodium hydroxide aqueous solution, and add step 1
  • the obtained lead-containing filter residue was reacted at 70 ° C for 0.5 hour.
  • the filter residue and the lead-containing reaction solution A are filtered.
  • Desulfurization waste liquid A is added with excess iron filings, removing traces of lead ions from the solution, adding H2g calcium oxide, separating 500g of dihydrate, calcium sulfate and desulfurization waste liquid B, and introducing carbon dioxide into the desulfurization waste liquid B to the pH of the solution. The value reached 10.0-10.5, and the 4 ⁇ carbonate was separated by filtration to obtain a regenerated desulfurization solution, which was cycled.
  • 150L lead-containing reaction solution is introduced into the carbon dioxide gas under the condition of 401:, when the pH of the lead-containing reaction solution reaches 8 personally0, the basic lead carbonate is separated, and the filtrate continues to pass carbon dioxide to make the lead in the solution. Precipitated as a mixture of lead sulfate and basic lead carbonate. The mixture of regeneration reaction liquid A and lead sulfate and basic lead carbonate is filtered. 4 lead acid and basic lead carbonate mixture, basic lead carbonate respectively heat at 330 'C After decomposing for 3 hours, basic lead sulfate and lead oxide were obtained, and the carbon dioxide was cooled and recycled.
  • Desulfurization waste liquid A is added with excess iron filings, removes traces of lead ions from the solution, and adds 50g of oxygen.
  • lead in lead oxide products contains 2% sulfuric acid, bismuth, and the rest is lead oxide.
  • the carbon dioxide is introduced into the lead-containing reaction solution A, and the pH of the solution is adjusted to 7.6 8,0 to convert the lead complex into a basic lead carbonate precipitate, and the basic lead carbonate and the regeneration reaction liquid A are filtered.
  • the regenerating reaction liquid A 20 g of lead oxide was added, and after filtration, the regenerated reaction liquid B was obtained and recycled.
  • the basic lead carbonate is fully thermally decomposed under 3501: to obtain lead oxide and carbon dioxide, which are recycled after being cooled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

一种含铅原料的处理方法,包括以下步骤:在第一pH值的条件下,在催化剂的作用下,将含铅原料、硫酸盐A、络合剂A、还原剂、无机碱以及水进行反应,得到含铅反应液A;在第二pH值的条件下,将上述步骤得到的含铅反应液A与酸性氧化物进行反应,得到再生反应液A和固体沉淀;在第一pH值的条件下,将再生反应液A与氧化铅进行反应得到再生反应液B和可再利用铅类物质。

Description

—种含错原料的处理方法 技术领域
本发明属于回收处理技术领域, 尤其涉及一种含铅原料的处理方法。 背景技术
随着社会对环境保护和可持续发展的要求日益增高, 人们对能源的回收 处理可再生的重视程度逐步增加。 通过对能源的再生处理能够减少三废的排 放, 实现绿色环保可持续的经济发展模式。 再生处理就是利用物理、 化学和 生物的方法进行处理, 使能源类的废品净化、 减少污染, 同时回收、 再生处 理, 实现能源的循环剩用
铅酸电池作为汽车启动电池, 电动自行车电池以及备用电源钙具有不可 替代性, 2012年中国精炼铅消费量超过 450万吨,其中约 70%作为铅酸电池 原料消费。 精铅生产原料主要包括原生矿与铅废料, 铅废料包括废旧铅酸电 池、 废铅皮、 含铅烟道灰等, 原生矿主要包括硫化铅矿与氧化铅矿。 其中废 旧铅酸电池中废铅主要包括极板板柵、 极耳以及正负极铅膏。 其中板櫥与极 耳为金属铅或铅合金, 可以采用熔炼等方法回收。 铅膏约占铅酸电池重量的 50%, 成份为铅粉, 氧化铅, 硫酸铅和二氧化铅, 以及包括硫酸钡, 木素磺 酸钠, 短纤维等的正负极添加剂, 成分复杂, 分离困难, 是铅再生的难点。 目前精炼铅生产多数仍采用火法冶炼工艺, 在火法冶炼过程中, 烟气中会携 带少量的含铅粉尘, 这些含铅粉尘经静电吸附或者布袋除尘后, 形成含铅烟 道灰, 可以占到铅产量的 10%。 因此对于目前每年超过 450万吨的精炼铅产 量来说, 每年会产生大约 40- 50万吨含铅烟道灰。 铅经常与多种金属伴生, 铅矿石常含有多种金属, 其中主要伴生元素是银、 铜, 锌、 镉、 锑, 这造成 铅矿石中有价金属难以回收完全, 排放的废气 废渣一方面流失大量金属资 源, 另一方面造成严重的环境污染。
因而, 业内的研究人员更为关注相对环保的湿法炼铅技术。 湿法炼铅是 指铅精矿、 含铅原料或含铅废料经过浸出或熔盐电解, 产出金属铅或可利用 的铅类物质的过程。 但是, 含铅废料因其含有多种形态的铅化合物与不溶性 物质, 是湿法回收的难点, 同时含铅原生矿与含铅烟道灰中含有多种杂质, 包括银、 铜、 铋、 锡、 砷、 锑、 镉、 镍、 钴、 铅、 锌的氧化物或硫酸盐以及 二氧化硅、 氧化铝, 成分组成复杂, 这也是湿法处理分离困难, 而且铁、 铜、 锡、 二氧化硅、 氧化铝在目前常用的强酸性或强碱性溶液中会溶解, 造成处 理液中杂质不断累积, 最终导致处理液失效。
现有技术中, 中国专利 201310084392 公开了一种基于原子经济途径 回收废旧铅酸电池生产氧化铅的方法, 其采用 NaOH溶液对铅酸电池中的铅 膏进行脱硫, 将铅膏中的硫酸铅转化为氧化铅, 得到副产物硫酸 4销, 脱硫后 的铅膏经高温处理使其中的二氧化铅与铅转化为氧化铅, 氧化铅作为铅酸电 池负极材料使用。 此方法消耗的脱硫剂较少, 处理成本较低, 但是此方法不 能将铅膏中的杂质分离, 因此只能处理杂质金属较少对的使用铅钙合金板槲 的铅酸电池, 同时铅膏中的硫酸钡无法有效分离, 氧化铅还需使用浓热的氢 氧化钠溶液进行溶解和重结晶过程提纯才能作为铅酸电池正极材料使用, 能 耗较高,而且氢氧化钠是重要的化工原料,价格远远高于其脱硫产物硫酸钠, 因而, 不能完全有效利用铅膏中的资源。
因此, 寻找一种清洁、 高效并且低污染的含铅原料湿法回收技术成为亟 待解决的问题。
发明内容
有鉴于此, 本发明要解决的技术问题在于提供一种含铅原料的处理方 法, 本发明提供的处理方法可以使包括含铅原生矿、 含铅烟道灰以及铅膏在 内的多种含铅原料经过处理, 分离多余的多种杂质, 得到可再利用的铅类物 质。
本发明公开了一种含铅原料的处理方法, 包括以下步骤:
A )在第一 pH值的条件下,在催化剂的作用下,将含铅原料、硫酸盐 A、 络合剂 A、 还原剂、 无机碱以及水进行反应, 得到含铅反应液 A;
B )在第二 pH值的条件下, 将上述步驟得到的含铅反应液 A与酸性氧 化物进行反应, 得到再生.反应液 A和固体沉淀;
C )在第一 pH值的条件下, 将再生反应液 A与氧化铅进行反应得到再 生反应液 B和可再利用铅类物质;
所述第一 pH值为 7.0-10.5; 所述第二 pH值为 4.5-9.5;
所述酸性氧化物为二氧化碳或二氧化硫。 优选地, 所述可再利用铅类物质为碳酸铅、 碱式碳酸铅和亚硫酸铅中的 一种或多种; 所述固体沉淀为碳酸铅、 碱式碳酸铅、 亚硫酸铅和硫酸铅中的 一种或多种。
优选地, 所述含铅原料包括含铅金属矿石、 氧化铅矿石、 铅锌矿石、 白 铅矿石、 方铅矿氧化产物、 含铅烟道灰、 铅酸电池生产过程含铅废料、 铅酸 电池铅膏及其热分解产物、 铅酸电池铅膏的脱硫产物中的一种或多种; 所述络合剂 A为乙酸溶液、 丙二酸溶液、 乙二胺溶液、 丙二胺溶液、 乙 醇胺溶液、 咪唑溶液、 二乙三胺溶液、 三乙四胺溶液、 乙二胺二乙酸溶液、 氨三乙酸溶液、 谷氨酸溶液、 缬氨酸溶液、 组氨酸溶液、 天冬氨酸溶液、 丙 氨酸溶液 脯氨酸溶液、 丝氨酸溶液、 苯丙氨酸溶液、 精氨酸溶液、 苏氨酸 溶液、 甘氨酸溶液 赖氨酸溶液、 天冬酰胺溶液和谷氨酖胺溶液中的一种或 两种; 所述络合剂 A的摩尔浓度为 0。5〜5„0 mol/L;
所述还原剂为铅、 铁、 双氧水、 二氧化硫和亚硫酸盐中的一种或两种; 所述催化剂为铁盐溶液、 钴盐溶液和锰盐溶液中的一种或两种, 所述催 化剂的摩尔浓度小于等于 0, lmoi/L;
所述无机碱为氢氧化钠、 氢氧化钾和-氨中的一种或多种;
所述硫酸盐 A 为硫酸铵溶液、 硫酸钠溶液和硫酸钾溶液中的一种或多 种, 所述硫酸盐 A的摩尔浓度为 0.4〜4,0mol/L。
优选地, 所述步骤 B )具体为:
B1 )在第三 pH值的条件下, 将上述步骤得到的含铅反应液 A与酸性氧 化物进行反应, 得到含铅反应液 B和可再利用铅类物质;
B2 )在第二 pH值的条件下, 将上述步骤得到的含铅反应液 B与酸性氧 化物进行反应, 得到再生反应液 A和固体沉淀;
所述第三 pH值为 7.0 9.5;
所述酸性氧化物为二氧化碳或二氧化硫;
所述再生反应液 A、再生反应液 B和含铅反应液 B中的一种或多种, 用 于所述步骤 A ) 中制备含铅反应液 A。
优选地, 所述含铅原料由含铅母料经过预处理得到, 所述预处理的具体 过程为:
在第四 pH值的条件下, 将含铅母料、 硫酸盐 B、 络合剖 B和缓冲溶液 进行反应, 得到金属络合溶液和含铅原料;
所述第四 pH值为 8.0〜11 ,0。
所述含铅母料包括含铅金属矿石、 氧化铅矿石、 铅锌矿石、 白铅矿石、 方铅矿氧化产物、 含铅烟道灰、 铅酸电池生产过程含铅废料、 铅酸电池铅膏 及其热分解产物、 铅酸电池铅膏的脱硫产物中的一种或多种;
所述硫酸盐 B为硫酸铵溶液、 硫酸钠溶液或硫酸钾溶液, 所述硫酸盐 B 的摩尔浓度为 0.05~3.0molZL;
所述络合剂 B为氨水、咪唑溶液、 乙二胺溶液、 乙胺溶液、 乙醇胺溶液、 甲胺溶液中的一种或两种, 所述络合剂 B的摩尔浓度为 0.1~6.0molZL;
所述.缓冲溶液为氨 -铵盐溶液、碳酸氢盐-氢氧化钠溶液、硼酸-硼砂溶液、 硼酸 氢氧化钠溶液或盐酸-乙醇胺溶液, 所述緩冲溶液的摩尔浓度为 0„01~3.0mol/L;
所述金属络合溶液按照以下步骤进行处理:
a )在第五 pH值的条件下, 将上述步骤得到的金属络合溶液与二氧化碳 进行反应, 得到再生预处理液 A和固体沉淀 A;
b )将再生预处理液 A与金属 A的化合物进行反.应, 得到再生预处理液 D和固体沉淀 B;
所述金属 A的化合物为金属 A的氧化物或金属 A的氢氧化物, 所述金 属 A 铅、 辞中的一种或多种;
Figure imgf000005_0001
所述固体沉淀 A为金属氢氧化物、 氧化物、碳酸盐和碱式碳酸盐中的一 种或两种, 所述金属为银、 铜、 镉、 镍、 钴和锌中的一种或多种;
所述固体沉淀 B为金属 A的碳酸盐和 /或减式碳酸盐;
所述再生预处理液 A和 /或再生预处理液 D用于所述预处理中制备金属 络合溶液和含铅原料。
优选地, 所述步骤 b ) 为:
bl )将再生预处理液 A与含 1¾的化合物进行反应, 得到再生预处理液 B 和硫酸钙;
hi )将再生预处理液 B与二氧化碳进行反.应, 得到再生预处理液 C和碳 酸钙; b3 )将再生预处理液 C与氧化铅进行反应,得到再生预处理液 D和碳酸 铅;
所述含钙的化合物为氧化钙或氢氧化钙。
优选地, 所述再生预处理液 C用于所述步骤 bl )中, 制备再生预处理液 B和硫酸钙。
优选地, 对所述固体沉淀进行脱硫处理, 所述脱硫处理的具体步驟为: 1 )在第六 pH值的条件下, 将所述固体沉淀、 硫酸盐 C、 缓冲物质、 碳 酸盐 A与脱硫溶液进行反应, 得到脱硫废液 A和固体沉淀 C;
2 )将脱硫废液 A与含钙的化合物进行反应, 得到脱硫废液 B和固体沉 淀 D;
3 )在第六 pH值的条件下, 将脱硫废液 B、 脱硫溶液与二氧化碳进行反 应, 得到再生脱硫液和碳酸钙;
所述含钙的化合物为氢氧化钙或氧化钙;
所述第六 H值为 8,5〜13.5。
优选地, 所述硫酸盐 C为硫酸铵溶液、硫酸钠溶液和硫酸钾溶液中的一 种或多种, 所述硫酸盐 C的摩尔浓度为 0, l〜4,0mol/L;
所述碳酸盐 A为碳酸铂溶液、 碳酸氢钠溶液、 碳酸钾溶液、 碳酸氢钾溶 液、碳酸.铵溶液和碳酸氢铵溶液中的一种或两种, 所述碳酸盐 A的摩尔浓度 为 0,01,、.3,0mol/L;
所述缓冲物质是 pH值在 8.5-13.5之间具有酸碱缓沖能力的有机酸、 无 机酸、 无机碱或有机碱中的一种, 所述缓冲物质的摩尔浓度为 0.1〜3.0molZL;
所述脱硫溶液为氢氧化钠溶液、 氢氧化钾溶液和氨水中的一种或多种; 所述固体沉淀 C为碳酸铅、 碱式碳酸铅、 硫酸铅、 碱式硫酸铅、 氧化铅 中的一种或多种;
所述固体沉淀 D为硫酸钙与氢氧化钙的混合物和 /或硫酸鈣。
优选地, 所述再生脱硫液用于所述步骤 1 ) 中, 制备脱硫废液 A和固体 沉淀 C。 本发明提供了一种含铅原料的处理方法, 在第一 pH值的条件下, 在催 化剂的作用下, 将含铅原料、 硫酸盐 A、 络合剖 A、 还原剂、 无机碱以及水 进行反应, 得到含铅反应液 A; 在第二 pH值的条件下, 将上述步骤得到的 含铅反应液 A与酸性氧化物进行反应, 得到再生反应液 A和固体沉淀; 在 第一 pH值的条件下, 将再生反应液 A与氧化铅进行反应得到再生反应液 B 和可再利用铅类物质。 与现有技术相比, 本^ ^明提供的处理方法, 利用碳酸 益、 碱式碳酸盐易分解的特点, 通过控制反.应体系的 pH值, 并以碳酸盐、 碱式碳酸盐为中间过渡产物, 以无毒的二氧化碳或工业副产品二氧化硫循环 为基^, 实现了环保、低污染、低能耗的含铅原料回收利用过程。 进一步的, 通过对含铅原料的预处理过程以及对产物的脱硫过程, 建立了三个密闭碳酸 根循环体系, 采用碳酸根作为脱硫载体, 二氧化碳实现碳酸根循环, 有效的 去除了银、 铜、 铋、 锡、 砷、 锑、 镉、 镍、 钴、 铅、 锌的氧化物或硫酸盐以 及二氧化硅、 氧化铝等杂质, 并使用价格低廉的氧化钙作为脱硫剂, 实现含 硫酸铅物料的脱硫过程。 实验结果表明,本发明提供的含铅原料的处理方法, 得到的氧化铅中, 金属铅的纯度为 99,9991%, 其余金属杂质的含量为 0,00088。
具体实 fe方式
为了进一步理解本发明, 下面结合实施例对本发明优选实施方案进行描 述, 但是应当理解, 这些描述只是为了进一步说明本发明的特征和优点, 而 不是对发明权利要求的限制。
本发明提供了一种含铅原料的处理方法, 包括以下步驟:
A )在第一 pH值的条件下,在催化剂的作用下,将含铅原料、硫酸益 A, 络合剂 A、 还原剂、 无机碱以及水进行反应, 得到含铅反应液 A;
B )在第二 pH值的条件下, 将上述步骤得到的含铅反应液 A与酸性氧 化物进行反应, 得到再生反应液 A和固体沉淀;
C )在第一 pH值的条件下, 将再生反应液 A与氧化铅进行反应得到再 生反应液 B和可再利用铅类物质;
所述第一 pH值为 7.0〜10,5; 所述第二 pH值为 4.5〜9,5;
所述酸性氧化物为二氧化碳或二氧化硫。
本发明所有原料, 对其来源没有特别限制, 以本领域技术人员熟知的方 法制备 ·或在市场上购买的即可。
本发明中原料来源广泛, 有的原料成分复杂, 伴生金属多, 例如铅锌矿 石主要成分为氧化铅、 氧化锌, 以及银、 铜, 铋、 锡、 砷、 锑、 镉、 镍、 钴 等少量金属; 有的原料成分则相对比较简单, 如废旧铅酸电铅膏主要含有铅 化合物以及少量的铋、 锑、 锡、 砷、 镉等金属杂质的氧化物或硫酸盐, 由于 部分含铅母料中杂质种类较多, 因而在本发明中, 根据上述含铅母料的实际 再利用情况、 杂质种类以及杂质含量等优选对银、 铜、 镉、 镍、 钴、 辞含量 较高的含铅母料进行浸出预处理, 本发明对浸出预处理的方法没有特别限 制, 以本领域技术人员熟知的预处理方法即可, 优选按照以下步骤进行: 在第四 pH值的条件下, 将含铅母料、 硫酸盐 B、 络合剂 B和緩冲溶液 进行反应, 得到金属络合溶液和含铅原料; 所述第四 pH值为 8.0〜11.0。
本发明对上述反应中的加料顺序没有特别限制, 以本领域技术人员熟知 的加料顺序即可, 优选按照以下顺序进行, 本发明首先将硫酸盐 B和络合剂 B混合, 配制成预处理液, 然后用预处理液对含铅母料进行浸出预处理, 并 加入缓冲溶液调节反应在第四 H值下进行, 使其中的可溶性金属元素充分 络合溶解, 分离后得到含铅原料与金属络合溶液。
在本发明中, 预处理液中的络合剂 B对银、 铜、 镉、 镍、 钴、 锌离子具 有较强的络合能力,使这些金属的氧化物或硫酸盐与络合剂 B转化为可溶性 的金属络合物, 溶液中银、 铜、 镉、 镍、 钴、 锌含量达到 0,5mol/L以上, 同 时, 络合剂 B 对铅离子的络合能力较弱, 溶液中的铅离子含量不超过 0,01moI/L, 铅化合物以固体的形式留在滤渣中, 高效的实现了铅与银、 铜、 镉、 镍、 钴、 锌的分离。
所述第四 pH值优选为 8,0~11.0, 更优选为 8.5 10.5; 所述含铅母料优选 包括含铅金属矿石、 氧化铅矿石、 铅锌矿石、 白铅矿石、 方铅矿氧化产物、 含铅烟道灰、 铅酸电池生产过程含铅废料、 铅酸电池铅膏及其热分解产物 铅酸电池铅膏的脱硫产物中的一种或多种, 更优选包括含铅金属矿石、 氧化 铅矿石、 铅锌矿石、 白铅矿石、 方铅矿氧化产物、 含铅烟道灰、 铅酸电池生 产过程含铅废料、 铅酸电池铅膏及其热分解产物或铅酸电池铅膏的脱^ ^产 物, 最优选包括含铅金属矿石、 铅矿氧化产物, 含铅烟道灰或铅酸电池铅膏 的脱.硫产物。
所述硫酸盐] B优选为.硫酸铵溶液、硫酸钠溶液或硫酸钾溶液, 更优选为 硫酸.铵溶液或硫酸销溶液; 所述硫酸盐 B的摩尔浓度优选为 0.05〜3.0mol/L, 更优选为 0.1-2.5 mol/L; 所述络合剩 B优选为氨水、咪唑溶液、 乙二胺溶液、 乙胺溶液、 乙醇胺溶液、 甲胺溶液中的一种或两种, 更优选为氨水、 乙二胺 溶液、 乙胺溶液、 乙醇胺溶液或甲胺溶液, 最优选为氨水或乙胺溶液; 所述 络合剂 B的摩尔浓度优选为 0, l~6,0mo][/L, 更优选为 0,5〜5,0mol/L; 所述缓 冲溶液优选为氨-铵盐溶液、 碳酸氢盐-氢氧化钠溶液、 硼酸-硼砂溶液、 硼酸 -氢氧化铂溶液或盐酸-乙醇胺溶液, 更优选为氨铵盐溶液, 其中所述铵盐优 选为硫酸铵或氯化铵; 所述緩冲溶液的摩尔浓度优选为 0.01〜3.0mol/L, 更优 选为 0.2〜2.8 mol/L。
所述反应的温度优选为 5〜80 , 更优选为: [0〜70°C ; 所述反应的时间优 选为 0.1~10小时, 更优选为 1〜8小时; 所述含铅母料的质量与所述预处理液 和所述缓沖溶液的总体积比值优选为 10〜200g/L, 更优选为 20〜180g/L; 本发 明对硫酸盐 B和络合剂 B的加入量没有特别限制,以其在预处理液中的摩尔 浓度为基准; 本发明对缓冲溶液的加入量没有特别限制, 其作用为调节 pH 值, 以维持反应过.程中 pH的恒定为基准; 本发明对上述反应的其他条件没 有特别限制, 以本领域技术人员熟知的此类反应的反应条件即可; 本发明对 上述反应的反应设备没有特别限制, 以本领域技术人员熟知的常规反应设备 即可; 本发明所述含铅原料还可以直接作为产品使用或出售。
在本发明中上述反应步驟的 pH值控制在优选范围之间, 在此范围内络 合剖 B本身具有一定的酸碱缓沖能力, 同时加入缓冲溶液, 使预处理液在对 含铅原料的浸出过程中溶液的 pH值不会剧烈变化, 使络合剂 B快速、 高效 的与含铅母料中的银、 铜、 镉、 镍、 钴、 锌化合物进行 ·反应。 本发明经过上 述反应后, 优选对所述金属络合溶液进行进一步处理, 以达到充分循环再利 用的目的, 具体步驟为:
a )在第五 pH值的条件下, 将上述步骤得到的金属络合溶液与二氧化碳 进行反应, 得到再生预处理液 A和固体沉淀 A;
b )将再生预处理液 A与金属 A的化合物进行反应, 得到再生预处理液 D和固体沉淀 B; 所述金属 A的化合物为金属 A的氧化物或金属 A的氢氧 化物, 所述金属 A为银、 铜、 镉、 镍、 钴、 铅、 锌中的一种或多种; 所述第 五 pH值为 4.0-9.0
本发明首先向金属络合溶液中不断通入二氧化碳气体, 在第五 pH值的 条-件下, 金属络合溶液中的金属离子转化为金属的氢氧化物、 氧化物、 碳酸 盐、碱式碳酸盐中一种或两种形式的固体沉淀, 分离得到再生预处理液 A与 固体沉淀 A。然后再将再生预处理液 A直接或净化后,加入金属 A的化合物, 使其中的碳酸根全部转化为固体沉淀 B, 分离得到再生预处理液 D和固体沉 淀 ί3。
所述金属 Α的化合物优选为金属 A的氧化物或金属 A的氢氧化物, 所 述金属 A优选为银、 铜、 镉、 镍、 钴、 铅、 锌中的一种或多种, 更优选为银、 铜、镉、 镍、 钴、铅或锌; 所述第五 ρί·Ι值优选为 4,0〜9.0 , 更优选为 4.5 8.5 ; 所述固体沉淀 Α优选为金属氢氧化物、 氧化物、碳酸盐和碱式碳酸盐中的一 种或两种, 更.优选为金属氢氧化物、 氧化物、 碳酸盐或碱式碳酸盐; 所述.金 属优选为银、 铜、 镉、 镍、 钴和锌中的一种或多种, 更优选为银、 铜、 镉、 镍, 钴或锌; 所述固体沉淀 B优选为金属 A的碳酸盐和 /或碱式碳酸盐, 更 优选为碳酸盐或碱式碳酸盐。
所述反应的温度优选为 5〜80 °C , 更优选为 10〜70°C ; 所述反应的时间优 选为 0.1'、10小时, 更优选为 1〜8小时; 所述含铅母料的质量与所述预处理液 和所述缓冲溶液的总体积比值优选为 10〜200g/L, 更优选为 20〜1 80g/L; 本发 明对上述反应的其他条件没有特别限制, 以本领域技术人员熟知的此类反.应 的反应条件即可; 本发明对上述反.应的反.应设备没有特别限制, 以本领域技 术人员熟知的常规反应设备 ^可; 本发明对所述净化没有特别限制, 以本.领 域技术人员熟知的此类处理方法中的净化方法即可。
本发明向金属络合溶液中通入二氧化碳, 二氧化碳是酸性气体, 会使溶 液酸化、 pH值减小。 络合剂 B是胺类化合物, 在络合过程中, 胺类化合物 以电中性分子形式与铅离子形成络合物, 在溶液 pH值减小的过程中, 胺类 化合物会显现出酸效应, 即胺类会随着溶液 pH值的减小与二氧化碳形成碳 酸盐, 使胺类化合物的浓度减少, 对铅离子表現络合能力减弱 随着溶液中 不断通入二氧化碳, 二氧化碳与氢氧根反应生成碳酸根、碳酸氢根, 溶液 pH 值逐渐减小, 胺类化合物的表观络合能力逐渐减弱, 当络合物 B的表观络合 能力不足以使金属氧化物、 氢氧化物、 碳酸盐、 碳酸氢盐溶解时, 即产生固 体沉淀, 从而使金属离子与溶液实现分离, 得到再生预处理液 A与固体沉淀 A。 本发明向再生预处理液 A中加入金属 A的氧化物或金属 A的氢氧化物, 使溶液中残存的碳酸根与金属 A的氧化物或金属 A的氢氧化物反应生成金 属 A的碳酸盐或碱式碳酸盐, 再生预处理液得到充分净化, 分离得到沉淀和 再生预处理液 ί)。
由于含铅物料以金属氧化物为主, 同时可能含有一定量的金属硫酸盐, 在络合溶解—碳化沉淀的过程中会使溶液中硫酸; f艮在根浓度不断增加,并使预 处理液逐渐酸化, 本发明为更好的对金属络合溶液进行分离, 优选将再生预 处理液 A与含 4 的化合物进行反应 ., 上述步骤 b )优选为:
bl )将再生预处理液 A与含钙的化合物进行反应, 得到再生预处理液 B 和硫酸钙;
b2 )将再生预处理液 B与二氧化碳进行反应,得到再生预处理液 C和碳 酸钙;
b3 )将再生预处理液 C与氧化铅进行反应,得到再生预处理液 D和碳酸 铅; 所述含 的化合物为氧化钙或氢氧化钙。
本发明向再生预处理液 A中加入氧化钙或氢氧化钙,使硫酸根与钙离子 生成硫酸钙沉淀, 同时得到的氢氧根使预处理液消除酸化, 分离得硫酸钙与 再生预处理液 β。 再生预处理液 Β中会残存部分氢氧化钙, 向溶液中通入二 氧化碳气体或加入饱和二氧化碳水溶液,使再生预处理液 Β中残存部分氢氧 化钙转化为碳酸钙固体, 分离后得到碳酸钙固体与再生预处理液 C。 在加入 氧化钙或氢氧化钙的过程中, 因溶液中的金属离子通过碳化以完全沉淀, 并 经过金属置换除杂, 因此得到铅含量极低的硫酸钙。 本发明对于不含有金属 硫酸盐的含铅物料, 因溶液中硫酸根不会富集, 因而优选可以不对再生预处 理液 A进行上述处理。
所述反应的温度优选为 5〜80°C, 更优选为 10〜70Γ ; 所述.反应的时间优 选为 0„1〜10小时, 更优选为 1〜8小时; 本发明对上述 ^JZ的其他条件没有特 别限制, 以本领域技术人员熟知的此类反应的反应条件即可; 本发明对上述 反应的反应设备没有特别限制, 以本领域技术人员熟知的常规反应设备即 可。
本发明为使预处理过程更有利于回收再利用, 使整个含铅原料的处理过 程形成闭环工艺流程, 优选将上述步骤产生的再生预处理液 A和 /或再生预 处理液 D, 循环回用于上述预处理过.程中, 与其余原料一起参与反应, 制备 金属络合溶液和含铅原料。 所述再生预处理液 C优选循环用于上述步骤 bl ) 中, 与其余原料一起参与反.应, 制备再生预处理液 B和硫酸钙。
本发明在对于银、 铜、 镉、 镍、 钴含量较少, 锌含量较高的含铅物料的 预处理过程中, 优选在上述预处理步骤得到金属络合溶液后, 先向其中加入 过量的金属辞或铁, 分离固体杂质后, 得到锌络合溶液, 然后在第五 pH值 的条件下, 将上述步骤得到的辞络合溶液与二氧化碳进行反应, 得到再生预 处理液 A和固体沉淀 A1。
本发明通过上述置换的方式除去溶液中存在的银、 铜、 镉、 镍、 钴、 铅 杂质, 同时络合剂 B对铁离子络合能力较弱, 铁以氢氧化物的形式沉淀, 从 而得到纯净的锌络合物溶液。 所述固体沉淀 A1优选为锌的氢氧化物、 氧化 物,碳酸盐和碱式碳酸盐中的一种或两种, 更优选为锌的氢氧化物、氧化物、 碳酸盐或械式碳酸盐。
本发明在上述预处理过程中, 金属络合溶液经过金属锌除杂后, 得到的 固体沉淀 A1是 ^的氧化物或氢氧化物或碳酸盐或碱式碳酸盐, 经热分解得 到氧化锌与二氧化碳。 金属络合溶液未经金属锌除杂, 步骤 a )得到的是固 体沉淀 A, 即银、 铜、 镉、 镍、 钴、 锌以及微量铅的氧化物、 氢氧化物、 碳 酸盐或碱式碳酸盐, 经热分解得到银、 铜、 镉、 镍、 钴、 辞以及微量铅与二 氧化碳。 步骤 b )得到的是固体沉淀 B , 即金属 A的碳酸盐或碱式碳酸盐, 即银、 铜、 镉、 镍、 钴、 铅、 锌的碳酸盐或碱式碳酸盐, 经热分解得到银、 铜、 镉、 镍、 钴、 锌、 铅的氧化物与二氧化碳。 本发明对上述金属碳酸盐和 碱式碳酸盐的处理方法没有特别限制, 也可以直接出售、 使用, 或者通过上 述热处理的方法使其分解, 得到金属氧化物与二氧化碳, 二氧化碳收集后可 以循环使用。本发明对上述金属 A的碳酸盐和减式碳酸盐的处理方法没有特 别限制, 也可以直接出售、 使用, 或者通过上述热处理的方法使其分解, 得 到金属 A的氧化物与二氧化碳, 二氧化碳收集后可以循环使用。
本发明在上述预处理过程中, 建立了第一个二氧化碳循环, 二氧化碳作 为媒介, 釆用浸出碳化-热分解的方式, 使含铅原料中的银、 铜、 镉、 镍、 钴、 锌以氧化物的形式进行分离, 其实质是提纯的过程, 相比现有工艺具有 能耗低、 分离彻底、 反应速度快的优点。 在本发明中, 二氧化硫与二氧化碳 可以达到同样的技术效果, 其使用方法、 加入顺序以及相关工艺流程均与二 氧化碳一致, 因此对使用二氧化硫的具体方法不再——赘述。
本发明预处理过程的作用是使.含铅原料中的银、 铜、 镉、 镍、 钴、 锌与 铅和其他杂质进行分离, 因此对于银、 铜、 镉、 镍、 钴、 锌含量较低的含铅 原料优选不通过上述预处理步骤进行浸出, 而直接进行铅的提取过程。
本发明在第一 pH值的条件下, 将上述经过浸出预处理的含铅原料, 放 入催化剂、 硫酸盐 A、 终合剂 A、 还原剂、 无机碱以及水形成的反应液中进 行-反应, 得到含铅反应液八, 并分离出不溶性物质; 然后在第二 pH值的条 件下, 将上述步骤得到的含铅反应液 A与酸性氧化物进行 应, 得到再生反 应液 A和固体沉淀; 最后在第一 pH值的条 下, 将再生反应液 A与氧化铅 进行反应得到再生反应液 B和可再剩用铅类物质。
所述第一 pH值优选为 7„0〜10,5 , 更优选为 7,0〜9,5; 所述第二 pH值优 选为 4.5-9.5 , 更优选为 4.0 9.0; 所述酸性氧化物优选为二氧化碳或二氧化 硫, 更优选为二氧化碳; 所述可再利用铅类物质优选为碳酸铅、 碱式碳酸铅 和亚硫酸铅中的一种或多种, 更优选为碳酸铅、 碱式碳酸铅或亚硫酸铅, 最 优选为碳酸铅或碱式碳酸铅; 所述固体沉淀优选为碳酸铅、 碱式碳酸铅、 亚 硫酸铅和硫酸铅中的一种或多种, 更优选为碳酸铅、 碱式碳酸铅、 亚硫酸铅 或硫酸铅, 最优选为碳酸铅、 碱式碳酸铅或硫酸铅。
所述含铅原料优选包括含铅金属矿石、 氧化铅矿石、 铅锌矿石、 白铅矿 石、 方铅矿氧化产物、 含铅烟道灰、 铅酸电池生产过程含铅废料、 铅酸电池 铅膏及其热分解产物、 铅酸电池铅膏的脱硫产物中的一种或多种, 更优选包 括含铅金属矿石、 氧化铅矿石、 铅锌矿石、 白铅矿石、 方铅矿氧化产物、 含 铅烟道灰、 铅酸电池生产过程含铅废料、 铅酸电池铅膏及其热分解产物或铅 酸电池铅膏的脱硫产物, 最优选包括含铅金属矿石、 铅矿氧化产物、 含铅烟 道灰或铅酸电池铅膏的脱硫产物。
所述络合剂 A优选为乙酸溶液、丙二酸溶液、 乙二胺溶液、丙二胺溶液、 乙醇胺溶液、咪唑溶液、 二乙三胺溶液、 三乙四胺溶液、 乙二胺二乙酸溶液、 氨三乙酸溶液、 谷氨酸溶液、 缬氨酸溶液、 组氨酸溶液、 天冬氨酸溶液、 丙 氨酸溶液、 脯氨酸溶液、 丝氨酸溶液, 苯丙氨酸溶液, 精氨酸溶液、 苏氨酸 溶液、 甘氨酸溶液、 赖氨酸溶液、 天冬酰胺溶液和谷氨酰胺溶液中的一种或 两种, 更优选为乙酸溶液、 丙二酸溶液、 乙二胺溶液、 丙二胺溶液、 乙醇胺 溶液, 咪唑溶液、 二乙三胺溶液、 三乙四胺溶液、 乙二胺二乙酸溶液、 -氮三 乙酸溶液、 谷氨酸溶液、 缬氨酸溶液、 组氨酸溶液、 天冬氨酸溶液、 丙氨酸 溶液、 脯氨酸溶液、 丝.氨酸溶液、 苯丙氨酸溶液、 精氨酸溶液、 苏氨酸溶液、 甘氨酸溶液、 赖氨酸溶液、 天冬酰胺溶液或谷氨酰胺溶液, 最优选为丝氨酸 溶液、 丙氨酸溶液、 氨三乙酸溶液、 甘氨酸溶液、赖氨酸溶液或组氨酸溶液。
所述络合剂 A的摩尔浓度优选为 0.5〜5.0 mol/L, 更优选为:!〜 4,0 molZL; 所述还原剂优选为铅、 铁、 默氧水、 二氧化硫和亚硫酸盐中的一种或两种, 更优选为铅、 铁、 双氧水、 二氧化硫或亚硫酸盐, 最优选为铅、 铁; 所述催 化剂优选为铁盐溶液、 钴盐溶液和锰盐溶液中的一种或两种, 更优选为铁盐 溶液、 钴盐溶液或锰盐溶液, 最优选为铁盐溶液; 所述催化剂的摩尔浓度优 选小于等于 0.1mol/L, 更优选小于等于 0„08 mol/L; 所述无机碱优选为氢氧 化钠、 氢氧化钾和氨中的一种或多种, 更优选为氢氧化钠、 氢氧化钾或 -氨; 所述硫酸盐 A优选为硫酸铵溶液、 硫酸钠溶液和硫酸钾溶液中的一种或多 种, 更优选为硫酸铵溶液、硫酸钠溶液或硫酸钾溶液; 所述硫酸盐 A的摩尔 浓度优选为 0.4〜4.0mol/L, 更优选为 0,8〜3,2 mol/L。
所述反应的温度优选为 5~85 °C, 更优选为 10〜75 °C ; 所述反应的时间优 选为 0.1 10小时, 更优选为〗〜8小时; 所述含铅原料的质量与所述反应液的 总体积比值优选为 20〜400g/L, 更优选为 50〜350g/L; 本发明对催化剖、硫酸 A、 络合剂 A、 还原剂以及水的加入量没有特别限制, 以其在反应液中的 摩尔浓度为基准; 本发明对无机碱的加入量没有特别限制,其作用为调节 pH 值, 以维持反应过程中 pH的恒定为基准。 本发明对上述反应的其他条件没 有特别限制, 以本领域技术人员熟知的此类反应的反应条件即可; 本发明对 上述反应的反应设备没有特别限制, 以本领域技术人员熟知的常规反应设备 即可。
本发明为更好的对含铅反应液 A进行分离, 所述步骤 B )优选还可以为 以下步骤: B1 )在第三 pH值的条件下, 将上述步骤得到的含铅反应液 A与 酸性氧化物进行反应, 得到含铅反应液 B和可再利用铅类物质; B2 )在第二 pH值的条 ·件下, 将上述步骤得到的含铅反应液 B与酸性氧化物进行反应, 得到再生反应液 A和固体沉淀; 所述第三 pH值为 7.0 9.5; 所述酸性氧化物 为二氧化碳或二氧化疏。
所述第三 pH值优选为 7.0〜9.5, 更优选为 7,5〜9,0; 所述酸性氧化物为二 氧化碳或二氧化硫, 更优选为二氧化碳; 所述反应的温度优选为 5〜85 °C , 更 优选为 10〜75r: ; 所述反.应的时间优选为 0.1〜10小时, 更优选为 1~8小时; 本发明对上述反应的其他条件没有特别限制, 以本领域技术人员熟知的此类 反应的反应条件^可; 本发明对上述反.应的反.应设备没有特别限制, 以本领 域技术人员熟知的常规反应设备即可。
本发明为使预处理过程更有利于回收再利用, 使整个含铅原料的处理过 程形成闭环工艺流程, 优选将上述步骤产生的再生反应液 A、 再生反应液 B 和含铅反应液 B中的一种或多种, 循环回用于上述步骤 A ) 中, 与其余原料 一起参与反应, 制备含铅反应液 A tl
对于上述含铅原料, 本发明釆用含有硫酸盐 络合剂 A、 还原剂、 无机 碱以及水在第一 pH值的条件下对含铅物质进行浸取; 加入还原剂的目的是 使含铅物质中可能存在的二氧化铅还原为可溶性的铅盐, 待含铅物质中的二 氧化铅或者其他铅化合物全部溶解后, 溶液过滤, 分离得到含铅反应液 A与 不溶性物质。加入络合剂 A的作用是:在溶液中硫酸铅以铅络合物形式溶解, 对溶液逐渐进行酸化后, 络合剂 A对铅离子的表观络合能力逐渐减弱, 直至 络合剂 A对铅离子的表观络合能力不足以使硫酸铅溶解,铅络合物以硫酸铅 形式析出。 同时在此溶液体系中, 含铅滤渣中的锡、 锑、 砷、 铋、 铝、 硅、 钡化合物均不溶解, 其他可溶性杂质在预处理过程中已预先除去, 只有铅化 合物可以溶解, 因此对铅络合物溶液采用过滤即可分离含铅原料中的杂质, 得到的是純净的铅络合物溶液。
进一步的, 二氧化碳是酸性气体, 向反应液中通入二氧化碳气体使溶液 pH值减小, 化学手册显示硫酸铅的溶度积常数为 l,7 x l(T8,碳酸铅的溶度积 常数为 7.4 x l(rM, 碱式碳酸铅在碱性条件下比碳酸铅溶解度更低。 络合剂 A 对铅的表观络合能力介于硫酸铅与碳酸铅之间, 即在反应液中硫酸铅与络合 剂 A转化为铅络合物溶解、 铅络合物会与碳酸根转化为碳酸铅或碱式碳酸铅 沉淀, 含铅反应液 A的 pH值在 7,0〜10.5之间, 属于弱碱性, 二氧化碳会溶解 在含铅反应液 A中产生碳酸根离子, 因此, 向含铅反应液 A中不断通入二氧 化碳的过程中, 一方面二氧化碳使溶液酸化, 另一方面会产生碳酸根与含铅 络合物生成碳酸铅或碱式碳酸铅沉淀。 碳酸是弱酸, 随着 pH值的减小, 碳酸 根会产生酸效应, 溶液中的碳酸根会逐渐与氢离子结合转化为碳酸氢根或碳 酸, 使溶液中的碳酸.根含量减少, ^对铅离子的沉淀能力减弱。 随着含铅反 应液八的 11值的下降, 碳酸根酸效应愈加明显, 直至碳酸根对铅离子的沉淀 能力弱于硫酸根, 此时, 铅络合物的沉淀形式由碳酸铅或碱式碳酸铅转变为 硫酸铅。 含铅反应液 A的 pH值在 Ί. 〜9.5之间时, 溶液中的铅络合物以碳酸 铅或碱式碳酸铅形式的转化为固体沉淀, 含铅反应液 Α的 pH值在 4.5〜9.5 之 间时, 溶液中的铅络合物以硫酸铅的形式沉淀。 碳酸铅、 碱式瑗酸铅经热分 解后得到氧化铅与二氧化碳气体, 二氧化碳可以循环使用。 铅化合物是氧化 铅与硫酸铅的混合物, 氧化铅是偏碱性氧化物, 硫酸铅是中性盐, 含铅反应 液 Α可以看成是氧化铅与硫酸铅的溶液, 在通入二氧化碳的过程中, 碱性的 氧化铅首先与酸性的二氧化碳反应生成碳酸铅或碱式碳酸铅,使溶液 pH值不 断下降, 直至氧化铅反应完全, 此时溶液 pH值接近中性, 硫酸铅开始析出。 因此, 通过反应液 pH值的变化对硫酸铅进行可控的溶解、 析出, 从而使含铅 废料中难以处理的硫酸铅得到分离。 本发明优选可以釆用两次过滤的方法, 分别得到碳酸铅、 碱式碳酸铅或硫酸铅。 同时, 铁、 锡、 砷、 锑, 铋、 钡的 单质或化合物不溶解, 与氧化铝、 二氧化硅等杂质以不溶性物质的形式留在 滤渣中, 铜、 银、 镉、 镍、 钴、 锌其含量较低, 且在溶液中不会与硫酸;^或 碳酸根产生沉淀, 在反应液中会缓慢富集, 在杂质金属含量较高后, 本发明 优选可以采用恒流或恒压电解的方法除去反应液中的杂质金属。 因此, 含铅 反应液 A、 B的碳化过程的实质是将含铅原料中的氧化铅、硫酸铅与杂质相互 分离, 分别得到氧化铅与硫酸铅。
在含铅原料提纯铅的过.程中, 本专利建立了第二个二氧化碳循环, 以二 氧化碳作为媒介, 采用溶解-分步沉淀-热分解的方式, 除去含铅原料中非铅 杂质, 并使氧化铅与硫酸铅相互分离, 其实质是提纯的过程, 相比现有工艺 具有能耗低、 分离彻底、 反应速度快的优点。 在本发明中, 二氧化硫与二氧 化碳可以达到同样的技术效果, 其使用方法、 加入顺序以及相关工艺流程均 与二氧化碳一致, 因此对使用二氧化硫的具体方法不再——赘述。
本发明在含铅原料提纯铅后得到氧化铅与硫酸铅, 目前氧化铅是重要的 化工与电池生产原料, 硫酸铅应用范围较为有限, 本^ ^明优选对上述所有被 分离出的含有硫酸铅的沉淀, 继续进行脱硫处理。 同时, 本发明对于含杂质 较少的含硫酸铅物料, 例如铅酸电池中铅膏、 铅酸电池生产过程含铅废料, 或需要脱硫处理的含铅物料, 例如含铅烟道灰、 方铅矿氧化产物, 同样优选 采用脱硫过程。 本发明对脱硫过程的具体步骤没有特别限制, 以本领域技术 人员熟知的此类脱硫过程即可, 优选按照以下步驟进行:
1 )在第六 pH值的条件下, 将所述固体沉淀、 硫酸盐 C、 缓冲物质、 碳 酸盐 A与脱硫溶液进行反应 , 得到脱硫废液 A和固体沉淀 C;
2 )将脱硫废液 A与含钙的化合物进行反应, 得到脱硫废液 B和固体沉 淀 D;
3 )在第六 pH值的条件下, 将脱硫废液 B、 脱硫溶液与二氧化碳进行反 应, 得到再生脱硫液和碳酸钙;
所述含钙的化合物为氢氧化钙或氧化钙; 所述第六 pH值为 8.5〜.13„5。 所述硫酸盐 C优选为硫酸铵溶液、硫酸钠溶液和硫酸钾溶液中的一种或 多种, 更优选为硫酸铵溶液、 硫酸钠溶液或硫酸钾溶液, 最优选为硫酸钾溶 液; 所述硫酸盐 C的摩尔浓度优选为 0.1〜4.0mol/L, 更优选为 0,5〜3,5 mol/L; 所述缓冲物质是 H值在 8.5-13.5之间具有酸碱缓冲能力的有机酸、 无机酸、 无机碱或有机碱中的一种, 所述缓冲物质的摩尔浓度为 O.】〜3.0mol/L, 更为 优选的缓沖物质是是牛磺酸、 丁内酰胺、 N甲基吡咯烷嗣、 抗坏血酸、 丙嗣 t、 甜菜碱中的一种; 所述碳酸盐 A优选为碳酸钠溶液、 碳酸氢钠溶液、 碳 酸钟溶液、 碳酸氢钾溶液、 碳酸铵溶液和碳酸氢铵溶液中的一种或两种, 更 优选为碳酸钠溶液、 碳酸氢 #3溶液、 碳酸钾溶液、 瑗酸氢钾溶液、 瑗酸铵溶 液或碳酸氢铵溶液, 最优选为碳酸钾溶液; 所述瑗酸盐 A的摩尔浓度优选为 0.01〜3,0mol/L, 更优选为 0.1-0.9 mo^L; 所述脱硫溶液为氢氧化钠溶液, 氢 氧化钾溶液和氨水中的一种或多种, 更优选为氢氧化鈉溶液、 氢氧化钾溶液 或氨水; 所述固体沉淀 C优选为碳酸铅、碱式碳酸铅、硫酸铅、碱式硫酸铅, 氧化铅中的一种或多种, 更优选为碳酸铅、 碱式碳酸铅、 硫酸铅、 碱式硫酸 铅或氧化铅; 所述固体沉淀 D优选为硫酸钙与氢氧化钙的混合物和 /或硫酸 钙, 更优选为硫酸钙与氢氧化钙的混合物或硫酸钙。
所述反应的温度优选为 0〜90'C , 更优选为 5〜85'C ; 所述反应的时间优 选为 0.01 10小时, 更优选为 0.5〜9小时; 所述含铅原料的质量与所述反应 液的总体积比值优选为 10〜400g/L, 更优选为 30〜350g/L; 本发明对上述反应 的其他条件没有特别限制, 以本领域技术人员熟知的此类反应的反应条件即 可; 本发明对上述反应的反应设备没有特别限制, 以本领域技术人员熟知的 常规反应设备即可。
本发明为使脱硫过程更有利于回收再利用, 使整个含铅原料的处理过程 形成闭环工艺流程, 优选将上述步骤产生的再生脱硫液, 循环回用于上述步 骤 1 ) 中, 与其余原料一起参与反应, 制备脱硫废液 A和固体沉淀 C。
本发明采用含有硫酸盐、 碳酸盐的脱硫液对含硫酸铅物料进行脱硫, 硫 酸铅与碳酸盐转化为碳酸铅或碱式碳酸铅与硫酸盐, 在脱硫过程中溶液的碳 酸根浓度不断下降, 硫酸根浓度不断升高, 直至碳酸根完全与硫酸铅反应, 得到脱硫废液 A和固体沉淀 C, 即碳酸铅、 碱式碳酸铅、 硫酸铅 碱式硫酸 铅或氧化铅。 本发明在上述脱硫过程中, 脱硫液中还优选加入缓沖物质, 从 而通过缓冲物质的增加提高溶液对二氧化碳的吸收量, 进一步提高处理效 随后向除铅后的脱硫废液 A中加入氧化钙或氢氧化钙, 硫酸钙的溶度积 常数为 2.5 10"5, 氢氧化钙的溶度积常数为 3.7 X 10"6, 硫酸钙与氢氧化钙的 溶度积常数较为接近, 因此在浓度较高的硫酸钠溶液中, 氧化钙或氢氧化钙 与硫酸铂会部分的反应生成硫酸.钙与氢氧化钠, 直至反.应达到平衡状态, 此 时溶液中氢氧化衲浓度为 0.05- 2.5mol/L之间, 分离后得到脱^ ¾废液 B与固体 沉淀 D, 即硫酸钙与氢氧化钙的混合物或硫酸钙。 因脱硫废液 A中已除去铅 杂质, 硫酸钙纯度较高, 达到工业甚至食品级纯度。 向脱硫废液 B中通入二 氧化碳气体, 二氧化碳与氢氧化钠反应生成碳酸钠, 产生碳酸根, 会使溶液 中残存的微量钙离子以碳酸钙的形式沉淀, 使脱硫废液 B得到完全的净化与 再生, 分离后得到再生脱硫液, 再生脱硫液返回步骤 1 )循环使用。 硫酸铅 全部或部分脱硫产物经热分解后得到碱式硫酸铅、 氧化铅或其混合物和二氧 化碳, 二氧化碳可以循环使用。
本发明上述脱硫过.程中溶液由于没有络合剂, 铅盐在水溶液中溶解度较 小, 因此脱硫废液 A中含有微量的铅离子, 本发明优选向脱硫废液 A中加 入过量的金属锌或铁, 通过置换的方式除去溶液中微量铅离子, 然后铁或锌 以氢氧化物的形式沉淀, 从而使脱硫废液 A完全的除铅。 在脱硫过.程中, 本专利建立了第三个二氧化碳循环, 以二氧化碳作为脱 硫媒介, 使含硫酸铅物料得到脱硫, 反应的实质是氧化钙或氢氧化钙与硫酸 铅进行反应得到硫酸钙或碱式硫酸铅、氧化铅、碱式硫酸铅与氧化铅混合物, 解决了目前氧化钙与硫酸铅脱硫后产物难以分离的困难。 氧化钙来源广泛, 且价格远远低于目前常用的脱硫剂氢氧化钠、 碳酸销, 同时所得脱硫副产品 硫酸钙铅含量为 0,0001%, 达到工业甚至食品级硫酸钙标准, 可以大幅减少 目前硫酸铅脱硫剂的成本。 在本发明中, 二氧化硫与二氧化碳可以达到同样 的技术效果, 其使用方法、 加入顺序以及相关工艺流程均与二氧化碳一致, 因此对使用二氧化硫的具体方法不再——贅述。
本发明对于上述过.程的含铅原料或中途固体产物, 因其可能含有有机物 成分, 不利于分离处理, 因此优选对其进行热处理过程, 使其中的有机物得 到充分分解, 本发明对热处理的过程没有特别限制, 以本领域技术人员熟知 的热处理过.程即可。 同时在热处理的过程中, 还优选使其中可能含有的单质 金属与氧气反应生成金属氧化物、 二氧化铅分解为氧化铅, 对于二氧化铅含 量较多的含铅原料, 可以在减压条件下进行热处理, 提高二氧化铅的分解速 度。 本发明对热处理的温度优选为 200〜650°C , 更优选为 250〜600°C ; 本发 明对热处理的其他条件没有特别限制, 以本.领域技术人员熟知的热处理条件 即可。
本发明提供的处理方法, 利用碳酸盐、 碱式碳酸盐易分解的特点, 通过 控制反应体系的 pH值, 并以碳酸盐、 碱式碳酸盐为中间过渡产物, 以无毒 的二氧化碳或工业副产品二氧化硫循环为基础 , 利用络合剂的对不同组分的 不同作用, 实现了环保、 低污染、 低能耗的含铅原料回收利用过程。 进一步 的, 本发明对含铅原料依次进行预处理、 铅提取、 脱硫过程, 建立了三个密 闭碳酸根循环体系, 釆用碳酸根作为脱硫载体, 二氧化碳实现碳酸根循环, 使含铅原料中的有价金属元素以氧化物或氢氧化物的形式得到充分的分离, 提纯,并使用价格低廉的氧化钙作为脱硫剂, 实现含硫酸铅物料的脱硫过.程。 在除杂和铅提取过程中, 能耗极低, 吨金属能耗不超过 50kg标准煤, 脱硫 过程的脱硫剂采用氧化钙或氢氧化钙, 其成本低廉, 副产物硫酸钙铅含量极 低, 可以广泛作为于建筑、 生活、 化工原料, 使硫酸铅中的硫酸根得到充分 的再利用, 改变了目前依赖氢氧化钠或碳酸钠作为脱硫剂的现状, 脱硫成本 大幅下降。 实验结果表明, 本发明提供的含铅原料的处理方法, 得到的氧化 铅中, 经过 IPC定量分析, 金属铅的纯度为 99,9991%, 其余金属杂质的含量 为()扁88。
为了进一步理解本发明, 下面结合实施例对本发明提供的一种含铅原料 的处理方法进行说明, 本发明的保护范围不受以下实施例的限制。
实施例 1 :
1 )将含铅 60%、含铜 1 %、含锌 4°/o的铅精矿 1kg在 400。C下热处理 15min。
2. ) 配置 5L含有 imol/L 乙胺、 0,05mol/L硫酸铵的预处理液, 采用氨- 硫酸铵缓冲溶液调节预处理液 pH值在 9.0-9,5之间, 加入步骤 1 ) 的铅精矿 1kg, 恒温 45 °C反应 1小时。 过滤得含铅滤渣与金属络合溶液
3 ) 向金属络合溶液中加入过量锌粉, 使铜、 镉、 镍、 钴、 铅等杂质通 过置换的方法转化为金属单质, 分离得锌络合溶液。
4 )向锌络合溶液中通入二氧化碳气体, 使锌络合溶液 pH值逐渐降低至 7.0 , 锌络合物转化为碳酸锌沉淀, 分离得碳酸锌与再生预处理液 A, 预处理 液 A循环使用,碳酸辞在 400 条件下充分热分解,得到氧化锌与二氧化碳, 二氧化碳冷却后循环使用。
5 )配置 10L含有 l mol/L丝氨酸、 0.5mo /L乙二胺、 2mol/L疏酸钠的反 应液, 采用氢氧化钠水溶液调节反应液 pH值在 9,5 10.0之间, 加入步骤 1 ) 所得含铅滤渣, 在 70°C条件下反应 0.5小时。 过滤得滤渣与含铅反应液 A。
6)向含铅反应液中通入二氧化碳, 调节溶液 pH值至 8,0, 使铅络合物转 化为碱式碳酸铅沉淀, 过滤得碱式碳酸铅与再生反应溶液 A, 再生反应溶液 A循环使用。 碱式碳酸铅在 350 下充分热分解, 得到氧化铅与二氧化碳, 二氧化碳冷却后循环使用。
经 ICP定量分析, 氧化锌产品中锌的金属杂质含量如下
Figure imgf000020_0001
锌的纯度达到国标 99,995标准。
ICP定量分柝, 氧化铅产品中铅的金属杂质含量如下:
Figure imgf000021_0001
铅的纯度达到国标 99.994标准。
实施例 2:
1 ) 配置 5L含有 3mol/L氨、 0,2mol/L硫酸钠的预处理液, 采用氨 -氯化 铵缓沖溶液调节预处理液 pH值在 9.5 1(10之间 ., 加入含铅 60%、 豫光金铅 所产含 烟道灰 2kg, 恒温 25 Ό反应 2小时。 过滤得含铅滤渣与金属络合溶 液。
2 ) 向金属络合溶液中加入过量锌粉, 使铜、 镉、 镍、 钴、 铅等杂质通 过置换的方法转化为金属单质, 分离得锌络合溶液。
3 )向锌络合溶液中通入二氧化碳气体, 使锌络合溶液 pH值逐渐降^^至 7.5 , 锌络合物转化为碳酸锌与氧化锌沉淀, 分离得碳酸锌与氧化锌、 再生预 处理液 A。
4 )向预处理液中加入 120g氧化钙,分离得到硫酸钙与再生预处理液 B , 再生预处理液 B通入适量二氧化碳使 离子转化为碳酸钙沉淀,过滤后得再 生预处理液 C与碳酸钙, 再生预处理液 C中加入过量氧化铅,再生预处理液 C得到再生, 分离得再生预处理液 D与碱式碳酸铅,再生预处理液 D循环使 用。 碳酸锌与氧化锌混合物在 500°C条件下充分热分解, 得到氧化锌与二氧 化碳, 二氧化碳冷却后循环使用。
4 ) 配置 25L含有 l ,5mol/L苯丙氛酸、 0.5mol/L氨三乙酸、 l,5mol/L硫 酸钠的反应液, 采用氢氧化钾水溶液调节反应液 pH值在 8.2-8.5之间, 加入 步骤 1 )所得含铅滤渣, 在 601:条件下反应 2小时。 过滤得滤渣与含铅反应 液 A。
5)向含铅反应液中通入二氧化碳, 调节溶液 pH值至 7.9- 8,0, 使铅络合 物转化为碱式碳酸铅沉淀, 过滤得碱式碳酸铅与含铅反应液 B。 含铅反应液 B继续通入二氧化碳至溶液 pH值达到 6,0, 分离得硫酸铅与再生反应液 A, 向再生反应液 A中加入 270g氧化铅, 过滤后得到再生的反.应液 B , 循环使 用。 碱式碳酸铅在 350'C下充分热分解, 得到氧化铅与二氧化碳, 二氧化碳 冷却后循环使用。
6 ) 配置 10L含有 2mo /L硫酸钾、 0.2mo1/L碳酸鉀、 pH值 10.0-10.5的 脱硫溶液, 加入上述硫酸铅 500g, 在 15 °C条件下反应 3小时, 分离得碱式 碳酸铅与脱硫废液 A。 碱式碳酸铅在 450°C条件下热分解 45miii, 得到氧化 铅与二氧化碳, 二氧化碳冷却后循环使用。
7 )脱硫废液 A加入过量铁屑 , 除去溶液中微量的铅离子, 加入 H2g氧 化钙, 分离得到 500g二水.硫酸钙与脱硫废液 B , 向脱硫废液 B中通入二氧 化碳至溶液 pH值达到 10.0-10.5 , 过滤分离碳酸 4丐得到再生脱硫液, 循环使 。
经 ICP定量分析, 氧化锌产品中锌的金属杂质含量如下
Figure imgf000022_0002
锌的纯度达到国标 99,995标准。
ICP定量分析, 氧化铅产品中铅的金属杂质含量如下:
Figure imgf000022_0003
达到国标 99.994标准。
Figure imgf000022_0001
取 12V、 50()Ah的废旧备用电源铅酸蓄电池, 重量为 150千克, 具体处 理过程如下:
1 )将其破碎, 分选出铅膏备用。
2)取 10kg铅膏在 470°C下真空热处理, 使其中的二氧化铅与铅转化为氧 化铅, 有机物充分热分解。
3 ) 配置 150L溶液, 其中含有 l ,0mol/L硫酸钠、 O.OOlmoli/L硫酸钴、 i.5mol/L甘氨酸、 0.5mol/L丙氨酸, 采用氢氧化钠溶液维持溶液反应过程中 pH值在 8.5 ± 0.2之间,向溶液中加入 2 )过程中得到的铅膏并加入过量铅粉, 使其中残存的二氧化铅溶解, 恒温 85 °C条件下搅拌 1.5小时。 分离出 150L 含铅反应液与滤渣
4 )将 150L含铅反应液在 401:的条件下, 通入二氧化碳气体, 含铅反应 液 pH值达到 8„0时, 分离得到碱式碳酸铅, 滤液继续通入二氧化碳, 使溶 液中的铅以硫酸铅与碱式碳酸铅混合物的形式沉淀。过滤得再生反应液 A与 硫酸铅、碱式碳酸铅混合物。 4酸铅与碱式碳酸铅混合物、碱式碳酸铅在 330 'C下分别热分解 3小时, 分别得到碱式硫酸铅和氧化铅, 二氧化碳冷却后循 环使用。
5 )向再生反应液 A中加入 500g氧化铅除去溶液中的碳酸根, 分离得再 生反应液 B, 循环使.用。
经 ICP定量分折, 氧化铅、 碱式硫酸铅产品中铅纯度达到 99,999%。 实施例 4:
取 i2V、 12.A11板柵为铅钙合金的电动车蓄电池, 重量为 8千克, 具体 处理过程如下:
1 )将其破碎, 分选出铅膏备用。
2)取 1kg铅膏在 500°C下真空热处理, 使其中的二氧化铅与铅转化为氧 化铅, 有机物充分热分解。
3 ) 配置 10L含有 lmol/L硫酸钠、 0. Imol/L碳酸钠、 pH值 10.0士 0,5的 脱硫溶液, 加入步骤 2 )处理后的铅膏, 在 25 条.件下反应 5小时, 分离得 碱式碳酸铅与脱硫废液。 A碱式碳酸铅在 50CTC条件下热分解 lOOmin, 得到 氧化铅与二氧化碳, 二氧化碳冷却后循环使用。
4 )脱硫废液 A加入过量铁屑, 除去溶液中微量的铅离子, 加入 50g氧 化钙, 分离得到硫酸钙与脱硫废液 B, 向脱硫废液 B中通入二氧化碳至溶液 pH值达到 10.0-10.5, 过滤分离碳酸钙得到再生脱硫液, 循环使用。
经 ICP定量分析, 氧化铅产品中铅含有 2%的硫酸.钡, 其余为氧化铅。
5 )配置 8L含有 0.5mol/L赖氨酸、 1.0moI/L组氨酸, 〗 ,6mol/L硫酸钠的 反应液, 采用氢氧化钟水溶液调节反.应液 pH值在 8.5-8.8之间, 加入 400g 步骤 4 )所得氧化铅, 在 70 条件下反.应 1小时。 过滤得滤渣与含铅反应液
A。
6)向含铅反应液 A中通入二氧化碳, 调节溶液 pH值至 7.6 8,0, 使铅络 合物转化为碱式碳酸铅沉淀, 过滤得碱式碳酸铅与再生反应液 A。 向再生反 应液 A中加入 20g氧化铅, 过滤后得到再生的反应液 B , 循环使用。 碱式碳 酸铅在 3501:下充分热分解, 得到氧化铅与二氧化碳, 二氧化碳冷却后循环 使用。
经 ICP定量分析, 氧化铅、 中铅纯度达到 99,9992%。
以上对本发明所提供的一种含铅原料的处理方法进行了详细介绍。 本文 中应用了具体的个例对本发明的原理及实施方式进行了阐述, 以上实施例的 说明只是用于帮助理解本发明的方法及其核心思想。 应当指出, 对于本 术 领域的普通技术人员来说, 在不脱离本^ ^明原理的前提下, 还可以对本■ ^明 进行若千改进和修饰, 这些改进和修饰也落入本发明权利要求的保护范围 内。

Claims

1、 一种含铅原料的处理方法, 包括 '以下步骤:
A )在第一 pH值的条件下,在催化剖的作用下,将含铅原料、硫酸盐 A、 络合剂 A、 还原剂、 无机碱以及水进行反应, 得到含铅反应液 A;
B )在第二 pH值的条件下, 将上述步驟得到的含铅反.应液 A与酸性氧 化物进行反.应, 得到再生反.应液 A和固体沉淀;
C )在第一 pH值的条件下, 将再生反应液 A与氧化铅进行反应得到再 生反应液 B和可再利用铅类物质;
所述第一 pH值为 7.O 0.5; 所述第二 pH值为 4,5〜9,5;
所述酸性氧化物为二氧化碳或二氧化硫。
2 » 根据权利要求 1 所述的处理方法, 其特征在于, 所述可再利用铅类 物质为碳酸铅、 碱式碳酸铅和亚硫酸铅中的一种或多种; 所述固体沉淀为碳 酸铅、 碱式碳酸铅、 亚硫酸铅和硫酸铅中的一种或多种。
3 , 根据权利要求 1 所述的处理方法, 其特征在于, 所述含铅原料包括 含铅金属矿石、 氧化铅矿石、 铅锌矿石、 白铅矿石、 方铅矿氧化产物、 含铅 烟道灰、 铅酸电池生产过程含铅废料、 铅酸电池铅膏及其热分解产物、 铅酸 电池铅膏的脱硫产物中的一种或多种;
所述络合 '剂 A为乙酸溶液、 丙二酸溶液、 乙二胺溶液、 丙二胺溶液、 乙 醇胺溶液、 咪唑溶液、 二乙三胺溶液、 三乙四胺溶液、 乙二胺二乙酸溶液、 氨三乙酸溶液、 谷氨酸溶液、 缬氨酸溶液、 组氨酸溶液、 天冬氨酸溶液、 丙 氨酸溶液、 脯氨酸溶液、 丝氨酸溶液、 苯丙氨酸溶液、 精氛酸溶液、 苏氨酸 溶液、 甘氨酸溶液、 赖氨酸溶液、 天冬酰胺溶液和谷氨酰胺溶液中的一种或 两种; 所述络合剂 A的摩尔浓度为 0.5 5.0 mol/L;
所述还原剂为铅、 铁、 双氧水、 二氧化硫和亚硫酸盐中的一种或两种; 所述催化剂为铁盐溶液、 钴盐溶液和锰盐溶液中的一种或两种, 所述催 化剂的摩尔浓度小于等于 0.1mol/L;
所述无机碱为氢氧化钠, 氢氧化钾和氨中的一种或多种;
所述硫酸盐 A 为硫酸铵溶液、 .硫酸钠溶液和硫酸钾溶液中的一种或多 种, 所述硫酸盐 A的摩尔浓度为 0,4〜4.0mol/L。
4、根据权利要求 1所述的处理方法,其特征在于,所述步驟 B )具体为: Bl )在第三 pH值的条件下, 将上述步骤得到的含铅反应液 A与酸性氧 化物进行反应, 得到含铅反应液 B和可再利用铅类物质;
B2 )在第二 pH值的条件下, 将上述步骤得到的含铅反应液 B与酸性氧 化物进行反.应, 得到再生反.应液 A和固体沉淀;
所述第三 pH值为 7Λ―)〜 9.5;
所述酸性氧化物为二氧化碳或二氧化硫;
所述再生反应液人、再生反应液 B和含铅反应液 B中的一种或多种, 用 于所述步骤 A ) 中制备含铅反应液 A。
5、 根据权利要求 1 所述的处理方法, 其特征在于, 所述含铅原料由含 铅母料经过预处理得到, 所述预处理的具体过程为:
在第四 pH值的条件下, 将含铅母料、 硫酸盐 B、 络^^剂 B和缓冲溶液 进行反应, 得到金属络合溶液和含铅原料;
所述第四 pH值为 8,0〜11.0。
所述含铅母料包括含铅金属矿石、 氧化铅矿石、 铅锌矿石、 白铅矿石、 方铅矿氧化产物, 含铅烟道灰、 铅酸电池生产过程含铅废料、 铅酸电池铅膏 及其热分解产物、 铅酸电池铅膏的脱^ Ϊ产物中的一种或多种;
所述硫酸盐 B为硫酸铵溶液、 硫酸钠溶液或硫酸钾溶液, 所述碗酸盐 B 的摩尔浓度为().05〜3.Omol/L;
所述络合剂 B为氨水、咪唑溶液、 乙二胺溶液、 乙胺溶液、 乙醇胺溶液、 甲胺溶液中的一种或两种, 所述终合剂 B的摩尔浓度为 0.1~6,0mol/L;
所述缓冲溶液为氨-铵盐溶液、碳酸氢盐-氢氧化 #3溶液、硼酸-硼砂溶液、 硼酸-氢氧化钠溶液或盐酸-乙醇胺溶液, 所述缓冲溶液的摩尔浓度为 0.01〜3,0mol/L;
所述金属络合溶液按照以下步骤进行处理:
a )在第五 pH值的条件下, 将上述步骤得到的金属络^ ^溶液与二氧化碳 进行反应, 得到再生预处理液 A和固体沉淀 A;
b )将再生预处理液 A与金属 A的化合物进行反应, 得到再生预处理液 D和固体沉淀 B;
所述金属 A的化合物为金属 A的氧化物或金属 A的氢氧化物, 所述金 属 A为银、 铜、 镉、 镍、 钴、 铅、 锌中的一种或多种; 所述第五 pH值为 4.0〜9.0;
所述固体沉淀 A为金属氢氧化物、 氧化物、 碳酸盐和碱式碳酸盐中的一 种或两种, 所述金属为银、 铜、 镉、 镍、 钴和锌中的一种或多种;
所述固体沉淀 B为金属 A的碳酸盐和 /或碱式碳酸盐;
所述再生预处理液 A和 /或再生预处理液 D用于所述预处理中制备金属 络合溶液和含铅原料。
6、 根据权利要求 5所述的处理方法, 其特征在于, 所述步骤 b )为: bl )将再生预处理液 A与含钙的化合物进行反应, 得到再生预处理液 B 和硫酸钙;
bl )将再生预处理液 B与二氧化碳进行反应,得到再生预处理液 C和碳 酸钙;
b3 )将再生预处理液 C与氧化铅进行反应,得到再生预处理液 D和碳酸 铅;
7、根据权利要求 6所述的处理方法, 其特征在于, 所述再生预处理液 C 用于所述步骤 bl ) 中, 制备再生预处理液 B和硫酸钙。
8、 根据权利要求 1 所述的处理方法, 其特征在于, 对所述固体沉淀进 行脱硫处理, 所述脱硫处理的具体步驟为:
1 )在第六 pH值的条件下, 将所述固体沉淀、 硫酸盐 C、 缓冲物质、 碳 酸盐 A与脱硫溶液进行反应, 得到脱硫废液 A和固体沉淀 C;
2 )将脱硫废液 A与含钙的化合物进行 '反应, 得到脱硫废液 B和固体沉 淀 D;
3 )在第六 pH值的条件下, 将脱硫废液 B、 脱硫溶液与二氧化碳进行反 应, 得到再生脱硫液和碳酸钙;
所述' f"钙的化合物为氢氧化钙或氧化钙;
所述第六 pH值为 8.5〜13,5。
9、 根据权利要求 8所述的处理方法, 其特征在于, 所述硫酸盐 C为硫 酸铵溶液、 硫酸钠溶液和硫酸钾溶液中的一种或多种, 所述硫酸盐 C的摩尔 浓度为 0.1〜4.0mol/L;
所述缓冲物质是 pH值在 8.5 13.5之间具有酸碱缓冲能力的有机酸、 无 机酸、无机碱或有机碱中的一种, 所述缓冲物质的摩尔浓度为 0.1〜3.0mol/L; 所述碳酸盐 A为碳酸钠溶液、 碳酸氢钠溶液、 碳酸钾溶液、 碳酸氢钾溶 液、碳酸铵溶液和碳酸氢铵溶液中的一种或两种, 所述碳酸盐 A的摩尔浓度 为 0.01〜3.0mol/L;
所述脱硫溶液为氢氧化钠溶液、 氢氧化钾溶液和氨水中的一种或多种; 所述固体沉淀 C为碳酸铅、 碱式碳酸铅、 硫酸铅、 碱式硫酸铅、 氧化铅 中的一种或多种;
所述固体沉淀 D为硫酸钙与氢氧化钙的混合物和 /或硫酸钙。
10、 根据权利要求 9所述的处理方法, 其特征在于, 所述再生脱硫液用 于所述步骤 1 ) 中, 制备脱硫废液 A和固体沉淀 C。
PCT/CN2014/079338 2014-01-10 2014-06-06 一种含铅原料的处理方法 WO2015103845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410012413.1 2014-01-10
CN201410012413.1A CN103773972B (zh) 2014-01-10 2014-01-10 一种含铅原料的处理方法

Publications (1)

Publication Number Publication Date
WO2015103845A1 true WO2015103845A1 (zh) 2015-07-16

Family

ID=50566725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079338 WO2015103845A1 (zh) 2014-01-10 2014-06-06 一种含铅原料的处理方法

Country Status (2)

Country Link
CN (1) CN103773972B (zh)
WO (1) WO2015103845A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135100B2 (en) * 2014-08-20 2018-11-20 Beijing University Of Chemical Technology Method for recovering lead oxide from waste lead paste

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773972B (zh) * 2014-01-10 2016-06-15 张超 一种含铅原料的处理方法
CN104911361B (zh) * 2015-06-08 2017-09-05 江苏大学 钢铁厂含锌烟尘湿法处理富集氧化锌精矿的方法
CN107641714B (zh) * 2016-07-20 2020-07-17 北京中金瑞丰环保科技有限公司 一种含铅原料湿法回收处理方法
CN107164636B (zh) * 2017-05-27 2019-03-26 湘潭大学 一种废旧铅酸电池处理回收高纯氧化铅的方法
CN107306952B (zh) * 2017-06-02 2021-04-13 杭州师范大学 谷氨酰胺抑制小白菜Pb吸收及提高抗Pb污染能力的方法
CN111170360B (zh) * 2018-11-13 2023-12-12 湖南省金翼有色金属综合回收有限公司 一种脱硫铅制备氧化铅装置及其工艺
CN111170358B (zh) * 2018-11-13 2023-11-28 湖南省金翼有色金属综合回收有限公司 一种废旧铅酸蓄电池铅膏制备氧化铅的装置及其工艺
CN111549235A (zh) * 2019-02-08 2020-08-18 北京中金瑞丰环保科技有限公司 一种含铅原料的分离方法
CN112442602A (zh) * 2020-10-09 2021-03-05 超威电源集团有限公司 一种废旧铅膏回收方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU619532A1 (ru) * 1977-02-01 1978-08-15 Сибирский металлургический институт им.С.Орджоникидзе Способ получени свинца
JPS5499096A (en) * 1974-07-11 1979-08-04 Dowa Mining Co Method of manufacturing high purity lead sulfate from crude lead sulfate material
CN1266908A (zh) * 1999-03-14 2000-09-20 龙诗明 一种湿法分离锌、铜、镉、铅冶金物料的方法及应用
CN101956214A (zh) * 2010-09-30 2011-01-26 北京化工大学 一种电解碱性含铅溶液回收再生铅的方法
EP2333895A1 (en) * 2009-11-23 2011-06-15 Instytut Metali Niezelaznych Method for desulphurization of battery paste
CN103773972A (zh) * 2014-01-10 2014-05-07 张超 一种含铅原料的处理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883348A (en) * 1973-09-06 1975-05-13 R S R Corp Process for the removal of sulfur from battery wrecker material using ammonium carbonate solution
CN1846005A (zh) * 2003-07-18 2006-10-11 康迪股份有限公司 从废铅-酸电池中高产率地回收铅并降低相关的矿渣与气态释放物产生的方法
CN101831668B (zh) * 2010-05-21 2012-02-22 北京化工大学 一种清洁湿法固液两相电解还原回收铅的方法
CN102689922B (zh) * 2011-03-24 2017-04-19 杨春晓 应用于铅酸蓄电池回收及制造的铅化合物纳米粉体的制法
CN102367577B (zh) * 2011-09-30 2014-08-06 北京化工大学 制备Na2[Pb(OH)4]溶液和从含铅废料中回收铅的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499096A (en) * 1974-07-11 1979-08-04 Dowa Mining Co Method of manufacturing high purity lead sulfate from crude lead sulfate material
SU619532A1 (ru) * 1977-02-01 1978-08-15 Сибирский металлургический институт им.С.Орджоникидзе Способ получени свинца
CN1266908A (zh) * 1999-03-14 2000-09-20 龙诗明 一种湿法分离锌、铜、镉、铅冶金物料的方法及应用
EP2333895A1 (en) * 2009-11-23 2011-06-15 Instytut Metali Niezelaznych Method for desulphurization of battery paste
CN101956214A (zh) * 2010-09-30 2011-01-26 北京化工大学 一种电解碱性含铅溶液回收再生铅的方法
CN103773972A (zh) * 2014-01-10 2014-05-07 张超 一种含铅原料的处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135100B2 (en) * 2014-08-20 2018-11-20 Beijing University Of Chemical Technology Method for recovering lead oxide from waste lead paste

Also Published As

Publication number Publication date
CN103773972B (zh) 2016-06-15
CN103773972A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2015103845A1 (zh) 一种含铅原料的处理方法
US10135100B2 (en) Method for recovering lead oxide from waste lead paste
CN107017443B (zh) 一种从废旧锂离子电池中综合回收有价金属的方法
CN108075202B (zh) 一种磷酸铁锂正极材料的综合回收方法
CN108899601B (zh) 一种从磷酸铁锂中回收锂和铁的方法
CN111187913B (zh) 一种选择性回收废旧磷酸铁锂电池中锂和铜的方法
EP2312686B1 (en) Method for implementing full cycle regeneration of waste lead acid battery
WO2023030165A1 (zh) 一种铜冶炼硫化砷渣与含砷烟尘协同处理的方法
CN112441572A (zh) 一种废旧磷酸铁锂正极材料的回收方法
CN103526016B (zh) 一种含铅原料湿法回收的方法
AU2014383725B2 (en) Method for directly recovering lead oxide used for a lead-acid battery cathode from waste lead paste
KR101718000B1 (ko) 산화납 함유 폐기물로부터 산화납을 회수하는 방법
CN105779770B (zh) 一种回收废电路板中有价金属的方法
CN109055757B (zh) 一种回收电解锰或电解锌的阳极渣中二氧化锰和铅的方法
CN108767353B (zh) 从废旧锂离子电池正极活性材料生产富锂净液的方法
CN111945002B (zh) 一种废旧锂电池回收湿法除铜的方法
CN112522512B (zh) 一种利用锌冶炼厂有机钴渣制备电池级硫酸钴的方法
CN108588420A (zh) 一种废铅酸蓄电池湿法回收铅的方法
CN105274565A (zh) 一种湿法电解金属的方法
CN104419826B (zh) 氨浸氧化锌制电积锌的方法
CN103880630B (zh) 一种使用废铅膏制备高纯度乙酸铅和纳米铅粉的方法
CN110735048A (zh) 一种湿法炼锌含锌溶液中镁、氟的脱除方法
CN101792862A (zh) 用废氢镍电池净化烟气回收金属的方法
JP6201905B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
CN113584312A (zh) 一种从废弃锂电池正极片电化学优先提锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 24-10-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 14878355

Country of ref document: EP

Kind code of ref document: A1