WO2015100863A1 - 一种大能量点火线圈 - Google Patents

一种大能量点火线圈 Download PDF

Info

Publication number
WO2015100863A1
WO2015100863A1 PCT/CN2014/074208 CN2014074208W WO2015100863A1 WO 2015100863 A1 WO2015100863 A1 WO 2015100863A1 CN 2014074208 W CN2014074208 W CN 2014074208W WO 2015100863 A1 WO2015100863 A1 WO 2015100863A1
Authority
WO
WIPO (PCT)
Prior art keywords
spark plug
coil
voltage
battery
secondary coil
Prior art date
Application number
PCT/CN2014/074208
Other languages
English (en)
French (fr)
Inventor
茅一春
孙晓庆
李毓强
程捷
Original Assignee
联合汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合汽车电子有限公司 filed Critical 联合汽车电子有限公司
Priority to KR1020167019161A priority Critical patent/KR20160104638A/ko
Priority to EP14877256.9A priority patent/EP3091544A4/en
Priority to US15/109,203 priority patent/US20160327008A1/en
Priority to JP2016544605A priority patent/JP2017503110A/ja
Priority to BR112016015374A priority patent/BR112016015374A2/pt
Publication of WO2015100863A1 publication Critical patent/WO2015100863A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0807Closing the discharge circuit of the storage capacitor with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0876Layout of circuits the storage capacitor being charged by means of an energy converter (DC-DC converter) or of an intermediate storage inductance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T15/00Circuits specially adapted for spark gaps, e.g. ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines

Definitions

  • the application relates to an ignition coil for use in an internal combustion engine vehicle.
  • the vehicle power supply 1 is usually a low-voltage DC power supply with a rated voltage between 8 and 16V, which is used to supply the primary coil 21.
  • the vehicle power supply 1 and the primary coil 2 constitute a primary coil circuit on which a switch 3 controlled by an ECU (Electronic Control Unit) is provided.
  • the secondary coil 22 is grounded at one end, and the other end is connected to one electrode of the spark plug 4, and the other electrode of the spark plug 4 is grounded.
  • the secondary coil 22 and the spark plug 4 constitute a secondary coil circuit. Both the primary coil 21 and the secondary coil 22 are wound around the core 23, which constitutes a transformer 2.
  • the ignition coil shown in Fig. la can also be deformed into the form of Fig. lb.
  • the secondary coil 22 is terminated to the vehicle power supply 1, the other end is connected to one electrode of the spark plug 4, and the other electrode of the spark plug 4 is grounded.
  • the vehicle power supply 1, the secondary coil 22 and the spark plug 4 constitute a secondary coil circuit.
  • the ignition coil is controlled by the ECU.
  • the ECU drives the switch 3 to close, and the vehicle power source 1 turns on the primary coil 21.
  • the current passing through the primary coil i.e., the primary current
  • the primary current will increase from zero to a stable value which is determined by the voltage value of the vehicle power source 1 and the resistance value of the primary coil 21.
  • the electromagnetic energy generated by the primary coil 21 is stored in the iron core 23.
  • the ECU drives the switch 3 to be instantaneously turned off, and the sudden change of the electric field of the primary coil circuit causes the magnetic field of the primary coil 21 to rapidly decay, thereby being induced at both ends of the secondary coil 22.
  • High voltage electromotive force This high voltage electromotive force penetrates the gap between the two electrodes of the spark plug 4 (referred to as the spark plug 4 is turned on), and an arc is generated to ignite.
  • the existing ignition coil When the existing ignition coil is in operation, the high-voltage electromotive force is induced at both ends of the secondary coil 22, so that the discharge energy (called ignition energy) on the secondary coil circuit is generally 30 to 40 mJ.
  • ignition energy With the wide application of direct injection and turbocharging technology in internal combustion engine vehicles, the energy demand of the ignition coil has reached 90mJ, and some high-end products require 110mJ.
  • Existing ignition coils cannot provide such large ignition energy.
  • the existing ignition coils In order to improve the ignition energy, the existing ignition coils usually improve from the three aspects of extending the charging time of the primary coil, optimizing the magnetic circuit design, and changing the core structure.
  • the technical problem to be solved by the present application is to provide a large energy ignition coil without using conventional energy boosting. Means, but directly adjust the on-time of the spark plug (ie, the duration of the gap between the two electrodes of the spark plug being broken down), thereby increasing the ignition energy of the ignition coil.
  • the large energy ignition coil of the present application is:
  • the primary coil and the secondary coil are both wound on the iron core, which constitute a transformer; an ECU controlled switch on the primary coil circuit; one of the spark plugs The electrode is connected to one end of the secondary coil, and the other electrode of the spark plug is grounded;
  • the vehicle power supply supplies power to the primary coil through a DC booster, which boosts the DC voltage outputted by the vehicle power supply and outputs the same; the other end of the secondary coil is connected to the DC booster or grounded through a reverse-connected diode; One end of the current maintaining device is connected to one end of the secondary coil that is not connected to the spark plug, and the other end of the current maintaining device is grounded, and operates after the spark plug is turned on to maintain the spark plug continuously conducting.
  • the ignition coil of the present application can arbitrarily adjust the on-time of the spark plug, thereby increasing the ignition energy to more than 400 mJ; and also using a higher voltage to turn on the primary coil, thereby improving energy conversion efficiency.
  • Figure la is a schematic structural view of a conventional ignition coil
  • Figure lb is a modified structure of Figure la;
  • FIGS. 2a to 2d are schematic structural views of four embodiments of the ignition coil of the present application.
  • FIG 3 is a schematic structural view of a current maintaining device in the ignition coil of the present application.
  • the discharge of the secondary coil 22 on the secondary coil circuit can be divided into two stages: the first stage is that the energy of the primary coil 21 is coupled to the secondary coil 22 to turn on the spark plug 4, which The first phase is from time 0 to time, and the length is .
  • the second stage is the energy provided by the current maintaining device 7 to cause the spark plug 4 to conduct The second phase is from time to time + ,, and the length is ⁇ 2.
  • Q 2 represents the value of the discharge energy of the secondary coil 22 in the second phase
  • U ISK is the state in which the secondary coil 22 is connected to the spark plug 4 when the spark plug 4 is turned on. The voltage drop to ground at one end, I ISK is the secondary current value when the spark plug 4 is turned on.
  • the ignition energy Q depends on the magnitude of the primary current Ip depending on the moment the switch 3 is turned off.
  • the principle of the ignition coil of the present application for boosting the ignition energy is to maintain I ISK constant or higher between time and time T to keep the spark plug 4 conducting. This can be increased by extending T2, and eventually increased by 9.
  • the energy loss of the ignition coil is mainly in three aspects: the resistance loss energy of the primary coil, the magnetic path loss of the electromagnetic coupling, and the resistance loss energy of the secondary coil.
  • the electromagnetic energy W L x /2 stored in the core 23 when the ignition coil is in operation.
  • L represents the inductance value in the primary coil loop, and is composed of two parts of the inductance value of the primary coil 21 and the inductance value of the secondary coil 22 coupled to the primary coil loop;
  • IP represents the primary current value at which the switch 3 is turned off instantaneously.
  • E represents the voltage value of the vehicle power source 1
  • R represents the resistance value of the primary coil 21.
  • the resistance loss energy value Q (i 2 x RX t > dt of the primary coil 21, where K represents the charging time of the primary coil 21, that is, the time during which the transient primary current i increases from 0 to I P .
  • the principle of the ignition coil of the present application for improving the energy conversion efficiency is that a voltage larger than the voltage value of the vehicle power source 1 is used to turn on the primary coil 21, so that the charging time of the primary coil 21 can be shortened, and finally the resistance of the primary coil 21 is lowered. Loss energy and improve the energy conversion efficiency of the ignition coil.
  • the vehicle power supply 1 is usually a low-voltage DC power supply with a rated voltage between 8 and 16 V, which supplies power to the primary coil 21 via a DC booster 5.
  • the DC booster 5 is used to boost the DC voltage output from the vehicle power supply 1 and output it, for example, to increase the voltage of 16V to 48V and then input. Out.
  • the vehicle power supply 1, the DC booster 5 and the primary coil 2 constitute a primary coil circuit, on which a switch 3 controlled by an ECU is also provided.
  • One end of the secondary coil 22 is grounded through a reverse-connected diode 8, the other end is connected to one electrode of the spark plug 4, and the other electrode of the spark plug 4 is grounded.
  • the secondary coil 22, the diode 8 and the spark plug 4 constitute a secondary coil circuit.
  • One end of the current maintaining device 7 is connected to one end of the secondary coil 22 to which the spark plug 4 is not connected, and the other end of the current maintaining device 7 is grounded.
  • the current maintaining means 7 is connected in parallel with the secondary coil 22 and the branch of the spark plug 4 connected in series.
  • Both the primary coil 21 and the secondary coil 22 are wound around the iron core 23, which constitute a transformer 2.
  • the difference from the first embodiment is only: First, one end of the secondary coil 22 is connected to the DC booster 5, the other end is connected to one electrode of the spark plug 4, and the other electrode of the spark plug 4 is grounded. Second, the diode 8 is omitted. At this time, the vehicle power source 1, the DC booster 5, the secondary coil 22, and the spark plug 4 constitute a secondary coil circuit.
  • the working principle of the first and second embodiments of the ignition coil of the present application is different from the existing ignition coil.
  • the output voltage of the vehicle power supply 1 is boosted by the DC booster 5, and then the primary coil 21 is turned on. Therefore, the charging time of the primary coil 21 can be shortened, the resistance loss energy of the primary coil 21 is finally reduced, and the energy conversion efficiency of the ignition coil is improved.
  • the ECU drives the current maintaining device 7 to operate, and the output current of the current maintaining device 7 maintains the secondary current constant or higher, thereby maintaining the secondary current constant or higher, so that The spark plug 4 is continuously turned on.
  • the difference from the first embodiment is only that: A battery 6 is added between the DC booster 5 and the primary coil 21, and the rated voltage of the battery 6 is greater than the rated voltage of the vehicle power source 1.
  • battery 6 has a rated voltage of 48V and a capacity of 3 Ah or more.
  • the battery 6 can be replaced with a capacitor, or a plurality of capacitors in parallel.
  • the vehicle power source 1, the DC booster 5, the battery 6 and the primary coil 2 constitute a primary coil circuit.
  • Figure 2d is a fourth embodiment of the ignition coil of the present application.
  • the difference from the third embodiment is only: First, one end of the secondary coil 22 is connected to the battery 6, the other end is connected to one electrode of the spark plug 4, and the other electrode of the spark plug 4 is grounded. Second, the diode 8 is omitted. At this time, the vehicle power source 1, the DC booster 5, the battery 6, the secondary coil 22, and the spark plug 4 constitute a secondary coil circuit.
  • the working principles of the third and fourth embodiments of the ignition coil of the present application are basically the same as those of the first and second embodiments, except that the output voltage of the vehicle power supply 1 is boosted by the DC booster 5 to charge the battery 6, and the battery 6 is reconnected.
  • the primary coil 21 is passed.
  • the DC booster 5 detects the voltage of the battery 6 in real time. When the voltage of the battery 6 is lower than a certain battery When the pressure threshold value (usually set to 0.083 times the rated voltage or more), the DC booster 5 boosts the output voltage of the vehicle power source 1 and then charges the battery 6. When the voltage of the battery 6 is equal to or higher than its rated voltage, the DC booster 5 stops operating. For example, the battery 6 has a rated voltage of 48V. When the voltage of the battery 6 drops to 44V, the DC booster 5 operates to charge the battery 6. When the voltage of the battery 6 is higher than 54V, the DC booster 5 stops operating.
  • the secondary current is not zero only at the moment when the spark plug 4 is turned on.
  • the secondary current is not 0 by the current maintaining means 7, and can be maintained for an arbitrarily long time.
  • the current maintaining device 7 includes:
  • the current feedback unit 71 collects the secondary current value, preferably the current value of the end (point A) at which the secondary coil 22 is not connected to the spark plug 4, and transmits the collected secondary current value to the control unit 72.
  • the secondary current value is 0, it indicates that the spark plug 4 is not conducting at this time. If the secondary current value is not 0, it indicates that the spark plug 4 is turned on at this time.
  • the control unit 72 is controlled by the ECU.
  • the ECU transmits the on-time value of the spark plug 4 to the control unit 72.
  • the switch unit 74 is driven to close until the on-time value of the spark plug 4 designated by the ECU is reached, and the control unit 72 drives the switch unit 74 to open again.
  • the secondary current value changes as follows: When the spark plug 4 is not conducting, the secondary current value is zero. After the spark plug 4 is turned on, the secondary current value gradually decreases from a maximum value to 0. Once it is lowered to 0, it indicates that the spark plug 4 is again rendered non-conductive.
  • the threshold is set to be greater than 0 and less than or equal to the secondary current maximum.
  • a constant current boosting unit 73 boosts the low voltage output from the vehicle power source 1 to a high voltage.
  • the DC boosting unit 73 is, for example, a DC booster of 4. 5 to 18 V to 1000 V.
  • the switch unit 74 is controlled by the control unit 72.
  • the switching unit 74 is, for example, a switching device such as a triode or a MOS transistor. After the switching unit 74 is connected in series with the DC boosting unit 73, one end of the series branch is connected to one end of the secondary coil 22 that is not connected to the spark plug 4 (A power), and the other end of the series branch is grounded. In other words, the series branch is in parallel with the series branch of the secondary coil 22 and the spark plug 4.
  • the switching unit 74 is closed, the voltage output from the DC boosting unit 73 is transmitted to both ends of the series branch of the secondary winding 22 and the spark plug 4 to maintain the secondary current constant or higher.
  • the switching unit 74 is turned off, the voltage output from the DC boosting unit 73 is not transmitted outward.
  • the ignition coil of the present application can arbitrarily adjust the conduction time of the spark plug 4, thereby improving the ignition energy, for example, the ignition energy can be increased to 400 mJ or more.
  • the ignition coil of the present application is also The DC booster 5 or the battery 6 having a larger voltage than the vehicle power source 1 is used to turn on the primary coil 21, thereby reducing the resistance loss energy of the primary coil 21, and further improving the energy conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

一种大能量点火线圈,初级线圈和次级线圈均缠绕在铁芯上,这三者构成了一个变压器。在初级线圈回路上具有受ECU控制的开关。火花塞的一个电极接次级线圈的一端,火花塞的另一个电极接地。车载电源通过直流升压器为初级线圈供电,所述直流升压器将车载电源输出的直流电压提升后输出。次级线圈的另一端或者接直流升压器或者通过反向连接的二极管接地。电流维持装置与次级线圈和火花塞的串联支路相并联,其在火花塞导通后工作以维持火花塞持续导通。点火线圈可以任意调节火花塞的导通时间,从而可以提高点火能量,还采用了较高电压来接通初级线圈,从而提升了能量转换效率。

Description

发明名称: 一种大能量点火线圈 技术领域
本申请涉及一种内燃机车辆使用的点火线圈。
背景技术
请参阅图 la, 这是一种现有的点火线圈。 车载电源 1通常是额定电压在 8〜16V之 间的低压直流电源, 用来为初级线圈 21供电。 车载电源 1和初级线圈 2构成了初级线 圈回路, 在该初级线圈回路上具有受 ECU (电子控制单元) 控制的开关 3。 次级线圈 22 一端接地, 另一端接火花塞 4的一个电极, 火花塞 4的另一个电极接地。 次级线圈 22 和火花塞 4构成了次级线圈回路。 初级线圈 21和次级线圈 22均缠绕在铁芯 23上, 这 三者构成了一个变压器 2。
图 la所示的点火线圈也可以变形为图 lb的形式, 此时的次级线圈 22—端接车载 电源 1, 另一端接火花塞 4的一个电极, 火花塞 4的另一个电极接地。 车载电源 1、 次 级线圈 22和火花塞 4构成了次级线圈回路。
所述点火线圈由 ECU控制工作。 工作时, ECU驱使开关 3闭合, 车载电源 1接通初 级线圈 21。 此时, 通过初级线圈的电流 (即初级电流) 将从零增长到一个稳定值, 该 稳定值由车载电源 1的电压值和初级线圈 21的电阻值所决定。 随着初级电流增长, 初 级线圈 21产生的电磁能量存储在铁芯 23中。当初级电流达到一定值(该一定值 稳定 值) 时, ECU驱使开关 3瞬间断开, 初级线圈回路的电场突变造成了初级线圈 21的磁 场迅速衰减, 从而在次级线圈 22的两端感应出高压电动势。 该高压电动势击穿火花塞 4的两个电极之间的空隙 (称为火花塞 4导通), 产生电弧以点火。
现有的点火线圈工作时次级线圈 22的两端感应出高压电动势从而在次级线圈回路 上的放电能量 (称为点火能量) 普遍为 30〜40mJ。 而随着缸内直喷、 涡轮增压技术在 内燃机车辆上的广泛应用, 点火线圈的能量需求已达到 90mJ, 部分高端产品要求达到 110mJ。 现有的点火线圈无法提供这么大的点火能量。 为提升点火能量, 现有的点火线 圈通常从延长初级线圈的充电时间、 优化磁路设计、 更改磁芯结构三个方面着手改进。
对发明的公开
技术问题
本申请所要解决的技术问题是提供一种大能量的点火线圈,不采用常规的能量提升 手段, 而是直接调节火花塞的导通时间(即火花塞的两个电极之间的空隙被击穿的持续 时间), 从而增大点火线圈的点火能量。
技术解决方案
为解决上述技术问题,本申请大能量点火线圈是: 初级线圈和次级线圈均缠绕在铁 芯上, 这三者构成了一个变压器; 在初级线圈回路上具有受 ECU控制的开关; 火花塞的 一个电极接次级线圈的一端, 火花塞的另一个电极接地;
车载电源通过直流升压器为初级线圈供电,所述直流升压器将车载电源输出的直流 电压提升后输出; 次级线圈的另一端或者接直流升压器或者通过反向连接的二极管接 地; 电流维持装置的一端连接次级线圈未与火花塞相连的一端, 电流维持装置的另一端 接地, 其在火花塞导通后工作以维持火花塞持续导通。
有益效果
本申请的点火线圈可以任意调节火花塞的导通时间, 从而可将点火能量提高到 400mJ以上; 还采用了较高电压来接通初级线圈, 从而提升了能量转换效率。
附图说明
图 la是一种现有的点火线圈的结构示意图;
图 lb是图 la的一种变形结构;
图 2a〜图 2d是本申请的点火线圈的四个实施例的结构示意图;
图 3是本申请的点火线圈中的电流维持装置的结构示意图。
图中附图标记说明:
1为车载电源; 2为变压器; 21为初级线圈; 22为次级线圈; 23为铁芯; 3为开关; 4为火花塞; 5为直流升压器; 6为蓄电池; 7为电流维持装置; 71为电流反馈单元; 72为控制单元; 73为直流升压单元; 74为开关单元; 8为二极管。
本发明的实施方式 请参阅图 la和图 lb, 点火线圈的点火能量值 Q
Figure imgf000004_0001
ioOT)dt。 其中 T 为次级线圈 22在次级线圈回路上的放电时间, uISK -。 uT是次级线圈 22连接火花塞 4的那 一端的对地压降值, i∞T是通过次级线圈的电流 (即次级电流) 值。
本申请的大能量点火线圈中, 次级线圈 22在次级线圈回路上放电可以分为两个阶 段: 第一阶段是初级线圈 21的能量耦合到次级线圈 22上使火花塞 4导通, 该第一阶段 从 0时刻到 时刻, 长度为 。 第二阶段是电流维持装置 7提供的能量使火花塞 4导 通, 该第二阶段从 时刻到 +Τ时刻, 长度为 Τ2。 Τ= +Τ2。 因此, 本申请的大能量 点火线圈的点火能量值 Q. = ¾ + Q2 = j_s ( x―。. yT x ^T)dt + j (¾:K x ½K)dt。 其 中 表示在第一阶段内次级线圈 22 的放电能量值, Q2表示在第二阶段内次级线圈 22 的放电能量值, UISK是火花塞 4导通时次级线圈 22连接火花塞 4的那一端的对地压降值, IISK是火花塞 4导通时的次级电流值。
现有的点火线圈中, Τ= , Τ2=0。 其点火能量 Q取决于 也就是取决于开关 3 断开瞬间的初级电流 Ip的大小。
本申请的点火线圈提升点火能量的原理是: 在 时刻到 T时刻之间将 IISK维持不 变或更高, 使火花塞 4保持导通。 这样通过延长 T2, 便可以增大 , 最终增大9。
从能量转换的角度分析, 点火线圈的能量损耗主要在三个方面: 初级线圈的电阻损 耗能量、 电磁耦合的磁路损耗和次级线圈的电阻损耗能量。 请参阅图 la和图 lb, 点火 线圈工作时存储在铁芯 23中的电磁能量 W = L x /2。 其中 L表示初级线圈回路中的 电感值,由初级线圈 21的电感值和次级线圈 22耦合到初级线圈回路中的电感值共两部 分组成; IP表示断开开关 3瞬间的初级电流值。 通过初级线圈的暂态电流值 i = f Χ ίΐ )。其中 E表示车载电源 1的电压值, R 表示初级线圈 21的电阻值。 初级线圈 21的电阻损耗能量值 Q = (i2 x R X t>dt。其中 K表示初级线圈 21的充 电时间, 即暂态初级电流 i从 0增长到 IP的时间。
由上式可得, 当断开开关 3瞬间的初级电流 IP—定时, 如果能缩短初级线圈 21的 充电时间^ 就能降低初级线圈的电阻损耗能量。 而提升车载电源 1的电压 E, 就是提 升初级线圈 21 的充电电压, 将有效缩短初级线圈 21 的充电时间, 最终降低初级线圈 21的电阻损耗能量。
本申请的点火线圈提升能量转换效率的原理是:采用了比车载电源 1的电压值更大 的电压来接通初级线圈 21, 从而可缩短初级线圈 21的充电时间,最终降低初级线圈 21 的电阻损耗能量, 提高点火线圈的能量转换效率。
请参阅图 2a, 这是本申请的点火线圈的第一实施例。 车载电源 1通常是额定电压 在 8〜16V之间的低压直流电源,其通过直流升压器 5为初级线圈 21供电。直流升压器 5用于将车载电源 1输出的直流电压提升后再输出, 例如是将 16V电压提升为 48V后输 出。 车载电源 1、 直流升压器 5和初级线圈 2构成了初级线圈回路, 在该初级线圈回路 上还具有受 ECU控制的开关 3。 次级线圈 22的一端通过反向连接的二极管 8接地, 另 一端接火花塞 4的一个电极, 火花塞 4的另一个电极接地。 次级线圈 22、 二极管 8和 火花塞 4构成了次级线圈回路。 电流维持装置 7的一端连接次级线圈 22未连接火花塞 4的一端, 电流维持装置 7的另一端接地。 换而言之, 电流维持装置 7与串联的次级线 圈 22和火花塞 4的支路相并联。初级线圈 21和次级线圈 22均缠绕在铁芯 23上,这三 者构成了一个变压器 2。
请参阅图 2b, 这是本申请的点火线圈的第二实施例。 其与第一实施例的区别仅在 于: 首先, 次级线圈 22的一端接直流升压器 5, 另一端接火花塞 4的一个电极, 火花 塞 4的另一个电极接地。 其次, 省略二极管 8。 此时车载电源 1、 直流升压器 5、 次级 线圈 22和火花塞 4构成了次级线圈回路。
本申请的点火线圈的第一、 二实施例的工作原理与现有的点火线圈区别有二: 第一, 由直流升压器 5将车载电源 1的输出电压提升后再接通初级线圈 21, 因而 可缩短初级线圈 21的充电时间,最终降低初级线圈 21的电阻损耗能量,提高点火线圈 的能量转换效率。
第二, 在火花塞 4导通的时候, ECU驱动电流维持装置 7工作, 由电流维持装置 7 输出电压维持次级电流保持不变或更高, 从而维持次级电流不变或更高, 以便使火花塞 4持续导通。
请参阅图 2c, 这是本申请的点火线圈的第三实施例。 其与第一实施例的区别仅在 于: 在直流升压器 5和初级线圈 21之间增加了蓄电池 6, 蓄电池 6的额定电压大于车 载电源 1的额定电压。 例如, 蓄电池 6的额定电压为 48V, 容量为 3Ah以上。 或者, 蓄 电池 6也可被替换为一个电容、 或多个并联的电容。 此时, 车载电源 1、 直流升压器 5、 蓄电池 6和初级线圈 2构成了初级线圈回路。
请参阅图 2d, 这是本申请的点火线圈的第四实施例。 其与第三实施例的区别仅在 于: 首先, 次级线圈 22的一端接蓄电池 6, 另一端接火花塞 4的一个电极, 火花塞 4 的另一个电极接地。 其次, 省略二极管 8。 此时车载电源 1、 直流升压器 5、 蓄电池 6、 次级线圈 22和火花塞 4构成了次级线圈回路。
本申请的点火线圈的第三、 四实施例的工作原理与第一、 二实施例基本相同, 只是 由直流升压器 5将车载电源 1的输出电压提升后为蓄电池 6充电,蓄电池 6再接通初级 线圈 21。 所述直流升压器 5实时检测蓄电池 6的电压。 当蓄电池 6的电压低于某一电 压阀值 (通常设为 0. 83倍的额定电压以上) 时, 直流升压器 5将车载电源 1的输出电 压升压后对蓄电池 6进行充电。当蓄电池 6的电压等于或高于其额定电压时,直流升压 器 5停止工作。 例如, 蓄电池 6的额定电压为 48V。 当蓄电池 6的电压下降到 44V时, 直流升压器 5工作对蓄电池 6进行充电。 当蓄电池 6的电压高于 54V时, 直流升压器 5 停止工作。
现有的点火线圈中, 次级电流仅在火花塞 4导通的一瞬间不为 0。 本申请的点火线 圈中, 通过电流维持装置 7使次级电流不为 0可以保持任意长的时间。
请参阅图 3, 所述电流维持装置 7包括:
一一电流反馈单元 71, 采集次级电流值, 优选为采集次级线圈 22未连接火花塞 4 的那一端 (A点) 的电流值, 再将所采集的次级电流值传递给控制单元 72。
如果次级电流值为 0, 表明此时火花塞 4未导通。 如果次级电流值不为 0, 表明此 时火花塞 4导通。
一一控制单元 72, 受到 ECU的控制。 ECU向控制单元 72传递火花塞 4的导通时间 值。一旦控制单元 72检测到次级电流值小于阈值, 则驱使开关单元 74闭合, 直至达到 ECU指定的火花塞 4的导通时间值, 控制单元 72再驱使开关单元 74断开。
如果没有电流维持装置 7, 那么次级电流值的变化规律为: 火花塞 4未导通时, 次 级电流值为 0。 火花塞 4导通后, 次级电流值从一个最大值逐渐降低至 0, 一旦降低为 0则表明火花塞 4重新变为未导通。所述阈值设置为大于 0且小于或等于所述次级电流 最大值。
一一直流升压单元 73, 将车载电源 1输出的低电压提升为高电压。 所述直流升压 单元 73例如是 4. 5〜18V转 1000V的直流升压器。
一一开关单元 74, 受到控制单元 72的控制。 所述开关单元 74例如为三极管、 M0S 晶体管等开关器件。开关单元 74与直流升压单元 73串联后, 该串联支路的一端连接次 级线圈 22未与火花塞 4连接的一端 (A电), 该串联支路的另一端接地。 换而言之, 该 串联支路再与次级线圈 22和火花塞 4的串联支路相并联。当开关单元 74闭合时,直流 升压单元 73输出的电压传递给次级线圈 22和火花塞 4的串联支路的两端以维持次级电 流不变或更高。 当开关单元 74断开时, 直流升压单元 73输出的电压不向外传递。
工业实用性
与现有的点火线圈相比,本申请的点火线圈可以任意调节火花塞 4的导通时间, 从 而可以提高点火能量,例如可将点火能量提升为 400mJ以上。此外本申请的点火线圈还 采用了比车载电源 1的电压值更大的直流升压器 5或蓄电池 6来接通初级线圈 21, 从 而降低初级线圈 21的电阻损耗能量, 进一步提升能量转换效率。
以上仅为本申请的优选实施例,并不用于限定本申请。对于本领域的技术人员来说, 本申请可以有各种更改和变化。凡在本申请的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本申请的保护范围之内。

Claims

权利要求书
1、 一种大能量点火线圈, 初级线圈和次级线圈均缠绕在铁芯上, 这三者构成了一 个变压器; 在初级线圈回路上具有受 ECU控制的开关; 火花塞的一个电极接次级线圈的 一端,火花塞的另一个电极接地;其特征是,车载电源通过直流升压器为初级线圈供电, 所述直流升压器将车载电源输出的直流电压提升后输出;次级线圈的另一端或者接直流 升压器或者通过反向连接的二极管接地;电流维持装置的一端连接次级线圈未与火花塞 相连的一端, 电流维持装置的另一端接地,其在火花塞导通后工作以维持火花塞持续导 通。
2、 根据权利要求 1所述的大能量点火线圈, 其特征是, 电流维持装置与串联的次 级线圈和火花塞的支路相并联。
3、 根据权利要求 1所述的大能量点火线圈, 其特征是, 在直流升压器和初级线圈 之间增加蓄电池, 蓄电池的额定电压大于车载电源的额定电压; 车载电源通过直流升压 器为蓄电池充电, 蓄电池再为初级线圈供电; 次级线圈的另一端接地或接蓄电池; 或者, 所述蓄电池更换为一个电容、 或多个并联的电容。
4、 根据权利要求 3所述的高效率点火线圈, 其特征是, 直流升压器用于在蓄电池 的电压低于电压阀值时,将车载电源的输出电压升压后对蓄电池充电; 当蓄电池的电压 等于或高于其额定电压时, 直流升压器停止工作;
所述电压阀值大于或等于 0. 83倍的其额定电压。
5、根据权利要求 3所述的大能量点火线圈,其特征是, 车载电源的额定电压在 8〜 16V之间, 蓄电池的额定电压为 48V。
6、根据权利要求 3所述的大能量点火线圈, 其特征是, 蓄电池的容量为 3Ah以上。
7、 根据权利要求 1或 3所述的大能量点火线圈, 其特征是, 所述电流维持装置包 括:
一一电流反馈单元, 采集通过次级线圈的次级电流值, 并传递给控制单元; 一一控制单元,接收 ECU传递的火花塞导通时间值; 一旦检测到次级电流值小于阈 值, 则控制单元驱使开关单元闭合, 直至达到 ECU指定的火花塞导通时间值, 控制单元 再驱使开关单元断开; 所述阈值大于 0且小于或等于次级电流最大值;
一一直流升压单元, 将车载电源输出的直流电压提升后输出;
一一开关单元, 受到控制单元的控制; 开关单元与直流升压单元串联后, 该串联支 路再与次级线圈和火花塞的串联支路相并联; 当开关单元闭合时,将直流升压单元输出 的电压传递给次级线圈和火花塞的串联支路两端。
8、根据权利要求 7所述的大能量点火线圈, 其特征是, 电流反馈单元采集次级线圈 未与火花塞连接的那一端的次级电流值。
PCT/CN2014/074208 2013-12-31 2014-03-27 一种大能量点火线圈 WO2015100863A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167019161A KR20160104638A (ko) 2013-12-31 2014-03-27 고 에너지 점화 코일
EP14877256.9A EP3091544A4 (en) 2013-12-31 2014-03-27 High-energy ignition coil
US15/109,203 US20160327008A1 (en) 2013-12-31 2014-03-27 High-energy ignition coil
JP2016544605A JP2017503110A (ja) 2013-12-31 2014-03-27 高エネルギーイグニッションコイル
BR112016015374A BR112016015374A2 (pt) 2013-12-31 2014-03-27 Bobina de ignição de alta energia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310752870.XA CN103745816B (zh) 2013-12-31 2013-12-31 一种大能量点火线圈
CN201310752870.X 2013-12-31

Publications (1)

Publication Number Publication Date
WO2015100863A1 true WO2015100863A1 (zh) 2015-07-09

Family

ID=50502829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074208 WO2015100863A1 (zh) 2013-12-31 2014-03-27 一种大能量点火线圈

Country Status (7)

Country Link
US (1) US20160327008A1 (zh)
EP (1) EP3091544A4 (zh)
JP (1) JP2017503110A (zh)
KR (1) KR20160104638A (zh)
CN (1) CN103745816B (zh)
BR (1) BR112016015374A2 (zh)
WO (1) WO2015100863A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725156B1 (ko) * 2015-11-03 2017-04-11 현대오트론 주식회사 점화코일 공급전압 승압장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161276B (zh) * 2014-06-16 2017-03-22 联合汽车电子有限公司 点火线圈系统
CN105790585A (zh) * 2014-12-24 2016-07-20 厦门兰智科技有限公司 一种热电直流稳压器
CN104698031B (zh) * 2015-03-24 2018-03-27 江苏华爵检测技术股份有限公司 用于锥形量热仪的点火装置
CN106704076A (zh) * 2015-11-18 2017-05-24 联合汽车电子有限公司 带高压稳压蓄能装置的点火系统
CN106286071B (zh) * 2016-10-10 2019-04-02 联合汽车电子有限公司 点火系统及其应用方法
JP6373932B2 (ja) * 2016-11-02 2018-08-15 三菱電機株式会社 放電停止装置
CN110259619A (zh) * 2019-06-03 2019-09-20 昆山凯迪汽车电器有限公司 点火驱动模块、点火驱动电路以及点火控制系统
CN114810455A (zh) * 2022-03-30 2022-07-29 东风柳州汽车有限公司 一种点火装置以及汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760782A (en) * 1971-08-06 1973-09-25 Bosch Gmbh Robert Ignition circuit
FR2822584A1 (fr) * 2001-03-21 2002-09-27 Sagem Bobine d'allumage a rayonnement electromagnetique reduit
CN2813910Y (zh) * 2005-03-23 2006-09-06 庄景阳 改进式摩托车直流点火器
JP2009287521A (ja) * 2008-05-30 2009-12-10 Denso Corp 内燃機関の点火制御装置及び点火制御システム
US20130291833A1 (en) * 2010-11-23 2013-11-07 Sven-Michael Eisen Method for Operating an Ignition Device for an Internal Combustion Engine and Ignition Device for an Internal Combustion Engine for Carrying Out the Method
CN203760301U (zh) * 2013-12-31 2014-08-06 联合汽车电子有限公司 一种大能量点火线圈

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2742641A1 (de) * 1977-09-22 1979-04-05 Bosch Gmbh Robert Zuendanlage fuer brennkraftmaschinen
JPS5756668A (en) * 1980-09-18 1982-04-05 Nissan Motor Co Ltd Plasma igniter
JPS61164072A (ja) * 1985-01-11 1986-07-24 Hitachi Ltd 重ね放電形点火装置
CN1053282A (zh) * 1990-01-13 1991-07-24 申富德 汽油发动机高能全范围点火提前量自动调整馈能装置
WO1992008891A1 (en) * 1990-11-15 1992-05-29 Orbital Engine Company (Australia) Pty. Limited Capacitative discharge ignition system for internal combustion engines
CN2101771U (zh) * 1991-08-17 1992-04-15 陈家瑜 汽车点火线圈供电的改进装置
US5197448A (en) * 1991-08-23 1993-03-30 Massachusetts Institute Of Technology Dual energy ignition system
CN2222249Y (zh) * 1994-12-31 1996-03-13 刘以帆 汽车节油降污增力器
JPH0953555A (ja) * 1995-08-09 1997-02-25 Denso Corp 内燃機関の失火検出方法
DE19605803A1 (de) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Schaltungsanordnung zur Ionenstrommessung
JPH09317618A (ja) * 1996-05-28 1997-12-09 Ngk Spark Plug Co Ltd 内燃機関の運転状態検出装置
GB9712110D0 (en) * 1997-06-12 1997-08-13 Smiths Industries Plc Ignition systems and methods
JP2002106450A (ja) * 2000-09-29 2002-04-10 Diamond Electric Mfg Co Ltd 内燃機関用点火装置
CN2639550Y (zh) * 2003-03-20 2004-09-08 孙烨 内燃机点火装置
US7156075B2 (en) * 2004-08-20 2007-01-02 Prufrex-Elektro-Apparatebau, Inh. Helga Muller Geb Dutschke Ignition method with stop switch for internal-combustion engines
US7768767B2 (en) * 2006-05-05 2010-08-03 Pratt & Whitney Canada Corp. Triggered pulsed ignition system and method
JP4187013B2 (ja) * 2006-06-06 2008-11-26 国産電機株式会社 内燃機関用点火装置
JP5158055B2 (ja) * 2009-02-19 2013-03-06 株式会社デンソー プラズマ式点火装置
JP5255682B2 (ja) * 2011-10-17 2013-08-07 三菱電機株式会社 点火装置
JP6041085B2 (ja) * 2012-01-24 2016-12-07 日立オートモティブシステムズ阪神株式会社 重ね放電型内燃機関用点火装置
JP2013160216A (ja) * 2012-02-09 2013-08-19 Mitsubishi Electric Corp 点火装置
JP6273988B2 (ja) * 2014-04-10 2018-02-07 株式会社デンソー 内燃機関用点火装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760782A (en) * 1971-08-06 1973-09-25 Bosch Gmbh Robert Ignition circuit
FR2822584A1 (fr) * 2001-03-21 2002-09-27 Sagem Bobine d'allumage a rayonnement electromagnetique reduit
CN2813910Y (zh) * 2005-03-23 2006-09-06 庄景阳 改进式摩托车直流点火器
JP2009287521A (ja) * 2008-05-30 2009-12-10 Denso Corp 内燃機関の点火制御装置及び点火制御システム
US20130291833A1 (en) * 2010-11-23 2013-11-07 Sven-Michael Eisen Method for Operating an Ignition Device for an Internal Combustion Engine and Ignition Device for an Internal Combustion Engine for Carrying Out the Method
CN203760301U (zh) * 2013-12-31 2014-08-06 联合汽车电子有限公司 一种大能量点火线圈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3091544A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725156B1 (ko) * 2015-11-03 2017-04-11 현대오트론 주식회사 점화코일 공급전압 승압장치

Also Published As

Publication number Publication date
KR20160104638A (ko) 2016-09-05
EP3091544A4 (en) 2018-03-07
EP3091544A1 (en) 2016-11-09
CN103745816B (zh) 2018-01-12
US20160327008A1 (en) 2016-11-10
CN103745816A (zh) 2014-04-23
JP2017503110A (ja) 2017-01-26
BR112016015374A2 (pt) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2015100863A1 (zh) 一种大能量点火线圈
JP6054015B2 (ja) マイルドハイブリッド車両用充電装置
CN104242422B (zh) 一种脉冲氙灯电源储能电容的充电方法和充电电路
US10844825B2 (en) Method and apparatus to control an ignition system
WO2016045607A1 (zh) 电子脱扣器的保护装置及保护方法
TW200849782A (en) Device and method to suppress input current spike of voltage converter in a precharging mode
KR20140078743A (ko) 수동으로 스위칭되는 컨버터 및 이를 포함하는 회로들
WO2021093667A1 (zh) 一种正反激式开关电源电路
TW201541838A (zh) 返馳式主動箝位電源轉換器
CN103049028A (zh) 一种用于高压磁开关复位的恒流源
TWI538369B (zh) 具漏感能量回收之直流-直流返馳式轉換器
JP2014070626A (ja) 内燃機関の点火装置
Elmes et al. High-voltage, high-power-density DC-DC converter for capacitor charging applications
CN107165758B (zh) 一种强流脉冲电子束源光遥控点火驱动器
CN206957854U (zh) 一种高压光遥控点火驱动器
CN203760301U (zh) 一种大能量点火线圈
CN105680707A (zh) 隔离型同步整流控制电路的同步整流芯片保护方法和同步整流芯片
CN206595882U (zh) 一种脉冲变压器的顶冲消除电路
CN110912439B (zh) 一种基于脉冲变压器的高压脉冲升压电路及调节方法
CN220254353U (zh) 开关电容变换器缓启动电路
WO2015192638A1 (zh) 点火线圈系统
TWI497875B (zh) 電動機的充磁電路裝置
CN105472854A (zh) 一种电容谐振充电式高气压气体放电灯的点火装置
TW201601435A (zh) 具超高昇降壓比之創新電能轉換裝置
CN105450074B (zh) 自激式晶体管逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15109203

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016015374

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167019161

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014877256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877256

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016015374

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160630