WO2016045607A1 - 电子脱扣器的保护装置及保护方法 - Google Patents

电子脱扣器的保护装置及保护方法 Download PDF

Info

Publication number
WO2016045607A1
WO2016045607A1 PCT/CN2015/090636 CN2015090636W WO2016045607A1 WO 2016045607 A1 WO2016045607 A1 WO 2016045607A1 CN 2015090636 W CN2015090636 W CN 2015090636W WO 2016045607 A1 WO2016045607 A1 WO 2016045607A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
storage capacitor
output
current
electronic trip
Prior art date
Application number
PCT/CN2015/090636
Other languages
English (en)
French (fr)
Inventor
胡应龙
吴海良
Original Assignee
上海电科电器科技有限公司
上海诺雅克电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电科电器科技有限公司, 上海诺雅克电气有限公司 filed Critical 上海电科电器科技有限公司
Priority to EP15844951.2A priority Critical patent/EP3200300A4/en
Publication of WO2016045607A1 publication Critical patent/WO2016045607A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/42Induction-motor, induced-current, or electrodynamic release mechanisms
    • H01H71/43Electrodynamic release mechanisms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/50Manual reset mechanisms which may be also used for manual release
    • H01H71/52Manual reset mechanisms which may be also used for manual release actuated by lever
    • H01H71/522Manual reset mechanisms which may be also used for manual release actuated by lever comprising a cradle-mechanism
    • H01H71/525Manual reset mechanisms which may be also used for manual release actuated by lever comprising a cradle-mechanism comprising a toggle between cradle and contact arm and mechanism spring acting between handle and toggle knee

Definitions

  • the present invention relates to the field of low voltage electrical appliances, and more particularly to the field of circuit breaker technology in low voltage electrical appliances.
  • the circuit breaker is an important low voltage electrical appliance. Molded case electronic circuit breakers are widely used due to their small size and simple structure.
  • the core component of the electronic circuit breaker is an electronic trip unit.
  • the actuator of the electronic trip unit is usually a flux change device.
  • the flux change device includes a magnetic flux converter coil, a permanent magnet, a reaction force spring, a jack, and the like. When the primary circuit (ie, the main circuit or the load circuit) is operating normally, the flux change device remains in the pull-in state, and the permanent magnet attracts the jack so that it does not trigger the trip mechanism.
  • the magnetic force of the permanent magnet is greater than the spring force of the reaction force spring, and no current flows through the coil of the flux converter, so no electromagnetic force is generated, and the permanent magnet relies on the magnetic attraction ejector rod, and the circuit breaker remains closed.
  • the primary circuit ie, the primary circuit or the load circuit
  • the circuit formed by the storage capacitor and the flux converter coil is turned on, and the storage capacitor releases the stored power in the magnetic
  • a current is formed in the coil of the converter, and the current generates an electromagnetic force in the coil of the magnetic flux converter.
  • the electromagnetic force is in the same direction as the spring force of the reaction force spring, and is opposite to the magnetic force of the permanent magnet.
  • the sum of the electromagnetic force and the spring force is greater than the permanent magnet.
  • the magnetic force causes the jack to be released and ejected, the jack touches the trip mechanism, the breaker is disconnected, and the main circuit is cut.
  • Figure 1 discloses a schematic diagram of an electronic trip unit commonly used in the prior art.
  • the electronic trip unit includes: a current transformer 101, a rectifying and filtering circuit 109, a control power supply circuit 102, a trip power supply circuit 103, a control circuit composed of a buck circuit 104 and an MCU unit 105, and a storage circuit.
  • a trip circuit composed of a capacitor 106, a flux converter 107, and a control switch 108.
  • the current transformer 101 is connected in series in the primary circuit, and the current transformer 101 induces an induced current from the primary circuit current.
  • the filter rectifier circuit 109 is connected to the output of the current transformer 101, and the filter rectifier circuit 109 filters and rectifies the induced current of the current transformer.
  • Filter rectifier circuit 109 The output is divided into two paths, which are respectively connected to the control power supply circuit 102 and the trip power supply circuit 103.
  • the inputs of the control power supply circuit 102 and the trip power supply circuit 103 are both connected to the output of the filter rectifier circuit 109.
  • a diode is included in each of the control power supply circuit 102 and the trip power supply circuit 103.
  • the control circuit includes a buck circuit 104 and an MCU unit 105.
  • the buck circuit 104 is connected to the output of the control power circuit 103, and the buck circuit 104 steps down the output of the control power circuit 103 to a rated operating voltage of the MCU unit 105.
  • the MCU unit 105 is connected to the output of the buck circuit 104, which is powered by the buck circuit 104.
  • the MCU unit 105 also receives a monitoring signal for whether there is a fault in the primary loop, and the monitoring signal is connected to the signal input and output end of the MCU unit 105.
  • FIG. 1 focuses on the current loop, the non-signal loop, and thus the monitoring of the primary loop. The signal is not shown in Figure 1.
  • the trip circuit includes a series storage capacitor 106, a flux converter 107, and a control switch 108.
  • control power supply circuit 102 is coupled to a storage capacitor 106, the output of which is coupled to control switch 108 to control the conduction or deactivation of the control switch.
  • the storage capacitor 106, the flux converter 107 and the control switch 108 form a complete loop, ie a trip circuit.
  • the MCU unit 105 controls the control switch 108 to turn off, so the trip circuit is not conducting, at which point the control power circuit 102 charges the storage capacitor 106.
  • the MCU unit 105 outputs a trip command such that the control switch 108 is turned on and the trip circuit is turned on.
  • the discharge of the storage capacitor 106 causes a current to appear in the coil of the magnetic flux converter 107, which generates an electromagnetic force, assists the reaction force spring of the magnetic flux converter to jointly overcome the magnetic force of the permanent magnet, so that the plunger ejects the drive trip mechanism to work.
  • the circuit breaker is disconnected.
  • the electronic trip unit should be able to work reliably and achieve basic protection functions when all phase currents in the primary circuit (main circuit) are not less than 0.4 times the rated current, ie 0.4In.
  • the induced current generated by current transformer 101 is used for two purposes, on the one hand to satisfy the normal operation of the MCU unit and on the other hand to charge the storage capacitor.
  • the normal operation of the MCU unit is prioritized, so the induced current is preferentially used to power the MCU and the remaining current is charged to the storage capacitor.
  • the current in the primary circuit is large, such as when operating at the rated current In, the induced current is also large enough to satisfy both of the above applications.
  • the current transformer When the primary circuit current is small, especially close to the lower limit of the national standard, ie 0.4In When the current transformer generates a small induced current, it is preferred to meet the normal operation of the MCU unit. Since the control circuit connected to the back end of the control power circuit is heavily loaded, the current is mainly distributed to the control circuit, so that the output current of the trip power supply circuit is small, causing insufficient storage of the storage capacitor, failing to achieve sufficient voltage, and generally storing energy. Capacitor needs to be charged to 12V ⁇ 15V to ensure that the current in the coil of the flux converter is large enough, so that the electromagnetic force generated by it and the spring force of the reaction force spring can be greater than the magnetic force of the permanent magnet.
  • the storage capacitor When a small current causes the storage capacitor to be insufficiently charged, such as below 12V, in the event of a primary circuit failure, the storage capacitor discharges a current generated in the coil of the flux converter, but the electromagnetic force generated by the current is not large enough.
  • the magnetic force of the permanent magnet is still greater than the sum of the electromagnetic force and the spring force of the reaction force spring, so that the ejector pin is still adsorbed and cannot be ejected, so that the trip mechanism cannot work, and the circuit breaker cannot be disconnected.
  • the present invention is directed to a protection device and a protection method that can still charge a storage capacitor to a sufficient voltage when the current in a primary circuit is a small current.
  • a protection device for an electronic trip unit which is connected to a storage capacitor in an electronic trip unit, and the protection device charges the storage capacitor to a sufficient voltage when the primary loop current is a small current.
  • the small current is 0.4 to 0.8 times the rated current of the primary circuit; the sufficient voltage is 12V to 15V.
  • the electronic trip unit further includes: a current transformer, a filter rectifier circuit, a control power circuit, a trip power circuit, a control circuit, and a trip circuit.
  • the current transformer is connected in series in the primary circuit, and the current transformer induces an induced current from the primary circuit current.
  • the filter rectifier circuit is connected to the output of the current transformer, and the filter rectifier circuit filters and rectifies the induced current of the current transformer.
  • the control power circuit is connected to the output of the filter rectifier circuit.
  • the trip power supply circuit is connected to the output of the filter rectifier circuit.
  • the control circuit includes a buck circuit and an MCU unit.
  • the buck circuit is connected to the output of the control power circuit, the buck circuit bucks the output of the control power circuit, and the MCU unit is connected to the output of the buck circuit and is powered by the buck circuit.
  • the trip circuit includes a series storage capacitor, a flux converter and a control switch, and the output of the control power circuit is connected to the storage capacitor.
  • the output of the MCU unit is connected to a control switch to control the conduction or deactivation of the control switch.
  • the MCU unit control switch is turned off, the trip circuit is not turned on, and the control power circuit charges the storage capacitor.
  • the MCU unit outputs a trip command to make the control switch conduct, and the trip circuit leads. Through, the storage capacitor discharge causes the magnetic flux converter to generate electromagnetic force to drive the trip mechanism.
  • the protection device comprises a resistor, a booster circuit and a diode connected in series, the first end of the resistor is connected to the control power supply circuit, the second end of the resistor is connected to the input end of the boost circuit, and the output of the boost circuit is Connected to the storage capacitor through a diode, the output of the diode is also connected to the MCU unit.
  • the output of the control power circuit is preferentially provided to the MCU unit, and the excess power is charged to the storage capacitor through the protection device.
  • the protection device includes a rechargeable battery circuit and a PWM charging circuit.
  • the rechargeable battery circuit includes a charging circuit and a rechargeable battery. The input end of the charging circuit is connected to the output end of the step-down circuit, and the output end of the charging circuit is connected to the rechargeable battery through a diode.
  • the PWM charging circuit comprises a control circuit and a boosting circuit. The input end of the control circuit is connected to the output of the rechargeable battery, and the output end of the control circuit is connected to the input end of the boosting circuit, and the enabling end of the control circuit is connected to the MCU unit, and the boosting circuit is connected. The output of the circuit is connected to the storage capacitor through a diode.
  • the output of the buck circuit charges the rechargeable battery
  • the MCU unit outputs a duty cycle signal to the control circuit
  • the control circuit causes the rechargeable battery to charge the storage capacitor in a PWM manner according to the duty cycle signal.
  • the charging time of the storage capacitor is determined by the duty cycle signal associated with the type of fault the electronic trip is directed to.
  • a method for protecting an electronic trip unit which provides additional charging for the storage capacitor in the electronic trip unit, and charges the storage capacitor to a sufficient voltage when the primary loop current is a small current.
  • the small current is 0.4 to 0.8 times the rated current of the primary circuit.
  • a sufficient voltage is 12V to 15V.
  • the additional charged power is met by the MCU in the electronic trip unit.
  • the excess power after the meta-operation is drawn from the control power supply circuit of the electronic trip unit, and the storage capacitor is charged in a DC manner after the resistor current limiting and boosting.
  • the additional charged power is derived from the rechargeable battery, and the rechargeable battery is charged by the excess power after the MCU unit in the electronic trip unit is operated, and the MCU unit outputs the corresponding amount according to the fault type targeted by the electronic trip unit.
  • the air ratio signal according to the duty cycle, the rechargeable battery charges the storage capacitor by PWM through the control circuit and the boost circuit.
  • the protection device and the protection method of the electronic trip unit of the invention use the excess power other than the normal operation of the MCU unit to charge the storage capacitor, so that the current storage capacitor can be charged to a sufficient voltage when the current is a small current in the primary circuit, ensuring
  • the flux transducer is capable of generating a sufficiently large electromagnetic force to trigger the trip mechanism to operate.
  • Figure 1 discloses a schematic diagram of a prior art electronic trip unit.
  • Figure 3 discloses a schematic diagram of an electronic trip unit in accordance with another embodiment of the present invention.
  • the invention aims to provide a protection device for an electronic trip unit, which is connected to a storage capacitor in an electronic trip unit.
  • the protection device charges the storage capacitor to a sufficient voltage when the primary loop current is a small current, wherein a small current It is 0.4 to 0.8 times the rated current of the primary circuit; sufficient voltage is 12V to 15V.
  • the small current is 0.4 to 0.5 times the rated current of the primary circuit, and even, in some embodiments, is 0.4 to 0.45 times the rated current of the primary circuit.
  • FIG. 2 a schematic diagram of an electronic trip unit in accordance with a first embodiment of the present invention is disclosed.
  • the resistor current limiting direct boost charging method is utilized, and the MCU unit is utilized. The remaining power is charged by the storage capacitor.
  • the electronic trip unit includes a current transformer 201, a filter rectifier circuit 209, a control power supply circuit 202, a trip power supply circuit 203, a control circuit, and a trip circuit.
  • the current transformer 201 is connected in series in the primary circuit, and the current transformer 201 induces an induced current from the primary circuit current.
  • the filter rectifier circuit 209 is connected to the output of the current transformer 201, and the filter rectifier circuit 209 filters and rectifies the induced current of the current transformer.
  • the output of the filter rectifier circuit 209 is divided into two paths, which are respectively connected to the control power supply circuit 202 and the trip power supply circuit 203.
  • the inputs of the control power supply circuit 202 and the trip power supply circuit 203 are both connected to the output of the filter rectifier circuit 209.
  • a diode is included in each of the control power supply circuit 202 and the trip power supply circuit 203.
  • the control circuit includes a buck circuit 204 and an MCU unit 205.
  • the buck circuit 204 is connected to the output of the control power supply circuit 203, and the buck circuit 204 steps down the output of the control power supply circuit 203 to a rated operating voltage of the MCU unit 205.
  • the MCU unit 205 is connected to the output of the buck circuit 204, which is powered by the buck circuit 204.
  • the MCU unit 205 also receives a monitoring signal for the presence or absence of a fault in the primary loop.
  • the trip circuit includes a series storage capacitor 206, a flux converter 207, and a control switch 208.
  • the output of control power supply circuit 202 is coupled to a storage capacitor 206, the output of which is coupled to control switch 208 to control the conduction or deactivation of the control switch.
  • the storage capacitor 206, the flux converter 207 and the control switch 208 form a complete loop, ie a trip circuit.
  • the MCU unit 205 controls the control switch 208 to turn off, so the trip circuit is not conducting, and the control power circuit 202 charges the storage capacitor 206 at this time.
  • the MCU unit 205 outputs a trip command such that the control switch 208 is turned on and the trip circuit is turned on.
  • the storage capacitor 206 discharges a current in the coil of the flux converter 207, and the current generates an electromagnetic force, which assists the reaction force spring of the flux converter to overcome the magnetic force of the permanent magnet, so that the jack ejects the drive trip mechanism to work.
  • the circuit breaker is disconnected.
  • FIG. 2 differs from FIG. 1 in that a protection device is added.
  • the protection device includes a resistor 210, a boost circuit 211, and a diode connected in series.
  • the first end of the resistor 210 is connected to the control power supply circuit 203, the second end of the resistor 210 is connected to the input end of the boosting circuit 211, and the output end of the boosting circuit 211 is connected to the storage capacitor 206 through a diode.
  • the output of the tube is also connected to the MCU unit 205.
  • the protection device is equivalent to charging a portion of the amount of power originally provided to the control circuit for charging the storage capacitor 206.
  • the protection device of the present invention transfers this portion of the remaining power from the control power supply circuit to the trip power supply circuit for supplementing the charging of the storage capacitor.
  • a booster circuit 211 is provided in the protection device, and the booster circuit 211 outputs a higher voltage so that the storage capacitor can be charged to a sufficiently high level. Voltage.
  • the output of the control power circuit is preferentially supplied to the MCU unit, and the storage capacitor is charged by the protection device in the MCU unit and the excess power sufficient for normal operation.
  • FIG. 3 a schematic diagram of an electronic trip unit in accordance with a second embodiment of the present invention is disclosed.
  • the storage capacitor is charged using a rechargeable battery and a PWM boosting method.
  • the remaining battery power of the MCU unit is used to charge the rechargeable battery, so that the rechargeable battery maintains sufficient power, and then the storage capacitor is charged by the rechargeable battery in a PWM manner, and the charging time of the storage capacitor can be controlled by adjusting the duty ratio of the PWM.
  • the second embodiment shown in Fig. 3 differs in that the protection device is different.
  • the current transformer 301, the filter rectifier circuit 309, the control power supply circuit 302, the trip power supply circuit 303, the control circuit, and the trip circuit are all the same as in the first embodiment.
  • the control circuit includes a buck circuit 304 and an MCU unit 305.
  • the trip circuit includes a series storage capacitor 306, a flux converter 307, and a control switch 308, which are also the same as the first embodiment.
  • the protection device includes a rechargeable battery circuit and a PWM charging circuit.
  • the rechargeable battery circuit includes a charging circuit 310 and a rechargeable battery 311.
  • the input terminal of the charging circuit 310 is connected to the output terminal of the step-down circuit 304, and the output terminal of the charging circuit 310 is connected to the rechargeable battery 311 through a diode.
  • Recharge the rechargeable battery by using the remaining power of the MCU unit to maintain the rechargeable battery Sufficient power, since the MCU unit is not always in operation, there is a remaining power generated, and the remaining power is used to charge the rechargeable battery 311.
  • the PWM charging circuit includes a control circuit 312 and a boosting circuit 313.
  • the input of the control circuit 312 is connected to the output of the rechargeable battery, the output of the control circuit is connected to the input of the boost circuit, the enable end of the control circuit is connected to the MCU unit, and the output of the boost circuit is connected to the energy storage through the diode. capacitance.
  • the MCU unit 305 outputs a duty cycle signal to a control circuit that is related to the type of fault the electronic trip unit is targeting.
  • the types of faults targeted by the electronic trip unit may include ground protection faults, short-circuit short-delay faults, overload long-delay faults, etc. For different fault types, there are different requirements for the charging time of the storage capacitors, according to the fault type.
  • the corresponding duty cycle signal is adjusted by the control circuit.
  • the control circuit causes the rechargeable battery to charge the storage capacitor according to the duty cycle signal in a PWM manner to achieve fast boost or slow boost.
  • a booster circuit 311 is provided in the protection device, and the booster circuit 311 outputs a higher voltage so that the storage capacitor can be charged to High enough voltage.
  • the boosting circuit, the control circuit, the charging circuit, and the rechargeable battery in the first embodiment and the second embodiment can be implemented by conventional techniques.
  • the invention also provides a method for protecting an electronic trip unit, which provides additional charging for the energy storage capacitor in the electronic trip unit, and charges the storage capacitor to a sufficient voltage when the primary loop current is a small current, wherein the small current is The rated current of the primary circuit is 0.4 to 0.8 times. A sufficient voltage is 12V to 15V. In some embodiments, the small current is 0.4 to 0.5 times the rated current of the primary circuit, and even, in some embodiments, is 0.4 to 0.45 times the rated current of the primary circuit.
  • the additional charged power is the excess power after the MCU unit in the electronic trip unit is operated, and is taken from the control power supply circuit of the electronic trip unit, and is DC-charged after being limited by the resistor and boosted.
  • the storage capacitor is charged.
  • it can be implemented by the circuit principle in the first embodiment.
  • the additional charged power is derived from the rechargeable battery, and the rechargeable battery is charged by the excess power after the MCU unit in the electronic trip unit is operated, and the MCU unit outputs the corresponding amount according to the fault type targeted by the electronic trip unit.
  • Air ratio signal, according to the duty cycle, rechargeable battery pass The control circuit and the boost circuit charge the storage capacitor in a PWM manner. For example, it can be implemented by the circuit principle in the second embodiment.
  • the protection device and the protection method of the electronic trip unit of the invention use the excess power other than the normal operation of the MCU unit to charge the storage capacitor, so that the current storage capacitor can be charged to a sufficient voltage when the current is a small current in the primary circuit, ensuring
  • the flux transducer is capable of generating a sufficiently large electromagnetic force to trigger the trip mechanism to operate.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电子脱扣器的保护装置及保护方法,该保护装置连接到电子脱扣器中的储能电容(206),在一次回路电流为小电流时将储能电容充电至足够电压,其中小电流为一次回路额定电流的0.4-0.8倍;足够电压为12V-15V。对储能电容的充电方式包括采用电阻限流直接升压充电的方式,或者采用充电电池和PWM升压方式。该电子脱扣器的保护装置及保护方法利用MCU单元(205)正常工作以外的多余电量为储能电容充电,使得在一次回路中电流为小电流时依旧能够将储能电容充电至足够电压,确保磁通变换器(207)能够产生足够大的电磁力触发脱扣机构工作。

Description

电子脱扣器的保护装置及保护方法 技术领域
本发明涉及低压电器技术领域,更具体地说,涉及低压电器中的断路器技术领域。
背景技术
断路器是一种重要的低压电器。塑壳电子式断路器由于其体积小结构简单而得到广泛的应用。电子式断路器的核心部件是电子脱扣器,电子脱扣器的执行机构通常为磁通变换装置,磁通变换装置包括磁通变换器线圈、永磁体、反力弹簧、顶杆等机构。在一次回路(即主回路或负载电路)正常工作时,磁通变换装置保持在吸合状态,永磁体吸住顶杆使之不会去触发脱扣机构。永磁体的磁力大于反力弹簧的弹簧力,而磁通变换器线圈中无电流通过因此不产生电磁力,永磁体依靠磁力吸附顶杆,断路器保持闭合接通。当监控到一次回路(即主回路或者负载电路)出现故障需要保护时,电子脱扣器内储能电容与磁通变换器线圈构成的电路被接通,储能电容释放存储的电量,在磁通变换器线圈内形成电流,该电流使得磁通变换器线圈内产生电磁力,电磁力与反力弹簧的弹簧力同方向,与永磁体的磁力相反,电磁力和弹簧力之和大于永磁体的磁力,使得顶杆被释放并弹出,顶杆触动脱扣机构动作,断路器被断开,主回路被切断。
图1揭示了现有技术中常用的电子脱扣器的原理图。如图1所示,该电子脱扣器包括:电流互感器101、整流滤波电路109、控制电源电路102、脱扣电源电路103、由降压电路104和MCU单元105构成的控制电路、由储能电容106、磁通变换器107和控制开关108构成的脱扣电路。
电流互感器101串接在一次回路中,电流互感器101从一次回路电流感生出感生电流。滤波整流电路109连接到电流互感器101的输出,滤波整流电路109对电流互感器的感生电流进行滤波整流。滤波整流电路109 的输出分为两路,分别连接到控制电源电路102和脱扣电源电路103。控制电源电路102和脱扣电源电路103的输入均连接到滤波整流电路109的输出。在图示的实施例中,在控制电源电路102和脱扣电源电路103中各自包括一个二极管。控制电路包括降压电路104和MCU单元105,降压电路104连接到控制电源电路103的输出,降压电路104对控制电源电路103的输出进行降压,降至MCU单元105的额定工作电压。MCU单元105连接到降压电路104的输出,MCU单元105由降压电路104供电。MCU单元105还会接收对于一次回路是否存在故障的监控信号,该监控信号会被接入到MCU单元105的信号出入端,图1关注的是电流回路,非信号回路,因此对于一次回路的监控信号未在图1中示出。脱扣电路包括串联的储能电容106、磁通变换器107和控制开关108。控制电源电路102的输出连接到储能电容106,MCU单元的输出连接到控制开关108以控制控制开关的导通或关闭。储能电容106、磁通变换器107和控制开关108构成了一个完整的回路,即脱扣电路。正常工作时,MCU单元105控制控制开关108关断,因此脱扣电路不导通,此时控制电源电路102为储能电容106充电。一次回路出现故障时,MCU单元105输出脱扣指令使得控制开关108导通,脱扣电路导通。储能电容106放电使得磁通变换器107的线圈中出现电流,该电流产生电磁力,协助磁通变换器的反力弹簧共同克服永磁体的磁力,使得顶杆弹出驱动脱扣机构工作,将断路器断开。
按照国家标准要求,在无外接辅助电源情况下,在一次回路(主回路)所有相电流不小于0.4倍额定电流,即0.4In时,电子脱扣器应能可靠工作和能实现基本保护功能。参考图1所示,由电流互感器101产生的感生电流被用作两个用途,一方面满足MCU单元的正常工作,另一方面对储能电容进行充电。MCU单元的正常工作是优先考虑的,因此感生电流优先被用于为MCU供电,剩余的电流为储能电容充电。在一次回路中电流较大时,比如以额定电流In工作时,感生电流也较大能够同时满足上述的两个用途。在一次主回路电流较小时,尤其是接近国家标准的下限,即0.4In 时,电流互感器产生的感生电流也较小,此时优先满足MCU单元的正常工作所需。由于控制电源电路后端连接的控制电路负载较重,所以电流主要被分配至控制电路,使得脱扣电源电路的输出电流很小,造成储能电容充电不足,无法达到足够的电压,一般储能电容需要充电至12V~15V才能确保磁通变换器的线圈中的电流足够大,以使得其产生的电磁力和反力弹簧的弹簧力叠加后能大于永磁体的磁力。当小电流造成储能电容充电不足时,比如低于12V,在一次回路出现故障时,储能电容放电虽然在磁通变换器的线圈中产生的电流,但该电流产生的电磁力不够大,永磁体的磁力还是大于电磁力和反力弹簧的弹簧力之和,使得顶杆依旧被吸附而无法弹出,造成脱扣机构无法工作,断路器不能被断开。
发明内容
本发明旨在提出能在一次回路中电流为小电流时依旧能够将储能电容充电至足够电压的保护装置和保护方法。
根据本发明的一实施例,提出一种电子脱扣器的保护装置,连接到电子脱扣器中的储能电容,该保护装置在一次回路电流为小电流时将储能电容充电至足够电压,其中小电流为一次回路额定电流的0.4~0.8倍;足够电压为12V~15V。
在一个实施例中,电子脱扣器还包括:电流互感器、滤波整流电路、控制电源电路、脱扣电源电路、控制电路和脱扣电路。电流互感器串接在一次回路中,电流互感器从一次回路电流感生出感生电流。滤波整流电路连接到电流互感器的输出,滤波整流电路对电流互感器的感生电流进行滤波整流。控制电源电路连接到滤波整流电路的输出。脱扣电源电路连接到滤波整流电路的输出。控制电路包括降压电路和MCU单元,降压电路连接到控制电源电路的输出,降压电路对控制电源电路的输出进行降压,MCU单元连接到降压电路的输出,由降压电路供电。脱扣电路包括串联的储能电容、磁通变换器和控制开关,控制电源电路的输出连接到储能电容, MCU单元的输出连接到控制开关以控制控制开关的导通或关闭。正常工作时,MCU单元控制控制开关关断,脱扣电路不导通,控制电源电路为储能电容充电,一次回路出现故障时,MCU单元输出脱扣指令使得控制开关导通,脱扣电路导通,储能电容放电使得磁通变换器产生电磁力驱动脱扣机构工作。
在一个实施例中,保护装置包括串联的电阻、升压电路和二极管,电阻的第一端与控制电源电路连接,电阻的第二端连接到升压电路的输入端,升压电路的输出端通过二极管连接到储能电容,二极管的输出还连接到MCU单元。
在一个实施例中,控制电源电路的输出优先提供给MCU单元,多余电量通过保护装置给储能电容充电。
在一个实施例中,保护装置包括充电电池回路和PWM充电电路。充电电池回路包括充电电路和充电电池,充电电路的输入端连接到降压电路的输出端,充电电路的输出端通过二极管连接到充电电池。PWM充电电路包括控制电路和升压电路,控制电路的输入端连接到充电电池的输出,控制电路的输出端连接到升压电路的输入端,控制电路的使能端连接到MCU单元,升压电路的输出端通过二极管连接到储能电容。
在一个实施例中,降压电路的输出给充电电池充电,MCU单元输出占空比信号至控制电路,控制电路依据占空比信号,以PWM方式使得充电电池给储能电容充电。
在一个实施例中,储能电容的充电时间由占空比信号确定,占空比信号与电子脱扣器针对的故障类型相关。
根据本发明的一实施例,提出一种电子脱扣器的保护方法,为电子脱扣器中的储能电容提供额外的充电,在一次回路电流为小电流时将储能电容充电至足够电压,其中小电流为一次回路额定电流的0.4~0.8倍。足够电压为12V~15V。
在一个实施例中,额外的充电的电量是满足电子脱扣器中的MCU单 元工作后的多余电量,从电子脱扣器的控制电源电路引出,经电阻限流和升压后以直流方式给储能电容充电。
在一个实施例中,额外的充电的电量来自于充电电池,充电电池由满足电子脱扣器中的MCU单元工作后的多余电量充电,MCU单元依据电子脱扣器针对的故障类型输出相应的占空比信号,依据占空比,充电电池通过控制电路和升压电路以PWM方式给储能电容充电。
本发明的电子脱扣器的保护装置和保护方法利用MCU单元正常工作以外的多余电量为储能电容充电,使得在一次回路中电流为小电流时依旧能够将储能电容充电至足够电压,确保磁通变换器能够产生足够大的电磁力触发脱扣机构工作。
附图说明
本发明上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变的更加明显,在附图中相同的附图标记始终表示相同的特征,其中:
图1揭示了现有技术中的电子脱扣器的原理图。
图2揭示了根据本发明的一实施例的电子脱扣器的原理图。
图3揭示了根据本发明的另一实施例的电子脱扣器的原理图。
具体实施方式
本发明旨在提出一种电子脱扣器的保护装置,连接到电子脱扣器中的储能电容,该保护装置在一次回路电流为小电流时将储能电容充电至足够电压,其中小电流为一次回路额定电流的0.4~0.8倍;足够电压为12V~15V。在一些实施例中,小电流是指一次回路额定电流的0.4~0.5倍,甚至于,在一些实施例中,是指一次回路额定电流的0.4~0.45倍。
参考图2所示,揭示了根据本发明的第一实施例的电子脱扣器的原理图。在该实施例中,采用电阻限流直接升压充电的方式,利用MCU单元 的剩余电量为储能电容充电。
参考图2所示,该电子脱扣器包括电流互感器201、滤波整流电路209、控制电源电路202、脱扣电源电路203、控制电路和脱扣电路。
电流互感器201串接在一次回路中,电流互感器201从一次回路电流感生出感生电流。滤波整流电路209连接到电流互感器201的输出,滤波整流电路209对电流互感器的感生电流进行滤波整流。滤波整流电路209的输出分为两路,分别连接到控制电源电路202和脱扣电源电路203。控制电源电路202和脱扣电源电路203的输入均连接到滤波整流电路209的输出。在图示的实施例中,在控制电源电路202和脱扣电源电路203中各自包括一个二极管。控制电路包括降压电路204和MCU单元205,降压电路204连接到控制电源电路203的输出,降压电路204对控制电源电路203的输出进行降压,降至MCU单元205的额定工作电压。MCU单元205连接到降压电路204的输出,MCU单元205由降压电路204供电。MCU单元205还会接收对于一次回路是否存在故障的监控信号。脱扣电路包括串联的储能电容206、磁通变换器207和控制开关208。控制电源电路202的输出连接到储能电容206,MCU单元的输出连接到控制开关208以控制控制开关的导通或关闭。储能电容206、磁通变换器207和控制开关208构成了一个完整的回路,即脱扣电路。正常工作时,MCU单元205控制控制开关208关断,因此脱扣电路不导通,此时控制电源电路202为储能电容206充电。一次回路出现故障时,MCU单元205输出脱扣指令使得控制开关208导通,脱扣电路导通。储能电容206放电使得磁通变换器207的线圈中出现电流,该电流产生电磁力,协助磁通变换器的反力弹簧共同克服永磁体的磁力,使得顶杆弹出驱动脱扣机构工作,将断路器断开。继续参考图2所示,图2与图1的区别在于增加了保护装置,图2所示的实施例中保护装置包括串联的电阻210、升压电路211和二极管。电阻210的第一端与控制电源电路203连接,电阻210的第二端连接到升压电路211的输入端,升压电路211的输出端通过二极管连接到储能电容206,二极 管的输出还连接到MCU单元205。保护装置相当于将原先提供给控制电路的一部分电量用来给储能电容206充电。由于MCU单元205的正常工作状态下,对于电量的消耗并不是很大,并且MCU单元205并不是始终处于工作状态,因此控制电源电路输出给MCU单元205的电量中是存在一定的余量的。在现有技术中,由于控制电源电路和脱扣电源电路的输出是完全分离的,因此控制电源电路输出的剩余的电量被浪费了,而在小电流的情况下,脱扣电源电路的输出确又不足。本发明的保护装置将这部分剩余的电量从控制电源电路中转移到脱扣电源电路中,用于补充给储能电容充电。为了将储能电容充电至足够高的电压(DC12V~DC15V),在保护装置中设置了升压电路211,升压电路211输出较高的电压,以使得储能电容能被充电至足够高的电压。控制电源电路的输出优先提供给MCU单元,在MCU单元以及足够正常工作后的多余电量通过保护装置给储能电容充电。
参考图3所示,揭示了根据本发明的第二实施例的电子脱扣器的原理图。在该实施例中,采用充电电池和PWM升压方式给储能电容充电。首先利用MCU单元的剩余电量为充电电池充电使得充电电池维持足够电量,再通过充电电池以PWM方式给储能电容充电,通过调节PWM的占空比可以控制储能电容的充电时间。
与图2所示的第一实施例相比较,图3所示的第二实施例的区别在于保护装置有所不同。电流互感器301、滤波整流电路309、控制电源电路302、脱扣电源电路303、控制电路和脱扣电路均与第一实施例相同。控制电路包括降压电路304和MCU单元305。脱扣电路包括串联的储能电容306、磁通变换器307和控制开关308,也与第一实施例相同。
在第二实施例中,保护装置包括充电电池回路和PWM充电电路。充电电池回路包括充电电路310和充电电池311。充电电路310的输入端连接到降压电路304的输出端,充电电路310的输出端通过二极管连接到充电电池311。利用MCU单元的剩余电量为充电电池充电使得充电电池维持 足够电量,由于MCU单元并非始终处于工作状态,因此会有剩余电量产生,剩余的电量用于为充电电池311充电。PWM充电电路包括控制电路312和升压电路313。控制电路312的输入端连接到充电电池的输出,控制电路的输出端连接到升压电路的输入端,控制电路的使能端连接到MCU单元,升压电路的输出端通过二极管连接到储能电容。MCU单元305输出占空比信号至控制电路,该占空比信号与电子脱扣器针对的故障类型相关。电子脱扣器针对的故障类型可以包括接地保护故障、短路短延时故障、过载长延时故障等,对于不同的故障类型,对于储能电容的充电时间有不同的要求,根据故障类型设定相应的占空比信号,通过控制电路调节占空比。控制电路依据占空比信号以PWM方式使得充电电池给储能电容充电,实现快速升压或慢速升压。同样的,为了将储能电容充电至足够高的电压(DC12V~DC15V),在保护装置中设置了升压电路311,升压电路311输出较高的电压,以使得储能电容能被充电至足够高的电压。
第一实施例和第二实施例中的升压电路、控制电路、充电电路和充电电池都可以采用常规技术实现。
本发明还提出一种电子脱扣器的保护方法,为电子脱扣器中的储能电容提供额外的充电,在一次回路电流为小电流时将储能电容充电至足够电压,其中小电流为一次回路额定电流的0.4~0.8倍。足够电压为12V~15V。在一些实施例中,小电流是指一次回路额定电流的0.4~0.5倍,甚至于,在一些实施例中,是指一次回路额定电流的0.4~0.45倍。
在一个实施例中,额外的充电的电量是满足电子脱扣器中的MCU单元工作后的多余电量,从电子脱扣器的控制电源电路引出,经电阻限流和升压后以直流方式给储能电容充电。例如可以采用第一实施例中的电路原理来实现。
在一个实施例中,额外的充电的电量来自于充电电池,充电电池由满足电子脱扣器中的MCU单元工作后的多余电量充电,MCU单元依据电子脱扣器针对的故障类型输出相应的占空比信号,依据占空比,充电电池通 过控制电路和升压电路以PWM方式给储能电容充电。例如可以采用第二实施例中的电路原理来实现。
本发明的电子脱扣器的保护装置和保护方法利用MCU单元正常工作以外的多余电量为储能电容充电,使得在一次回路中电流为小电流时依旧能够将储能电容充电至足够电压,确保磁通变换器能够产生足够大的电磁力触发脱扣机构工作。
上述实施例是提供给熟悉本领域内的人员来实现或使用本发明的,熟悉本领域的人员可在不脱离本发明的发明思想的情况下,对上述实施例做出种种修改或变化,因而本发明的保护范围并不被上述实施例所限,而应该是符合权利要求书提到的创新性特征的最大范围。

Claims (10)

  1. 一种电子脱扣器的保护装置,其特征在于,连接到电子脱扣器中的储能电容,该保护装置在一次回路电流为小电流时将储能电容充电至足够电压,
    其中所述小电流为一次回路额定电流的0.4~0.8倍;
    所述足够电压为12V~15V。
  2. 如权利要求1所述的电子脱扣器的保护装置,其特征在于,所述电子脱扣器还包括:
    电流互感器,电流互感器串接在一次回路中,电流互感器从一次回路电流感生出感生电流;
    滤波整流电路,连接到电流互感器的输出,滤波整流电路对电流互感器的感生电流进行滤波整流;
    控制电源电路,连接到滤波整流电路的输出;
    脱扣电源电路,连接到滤波整流电路的输出;
    控制电路,包括降压电路和MCU单元,降压电路连接到控制电源电路的输出,降压电路对控制电源电路的输出进行降压,MCU单元连接到降压电路的输出,由降压电路供电;
    脱扣电路,包括串联的储能电容、磁通变换器和控制开关,控制电源电路的输出连接到储能电容,MCU单元的输出连接到控制开关以控制控制开关的导通或关闭;
    正常工作时,MCU单元控制控制开关关断,脱扣电路不导通,控制电源电路为储能电容充电,一次回路出现故障时,MCU单元输出脱扣指令使得控制开关导通,脱扣电路导通,储能电容放电使得磁通变换器产生电磁力驱动脱扣机构工作。
  3. 如权利要求2所述的电子脱扣器的保护装置,其特征在于,所述保护装置包括串联的电阻、升压电路和二极管,电阻的第一端与控制电源电路连接,电阻的第二端连接到升压电路的输入端,升压电路的输出端通过二极管连接到储能电容,二极管的输出还连接到MCU单元。
  4. 如权利要求3所述的所述的电子脱扣器的保护装置,其特征在于,所述控制电源电路的输出优先提供给MCU单元,多余电量通过所述保护装置给储能电容充电。
  5. 如权利要求2所述的电子脱扣器的保护装置,其特征在于,所述保护装置包括:
    充电电池回路,包括充电电路和充电电池,充电电路的输入端连接到降压电路的输出端,充电电路的输出端通过二极管连接到充电电池;
    PWM充电电路,包括控制电路和升压电路,控制电路的输入端连接到充电电池的输出,控制电路的输出端连接到升压电路的输入端,控制电路的使能端连接到MCU单元,升压电路的输出端通过二极管连接到储能电容。
  6. 如权利要求5所述的电子脱扣器的保护装置,其特征在于,所述降压电路的输出给充电电池充电,MCU单元输出占空比信号至控制电路,控制电路依据占空比信号,以PWM方式使得充电电池给储能电容充电。
  7. 如权利要求6所述的电子脱扣器的保护装置,其特征在于,所述储能电容的充电时间由所述占空比信号确定,所述占空比信号与电子脱扣器针对的故障类型相关。
  8. 一种电子脱扣器的保护方法,其特征在于,为电子脱扣器中的储能 电容提供额外的充电,在一次回路电流为小电流时将储能电容充电至足够电压,
    其中所述小电流为一次回路额定电流的0.4~0.8倍;
    所述足够电压为12V~15V。
  9. 如权利要求8所述的电子脱扣器的保护方法,其特征在于,所述额外的充电的电量是满足电子脱扣器中的MCU单元工作后的多余电量,从电子脱扣器的控制电源电路引出,经电阻限流和升压后以直流方式给储能电容充电。
  10. 如权利要求8所述的电子脱扣器的保护方法,其特征在于,所述额外的充电的电量来自于充电电池,充电电池由满足电子脱扣器中的MCU单元工作后的多余电量充电,MCU单元依据电子脱扣器针对的故障类型输出相应的占空比信号,依据所述占空比,所述充电电池通过控制电路和升压电路以PWM方式给储能电容充电。
PCT/CN2015/090636 2014-09-26 2015-09-25 电子脱扣器的保护装置及保护方法 WO2016045607A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15844951.2A EP3200300A4 (en) 2014-09-26 2015-09-25 Electronic trip unit protection device and protection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410502346.1A CN105449628B (zh) 2014-09-26 2014-09-26 电子脱扣器的保护装置及保护方法
CN201410502346.1 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016045607A1 true WO2016045607A1 (zh) 2016-03-31

Family

ID=55559546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090636 WO2016045607A1 (zh) 2014-09-26 2015-09-25 电子脱扣器的保护装置及保护方法

Country Status (3)

Country Link
EP (1) EP3200300A4 (zh)
CN (1) CN105449628B (zh)
WO (1) WO2016045607A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988454A (zh) * 2018-08-01 2018-12-11 天津津电供电设计所有限公司 储能式母线电路结构与直流电源系统
CN110034691A (zh) * 2019-05-15 2019-07-19 济宁安泰矿山设备制造有限公司 一种集成电流互感器供电装置的潜水泵
CN113945754A (zh) * 2021-10-16 2022-01-18 深圳市卡贝电子技术有限公司 一种掉电保护电路及保护方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149508B (zh) * 2018-05-25 2024-03-12 江苏凯隆电器有限公司 一种断路器内部冗余保护结构及其保护方法
CN108767807B (zh) * 2018-07-25 2023-10-31 佛山科学技术学院 一种用于配网自动化的10kV断路器双控脱扣电路
CN113299525A (zh) * 2021-04-23 2021-08-24 深圳供电局有限公司 断路器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547230A (zh) * 2003-12-15 2004-11-17 上海电器科学研究所(集团)有限公司 一种电力断路器用自生电源
CN202585289U (zh) * 2012-05-04 2012-12-05 戴开煌 外部开关控制的脱扣控制装置
CN103777137A (zh) * 2014-01-15 2014-05-07 上海诺雅克电气有限公司 具有自检功能的电子式断路器及其自诊断方法
CN203786556U (zh) * 2014-01-15 2014-08-20 上海诺雅克电气有限公司 具有自检功能的电子式断路器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9304342A (es) * 1992-07-20 1994-04-29 Gec Alsthom Ltd Reconectores automaticos.
CN2373889Y (zh) * 1999-05-11 2000-04-12 刘英来 再生电力脱扣控制电源
DE19954038A1 (de) * 1999-10-29 2001-05-03 Siemens Ag Schaltungsanordnung mit einer Kapazität als Energiespeicher zur Betätigung des Auslösemagneten eines Niederspannungs-Leistungsschalters und Verfahren zur Aufladung der Kapazität
US7869170B2 (en) * 2006-07-14 2011-01-11 Susan Jean Walker Colsch Method and system for time synchronized trip algorithms for breaker self protection
CN102377163B (zh) * 2011-09-16 2014-03-12 上海诺雅克电气有限公司 含有脱扣电源监控的电子脱扣器
CN102709127B (zh) * 2012-05-30 2014-09-17 江苏国星电器有限公司 低电压交直流通用欠压脱扣器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547230A (zh) * 2003-12-15 2004-11-17 上海电器科学研究所(集团)有限公司 一种电力断路器用自生电源
CN202585289U (zh) * 2012-05-04 2012-12-05 戴开煌 外部开关控制的脱扣控制装置
CN103777137A (zh) * 2014-01-15 2014-05-07 上海诺雅克电气有限公司 具有自检功能的电子式断路器及其自诊断方法
CN203786556U (zh) * 2014-01-15 2014-08-20 上海诺雅克电气有限公司 具有自检功能的电子式断路器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200300A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988454A (zh) * 2018-08-01 2018-12-11 天津津电供电设计所有限公司 储能式母线电路结构与直流电源系统
CN108988454B (zh) * 2018-08-01 2024-04-02 天津津电供电设计所有限公司 储能式母线电路结构与直流电源系统
CN110034691A (zh) * 2019-05-15 2019-07-19 济宁安泰矿山设备制造有限公司 一种集成电流互感器供电装置的潜水泵
CN110034691B (zh) * 2019-05-15 2023-12-19 济宁安泰矿山设备制造有限公司 一种集成电流互感器供电装置的潜水泵
CN113945754A (zh) * 2021-10-16 2022-01-18 深圳市卡贝电子技术有限公司 一种掉电保护电路及保护方法
CN113945754B (zh) * 2021-10-16 2024-05-24 深圳市卡贝电子技术有限公司 一种掉电保护电路及保护方法

Also Published As

Publication number Publication date
EP3200300A1 (en) 2017-08-02
EP3200300A4 (en) 2018-05-30
CN105449628B (zh) 2018-11-13
CN105449628A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2016045607A1 (zh) 电子脱扣器的保护装置及保护方法
CN101540550B (zh) 全压启动分压工作及延迟断电电路装置
CN102097778A (zh) 一种节能型欠压/过压保护装置
KR102610392B1 (ko) 넓은 동작 범위의 릴레이 제어기
WO2015100863A1 (zh) 一种大能量点火线圈
CN203261003U (zh) 一种接地故障保护装置
CN101599398B (zh) 一种漏电保护断路器
CN102017584B (zh) 对dc继电器进行快速放电的系统和方法
CN111049377B (zh) 一种开关模式的28v直流系统浪涌抑制及差模噪声抑制电路
CN104659741A (zh) 一种双线圈欠压脱扣器
CN109682076B (zh) 基于Buck原理的点火检火电路和燃气壁挂炉
CN114267515B (zh) 采用三个电桥电路的交流电磁铁
CN114709109A (zh) 一种继电器慢放电驱动电路
KR101797230B1 (ko) Dc기기용 전원회로
CN205249075U (zh) 耐电磁辐射的晶体管自激逆变器
CN108768357B (zh) 一种高低压自动切换电子开关电路
TWI547078B (zh) 變壓器寄生元件能量可回收之隔離高降壓轉換器
US20090260944A1 (en) Electromagnetic actuating device with driving and holding tapped coil
CN104079200B (zh) 一种电感脉冲电源
CN202067728U (zh) 断电吸持型永磁式接触器
CN110767512A (zh) 宽电压输入的欠压脱扣器
CN217426636U (zh) 一种继电器慢放电驱动电路
Cheng et al. A DC Power Connector with Voltage Spike Suppression
CN211045245U (zh) 一种变压器预充磁电路
CN202796748U (zh) 节能型恒磁保持交流接触器控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015844951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844951

Country of ref document: EP