WO2021093667A1 - 一种正反激式开关电源电路 - Google Patents

一种正反激式开关电源电路 Download PDF

Info

Publication number
WO2021093667A1
WO2021093667A1 PCT/CN2020/126760 CN2020126760W WO2021093667A1 WO 2021093667 A1 WO2021093667 A1 WO 2021093667A1 CN 2020126760 W CN2020126760 W CN 2020126760W WO 2021093667 A1 WO2021093667 A1 WO 2021093667A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
diode
transformer
electrically connected
inductor
Prior art date
Application number
PCT/CN2020/126760
Other languages
English (en)
French (fr)
Inventor
张彦斌
刘晓旭
冯刚
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2021093667A1 publication Critical patent/WO2021093667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of switching power supplies, in particular to a forward and flyback switching power supply circuit.
  • capacitors and diodes to double the voltage is only suitable for applications with small currents, and will be limited for applications with large output currents.
  • FIG. 1 A specific circuit topology of a forward and flyback circuit in the prior art in this field is shown in FIG. 1.
  • the energy transmission efficiency is high.
  • the structure of the transformer is also very simple. It only needs one winding to output a very high voltage. Compared with ordinary flyback doubling and rectification, the voltage of one winding is increased, so that the output voltage can be increased to higher.
  • the primary side switch tube Q1 When the primary side switch tube Q1 is turned on, the 2 terminal of the transformer T1 is positive, and the 1 terminal is negative. At this time, it belongs to the forward path. Then the primary side of the transformer T1 is excited and the energy is transferred to the secondary side at the same time, because 1 of the transformer T1 Terminals and terminal 3 are the same-named terminals.
  • the energy transmission path of the secondary side is that the current flowing out of terminal 3 of transformer T1 returns to terminal 4 of transformer T1 through capacitor C1, diode D3, capacitor C3, and capacitor C2 to form a forward loop. The capacitor is charged and the output voltage starts to build up. At this time, the capacitor C1 and the capacitor C2 are both positive and negative.
  • the forward loop When the primary switch Q1 is turned on, the forward loop is turned on, and the primary energy will reversely charge the secondary capacitor C1 and the capacitor C2 through the transformer T1.
  • the output voltage is equal to the voltage of the capacitor C1, the voltage of the capacitor C2, The sum of the three voltages of the secondary winding voltage.
  • the voltages of the capacitors C1 and C2 When the output voltage is higher than the voltage on the secondary winding of the transformer T1, the voltages of the capacitors C1 and C2 will not be positive and negative, the current generated by the forward excitation will be small, and the loss will be small.
  • the forward loop When the output is short-circuited Or when the output voltage is lower than the winding voltage, the forward loop will last longer, the current on the primary side of the refraction transformer T1 will be greater, and the loss will be greater.
  • the technical problem to be solved by the present invention is to propose a forward and flyback switching power supply circuit to solve the problem that the primary winding and the primary switching tube loss increase sharply when the output voltage is low or the output is short-circuited.
  • an inductor L2 is connected in series in the forward charging loop. According to the inductance's characteristic of suppressing the rapid change of the inductor current flowing through it, the magnitude of the current flowing through the forward loop at the moment of charging can be greatly reduced. Thereby reducing the current peak value refracted to the primary side, thereby reducing product loss, and will not have any effect on the stress of the primary side switching tube Q1, and even reducing the current stress and transient voltage stress of the primary side switching tube.
  • the present invention is realized through the following technical solutions:
  • a forward and flyback transformer applied to boost occasions where the output voltage is much higher than the input voltage, includes a primary circuit, a transformer T1, and a secondary circuit.
  • the secondary circuit includes diode D1, diode D2, diode D3, capacitor C1, and Capacitor C2, Capacitor C3; Terminal 1 and Terminal 3 of transformer T1 are mutually homonymous terminals;
  • the 4 ends of the transformer T1 are electrically connected to one end of the capacitor C2 and the anode of the diode D1
  • the other end of the capacitor C2 is electrically connected to the anode of the diode D2 and the other end of the capacitor C3
  • the cathode of the diode D2 is electrically connected to the 3 ends of the transformer T1 and the capacitor C1.
  • the cathode of the diode D1 is electrically connected to one end of the capacitor C1 and the anode of the diode D3, and the cathode of the diode D3 is electrically connected to one end of the capacitor C3;
  • the secondary circuit also includes an inductor L2 for reducing the transient charging current of the forward loop, one end of the inductor L2 is connected to the 3 ends of the transformer T1, and the other end of the inductor L2 is connected to the other end of the capacitor C1.
  • one end of the inductor L2 is connected to the cathode of the diode D1, and the other end of the inductor L2 is connected to one end of the capacitor C1.
  • one end of the inductor L2 is connected to the other end of the capacitor C2, and the other end of the inductor L2 is connected to the anode of the diode D2.
  • one end of the inductor L2 is connected to one end of the capacitor C2, and the other end of the inductor L2 is connected to the 4 ends of the transformer T1.
  • one end of the inductor L2 is connected to one end of the capacitor C1, and the other end of the inductor L2 is connected to the anode of the diode D3.
  • one end of the inductor L2 is connected to the cathode of the diode D3, and the other end of the inductor L2 is connected to one end of the capacitor C3.
  • Electrical connection It includes direct or indirect connection, and also includes connection methods such as inductive coupling.
  • the "4-terminal electrical connection of the transformer to one end of the capacitor C2" described in the present invention is a direct connection.
  • the inductor L2 When the inductor L2 is connected between the terminal and one end of the capacitor C2, it is an indirect connection.
  • the present invention has the following beneficial effects:
  • a new forward and flyback circuit topology which uses the characteristic of inductance to suppress the sudden change of current, solves the problem of large short-circuit power consumption caused by the original forward and flyback circuit, and improves the performance and reliability of the product;
  • the circuit is simple and flexible. It is feasible to connect the inductor in series to any point in the forward path. Without affecting the flyback loop, adding an inductor to any point in the loop can achieve the same The effect, at the same time, is low cost, simple and easy to realize, and easier to realize product promotion.
  • Figure 1 is an existing forward and flyback switching power supply circuit
  • FIG. 2 is a schematic diagram of the first embodiment of the forward and flyback switching power supply circuit of the present invention
  • FIG. 3 is a schematic diagram of a second embodiment of a forward and flyback switching power supply circuit of the present invention.
  • FIG. 4 is a schematic diagram of the third embodiment of the forward and flyback switching power supply circuit of the present invention.
  • FIG. 5 is a schematic diagram of a fourth embodiment of a forward and flyback switching power supply circuit of the present invention.
  • FIG. 6 is a schematic diagram of a fifth embodiment of a forward and flyback switching power supply circuit of the present invention.
  • FIG. 7 is a schematic diagram of a sixth embodiment of a forward and flyback switching power supply circuit of the present invention.
  • the forward and flyback switching power supply circuit of the present invention is applied to a high-voltage constant current converter, and the inductance L2 is mainly added to the forward loop to reduce the transient charging current of the forward loop.
  • the specific idea Connect an inductor L2 in series in the forward charging loop.
  • the inductance can suppress the sudden change of the current flowing through the inductor and greatly reduce the transient charging of the forward loop.
  • the current thereby reducing the peak current of the refracting transformer to the primary side during forward excitation, thereby reducing the loss, so that the short-circuit power consumption of the product is significantly reduced, reducing the current peak refracted to the primary side of the transformer, and reducing the current of the primary side switch tube. Stress, improve product reliability.
  • FIG. 2 shows a schematic diagram of the first embodiment of the forward and flyback switching power supply circuit of the present invention, including a primary side circuit, a transformer T1 and a secondary side circuit.
  • the primary side circuit includes a switching tube Q1, and the drain of the switching tube Q1 is connected to the transformer T1 The source of the switching tube Q1 is grounded;
  • the secondary side circuit includes a diode D1, a diode D2, a diode D3, a capacitor C1, a capacitor C2, a capacitor C3, and an inductance L2;
  • the 4 ends of the transformer T1 are connected to the anode of the diode D1 and one end of the capacitor C2, the other end of the capacitor C2 is connected to the anode of the diode D2 and the other end of the capacitor C3, and the cathode of the diode D2 is connected to the 3 end of the transformer T1 and one end of the inductor L2.
  • L2 is connected to the other end of capacitor C1
  • one end of capacitor C1 is connected to the cathode of diode D1 and the anode of diode D3
  • the cathode of diode D3 is connected to one end of capacitor C3.
  • the inductance can suppress the sudden change of the current flowing through the inductor, which greatly reduces the transient charging current of the forward loop, thereby reducing the current peak value of the refraction transformer to the primary side during forward excitation, and then Reduce the loss, and the short-circuit power consumption of the product is significantly reduced.
  • FIG 3 shows the principle diagram of the second embodiment of the forward and flyback switching power supply circuit of the present invention.
  • the difference from the first embodiment is that the series position of the inductor L2 in the second embodiment is changed to between the diode D1 and the capacitor C1.
  • One end of L2 is connected to the cathode of diode D1, and the other end of inductor L2 is connected to one end of capacitor C1.
  • FIG 4 shows the principle diagram of the third embodiment of the forward and flyback switching power supply circuit of the present invention.
  • the difference from the first embodiment is that the series position of the inductor L2 in the third embodiment is changed to between the diode D2 and the capacitor C2.
  • One end of L2 is connected to the other end of capacitor C2, and the other end of inductor L2 is connected to the anode of diode D2.
  • Figure 5 shows a schematic diagram of the fourth embodiment of the forward and flyback switching power supply circuit of the present invention.
  • the difference from the first embodiment is that the series position of the inductance L2 of the fourth embodiment is changed to between the 4 terminals of the transformer T1 and the capacitor C2. In between, one end of the inductor L2 is connected to one end of the capacitor C2, and the other end of the inductor L2 is connected to the 4 ends of the transformer T1.
  • FIG. 6 shows the principle diagram of the fifth embodiment of the forward and flyback switching power supply circuit of the present invention.
  • the difference from the first embodiment is that the series position of the inductor L2 in the fifth embodiment is changed to between the diode D3 and the capacitor C1.
  • One end of L2 is connected to one end of capacitor C1, and the other end of inductor L2 is connected to the anode of diode D3.
  • FIG. 7 shows the principle diagram of the sixth embodiment of the forward and flyback switching power supply circuit of the present invention.
  • the difference from the first embodiment is that the series position of the inductor L2 in the sixth embodiment is changed to between the diode D3 and the capacitor C3.
  • One end of L2 is connected to the cathode of diode D3, and the other end of inductor L2 is connected to one end of capacitor C3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种正反激式开关电源电路包括原边电路、变压器T1与副边电路,副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3,变压器T1的4端电联接电容C2的一端和二极管D1的阳极,电容C2的另一端电联接二极管D2的阳极和电容C3的另一端,二极管D2的阴极电联接变压器T1的3端和电容C1的另一端,二极管D1的阴极电联接电容C1的一端和二极管D3的阳极,二极管D3的阴极电联接电容C3的一端,其特征在于:副边电路还包括电感L2,电感L2的一端连接变压器T1的3端,电感L2的另一端连接电容C1的另一端。本发明中的电感作为一种瞬态电流抑制器件,在输出短路或者输出电压较低时,可有效降低变压器副边峰值电流和短路功耗,提高输出效率。

Description

一种正反激式开关电源电路 技术领域
本发明涉及开关电源领域,特别涉及一种正反激式开关电源电路。
背景技术
现在有很多领域会用到高压恒流充电变换器,一般采用反激的基本拓扑应用于输出高压小功率的领域,通过多绕组方式升高电压或者通过电容、二极管组成多级倍压整流以达到高输出电压的目的,但以上方法都存在一定的局限性:
采用多绕组整流然后再进行串联输出的方式,相当于多个反激输出串联,输出电压越高需要的绕组就越多,对于变压器体积的要求是一个挑战,另外变压器引脚间距也需要进一步增大,因此整个变压器的尺寸就会较大;
采用电容和二极管倍压的方式只适用于电流较小的应用,对于输出电流较大的场合就会受到限制。
本领域现有技术一种正反激电路的具体电路拓扑结构,如图1所示。
能量传输效率高,变压器的结构也很简单,只需要一个绕组就能输出很高的电压,且比普通的反激加倍压整流多了一个绕组的电压,使相同变压器条件下输出电压能够升到更高。
但是存在一个缺陷,当输出短路或者输出电压小于副边绕组电压时就会出现效率急剧下降、原边开关管的损耗急剧增加的情况,影响整机产品的性能以及可靠性。特别是对于恒流源输出的产品,在短路时不会出现打嗝保护的情况,短路被认为是输出电压等于整流二极管的正向压降,此时工作在正激状态的电路就会出现给电容C1和电容C2反向充电的情况,且瞬态充电电流极大,因为此时为正激状态,此充电电流会折射到变压器T1的原边,使得变压器T1原边绕组形成一个很大的峰值电流,导致磁芯以及原边开关管的损耗急剧增加。具体如下:
当原边开关管Q1导通时,变压器T1的2端为正,1端为负,这个时候属于正激通路,再给变压器T1原边激磁的同时向副边传递能量,因为变压器T1的1端和3端为同名端,副边能量传输的路径为变压器T1的3端流出电流经过电容C1、二极管D3、电容C3、电容C2回到变压器T1的4端构成一个正激回 路,给三个电容充电,输出电压开始建立。这个时候电容C1和电容C2都是下正上负的状态,且此时因为此充电回路阻抗极小,导致充电电流极大,此充电电流通过变压器T1折射到变压器原边,使得原边电流峰值极大,导致损耗急剧增加。在多个周期循环充电之后,电容C1和电容C2的电压就会呈现上正下负的状态,原边开关管Q1断开时反激回路通过二极管D1给电容C1充电,通过二极管D2给电容C2充电,通过二极管D1、二极管D3和二极管D2给电容C3充电。
当原边开关管Q1导通时,正激回路导通,原边能量会通过变压器T1给副边电容C1和电容C2反向充电,此时输出电压等于电容C1的电压、电容C2的电压、副边绕组电压三个电压的总和。当输出电压高于变压器T1副边绕组上的电压时,电容C1和电容C2的电压不会呈现出下正上负的状态,正激产生的电流就会较小,损耗较小,当输出短路或者输出电压低于绕组电压时,正激回路持续的时间就会较长,折射变压器T1原边的电流就会越大,损耗就会越大。
发明内容
有鉴如此,本发明要解决的技术问题是提出一种正反激式开关电源电路,解决输出电压较低或者输出短路时,原边绕阻及原边开关管损耗急剧增加的问题。
本发明的发明构思:
如图示2所示,在正激充电的回路中串联一个电感L2,根据电感会抑制流过电感电流的快速变化的特性,能够极大的降低充电瞬间流过正激回路的电流大小值,从而减小折射到原边的电流峰值大小,进而降低产品损耗,且对于原边开关管Q1的应力也不会有任何影响,甚至可以减小原边开关管电流应力与瞬态电压应力。本发明通过以下技术方案实现:
一种正反激式变压器,应用于输出电压远高于输入电压的升压场合,包括原边电路、变压器T1与副边电路,副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3;变压器T1的1端和3端互为同名端;
变压器T1的4端电联接电容C2的一端和二极管D1的阳极,电容C2的另一端电联接二极管D2的阳极和电容C3的另一端,二极管D2的阴极电联接变压 器T1的3端和电容C1的另一端,二极管D1的阴极电联接电容C1的一端和二极管D3的阳极,二极管D3的阴极电联接电容C3的一端;
其特征在于:副边电路还包括用于减小正激回路瞬态充电电流的电感L2,电感L2的一端连接变压器T1的3端,电感L2的另一端连接电容C1的另一端。
作为电感L2连接的第二种方式,电感L2的一端连接二极管D1的阴极,电感L2的另一端连接电容C1的一端。
作为电感L2连接的第三种方式,电感L2的一端连接电容C2的另一端,电感L2的另一端连接二极管D2的阳极。
作为电感L2连接的第四种方式,电感L2的一端连接电容C2的一端,电感L2的另一端连接变压器T1的4端。
作为电感L2连接的第五种方式,电感L2的一端连接电容C1的一端,电感L2的另一端连接二极管D3的阳极。
作为电感L2连接的第六种方式,电感L2的一端连接二极管D3的阴极,电感L2的另一端连接电容C3的一端。
术语解释:
电联接:包括直接或间接连接,并且还包括感应耦合之类的连接方式,比如,本发明中记载的“变压器的4端电联接电容C2的一端”,是直接连接,当所述变压器的4端和电容C2的一端之间再连接电感L2时,是属于间接连接。
与现有技术相比,本发明具有如下的有益效果:
1、提出了一种新的正反激电路拓扑,利用电感会抑制电流突变的特性,解决了原有正反激电路带来的短路功耗大的问题,提升了产品的性能以及可靠性;
2、电路简单,而且灵活多变,电感串联至正激通路中的任何一个点都可行,在不影响反激回路的情况下,在这个回路中的任何一个点加一个电感都可以达到同样的效果,同时成本低,简单易实现,更容易实现产品化推广。
附图说明
图1为现有的一种正反激式开关电源电路;
图2为本发明正反激式开关电源电路第一实施例的原理图;
图3为本发明正反激式开关电源电路第二实施例的原理图;
图4为本发明正反激式开关电源电路第三实施例的原理图;
图5为本发明正反激式开关电源电路第四实施例的原理图;
图6为本发明正反激式开关电源电路第五实施例的原理图;
图7为本发明正反激式开关电源电路第六实施例的原理图。
具体实施方式
为了使得本领域的技术人员更好地理解本发明,以下结合具体的实施电路对本发明进行进一步说明。
本发明正反激开关电源电路应用于高压恒流变换器,主要是在正激回路上增加了电感L2来减小正激回路瞬态充电电流。
具体的思路:在正激充电的回路中串联一个电感L2,当输出电压短路或者较低时,利用电感能够抑制流过电感的电流突变的特性,极大程度上减小正激回路瞬态充电电流,从而减小正激时折射变压器到原边的电流峰值,进而降低损耗,使得产品短路功耗显著减小,减小了折射到变压器原边的电流峰值,同样可以降低原边开关管电流应力,提高产品可靠性。
第一实施例
图2示出了本发明正反激开关电源电路第一实施例的原理图,包括原边电路、变压器T1与副边电路,原边电路包括开关管Q1,开关管Q1的漏极连接变压器T1的2端,开关管Q1的源极接地;副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3、电感L2;变压器T1的1端和3端互为同名端,变压器T1的4端连接二极管D1的阳极和电容C2的一端,电容C2的另一端连接二极管D2的阳极和电容C3的另一端,二极管D2的阴极连接变压器T1的3端和电感L2的一端,电感L2的另一端连接电容C1的另一端,电容C1的一端连接二极管D1的阴极和二极管D3的阳极,二极管D3的阴极连接电容C3的一端。
本实施例的工作原理如下:
在稳态工作的过程中,当原边开关管Q1关断时,变压器T1原边绕组电压反向,由于变压器同名端的关系,副边感应出4端为正,3端为负的电压,为电容C1、电容C2充电;当原边开关管Q1导通时,变压器T1原边绕组电压反向,由于变压器同名端的关系,副边绕组感应出3端为正,4端为负的电压,此时电容C1、电容C2及变压器T1副边绕组电压串联起来为电容C3充电,将 电容C3两端的电压抬升至高压,此充电过程中由于电压高、充电回路瞬态阻抗小,导致瞬态充电电流极大,由于此时变压器是正激状态,此副边充电电流会折射到变压器原边并且变得更大,从而导致变压器及原边开关管损耗极大,产品效率低,短路损耗大。
当串入电感L2后,利用电感能够抑制流过电感的电流突变的特性,极大程度上减小正激回路瞬态充电电流,从而减小正激时折射变压器到原边的电流峰值,进而降低损耗,产品短路功耗显著减小。
第二实施例
图3示出了本发明正反激开关电源电路第二实施例的原理图,与第一实施例的区别是:第二实施例的电感L2串联位置变更到二极管D1和电容C1之间,电感L2的一端连接二极管D1的阴极,电感L2的另一端连接电容C1的一端。
本实施例的工作原理与第一实施例相同,在此不做赘述。
第三实施例
图4示出了本发明正反激开关电源电路第三实施例的原理图,与第一实施例的区别是:第三实施例的电感L2串联位置变更到二极管D2和电容C2之间,电感L2的一端连接电容C2的另一端,电感L2的另一端连接二极管D2的阳极。
本实施例的工作原理与第一实施例相同,在此不做赘述。
第四实施例
图5示出了本发明正反激开关电源电路第四实施例的原理图,与第一实施例的区别是:第四实施例的电感L2串联位置变更到变压器T1的4端和电容C2之间,电感L2的一端连接电容C2的一端,电感L2的另一端连接变压器T1的4端。
本实施例的工作原理与第一实施例相同,在此不做赘述。
第五实施例
图6示出了本发明正反激开关电源电路第五实施例的原理图,与第一实施例的区别是:第五实施例的电感L2串联位置变更到二极管D3和电容C1之间,电感L2的一端连接电容C1的一端,电感L2的另一端连接二极管D3的阳极。
本实施例的工作原理与第一实施例相同,在此不做赘述。
第六实施例
图7示出了本发明正反激开关电源电路第六实施例的原理图,与第一实施例的区别是:第六实施例的电感L2串联位置变更到二极管D3和电容C3之间,电感L2的一端连接二极管D3的阴极,电感L2的另一端连接电容C3的一端。
本实施例的工作原理与第一实施例相同,在此不做赘述。
以上本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,例如,例如变压器T1同名端的修改,电感L2更改为其他可以实现形同功能的器件,比如电阻等等,对于实现这一功能的所有电路的更改,这些改进和润饰也应视为本发明的保护范围,本发明的保护范围应当以权利要求所限定的范围为准。

Claims (6)

  1. 一种正反激式开关电源电路,应用于输出电压远高于输入电压的升压场合,包括原边电路、变压器T1与副边电路,副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3,变压器T1的第1端和第3端互为同名端;
    变压器T1的第4端电联接电容C2的一端和二极管D1的阳极,电容C2的另一端电联接二极管D2的阳极和电容C3的另一端,二极管D2的阴极电联接变压器T1的第3端和电容C1的另一端,二极管D1的阴极电联接电容C1的一端和二极管D3的阳极,二极管D3的阴极电联接电容C3的一端;
    其特征在于:副边电路还包括用于减小正激回路瞬态充电电流的电感L2,电感L2的一端连接变压器T1的第3端,电感L2的另一端连接电容C1的另一端。
  2. 一种正反激式开关电源电路,应用于输出电压远高于输入电压的升压场合,包括原边电路、变压器T1与副边电路,副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3,变压器T1的第1端和第3端互为同名端;
    变压器T1的第4端电联接电容C2的一端和二极管D1的阳极,电容C2的另一端电联接二极管D2的阳极和电容C3的另一端,二极管D2的阴极电联接变压器T1的第3端和电容C1的另一端,二极管D1的阴极电联接电容C1的一端和二极管D3的阳极,二极管D3的阴极电联接电容C3的一端;
    其特征在于:副边电路还包括用于减小正激回路瞬态充电电流的电感L2,电感L2的一端连接二极管D1的阴极,电感L2的另一端连接电容C1的一端。
  3. 一种正反激式开关电源电路,应用于输出电压远高于输入电压的升压场合,包括原边电路、变压器T1与副边电路,副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3,变压器T1的第1端和第3端互为同名端;
    变压器T1的第4端电联接电容C2的一端和二极管D1的阳极,电容C2的另一端电联接二极管D2的阳极和电容C3的另一端,二极管D2的阴极电联接变压器T1的第3端和电容C1的另一端,二极管D1的阴极电联接电容C1的一端和二极管D3的阳极,二极管D3的阴极电联接电容C3的一端;
    其特征在于:副边电路还包括用于减小正激回路瞬态充电电流的电感L2,电感L2的一端连接电容C2的另一端,电感L2的另一端连接二极管D2的阳极。
  4. 一种正反激式开关电源电路,应用于输出电压远高于输入电压的升压场合,包括原边电路、变压器T1与副边电路,副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3,变压器T1的第1端和第3端互为同名端;
    变压器T1的第4端电联接电容C2的一端和二极管D1的阳极,电容C2的另一端电联接二极管D2的阳极和电容C3的另一端,二极管D2的阴极电联接变压器T1的第3端和电容C1的另一端,二极管D1的阴极电联接电容C1的一端和二极管D3的阳极,二极管D3的阴极电联接电容C3的一端;
    其特征在于:副边电路还包括用于减小正激回路瞬态充电电流的电感L2,电感L2的一端连接电容C2的一端,电感L2的另一端连接变压器T1的4端。
  5. 一种正反激式开关电源电路,应用于输出电压远高于输入电压的升压场合,包括原边电路、变压器T1与副边电路,副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3,变压器T1的第1端和第3端互为同名端;
    变压器T1的第4端电联接电容C2的一端和二极管D1的阳极,电容C2的另一端电联接二极管D2的阳极和电容C3的另一端,二极管D2的阴极电联接变压器T1的第3端和电容C1的另一端,二极管D1的阴极电联接电容C1的一端和二极管D3的阳极,二极管D3的阴极电联接电容C3的一端;
    其特征在于:副边电路还包括用于减小正激回路瞬态充电电流的电感L2,电感L2的一端连接电容C1的一端,电感L2的另一端连接二极管D3的阳极。
  6. 一种正反激式开关电源电路,应用于输出电压远高于输入电压的升压场合,包括原边电路、变压器T1与副边电路,副边电路包括二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3,变压器T1的第1端和第3端互为同名端;
    变压器T1的第4端电联接电容C2的一端和二极管D1的阳极,电容C2的另一端电联接二极管D2的阳极和电容C3的另一端,二极管D2的阴极电联接变压器T1的第3端和电容C1的另一端,二极管D1的阴极电联接电容C1的一端和二极管D3的阳极,二极管D3的阴极电联接电容C3的一端;
    其特征在于:副边电路还包括用于减小正激回路瞬态充电电流的电感L2,电感L2的一端连接二极管D3的阴极,电感L2的另一端连接电容C3的一端。
PCT/CN2020/126760 2019-11-15 2020-11-05 一种正反激式开关电源电路 WO2021093667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911120052.1 2019-11-15
CN201911120052.1A CN110995003B (zh) 2019-11-15 2019-11-15 一种正反激式开关电源电路

Publications (1)

Publication Number Publication Date
WO2021093667A1 true WO2021093667A1 (zh) 2021-05-20

Family

ID=70084444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126760 WO2021093667A1 (zh) 2019-11-15 2020-11-05 一种正反激式开关电源电路

Country Status (2)

Country Link
CN (1) CN110995003B (zh)
WO (1) WO2021093667A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949274A (zh) * 2021-09-26 2022-01-18 杭州云视物联科技有限公司 多输入端口的dc-dc变换电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995003B (zh) * 2019-11-15 2021-03-05 广州金升阳科技有限公司 一种正反激式开关电源电路
CN112491280B (zh) * 2020-11-26 2022-04-15 广州金升阳科技有限公司 一种正反激变换器的输出倍压电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153296A1 (en) * 2012-12-05 2014-06-05 Hep Tech Co., Ltd. Isolated power conversion apparatus and method of converting power
CN110365212A (zh) * 2018-04-09 2019-10-22 弗莱克斯有限公司 具钳位电压整流器的隔离fai 2转换器及同步整流解决方案
CN110995003A (zh) * 2019-11-15 2020-04-10 广州金升阳科技有限公司 一种正反激式开关电源电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046294A1 (ja) * 2003-11-06 2005-05-19 Sumida Corporation 高圧放電灯点灯装置
US9559590B2 (en) * 2008-03-06 2017-01-31 Infineon Technologies Austria Ag Methods and apparatus for a power supply
EP2693619A2 (en) * 2012-08-03 2014-02-05 Samsung Electro-Mechanics Co., Ltd Single stage forward-flyback converter and power supply apparatus
CN106100309B (zh) * 2016-08-16 2018-11-20 昆山硕通电子有限公司 一种多模式软开关无损吸收装置
CN205901584U (zh) * 2016-08-16 2017-01-18 昆山硕通电子有限公司 一种多模式软开关无损吸收装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153296A1 (en) * 2012-12-05 2014-06-05 Hep Tech Co., Ltd. Isolated power conversion apparatus and method of converting power
CN110365212A (zh) * 2018-04-09 2019-10-22 弗莱克斯有限公司 具钳位电压整流器的隔离fai 2转换器及同步整流解决方案
CN110995003A (zh) * 2019-11-15 2020-04-10 广州金升阳科技有限公司 一种正反激式开关电源电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOON CHOI; MOON-HWAN KEUM; SANG-KYOO HAN; JEONG-IL KANG: "High efficiency and high power factor single-stage balanced forward-flyback converter", IECON 2013 - 39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, IEEE, 10 November 2013 (2013-11-10), pages 822 - 827, XP032538547, ISSN: 1553-572X, DOI: 10.1109/IECON.2013.6699240 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949274A (zh) * 2021-09-26 2022-01-18 杭州云视物联科技有限公司 多输入端口的dc-dc变换电路
CN113949274B (zh) * 2021-09-26 2023-10-03 杭州云视物联科技有限公司 多输入端口的dc-dc变换电路

Also Published As

Publication number Publication date
CN110995003B (zh) 2021-03-05
CN110995003A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021093667A1 (zh) 一种正反激式开关电源电路
CN106059313B (zh) 有源钳位的反激电路及其控制方法
CN201422076Y (zh) 一种升压电路
CN113394975B (zh) 一种高电压增益dc-dc直流变换器
CN110212764B (zh) 一种适用于数据中心电压调节模块的非隔离直流斩波电路
CN202424526U (zh) 高压输入电源系统
CN201966806U (zh) 一种单开关管直流升压变换器
CN210724563U (zh) 一种tγ新型升压dc-dc直流变换器拓扑
CN103887987A (zh) 一种基于开关电容的多重倍压高增益高频整流隔离变换器
CN103904923A (zh) 基于混合整流桥臂和开关电容的高增益高频升压整流隔离变换器
WO2021088925A1 (zh) 一种正反激式开关电源电路
CN108347174B (zh) 一种Boost全桥隔离型变换器及其复合有源箝位电路
CN104135157A (zh) 一种高压电源功率变换电路
TWI530074B (zh) 具功因修正之轉換器電路
CN204271918U (zh) 一种llc电路
TWI554014B (zh) 高升壓比直流電源轉換器
CN105978322A (zh) 一种开关电容型高增益准z源dc-dc变换器
CN114301282B (zh) 一种基于耦合电感的高增益dc-dc变换器
US20100202158A1 (en) Electric power conversion circuit having transfer gain variable by pulse-width modulation
CN106571743B (zh) 一种双管正激开关电源电路
CN217087767U (zh) 一种超高增益dc/dc升压变换器
TWI752579B (zh) 交錯型高電壓轉換比直流轉換器
CN211744351U (zh) 一种交错式boost开环全桥电源拓扑结构
WO2022110441A1 (zh) 一种正反激变换器的输出倍压电路
CN107395020B (zh) 一种双管正激型z源直流电压变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20888051

Country of ref document: EP

Kind code of ref document: A1