WO2015099415A1 - 나노금속-판상흑연 복합체 및 이의 제조방법 - Google Patents
나노금속-판상흑연 복합체 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2015099415A1 WO2015099415A1 PCT/KR2014/012731 KR2014012731W WO2015099415A1 WO 2015099415 A1 WO2015099415 A1 WO 2015099415A1 KR 2014012731 W KR2014012731 W KR 2014012731W WO 2015099415 A1 WO2015099415 A1 WO 2015099415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphite
- nanometal
- plate
- plate graphite
- polydopamine
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0551—Flake form nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/056—Submicron particles having a size above 100 nm up to 300 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/18—Non-metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/40—Carbon, graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/45—Others, including non-metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the present invention relates to a nanometal-plate graphite composite including a nanometal-plate graphite and a polydopamine coating layer in which carbon nano-materials, for example, nanometal particles crystallized on the surface of plate graphite are bonded at a high density. More specifically, the present invention relates to a nanometal-plate graphite composite and a method for producing the same, in which polydopamine is bound to nanometal-plate graphite, and the properties such as adhesion between the plate graphite surfaces and adhesion with other media and dispersibility are remarkably improved.
- polydopamine which mimics the adhesive protein of mussels, has attracted attention in various technical fields. As it is a material similar to mussels, it has excellent biocompatibility, can be coated on almost all surfaces, and because the coating surface is active, new materials can be introduced on polydopamine coatings, and poly When dopamine is introduced, these polymers are also applied to various technologies because of their adhesion and coating ability.
- the present inventors confirmed that the nanometal-plate graphite having a structure in which the nanoparticles are crystallized at a high density, unlike the conventional plate graphite, has excellent coating property with polydopamine and completed the present invention.
- Another object of the present invention is to provide a method for producing the nanometal-plate graphite composite.
- the present invention provides a nanometal-plate graphite composite, wherein a polydopamine coating layer is formed by coating a polydopamine on a nanometal-plate graphite having a high density of crystallized nanometal particles on the surface of the plate graphite.
- the polydopamine is preferably coated on the nanometal-plate graphite by deposition on the crystallized nanometal particles.
- the thickness of the polydopamine coating layer is preferably 5 ⁇ 100nm.
- the nanometal-plate graphite composite having a polydopamine coating layer may further include a polymer resin bonded to the polydopamine coating layer, and the polymer resin may be epoxy, polyethylene, polypropylene, polystyrene, acrylic, or polyvinyl chloride. It may be at least one resin selected from the group consisting of a combination of a resin and a nylon resin.
- the present invention provides a method for producing the nanometal-plate graphite composite:
- step (a) the pH of the weakly basic dopamine aqueous solution is 8 to 14, the dopamine concentration in the aqueous dopamine solution may be 0.1 to 5mg / mL, in step (b), 0.5 to 24 hours or less Dipping is preferred.
- a polymer resin may be further added to bind to the polydopamine coating layer, wherein the polymer resin and the polydopamine coating layer are bonded by a polymerization reaction.
- the present invention relates to a nanometal-plate graphite composite including a nanometal-plate graphite and a polydopamine coating layer in which nanometal particles crystallized on the surface of plate graphite are bonded at a high density.
- dopamine which exhibits excellent adhesion and coating properties, it can be very usefully used for electronic device components, energy storage media, organic solar cells, and biomimetic applications.
- 1 is a schematic diagram showing the structural change according to the oxidation reaction of dopamine and the polydopamine formation step accordingly.
- Figure 2 is a schematic diagram showing a process of forming a polydopamine coating layer on the nano-metal-graphite graphite of the present invention.
- FIG. 3 shows FE-SEM measurement results of nanosilicon (Si) -plate graphite prepared by Example 1-1.
- Figure 5 is a graph showing the results of measuring the nanosilicon-plate graphite composites having different dipping times using spectroscopy.
- Figure 6 shows the result of measuring the nanosilicon-plate graphite composite prepared in Example 2-2 by FE-SEM.
- Example 7 and 8 show the results of analyzing the nanosilicon-plate graphite composite prepared in Example 2-2 using XPS equipment and FT-IR equipment, respectively.
- 9A, 9B, and 9C illustrate a conventional conventional plate graphite, nano silicon-plate graphite prepared by Example 1-1, and nano silicon-plate graphite composite prepared by Example 2-2, respectively.
- To acetone To acetone).
- Figure 10 shows the result of measuring the composite further comprising an epoxy-based polymer resin combined with a polydopamine coating layer by FE-SEM.
- FIG. 11 illustrates an enlarged result of the composite of FIG. 10.
- the nanometal-plate graphite on which the crystallized nanometal particles are formed on the surface of the plate graphite the polydopamine is coated on the nanometal-plate graphite to form a polydopamine coating layer. It is about a complex.
- the polydopamine is preferably coated on the nanometal-plate graphite by deposition on the crystallized nanometal particles, the thickness of the polydopamine coating layer is preferably 5 ⁇ 100nm.
- the nanometal-plate graphite composite in which the polydopamine coating layer is formed may further include a polymer resin bonded to the polydopamine coating layer, and the polymer resin may be epoxy, polyethylene, polypropylene, polystyrene, acrylic, or polychloride. It may be at least one resin selected from the group consisting of a combination of vinyl and nylon resin.
- the present invention provides a method for producing the nanometal-plate graphite composite in another embodiment:
- step (a) the pH of the weakly basic dopamine aqueous solution is 8 to 14, the dopamine concentration in the aqueous dopamine solution may be 0.1 to 5mg / mL, in step (b), 0.5 to 24 hours or less Dipping is preferred.
- nano functional materials are inserted into the human body and directly in contact with tissues, they must have biological, chemical affinity, and mechanical affinity with the human body, which depends mainly on the surface properties of the material. Therefore, the surface modification and coating technology of the biocompatible functional nanomaterial is important for the biotechnology application of nanomaterials.
- Polydopamine is an adhesive polymer that mimics the adhesion mechanism of mussel adhesive proteins.
- Polydopamine is a 3,4-dihydroxy-L-phenylalanine commonly found in Mefp-5, a protein commonly associated with mussel adhesion.
- Dopamine one of the neurotransmitters derived from the structure of (DOPA) and lysine, is produced by spontaneous polymerization reaction under basic and oxidizing conditions. As a material that is in the limelight.
- pure plate graphite has low binding strength with polydopamine, making it difficult to coat polydopamine, and even in the case of modifying the surface of plate graphite with oxidized functional groups, there is a limit in improving the binding strength. New ways to increase dramatically are required.
- the present invention relates to a nanometal-plate graphite composite comprising a nanometal-plate graphite and a polydopamine coating layer in which the nanometal particles crystallized on the surface of the plate graphite are bonded at a high density.
- Nano metal-plate graphite is a nano-metal-graphite fusion in which nano metal particles are homogeneously dense crystallized on the surface of plate graphite, which is a carbon-based material, and in particular, a large amount of 20 to 50 wt% of nano metal particles is contained. Consists of
- Graphite is a mineral formed by layering planar macromolecules in which six-membered rings of carbon atoms are infinitely connected in a plane, and composed of a basic element called graphene.
- Graphene is a single-layered atomic planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice. The carbon-carbon bond length in graphene is approximately 0.142 nm, and graphite, carbon nanotubes, carbon fibers, and fullerenes are Some of the carbon allotrope they contain is a basic structural element.
- Graphite may be either graphite or spheroidal graphite in which expanded graphite or impression graphite is inflated.
- Plate graphite refers to thin plate-like graphite, generally a single layer of atomic planar sheets of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice, with carbon-carbon bond lengths of approximately 0.142 nm Plate graphite is a basic structural element of some carbon allotrope, including graphite, carbon nanotubes and fullerenes.
- the plate graphite of the present invention includes such a single layer carbon sheet and a layered structure laminated therewith, and further includes a material present as part of a material which may include a graphite layer, a carbon layer, and a carbon sheet. That is, the term “plate graphite” is used as an abbreviation to mean plate graphite, plate graphite derivatives, functionalized plate graphite or combinations thereof.
- the plate graphite which can be used in the present invention can be obtained through various methods known in the art.
- a thermosetting resin such as polyimide may be formed into a film having a thickness of 25 ⁇ m or less, and graphitized at a high temperature of 2500 ° C. or higher to prepare plate-graphite graphite in a single crystal state, or by thermal decomposition of a hydrocarbon such as methane at high temperature, a chemical vapor deposition method (CVD) has a method of obtaining a highly aligned graphite.
- CVD chemical vapor deposition method
- the nanometal particles used in the nanometal-plate graphite composite may be a metal material present as a solid at room temperature, for example, alkali metals, alkaline earth metals, lanthanides, actinides, transition metals, Post-transition metals, metalloids and the like.
- Preferred metal materials are alkali metals, alkaline earth metals, lanthanum groups, actanium groups or transition metals.
- the nanometal particles may be selected from Ni, Si, Ti, Cr, Mn, Fe, Co, Cu, Sn, In, Pt, Au, Mg, combinations thereof, and the like, and may be Cu, Ni, or Si. More preferred.
- Korean Patent 10-1330227 For the preparation of the nanomaterial (nanoparticle) -plate graphite fusion, reference may be made to Korean Patent 10-1330227.
- the nanometal particles are contained in an amount of 10 to 50, preferably 20 to 50 wt%, 30 to 40%, It is characterized by crystallization "high density" with a surface area coverage of 30-50%, 30-60%, or 30-70%.
- the crystallized nano metal particles not only have a density about 100 times higher than that of the conventional nanometal-plate graphite fusion on the plate graphite surface, and preferably form a bond such as a chemical bond.
- the nanometal-plate graphite of the present invention has a feature that the crystals formed by the nanometal particles on the plate graphite surface have a large size.
- Crystals formed by nanometal particles have an average particle diameter of 10 to 200 nm, 20 to 200 nm, 30 to 200 nm, 40 to 200 nm, 50 to 200 nm, 60 to 200 nm, 70 to 200 nm, 80 to 200 nm, 90 to 90 nm. 200 nm, or 100-200 nm. Due to the nano-metal crystals, the contact properties may be reduced, thereby lowering the contact resistance, thereby improving thermal or electrical characteristics.
- the nanometal-plate graphite composite of the present invention uses catecholamine, most preferably using dopamine to obtain a surface modified composite.
- Catecholamine refers to a single molecule that has a hydroxyl group (-OH) as the ortho-group of the benzene ring and a variety of alkylamines as the para-group. Derivatives include dopamine, dopamine-quinone, alpha-methyldopamine, alpha-methyldopa, and the like. Most preferably dopamine is used.
- Dopamine is one of the neurotransmitters secreted at the nerve endings, so that about half of the neurohormones produced in the human brain are related to dopamine, an important chemical group that shows adhesion in mussel adhesive proteins.
- 1 is a schematic diagram showing the structural change according to the oxidation reaction of dopamine as an example of the present invention and the polydopamine formation step accordingly.
- Dopamine is a monomolecular substance having a molecular weight of 153 (Da) having a catechol and amine functional group. It is known that the polydopamine (pDA) coating layer is formed on the surface of the material by the oxidation of kohl.
- polydopamine coatings are bio-inspired surface modifications that incorporate mussel adhesion mechanisms identified from previous studies and selectively mimics only important chemical functional groups from them. Just as it has the adhesion at, it shows excellent surface adhesion on all the various surfaces regardless of the chemical properties of the surface under the conditions of aqueous solution.
- Formula 1 is a basic structure of a polydopamine polymer derived from mussels according to the present invention.
- R 1 , R 2 , R 3 , R 4, and R 5 may be a thiol, a primary amine, a second amine, a nitrile, or an aldehyde, respectively.
- dopamine is self-polymerized on the nanometal-plate graphite to form a coating layer made of polydopamine as shown in Chemical Formula 1.
- Figure 2 is a schematic diagram showing the process of forming a polydopamine coating layer on the nano-metal-graphite graphite of the present invention, the surface of the pure graphite is difficult to form a coating layer, the nano-metal-graphite graphite of the present invention is crystallized on the surface Since nanometal particles are bonded at a high density, polydopamine is bonded to the “crystallized nanometal particles” to form a coating layer, thereby producing a nanometal-plate graphite composite.
- the polydopamine coating layer has a thickness of 3 to 5 to 100 nm, 5 to 100 nm, 5 to 90 nm, 5 to 80 nm, 5 to 70 nm, 5 to 60 nm, or preferably 5 to 50 nm. Can be.
- the nanometal-plate graphite composite of the present invention secures excellent coating properties and dispersibility, and can be adhered to various materials or exhibit excellent dispersibility in a medium.
- the nanometal particles which are crystallized are bonded on the plate graphite surface to solve the above problems.
- the polydopamine coating itself has a reducing power, and at the same time, the amine functional group forms a covalent bond by Michael addition reaction to the catechol functional group on the surface, thereby enabling secondary surface modification using the polydopamine coating layer as an adhesive.
- the research on immobilizing and applying various biomaterials such as proteins, biopolymers, and polysaccharides on the surface has been receiving much attention.
- the composite of the present invention can be used as a reinforcing material of the polymer
- the conventional pure plate graphite has a very stable chemical structure itself by van der Waals forces between the plate graphite, so that uniform dispersion in the polymer resin and organic solvent It was difficult.
- the composite of the present invention may form a uniform dispersed phase as it includes a polydopamine coating layer that is easily bonded with the polymer resin.
- the polydopamine coating layer serves as a medium for bonding the polymer resin and the nanometal-plate graphite, and for this reason, the composite may further include a polymer resin bonded to the polydopamine coating layer.
- the polymer resin is not particularly limited in its kind, but may be selected from the group consisting of a thermosetting resin and a thermoplastic resin, and the thermosetting resin is not particularly limited in its kind, but may be epoxy, urethane, melamine or polyimide. And the like, and mixtures thereof.
- the thermoplastic resin is also not particularly limited in its kind, but may be polycarbonate, polystyrene, polysulfone, polyvinyl chloride, polyether, polyacrylate, Polyester-based, polyamide-based, cellulose-based, polyolefin-based, polypropylene-based resins, and the like, and mixtures thereof.
- the polymer resin and the polydopamine coating layer are bonded by a polymerization reaction.
- the nanometal-plate graphite composite of the present invention having such a configuration has the following advantages.
- the nanometal-plate graphite composite of the present invention may be prepared through a liquid preparation method such as a conventional dip coating using the self-polymerization of dopamine.
- the present invention relates to a method for producing a nanometal-plate graphite composite comprising a polydopamine coating layer in another aspect.
- One embodiment of the method of the present invention may provide a method for producing a nanometal-plate graphite composite, comprising the following steps.
- the method for preparing the weakly basic dopamine aqueous solution is not particularly limited, but pH 8-14 tris buffer solution (10 mM), more preferably pH 8.5, which is the same basic condition as the environment in the sea. It can be prepared by dissolving dopamine in basic Tris buffer solution, wherein the dopamine concentration of the weakly basic dopamine aqueous solution is characterized in that 0.1 ⁇ 5 mg / mL, preferably 2 mg / mL.
- the method of manufacturing the nano-metal-plate graphite flakes can be referred to Korean Patent Application No. 10-2012-69905.
- the nano metal to be used is a metal material present as a solid at room temperature, and may be selected from any of alkali metals, alkaline earth metals, lanthanides, actinides, transition metals, post transition metals, and metalloids on the periodic table of the elements.
- Ni, Si, Ti, Cr, Mn, Fe, Co, Cu, Sn, In, Pt, Au, Mg, combinations thereof, and the like are used.
- the nano metal is mixed with plate graphite to prepare a mixed powder.
- the mixing ratio of the nano metal material and the plate graphite can be arbitrarily set according to the purpose of use, but in the present invention, since the nano material is present at a high density on the surface of the plate graphite, preferably 20 to 50 wt% with respect to the total weight.
- high-frequency thermal plasma is used to vaporize the nanomaterials contained in the mixed powder.
- a quenching gas is used. That is, it is condensed or quenched by the quenching gas to nanocrystallize while suppressing growth of the nanoparticles.
- the surface area of 20 to 50 wt% of the total graphite graphite, the average particle diameter of 10 to 200 nm crystallization, 30 to 70% of the nanometal-plate graphite fusion The nanometal-plate graphite of the present invention can be obtained.
- step (b) dipping nanometal-plate graphite in the weakly basic dopamine aqueous solution, and in step (c), a polydopamine coating layer is formed on the surface of the nanometal-plate graphite.
- a dip coating method which is one of liquid coating methods.
- the dip coating method is a kind of coating method, and generally means a method of immersing a coating material in a coating solution to form a precursor layer on the surface of the coating material and baking the coating at an appropriate temperature.
- the dipping time determines the thickness of the coating layer.
- the coating layer is formed to a thickness of 5 to 100 nm. In order to do this, it is preferable to immerse the nanometal-plate graphite for about 0.5 to 24 hours.
- the dopamine coating layer is not formed on the surface.
- the nanometal-plate graphite of the present invention has crystallized nano metal particles on the surface thereof, so that polydopamine is combined with the nano metal particles to form polydopamine.
- the coating layer is formed.
- the nanometal-plate graphite composite prepared by this method includes a polydopamine coating layer having excellent adhesion, it may be further combined with various materials such as polymer, biopolymer, and protein. This is because the polydopamine coating layer formed on the surface of the nanometal plate-like graphite still has a catechol functional group having excellent chemical bonding properties as it is, so that secondary surface modification using the same is possible.
- a composite further comprising a polymer resin can also be prepared.
- the kind of specific polymer resin is as above-mentioned.
- Plate graphite and silicon (Si) powder was mixed for 10 minutes using a mixer to prepare a raw powder, and nanosilicon-plate graphite was prepared by a method similar to that disclosed in Korean Patent Application No. 10-2012-69905.
- FIG. 3 shows FE-SEM measurement results of nanosilicon (Si) -plate graphite prepared by Example 1-1. As a result of FE-SEM image measurement, it was observed that the silicon (Si) nanoparticles crystallized well on the surface of plate graphite are fused at high density.
- nanosilicon-plate graphite prepared in Example 1-1 By dipping the nanosilicon-plate graphite prepared in Example 1-1 into the weakly basic dopamine aqueous solution, spontaneous polymerization reaction and vapor deposition with high-density crystallized nanosilicon on the plate graphite were performed. A polydopamine coating layer was formed on graphite to form a nanosilicon-plate graphite composite.
- the weight reduction rate (%) is a graph measuring the weight reduction rate (%) by increasing the temperature of the nanosilicon-plate graphite composites having different dipping times. Specifically, the nanosilicon-plate graphite flakes, which were not dipped in the dopamine aqueous solution, were dipped for 3, 6, 12, and 24 hours, respectively, to raise the temperature of the nanosilicon-plate graphite composite on which the polydopamine coating layer was formed to about 800 degrees. The weight loss was measured.
- the non-dipping nanosilicon-plate graphite has almost no weight loss
- the nanosilicon-plate graphite composite in which the polydopamine coating layer was formed by dipping increased the weight loss ratio as the dipping time increased. This is because as the time increases, the content of the coated polydopamine and the thickness of the polydopamine coating layer are increased to decompose a larger amount of polydopamine, which is weak to a high temperature environment as the temperature increases.
- Figure 5 is a graph showing the results of measuring the nanosilicon-plate graphite composites having different dipping times using spectroscopy. As shown, greater intensity was measured with increasing dipping time, which is consistent with the results of FIG. 2.
- Figure 6 shows the result of measuring the nanosilicon-plate graphite composite prepared in Example 2-2 by FE-SEM. As a result of FE-SEM image measurement, it was confirmed that the polydopamine was deposited on the crystallized nanometal particles, not the surface of the nanosilicon-plate graphite.
- the conventional plate graphite without surface modification is not easy to form a coating layer on the surface due to the poor binding force with polydopamine, but the plate graphite of the present invention is because the surface is modified with crystallized nanometal particles It is possible to form a polydopamine coating layer.
- Example 7 and 8 show the results of analyzing the nanosilicon-plate graphite composite prepared in Example 2-2 using XPS equipment and FT-IR equipment, respectively.
- the Si peak was observed because the nanosilicon particles were bonded at high density on the surface of the plate graphite, and the C, N, O element peaks corresponding to the elemental composition of the surface coating material polydopamine were very high. It was confirmed that the appearance was large, from this it was confirmed that the polydopamine coating layer was sufficiently coated with a thickness of 10 nm or more of the XPS equipment measurement range by the composite manufacturing method according to the invention.
- FIG. 9A, 9B and 9C show conventional conventional plate-like graphite (FIG. 9A), nanosilicon-plate graphite (FIG. 9B) prepared by Example 1-1, and nanosilicon prepared by Example 2-2, respectively.
- distributing the plate-graphite composite (FIG. 9C) in the organic solvent (acetone) is shown.
- the composite according to the present invention comprises a polydopamine coating layer very excellent adhesion and dispersibility It was confirmed that a uniform dispersed phase was formed (FIG. 9C).
- An epoxy-based polymer resin was added to the nanosilicon-plate graphite composite prepared in Example 2-2 to bind the polydopamine coating layer of the composite.
- FIG. 10 illustrates a result of measuring a composite including an epoxy-based polymer resin combined with a polydopamine coating layer by FE-SEM
- FIG. 11 illustrates an enlarged view of the composite of FIG. 10.
- the present invention relates to a nanometal-plate graphite composite including a nanometal-plate graphite and a polydopamine coating layer in which nanometal particles crystallized on the surface of plate graphite are bonded at a high density.
- dopamine which exhibits excellent adhesion and coating properties, it can be very usefully used for electronic device components, energy storage media, organic solar cells, and biomimetic applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 나노금속-판상흑연 복합체 및 이의 제조방법에 관한 것으로, 보다 상세하게는 판상흑연의 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있는 나노금속-판상흑연에 폴리도파민이 코팅되어 폴리도파민 코팅층이 형성되며, 판상흑연 면간의 결합성 및 타 매질과의 접착성, 분산성 등의 특성이 현저히 향상되는 폴리도파민 코팅층이 형성된 나노금속-판상흑연 복합체 및 이의 제조방법에 관한 것이다.
Description
본 발명은 탄소계 물질, 예를 들어 판상흑연의 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있는 나노금속-판상흑연 및 폴리도파민 코팅층을 포함하는 나노금속-판상흑연 복합체에 관한 것으로, 보다 구체적으로는 나노금속-판상흑연에 폴리도파민을 결합시켜 판상흑연 면간의 결합성 및 타 매질과의 접착성, 분산성 등의 특성이 현저히 향상된 나노금속-판상흑연 복합체 및 이의 제조방법에 관한 것이다.
최근, 홍합의 접착 단백질을 모사한 '폴리도파민'이 다양한 기술분야에서 주목을 받고 있다. 홍합에서 모사한 물질인 만큼 생체적합성이 매우 우수하고, 거의 모든 표면에 코팅될 수 있으며, 코팅 표면이 활성을 띄기 때문에 폴리도파민 코팅 위에 새로운 물질을 도입할 수 있고, 다양한 합성고분자/천연고분자에 폴리도파민을 도입하는 경우 이러한 고분자 또한 접착 및 코팅 능력을 가지기 때문에 다양한 기술에 응용되고 있다.
구체적으로, 폴리에틸렌, 실리콘 고무, PDMS 등 세포 부착이 불가능한 표면에 폴리도파민 코팅을 도입함으로써 세포배양이 가능해진다는 연구가 보고되었고(S.H.Ku et al, Biomaterials 2010, 31, 2535), 의료용 고분자로 활발히 연구되고 있는 천연고분자인 키토산에 폴리도파민을 도입하여 접착성 키토산 하이드로젤을 형성하고 이를 이용한 지혈제가 개발되었으며(J. H. Ryu et al., Biomacromolecules 2011, 12, 2653), 이 외에도 대표적 의료용 고분자인 히알루론산, 폴리에틸렌글리콜(PEG) 등에도 폴리도파민을 도입하여 접착성 고분자를 개발함으로써 생체 적합성 표면 개질, 하이드로젤 형성 등 의료/바이오 분야에 다양하게 응용되고 있다.
최근에는 폴리도파민을 이용한 에너지 분야의 응용연구가 주목받고 있는데, 리튬이온전지의 바인더로 사용되는 알긴산, 폴리아크릴산 등의 고분자에 폴리도파민을 도입함으로써 접착성을 부여하여 바인더와 전극 사이의 접착을 향상시켜 전지의 용량 및 수명을 상당히 증진시킨 연구도 보고되고 있다.
하지만, 이러한 우수한 코팅성을 가진 폴리도파민도 순수한 판상흑연과의 결합은 용이하지 않다. 순수한 판상흑연은 판상흑연 간의 반데르발스힘(vander Walls force)에 의해 그 자체가 매우 안정된 화학적 구조를 가지며, 판상흑연의 면에서는 결합부분이 존재하지 않고, 판상흑연의 가장자리나 결함부분에만 결합부분이 존재한다. 따라서 일반적으로 순수한 판상흑연에 폴리도파민 코팅을 시도하면 판상흑연의 가장자리와 결함부분의 일부에만 코팅이 되는 것이 보통이다. 이를 해결하기 위해 판상흑연의 표면을 개질하거나 코팅 조건을 조절하는 등의 연구가 계속되고 있다.
이에, 본 발명자들은 종래의 판상흑연과 달리, 나노입자가 고밀도로 결정화되어 있는 구조의 나노금속-판상흑연이 폴리도파민과의 코팅성이 매우 우수함을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 판상흑연의 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있는 구조의 나노금속-판상흑연 및 폴리도파민 코팅층을 포함하는 나노금속-판상흑연 복합체를 제공하는 데 있다.
본 발명의 다른 목적은 상기 나노금속-판상흑연 복합체의 제조방법을 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은
판상흑연의 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있는 나노금속-판상흑연에 폴리도파민이 코팅되어 폴리도파민 코팅층이 형성된 것을 특징으로 하는 나노금속-판상흑연 복합체를 제공하며, 이 때, 상기 폴리도파민은 결정화된 나노금속 입자에 증착(deposition)됨으로써 나노금속-판상흑연에 코팅되는 것이 바람직하다.
이 때, 상기 폴리도파민 코팅층의 두께는 5~100nm 인 것이 바람직하다.
폴리도파민 코팅층이 형성된 나노금속-판상흑연 복합체는 상기 폴리도파민 코팅층과 결합되는 고분자 수지를 더 포함할 수 있으며, 상기 고분자 수지는 에폭시계, 폴리에틸렌계, 폴리프로필렌계, 폴리스티렌계, 아크릴계, 폴리염화비닐계 및 나일론계 수지의 조합으로 구성된 군에서 선택되는 하나 이상의 수지일 수 있다.
한편, 다른 목적을 달성하기 위해, 본 발명은 상기 나노금속-판상흑연 복합체를 제조하는 방법을 제공한다:
(a) 약염기성 도파민 수용액을 제조하는 단계;
(b) 상기 도파민 수용액에 나노금속 판상흑연을 디핑(dipping)하는 단계; 및
(c) 상기 나노금속-판상흑연의 표면에 폴리도파민 코팅층을 형성하는 단계.
이 때, 상기 사용된 각각의 구성에 대한 설명은 앞서 기술한 바와 같다.
특히, 상기 (a)단계에서, 상기 약염기성 도파민 수용액의 pH는 8 ~ 14이고, 상기 도파민 수용액에서 도파민 농도는 0.1 ~ 5mg/mL 일 수 있으며, (b)단계에서, 0.5 ~ 24시간 이하로 디핑하는 것이 바람직하다.
또한, 본 발명의 방법에서, 추가로 고분자 수지를 첨가하여 상기 폴리도파민 코팅층과 결합시킬 수 있고, 이 때 상기 고분자 수지와 폴리도파민 코팅층은 중합 반응에 의해 결합되는 것이다.
이와 같이, 본 발명은 판상흑연의 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있는 나노금속-판상흑연 및 폴리도파민 코팅층을 포함하는 나노금속-판상흑연 복합체에 관한 것으로, 거의 모든 표면과의 우수한 접착성 및 코팅성을 나타내는 도파민의 성질을 이용하여 전자기기 부품, 에너지 저장 매체, 유기태양전지 및 생체모방 응용소자 등에 매우 유용하게 사용할 수 있다.
도 1은 도파민의 산화반응에 따른 구조적 변화 및 이에 따른 폴리도파민의 형성단계를 나타낸 모식도이다.
도 2는 본 발명의 나노금속-판상흑연 상에 폴리도파민 코팅층이 형성되는 과정을 나타낸 모식도이다.
도 3은 상기 실시예 1-1에 의해 제조된 나노규소(Si)-판상흑연의 FE-SEM 측정 결과를 도시한 것이다.
도 4는 디핑 시간이 다른 나노규소-판상흑연 복합체의 온도를 상승시켜 중량 감소율(%)를 측정한 그래프이다.
도 5는 디핑 시간이 다른 나노규소-판상흑연 복합체를 분광법을 이용하여 측정한 결과를 나타낸 그래프이다.
도 6은 실시예 2-2에 의해 제조된 나노규소-판상흑연 복합체를 FE-SEM으로 측정한 결과를 도시한 것이다.
도 7 및 도 8은 실시예 2-2에 의해 제조된 나노규소-판상흑연 복합체를 각각 XPS 장비 및 FT-IR 장비를 이용하여 분석한 결과를 나타낸 것이다.
도 9a, 도 9b 및 도 9c는 각각 종래 통상적인 판상흑연, 실시예 1-1에 의해 제조된 나노규소-판상흑연 및 실시예 2-2에 의해 제조된 나노규소-판상흑연 복합체를 유기용매(아세톤)에 분산시킨 결과를 도시한 것이다.
도 10은 폴리도파민 코팅층과 결합된 에폭시계 고분자 수지가 추가로 포함된 복합체를 FE-SEM으로 측정한 결과를 도시한 것이다.
도 11은 도 10의 복합체를 확대한 결과를 도시한 것이다.
본 발명의 일 구체예는, 판상흑연의 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있는 나노금속-판상흑연에 폴리도파민이 코팅되어 폴리도파민 코팅층이 형성된 것을 특징으로 하는 나노금속-판상흑연 복합체에 관한 것이다.
이 때, 상기 폴리도파민은 결정화된 나노금속 입자에 증착(deposition)됨으로써 나노금속-판상흑연에 코팅되는 것이 바람직하고, 상기 폴리도파민 코팅층의 두께는 5~100nm 인 것이 바람직하다.
상기 폴리도파민 코팅층이 형성된 나노금속-판상흑연 복합체는 상기 폴리도파민 코팅층과 결합되는 고분자 수지를 더 포함할 수 있으며, 상기 고분자 수지는 에폭시계, 폴리에틸렌계, 폴리프로필렌계, 폴리스티렌계, 아크릴계, 폴리염화비닐계 및 나일론계 수지의 조합으로 구성된 군에서 선택되는 하나 이상의 수지일 수 있다.
한편, 본 발명은 다른 구체예로 상기 나노금속-판상흑연 복합체를 제조하는 방법을 제공한다:
(a) 약염기성 도파민 수용액을 제조하는 단계;
(b) 상기 도파민 수용액에 나노금속 판상흑연을 디핑(dipping)하는 단계; 및
(c) 상기 나노금속-판상흑연의 표면에 폴리도파민 코팅층을 형성하는 단계.
이 때, 상기 사용된 각각의 구성에 대한 설명은 앞서 기술한 바와 같다.
특히, 상기 (a)단계에서, 상기 약염기성 도파민 수용액의 pH는 8 ~ 14이고, 상기 도파민 수용액에서 도파민 농도는 0.1 ~ 5mg/mL 일 수 있으며, (b)단계에서, 0.5 ~ 24시간 이하로 디핑하는 것이 바람직하다.
이하, 본 발명에 대하여 구체적으로 설명하고자 한다.
나노 기능소재는 인체에 삽입되어 조직과 직접 접촉하기 때문에 인체와의 생물학적, 화학적 친화성 및 기계적 친화성 등을 가져야 하는데, 이것은 주로 재료의 표면 특성에 전적으로 의존한다. 따라서, 나노소재의 바이오 기술 적용을 위해서는 생체적합 기능성 나노소재의 표면 개질 및 코팅 기술이 중요하다.
지금까지, 판상흑연의 응용과 관련하여 판상흑연의 면(basal plane)에서 화학 반응성의 감소는 큰 문제점으로 여겨지고 있었다. 완전한 판상흑연의 면에서는 화학반응을 할 수 있는 결합부분이 존재하지 않고, 판상흑연의 가장자리와 판상흑연 면의 결함부분에 존재하는데, 이러한 화학반응을 할 수 있는 결합부분 때문에 판상흑연의 가장자리와 결함부분보다 판상흑연 면의 화학반응성이 더 떨어진다.
이러한 이유로 인해 일반적으로 순수한 판상흑연을 고분자 수지에 분산시키려는 경우, 고분자 수지와 강한 계면결합을 형성하기 어려워 잘 분산되지 않는 문제점이 있어, 이를 해결하기 위해 매질과의 접합성이 매우 우수한 폴리도파민을 이용하려는 시도가 있다.
폴리도파민은 홍합의 접착 단백질의 접착 메커니즘을 모방한 접착성 고분자로서, 폴리도파민은 일반적으로 홍합의 접착력과 관련이 있는 단백질인 Mefp-5에서 많이 발견되는 3,4-디하이드록시-L-페닐알라닌(DOPA)와 라이신(lysine)의 구조로부터 유도된 신경전달 물질 중 하나인 도파민이 염기성, 산화 조건 하에서 자발적으로 고분자화 반응을 거쳐 생성되며, 다양한 물질의 표면과 접합력이 우수하여 최근 복합재료의 성분으로서 각광을 받고 있는 물질이다.
그러나, 순수한 판상흑연은 폴리도파민과의 결합력이 낮아 폴리도파민이 코팅되기 어려우며, 판상흑연의 표면을 산화된 작용기 등을 통해 개질하는 경우에도 결합력의 향상에는 한계가 있는바, 폴리도파민과의 결합력을 획기적으로 높이기 위한 새로운 방법이 요구되고 있다.
나노금속-판상흑연 복합체
일 관점에서, 본 발명은 판상흑연의 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있는 나노금속-판상흑연 및 폴리도파민 코팅층을 포함하는 것을 특징으로 하는 나노금속-판상흑연 복합체에 관한 것이다.
"나노 금속-판상흑연"은 탄소계 물질인 판상흑연 표면에 나노 금속입자가 균질하게 고밀도로 결정화되어 있는, 특히, 나노 금속입자가 20~50 wt%로 다량 함유되어 있는 나노금속-판상흑연 융합체로 구성되어 있다.
흑연(그라파이트, graphite)은 탄소 원자의 6원자 고리가 평면적으로 무한히 연결된 평면형 거대분자가 층을 이루어 포개어진 광물로서, 그래핀(graphene)이라는 기본 요소로 이루어져 있다. 그래핀은 벌집 결정 격자형으로 빽빽히 충진된 sp2-결합 탄소 원자의 한 겹의 원자 평면 시트로, 그래핀 내 탄소-탄소 결합 길이는 대략 0.142 nm이고, 흑연, 탄소 나노튜브, 탄소섬유, 풀러렌을 포함하는 일부 탄소 동소체의 기본 구조적인 요소이다. 흑연은 토상흑연 또는 인상흑연 또는 인상흑연을 팽창시킨 팽창흑연 또는 인상흑연을 구상화한 구상흑연 중 하나일 수 있다.
"판상흑연"은 얇은 판상의 그라파이트를 의미하는 것으로, 일반적으로 벌집 결정 격자형으로 빽빽히 충진된 sp2-결합 탄소 원자의 한 겹의 원자 평면 시트로서, 판상흑연 내 탄소-탄소 결합 길이는 대략 0.142 nm이고, 판상흑연은 그라파이트, 탄소 나노튜브 및 풀러렌을 포함하는 일부 탄소 동소체의 기본 구조적인 요소이다. 본 발명의 판상흑연은 이러한 단일층 탄소 시트 및 이를 적층시킨 층상 구조물을 포함하고, 나아가 그라파이트층, 탄소층, 및 탄소 시트를 포함할 수 있는 물질의 일부로 존재하는 물질도 포함한다. 즉, 용어 "판상흑연"은 판상흑연, 판상흑연 유도체, 기능화된 판상흑연 또는 그들의 조합을 의미하는 축약어로 사용된다.
본 발명에서 사용될 수 있는 판상흑연은 당업계에 공지된 다양한 방법을 통해 수득할 수 있다. 예를 들어, 폴리이미드와 같은 열경화성 수지를 두께 25μm 이하의 필름형태로 만들고, 2500℃ 이상의 고온에서 흑연화하여 단결정 상태의 판상흑연을 제조하거나, 메탄과 같은 탄화수소를 고온에서 열분해하여 화학증기증착법(CVD)으로 고배향의 흑연을 얻는 방법이 있다.
또한, 상기 나노금속-판상흑연 복합체에 사용되는 나노금속 입자는 상온에서 고체로 존재하는 금속 물질일 수 있는데, 예를 들어, 원소주기율표상의 알칼리 금속, 알칼리 토금속, 란타늄족, 악티늄족, 전이금속, 전이후금속, 준금속류 등으로부터 선택될 수 있다. 바람직하게는 금속 물질로서, 알칼리 금속, 알칼리 토금속, 란타늄족, 악타늄족 또는 전이금속이다. 구체적인 일례로서는 상기 나노금속 입자는 Ni, Si, Ti, Cr, Mn, Fe, Co, Cu, Sn, In, Pt, Au, Mg 및 이들의 조합 등에서 선택될 수 있으며, Cu, Ni 또는 Si인 것이 더욱 바람직하다. 나노물질(나노입자)-판상흑연 융합체의 제조는 한국특허 10-1330227를 참조할 수 있다.
본 발명의 나노금속-판상흑연 복합체는 상기 나노금속-판상흑연에서, 상기 나노금속 입자가 판상흑연 전체에 대하여 10~50, 바람직하게는 20~50 wt%로 함유되어 있고, 30~40%, 30~50%, 30~60%, 또는 30~70%인 표면적 범위(coverage)를 이루면서 "고밀도로" 결정화되어 있는 것을 특징으로 한다.
특히, 상기 결정화된 나노 금속입자는 상기 판상흑연 표면에서 종래 나노금속-판상흑연 융합체에 비해 약 100배 이상 높은 밀도를 가질뿐만 아니라, 바람직하게는 화학 결합 등의 결합을 형성하고 있다.
또한, 본 발명의 나노금속-판상흑연은 판상흑연 표면에서 나노금속입자가 형성하는 결정이 큰 크기를 가지는 특징을 보유한다. 나노금속 입자가 형성하는 결정은 평균 입자 입경이 10 내지 200 nm, 20 내지 200nm, 30 내지 200 nm, 40 내지 200 nm, 50 내지 200 nm, 60 내지 200nm, 70 내지 200nm, 80 내지 200nm, 90 내지 200nm, 또는 100 내지 200 nm이다. 이러한 나노 금속 결정으로 인해 접촉성이 형상되어 접촉저항이 낮아져 열적 또는 전기적 특성을 향상시킬 수 있다.
본 발명의 나노금속-판상흑연 복합체는 카테콜아민을 사용하여, 가장 바람직하게는 도파민을 이용하여 표면개질된 복합체를 수득한다.
"카테콜아민(Catecholamine)"이란 벤젠 고리의 오쏘(ortho)-그룹으로 하이드록시 그룹 (-OH)을 가지고 파라(para)-그룹으로 다양한 알킬아민을 가지는 단분자를 의미하는 용어로, 이러한 구조체의 다양한 파생물들로서 도파민 (dopamine), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alpha-methyldopamine), 알파-메틸도파 (alphamethyldopa) 등이 포함된다. 가장 바람직하게는 도파민 (dopamine)을 사용한다.
"도파민(dopamine)"은 신경 말단에서 분비되는 신경전달물질 중 하나로 인간의 뇌에서 만들어지는 신경호르몬의 절반 정도가 도파민과 관련될 정도로 매우 중요한 물질인데, 홍합의 접착 단백질에서 접착력을 나타내는 중요한 화학적 작용기인 카테콜로 구성된 단분자 물질인 도파민을 이용한 기능성 표면개질 기법이 2007년 발표되었다.
도 1은 본 발명의 일례로 도파민의 산화반응에 따른 구조적 변화 및 이에 따른 폴리도파민의 형성단계를 나타낸 모식도이다.
도파민은 카테콜과 아민 작용기를 가지는 분자량 153(Da)의 단분자 물질인데, 바다 속 환경과 동일한 염기성 pH 조건(약 pH 8.5)의 도파민 수용액에 표면 개질하고자 하는 물질을 넣었다가 일정 시간 뒤에 꺼내면 카테콜의 산화에 의해 물질의 표면에서 폴리도파민(polydopamine, pDA) 코팅층이 형성되는 것으로 알려져 있다.
이러한 폴리도파민 코팅은 선행 연구로부터 밝혀진 홍합의 접착 메커니즘을 이해하고 이로부터 중요한 화학적 작용기만을 선택적으로 모방하여 도입한 생체 모방 표면 개질 기법(bio-inspired surface modification)으로써, 홍합이 수중 환경에서 다양한 표면에서 접착력을 가지는 것과 마찬가지로 역시 수용액의 조건에서 표면의 화학적 성질에 관계없이 다양한 표면에 모두 뛰어난 표면 부착능력을 보여준다.
하기 화학식 1은 본 발명에 따른 홍합 유래의 폴리도파민 고분자의 기본 구조이다.
[화학식 1]
상기 화학식 1에서 R1, R2, R3, R4 및 R5 중 적어도 어느 하나는 각각 티올, 제1 아민(primary amine), 제2 아민(secondary amine), 니트릴(nitrile), 알데하이드(aldehyde), 이미다졸(imidazole), 아자이드(azide), 할로겐화물(halide), 폴리헥사메틸렌 디티오카보네이트(polyhexamethylene dithiocarbonate), 하이드록실(hydroxyl), 카르복실산(carboxylic acid), 카르복실에스터(carboxylic ester) 또는 카로복사미드(carboxamide)로 구성된 군에서 선택된 1종일 수 있으며, 이 때, 나머지는 수소일 수 있다.
본 발명에서는 도파민을 나노금속-판상흑연 상에서 자가 중합시켜, 상기 화학식 1과 같은 폴리도파민으로 이루어진 코팅층을 형성한다.
도 2는 본 발명의 나노금속-판상흑연 상에 폴리도파민 코팅층이 형성되는 과정을 나타낸 모식도인데, 순수한 판상흑연의 면에는 코팅층이 형성되기 어려우나, 본 발명의 나노금속-판상흑연은 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있어 상기 "결정화된 나노금속 입자"에 폴리도파민이 결합됨으로써 코팅층이 형성되어 나노금속-판상흑연 복합체가 생성될 수 있다.
또한, 본 발명의 복합체에서, 상기 폴리도파민 코팅층은 3 내지 5 ~100nm, 5~100nm, 5~90nm, 5~80nm, 5~70nm, 5~60nm, 또는 바람직하게는 5~50nm의 두께를 가질 수 있다.
이러한 폴리도파민 코팅층으로 인해, 본 발명의 나노금속-판상흑연 복합체는 우수한 코팅성 및 분산성을 확보하여, 다양한 물질과 접착하거나 매질 내에서 우수한 분산성을 나타낼 수 있다.
이에 반해, 종래 알려져 있는 순수한 판상흑연의 경우에는, 폴리도파민 코팅을 실시하여도 코팅 실시 여부를 확인하기 어려울 정도로 판상흑연 면 상에 폴리도파민 코팅층이 형성되기는 어려웠다.
그러나, 본 발명의 나노금속-판상흑연은 결정화되어 있는 나노금속 입자가 판상흑연 표면 상에 결합되어 있어 상기와 같은 문제점을 해결하고 있다.
또한, 폴리도파민 코팅은 자체로 환원력을 가짐과 동시에 표면의 카테콜 작용기에 아민 작용기가 Michael 첨가 반응에 의한 공유결합을 형성함으로써 폴리도파민 코팅층을 접착제로 사용하는 2차 표면개질이 가능하다. 이러한 화학적 반응성을 이용하여 표면에 단백질, 생체 고분자, 다당류 등의 다양한 생체물질을 고정화하고 이를 응용하는 연구가 많은 관심을 받으면서 진행되고 있다.
이외에도, 본 발명의 복합체는 고분자의 보강재로서 이용될 수 있는데, 종래 순수한 판상흑연은 판상흑연 간의 반데르발스 힘에 의해 그 자체가 매우 안정된 화학적 구조를 가지기 때문에 고분자 수지 및 유기 용매 안에서 균일한 분산이 어려웠다.
하지만, 본 발명의 복합체는 고분자 수지와 결합이 용이한 폴리도파민 코팅층을 포함함에 따라 균일한 분산상을 형성할 수 있다.
여기서, 상기 폴리도파민 코팅층은 고분자 수지와 나노금속-판상흑연을 결합시키는 매개체의 역할을 하며, 이러한 이유로 상기 복합체는 폴리도파민 코팅층에 결합되는 고분자 수지를 더 포함할 수 있다.
상기 고분자 수지는 그 종류에 있어서 특별히 한정된 것은 아니나, 열경화성 수지 및 열가소성 수지로 이루어진 군에서 선택된 것일 수 있으며, 상기 열경화성 수지는 그 종류에 있어 특별히 한정된 것은 아니나, 에폭시계, 우레탄계, 멜라민계, 폴리이미드계 수지 등, 및 이들의 혼합물일 수 있으며, 상기 열가소성 수지 역시 그 종류에 있어 특별히 한정된 것은 아니나, 폴리카보네이트계, 폴리스티렌계, 폴리술폰계, 폴리염화비닐계, 폴리에테르계, 폴리아크릴레이트계, 폴리에스테르계, 폴리아미드계, 셀룰로오스계, 폴리올레핀계, 폴리프로필렌계 수지 등, 및 이들의 혼합물일 수 있다.
이 때 상기 고분자 수지와 폴리도파민 코팅층은 중합 반응에 의해 결합되어 있다.
이와 같은 구성의 본 발명의 나노금속-판상흑연 복합체는 다음과 같은 장점을 가진다.
(1) 나노금속-판상흑연의 표면에 폴리도파민이 코팅층이 형성됨에 따라, 고분자 수지나 다양한 물질과의 강한 접착력이 형성되어 분산성 및 접합성을 효과적으로 높일 수 있다.
(2) 폴리도파민의 우수한 접합성에 의해 고분자 수지 외의 다양한 복합재료에 첨가되어 균일한 분산상을 형성할 수 있어, 재료의 물성을 향상시키는데 효과적이다.
나노금속-판상흑연 복합체 제조방법
본 발명의 나노금속-판상흑연 복합체는 도파민의 자가 중합성을 이용하여 통상적인 딥 코팅(dip coating) 등의 액상 제조법을 통해 제조될 수 있다.
따라서, 본 발명은 다른 관점에서 폴리도파민 코팅층을 포함하는 나노금속-판상흑연 복합체의 제조방법에 관한 것이다.
본 발명 방법의 일 구체예는 하기의 단계를 포함하는, 나노금속-판상흑연 복합체의 제조방법을 제공할 수 있다.
(a) 약염기성 도파민 수용액 및 나노금속-판상흑연을 각각 제조하는 단계,
(b) 상기 약염기성 도파민 수용액에 나노금속-판상흑연을 디핑(dipping)하는 단계,
(c) 상기 나노금속-판상흑연의 표면에 폴리도파민 코팅층을 형성하는 단계.
(a) 단계에서, 약염기성 도파민 수용액을 제조하는 방법은 특별히 한정된 것은 아니나, pH 8 ~ 14 염기성의 트리스 완충용액(10mM, tris buffer solution), 보다 바람직하게 바다 속 환경과 동일한 염기성 조건인 pH 8.5 염기성의 트리스 완충용액에 도파민을 용해시켜 제조할 수 있으며, 이 때, 상기 약염기성 도파민 수용액의 도파민 농도는 0.1 ~ 5 mg/mL, 바람직하게 2 mg/mL 인 것을 특징으로 한다.
한편, 나노금속-판상흑연 플레이크를 제조하는 방법은 한국특허출원 10-2012-69905을 참조할 수 있다.
사용하는 나노 금속은 상온에서 고체로 존재하는 금속 물질로, 원소주기율표상의 알칼리 금속, 알칼리 토금속, 란타넘족, 악티늄족, 전이금속, 전이후금속, 준금속류 중의 어느 하나로부터 선택하여 사용할 수 있다. 바람직하게는, Ni, Si, Ti, Cr, Mn, Fe, Co, Cu, Sn, In, Pt, Au, Mg 및 이들의 조합 등을 사용한다. 상기 나노 금속을 판상흑연과 혼합하여 혼합 분말을 준비한다. 이 때, 나노 금속물질과 판상흑연의 혼합비율은 사용되는 목적에 따라 임의로 설정할 수 있지만, 본 발명에서 나노물질은 판상흑연 표면에서 고밀도로 존재하므로, 바람직하게는 전체 중량 대비 20~50 wt%로 함유되도록 혼합한다. 특히, 고주파 열플라즈마를 이용하여 혼합 분말 중 포함된 나노물질을 기화시킨다. 기화된 나노물질을 판상흑연 표면에서 결정화시키기 위해, 켄칭(quenching) 가스를 사용한다. 즉, 켄칭 가스에 의해 응축 또는 급냉되어 나노 입자의 성장을 억제시키면서 나노 결정화시킨다.
이러한 방법을 통해, 전체 판상흑연에 대하여 나노 물질이 20~50 wt% 함유되고, 평균 입자 입경이 10 내지 200 nm의 결정을 이루면서, 나노금속-판상흑연 융합체의 30~70%인 표면적 범위(coverage)를 이루고 있는 것을 특징으로 하는 본 발명의 나노금속-판상흑연을 수득할 수 있다.
(b) 단계에서, 상기 약염기성 도파민 수용액에 나노금속-판상흑연을 디핑(dipping)하고, (c) 단계에서, 상기 나노금속-판상흑연의 표면에 폴리도파민 코팅층을 형성시킨다.
본 발명에서는 액상 코팅법 중 하나인 딥 코팅(dip coating)법을 이용한다. 딥 코팅법은 코팅방법의 한 종류인데, 일반적으로 피코팅재를 코팅용액에 담그어 상기 피코팅재 표면에 전구체층을 형성한 후 적당한 온도로 소성하여 코팅시키는 방법을 의미한다.
그러나, 본 발명에서는 도파민이 염기성 및 산화 조건 하에서 자발적으로 고분자화 반응을 거쳐 나노금속-판상흑연 플레이크의 표면에 폴리도파민 코팅층을 형성하므로 별도의 소성 과정이 필요하지 않으며, 산화제의 첨가를 특별히 제한하는 것은 아니나, 산화제의 첨가 없이 공기 중의 산소 기체를 산화제로 이용할 수 있다.
디핑 시간은 코팅층의 두께를 결정하는데, pH 8 ~ 14 염기성의 트리스 완충용액에 도파민 농도가 0.1 ~ 5 mg/mL 되도록 도파민을 용해시켜 제조한 도파민 수용액을 이용하는 경우, 5 ~ 100nm 두께로 코팅층을 형성하기 위해서는 바람직하게 약 0.5 ~ 24시간 동안 나노금속-판상흑연을 디핑하는 것이 바람직하다.
순수한 판상흑연을 약염기성 도파민 수용액에 디핑하더라도 표면에 도파민 코팅층이 형성되지 않으나, 본 발명의 나노금속-판상흑연은 표면에 결정화된 나노금속 입자가 존재하여 폴리도파민이 나노금속 입자와 결합함으로써 폴리도파민 코팅층이 형성되는 것이다.
이러한 방법을 통해 제조된, 나노금속-판상흑연 복합체는 접착성이 매우 우수한 폴리도파민 코팅층을 포함하고 있기에 고분자, 생체 고분자, 단백질 등 다양한 물질과 추가로 결합할 수 있다. 이는, 나노금속-판상흑연의 표면에 형성된 폴리도파민 코팅층 역시 여전히 화학적 결합성이 우수한 카테콜 작용기 등을 그대로 가지고 있기 때문에, 이를 이용한 2차 표면 개질이 가능한 것이다.
특히, 고분자 수지를 첨가하여 중합 반응을 시켜 폴리도파민 코팅층과 고분자 수지를 화학적 결합시킴으로써, 고분자 수지를 더 포함하는 복합체도 제조할 수 있다. 구체적인 고분자 수지의 종류는 전술한 바와 같다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 나노규소(Si)-판상흑연 제조
1-1. 나노규소-판상흑연의 제조
판상흑연과 규소(Si) 분말을 혼합기를 이용하여 10min 동안 혼합하여 원료 분말을 준비하고, 한국특허출원 10-2012-69905에서 개시한 방법과 유사한 방법으로 나노규소-판상흑연을 제조하였다.
1-2. FE-SEM 이미지 측정
도 3은 상기 실시예 1-1에 의해 제조된 나노규소(Si)-판상흑연의 FE-SEM 측정 결과를 도시한 것이다. FE-SEM 이미지 측정 결과, 판상흑연의 표면에 결정화된 규소(Si) 나노입자가 고밀도로 잘 융합되어 있음을 관측할 수 있었다.
실시예 2: 나노규소(Si)-판상흑연 복합체 제조 및 분석
2-1. 약염기성 도파민 수용액 제조
도파민 2 mg을 10 mM 트리스 완충액에 용해시켜 pH 8.5의 약염기성 도파민 수용액을 제조하였다.
2-2. 폴리도파민 코팅
상기 약염기성 도파민 수용액에 실시예 1-1에 의해 제조된 나노규소-판상흑연을 디핑(dipping)하여 자발적 고분자화 반응 및 판상흑연 상의 고밀도로 결정화된 나노규소와의 증착을 통해 상기 나노규소-판상흑연에 폴리도파민 코팅층을 형성하여 나노규소-판상흑연 복합체를 형성하였다.
도 4는 디핑 시간이 다른 나노규소-판상흑연 복합체의 온도를 상승시켜 중량 감소율(%)를 측정한 그래프이다. 구체적으로, 도파민 수용액에 디핑하지 않은 나노규소-판상흑연 플레이크, 각각 3, 6, 12 및 24 시간 동안 디핑하여 폴리도파민 코팅층이 형성된 나노규소-판상흑연 복합체의 온도를 약 800 도까지 상승시켜 복합체의 중량 감소를 측정하였다.
도시된 바와 같이, 디핑하지 않은 나노규소-판상흑연은 중량 감소가 거의 측정되지 않았으며, 디핑하여 폴리도파민 코팅층이 형성된 나노규소-판상흑연 복합체는 디핑 시간이 증가할수록 중량감소율 역시 커졌는데, 이는 디핑 시간이 증가할수록 코팅된 폴리도파민의 함량 및 폴리도파민 코팅층의 두께가 증가되어 온도 상승에 따라 고온 환경에 약한 더 많은 양의 폴리도파민이 분해되기 때문이다.
도 5는 디핑 시간이 다른 나노규소-판상흑연 복합체를 분광법을 이용하여 측정한 결과를 나타낸 그래프이다. 도시된 바와 같이, 디핑 시간이 증가할수록 더 큰 강도가 측정되었는데, 이는 도 2의 결과와 부합된다.
2-3. FE-SEM 이미지 측정
도 6은 실시예 2-2에 의해 제조된 나노규소-판상흑연 복합체를 FE-SEM으로 측정한 결과를 도시한 것이다. FE-SEM 이미지 측정 결과, 폴리도파민은 나노규소-판상흑연의 표면이 아니라 결정화된 나노금속 입자에 증착되어 있음을 확인할 수 있었다.
즉, 표면이 개질되지 않은 통상적인 판상흑연은 폴리도파민과의 결합력이 떨어져 그 표면에 코팅층을 형성하는 것이 용이하지 않으나, 본 발명의 판상흑연은 결정화된 나노금속 입자로 표면이 개질되어 있기에 그 표면에 폴리도파민 코팅층을 형성할 수 있는 것이다.
2-4. XPS 및 FT-IR 분석
도 7 및 도 8은 실시예 2-2에 의해 제조된 나노규소-판상흑연 복합체를 각각 XPS 장비 및 FT-IR 장비를 이용하여 분석한 결과를 나타낸 것이다.
도 7에 도시된 바와 같이, 나노규소 입자가 판상흑연의 표면에서 고밀도로 결합을 이루고 있기에 Si 피크가 관측되었으며, 표면 코팅물질인 폴리도파민의 원소 조성에 해당되는 C, N, O 원소 피크가 매우 크게 나타난 것을 확인하였는데, 이로부터 본 발명에 따른 복합체 제조방법에 의해 폴리도파민 코팅층이 XPS 장비 측정범위인 10 nm 이상의 두께로 충분히 코팅되었음을 확인할 수 있었다.
도 8에 도시된 바와 같이, 판상흑연 표면과 폴리도파민의 직접적인 결합에 해당되는 약 2200 nm에서 N-C, N=C 방향족 피크가 관측되지 않았고, N-H 피크 및 N-Si 피크가 관측된 것으로 보아, 실시예 2-3의 FE-SEM 이미지 결과와 일치함을 알 수 있었다.
2-5. 분산성 평가
도 9a, 도 9b 및 도 9c는 각각 종래 통상적인 판상흑연(도 9a), 실시예 1-1에 의해 제조된 나노규소-판상흑연(도 9b) 및 실시예 2-2에 의해 제조된 나노규소-판상흑연 복합체(도 9c)를 유기용매(아세톤)에 분산시킨 결과를 도시한 것이다.
도시한 바와 같이, 종래 통상적인 판상흑연은 분산성이 떨어져 유기 용매 내에서 다소 투명성을 띄고 있는 것과 달리(도 9a), 본 발명에 의한 복합체는 접착력 및 분산성이 매우 우수한 폴리도파민 코팅층을 포함하고 있어, 균일한 분산상을 형성함을 확인할 수 있었다(도 9c).
2-6. 고분자 수지와 결합
실시예 2-2에 의해 제조된 나노규소-판상흑연 복합체에 에폭시계 고분자 수지를 첨가하여 복합체의 폴리도파민 코팅층과 결합시켰다.
도 10은 폴리도파민 코팅층과 결합된 에폭시계 고분자 수지가 추가로 포함된 복합체를 FE-SEM으로 측정한 결과를 도시한 것이고, 도 11은 도 10의 복합체를 확대한 결과를 도시한 것이다.
도시된 바와 같이, 나노규소-판상흑연 복합체의 폴리도파민 코팅층과 에폭시계 고분자 수지는 중합 반응을 통해 결합되어 강한 융착을 형성하는 것을 확인할 수 있었다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.
본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 원소, 또는 단계 또는 원소들의 군을 포함하나, 임의의 다른 단계 또는 원소, 또는 단계 또는 원소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.
이와 같이, 본 발명은 판상흑연의 표면에 결정화된 나노금속 입자가 고밀도로 결합을 이루고 있는 나노금속-판상흑연 및 폴리도파민 코팅층을 포함하는 나노금속-판상흑연 복합체에 관한 것으로, 거의 모든 표면과의 우수한 접착성 및 코팅성을 나타내는 도파민의 성질을 이용하여 전자기기 부품, 에너지 저장 매체, 유기태양전지 및 생체모방 응용소자 등에 매우 유용하게 사용할 수 있다.
Claims (12)
- 판상흑연의 표면에 결정화된 나노금속 입자가 결합을 이루고 있는 나노금속-판상흑연; 및폴리도파민 코팅층을 포함하는 것을 특징으로 하는 나노금속-판상흑연 복합체.
- 제1항에 있어서,상기 나노금속-판상흑연에서, 나노금속 입자는 판상흑연 전체에 대하여 20~50wt%로 함유되어 있고, 30~70%인 표면적 범위(coverage)를 이루고 있는 것을 특징으로 하는 나노금속-판상흑연 복합체.
- 제3항에 있어서,상기 폴리도파민 코팅층은 결정화된 나노금속 입자에 폴리도파민이 결합됨으로써 나노금속-판상흑연 표면에 형성되는 것을 특징으로 하는 나노금속-판상흑연 복합체.
- 금속은 알칼리 금속, 알칼리 토금속, 란타늄족, 악티늄족, 전이금속, 전이후금속 및 준금속류로 구성된 군에서 선택되는 것을 특징으로 하는 나노금속-판상흑연 복합체.
- 제4항에 있어서,상기 금속은 Ni, Si, Ti, Cr, Mn, Fe, Co, Cu, Sn, In, Pt, Au, Mg 및 이들의 조합으로 구성된 군에서 선택되는 하나 이상의 입자인 것을 특징으로 하는 나노금속-판상흑연 복합체.
- 제1항에 있어서,상기 폴리도파민 코팅층의 두께는 5 ~ 100nm 인 것을 특징으로 하는 나노금속-판상흑연 복합체.
- 제1항에 있어서,상기 복합체는 폴리도파민 코팅층에 결합되는 고분자 수지를 더 포함하는 것을 특징으로 하는 나노금속-판상흑연 복합체.
- 제7항에 있어서,상기 고분자 수지는 에폭시계, 폴리에틸렌계, 폴리프로필렌계, 폴리스티렌계, 아크릴계, 폴리염화비닐계 및 나일론계 수지의 조합으로 구성된 군에서 선택되는 하나 이상의 수지인 것을 특징으로 하는 나노금속-판상흑연 복합체.
- 하기 단계들을 포함하는, 제1항의 나노금속-판상흑연 복합체의 제조방법:(a) 약염기성 도파민 수용액을 제조하는 단계;(b) 상기 도파민 수용액에 나노금속 판상흑연을 디핑(dipping)하는 단계; 및(c) 상기 나노금속-판상흑연의 표면에 폴리도파민 코팅층을 형성하는 단계.
- 제9항에 있어서,(a)단계에서, 상기 도파민 수용액의 pH는 8 ~ 14이고, 도파민 농도는 0.1 ~ 5mg/mL인 것을 특징으로 하는 제조방법.
- 제10항에 있어서,(b)단계에서, 0.5 ~ 24시간 동안 디핑하는 것을 특징으로 하는 제조방법.
- 제9항에 있어서,고분자 수지를 첨가하여 상기 폴리도파민 코팅층과 결합시키는 단계를 더 포함하는 것을 특징으로 하는 제조방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/108,034 US9789539B2 (en) | 2013-12-26 | 2014-12-23 | Nanometal-flake-graphite composite and method of manufaturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0164154 | 2013-12-26 | ||
KR1020130164154A KR101453221B1 (ko) | 2013-12-26 | 2013-12-26 | 나노금속-판상흑연 복합체 및 이의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015099415A1 true WO2015099415A1 (ko) | 2015-07-02 |
Family
ID=51998354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/012731 WO2015099415A1 (ko) | 2013-12-26 | 2014-12-23 | 나노금속-판상흑연 복합체 및 이의 제조방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9789539B2 (ko) |
KR (1) | KR101453221B1 (ko) |
WO (1) | WO2015099415A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160272865A1 (en) * | 2014-03-26 | 2016-09-22 | NANO CAST TECH Co., Ltd. | Method of preparing graphene-graphene fused material and method of preparing graphene-substrate composite using the same |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101928045B1 (ko) * | 2014-03-24 | 2018-12-11 | 재단법인 철원플라즈마 산업기술연구원 | 복합재료 제조용 카테콜아민-판상흑연 기반 고분자 복합체 |
US9856432B2 (en) * | 2015-05-16 | 2018-01-02 | Min Zou | Highly durable and well-adhered graphite coating |
KR102003296B1 (ko) * | 2015-07-20 | 2019-07-24 | 주식회사 엘지화학 | 고체 전해질을 포함하는 리튬 이차전지 |
KR101738545B1 (ko) | 2016-02-15 | 2017-05-23 | 서울대학교산학협력단 | 금속 수산화물 육각 나노판의 합성 및 응용 |
KR102010256B1 (ko) * | 2016-05-24 | 2019-08-13 | 주식회사 아모그린텍 | 코일부품 |
KR102406261B1 (ko) * | 2017-05-15 | 2022-06-10 | 주식회사 아모그린텍 | 그라파이트-고분자 복합재 |
KR102383953B1 (ko) * | 2017-05-15 | 2022-04-07 | 주식회사 아모그린텍 | 그라파이트-고분자 복합재 |
CN108079019B (zh) * | 2018-01-04 | 2020-04-21 | 中南民族大学 | 水溶性富勒烯纳米材料及其制备方法与抗氧化应用 |
CN108084451B (zh) * | 2018-01-04 | 2021-02-09 | 中南民族大学 | 水溶性富勒烯纳米材料及其制备方法与应用 |
CN112264613B (zh) * | 2020-10-20 | 2023-02-03 | 西安工程大学 | 一种用于电磁屏蔽的镍包铝粉的制备方法 |
CN113235127A (zh) * | 2021-04-21 | 2021-08-10 | 北京航天动力研究所 | 一种三明治结构的碳夹层铜纳米片电催化剂、制备方法、电极及应用 |
KR20230124422A (ko) * | 2022-02-18 | 2023-08-25 | 삼성에스디아이 주식회사 | 음극 활물질 및 이를 포함하는 리튬 이차 전지 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101154159B1 (ko) * | 2010-04-02 | 2012-06-14 | 한남대학교 산학협력단 | 혼성 자성 나노입자 및 이의 제조방법 |
KR20130019232A (ko) * | 2011-08-16 | 2013-02-26 | 국립대학법인 울산과학기술대학교 산학협력단 | 폴리도파민 코팅된 산화 그래핀 및 이를 포함하는 고분자 복합체 조성물 |
KR101255149B1 (ko) * | 2011-10-14 | 2013-04-22 | 포항공과대학교 산학협력단 | 금속 나노 입자 기반 핵산 전달용 조성물 및 이의 제조방법 |
KR101330227B1 (ko) * | 2012-06-28 | 2013-11-18 | 재단법인 철원플라즈마 산업기술연구원 | 고밀도로 나노입자가 결정화되어 있는 그래핀―나노 융합체 |
KR101340022B1 (ko) * | 2011-09-20 | 2013-12-10 | 한국과학기술원 | 폴리도파민 고속 코팅방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101303285B1 (ko) | 2011-09-08 | 2013-09-04 | 한국기계연구원 | 환원된 산화 그래핀층 및 코팅층이 순차적으로 적층되는 그래핀 페이퍼 및 이의 제조방법 |
-
2013
- 2013-12-26 KR KR1020130164154A patent/KR101453221B1/ko active IP Right Grant
-
2014
- 2014-12-23 US US15/108,034 patent/US9789539B2/en active Active
- 2014-12-23 WO PCT/KR2014/012731 patent/WO2015099415A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101154159B1 (ko) * | 2010-04-02 | 2012-06-14 | 한남대학교 산학협력단 | 혼성 자성 나노입자 및 이의 제조방법 |
KR20130019232A (ko) * | 2011-08-16 | 2013-02-26 | 국립대학법인 울산과학기술대학교 산학협력단 | 폴리도파민 코팅된 산화 그래핀 및 이를 포함하는 고분자 복합체 조성물 |
KR101340022B1 (ko) * | 2011-09-20 | 2013-12-10 | 한국과학기술원 | 폴리도파민 고속 코팅방법 |
KR101255149B1 (ko) * | 2011-10-14 | 2013-04-22 | 포항공과대학교 산학협력단 | 금속 나노 입자 기반 핵산 전달용 조성물 및 이의 제조방법 |
KR101330227B1 (ko) * | 2012-06-28 | 2013-11-18 | 재단법인 철원플라즈마 산업기술연구원 | 고밀도로 나노입자가 결정화되어 있는 그래핀―나노 융합체 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160272865A1 (en) * | 2014-03-26 | 2016-09-22 | NANO CAST TECH Co., Ltd. | Method of preparing graphene-graphene fused material and method of preparing graphene-substrate composite using the same |
US10072196B2 (en) * | 2014-03-26 | 2018-09-11 | Amogreentech Co., Ltd. | Method of preparing graphene-graphene fused material and method of preparing graphene-substrate composite using the same |
Also Published As
Publication number | Publication date |
---|---|
US20160318100A1 (en) | 2016-11-03 |
US9789539B2 (en) | 2017-10-17 |
KR101453221B1 (ko) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015099415A1 (ko) | 나노금속-판상흑연 복합체 및 이의 제조방법 | |
He et al. | Phthalocyanine nanowires@ GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance | |
US10815583B2 (en) | Composite graphene structures | |
WO2015147501A1 (ko) | 복합재료 제조용 카테콜아민-판상흑연 기반 고분자 복합체 | |
Zheng et al. | In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates | |
JP7350378B2 (ja) | 小分子系自立フィルムおよびハイブリッド材料 | |
WO2011122901A2 (ko) | 폴리이미드 나노복합체 및 그 제조방법 | |
US9147881B2 (en) | Graphene paper which reduced graphene oxide layers and coating layers are stacked in sequence and preparation method thereof | |
Cheng et al. | Glycera‐inspired synergistic interfacial interactions for constructing ultrastrong graphene‐based nanocomposites | |
CN103764556B (zh) | 碳纳米管复合材料及导电材料 | |
US8070988B2 (en) | Nano-carbon hybrid structures | |
WO2018186534A1 (ko) | Bnnp를 포함하는 나노 복합 재료 및 그의 제조 방법 | |
JP2012511799A (ja) | 伝導性調製物とその製造方法 | |
Zou et al. | Ultratough reduced graphene oxide composite films synergistically toughened and reinforced by polydopamine wrapped carbon nanotubes | |
Tong et al. | Realizing enhanced dielectric and mechanical performance of polyvinylidene fluoride/SiC nanocomposites through a bio-inspired interface design | |
Bakhtiar et al. | New generation of hybrid filler for producing epoxy nanocomposites with improved mechanical properties | |
Pan et al. | Large‐Scale Production of Rectorite Nanosheets and Their Co‐Assembly with Aramid Nanofibers for High‐Performance Electrical Insulating Nanopapers | |
KR100675334B1 (ko) | 탄소나노튜브 필름 및 그 제조 방법 | |
WO2020032684A1 (en) | Graphene wet spinning coagulation bath and method for manufacturing graphene oxide fiber using the same | |
Gadakh et al. | A review paper on graphene coated fibres | |
KR102198383B1 (ko) | 탄소-벤조옥사진 복합체 제조방법 및 그 복합재료의 제조방법 | |
Ali et al. | Highly electro‐responsive composite gel based on functionally tuned graphene filled polyvinyl chloride | |
WO2015030498A1 (ko) | 탄소나노물질이 결합된 열가소성 고분자 및 이의 제조방법 | |
Hao et al. | Progression from graphene and graphene oxide to high-performance epoxy resin-based composite | |
WO2016171486A1 (ko) | 술폰화된 폴리에테르-에테르-케톤으로 기능화된 그래핀 옥사이드/고분자 복합재료 및 이를 포함하는 가스차단막 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874917 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15108034 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14874917 Country of ref document: EP Kind code of ref document: A1 |