WO2015099201A1 - Nanobubble-containing composition and use thereof - Google Patents

Nanobubble-containing composition and use thereof Download PDF

Info

Publication number
WO2015099201A1
WO2015099201A1 PCT/JP2015/050073 JP2015050073W WO2015099201A1 WO 2015099201 A1 WO2015099201 A1 WO 2015099201A1 JP 2015050073 W JP2015050073 W JP 2015050073W WO 2015099201 A1 WO2015099201 A1 WO 2015099201A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
cells
agent
water
cell
Prior art date
Application number
PCT/JP2015/050073
Other languages
French (fr)
Japanese (ja)
Inventor
亀井一郎
Original Assignee
アクア・ゼスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクア・ゼスト株式会社 filed Critical アクア・ゼスト株式会社
Priority to CN201580001311.2A priority Critical patent/CN105593363A/en
Publication of WO2015099201A1 publication Critical patent/WO2015099201A1/en
Priority to US15/193,176 priority patent/US20170056438A1/en
Priority to HK16112319.1A priority patent/HK1223975A1/en
Priority to US16/161,192 priority patent/US20190046563A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/54Mixing with gases
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/40Foaming or whipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Abstract

[Problem] The present invention provides a composition containing nanobubbles containing hydrogen, oxygen, and nitrogen, and the use thereof. [Solution] A composition containing, as an active ingredient, nanobubbles having a diameter of 30 μm or less and containing 0.45-0.55 ppm of hydrogen, 10-12.5 ppm of oxygen, and 7-8 ppm of nitrogen. A mitochondria-activating composition, cell growth promoting agent, cell preservation liquid or cryopreservation liquid containing this composition, and a method for using this composition, agent, or liquid. A food or beverage, or a food or beverage raw material, produced using this composition.

Description

ナノバブル含有組成物およびその用途Nanobubble-containing composition and use thereof
 本発明は、ナノバブル含有組成物およびその用途に関する。より詳しくは、ナノバブルを含有し、ミトコンドリアを活性化する組成物とその用途に関する。 The present invention relates to a nanobubble-containing composition and its use. More specifically, the present invention relates to a composition containing nanobubbles and activating mitochondria and its use.
 マイクロバブル、ナノバブルの技術を用いて気体を液体中に溶存させ、培養細胞の増殖を促進する方法としては、例えば、特許文献1のような方法が開示されている。しかしながら、特許文献1には、どのような大きさ、組成のマイクロバブル、ナノバブルを用いれば、どのような種類の細胞の増殖がどの程度促進されるか、などが具体的に詳細に開示されておらず、より実用的な組成物、方法、装置の開発が求められていた。また、さらに効率のよい増殖促進方法も求められていた。 For example, Patent Document 1 discloses a method for promoting the growth of cultured cells by dissolving a gas in a liquid using microbubble or nanobubble technology. However, Patent Document 1 specifically discloses in detail what size and composition of microbubbles and nanobubbles can be used to promote the proliferation of what types of cells. There has been a demand for the development of more practical compositions, methods, and apparatuses. There has also been a demand for a more efficient method for promoting proliferation.
 飲料水にマイクロバブル、ナノバブルを用いて気体を混入した製品としては、水素水、水素酸素水等が知られている(例えば、特許文献2)。しかしながら、これらの飲料水では、十分満足できる効果を感じる人は一部に限られ、あまり普及していないのが現状である。したがって、十分な効果を実感できるマイクロバブル、ナノバブル飲料水が求められていた。また、新機能を有するマイクロバブル、ナノバブル飲料水も求められていた。 Hydrogen water, hydrogen oxygen water, etc. are known as products in which gas is mixed with drinking water using microbubbles or nanobubbles (for example, Patent Document 2). However, in these drinking waters, the number of people who feel a satisfactory effect is limited to a part, and the current situation is that they are not so popular. Therefore, microbubbles and nanobubble drinking water that can realize a sufficient effect have been demanded. Also, microbubbles and nanobubble drinking water having new functions have been demanded.
 一方、ミトコンドリアはエネルギーを生み出す器官であり、ミトコンドリアの活性を上げることで、エネルギー生産を増やし、より活力のある体にすることができると考えられる。しかしながら、ミトコンドリアを活性化する飲料水についてはまだ開発されておらず、ミトコンドリアを活性化する飲料水の開発が求められていた。 On the other hand, mitochondria are energy-producing organs, and it is thought that increasing mitochondrial activity can increase energy production and make the body more active. However, drinking water that activates mitochondria has not been developed yet, and development of drinking water that activates mitochondria has been demanded.
 また、細胞を凍結保存する際に生存率が低下したり、細胞が破壊されて内容物が漏出し、食感が悪化したり、風味が悪くなるという問題があった。そこで、生存率を高くし、風味を良くする細胞保存液の開発が望まれていた。 In addition, when the cells were cryopreserved, there was a problem that the survival rate was reduced, the cells were destroyed and the contents leaked, the texture was deteriorated, and the flavor was deteriorated. Therefore, it has been desired to develop a cell preservation solution that increases the survival rate and improves the flavor.
特願2009-234683号公報Japanese Patent Application No. 2009-234683 特願2008-56741号公報Japanese Patent Application No. 2008-56741
 本発明は、水素、酸素、窒素を含有するナノバブルを含有する組成物とその用途を提供する。 The present invention provides a composition containing nanobubbles containing hydrogen, oxygen, and nitrogen and uses thereof.
 本明細書によれば、以下の発明が提供される。
(1)水素0.45~0.55ppm、酸素10~12.5ppm、窒素7~8ppm含有する、粒径30マイクロメートル以下のマイクロバブルおよび/またはナノバブルを有効成分として含有する組成物。ここで、各気体の濃度は溶存気体とナノバブルの両方を合わせた濃度である。
(2)(1)の組成物を有効成分として含有するミトコンドリア活性化剤組成物。ここで、ミトコンドリア活性化組成物はミトコンドリア活性化剤と同じ意味である。
According to this specification, the following invention is provided.
(1) A composition containing microbubbles and / or nanobubbles having a particle size of 30 micrometers or less, containing 0.45 to 0.55 ppm hydrogen, 10 to 12.5 ppm oxygen, and 7 to 8 ppm nitrogen. Here, the concentration of each gas is the concentration of both dissolved gas and nanobubbles.
(2) A mitochondrial activator composition containing the composition of (1) as an active ingredient. Here, the mitochondrial activation composition has the same meaning as the mitochondrial activator.
(3)(1)または(2)の組成物を有効成分として含有する細胞増殖促進剤。この場合、細胞増殖促進剤は(1)および(2)の両方の組成物を含有していてもよい。
(4)(1)~(3)のいずれか1の組成物又は剤を有効成分として含有する細胞保存液。ここで、剤は、(3)の細胞増殖促進剤を意味する。ただし、(2)のミトコンドリア活性化組成物がミトコンドリア活性化剤と補正された場合はミトコンドリア活性化剤も剤に含まれる。また、「いずれか1の」とは、「少なくともいずれか1の」という意味であり、「いずれか1のみの」という意味ではない。したがって、(1)~(3)のうち2以上又は3以上の組成物または剤を含むものも技術的範囲に含まれる。以下も同様であり、「いずれか1の」は「(少なくとも)いずれか1の」の意味である。
(5)(1)~(4)のいずれか1の組成物、剤又は液を有効成分として含有する凍結保存液。ここで、剤は(4)と同じ意味であり、液は、(4)の細胞保存液を意味する。
(3) A cell growth promoter containing the composition of (1) or (2) as an active ingredient. In this case, the cell growth promoter may contain both the compositions (1) and (2).
(4) A cell preservation solution containing the composition or agent of any one of (1) to (3) as an active ingredient. Here, the agent means the cell growth promoter of (3). However, when the mitochondrial activation composition of (2) is corrected as a mitochondrial activator, the mitochondrial activator is also included in the agent. Further, “any one” means “at least any one” and does not mean “only any one”. Accordingly, the technical scope includes two or more or three or more compositions or agents among (1) to (3). The same applies to the following, and “any one” means “(at least) any one”.
(5) A cryopreservation solution containing the composition, agent or solution of any one of (1) to (4) as an active ingredient. Here, the agent has the same meaning as in (4), and the solution means the cell preservation solution in (4).
(6)(1)~(5)のいずれか1の組成物、剤又は液を含有する飲食物。ここで、液は(4)の細胞保存液に加えて(5)の凍結保存液も含む。
(7)(1)~(5)のいずれか1の組成物、剤又は液で処理した原材料を使用して製造された飲食物。
(8)(1)~(5)のいずれか1の組成物、剤又は液を用いてミトコンドリアを活性化する方法。
(9)(1)~(5)のいずれか1の組成物、剤又は液を用いて細胞増殖を促進する方法。
(6) A food or drink containing the composition, agent or liquid of any one of (1) to (5). Here, the solution includes the cryopreservation solution (5) in addition to the cell preservation solution (4).
(7) A food or drink produced using a raw material treated with the composition, agent or liquid of any one of (1) to (5).
(8) A method of activating mitochondria using the composition, agent or solution of any one of (1) to (5).
(9) A method of promoting cell proliferation using the composition, agent or solution of any one of (1) to (5).
(10)(1)~(5)のいずれか1の組成物、剤又は液を用いて細胞を保存する方法。
(11)(1)~(5)のいずれか1の組成物、剤又は液を用いて凍結保存する方法。
(12)(1)~(5)のいずれか1の組成物、剤又は液を用いて飲食物またはその原材料を処理する工程を含む、飲食物の製造方法。
(13)(1)の組成物を用いて調製した細胞培養用培地。
(14)(1)の組成物を用いて調製した植物水耕栽培用溶液。
(15)(13)の培地を用いて動物細胞を増殖させる方法。
(16)動物細胞が免疫系細胞である、(15)の動物細胞を増殖させる方法。
(10) A method for preserving cells using the composition, agent or solution of any one of (1) to (5).
(11) A method for cryopreserving the composition, agent or solution of any one of (1) to (5).
(12) A method for producing a food or drink, comprising a step of treating the food or drink or its raw material using the composition, agent or liquid of any one of (1) to (5).
(13) A cell culture medium prepared using the composition of (1).
(14) A solution for plant hydroponics prepared using the composition of (1).
(15) A method for growing animal cells using the medium of (13).
(16) The method for growing animal cells according to (15), wherein the animal cells are immune system cells.
(17)(1)もしくは(2)に記載の組成物、または(3)に記載の細胞増殖促進剤を有効成分とする動脈硬化症の予防・治療剤。
(18)(1)もしくは(2)に記載の組成物、または(3)に記載の細胞増殖促進剤を有効成分とする糖尿病の予防・治療剤。
(19)(1)または(2)に記載の組成物を含む注射液。
(17) A prophylactic / therapeutic agent for arteriosclerosis comprising the composition according to (1) or (2) or the cell growth promoter according to (3) as an active ingredient.
(18) A prophylactic / therapeutic agent for diabetes comprising the composition according to (1) or (2) or the cell growth promoter according to (3) as an active ingredient.
(19) An injection solution comprising the composition according to (1) or (2).
 本発明の組成物によれば、ミトコンドリアを活性化し、細胞増殖を促進し、細胞の保存、凍結保存の際の細胞へのダメージが少なくなるという効果が得られる。 According to the composition of the present invention, the effects of activating mitochondria, promoting cell proliferation, and reducing damage to cells during cell storage and cryopreservation can be obtained.
図1は、本発明の組成物の細胞培養の増殖促進効果を表す図である。FIG. 1 is a graph showing the growth promoting effect of cell culture of the composition of the present invention. 図2は、本発明の組成物の抗酸化作用を表す図である。FIG. 2 is a diagram showing the antioxidant action of the composition of the present invention. 図3は各種薬剤に対するATP産生量の影響を表す図である。FIG. 3 is a diagram showing the influence of the amount of ATP produced on various drugs. 図4は本発明の組成物を摂取する前後のGPTの変化を表す図である。FIG. 4 is a diagram showing changes in GPT before and after taking the composition of the present invention. 図5は、本発明の組成物を摂取する前後のHELの生成速度を表す図である。FIG. 5 is a diagram showing the generation rate of HEL before and after taking the composition of the present invention. 図6は、本発明の組成物を摂取する前後のSTASの変化を表す図である。FIG. 6 is a diagram showing changes in STAS before and after taking the composition of the present invention. 図7は、本発明の組成物のES細胞の細胞培養の増殖促進効果を表す図である。FIG. 7 is a diagram showing the growth promoting effect of ES cell culture of the composition of the present invention. 図8は、FACS解析によるリンパ球中の各細胞の分布割合を示す図である。FIG. 8 is a diagram showing the distribution ratio of each cell in lymphocytes by FACS analysis. 図9は、本発明のMCPを添加した際のT細胞、B細胞、NK細胞の増殖促進効果を対照区を1として比率で示した図である。FIG. 9 is a graph showing the growth promoting effects of T cells, B cells, and NK cells when the MCP of the present invention is added, with the control group as 1. 図10は、本発明の組成物の免疫細胞の増殖促進効果を表す図である。FIG. 10 is a diagram showing the effect of promoting the proliferation of immune cells of the composition of the present invention. 図11は、本発明の組成物の免疫細胞の増殖促進効果を表す図である。FIG. 11 is a diagram showing the effect of promoting the proliferation of immune cells of the composition of the present invention. 図12は、本発明の組成物の免疫細胞の増殖促進効果を表す図である。FIG. 12 is a diagram showing the effect of promoting the proliferation of immune cells of the composition of the present invention. 図13は、本発明の組成物の免疫細胞の増殖促進効果を表す図である。FIG. 13 is a diagram showing the effect of promoting the proliferation of immune cells of the composition of the present invention. 図14は、本発明の組成物の動脈硬化症に対する効果を表す図である。FIG. 14 is a diagram showing the effect of the composition of the present invention on arteriosclerosis. 図15は、本発明の組成物の動脈硬化症に対する効果を表す図である。FIG. 15 is a diagram showing the effect of the composition of the present invention on arteriosclerosis. 図16は、本発明の組成物のII型糖尿病に対する効果を表す図である。FIG. 16 is a diagram showing the effect of the composition of the present invention on type II diabetes. 図17は、MCP摂取後の血液検査の結果を示す図である。FIG. 17 is a diagram showing the results of a blood test after ingestion of MCP. 図18は、本発明の組成物の繊維芽細胞の増殖促進効果を表す図である。FIG. 18 is a graph showing the fibroblast proliferation promoting effect of the composition of the present invention. 図19は、本発明の組成物の炎症治癒効果を表す図である。FIG. 19 is a diagram showing the inflammation healing effect of the composition of the present invention.
実施形態Embodiment
 本発明は、水素0.45~0.55ppm、酸素10~12.5ppm、窒素7~8ppm含有する、粒径30マイクロメートル以下のマイクロバブルおよび/またはナノバブルを有効成分として含有する組成物を提供する。この組成物は、ミトコンドリア活性化、細胞増殖促進、細胞保存、細胞凍結保存、飲食物、注射液の調製等に利用することができる。 The present invention provides a composition containing, as an active ingredient, microbubbles and / or nanobubbles having a particle size of 30 micrometers or less, containing 0.45 to 0.55 ppm of hydrogen, 10 to 12.5 ppm of oxygen, and 7 to 8 ppm of nitrogen. This composition can be used for mitochondrial activation, cell growth promotion, cell preservation, cell cryopreservation, food and drink, preparation of injection solution, and the like.
 本発明の組成物に含まれる気体の好ましい濃度は、水素0.1~3.0ppm、酸素5~20ppm、窒素3~20ppm、より好ましくは、水素0.3~1.0ppm、酸素7~15ppm、窒素4~15ppm、さらに好ましくは、水素0.4~0.6ppm、酸素9~13ppm、窒素5~10ppm、特に好ましくは、水素0.45~0.55ppm、酸素10~12.5ppm、窒素7~8ppmである。なお、これらの濃度は、それぞれの濃度でそれなりの効果を有するため、この範囲内であれば、どこで区切っても本発明の効果を有するものである。なお、ppmとはパート・パー・ミリオンを意味し、溶存気体の濃度を表す。
 本発明の組成物に含まれる気体は、粒径が0より大きく、30マイクロメートル以下が好ましく、より好ましくは20マイクロメートル以下、さらに好ましくは10マイクロメートル以下、よりさらに好ましくは1マイクロメートル以下、特に好ましくは100マイクロメートル以下、最も好ましくは30ナノメートル以下である。
 植物の水耕栽培などにおいては、ナノバブルに加えて、マイクロバブルの気体を用いることで増殖効率を上げることができる。その場合、マイクロバブルの大きさとしては、
1~100マイクロメートルが好ましく、より好ましくは5~80マイクロメートル、さらに好ましくは10~70マイクロメートル、特に好ましくは15~60マイクロメートル、最も好ましくは20~50マイクロメートルである。これらは全てのマイクロバブルまたはナノバブルがこの大きさに含まれることを意味するわけではなく、マイクロバブルまたはナノバブル全体の60%以上がこの大きさであればよい。
The preferred concentration of the gas contained in the composition of the present invention is 0.1 to 3.0 ppm for hydrogen, 5 to 20 ppm for oxygen, 3 to 20 ppm for nitrogen, more preferably 0.3 to 1.0 ppm for hydrogen, 7 to 15 ppm for oxygen, 4 to 15 ppm for nitrogen, More preferably, hydrogen is 0.4 to 0.6 ppm, oxygen is 9 to 13 ppm, nitrogen is 5 to 10 ppm, particularly preferably hydrogen is 0.45 to 0.55 ppm, oxygen is 10 to 12.5 ppm, and nitrogen is 7 to 8 ppm. In addition, since these density | concentrations have a moderate effect in each density | concentration, if it is in this range, it will have the effect of this invention regardless of where it is divided. In addition, ppm means a part per million and represents the density | concentration of dissolved gas.
The gas contained in the composition of the present invention has a particle size of greater than 0 and preferably 30 micrometers or less, more preferably 20 micrometers or less, more preferably 10 micrometers or less, even more preferably 1 micrometers or less, Especially preferably, it is 100 micrometers or less, Most preferably, it is 30 nanometers or less.
In hydroponic cultivation of plants, the growth efficiency can be increased by using microbubble gas in addition to nanobubbles. In that case, as the size of the microbubble,
It is preferably 1 to 100 micrometers, more preferably 5 to 80 micrometers, still more preferably 10 to 70 micrometers, particularly preferably 15 to 60 micrometers, and most preferably 20 to 50 micrometers. These do not mean that all the microbubbles or nanobubbles are included in this size, and 60% or more of the entire microbubbles or nanobubbles may be this size.
 本発明のナノバブルを含有する組成物は、水素、酸素、窒素ガスをナノバブル化して水(例えば、超純水)に混入させることにより製造される。ガスの純度は特に限定されないが、飲料水等に用いる場合は、高純度ガスを用いることが好ましい。 The composition containing nanobubbles of the present invention is produced by making hydrogen, oxygen, and nitrogen gas into nanobubbles and mixing them in water (for example, ultrapure water). Although the purity of gas is not specifically limited, When using for drinking water etc., it is preferable to use high purity gas.
 ナノバブルは、例えば、液体中に導入した気体を剪断破壊して微細化すること等により発生させることができ、種々のナノバブル発生装置が開発されている。本発明においてナノバブル発生装置は、一般的なナノバブル発生装置であれば特に制限なく使用できるが、例えば、ナノバブル発生装置バヴィタス(登録商標、株式会社Ligaric社製)や、ナノバブル発生装置ナノアクア(登録商標、株式会社テックコーポレーション製)等が好適に用いられる。
 本発明のナノバブルを含有する組成物の形態は特に限定されないが、典型的には水であり、飲料水、培地調製用の水、魚類の生簀の水、植物の散布用水等に使用できる。
Nanobubbles can be generated, for example, by shearing and refining a gas introduced into a liquid, and various nanobubble generators have been developed. In the present invention, the nanobubble generator can be used without particular limitation as long as it is a general nanobubble generator. For example, the nanobubble generator Bavitas (registered trademark, manufactured by Ligaric Co., Ltd.), the nanobubble generator Nanoaqua (registered trademark, (Tec Corporation) is preferably used.
Although the form of the composition containing the nanobubble of the present invention is not particularly limited, it is typically water, and can be used for drinking water, medium preparation water, fish ginger water, plant spray water, and the like.
 機能水(ナノバブル水)を製造するための器機の構成は以下のものを含む。水素ガスボンベ、酸素ガスボンベ、窒素ガスボンベ又は窒素ガス発生装置、デジタル制御型レギュレーター、オゾン水発生装置。ナノバブル発生装置、注水タンク、各種フィルター群。
 まず、1ppm程度のオゾン水を使用して、ナノバブル発生装置、注水タンク、配管等を殺菌洗浄する。機能水の原水として淡水を使用する場合、通過させるフィルターの構成は中空糸膜フィルター、活性炭フィルター、中空糸膜フィルターをこの順に配列したものを1ユニットとして使用し、水道水が原水の場合は通常2ユニットを使用する。ユニットの数は、原水の不純物の程度により適宜増減させることができる。この濾過ユニットを通過させた濾過水を、0.25μm~0.45μmのメンブレンフィルター(目的によっては逆浸透膜フィルター)を通過させ、さらに濾過し注水タンクに注水する。
 デジタル制御型レギュレーターにより調整した濃度のガス体を各ボンベ等からナノバブル発生装置に送り込み、注水タンク内の濾過水に各ガス体とナノバブルを、ナノバブル発生装置と注水タンクとの間で循環させながら、各ガス体が目的の容存量の数値に成るまで容存させる。各種検査器機で、水中のガス体が目的の容存量に達した状態のものを、注水タンクから0.25μm~0.45μmのメンブレンフィルターを通過させて使用する。
The configuration of the equipment for producing functional water (nano bubble water) includes the following. Hydrogen gas cylinder, oxygen gas cylinder, nitrogen gas cylinder or nitrogen gas generator, digital control regulator, ozone water generator. Nano bubble generator, water injection tank, various filter groups.
First, sterilize and clean the nanobubble generator, water injection tank, piping, etc. using about 1 ppm of ozone water. When fresh water is used as raw water for functional water, the configuration of the filter to be passed is a hollow fiber membrane filter, activated carbon filter, and hollow fiber membrane filter arranged in this order as one unit. When tap water is raw water, it is normal. Use 2 units. The number of units can be appropriately increased or decreased depending on the degree of impurities in the raw water. The filtered water that has passed through the filtration unit is passed through a membrane filter (reverse osmosis membrane filter depending on the purpose) of 0.25 μm to 0.45 μm, further filtered, and poured into a water injection tank.
While sending the gas body with the concentration adjusted by the digital control type regulator from each cylinder etc. to the nano bubble generator, circulating each gas body and nano bubble in the filtered water in the water injection tank between the nano bubble generator and water injection tank, Each gas body is allowed to remain until the desired amount is reached. Use various inspection devices that have reached the desired volume of gas in the water and pass them through the 0.25 μm to 0.45 μm membrane filter from the water injection tank.
 本発明は、ミトコンドリアを活性化する活性化剤を提供する。ミトコンドリアの活性化はATP産生量を測定することにより、ATP産生量の増加として測定できる。
 本明細書において、「ミトコンドリア活性化」とは、ミトコンドリアにおけるATP産生量が対照区よりも高くなることを言う。対照区とは、典型的には通常の水(超純水)を言うが、これに限られず本発明のナノバブルを含まない以外は同じ組成の組成物を用いる実験区を意味する。本発明の組成物を使用することにより、酸化ストレス負荷時において、ミトコンドリアにおけるATP産生量が対照区よりも高くなる効果を有する。
The present invention provides an activator that activates mitochondria. Mitochondrial activation can be measured as an increase in ATP production by measuring ATP production.
In this specification, “mitochondrial activation” means that the amount of ATP produced in mitochondria is higher than that in the control group. The control group typically refers to normal water (ultra pure water), but is not limited to this, and means an experimental group using a composition having the same composition except that the nanobubbles of the present invention are not included. Use of the composition of the present invention has an effect that the amount of ATP produced in mitochondria is higher than that of the control group when oxidative stress is applied.
 本発明の組成物によれば、高い細胞増殖促進効果が得られる。例えば、本発明の組成物(水溶液)を用いて細胞培養用培地を調製し、細胞を培養した場合、通常の水(超純水)を用いた培地に比べ高い増殖促進効果が得られる。 According to the composition of the present invention, a high cell proliferation promoting effect can be obtained. For example, when a cell culture medium is prepared using the composition (aqueous solution) of the present invention and the cells are cultured, a higher growth promoting effect is obtained compared to a medium using normal water (ultra pure water).
 例えば、iPS細胞(induced pluripotent stem cells、誘導多能性幹細胞)の培養において、72時間培養で、通常の超純水を用いた培地で培養した場合の約2倍の増殖促進効果が得られた(図1)。この細胞増殖促進剤は、他の培養細胞、例えば、初代培養細胞、未分化細胞、造血細胞、繊維芽細胞、不死化細胞、幹細胞等、増殖可能な細胞にも使用できる。ここで培養細胞とは、特に限定されないが、1次体細胞、株化細胞、不死化細胞、幹細胞等分裂可能な細胞を言う。幹細胞とは、胚性幹細胞および体性幹細胞を含み、例えば、神経幹細胞、肝幹細胞、皮膚幹細胞、生殖幹細胞、iPS細胞等を言うがこれらに限られない。増殖可能な細胞とは、増殖能を有する細胞をいい、1次体細胞の培養細胞、未分化細胞、前駆細胞等が含まれる。 For example, in the cultivation of iPS cells (induced pluripotent stem cells, induced pluripotent stem cells), the growth promotion effect was approximately doubled when cultured in a medium using normal ultrapure water in 72 hours of culture. (FIG. 1). This cell growth promoter can also be used for proliferating cells such as other cultured cells such as primary cultured cells, undifferentiated cells, hematopoietic cells, fibroblasts, immortalized cells, stem cells and the like. Here, the cultured cell is not particularly limited, but refers to a cell that can divide, such as a primary somatic cell, a cell line, an immortalized cell, or a stem cell. Stem cells include embryonic stem cells and somatic stem cells, and include, but are not limited to, neural stem cells, liver stem cells, skin stem cells, germ stem cells, iPS cells, and the like. A proliferative cell means a cell having proliferative ability, and includes cultured cells of primary somatic cells, undifferentiated cells, progenitor cells, and the like.
 培養細胞作製のための出発材料として用いることのできる体細胞は、哺乳動物(例えば、マウスまたはヒト)由来の生殖細胞以外のいかなる細胞であってもよく、例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝・貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能をもつ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、Tリンパ球)、感覚に関する細胞(例、桿細胞) 自律神経系ニューロン(例、コリン作動性ニューロン)、感覚器と末梢ニューロンの支持細胞(例、随伴細胞)、中枢神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、およびそれらの前駆細胞(組織前駆細胞)等が挙げられる。細胞の分化の程度に特に制限はなく、未分化な前駆細胞(体性幹細胞も含む) であっても、最終分化した成熟細胞であっても、同様に体細胞の起源として使用することができる。ここで未分化な前駆細胞としては、たとえば神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。 Somatic cells that can be used as starting material for the production of cultured cells can be any cells other than germ cells derived from mammals (eg, mice or humans), such as keratinized epithelial cells (eg, Keratinized epidermal cells), mucosal epithelial cells (eg, epithelial cells of the tongue), exocrine glandular epithelial cells (eg, mammary cells), hormone-secreting cells (eg, adrenal medullary cells), cells for metabolism and storage (eg, Hepatocytes), luminal epithelial cells that make up the interface (eg, type I alveolar cells), luminal epithelial cells of the inner chain (eg, vascular endothelial cells), and cilia cells that have a transport ability (eg, Airway epithelial cells), extracellular matrix secreting cells (eg, fibroblasts), contractile cells (eg, smooth muscle cells), blood and immune system cells (eg, T lymphocytes), sensory cells (eg,桿 cells) Autonomic neurons (eg, cholinergic neurons) Urons), sensory organs and peripheral neuron support cells (eg, companion cells), central nervous system neurons and glial cells (eg, astrocytes), pigment cells (eg, retinal pigment epithelial cells), and Examples include progenitor cells (tissue progenitor cells). There is no particular limitation on the degree of cell differentiation, and it can be used as the source of somatic cells, whether it is an undifferentiated progenitor cell (including somatic stem cells) or a terminally differentiated mature cell. . Examples of undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
 また、本発明の組成物を用いることで植物細胞の増殖促進効果も得られる。本発明の組成物を用いて培地または水耕栽培溶液を調製し、植物に使用することにより、増殖促進効果が得られる。特に水耕栽培では本発明の組成物とともに空気のマイクロバブル(サイズ10nm~30nm)を加えることで、地上部乾物重、地上部新鮮重、地下部乾物重、地下部新鮮重とも10~20%増加した(実施例14、表7参照) In addition, by using the composition of the present invention, an effect of promoting the growth of plant cells can be obtained. A growth promoting effect can be obtained by preparing a medium or a hydroponics solution using the composition of the present invention and using it in plants. Especially in hydroponics, by adding air microbubbles (size 10 nm to 30 nm) together with the composition of the present invention, the above-ground dry weight, above-ground fresh weight, below-ground dry weight, and below-ground fresh weight are both 10 to 20%. Increased (see Example 14, Table 7)
 本発明の組成物によれば、細胞の活性を高く保った状態で細胞を保存することができる。例えば、魚類を本発明の組成物を含む水で生育させ、または保存することで、ミトコンドリアの活性を高く保つことができ、風味のよい食品を提供することができる。これは、ミトコンドリアが活性化されるとATPの産生量が増加し、その分解物であるイノシン酸(IMP)等の旨味成分も増加するためと考えられる。すなわち、本発明の組成物によれば、旨味の増加した食品を提供することができる。 According to the composition of the present invention, cells can be stored in a state where the activity of the cells is kept high. For example, by growing or storing fish in water containing the composition of the present invention, mitochondrial activity can be kept high, and a savory food can be provided. This is considered to be because when mitochondria are activated, the amount of ATP produced increases, and umami components such as inosinic acid (IMP), which is a degradation product thereof, also increase. That is, according to the composition of the present invention, a food with increased umami taste can be provided.
 本発明の組成物は、飲食物にそのまま添加することもでき、飲食物の原料として使用したり、飲食物又は飲食物原料の加工用に使用することもできる。ここで、飲食物とは、限定されないが、人が食する飲み物および食べ物を意味する。例えば、健康補助食品、低カロリー食品、ダイエット食品、パン、乳製品(例えば、無脂肪乳、ヨーグルト、プリン、豆乳など)、麺(例えば、うどん、中華麺、ワンタン、餃子の皮、蕎麦など)、菓子(例えば、クッキー、和菓子、蒸しパン、ポテトチップス、チョコレート、カスタードクリームなど)、飲料(例えば、スープ、野菜飲料、ダイエットドリンク、紅茶、コーヒーなど)、デザート(例えば、ケーキ、ムースなど)、冷菓子(例えば、ゼリー、アイスクリームなど)、惣菜(例えば、つみれ、伊達巻、から揚げなど)、シリアル、フィリング、ドレッシング、焼き食物、肉製品(例えば、ソーセージなど)が挙げられる。 The composition of the present invention can be added to foods and drinks as they are, and can be used as a raw material for foods and drinks, or can be used for processing foods and drinks or food materials. Here, the food and drink means, though not limited to, drinks and foods that people eat. For example, health supplements, low-calorie foods, diet foods, bread, dairy products (eg, non-fat milk, yogurt, pudding, soy milk, etc.), noodles (eg, udon, Chinese noodles, wonton, gyoza skin, soba noodles, etc.) Confectionery (e.g. cookies, Japanese confectionery, steamed bread, potato chips, chocolate, custard cream, etc.), beverages (e.g. soup, vegetable drinks, diet drinks, tea, coffee etc.), desserts (e.g. cakes, mousses etc.), Examples include frozen confectionery (for example, jelly, ice cream, etc.), sugar beet (for example, tsumire, date roll, fried chicken), cereal, filling, dressing, baked food, meat products (for example, sausage).
 本発明の組成物は、飼料に添加して使用することもできる。飼料とは、限定されないが、人を除く動物、好ましくは、魚類、家畜、愛玩動物などの飲み物および食べ物を意味する。また、魚のえさなども含む。より好ましくは、魚類用の生簀、水槽、池等の水、牛、豚、羊、鶏、馬、イヌ、ネコなどの飲み物および食べ物である。
 また、本発明の組成物は、注射用剤(点滴剤も含む)としても使用できる。例えば、ペット、家畜、実験動物および/またはヒトなどに本発明の組成物を注射することで、免疫細胞の増殖促進作用、糖尿病・動脈硬化症・炎症などの予防および/または治療薬としても用いることができる。また、また、注射液の調製に本発明の組成物を用いることもできる。
 また、本発明の組成物は、人または動物がそのまま飲用水として飲むことによっても種々の疾患、例えば、免疫細胞の増殖促進作用、糖尿病・動脈硬化症・炎症などの予防、治療効果が得られる。
The composition of the present invention can also be used by adding to feed. The feed means, but not limited to, animals other than humans, and preferably drinks and foods such as fish, livestock, and pets. Also includes fish food. More preferred are fish ginger, water in aquariums, ponds, and drinks and foods such as cows, pigs, sheep, chickens, horses, dogs and cats.
The composition of the present invention can also be used as an injectable agent (including an instillation). For example, by injecting the composition of the present invention into pets, domestic animals, laboratory animals, and / or humans, the composition is also used as a prophylactic and / or therapeutic agent for immune cell proliferation promotion, diabetes, arteriosclerosis, inflammation, etc. be able to. Moreover, the composition of this invention can also be used for preparation of an injection solution.
In addition, the composition of the present invention can provide various diseases, such as immune cell proliferation-promoting action, diabetes / arteriosclerosis / inflammation, and other preventive and therapeutic effects even when a human or animal drinks it as drinking water. .
 以下に実施例を用いて本発明を説明するが、本発明の範囲は何らこれらの実施例により制限されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the scope of the present invention is not limited by these examples.
(実施例1)
 iPS細胞培地は、以下のようにして調製した。1Lの蒸留水(DW)または本発明の組成物(APAS)に12.5gのGlasgow minimum essential medium (Sigma;G6148)と2.75 gのSodium bicarbonate (Sigma;S5761)を加え攪拌した。この溶液に、以下の終濃度になるように各試薬を添加した:0.1mM MEM Non-Essential Amino Acids Solusion (Gibco;11140)と1mM Sodium pyruvate solution (Sigma;S8636)、1% Fetal bovine serum (CCB;171012)、1% PenicillinStreptomycin (Gibco;15140)、5.4% Knockout Serum Replacement (Gibco;10828)、0.1mM 2-Mercaptoethanol (Wako;137-06862)、2000 U/ml Leukemia inhibitor factor (Millipore;ESG1107)。均一になるまで撹拌し、溶解した後、0.45μmフィルターで濾過滅菌し細胞維持培地とした。
 培養の結果を図1に示す。その結果、本発明の組成物を用いて培地を作成した場合、通常の超純水を用いて作成した培地を用いた場合とでは、本発明の組成物を用いて作成した培地の方が、対照の超純水培地に比べ約2倍の増殖量が得られた。
Example 1
iPS cell culture medium was prepared as follows. To 1 L of distilled water (DW) or the composition of the present invention (APAS), 12.5 g of Glasgow minimum essential medium (Sigma; G6148) and 2.75 g of sodium bicarbonate (Sigma; S5761) were added and stirred. Reagents were added to this solution to the following final concentrations: 0.1 mM MEM Non-Essential Amino Acids Solusion (Gibco; 11140), 1 mM Sodium pyruvate solution (Sigma; S8636), 1% Fetal bovine serum (CCB ; 171012), 1% Penicillin Streptomycin (Gibco; 15140), 5.4% Knockout Serum Replacement (Gibco; 10828), 0.1 mM 2-Mercaptoethanol (Wako; 137-06862), 2000 U / ml Leukemia inhibitor factor (Millipore; ESG1107). The mixture was stirred until homogeneous and dissolved, and then sterilized by filtration through a 0.45 μm filter to obtain a cell maintenance medium.
The culture results are shown in FIG. As a result, when a medium is prepared using the composition of the present invention, when a medium prepared using normal ultrapure water is used, the medium prepared using the composition of the present invention is more About twice the amount of growth was obtained compared to the control ultrapure water medium.
(実施例2)マウス血管内皮細胞株(MAEC)を用いた抗酸化作用の検討
 本発明の組成物を含む水、ナノバブル水(空気を含むナノバブル水)、水素ナノバブル水(水素を溶存気体、マイクロバブルおよびナノバブルの合計の70%以上含むナノバブル水)をそれぞれ用いて、M199培地(SIGMA)を作製し、10%ウシ胎児血清、100IU/mlペニシリン、及び100μl/mlストレプトマイシンを加え、培養用培地とした。それぞれの水を用いた培地でMAECを24時間培養した後、新鮮な培地に交換してさらに2時間培養した。その後30μg/mlアンチマイシンを各々の培地に添加し、30分間培養した。対照として溶媒として用いたエタノールをアンチマイシン溶液に含まれる用量と同量である0.06v/v%になるように加えた。アンチマイシンは、ミトコンドリアの電子伝達系を抑制することにより細胞にROS(活性酸素種、Reactive Oxygen Species)を産生させる作用があることが知られている。エタノールは一般にアンチマイシンの溶媒として用いられるもので、その溶媒の影響を知るためにアンチマイシンを含まないエタノールのみを加えた場合についてもテストした。産生されたROSの量を知るために、蛍光強度を指標として、その蛍光強度を有する細胞の数を計測した。具体的には、ROSを検出するためのプローブとしてCM-H2DCFDAを用い、各細胞からの蛍光の強度をフローサイトメーター(VantageSE、Becton Dickinson)により検出した。
(Example 2) Examination of antioxidant action using mouse vascular endothelial cell line (MAEC) Water containing the composition of the present invention, nanobubble water (nanobubble water containing air), hydrogen nanobubble water (hydrogen dissolved gas, micro Nanobubble water containing 70% or more of bubbles and nanobubbles) was prepared, respectively, and M199 medium (SIGMA) was prepared, 10% fetal bovine serum, 100 IU / ml penicillin, and 100 μl / ml streptomycin were added, did. After culturing MAEC for 24 hours in a medium using each water, the medium was replaced with a fresh medium and further cultured for 2 hours. Thereafter, 30 μg / ml antimycin was added to each medium and incubated for 30 minutes. As a control, ethanol used as a solvent was added so as to be 0.06 v / v% which is the same amount as that contained in the antimycin solution. Antimycin is known to have the effect of causing cells to produce ROS (Reactive Oxygen Species) by suppressing the mitochondrial electron transport system. Ethanol is generally used as a solvent for antimycin, and in order to know the influence of the solvent, the case where only ethanol without antimycin was added was also tested. In order to know the amount of ROS produced, the number of cells having the fluorescence intensity was counted using the fluorescence intensity as an index. Specifically, CM-H2DCFDA was used as a probe for detecting ROS, and the intensity of fluorescence from each cell was detected by a flow cytometer (VantageSE, Becton Dickinson).
 ROSの検出結果を図2に示す。図2の各グラフは、ある蛍光強度を示す細胞数を示すものであり、MFIの値は平均蛍光強度を示す。ナノバブル水(NB;上段)を用いた培地でMAEC細胞を培養した場合は、無刺激時(左列)と溶媒コントロールのエタノールのみを添加した場合(真中列)とで平均蛍光強度に殆ど変化が認められなかったが、ROS産生作用をもつアンチマイシンを添加した場合(右列)には平均蛍光強度が顕著に増強した。これに対して本発明の組成物を含む水(O2・H2・N2NB;下段)で培養した場合には、ナノバブル水を用いた培地で培養したときよりも、無刺激とアンチマイシン添加のいずれの場合にも低い平均蛍光強度が得られた。また、水素ナノバブル水(H2NB;中段)を用いた培地で培養したときと本発明の組成物を含む水を用いた培地で培養したときとを比較すると、本発明の組成物を含む水の方を用いた培地で培養した方が、無刺激の場合、エタノールのみを添加した場合、アンチマイシンを添加した場合の全てにおいて、低い平均蛍光強度を示していた。この結果から本発明の組成物を含む水の強い抗酸化作用が認められた。 Figure 2 shows the ROS detection results. Each graph in FIG. 2 shows the number of cells showing a certain fluorescence intensity, and the MFI value shows the average fluorescence intensity. When MAEC cells were cultured in a medium using nanobubble water (NB; upper row), there was almost no change in average fluorescence intensity between no stimulation (left column) and when only solvent-controlled ethanol was added (middle column). Although not observed, when antimycin having ROS producing activity was added (right column), the average fluorescence intensity was significantly enhanced. On the other hand, when cultured in water containing the composition of the present invention (O 2 · H 2 · N 2 NB; bottom), both non-stimulated and antimycin-added than when cultured in a medium using nanobubble water In some cases, a low average fluorescence intensity was obtained. Further, when culturing in a medium using hydrogen nanobubble water (H2NB; middle stage) and culturing in a medium using water containing the composition of the present invention, the water containing the composition of the present invention is compared. In the case of no stimulation, when ethanol was added alone, and when antimycin was added, the culture medium in the culture medium using the low average fluorescence intensity was shown. From this result, strong antioxidant action of water containing the composition of the present invention was recognized.
(実施例3)マウス血管内皮細胞株(MAEC)における酸化ストレス負荷時のATP産生の検討
 次に、MAECにおいて酸化ストレス負荷時に低下するミトコンドリアの機能へのATP産生活性水の作用を確認するために、細胞内ATP産生について検討を行った。MAEC細胞は上記実験と同様に本発明の組成物を含む水、ナノバブル水、水素ナノバブル水を用いて作製した培養用培地にて培養した。それぞれの水を用いた培地でMAECを24時間培養した後、培地をそれぞれの水を用いた新鮮な培地に交換してさらに2時間培養した。次いで、50μg/mlアンチマイシン、0.06v/v%エタノール、500μmol/L過酸化水素をそれぞれの培地に添加した。また、抗酸化作用のコントロールとして、広汎な活性酸素種に作用する抗酸化剤のN-アセチルシステイン(NAC)を用いた。抗酸化作用のコントロール用の培地は、通常の水を用いて作製した。この培地に、MAEC細胞を24時間培養し、通常の水を用いた新鮮な培地に交換してさらに2時間培養した。次いで、NACを、終濃度が5mmol/Lとなるようにアンチマイシンあるいは過酸化水素水処理の30分前に培地に添加した。その後、細胞内のATP量の変化をルシフェラーゼ活性を指標に測定した(ATPlite、PerkinElmer)。
(Example 3) Examination of ATP production during oxidative stress loading in mouse vascular endothelial cell line (MAEC) Next, in order to confirm the effect of ATP-producing active water on the function of mitochondria that declines during oxidative stress loading in MAEC In addition, intracellular ATP production was examined. MAEC cells were cultured in a culture medium prepared using water, nanobubble water, and hydrogen nanobubble water containing the composition of the present invention, as in the above experiment. After culturing MAEC for 24 hours in a medium using each water, the medium was replaced with a fresh medium using each water and further cultured for 2 hours. Subsequently, 50 μg / ml antimycin, 0.06 v / v% ethanol, 500 μmol / L hydrogen peroxide was added to each medium. As an antioxidant control, N-acetylcysteine (NAC), an antioxidant that acts on a wide range of reactive oxygen species, was used. A medium for controlling the antioxidant action was prepared using ordinary water. MAEC cells were cultured in this medium for 24 hours, replaced with a fresh medium using normal water, and further cultured for 2 hours. Next, NAC was added to the medium 30 minutes before the treatment with antimycin or hydrogen peroxide so that the final concentration was 5 mmol / L. Thereafter, changes in intracellular ATP amount were measured using luciferase activity as an index (ATPlite, PerkinElmer).
 細胞内のATP量の測定結果を図3に示す。ナノバブル水(NB)を用いた培地で培養した細胞では、ATP量は、エタノール処理と、アンチマイシン処理、過酸化水素処理の全てで、無刺激の場合と比較して低下が認められた。この結果から、エタノール、アンチマイシン、及び過酸化水素は、ATP産生活性の抑制効果を有することがわかる。 The measurement result of the amount of ATP in the cell is shown in FIG. In cells cultured in a medium using nanobubble water (NB), the amount of ATP was decreased in all of ethanol treatment, antimycin treatment, and hydrogen peroxide treatment as compared with the case of no stimulation. From this result, it can be seen that ethanol, antimycin, and hydrogen peroxide have an inhibitory effect on ATP production activity.
 アンチマイシン処理では過酸化水素処理よりも強いATP産生活性の低下が認められた。水素ナノバブル水(H2NB)、本発明の組成物を含む水(O2・H2・N2NBをそれぞれ用いた培地で培養した 細胞では、いずれの処理を行った場合もATP産生活性の増加が認められた。すなわち、水素ナノバブル水と本発明の組成物を含む水は、アンチマイシン等によるATP産生活性の抑制効果を、抗酸化剤であるNACと同等もしくはそれ以上に低減させることが認められた。さらに、本発明の組成物を含む水は、エタノール又は過酸化水素で処理した場合に、水素ナノバブル水よりも、有意にATP産生活性の抑制効果を低減させた。 The antimycin treatment showed a stronger decrease in ATP production activity than the hydrogen peroxide treatment. In sputum cells cultured in hydrogen nanobubble water (H2NB) and water containing the composition of the present invention (O2, H2, N2NB, respectively), an increase in ATP production activity was observed when any treatment was performed. That is, it was confirmed that the water containing hydrogen nanobubble water and the composition of the present invention reduces the inhibitory effect on ATP production activity by antimycin or the like to NAC which is an antioxidant. Furthermore, when the water containing the composition of the present invention was treated with ethanol or hydrogen peroxide, the effect of suppressing ATP production activity was significantly reduced as compared with hydrogen nanobubble water.
(実施例3)ヒトにおける飲用効果の検討
 本発明の組成物を含む水をヒトが飲用した場合の生体に与える効果を明らかにすることを目的とし、ヒトにおける飲用実験を実施した。実験に参加したヒトは、40~69歳(平均年齢51.8歳)の男性4名、女性1名であった。各々の参加者の年齢と性別を表1に示す。全ての参加者は健康な状態であった。
(Example 3) Examination of drinking effects in humans A drinking experiment in humans was carried out for the purpose of clarifying the effect of humans on drinking water containing the composition of the present invention. The humans who participated in the experiment were 4 males and 1 female aged 40 to 69 years (average age 51.8 years). Table 1 shows the age and gender of each participant. All participants were in good health.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各々の参加者が本発明の組成物を含む水を1L/日、4週間飲用し、通常と変わらない生活を心がけた。参加者は、飲用開始前に血液を採取され、飲用開始後4週間目に再び血液を採取された。採血の当日は本発明の組成物を含む水を飲用しないこととした。検査は、肝障害の指標であるGPT(glutamic pyruvic transaminase)、過酸化脂質マーカーであるHEL(hexanoyl-lysine)、及び水溶性 総抗酸化物質として知られているSTAS(Serum Total Antioxidant Status)について行った。 Each participant took 1 L / day of water containing the composition of the present invention for 4 weeks, and tried to live as usual. Participants were blood collected before the start of drinking and blood was collected again 4 weeks after the start of drinking. On the day of blood collection, water containing the composition of the present invention was not drunk. The tests were performed on GPT (glutamic pyranic transaminase), an indicator of liver damage, HEL (hexanoyl-lysine), a lipid peroxide marker, and STAS (Serum Total Antioxidant), which is known as a water-soluble sputum total antioxidant. It was.
(1)GPT
 GPTは、主に肝臓に存在する酵素である。肝細胞が破壊されると特異的に血中に漏出することから肝炎ウイルスや薬物などによる肝障害の指標として利用される。この他、肝脂肪ではGOT、GPTの値が軽度の異常であることが多く、肥満による脂肪肝は、GOTよりGPTがやや高くなることも知られている。GPTは、血清中の濃度をシリカリキッドALT試薬(関東化学株式会社製)を使用し、Bio Majasesty(JCA-BM8060)(日本電子株式会社製)と オリンパスAU5431型生化学自動分析装置(オリンパス株式会社製)を用いて測定した。血清は、採取した血液を凝固させて、遠心分離して分離、回収した。測定結果を図4に箱ひげ図で示す。図4を参照すると、本発明の組成物を含む水の摂取後では、GPTの値が摂取前と比較して明らかに減少していた(P=0.042)。従って、本発明の組成物を含む水の飲用により、脂肪肝の改善傾向が認められた。
(1) GPT
GPT is an enzyme mainly present in the liver. When hepatocytes are destroyed, they leak into the blood specifically, and are used as indicators of liver damage caused by hepatitis virus or drugs. In addition, GOT and GPT values are often mildly abnormal in liver fat, and it is also known that fatty liver due to obesity has a slightly higher GPT than GOT. GPT uses a silica liquid ALT reagent (manufactured by Kanto Chemical Co., Inc.) with a concentration of serum, Bio Maasesty (JCA-BM8060) (manufactured by JEOL Ltd.), and Olympus AU5431 biochemical automatic analyzer (Olympus Co., Ltd.). ). Serum was collected by clotting the collected blood and centrifuging it. The measurement results are shown in FIG. Referring to FIG. 4, after ingestion of water containing the composition of the present invention, the value of GPT was clearly reduced compared to before ingestion (P = 0.042). Therefore, a tendency to improve fatty liver was observed by drinking water containing the composition of the present invention.
(2)HEL
 HELは、活性酸素種による脂質の過酸化過程において、脂質ペルオキシド(13-Hydroperoxy-octadecadienoic acid、13-HPODE)に由来する安定な初期生成物であり、従来用いられてきた4-HNEやMDA等のアルデヒド系脂質過酸化マーカーとは異なり、脂質過酸化の初期段階を捉えることが可能なマーカーである。HELは、血清中の濃度を、ヘキサノイルリジン測定用ELISAキット(KHL-700、日研ザイル株式会社製)を使用し、全自動マイクロプレートEIA分析装置AP960(協和メディックス株式会 社製)を用いて測定した。測定結果を図5に箱ひげ図で示す。図5を参照すると、HELはATP産生活性水の飲用後に有意に減少した(P=0.028)。従って、本発明の組成物を含む水は、ヒトにおいて脂質過酸化を抑制する効果があることが示された。
(2) HEL
HEL is a stable initial product derived from lipid peroxide (13-Hydroperoxy-octadecadienoic acid, 13-HPODE) in the process of lipid peroxidation by reactive oxygen species, and conventionally used 4-HNE, MDA, etc. Unlike the aldehyde lipid peroxidation markers, it is a marker that can capture the initial stage of lipid peroxidation. HEL uses a fully automated microplate EIA analyzer AP960 (manufactured by Kyowa Medix Co., Ltd.) using an ELISA kit for measuring hexanoyllysine (KHL-700, manufactured by Nikken Zeil Co., Ltd.). Measured. The measurement results are shown in FIG. Referring to FIG. 5, HEL significantly decreased after drinking ATP-producing active water (P = 0.028). Therefore, it was shown that the water containing the composition of the present invention has an effect of suppressing lipid peroxidation in humans.
(3)STAS
STASは、血清中の水溶性抗酸化物質であり、酸化ストレスに対する総合的な抗酸化能が測定可能である。STASは、血清について、TOTAL ANTIOXIDANT STATUS(NX2332、RANDOX社製)を使用して、7020形日立自動分析装置(株式会社 日立ハイテクノロジーズ製)を用いて測定した。測定の結果を図6に箱ひげ図で示す。図6を参照すると、STASは摂取後に有意に低い値を示していた(P=0.042)。この結果から、STASは水溶性の抗酸化物質を総合的に評価していることから、本発明の組成物を含む水により酸化ストレスの消去効果が期待されるヒドロキシラジカルや過酸化亜硝酸以外の活性酸素種の還元に本発明の組成物を含む水が作用していることが推測された。
(3) STAS
STAS is a water-soluble antioxidant in serum and can measure the total antioxidant capacity against oxidative stress. STAS was measured for serum using a TOTAL ANTIOXIDANT STATUS (NX2332, manufactured by RANDOX) using a 7020 Hitachi automatic analyzer (manufactured by Hitachi High-Technologies Corporation). The measurement results are shown in FIG. Referring to FIG. 6, STAS showed a significantly lower value after ingestion (P = 0.042). From these results, since STAS comprehensively evaluates water-soluble antioxidants, water other than hydroxy radicals and peroxynitrite, which are expected to eliminate oxidative stress by water containing the composition of the present invention. It was speculated that water containing the composition of the present invention was acting on the reduction of reactive oxygen species.
(実施例4)
 2名の被験者(O, I)に本発明の組成物を含む水(APAS、O2・H2・N2NB水、MCPともいう)を1日500mL、1か月間摂取させ、その前後に血液検査を行った。
結果
・被験者 O
本発明の組成物を含む水の摂取前の値を比較すると、摂取後ではALP(アルカリホスファターゼ)、ALT、γ-GTPで値が改善していた。また、総コレステロール、LDLコレステロール、遊離脂肪酸の値においても改善していた。
・被験者 I
本発明の組成物を含む水の摂取前の値を比較すると、摂取後ではALP(アルカリホスファターゼ)、ALT、γ-GTPで値が改善していた。また、総コレステロール、LDLコレステロール、遊離脂肪酸、中性脂肪の値においても改善していた。
Example 4
Two subjects (O, I) were ingested with water containing the composition of the present invention (APAS, O2 / H2 / N2NB water, also referred to as MCP) for 500 months per day for one month, and blood tests were conducted before and after that. It was.
Result / Subject O
When the values before ingestion of water containing the composition of the present invention were compared, the values were improved with ALP (alkaline phosphatase), ALT, and γ-GTP after ingestion. In addition, the values of total cholesterol, LDL cholesterol and free fatty acids were also improved.
・ Subject I
When the values before ingestion of water containing the composition of the present invention were compared, the values were improved with ALP (alkaline phosphatase), ALT, and γ-GTP after ingestion. In addition, the values of total cholesterol, LDL cholesterol, free fatty acid, and neutral fat were also improved.
 2人の結果から総合的に判断すると、本発明の組成物を含む水を摂取することにより、肝機能の改善が成されたことから、脂質系の臨床検査値が改善したと考えられる。 Judging comprehensively from the results of two people, it is considered that the clinical value of lipid system was improved because the liver function was improved by ingesting water containing the composition of the present invention.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例5)
 ES細胞の増殖率に関するin vitro実験
 DWまたはAPASを用いて調製した培地(実施例1のiPS細胞培地と同じ組成)におけるマウスES細胞の増殖を調べたところ、培養3日目の増殖率を1とした場合に、APASを用いて培地を調製すると、約1.5倍の増殖率が観察された(図7)。
(Example 5)
In vitro experiment on the proliferation rate of ES cells When the proliferation of mouse ES cells in a medium prepared using DW or APAS (the same composition as the iPS cell medium of Example 1) was examined, the proliferation rate on the third day of culture was 1 In this case, when the medium was prepared using APAS, a growth rate of about 1.5 times was observed (FIG. 7).
(実施例6)
 MCPによる免疫細胞(T細胞、B細胞、NK細胞)の増殖促進に関するin vivo実験
培地に添加した水の種類
実験A
(1)原水(MCP作成用原水)
(2)原水+ガス体(フィルタ濾過無し)
(3)原水+ガス体+0.22μmフィルタ
 ラットの飼育方法 実験動物としてはSDラット(12w)オスを用いた。ラットへの水の与え方は経口と腹腔内投与の両方で行った。腹腔内投与は腹腔内注射により行った。経口投与用には0.22μmフィルターで滅菌したMCPを用いた。その一方で、コントロール群には、備え付けのDWを投与した。腹腔内投与は10×PBSに対してMCPもしくは培養用DWを1×に希釈して用いた(1ml×2/日)。 水交換と注射は朝と夜の1日2回ずつ行った。
 実験期間 試験開始から3日目と7日目で評価した。コントロール群(n=2)と試験群(n=2)を1回の評価で使用した。
(Example 6)
Experiment on the type of water added to the in vivo experimental medium for promoting the proliferation of immune cells (T cells, B cells, NK cells) by MCP
(1) Raw water (raw water for MCP preparation)
(2) Raw water + gas body (no filter filtration)
(3) Raw water + gas body + 0.22 μm filter Rat rearing method SD rat (12w) male was used as an experimental animal. The rats were given water both orally and intraperitoneally. Intraperitoneal administration was performed by intraperitoneal injection. For oral administration, MCP sterilized with a 0.22 μm filter was used. On the other hand, the provided DW was administered to the control group. For intraperitoneal administration, MCP or DW for culture was diluted 1 × with 10 × PBS (1 ml × 2 / day). Water exchange and injection were performed twice daily in the morning and at night.
Experimental period Evaluation was performed on the third and seventh days from the start of the test. A control group (n = 2) and a test group (n = 2) were used in one evaluation.
実験方法
 ラットの心採血(4ml)を行い、血液を15mlチューブに加えた。このチューブに1/5倍量のHetaSep(800μl)を加えてよく混合し、インキュベート(37℃, over 2h)した。その後、赤血球層の分離確認を行った。2時間後に、リンパ球成分がチューブ周辺に、赤血球成分がチューブ中央に凝固したため、この時点でピペットで約2mlのリンパ球成分を分離した。次に、リンパ球成分を15mlチューブに 2ml/sampleで回収、遠心(3,000 rpm, 8 min, RT)した。PBS(RT)で 30μl/sampleに調整してエッペンチューブに30μl/tubeで分注、余りはコントロール用に用いた。IOTest(30μl)を各チューブに加え、ピペッティング(Sample:IOTest = 1:1)した。その後、抗体反応を20min/RTで行い、FACS buffer(1×)で洗浄し、遠心(3,000 rpm, 5 min, RT)した。上清を除去後、遮光下でVersaLyse(500μl/tube)を加え、RTで 10min静置した。その後、総細胞数カウントとFACSによる免疫細胞比率の計測を行った。
Experimental Method Rats were bled (4 ml) and blood was added to a 15 ml tube. To this tube, 1/5 volume of HetaSep (800 μl) was added, mixed well, and incubated (37 ° C., over 2 h). Thereafter, separation of the erythrocyte layer was confirmed. Two hours later, the lymphocyte component coagulated around the tube and the erythrocyte component coagulated at the center of the tube. At this point, about 2 ml of the lymphocyte component was separated with a pipette. Next, lymphocyte components were collected in a 15 ml tube at 2 ml / sample and centrifuged (3,000 rpm, 8 min, RT). PBS (RT) was adjusted to 30 μl / sample and dispensed into an Eppendorf tube at 30 μl / tube, and the remainder was used for control. IOTest (30 μl) was added to each tube and pipetted (Sample: IOTest = 1: 1). Thereafter, the antibody reaction was performed at 20 min / RT, washed with FACS buffer (1 ×), and centrifuged (3,000 rpm, 5 min, RT). After removing the supernatant, VersaLyse (500 μl / tube) was added in the dark and left at RT for 10 min. Thereafter, the total cell count and the immune cell ratio by FACS were measured.
結果
 FACS解析の結果を図8に示す。また、図9に示すように、MCP投与群でDW投与群を1として比較した場合、T細胞、B細胞、NK細胞の全ての増加が認められた。それぞれの細胞数の増加の割合にはあまり大きな差は認められなかったが、その中でもB細胞のMCP投与群での増加率が大きかった。本実施例より、本発明のMCPは注射剤としても使用できることが示された。
Results The results of FACS analysis are shown in FIG. Further, as shown in FIG. 9, when the MCP administration group was compared with the DW administration group as 1, an increase in all of T cells, B cells, and NK cells was observed. Although there was not much difference in the rate of increase in the number of cells, the rate of increase in the B cell MCP administration group was particularly large. From this example, it was shown that the MCP of the present invention can also be used as an injection.
(実施例7)
 この実験では、(1)原水:MCP作成用原水、(2)MCP、(3)MCP+ 0.22ミクロンフィルター:MCPを0.22ミクロンフィルターに通したものの3種類の水を、経口投与および腹腔内注射(1ml×2/日、朝、夜)でラットに投与し、7日間の飼育後のラット血液リンパ球中の各画分の量の比較を行った。
 試験開始7日後の観察では、どの個体も注射の過剰量投与による腹の膨らみや下痢といった症状は認められず元気だった。
(Example 7)
In this experiment, (1) raw water: MCP preparation raw water, (2) MCP, (3) MCP + 0.22 micron filter: MCP passed through 0.22 micron filter, oral administration and intraperitoneal injection (1 ml X2 / day, morning, night), and the amount of each fraction in rat blood lymphocytes after 7 days of breeding was compared.
Observations 7 days after the start of the study showed no signs of bloating or diarrhea due to overdose injections.
 結果(7日目) 顕微鏡下での細胞数計測時に(2)および(3)を投与した場合にリンパ球数に有意の増加を認めた(図10)。このことから、MCPは血中リンパ球数を増加させる作用を持つことが明らかになった。具体的な総リンパ球数は、(1)では、50.2x104、(2)では161x104、(3)では83x104であり、(1)を1とした時の比率は、(2)で3.21、(3)で1.66であった。すなわち、MCPを投与した場合のリンパ球数の増加率は、実験に供した3個体の平均で321%であった。3種類の水を投与した場合のリンパ球内のT細胞、B細胞、NK細胞数、および(1)投与群での細胞数を1とした場合の(2)および(3)投与群での各細胞数の比率を図11および図12に示す。図12によるT細胞、B細胞、NK細胞数の比率は、通常のラットで知られている比率に類似したものであった。図12によると、MCP投与群でのDW投与群に比較したこれら3種類の細胞数の増加率では、B細胞の増加率が他の2種類の細胞の増加率と比較して大きかった。リンパ球内の各細胞画分のうち、NK細胞数の(1)を基準1とした(2)および(3)での比率を図12に示す。図12によると、(2)でのNK細胞増加率は計測した3個体の平均で348%であった。実験(1)と(2)の結果の比較検討 いずれの実験においても、MCPを投与した場合に、ガスを加えていない水(DWあるいはMCP作成用原水)を投与した場合と比べて、血液中にT細胞、B細胞、NK細胞の全てが増加していた。これは、MCPの中核成分であるガス体にリンパ球増殖促進作用のあることを示している。また、両実験とも、それぞれの細胞数の増加の割合にはあまり大きな差を示さなかったが、その中でもB細胞の増加率が大きい特徴を示した。 Results (Day 7) When (2) and (3) were administered at the time of counting the number of cells under a microscope, a significant increase was observed in the number of lymphocytes (FIG. 10). This revealed that MCP has the effect of increasing blood lymphocyte count. Specific total lymphocyte count, in (1), 50.2X10 4, (2) in 161X10 4, a 83X10 4 in (3), the ratio of when the 1 (1), (2) It was 1.66 in 3.21 and (3). That is, the increase rate of the number of lymphocytes when MCP was administered was 321% on average for the three individuals subjected to the experiment. The number of T cells, B cells, and NK cells in lymphocytes when three types of water are administered, and (1) (2) and (3) where the number of cells in the administration group is 1. The ratio of each cell number is shown in FIG. 11 and FIG. The ratio of the number of T cells, B cells, and NK cells according to FIG. 12 was similar to the ratio known in normal rats. According to FIG. 12, in the increase rate of these three types of cells in the MCP administration group compared to the DW administration group, the increase rate of B cells was larger than the increase rate of the other two types of cells. FIG. 12 shows the ratios of (2) and (3) with respect to (1) of the number of NK cells among the respective cell fractions in the lymphocyte. According to FIG. 12, the increase rate of NK cells in (2) was 348% on average for the three individuals measured. Comparison of the results of Experiments (1) and (2) In both experiments, when MCP was administered, in the blood, compared to the case where water (DW or raw water for MCP preparation) was not added. T cells, B cells, and NK cells all increased. This indicates that the gas body, which is the core component of MCP, has a lymphocyte proliferation promoting action. In both experiments, there was not much difference in the rate of increase in the number of cells, but among them, the increase rate of B cells was characteristic.
(実施例8)
実験B
(1)原水(MCP作成用原水)
(2)原水+ガス体+0.45μmフィルタ
(3)原水+ガス体+0.22μmフィルタ
 実験Bでは、フィルタを通さない、原水+ガス体の区で、原水の3.21倍の総リンパ球数が観察された(図13)。このことは、増殖量が約3倍以上になったことを意味する。これに対し、原水+ガス体をフィルタで濾過した培地では、0.45μmフィルタでは1.76倍、0.22μmフィルタで濾過した培地では、1.66倍の増殖量の増加が認められた。フィルタ濾過により、マイクロバブルが除去されるためにこのような結果になった可能性がある。ガス体の直径は、10nm~30nmである。
(Example 8)
Experiment B
(1) Raw water (raw water for MCP preparation)
(2) Raw water + gas body + 0.45 μm filter (3) Raw water + gas body + 0.22 μm filter In Experiment B, the total number of lymphocytes in the raw water + gas body section, which is not filtered, is 3.21 times the raw water. Was observed (FIG. 13). This means that the amount of proliferation has increased about 3 times or more. In contrast, in the medium in which the raw water + gas body was filtered with a filter, the growth amount was 1.76 times in the 0.45 μm filter and 1.66 times in the medium filtered with the 0.22 μm filter. Filter filtration may result in this because microbubbles are removed. The diameter of the gas body is 10 nm to 30 nm.
(実施例9)
 T細胞、B細胞、NK細胞へのガス体投与の影響を測定した。フィルタ無しの系では、B細胞が最もよく増殖し、次いでNK細胞、T細胞であった(図9)。
Example 9
The effect of gas body administration on T cells, B cells, and NK cells was measured. In the unfiltered system, B cells proliferated best, followed by NK cells and T cells (FIG. 9).
(実施例10)
 原水+ガス投与個体でのNK細胞数を比較した。その結果を図12に示す。図12に示すように、フィルタなしの場合、原水の約3.5倍増殖した。フィルタありの場合は、0.45μmフィルタでは1.93倍、0.22μmフィルタでは、1.64倍の増殖を示した。
(Example 10)
The number of NK cells in raw water + gas administered individuals was compared. The result is shown in FIG. As shown in FIG. 12, when there was no filter, the raw water grew about 3.5 times. In the case with a filter, the 0.45 μm filter showed 1.93 times the growth, and the 0.22 μm filter showed 1.64 times the growth.
(実施例11)
 81歳女性両下肢閉塞性動脈硬化症に対する効果
 平成23年春より両膝の骨壊死を伴った変形性膝関節症で通院していたが、平成25年秋より主に右下肢に浮腫を来すようになった。平成26年2月に右下肢血栓血管炎で入院で血栓融解療法を行った。平成26年3月よりミトコンドリア水を500ml/day飲用を開始した。
その結果、浮腫の軽減、炎症の改善を認めた。動脈硬化の指標であるABI値(足関節/上腕血圧比)の変化においてミトコンドリア水飲用後左側の値の改善が認められた。baPWV( 動脈コンプライアンスを評価する指標である上腕-足首間脈波伝播速度)の推移では両側に改善が認められた(表3および図14~15参照)。
 併用薬は、三月のミトコンドリア水飲用以前からの抗凝固製剤は無く、5月より抗血小板凝集剤の投与を始めたので、この度の2014年5月24日のbaPWVの改善についてはミトコンドリア水の影響が関与している可能性が大であると考えられる。すなわち、この症例の動脈硬化改善にはミトコンドリア水の効果が関与していることが示唆された。
(Example 11)
Effect on obstructive arteriosclerosis of both lower limbs in an 81-year-old woman. He had been hospitalized for osteoarthritis of the knee with osteonecrosis of both knees since the spring of 2011, but seems to cause edema mainly in the right lower limb since the fall of 2013. Became. In February 2014, thrombolytic therapy was performed at the hospital for right limb thromboangiitis. In March 2014, we began drinking mitochondrial water at 500ml / day.
As a result, edema was reduced and inflammation was improved. In the change of ABI value (ankle / brachial blood pressure ratio) which is an index of arteriosclerosis, the improvement of the value on the left side after drinking mitochondrial water was observed. Improvements were observed on both sides in the transition of baPWV (upper arm-ankle pulse wave velocity, which is an index for evaluating arterial compliance) (see Table 3 and FIGS. 14 to 15).
There was no anticoagulant preparation before the mitochondrial water drink in March, and the administration of antiplatelet aggregating agent was started in May. Concerning the improvement of baPWV of May 24, 2014, It is likely that the impact is involved. That is, it was suggested that the effect of mitochondrial water is involved in the improvement of arteriosclerosis in this case.
(実施例12)
 被験者:81歳女性 II型糖尿病
 平成20年2月II型糖尿病発症。
 内服薬、生活指導が中心で治療経過を診ていた。
 内服薬はスルフォニル製剤であるダオニール1.25mg(3錠分3後)および食後過血糖改善剤ベイスン0.2mg(3錠分3前)を内服。
 合併症として高脂血症、軽度腎機能低下を認めていた。
 高脂血症にはアトルバスタチンカルシウム製剤10mg眠前に内服されていた。
Example 12
Subject: 81-year-old female, type II diabetes February 2008, onset of type II diabetes.
She was examining the course of treatment with a focus on internal medicine and lifestyle guidance.
For oral use, 1.25 mg (3 tablets after 3 tablets) of sulfonyl preparation and 0.2 mg (3 tablets before 3 tablets) postprandial hyperglycemia improving agent are taken.
Complications included hyperlipidemia and mild renal function decline.
For hyperlipidemia, 10 mg of atorvastatin calcium preparation was taken before sleep.
ミトコンドリア水投与の効果
 5月8日より5月16日まで、さらに9月1日より6日まで、入院のうえウロキナーゼ点滴静注による血栓融解療法を行った。上記の間を含め現在に至るまで、ミトコンドリア水500ml/日の飲用を継続した。HbA1c(赤血球の中で体内に酸素を運ぶ役目のヘモグロビンと、血液中のブドウ糖が結合したもの)の値が、飲用前2014/1/8 7.8→2014/9/1 5.8と劇的に改善した(表4および図16)。内服量は同じで4年間変化がなかった。ミトコンドリア水の影響によりII型糖尿病が改善されたと考えられる。
Effect of mitochondrial water administration From May 8th to May 16th and from September 1st to 6th, thrombolytic therapy by intravenous infusion of urokinase was performed. Until the present time, including the above period, drinking of mitochondrial water 500 ml / day was continued. The value of HbA1c (hemoglobin that carries oxygen into the body in the red blood cells and glucose in the blood) was dramatically improved from 2014/1/8 7.8 to 2014/9/1 5.8 before drinking (Table 4 and FIG. 16). The internal dose was the same and remained unchanged for 4 years. It is thought that type II diabetes was improved by the effect of mitochondrial water.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例13)
 ヒトが飲用した場合のMCPが生体に与える効果を明らかにすることを目的として、ヒトでのMCP飲用試験を実施した。被験者は以下のとおりである。
1. 50歳 男性、 2. 45歳 男性、 3. 60歳 女性、 4. 35歳 女性、 5. 63歳 女性、 6. 66歳 男性、 7 25歳 女性
 各々の参加者は、通常と変わらない生活を送りながら、MCPを0,5-1,0L/日、4週間飲用した。参加者は、飲用開始前に血液を採取され、飲用開始後4週間目および8週間目に再び血液を採取された。検査は、白血球、肝機能、脂質関連、糖尿病関連のそれぞれの項目について行った。その結果、肝機能、コレステロール値、中性脂肪値、糖尿病関連の数値などの幅広い項目の数値に改善が認められた。数値の改善は異常値で顕著であるが、正常値についても、より理想的な数値への改善傾向が認められた。とくに数値の改善が顕著に認められる項目はコレステロール値であり、検査したほぼ全ての被験者で改善が認められた。また、HDL値について、過去20年間の健診時に一度も40を上回ったことがない被験者6の数値が45となったことから、現在、特効薬のないHDL値の上昇にもMCPが寄与する可能性がある(表5)。
(Example 13)
In order to clarify the effects of MCP on humans when taken by humans, a human MCP drinking test was conducted. The subjects are as follows.
1. 50-year-old male, 2. 45-year-old male, 3. 60-year-old female, 4. 35-year-old female, 5. 63-year-old female, 6. 66-year-old male, 7 25-year-old female Each participant is the same as usual While living a life, MCP was drunk 0,5-1,0 L / day for 4 weeks. Participants were blood collected before the start of drinking and blood was collected again at 4 and 8 weeks after starting drinking. Tests were performed on leukocytes, liver function, lipid-related and diabetes-related items. As a result, improvements were observed in a wide range of values such as liver function, cholesterol levels, triglyceride levels, and diabetes-related values. Although the improvement of the numerical value is remarkable in the abnormal value, the normal value also showed a tendency to improve to a more ideal numerical value. In particular, the item in which the numerical improvement was noticeable was the cholesterol level, and almost all the subjects examined showed improvement. In addition, as for the HDL value, since the numerical value of the subject 6 who has never exceeded 40 at the time of the medical examination for the past 20 years became 45, MCP can also contribute to the increase of the HDL value without a specific medicine at present. (Table 5).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例14)
 コマツナ(Brassica rapa var. perviridis、わかみ)を用いて植物への影響を調べた。
 栽培期間 2014年3月7日~2014年4月7日(32日間)
 方法:コンテナに脱塩素水を30L入れ、水耕栽培肥料タンクミックスF&B(表6、OATアグリオ株式会社製)を溶解させた。培養液は、栽培期間中、EC2.4に調整し、24時間エアレーションを行った。
(Example 14)
The effect on plants was examined using Komatsuna (Brassica rapa var. Perviridis).
Cultivation period March 7, 2014 to April 7, 2014 (32 days)
Method: 30 L of dechlorinated water was put into a container, and hydroponics fertilizer tank mix F & B (Table 6, manufactured by OAT Agrio Co., Ltd.) was dissolved. The culture solution was adjusted to EC 2.4 during the cultivation period and aerated for 24 hours.
 ウレタンに種子を播種し、グロスチャンバーにて育苗10日後、各コンテナに9個体ずつ定植し、3反復(3コンテナ)試験を行った。定植3週間後に収穫した。
処理区 対照区、空気マイクロバブル(MB)区、APAS+MB区
    空気MB区では、空気MBを20分間、APAS+MB区もMB化した気体を20分間、培養中に、定植1週間後から週に3回、発生を行った(計6回の処理)
調査項目 草丈、最大葉長、最大根長、地上部新鮮重、地下部新鮮重、地上部乾物重、地下部乾物重
Seeds were seeded on urethane, and after 10 days of seedling raising in a gross chamber, 9 individuals were planted in each container, and three repetitions (3 containers) were tested. Harvested 3 weeks after planting.
Treatment group Control group, air microbubble (MB) group, APAS + MB group In the air MB group, the air MB is converted into MB for 20 minutes, and the APAS + MB group is also converted into MB for 20 minutes. Occurred (total of 6 treatments)
Survey item Plant height, maximum leaf length, maximum root length, aboveground fresh weight, belowground fresh weight, aboveground dry weight, belowground dry weight
結果を表7に示す。草丈、最大葉長、最大根長、地上部乾物重および地下部乾物重では、処理区間で有意差は認められなかった。しかしながら、APAS+MB区の地上部新鮮重および地下部新鮮重では、対照区およびMB区と比較して、有意に増加した。APAS+MBで、生育促進効果が認められた。 The results are shown in Table 7. There were no significant differences between the treatment sections for plant height, maximum leaf length, maximum root length, aboveground dry weight, and belowground dry weight. However, the ground fresh weight and the underground fresh weight of APAS + MB increased significantly compared with the control and MB. APAS + MB showed a growth promoting effect.
Figure JPOXMLDOC01-appb-T000006
(OATアグリオ株式会社HPの記載より)
Figure JPOXMLDOC01-appb-T000006
(From the description of OAT Agrio Corporation HP)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例15)
MCP添加培地中での繊維芽細胞増殖促進作用に関する実験
培地の調製
1.コントロール
 DW      285g
 DMEM粉末    3g
 NaHCO3 1.11g
 全体      300ml
上記を混合後、0.45μmフィルタでろ過滅菌した。10%FBS(ウシ胎児血清)は10mlずつまたは50mlずつ調製し、培地に10分の1容量添加した。
2.1×MCP
 MCP     47.5ml
 DMEM粉末   0.5g
 NaHCO 0.185g
 全体       50ml
上記を混合後、フィルタでろ過した。上記溶液(DMEM(MCP)を9mlとFBS1mlを混合して培養に使用した。
3.2×DMEM+MCP
 DW      95ml
 DMEM粉末    2g
 NaHCO 0.74g
 全体      100ml
上記を混合後、フィルタろ過した。その後、MCPで2倍に希釈した。
ろ過MCP   4.5ml
 2×DMEM  4.5ml
 FBS       1ml
 合計       10ml
(Example 15)
1. Preparation of experimental medium for promoting fibroblast proliferation in medium supplemented with MCP Control DW 285g
DMEM powder 3g
NaHCO3 1.11g
300ml total
After mixing the above, it was sterilized by filtration with a 0.45 μm filter. 10% FBS (fetal bovine serum) was prepared in 10 ml or 50 ml, and 1/10 volume was added to the medium.
2.1 x MCP
MCP 47.5ml
DMEM powder 0.5g
NaHCO 3 0.185 g
Whole 50ml
After mixing the above, it was filtered with a filter. 9 ml of the above solution (DMEM (MCP) and 1 ml of FBS were mixed and used for culture.
3.2 × DMEM + MCP
DW 95ml
DMEM powder 2g
NaHCO 3 0.74 g
Whole 100ml
The above was mixed and then filtered. Thereafter, it was diluted 2-fold with MCP.
Filtration MCP 4.5ml
2 x DMEM 4.5ml
FBS 1ml
10ml total
 凍結保存されたマウス繊維芽(MEF)細胞を起こしてから継代を3回以上行ってから本実験に用いた。上述のように終濃度10%FBSで調製したDMEM(High Glucose)で培養した。培地交換は3日に1回行い、コンフルエントの時点で継代を行った。 The mouse fibroblast (MEF) cells that had been cryopreserved were generated and then passaged three or more times before use in this experiment. As described above, the cells were cultured in DMEM (High Glucose) prepared with a final concentration of 10% FBS. The medium was exchanged once every 3 days, and subculture was performed at the time of confluence.
 本実験はまず、12ウェルプレートにMEF細胞を1ウェルに1万細胞となるように継代を行った。継代翌日、MEF細胞をPBSで一度洗浄し、DWとMCPを用いて終濃度10%FBSとPenicillin/Streptmycinで調製したDMEM(High Glucose)を加えた。MCPを加えた日を0日目として、3日目に解析を行った。培地はMCPを加えてから毎日交換した。 In this experiment, first, the MEF cells were subcultured into 12-well plates so that there were 10,000 cells per well. The day after the passage, the MEF cells were washed once with PBS, and DMEM (High Glucose) prepared with 10% FBS and Penicillin / Streptmycin was added using DW and MCP. The analysis was performed on the third day, with the day on which MCP was added as the zeroth day. The medium was changed daily after adding MCP.
 細胞数測定は0.25%トリプシンを加え、トリパンブルー染色によって生細胞のみを数えた。
 培養実験は、2連で行い、2日間と8日間の培養を行った。これら2回の実験の結果から、MCPには、繊維芽細胞増殖促進作用があることが示唆された(図18)。その増殖率はDWを培地に加えた場合と比べて125~200%であった(表8)。
For cell count, 0.25% trypsin was added and only live cells were counted by trypan blue staining.
The culture experiment was performed in duplicate, and the culture was performed for 2 days and 8 days. The results of these two experiments suggested that MCP has a fibroblast proliferation promoting action (FIG. 18). The growth rate was 125-200% compared to the case where DW was added to the medium (Table 8).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実験結果に認められた多少のばらつきは、実験に用いた細胞のロットの違いによるもの、あるいは実験条件の揺らぎなどに起因すると考えられる。 Some variation observed in the experimental results may be due to differences in the lot of cells used in the experiment or fluctuations in the experimental conditions.
 繊維芽細胞は上皮でのコラーゲン、エラスチン、ヒアルロン酸などを作り出す働きがある。また、コラーゲンを繊維束にし、真皮構造を形成する役目を持つ。紫外線を大量に浴びたり老化が進むと、規則性をもった繊維が生成できなくなり、シワやたるみなどが生じる。繊維芽細胞増殖機能を持つMCPが、このような皮膚の老化に対する有効な抑制効果を示すことが期待される。 Fibroblasts have the function of producing collagen, elastin, hyaluronic acid, etc. in the epithelium. In addition, collagen has a role of forming a dermal structure by forming a fiber bundle. When a large amount of ultraviolet light is applied or aging progresses, regular fibers cannot be produced, and wrinkles and sagging occur. MCP having a fibroblast proliferation function is expected to show an effective inhibitory effect on such skin aging.
(実施例16)
 膝に炎症を起こした63歳女性は約2年に渡って炎症が続いていたが、MCPを毎日500ml~1L飲用することで1カ月目には炎症が大幅に改善され、3か月目には炎症がほぼ消失した(図19)。MCPを飲用する量としては、1日150ml以上が好ましく、より好ましくは300ml以上、さらに好ましくは500ml以上、よりさらに好ましくは1L以上である。1日に摂取する水分を全てMCPとしてもよい。
(Example 16)
A 63-year-old woman who had inflammation in the knee had been inflamed for about 2 years, but drinking 500 ml to 1 L of MCP every day drastically improved inflammation in the first month. Inflammation almost disappeared (FIG. 19). The amount of MCP consumed is preferably 150 ml or more, more preferably 300 ml or more, still more preferably 500 ml or more, and still more preferably 1 L or more. All the water taken in a day may be MCP.
(実施例17)
 ペットにMCPを毎日30日間飲用水として飲用させたところ、表9のように、疾患の指標数値の改善が認められた。
(Example 17)
When pets were allowed to drink MCP as drinking water every day for 30 days, as shown in Table 9, improvements in disease index values were observed.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 

Claims (19)

  1.  水素0.45~0.55ppm、酸素10~12.5ppm、窒素7~8ppm含有する、粒径30マイクロメートル以下のマイクロバブルおよび/またはナノバブルを有効成分として含有する組成物。 A composition containing microbubbles and / or nanobubbles having a particle size of 30 micrometers or less, containing 0.45 to 0.55 ppm hydrogen, 10 to 12.5 ppm oxygen, and 7 to 8 ppm nitrogen.
  2.  請求項1の組成物を有効成分として含有するミトコンドリア活性化組成物。 A mitochondrial activation composition comprising the composition of claim 1 as an active ingredient.
  3.  請求項1又は2の組成物を有効成分として含有する細胞増殖促進剤。 A cell growth promoter comprising the composition of claim 1 or 2 as an active ingredient.
  4.  請求項1~3のいずれか1項に記載の組成物又は剤を有効成分として含有する細胞保存液。 A cell preservation solution containing the composition or agent according to any one of claims 1 to 3 as an active ingredient.
  5.  請求項1~4のいずれか1項に記載の組成物、剤又は液を有効成分として含有する凍結保存液。 A cryopreservation solution containing the composition, agent or solution according to any one of claims 1 to 4 as an active ingredient.
  6.  請求項1~5のいずれか1の組成物、剤又は液を含有する飲食物。 Food or drink containing the composition, agent or liquid according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1の組成物、剤又は液で処理した原材料を使用して製造された飲食物。 Food or drink produced using raw materials treated with the composition, agent or liquid according to any one of claims 1 to 5.
  8.  請求項1~5のいずれか1の組成物、剤又は液を用いてミトコンドリアを活性化する方法。 A method for activating mitochondria using the composition, agent or solution according to any one of claims 1 to 5.
  9.  請求項1~5のいずれか1の組成物、剤又は液を用いて細胞増殖を促進する方法。 A method for promoting cell proliferation using the composition, agent or solution of any one of claims 1 to 5.
  10.  請求項1~5のいずれか1の組成物、剤又は液を用いて細胞を保存する方法。 A method for preserving cells using the composition, agent or solution according to any one of claims 1 to 5.
  11.  請求項1~5のいずれか1の組成物、剤又は液を用いて凍結保存する方法。 A method for cryopreserving the composition, agent or solution according to any one of claims 1 to 5.
  12.  請求項1~5のいずれか1の組成物、剤又は液を用いて飲食物またはその原材料を処理する工程を含む、飲食物の製造方法。 A method for producing a food or drink, comprising a step of treating the food or drink or its raw materials using the composition, agent or liquid according to any one of claims 1 to 5.
  13.  請求項1の組成物を用いて調製した細胞培養用培地。 A cell culture medium prepared using the composition of claim 1.
  14.  請求項1の組成物を用いて調製した植物水耕栽培用溶液。 A solution for plant hydroponics prepared using the composition of claim 1.
  15.  請求項13の培地を用いて動物細胞を増殖させる方法。 A method for growing animal cells using the medium of claim 13.
  16.  動物細胞が免疫系細胞である、請求項15の動物細胞を増殖させる方法。 The method of proliferating an animal cell according to claim 15, wherein the animal cell is an immune system cell.
  17.  請求項1もしくは2に記載の組成物、または請求項3に記載の細胞増殖促進剤を有効成分とする動脈硬化症の予防・治療剤。 A prophylactic / therapeutic agent for arteriosclerosis comprising the composition according to claim 1 or 2 or the cell growth promoter according to claim 3 as an active ingredient.
  18.  請求項1もしくは2に記載の組成物、または請求項3に記載の細胞増殖促進剤を有効成分とする糖尿病の予防・治療剤。 A prophylactic / therapeutic agent for diabetes comprising the composition according to claim 1 or 2 or the cell growth promoter according to claim 3 as an active ingredient.
  19.  請求項1または2に記載の組成物を含む注射液。 An injection solution comprising the composition according to claim 1 or 2.
PCT/JP2015/050073 2013-12-27 2015-01-05 Nanobubble-containing composition and use thereof WO2015099201A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580001311.2A CN105593363A (en) 2013-12-27 2015-01-05 Nanobubble-containing composition and use thereof
US15/193,176 US20170056438A1 (en) 2014-10-17 2016-06-27 Nanobubble-containing composition and use thereof
HK16112319.1A HK1223975A1 (en) 2013-12-27 2016-10-26 Nanobubble-containing composition and use thereof
US16/161,192 US20190046563A1 (en) 2013-12-27 2018-10-16 Nanobubble-containing composition and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013273610 2013-12-27
JP2013-273610 2013-12-27
JP2014-212676 2014-10-17
JP2014212676 2014-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/193,176 Continuation US20170056438A1 (en) 2013-12-27 2016-06-27 Nanobubble-containing composition and use thereof

Publications (1)

Publication Number Publication Date
WO2015099201A1 true WO2015099201A1 (en) 2015-07-02

Family

ID=53479037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050073 WO2015099201A1 (en) 2013-12-27 2015-01-05 Nanobubble-containing composition and use thereof

Country Status (4)

Country Link
JP (1) JP2016063804A (en)
CN (1) CN105593363A (en)
HK (1) HK1223975A1 (en)
WO (1) WO2015099201A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126647A1 (en) * 2016-01-21 2017-07-27 国立大学法人大阪大学 Cell culturing method
WO2017154855A1 (en) * 2016-03-06 2017-09-14 アクア・ゼスト株式会社 Bone regeneration promoting composition and bone regeneration promoting apparatus
WO2019230972A1 (en) * 2018-05-31 2019-12-05 学校法人 愛知医科大学 Composition, cell storage composition, cell culture composition, cell formulation, method for producing object containing microbubble, cell storage method, cell culture method, and cell formulation production method
CN111972399A (en) * 2020-08-06 2020-11-24 温州医科大学 Preservation solution for maintaining activity of liver cells
JP2021069973A (en) * 2019-10-29 2021-05-06 学校法人 愛知医科大学 Production method of minute bubble-containing electrolyte liquid and production method of minute bubble-containing solvent used for preparing the minute bubble-containing electrolyte liquid
JP2021070641A (en) * 2019-10-30 2021-05-06 浩平 池田 Agent for improving survival rate after restoration of spontaneous circulation after cardiac arrest
WO2022019152A1 (en) * 2020-07-20 2022-01-27 学校法人 愛知医科大学 Composition for undifferentiated maintenance culture of pluripotent cells, medium for undifferentiated maintenance culture of pluripotent cells, maintenance culture method in undifferentiated state of pluripotent cells, and method for producing pluripotent cells
EP3794943A4 (en) * 2018-05-31 2022-05-11 Aichi Medical University Composition for preserving biomaterial, method for preserving biomaterial, method for producing biomaterial, transplantation material and transplantation method
CN114469758A (en) * 2022-01-25 2022-05-13 中国科学院上海应用物理研究所 Small-particle-size nano bubble water and preparation method and application thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751876B2 (en) * 2016-05-13 2020-09-09 シグマテクノロジー有限会社 Aqueous solution that can be administered to the living body and its manufacturing method
JP6129395B1 (en) * 2016-10-29 2017-05-17 誠一 荒木 Reduced vitamin B2 preparation for recovery and protection of vascular endothelial cells caused by mitochondrial activation
JP7149053B2 (en) * 2017-04-25 2022-10-06 株式会社田中金属製作所 Liquids for prevention or improvement of diabetes
CN110227363A (en) * 2018-03-06 2019-09-13 四季洋圃生物机电股份有限公司 Multi-functional ultramicro air bubble water implementation method and its manufacturing device
ES2952544T3 (en) * 2018-05-30 2023-11-02 Aquasolution Corp Method to control powdery mildew
JP7041895B2 (en) * 2018-10-02 2022-03-25 株式会社ファーベスト Mitochondrial activation material, mitochondrial activation composition and mitochondrial activation method
JP6890353B2 (en) * 2019-03-26 2021-06-18 MiZ株式会社 Composition for improving renal function of renal diseases containing molecular hydrogen
CN114269385A (en) * 2019-06-26 2022-04-01 武田药品工业株式会社 Transfection method
WO2021064995A1 (en) * 2019-10-04 2021-04-08 フレンド株式会社 Evaluation method and evaluation system for efficacy of hydrogen mixed gas on living organism
JPWO2021070908A1 (en) * 2019-10-08 2021-04-15
CN111919990A (en) * 2020-08-04 2020-11-13 上海华鹿环保技术中心 Pure natural nano bubble fresh-keeping water and preparation method thereof
CN113209847A (en) * 2021-06-11 2021-08-06 同济大学 Sterile nano bubble water and preparation method and application thereof
CN114600872A (en) * 2022-04-13 2022-06-10 西安北光医学生物技术有限公司 Method and system for anti-damage preservation of cells, tissues or organs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156320A (en) * 2006-12-26 2008-07-10 Hydrox Kk Antioxidative functional water
JP2009082903A (en) * 2007-09-16 2009-04-23 Sgk Kk Microbubble generator
JP2009195889A (en) * 2008-02-25 2009-09-03 Opt Creation:Kk Apparatus for manufacturing nanobubble liquid
JP2010075180A (en) * 2008-09-01 2010-04-08 Hiroyuki Tanaka Nk activity enhancer and use thereof
WO2010126908A1 (en) * 2009-04-27 2010-11-04 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
JP2011078371A (en) * 2009-10-09 2011-04-21 Tomotaka Marui Micro-bubble-containing composition for promoting cell variation, apparatus for producing the same, and method for promoting cell variation using micro-bubble-containing composition
WO2011139478A2 (en) * 2010-04-30 2011-11-10 H R D Corporation High shear application in medical therapy
JP2011244779A (en) * 2010-05-31 2011-12-08 Tomotaka Marui Liquid composition containing fine bubble, and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120998B2 (en) * 2006-09-06 2013-01-16 国立大学法人 東京医科歯科大学 Tissue, cell or organ preservation solution
JP4921332B2 (en) * 2007-11-29 2012-04-25 株式会社Reo研究所 Method for producing nitrogen nanobubble water
JP4594996B2 (en) * 2008-05-02 2010-12-08 株式会社 シンワ Food sterilization method and apparatus using microbubble mixed sodium hypochlorite diluent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156320A (en) * 2006-12-26 2008-07-10 Hydrox Kk Antioxidative functional water
JP2009082903A (en) * 2007-09-16 2009-04-23 Sgk Kk Microbubble generator
JP2009195889A (en) * 2008-02-25 2009-09-03 Opt Creation:Kk Apparatus for manufacturing nanobubble liquid
JP2010075180A (en) * 2008-09-01 2010-04-08 Hiroyuki Tanaka Nk activity enhancer and use thereof
WO2010126908A1 (en) * 2009-04-27 2010-11-04 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
JP2011078371A (en) * 2009-10-09 2011-04-21 Tomotaka Marui Micro-bubble-containing composition for promoting cell variation, apparatus for producing the same, and method for promoting cell variation using micro-bubble-containing composition
WO2011139478A2 (en) * 2010-04-30 2011-11-10 H R D Corporation High shear application in medical therapy
JP2011244779A (en) * 2010-05-31 2011-12-08 Tomotaka Marui Liquid composition containing fine bubble, and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIAKI ABE ET AL.: "Micro Bubble o Riyo shita Saibo Baiyo", JOURNAL OF JAPANESE OPHTHALMOLOGICAL SOCIETY, vol. 112, 2008, pages 197 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954487B2 (en) 2016-01-21 2021-03-23 Osaka University Cell culturing method
JPWO2017126647A1 (en) * 2016-01-21 2018-11-15 国立大学法人大阪大学 Cell culture method
WO2017126647A1 (en) * 2016-01-21 2017-07-27 国立大学法人大阪大学 Cell culturing method
WO2017154855A1 (en) * 2016-03-06 2017-09-14 アクア・ゼスト株式会社 Bone regeneration promoting composition and bone regeneration promoting apparatus
CN108778293A (en) * 2016-03-06 2018-11-09 水活力株式会社 Osteanagenesis composition for promoting and osteanagenesis promote device
CN112218940A (en) * 2018-05-31 2021-01-12 学校法人爱知医科大学 Composition, cell preservation composition, cell culture composition, cell preparation, method for producing object containing microbubbles, method for preserving cells, method for culturing cells, and method for producing cell preparation
EP3794943A4 (en) * 2018-05-31 2022-05-11 Aichi Medical University Composition for preserving biomaterial, method for preserving biomaterial, method for producing biomaterial, transplantation material and transplantation method
JP7449539B2 (en) 2018-05-31 2024-03-14 学校法人 愛知医科大学 Biomaterial preservation composition, biomaterial preservation method, biomaterial production method, transplantation material, and transplantation method
WO2019230972A1 (en) * 2018-05-31 2019-12-05 学校法人 愛知医科大学 Composition, cell storage composition, cell culture composition, cell formulation, method for producing object containing microbubble, cell storage method, cell culture method, and cell formulation production method
JPWO2019230972A1 (en) * 2018-05-31 2021-07-15 学校法人 愛知医科大学 Composition, cell preservation composition, cell culture composition, cell preparation, method for producing an object containing microbubbles, method for storing cells, method for culturing cells, and method for producing a cell preparation.
JP7382602B2 (en) 2018-05-31 2023-11-17 学校法人 愛知医科大学 Compositions, cell preservation compositions, cell culture compositions, cell preparations, methods for producing objects containing microbubbles, methods for preserving cells, methods for culturing cells, and methods for producing cell preparations
EP3795674A4 (en) * 2018-05-31 2022-05-11 Aichi Medical University Composition, cell storage composition, cell culture composition, cell formulation, method for producing object containing microbubble, cell storage method, cell culture method, and cell formulation production method
JP2021069973A (en) * 2019-10-29 2021-05-06 学校法人 愛知医科大学 Production method of minute bubble-containing electrolyte liquid and production method of minute bubble-containing solvent used for preparing the minute bubble-containing electrolyte liquid
WO2021084869A1 (en) * 2019-10-29 2021-05-06 学校法人 愛知医科大学 Manufacturing method for microbubble-containing electrolyte and manufacturing method for microbubble-containing solvent for use in preparing microbubble-containing electrolyte
JP2021070641A (en) * 2019-10-30 2021-05-06 浩平 池田 Agent for improving survival rate after restoration of spontaneous circulation after cardiac arrest
WO2022019152A1 (en) * 2020-07-20 2022-01-27 学校法人 愛知医科大学 Composition for undifferentiated maintenance culture of pluripotent cells, medium for undifferentiated maintenance culture of pluripotent cells, maintenance culture method in undifferentiated state of pluripotent cells, and method for producing pluripotent cells
CN111972399B (en) * 2020-08-06 2021-11-30 温州医科大学 Preservation solution for maintaining activity of liver cells
CN111972399A (en) * 2020-08-06 2020-11-24 温州医科大学 Preservation solution for maintaining activity of liver cells
CN114469758A (en) * 2022-01-25 2022-05-13 中国科学院上海应用物理研究所 Small-particle-size nano bubble water and preparation method and application thereof
CN114469758B (en) * 2022-01-25 2024-02-20 中国科学院上海应用物理研究所 Small-particle-size nano bubble water and preparation method and application thereof

Also Published As

Publication number Publication date
HK1223975A1 (en) 2017-08-11
CN105593363A (en) 2016-05-18
JP2016063804A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2015099201A1 (en) Nanobubble-containing composition and use thereof
US20190046563A1 (en) Nanobubble-containing composition and use thereof
Cornish et al. Consumption of seaweeds and the human brain
Tarazona-Díaz et al. Watermelon juice: potential functional drink for sore muscle relief in athletes
CN106255421B (en) Method for producing garlic fermented composition and garlic fermented composition
CN105724892B (en) Promote stem cell proliferation and increases the feed supplements of telomerase activation
CN109730309A (en) Brain tonic and intelligence development tranquilizing the mind relieves stress fructus alpiniae oxyphyllae complex polypeptide nutrition element and preparation method
CN108402472B (en) Method for extracting biological protein from female silkworm chrysalis
CA2615257A1 (en) Functional composition
JP2018058783A (en) Composition for changing expression of clock gene
JP6735224B2 (en) Activator of glucose metabolism in astrocytes
MXPA05010042A (en) Micro-cluster compositions.
RU2504222C2 (en) Food product with preventive medical properties
CN104026589B (en) A kind of peptide ferment and preparation method thereof
JP2018070568A (en) Nonalcoholic fatty liver disease treating or preventing agent and food for preventing nonalcoholic fatty liver disease
US20050129789A1 (en) Drugs including anticancer agents and immunopotentiators and health foods and drinks
RU2414227C1 (en) Immunomodulator for broiler culture and method for applying thereof
JP7286335B2 (en) Food composition for improving bone density, agent for improving bone density, food composition for proliferating osteoblast precursors, food composition for promoting bone differentiation, food composition for bone strengthening, food composition for anti-osteoporosis, proliferating osteoblast precursors agent, bone differentiation promoting agent, bone strengthening agent, anti-osteoporosis agent, method for producing bone density improving agent, method for producing precursor osteoblast proliferation agent, method for producing bone differentiation promoting agent, method for producing bone strengthening agent, and anti-osteoporosis Agent manufacturing method
CN103555527B (en) Snake peptide healthcare wine and preparation method thereof
CN100392058C (en) Fruit wine containing nano-SOD and its preparation method
WO2016206363A1 (en) Use of jilin ginseng oligopeptide in preparation of anti-oxidant food product or health care food product
KR20150032223A (en) Composition comprising monoacetyldiacylglycerol compound for promoting differentiation or proliferation of erythroid cells
CN100415273C (en) Preparation of Zijing paste for eye vision recovery
US20040076618A1 (en) Placental preparation having antitumor activity
JP7465551B2 (en) NK cell activation composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15731237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15731237

Country of ref document: EP

Kind code of ref document: A1