JP2021070641A - Agent for improving survival rate after restoration of spontaneous circulation after cardiac arrest - Google Patents

Agent for improving survival rate after restoration of spontaneous circulation after cardiac arrest Download PDF

Info

Publication number
JP2021070641A
JP2021070641A JP2019197137A JP2019197137A JP2021070641A JP 2021070641 A JP2021070641 A JP 2021070641A JP 2019197137 A JP2019197137 A JP 2019197137A JP 2019197137 A JP2019197137 A JP 2019197137A JP 2021070641 A JP2021070641 A JP 2021070641A
Authority
JP
Japan
Prior art keywords
hydrogen
resuscitation
cardiac arrest
improving agent
survival rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019197137A
Other languages
Japanese (ja)
Other versions
JP6828918B1 (en
Inventor
浩平 池田
Kohei Ikeda
浩平 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019197137A priority Critical patent/JP6828918B1/en
Application granted granted Critical
Publication of JP6828918B1 publication Critical patent/JP6828918B1/en
Publication of JP2021070641A publication Critical patent/JP2021070641A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To provide a material that can improve possibility of resuscitation after cardiac arrest.SOLUTION: A resuscitation improver comprises an aqueous medium and hydrogen-containing nanobubbles dispersed in the aqueous medium and is taken in before cardiac arrest. The hydrogen-containing nanobubbles have a maximum peak in a range of 10-500 nm in a particle size distribution curve.SELECTED DRAWING: None

Description

本発明は、蘇生改善剤に関する。 The present invention relates to a resuscitation improving agent.

心停止が生じると、臓器が酸素欠乏に陥り死に至ることになる。生命維持のためには、人工呼吸、胸骨圧迫等の心肺蘇生術を心停止直後に実施することが必要になり、蘇生術と並行して薬物を投与することも検討されている(例えば、特許文献1)。 When cardiac arrest occurs, the organs become oxygen deficient and die. For life support, it is necessary to perform cardiopulmonary resuscitation such as artificial respiration and chest compressions immediately after cardiac arrest, and administration of drugs in parallel with resuscitation is also being considered (for example, patents). Document 1).

特表2017−508768号公報Special Table 2017-508768

心停止の発生は事前に予測が困難である。一旦心停止が生じてしまうと蘇生は時間との勝負になり、救命率は1分ごとに7〜10%低下すると言われている。したがって、救命が可能かどうかは、蘇生の着手時間に大きく依存する。救命はまた、心停止時に、蘇生の知識や技術のある人(医師等)が周囲にいるかどうか、蘇生のためのAED等の救命装置があるかどうか等にも大きく依存しており、心停止後の救命は偶然や運に依存しているのが現状である。 The occurrence of cardiac arrest is difficult to predict in advance. Once cardiac arrest occurs, resuscitation is a race against time, and lifesaving rates are said to drop by 7-10% every minute. Therefore, the possibility of lifesaving depends largely on the time to start resuscitation. Lifesaving also depends largely on whether there are people (doctors, etc.) with resuscitation knowledge and skills around the person at the time of cardiac arrest, and whether there is a lifesaving device such as an AED for resuscitation. The current situation is that later lifesaving depends on chance and luck.

そこで、本発明の目的は、心停止が予測不可能であり、蘇生が医師や救命装置の存在に依存してしまうという懸念を低減できる、摂取用の材料であって、心停止後の蘇生の可能性を向上させることができる材料を提供することにある。 Therefore, an object of the present invention is an ingestible material that can reduce the concern that cardiac arrest is unpredictable and that resuscitation depends on the presence of a doctor or a life-saving device, and is a material for resuscitation after cardiac arrest. The purpose is to provide materials that can increase the potential.

本発明は、水系媒体と、水系媒体中に分散された水素含有ナノバブルとから構成され、心停止前から摂取する蘇生改善剤であって、水素含有ナノバブルが、粒度分布曲線の最大ピークを10〜500nmの範囲内に有している、蘇生改善剤を提供する。 The present invention is a resuscitation improving agent composed of an aqueous medium and hydrogen-containing nanobubbles dispersed in the aqueous medium and ingested before cardiac arrest. The hydrogen-containing nanobubbles have a maximum peak of a particle size distribution curve of 10 to 10 Provided is a resuscitation improving agent having a range of 500 nm.

本発明の蘇生改善剤は、水系媒体中にナノバブルが分散された構成を有しており、ナノバブルには水素が含まれ、心停止後の蘇生の可能性を向上させることができる。蘇生改善剤は水系媒体で構成されるため、ナノバブル状の水素を、例えば、経口摂取や点滴により身体に取り込むことができ、これにより心停止後の救命可能性が大幅に向上するという特徴を有する。 The resuscitation improving agent of the present invention has a structure in which nanobubbles are dispersed in an aqueous medium, and the nanobubbles contain hydrogen, which can improve the possibility of resuscitation after cardiac arrest. Since the resuscitation improver is composed of an aqueous medium, nanobubble-like hydrogen can be taken into the body by, for example, oral ingestion or infusion, which has a feature that the possibility of lifesaving after cardiac arrest is greatly improved. ..

蘇生改善剤はまた、心停止前から摂取されるという特徴も有している。この点、心停止後に初めてガスを吸引させる方法とは、身体に取り込まれる時期も、身体への取り込まれる経路も大きく相違している。心停止前から摂取することから、心停止が予測不可能であり、蘇生が医師や救命装置の存在に依存してしまうという懸念も低減する。なお、蘇生改善剤は、心停止が生じた後は摂取を中止すべきものではなく、心停止前後において継続的な摂取も可能である。 Resuscitation improvers are also characterized by being taken before cardiac arrest. In this respect, the time when gas is taken into the body and the route where it is taken into the body are significantly different from the method of sucking gas for the first time after cardiac arrest. Taking it before cardiac arrest also reduces the concern that cardiac arrest is unpredictable and that resuscitation will depend on the presence of a doctor or life-saving device. The resuscitation improving agent should not be discontinued after cardiac arrest, and can be continuously ingested before and after cardiac arrest.

従来、蘇生のための薬物の投与は、心停止後に救命を試みる段階で医師等によって行われてきたが、この蘇生改善剤は飲料のような形態でも提供可能であるために、医師等の処方がなくても日常的に摂取できる。さらに、水素を含有するガス粒子が、粒度分布曲線の最大ピークが10〜500nmの範囲内になるようなサイズ(ナノバブルのサイズ)で存在することから、水系媒体中で安定して存在するため、蘇生改善剤から水素ガスが短時間で揮発してしまうようなことがなく、実用レベルで長期間使用可能である。 Conventionally, the administration of a drug for resuscitation has been performed by a doctor or the like at the stage of trying to save a life after cardiac arrest, but since this resuscitation improving agent can be provided in the form of a drink, it is prescribed by a doctor or the like. Can be taken on a daily basis without a prescription. Furthermore, since the hydrogen-containing gas particles are present in a size (nano bubble size) such that the maximum peak of the particle size distribution curve is within the range of 10 to 500 nm, they are stably present in an aqueous medium. Hydrogen gas does not volatilize in a short time from the resuscitation improver, and it can be used for a long period of time at a practical level.

蘇生改善剤は、少なくとも1.0×10−6体積%の水素含有ナノバブルを含有することができる。水素含有ナノバブルの含有量が上記割合であることにより、蘇生改善剤の摂取量を過大にしなくても、蘇生のために十分な量の水素を取り込むことが可能になる。したがって継続的な摂取が容易となり、心停止後の蘇生の可能性を更に向上させることができる。 The resuscitation improver can contain at least 1.0 × 10-6 % by volume of hydrogen-containing nanobubbles. When the content of the hydrogen-containing nanobubbles is the above ratio, it is possible to take in a sufficient amount of hydrogen for resuscitation without excessive intake of the resuscitation improving agent. Therefore, continuous intake is facilitated, and the possibility of resuscitation after cardiac arrest can be further improved.

水素含有ナノバブル中の水素の含有量は、少なくとも90体積%にすることができる。ナノバブル中の水素含有量が多いことで、同じ摂取量でも身体に取り込まれる水素量が増加することになる。したがって、効率的に水素を摂取でき、心停止後の蘇生の可能性を更に向上させることができる。 The hydrogen content in the hydrogen-containing nanobubbles can be at least 90% by volume. Due to the high hydrogen content in the nanobubbles, the amount of hydrogen taken up by the body increases even with the same intake. Therefore, hydrogen can be ingested efficiently, and the possibility of resuscitation after cardiac arrest can be further improved.

蘇生改善剤の摂取の態様としては、経口及び/又は非経口が可能である。経口で摂取されるように用いられることにより、医師等によらずに摂取でき、利便性が向上する。このため、継続的に摂取しやすくなる。非経口(点滴、静脈注射等の血管内導入が含まれる)で摂取されるように用いられることにより、経口摂取が困難な場合や、長期間安定した量の供給が必要な場合に対応できる。 Oral and / or parenteral can be taken as a mode of ingestion of the resuscitation improving agent. By being used so as to be taken orally, it can be taken without a doctor or the like, and convenience is improved. Therefore, it becomes easy to take it continuously. By being used for parenteral ingestion (including intravascular introduction such as infusion and intravenous injection), it can be used when oral ingestion is difficult or when a stable amount is required for a long period of time.

蘇生改善剤は、例えば、1日当たり4〜30ml/kg体重摂取させることが可能である。摂取量をこのような範囲にすることで、心停止後の蘇生の可能性を高めるという効果を維持しながら、継続的な摂取が容易となる。 The resuscitation improver can be ingested, for example, 4 to 30 ml / kg body weight per day. By keeping the intake in such a range, continuous intake is facilitated while maintaining the effect of increasing the possibility of resuscitation after cardiac arrest.

蘇生改善剤は、水素含有ナノバブルが、1日当たり4.0×10−8〜3.0×10−4ml/kg体重摂取されるように用いることができる。このような摂取量は、水素含有ナノバブルを身体に供給するために十分な量であるため、心停止後の蘇生の可能性がより一層向上する。 Resuscitation improvers can be used such that hydrogen-containing nanobubbles are ingested 4.0 x 10-8 to 3.0 x 10 -4 ml / kg body weight per day. Such intakes are sufficient to supply the body with hydrogen-containing nanobubbles, further increasing the likelihood of resuscitation after cardiac arrest.

水系媒体としては、水及び電解質輸液からなる群より選ばれる一種が有用である。 As the water-based medium, one selected from the group consisting of water and electrolyte infusion is useful.

本発明によれば、心停止後の蘇生の可能性を向上させることができる材料(蘇生改善剤)を提供することが可能になる。これにより、心停止が予測不可能であり、蘇生が医師や救命装置の存在に依存してしまうという懸念を低減できる。 According to the present invention, it becomes possible to provide a material (resuscitation improving agent) capable of improving the possibility of resuscitation after cardiac arrest. This reduces the concern that cardiac arrest is unpredictable and that resuscitation depends on the presence of a doctor or life-saving device.

蘇生改善剤における、水素含有ナノバブルの粒度分布曲線である。It is a particle size distribution curve of hydrogen-containing nanobubbles in a resuscitation improver. 試験例1における、心停止前から水道水又は蘇生改善剤を摂取していた場合の心停止後の生存率を示すグラフである。It is a graph which shows the survival rate after the cardiac arrest in the case of taking tap water or a resuscitation improving agent before the cardiac arrest in Test Example 1. 試験例2における、心停止前から水道水又は水素水を摂取していた場合の心停止後の生存率を示すグラフである。It is a graph which shows the survival rate after the cardiac arrest when tap water or hydrogen water was ingested before the cardiac arrest in Test Example 2.

以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.

実施形態に係る蘇生改善剤は、水系媒体と、水系媒体中に分散された水素含有ナノバブルとから構成され、心停止前から摂取するように用いられる。水素含有ナノバブルは粒度分布を有しており、粒度分布曲線の最大ピークは10〜500nmの範囲内にある。 The resuscitation improving agent according to the embodiment is composed of an aqueous medium and hydrogen-containing nanobubbles dispersed in the aqueous medium, and is used so as to be ingested before cardiac arrest. The hydrogen-containing nanobubbles have a particle size distribution, and the maximum peak of the particle size distribution curve is in the range of 10 to 500 nm.

水系媒体としては、水及び/又は電解質輸液を使用できる。水は摂取に適するものであればよく、例えば、蒸留水、イオン交換水、水道水、地下水、純水、超純水が使用できる。電解質輸液としては、等張電解質輸液又は低張電解質輸液が使用可能である。等張電解質輸液は、電解質濃度が血漿とほぼ等しい輸液であり、例えば、生理食塩液、リンゲル液、乳酸(酢酸、重炭酸等)リンゲル液が挙げられる。低張電解質輸液は、電解質濃度が血漿よりも低い輸液であり、開始液、脱水補給液、維持液、術後回復液等が含まれる。 As the aqueous medium, water and / or an electrolyte infusion solution can be used. The water may be any water suitable for intake, and for example, distilled water, ion-exchanged water, tap water, groundwater, pure water, and ultrapure water can be used. As the electrolyte infusion, an isotonic electrolyte infusion or a hypotonic electrolyte infusion can be used. The isotonic electrolyte infusion is an infusion in which the electrolyte concentration is substantially equal to that of plasma, and examples thereof include physiological saline, Ringer's solution, and lactic acid (acetic acid, bicarbonate, etc.) Ringer's solution. The hypotonic electrolyte infusion solution is an infusion solution having an electrolyte concentration lower than that of plasma, and includes a starting solution, a dehydration supplement solution, a maintenance solution, a postoperative recovery solution, and the like.

水系媒体は、水又は電解質輸液以外に、その他の成分を含んでいてもよい。その他の成分としては、例えば、ミネラル、ビタミン、ポリフェノール、塩、アミノ酸、必須脂肪酸、着色料、香料、甘味料、酸化防止剤、防腐剤が挙げられる。但し、非経口の態様で用いられる場合においては、身体への安全性、適用性を考慮して成分や含有量が選ばれる。 The aqueous medium may contain other components in addition to water or electrolyte infusion. Other ingredients include, for example, minerals, vitamins, polyphenols, salts, amino acids, essential fatty acids, colorants, flavors, sweeteners, antioxidants, preservatives. However, when used in a parenteral mode, the ingredients and content are selected in consideration of safety and applicability to the body.

水素含有ナノバブルは、水系媒体中で分散して存在している。分散の程度は任意であり、均一分散であっても、蘇生改善剤として摂取に適していれば均一分散以外の態様であってもよい。 Hydrogen-containing nanobubbles are dispersed and exist in an aqueous medium. The degree of dispersion is arbitrary, and it may be a uniform dispersion or an embodiment other than the uniform dispersion as long as it is suitable for ingestion as a resuscitation improving agent.

水素含有ナノバブル中の水素の含有量は、例えば、少なくとも85体積%(85〜100体積%)とすることができる。水素含有ナノバブル中の水素の含有量は、少なくとも90体積%(90〜100体積%)がよく、少なくとも95体積%(95〜100体積%)、少なくとも99体積%(99〜100体積%)が好ましい。水素含有ナノバブル中の水素の含有量は、100体積%であってもよい。上記体積%にすることにより、蘇生改善剤を大量に摂取しなくても、心停止後の蘇生の可能性をより一層向上させることができる。 The hydrogen content in the hydrogen-containing nanobubbles can be, for example, at least 85% by volume (85-100% by volume). The content of hydrogen in the hydrogen-containing nanobubbles is preferably at least 90% by volume (90 to 100% by volume), preferably at least 95% by volume (95 to 100% by volume), and preferably at least 99% by volume (99 to 100% by volume). .. The content of hydrogen in the hydrogen-containing nanobubbles may be 100% by volume. By setting the volume to the above percentage, the possibility of resuscitation after cardiac arrest can be further improved without ingesting a large amount of the resuscitation improving agent.

水素含有ナノバブルは、水素のみからなっていても水素以外のガスを含有していてもよい。水素以外のガスとしては、経口摂取用の態様においても、血管内導入等の非経口の態様においても、空気;酸素、窒素、二酸化炭素の含有量を変化させた空気;酸素;窒素;二酸化炭素等が挙げられる。 The hydrogen-containing nanobubbles may consist only of hydrogen or may contain a gas other than hydrogen. As gases other than hydrogen, air; air with varying contents of oxygen, nitrogen, and carbon dioxide; oxygen; nitrogen; carbon dioxide, both in the mode for oral ingestion and in the parenteral mode such as intravascular introduction. And so on.

水素含有ナノバブルは、粒度分布曲線の最大ピークを10〜500nmの範囲内に有している。粒度分布曲線は、レーザー回折散乱法により測定される単位体積当たりの水素含有ナノバブル数の粒度分布曲線を意味する。測定条件としては、実施例に記載の測定条件が採用できる。水素含有ナノバブルは、粒度分布曲線の最大ピークを、好ましくは30〜400nm、30〜300nm、30〜250nm又は40〜200nm、より好ましくは50〜200nm又は80〜150nmの範囲内に有している。粒度分布曲線の最大ピークを上記範囲内にすることにより、心停止後の蘇生の可能性をより一層向上させることができる。 The hydrogen-containing nanobubbles have a maximum peak of the particle size distribution curve in the range of 10 to 500 nm. The particle size distribution curve means a particle size distribution curve of the number of hydrogen-containing nanobubbles per unit volume measured by the laser diffraction scattering method. As the measurement conditions, the measurement conditions described in the examples can be adopted. The hydrogen-containing nanobubbles have the maximum peak of the particle size distribution curve in the range of preferably 30 to 400 nm, 30 to 300 nm, 30 to 250 nm or 40 to 200 nm, and more preferably 50 to 200 nm or 80 to 150 nm. By setting the maximum peak of the particle size distribution curve within the above range, the possibility of resuscitation after cardiac arrest can be further improved.

水素含有ナノバブルの平均粒子径は、例えば、10nm以上、20nm以上、50nm以上、100nm以上、150nm以上又は200nm以上であり、また、500nm以下、400nm以下、又は300nm以下であるとよい。平均粒子径は、粒度分布曲線において、粒度分布曲線を小粒径側から描いた場合に、個数積算値50%での粒子径を意味する。 The average particle size of the hydrogen-containing nanobubbles is, for example, 10 nm or more, 20 nm or more, 50 nm or more, 100 nm or more, 150 nm or more or 200 nm or more, and 500 nm or less, 400 nm or less, or 300 nm or less. The average particle size means the particle size at a total number of 50% when the particle size distribution curve is drawn from the small particle size side in the particle size distribution curve.

水素含有ナノバブルはまた、動的光散乱光度計による測定において、中心粒径120〜170nm(好ましくは130〜170nm、更には140〜170nm)であり、標準偏差が20〜50nm(好ましくは25〜45nm、更には25〜35nm)である、分布を有していてもよい。 Hydrogen-containing nanobubbles also have a central particle size of 120-170 nm (preferably 130-170 nm, even 140-170 nm) and a standard deviation of 20-50 nm (preferably 25-45 nm) as measured by a dynamic light scattering photometer. Further, it may have a distribution of 25 to 35 nm).

水素含有ナノバブルは、例えば、1日当たり4.0×10−8ml/kg体重以上摂取されるように用いられる。水素含有ナノバブルの摂取量は、好ましくは、1日当たり5.0×10−7ml/kg体重以上であり、より好ましくは、1日当たり1.0×10−6ml/kg体重以上である。水素含有ナノバブルはまた、1日当たり3.0×10−4ml/kg体重以下、5.0×10−5ml/kg体重以下又は1.0×10−5ml/kg体重以下摂取されるように用いられる。すなわち、水素含有ナノバブルの摂取量は、例えば、1日当たり4.0×10−8〜3.0×10−4ml/kg体重であり、好ましくは1日当たり5.0×10−7〜5.0×10−5ml/kg体重、より好ましくは1日当たり1.0×10−6ml〜1.0×10−5ml/kg体重である。このような摂取量は、水素含有ナノバブルを身体に供給するために十分な量であるため、心停止後の蘇生の可能性がより一層向上する。 Hydrogen-containing nanobubbles are used, for example, to be ingested at least 4.0 x 10-8 ml / kg body weight per day. The intake of hydrogen-containing nanobubbles is preferably 5.0 × 10-7 ml / kg body weight or more per day, and more preferably 1.0 × 10-6 ml / kg body weight or more per day. Hydrogen-containing nanobubbles should also be ingested below 3.0 x 10 -4 ml / kg body weight, 5.0 x 10-5 ml / kg body weight or less, or 1.0 x 10-5 ml / kg body weight or less per day. Used for. That is, the intake of hydrogen-containing nanobubbles is, for example, 4.0 × 10-8 to 3.0 × 10 -4 ml / kg body weight per day, preferably 5.0 × 10-7 to 5. per day. 0 × 10-5 ml / kg body weight, more preferably 1.0 × 10-6 ml to 1.0 × 10-5 ml / kg body weight per day. Such intakes are sufficient to supply the body with hydrogen-containing nanobubbles, further increasing the likelihood of resuscitation after cardiac arrest.

蘇生改善剤は、例えば、少なくとも1.0×10−6体積%の水素含有ナノバブルを含有することができる。蘇生改善剤は、好ましくは、少なくとも1.0×10−5体積%、より好ましくは、少なくとも1.0×10−4体積%の水素含有ナノバブルを含有する。なお、保存安定性を考慮すると、蘇生改善剤における水素含有ナノバブルの含有量の上限は、例えば、1.0×10−3体積%である。すなわち、蘇生改善剤は、1.0×10−6〜1.0×10−4体積%の水素含有ナノバブルを含有することができる。水素含有ナノバブルの含有量を上記範囲にすることで、蘇生改善剤を大量に摂取しなくても、心停止後の蘇生の可能性をより一層向上させることができる。 The resuscitation improver can contain, for example, at least 1.0 × 10-6 % by volume of hydrogen-containing nanobubbles. The resuscitation improver preferably contains at least 1.0 × 10 -5 % by volume, more preferably at least 1.0 × 10 -4 % by volume of hydrogen-containing nanobubbles. In consideration of storage stability, the upper limit of the content of hydrogen-containing nanobubbles in the resuscitation improver is, for example, 1.0 × 10 -3 % by volume. That is, the resuscitation improver can contain 1.0 × 10 -6 to 1.0 × 10 -4 % by volume of hydrogen-containing nanobubbles. By setting the content of hydrogen-containing nanobubbles within the above range, the possibility of resuscitation after cardiac arrest can be further improved without ingesting a large amount of resuscitation improving agent.

蘇生改善剤は、例えば、1日当たり4ml/kg体重以上摂取されるように用いられる。蘇生改善剤の摂取量は、好ましくは、1日当たり6ml/kg体重以上、より好ましくは、1日当たり8ml/kg体重以上である。蘇生改善剤は、例えば、1日当たり30ml/kg体重以下、20ml/kg体重以下又は18ml/kg体重以下摂取されるように用いられる。すなわち、蘇生改善剤は、例えば、1日当たり4〜30ml/kg体重摂取されるように用いられ、好ましくは1日当たり6〜20ml/kg体重、より好ましくは1日当たり8〜18ml/kg体重摂取されるように用いられる。摂取量をこのような範囲にすることで、心停止後の蘇生の可能性を高めるという効果を維持しながら、継続的な摂取が容易となる。なお、蘇生改善剤は、1日1回摂取されてもよく、1日複数回に分けて摂取されても、点滴等で継続的に用いられてもよい。 The resuscitation improver is used, for example, to be ingested at least 4 ml / kg body weight per day. The intake of the resuscitation improver is preferably 6 ml / kg body weight or more per day, and more preferably 8 ml / kg body weight or more per day. The resuscitation improver is used, for example, to be ingested at 30 ml / kg body weight or less, 20 ml / kg body weight or less, or 18 ml / kg body weight or less per day. That is, the resuscitation improver is used, for example, to be ingested 4 to 30 ml / kg body weight per day, preferably 6 to 20 ml / kg body weight per day, more preferably 8 to 18 ml / kg body weight per day. Is used as such. By keeping the intake in such a range, continuous intake is facilitated while maintaining the effect of increasing the possibility of resuscitation after cardiac arrest. The resuscitation improving agent may be taken once a day, divided into a plurality of times a day, or continuously used by intravenous drip or the like.

蘇生改善剤は、非経口で摂取されるように用いられてもよく、経口で摂取されるように用いられてもよい。非経口で摂取されるように用いられる場合、例えば、血管内導入又は消化管内導入で摂取されるように用いられる。非経口の好ましい態様は、点滴や静脈注射等の血管内導入である。蘇生改善剤の形状は摂取の態様に対応して任意に設計でき、例えば、液状、ペースト状、ゼリー状が可能である。 The resuscitation improver may be used to be taken parenterally or may be used to be taken orally. When used to be taken parenterally, for example, it is used to be taken by intravascular or gastrointestinal introduction. A preferred embodiment of parenteral is intravascular introduction such as infusion or intravenous injection. The shape of the resuscitation improver can be arbitrarily designed according to the mode of ingestion, and can be, for example, liquid, paste-like, or jelly-like.

蘇生改善剤は、ヒトに摂取されても、非ヒト哺乳動物に摂取されてもよい。非ヒト哺乳動物としては、例えば、マウス、ラット、イヌ、ネコ、ウマ、ウシ、ブタが挙げられる。 The resuscitation improver may be ingested by humans or non-human mammals. Non-human mammals include, for example, mice, rats, dogs, cats, horses, cows and pigs.

蘇生改善剤は、経口剤、注射剤又は点滴として用いることができる。 The resuscitation improver can be used as an oral preparation, an injection or an infusion.

蘇生改善剤は、例えば、飲料組成物、医薬部外品又は医薬品として調製することができる。飲料組成物としては、例えば、飲料、健康食品、機能性表示食品、特別用途食品、栄養補助食品、サプリメント、特定保健用食品が挙げられる。 The resuscitation improver can be prepared, for example, as a beverage composition, a quasi drug or a pharmaceutical product. Beverage compositions include, for example, beverages, health foods, foods with functional claims, special purpose foods, dietary supplements, supplements, foods for specified health uses.

以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は、以下の実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples. However, the present invention is not limited to the following examples.

〔試験例1:水道水と蘇生改善剤との比較〕
(蘇生改善剤の作製)
[Test Example 1: Comparison between tap water and resuscitation improving agent]
(Preparation of resuscitation improver)

REO研究所製の水素含有ナノバブル製造装置を用いて、蘇生改善剤を得た。具体的には、特開2017−225438号公報に記載の製造方法を参照し、純水中に水素を含有するバブル(粒子径:50μm以下)を発生させた。次いで、純水を、多数の孔を有するオリフィスに通し、圧縮、膨張及び渦流を生じさせることで、上記バブルを縮小させ、蘇生改善剤を得た。 A resuscitation improver was obtained using a hydrogen-containing nanobubble production device manufactured by REO Laboratory. Specifically, referring to the production method described in JP-A-2017-225438, a bubble containing hydrogen (particle size: 50 μm or less) was generated in pure water. Then, pure water was passed through an orifice having a large number of holes to generate compression, expansion, and eddy current, thereby shrinking the bubble and obtaining a revival improving agent.

作製から1ヶ月経過後の蘇生改善剤について、NanoSight(マルバーン・パナリティカル社製)を用いて、蘇生改善剤中の水素含有ナノバブルの平均粒子径及び単位体積当たりの水素含有ナノバブル数を測定した。測定条件は、液温25度とした。5回測定し、平均化処理を行った(図1、黒線:平均化処理した値、グレー部分:標準誤差)。 The average particle size of hydrogen-containing nanobubbles in the resuscitation improver and the number of hydrogen-containing nanobubbles per unit volume were measured using NanoSight (manufactured by Malvern PANalytical Co., Ltd.) for the resuscitation improver one month after the preparation. The measurement condition was a liquid temperature of 25 degrees. It was measured 5 times and averaged (Fig. 1, black line: averaged value, gray part: standard error).

図1は、作製直後の蘇生改善剤における水素含有ナノバブルの粒度分布曲線である。図1に示される通り、粒度分布曲線の最大ピークは86nmであり、10〜500nmの範囲内であった。また、水素含有ナノバブルの平均粒子径は161.3nm(標準偏差:25.0nm)、水素含有ナノバブル数の平均値は3240万個/ml(標準偏差:496万個/ml)であった。なお、平均粒子径は、蘇生改善剤中の水素含有ナノバブルの全個数を100%として、粒子径による粒度分布曲線を小粒径側から描いた場合に、個数積算値50%での粒子径(D50)である。 FIG. 1 is a particle size distribution curve of hydrogen-containing nanobubbles in the resuscitation improving agent immediately after production. As shown in FIG. 1, the maximum peak of the particle size distribution curve was 86 nm, which was in the range of 10 to 500 nm. The average particle size of the hydrogen-containing nanobubbles was 161.3 nm (standard deviation: 25.0 nm), and the average number of hydrogen-containing nanobubbles was 32.4 million / ml (standard deviation: 4.96 million / ml). The average particle size is the particle size at a cumulative number of 50% when the particle size distribution curve based on the particle size is drawn from the small particle size side, assuming that the total number of hydrogen-containing nanobubbles in the resuscitation improver is 100%. D 50 ).

(マウス蘇生実験)
<飲水試験>
8〜10週令の雄の野生型マウス(C57BL/6J、日本チャールズリバー社製)48匹を、水道水飲水群(24匹)及び蘇生改善剤飲水群(24匹)の2群に無作為に割りつけた。水道水飲水群を入れたケージ及び蘇生改善剤飲水群を入れたケージに、それぞれ、水道水を入れた飲水ボトル及び蘇生改善剤を入れた飲水ボトルを設置し、各群のマウスに十分な餌を与えて1週間飼育した。なお、飲水ボトルが空にならないよう、適宜補充した。
(Mouse resuscitation experiment)
<Drinking test>
Forty-eight 8-10 week old male wild-type mice (C57BL / 6J, manufactured by Charles River Japan) were randomly divided into two groups, a tap water drinking group (24) and a resuscitation improving agent drinking group (24). I assigned it to. A drinking bottle containing tap water and a drinking bottle containing a revitalizing agent were placed in the cage containing the tap water drinking group and the cage containing the resuscitation improving agent, respectively, and sufficient food was provided to the mice in each group. Was given and bred for 1 week. The drinking water bottle was replenished as appropriate so that it would not be emptied.

<手術前の準備>
飲水ボトルをケージに設置してから4週間経過後、各群のマウスに対し、100%酸素下5%イソフルランによる全身麻酔下で気管挿管し、人工呼吸器を装着した。このとき、換気設定は換気量1回あたり250μLとし、呼吸回数は130回とした。人工呼吸器装着後は、1.3%の吸入イソフルラン濃度で麻酔を維持した。
<Preparation before surgery>
Four weeks after the drinking bottle was placed in the cage, the mice in each group were tracheally intubated under general anesthesia with 5% isoflurane under 100% oxygen and ventilated. At this time, the ventilation setting was 250 μL per ventilation volume, and the breathing rate was 130 times. After wearing the ventilator, anesthesia was maintained at an inhaled isoflurane concentration of 1.3%.

<手術>
マウスの尻尾をピンセットで把持し、体動がないことを確認した。マウスに食道体温計(Physitemp社製、IT21)を経口的に留置した。また、マウスの観血的動脈圧を左大腿動脈から測定し、薬物投与経路として左大腿静脈に静脈路を確保するため、マウスに動静脈カテーテルを留置した。次いで、マウスに塩化カリウム0.08mg/g体重を経静脈投与することにより、マウスを心停止させ、人工呼吸器を停止した。なお、マウスの心電図は、経皮ニードルプローブ(ADinstruments社製、MLA1213)を用いることによりモニターした。
<Surgery>
The tail of the mouse was grasped with tweezers, and it was confirmed that there was no body movement. An esophageal thermometer (IT21 manufactured by Physitem) was orally placed in the mice. In addition, the invasive arterial blood pressure of the mouse was measured from the left femoral artery, and an arteriovenous catheter was placed in the mouse in order to secure a venous route in the left femoral vein as a drug administration route. The mice were then cardiac arrested and ventilator arrested by intravenously administering 0.08 mg / g body weight of potassium chloride to the mice. The electrocardiogram of the mouse was monitored by using a percutaneous needle probe (MLA1213, manufactured by AD instruments).

心停止から7分30秒経過後に、マウスに対し、100%酸素による人工呼吸及びエピネフリン0.6μg/分の持続静注を開始した。心停止から8分経過後に、用手的胸骨圧迫300〜350回/分を開始した。用手的胸骨圧迫及びエピネフリンの持続静注は、自己心拍再開まで継続した。なお、自己心拍再開は、洞調律の状態及び平均動脈圧40mmHg以上の状態が10秒間維持された時点と定義した。 Seven minutes and thirty seconds after cardiac arrest, mice were given artificial respiration with 100% oxygen and continuous intravenous infusion of epinephrine at 0.6 μg / min. Eight minutes after cardiac arrest, manual chest compressions were started 300-350 times / min. Manual chest compressions and continuous intravenous infusion of epinephrine continued until self-heartbeat resumed. The resumption of self-heartbeat was defined as the time when the state of sinus rhythm and the state of mean arterial pressure of 40 mmHg or more were maintained for 10 seconds.

食道温は、保温ランプを用いて、手術開始から、自己心拍再開開始から1時間経過後まで、一貫して37.2±0.1℃に維持した。用手的胸骨圧迫開始から1時間経過後に、マウスから動静脈カテーテルを抜去し、モノフィラメント糸で閉創した。 The esophageal temperature was consistently maintained at 37.2 ± 0.1 ° C. from the start of surgery to 1 hour after the start of resumption of self-heartbeat using a heat retention lamp. One hour after the start of manual chest compressions, the arteriovenous catheter was removed from the mouse and closed with a monofilament thread.

<生存率の評価>
手術終了後、30℃に保温したケージ内でマウスを経過観察し、手術終了から2時間経過後に、室温下のケージ内で飼育した。心停止から10日間にわたって、両群のマウスを観察し、生存率を評価した。結果を図2に示す。なお、10日目の生存率を評価した後、速やかに、マウスにペントバルビタールナトリウム150mg/kg体重を腹腔内投与し、マウスを安楽死させた。
<Evaluation of survival rate>
After the end of the operation, the mice were followed up in a cage kept at 30 ° C., and 2 hours after the end of the operation, they were bred in a cage at room temperature. Mice in both groups were observed for 10 days after cardiac arrest and the survival rate was evaluated. The results are shown in FIG. After evaluating the survival rate on the 10th day, the mice were promptly intraperitoneally administered with pentobarbital sodium 150 mg / kg body weight, and the mice were euthanized.

蘇生改善剤飲水群における心停止から10日間経過後の生存率は、水道水飲水群における心停止から10日間経過後の生存率と比較して、有意に高かった(有意水準:p<0.05、p値:0.026)。蘇生改善剤を心停止前から摂取すると、心停止後の生存率を有意に改善することがわかった。 The survival rate 10 days after cardiac arrest in the resuscitation improving agent drinking group was significantly higher than the survival rate 10 days after cardiac arrest in the tap water drinking group (significance level: p <0. 05, p-value: 0.026). It was found that taking a resuscitation improving agent before cardiac arrest significantly improved the survival rate after cardiac arrest.

〔試験例2(参考):水道水と水素水との比較〕
8〜10週令の雄の野生型マウス(C57BL/6J、日本チャールズリバー社製)23匹を、水道水飲水群(12匹)及び水素水飲水群(12匹)の2群に無作為に割りつけた。水道水飲水群を入れたケージ及び水素水飲水群を入れたケージに、それぞれ、水道水を入れた飲水ボトル及び市販の水素生成器(株式会社トラストレックス社製、トラサーノ)で作製した水素水を入れた飲水ボトルを設置し、各群のマウスに十分な餌を与えて1週間飼育した。なお、飲水ボトルが空にならないよう、適宜補充した。
[Test Example 2 (Reference): Comparison between tap water and hydrogen water]
Twenty-three 8- to 10-week-old male wild-type mice (C57BL / 6J, manufactured by Charles River Japan, Ltd.) were randomly divided into two groups, a tap water drinking group (12 mice) and a hydrogen water drinking group (12 mice). I assigned it. In the cage containing the tap water drinking water group and the cage containing the hydrogen water drinking water group, a drinking water bottle containing tap water and hydrogen water produced by a commercially available hydrogen generator (Trasano Co., Ltd., manufactured by Trustrex Co., Ltd.) were placed in each cage. A drinking water bottle was placed, and the mice in each group were fed with sufficient food and bred for one week. The drinking water bottle was replenished as appropriate so that it would not be emptied.

手術前の準備、手術及び生存率の評価は、試験例1と同様に行った。水素水飲水群のうち、1匹は蘇生開始後に自己心拍再開せず死亡したため、生存率集計より除外した。結果を図3に示す。水道水群及び水素水群における心停止から10日間経過後の生存率は、それぞれ、25%及び27%であり、両者に有意差はなかった(有意水準:p<0.05、p値:0.74)。

Preparation before surgery, surgery and evaluation of survival rate were performed in the same manner as in Test Example 1. One of the hydrogen water drinking groups died without resuming self-heartbeat after the start of resuscitation, so it was excluded from the survival rate total. The results are shown in FIG. The survival rates after 10 days from cardiac arrest in the tap water group and the hydrogen water group were 25% and 27%, respectively, and there was no significant difference between them (significance level: p <0.05, p-value: p-value: 0.74).

本発明は、心停止後の自己心拍再開後の生存率改善剤に関する。 The present invention relates to a survival rate improving agent after resumption of self-heartbeat after cardiac arrest .

本発明は、水系媒体と、水系媒体中に分散された水素含有ナノバブルとから構成され、心停止前から摂取する、心停止後の自己心拍再開後の生存率改善剤であって、水素含有ナノバブルが、粒度分布曲線の最大ピークを10〜500nmの範囲内に有している、生存率改善剤を提供する。 The present invention is an agent for improving the survival rate after resumption of self-heartbeat after cardiac arrest, which is composed of an aqueous medium and hydrogen-containing nanobubbles dispersed in the aqueous medium, and is ingested before cardiac arrest, and is a hydrogen-containing nanobubble. However, there is provided a survival rate improving agent having a maximum peak of the particle size distribution curve in the range of 10 to 500 nm.

本発明の生存率改善剤は、水系媒体中にナノバブルが分散された構成を有しており、ナノバブルには水素が含まれ、心停止後の蘇生の可能性を向上させることができる。生存率改善剤は水系媒体で構成されるため、ナノバブル状の水素を、例えば、経口摂取や点滴により身体に取り込むことができ、これにより心停止後の救命可能性が大幅に向上するという特徴を有する。 The survival rate improving agent of the present invention has a structure in which nanobubbles are dispersed in an aqueous medium, and the nanobubbles contain hydrogen, which can improve the possibility of resuscitation after cardiac arrest. Since the survival rate improving agent is composed of an aqueous medium, nanobubble-shaped hydrogen can be taken into the body by, for example, oral ingestion or infusion, which greatly improves the possibility of lifesaving after cardiac arrest. Have.

生存率改善剤はまた、心停止前から摂取されるという特徴も有している。この点、心停止後に初めてガスを吸引させる方法とは、身体に取り込まれる時期も、身体への取り込まれる経路も大きく相違している。心停止前から摂取することから、心停止が予測不可能であり、蘇生が医師や救命装置の存在に依存してしまうという懸念も低減する。なお、生存率改善剤は、心停止が生じた後は摂取を中止すべきものではなく、心停止前後において継続的な摂取も可能である。 Survival improvers are also characterized by being ingested before cardiac arrest. In this respect, the time when gas is taken into the body and the route where it is taken into the body are significantly different from the method of sucking gas for the first time after cardiac arrest. Taking it before cardiac arrest also reduces the concern that cardiac arrest is unpredictable and that resuscitation will depend on the presence of a doctor or life-saving device. The survival rate improving agent should not be discontinued after cardiac arrest, and can be continuously ingested before and after cardiac arrest.

従来、蘇生のための薬物の投与は、心停止後に救命を試みる段階で医師等によって行われてきたが、この生存率改善剤は飲料のような形態でも提供可能であるために、医師等の処方がなくても日常的に摂取できる。さらに、水素を含有するガス粒子が、粒度分布曲線の最大ピークが10〜500nmの範囲内になるようなサイズ(ナノバブルのサイズ)で存在することから、水系媒体中で安定して存在するため、生存率改善剤から水素ガスが短時間で揮発してしまうようなことがなく、実用レベルで長期間使用可能である。 Conventionally, the administration of a drug for resuscitation has been performed by a doctor or the like at the stage of trying to save a life after cardiac arrest. However, since this survival rate improving agent can be provided in the form of a drink, the doctor or the like can provide it. It can be taken on a daily basis without a prescription. Furthermore, since the hydrogen-containing gas particles are present in a size (nano bubble size) such that the maximum peak of the particle size distribution curve is within the range of 10 to 500 nm, they are stably present in an aqueous medium. Hydrogen gas does not volatilize in a short time from the survival rate improving agent, and can be used for a long period of time at a practical level.

生存率改善剤は、少なくとも1.0×10−6体積%の水素含有ナノバブルを含有することができる。水素含有ナノバブルの含有量が上記割合であることにより、生存率改善剤の摂取量を過大にしなくても、蘇生のために十分な量の水素を取り込むことが可能になる。したがって継続的な摂取が容易となり、心停止後の蘇生の可能性を更に向上させることができる。 The viability improver can contain at least 1.0 × 10-6 % by volume of hydrogen-containing nanobubbles. When the content of the hydrogen-containing nanobubbles is the above ratio, it is possible to take in a sufficient amount of hydrogen for resuscitation without excessive intake of the survival rate improving agent. Therefore, continuous intake is facilitated, and the possibility of resuscitation after cardiac arrest can be further improved.

生存率改善剤の摂取の態様としては、経口及び/又は非経口が可能である。経口で摂取されるように用いられることにより、医師等によらずに摂取でき、利便性が向上する。このため、継続的に摂取しやすくなる。非経口(点滴、静脈注射等の血管内導入が含まれる)で摂取されるように用いられることにより、経口摂取が困難な場合や、長期間安定した量の供給が必要な場合に対応できる。 As a mode of ingestion of the survival rate improving agent , oral and / or parenteral is possible. By being used so as to be taken orally, it can be taken without a doctor or the like, and convenience is improved. Therefore, it becomes easy to take it continuously. By being used for parenteral ingestion (including intravascular introduction such as infusion and intravenous injection), it can be used when oral ingestion is difficult or when a stable amount is required for a long period of time.

生存率改善剤は、例えば、1日当たり4〜30ml/kg体重摂取させることが可能である。摂取量をこのような範囲にすることで、心停止後の蘇生の可能性を高めるという効果を維持しながら、継続的な摂取が容易となる。 The survival rate improving agent can be ingested, for example, 4 to 30 ml / kg body weight per day. By keeping the intake in such a range, continuous intake is facilitated while maintaining the effect of increasing the possibility of resuscitation after cardiac arrest.

生存率改善剤は、水素含有ナノバブルが、1日当たり4.0×10−8〜3.0×10−4ml/kg体重摂取されるように用いることができる。このような摂取量は、水素含有ナノバブルを身体に供給するために十分な量であるため、心停止後の蘇生の可能性がより一層向上する。 Survival improvers can be used such that hydrogen-containing nanobubbles are ingested 4.0 x 10-8 to 3.0 x 10 -4 ml / kg body weight per day. Such intakes are sufficient to supply the body with hydrogen-containing nanobubbles, further increasing the likelihood of resuscitation after cardiac arrest.

本発明によれば、心停止後の蘇生の可能性を向上させることができる材料(生存率改善剤)を提供することが可能になる。これにより、心停止が予測不可能であり、蘇生が医師や救命装置の存在に依存してしまうという懸念を低減できる。 According to the present invention, it becomes possible to provide a material (survival rate improving agent ) capable of improving the possibility of resuscitation after cardiac arrest. This reduces the concern that cardiac arrest is unpredictable and that resuscitation depends on the presence of a doctor or life-saving device.

生存率改善剤における、水素含有ナノバブルの粒度分布曲線である。It is a particle size distribution curve of hydrogen-containing nanobubbles in a survival rate improving agent. 試験例1における、心停止前から水道水又は生存率改善剤を摂取していた場合の心停止後の生存率を示すグラフである。It is a graph which shows the survival rate after the cardiac arrest when tap water or the survival rate improving agent was ingested before the cardiac arrest in Test Example 1. 試験例2における、心停止前から水道水又は水素水を摂取していた場合の心停止後の生存率を示すグラフである。It is a graph which shows the survival rate after a cardiac arrest when tap water or hydrogen water was ingested before the cardiac arrest in Test Example 2.

実施形態に係る生存率改善剤は、水系媒体と、水系媒体中に分散された水素含有ナノバブルとから構成され、心停止前から摂取するように用いられる。水素含有ナノバブルは粒度分布を有しており、粒度分布曲線の最大ピークは10〜500nmの範囲内にある。 The survival rate improving agent according to the embodiment is composed of an aqueous medium and hydrogen-containing nanobubbles dispersed in the aqueous medium, and is used so as to be ingested before cardiac arrest. The hydrogen-containing nanobubbles have a particle size distribution, and the maximum peak of the particle size distribution curve is in the range of 10 to 500 nm.

水素含有ナノバブルは、水系媒体中で分散して存在している。分散の程度は任意であり、均一分散であっても、生存率改善剤として摂取に適していれば均一分散以外の態様であってもよい。 Hydrogen-containing nanobubbles are dispersed and exist in an aqueous medium. The degree of dispersion is arbitrary, and even if it is uniform dispersion, it may be an embodiment other than uniform dispersion as long as it is suitable for ingestion as a survival rate improving agent.

水素含有ナノバブル中の水素の含有量は、例えば、少なくとも85体積%(85〜100体積%)とすることができる。水素含有ナノバブル中の水素の含有量は、少なくとも90体積%(90〜100体積%)がよく、少なくとも95体積%(95〜100体積%)、少なくとも99体積%(99〜100体積%)が好ましい。水素含有ナノバブル中の水素の含有量は、100体積%であってもよい。上記体積%にすることにより、生存率改善剤を大量に摂取しなくても、心停止後の蘇生の可能性をより一層向上させることができる。 The hydrogen content in the hydrogen-containing nanobubbles can be, for example, at least 85% by volume (85-100% by volume). The content of hydrogen in the hydrogen-containing nanobubbles is preferably at least 90% by volume (90 to 100% by volume), preferably at least 95% by volume (95 to 100% by volume), and preferably at least 99% by volume (99 to 100% by volume). .. The content of hydrogen in the hydrogen-containing nanobubbles may be 100% by volume. By making the volume% above, the possibility of resuscitation after cardiac arrest can be further improved without ingesting a large amount of the survival rate improving agent.

生存率改善剤は、例えば、少なくとも1.0×10−6体積%の水素含有ナノバブルを含有することができる。生存率改善剤は、好ましくは、少なくとも1.0×10−5体積%、より好ましくは、少なくとも1.0×10−4体積%の水素含有ナノバブルを含有する。なお、保存安定性を考慮すると、生存率改善剤における水素含有ナノバブルの含有量の上限は、例えば、1.0×10−3体積%である。すなわち、生存率改善剤は、1.0×10−6〜1.0×10−4体積%の水素含有ナノバブルを含有することができる。水素含有ナノバブルの含有量を上記範囲にすることで、生存率改善剤を大量に摂取しなくても、心停止後の蘇生の可能性をより一層向上させることができる。 The viability improver can contain, for example, at least 1.0 × 10-6 % by volume of hydrogen-containing nanobubbles. The viability improver preferably contains at least 1.0 × 10 -5 % by volume, more preferably at least 1.0 × 10 -4 % by volume of hydrogen-containing nanobubbles. In consideration of storage stability, the upper limit of the content of hydrogen-containing nanobubbles in the survival rate improving agent is, for example, 1.0 × 10 -3 % by volume. That is, the survival rate improving agent can contain 1.0 × 10 -6 to 1.0 × 10 -4 % by volume of hydrogen-containing nanobubbles. By setting the content of hydrogen-containing nanobubbles within the above range, the possibility of resuscitation after cardiac arrest can be further improved without ingesting a large amount of a survival rate improving agent.

生存率改善剤は、例えば、1日当たり4ml/kg体重以上摂取されるように用いられる。生存率改善剤の摂取量は、好ましくは、1日当たり6ml/kg体重以上、より好ましくは、1日当たり8ml/kg体重以上である。生存率改善剤は、例えば、1日当たり30ml/kg体重以下、20ml/kg体重以下又は18ml/kg体重以下摂取されるように用いられる。すなわち、生存率改善剤は、例えば、1日当たり4〜30ml/kg体重摂取されるように用いられ、好ましくは1日当たり6〜20ml/kg体重、より好ましくは1日当たり8〜18ml/kg体重摂取されるように用いられる。摂取量をこのような範囲にすることで、心停止後の蘇生の可能性を高めるという効果を維持しながら、継続的な摂取が容易となる。なお、生存率改善剤は、1日1回摂取されてもよく、1日複数回に分けて摂取されても、点滴等で継続的に用いられてもよい。 The survival rate improving agent is used, for example, so as to be ingested at least 4 ml / kg body weight per day. The intake of the survival rate improving agent is preferably 6 ml / kg body weight or more per day, and more preferably 8 ml / kg body weight or more per day. The survival rate improving agent is used so as to be ingested, for example, 30 ml / kg body weight or less, 20 ml / kg body weight or less, or 18 ml / kg body weight or less per day. That is, the survival rate improving agent is used, for example, to be ingested at 4 to 30 ml / kg body weight per day, preferably 6 to 20 ml / kg body weight per day, and more preferably 8 to 18 ml / kg body weight per day. Used as such. By keeping the intake in such a range, continuous intake is facilitated while maintaining the effect of increasing the possibility of resuscitation after cardiac arrest. The survival rate improving agent may be ingested once a day, divided into a plurality of times a day, or continuously used by infusion or the like.

生存率改善剤は、非経口で摂取されるように用いられてもよく、経口で摂取されるように用いられてもよい。非経口で摂取されるように用いられる場合、例えば、血管内導入又は消化管内導入で摂取されるように用いられる。非経口の好ましい態様は、点滴や静脈注射等の血管内導入である。生存率改善剤の形状は摂取の態様に対応して任意に設計でき、例えば、液状、ペースト状、ゼリー状が可能である。 The survival rate improving agent may be used to be taken parenterally or may be used to be taken orally. When used to be taken parenterally, for example, it is used to be taken by intravascular or gastrointestinal introduction. A preferred embodiment of parenteral is intravascular introduction such as infusion or intravenous injection. The shape of the survival rate improving agent can be arbitrarily designed according to the mode of ingestion, and can be, for example, liquid, paste-like, or jelly-like.

生存率改善剤は、ヒトに摂取されても、非ヒト哺乳動物に摂取されてもよい。非ヒト哺乳動物としては、例えば、マウス、ラット、イヌ、ネコ、ウマ、ウシ、ブタが挙げられる。 The survival rate improver may be ingested by humans or non-human mammals. Non-human mammals include, for example, mice, rats, dogs, cats, horses, cows and pigs.

生存率改善剤は、経口剤、注射剤又は点滴として用いることができる。 The survival rate improving agent can be used as an oral preparation, an injection or an infusion.

生存率改善剤は、例えば、飲料組成物、医薬部外品又は医薬品として調製することができる。飲料組成物としては、例えば、飲料、健康食品、機能性表示食品、特別用途食品、栄養補助食品、サプリメント、特定保健用食品が挙げられる。 The survival rate improving agent can be prepared, for example, as a beverage composition, a quasi drug, or a pharmaceutical product. Beverage compositions include, for example, beverages, health foods, foods with functional claims, special purpose foods, dietary supplements, supplements, foods for specified health uses.

〔試験例1:水道水と生存率改善剤との比較〕
生存率改善剤の作製)
[Test Example 1: Comparison between tap water and survival rate improving agent]
(Preparation of survival rate improving agent)

REO研究所製の水素含有ナノバブル製造装置を用いて、生存率改善剤を得た。具体的には、特開2017−225438号公報に記載の製造方法を参照し、純水中に水素を含有するバブル(粒子径:50μm以下)を発生させた。次いで、純水を、多数の孔を有するオリフィスに通し、圧縮、膨張及び渦流を生じさせることで、上記バブルを縮小させ、生存率改善剤を得た。 A survival rate improving agent was obtained using a hydrogen-containing nanobubble manufacturing apparatus manufactured by REO Laboratory. Specifically, referring to the production method described in JP-A-2017-225438, a bubble containing hydrogen (particle size: 50 μm or less) was generated in pure water. Next, pure water was passed through an orifice having a large number of holes to generate compression, expansion, and eddy current, thereby reducing the bubbles and obtaining a survival rate improving agent.

作製から1ヶ月経過後の生存率改善剤について、NanoSight(マルバーン・パナリティカル社製)を用いて、生存率改善剤中の水素含有ナノバブルの平均粒子径及び単位体積当たりの水素含有ナノバブル数を測定した。測定条件は、液温25度とした。5回測定し、平均化処理を行った(図1、黒線:平均化処理した値、グレー部分:標準誤差)。 For the survival rate improving agent one month after production, the average particle size of hydrogen-containing nanobubbles in the survival rate improving agent and the number of hydrogen-containing nanobubbles per unit volume were measured using NanoSign (manufactured by Malvern Panalistic). did. The measurement condition was a liquid temperature of 25 degrees. It was measured 5 times and averaged (Fig. 1, black line: averaged value, gray part: standard error).

図1は、作製直後の生存率改善剤における水素含有ナノバブルの粒度分布曲線である。図1に示される通り、粒度分布曲線の最大ピークは86nmであり、10〜500nmの範囲内であった。また、水素含有ナノバブルの平均粒子径は161.3nm(標準偏差:25.0nm)、水素含有ナノバブル数の平均値は3240万個/ml(標準偏差:496万個/ml)であった。なお、平均粒子径は、生存率改善剤中の水素含有ナノバブルの全個数を100%として、粒子径による粒度分布曲線を小粒径側から描いた場合に、個数積算値50%での粒子径(D50)である。 FIG. 1 is a particle size distribution curve of hydrogen-containing nanobubbles in the survival rate improving agent immediately after production. As shown in FIG. 1, the maximum peak of the particle size distribution curve was 86 nm, which was in the range of 10 to 500 nm. The average particle size of the hydrogen-containing nanobubbles was 161.3 nm (standard deviation: 25.0 nm), and the average number of hydrogen-containing nanobubbles was 32.4 million / ml (standard deviation: 4.96 million / ml). The average particle size is the particle size at an integrated number of 50% when the particle size distribution curve based on the particle size is drawn from the small particle size side, assuming that the total number of hydrogen-containing nanobubbles in the viability improving agent is 100%. (D 50 ).

(マウス蘇生実験)
<飲水試験>
8〜10週令の雄の野生型マウス(C57BL/6J、日本チャールズリバー社製)48匹を、水道水飲水群(24匹)及び生存率改善剤飲水群(24匹)の2群に無作為に割りつけた。水道水飲水群を入れたケージ及び生存率改善剤飲水群を入れたケージに、それぞれ、水道水を入れた飲水ボトル及び生存率改善剤を入れた飲水ボトルを設置し、各群のマウスに十分な餌を与えて1週間飼育した。なお、飲水ボトルが空にならないよう、適宜補充した。
(Mouse resuscitation experiment)
<Drinking test>
Forty-eight 8-10 week old male wild-type mice (C57BL / 6J, manufactured by Charles River Japan, Ltd.) were not included in two groups, the tap water drinking group (24) and the survival rate improving agent drinking group (24). I assigned it to the act. A drinking bottle containing tap water and a drinking bottle containing a survival rate improving agent were installed in the cage containing the tap water drinking group and the cage containing the survival rate improving agent , respectively, and were sufficient for the mice in each group. It was bred for a week with a good diet. The drinking water bottle was replenished as appropriate so that it would not be emptied.

生存率改善剤飲水群における心停止から10日間経過後の生存率は、水道水飲水群における心停止から10日間経過後の生存率と比較して、有意に高かった(有意水準:p<0.05、p値:0.026)。生存率改善剤を心停止前から摂取すると、心停止後の生存率を有意に改善することがわかった。 The survival rate 10 days after cardiac arrest in the survival rate improving agent drinking group was significantly higher than the survival rate 10 days after cardiac arrest in the tap water drinking group (significance level: p <0). 0.05, p-value: 0.026). It was found that ingestion of the survival rate improving agent before cardiac arrest significantly improved the survival rate after cardiac arrest.

Claims (7)

水系媒体と、該水系媒体中に分散された水素含有ナノバブルとから構成され、心停止前から摂取する蘇生改善剤であって、
前記水素含有ナノバブルは、粒度分布曲線の最大ピークを10〜500nmの範囲内に有している、蘇生改善剤。
It is a resuscitation improving agent that is composed of an aqueous medium and hydrogen-containing nanobubbles dispersed in the aqueous medium and is ingested before cardiac arrest.
The hydrogen-containing nanobubbles are resuscitation improvers having a maximum peak of a particle size distribution curve in the range of 10 to 500 nm.
少なくとも1.0×10−6体積%の前記水素含有ナノバブルを含有する、請求項1に記載の蘇生改善剤。 The resuscitation improving agent according to claim 1, which contains at least 1.0 × 10-6% by volume of the hydrogen-containing nanobubbles. 前記水素含有ナノバブル中の水素の含有量は、少なくとも90体積%である、請求項1又は2に記載の蘇生改善剤。 The resuscitation improving agent according to claim 1 or 2, wherein the content of hydrogen in the hydrogen-containing nanobubbles is at least 90% by volume. 経口及び/又は非経口で摂取されるように用いられる、請求項1〜3のいずれか一項に記載の蘇生改善剤。 The resuscitation improving agent according to any one of claims 1 to 3, which is used to be taken orally and / or parenterally. 1日当たり4〜30ml/kg体重摂取されるように用いられる、請求項1〜4のいずれか一項に記載の蘇生改善剤。 The resuscitation improving agent according to any one of claims 1 to 4, which is used so as to ingest 4 to 30 ml / kg body weight per day. 前記水素含有ナノバブルは、1日当たり4.0×10−8〜3.0×10−4ml/kg体重摂取されるように用いられる、請求項1〜5のいずれか一項に記載の蘇生改善剤。 The resuscitation improvement according to any one of claims 1 to 5, wherein the hydrogen-containing nanobubbles are used so as to be ingested 4.0 × 10 -8 to 3.0 × 10 -4 ml / kg body weight per day. Agent. 前記水系媒体は、水及び電解質輸液からなる群より選ばれる一種を含む、請求項1〜6のいずれか一項に記載の蘇生改善剤。

The resuscitation improving agent according to any one of claims 1 to 6, wherein the aqueous medium contains one selected from the group consisting of water and an electrolyte infusion solution.

JP2019197137A 2019-10-30 2019-10-30 Survival improver after resumption of self-heartbeat after cardiac arrest Active JP6828918B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197137A JP6828918B1 (en) 2019-10-30 2019-10-30 Survival improver after resumption of self-heartbeat after cardiac arrest

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197137A JP6828918B1 (en) 2019-10-30 2019-10-30 Survival improver after resumption of self-heartbeat after cardiac arrest

Publications (2)

Publication Number Publication Date
JP6828918B1 JP6828918B1 (en) 2021-02-10
JP2021070641A true JP2021070641A (en) 2021-05-06

Family

ID=74529699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197137A Active JP6828918B1 (en) 2019-10-30 2019-10-30 Survival improver after resumption of self-heartbeat after cardiac arrest

Country Status (1)

Country Link
JP (1) JP6828918B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099201A1 (en) * 2013-12-27 2015-07-02 アクア・ゼスト株式会社 Nanobubble-containing composition and use thereof
WO2017115705A1 (en) * 2015-12-28 2017-07-06 学校法人慶應義塾 Medicinal composition for improving prognosis after restart of patient's own heartbeat
WO2018021175A1 (en) * 2016-07-29 2018-02-01 学校法人慶應義塾 Medicinal composition for improving and/or stabilizing circulatory dynamics after onset of hemorrhagic shock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099201A1 (en) * 2013-12-27 2015-07-02 アクア・ゼスト株式会社 Nanobubble-containing composition and use thereof
WO2017115705A1 (en) * 2015-12-28 2017-07-06 学校法人慶應義塾 Medicinal composition for improving prognosis after restart of patient's own heartbeat
WO2018021175A1 (en) * 2016-07-29 2018-02-01 学校法人慶應義塾 Medicinal composition for improving and/or stabilizing circulatory dynamics after onset of hemorrhagic shock

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ORGAN BIOLOGY, vol. 23, no. 2, JPN6020034540, 2016, pages 117 - 120, ISSN: 0004343985 *

Also Published As

Publication number Publication date
JP6828918B1 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP5902148B2 (en) Dimethyl sulfoxide (DMSO) formulation for the treatment of autism
US20200237815A1 (en) Methods for treatment of lung damage and for inhibition of lung fibrosis
TWI726961B (en) Medicinal composition for improving the prognosis of self-heartbeat restart
Joachimsson et al. Low‐dose ketamine infusion for analgesia during postoperative ventilator treatment
Sears et al. Therapeutic uses of high-dose omega-3 fatty acids to treat comatose patients with severe brain injury
JP2011102290A (en) Use of xenon for control of neurological deficit associated with cardiopulmonary bypass
Sheridan et al. Low-dose inhaled nitric oxide in acutely burned children with profound respiratory failure
TW200906423A (en) Anti-hypothermia composition
JP2020079227A (en) Composition for improvement or prevention of symptoms of parkinson&#39;s disease
Fairbanks et al. Cocaine uses and abuses
JP6828918B1 (en) Survival improver after resumption of self-heartbeat after cardiac arrest
Rochester Nutritional repletion
Batra et al. Total spinal anaesthesia following epidural test dose in an ankylosing spondylitic patient with anticipated difficult airway undergoing total hip replacement
TWI737776B (en) Medicinal composition for improving and/or stabilizing circulation after hemorrhagic shock
Gupta et al. Airway pressure release ventilation: A neonatal case series and review of current pediatric practice
Haga et al. Resuscitation of an anaesthetised foal with uroperitoneum and ventricular asystole
KR20230009424A (en) Pharmaceutical composition used for treating hypoxic subjects due to respiratory failure, etc.
Santana et al. Controlled study on intravenous magnesium sulfate or salbutamol in early treatment of severe acute asthma attack in children
CN107115332A (en) It is a kind of to be used to treat composition of motor neuron disease and application thereof
El-Shimy et al. Non invasive ventilation versus synchronized intermittent mandatory ventilation with pressure support in weaning of COPD patients: comparative study
Wasinwong et al. Prevention of etomidate-induced myoclonic movement after midazolam co-induction with low-dose etomidate.
US11364218B2 (en) Method of treating or preventing mood disorders, mental disorders, and/or chronic fatigue syndrome
Nieto et al. Case Report: Prone Positioning and Nasal High Flow Oxygen Therapy-An Alternative Strategy to Invasive and Non-Invasive Ventilation in a Case of Severe Acute Respiratory Distress Syndrome
Stack et al. Essentials of paediatric intensive care
Yokoyama et al. Total spinal anesthesia provides transient relief of intractable pain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200813

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R150 Certificate of patent or registration of utility model

Ref document number: 6828918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250