WO2015099084A1 - 波長変換用石英ガラス部材及びその製造方法 - Google Patents

波長変換用石英ガラス部材及びその製造方法 Download PDF

Info

Publication number
WO2015099084A1
WO2015099084A1 PCT/JP2014/084398 JP2014084398W WO2015099084A1 WO 2015099084 A1 WO2015099084 A1 WO 2015099084A1 JP 2014084398 W JP2014084398 W JP 2014084398W WO 2015099084 A1 WO2015099084 A1 WO 2015099084A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz glass
wavelength conversion
wavelength
layer
glass layer
Prior art date
Application number
PCT/JP2014/084398
Other languages
English (en)
French (fr)
Inventor
竜也 森
佐藤 龍弘
藤ノ木 朗
Original Assignee
信越石英株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014184093A external-priority patent/JP2015143324A/ja
Application filed by 信越石英株式会社 filed Critical 信越石英株式会社
Priority to CN201480004250.0A priority Critical patent/CN104903266A/zh
Priority to KR1020157017265A priority patent/KR20150092213A/ko
Priority to EP14873492.4A priority patent/EP2944620A1/en
Priority to US14/764,879 priority patent/US20150353417A1/en
Publication of WO2015099084A1 publication Critical patent/WO2015099084A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material

Definitions

  • the present invention relates to a wavelength-converting quartz glass member for absorbing a part of light emission and converting the wavelength to emit light, and a method for manufacturing the same.
  • the present invention also provides a wavelength-converting quartz glass member having a function of absorbing a part of emitted light, converting the wavelength to emit light, preventing the adhesion of organic substances on the surface of the member, and blocking ultraviolet rays, and the same It relates to a manufacturing method.
  • the wavelength conversion material converts the wavelength of light of a certain wavelength, takes out light having a wavelength longer than that wavelength, and improves efficiency according to the intended use.
  • a xenon flash lamp is usually used to excite a high-power Nd: YAG laser.
  • the emission is broad emission over 200 nm to 1000 nm, but the wavelengths required for Nd: YAG laser excitation are 530 nm to 550 nm and 580 nm to 600 nm, so light in the ultraviolet region is energy loss. Therefore, if the wavelength of this ultraviolet light is converted and used as an effective wavelength for the Nd: YAG laser, the light emission efficiency of the laser can be improved.
  • a material using quartz is required as a material that can withstand high temperatures and ultraviolet rays.
  • LED chips that emit blue or ultraviolet light using compound semiconductors are being developed. By combining this LED chip and various phosphors, a light emitting device that converts the wavelength of the chip light, including white, into a wavelength. The development of is being attempted.
  • This light emitting device has advantages such as small size, light weight, and power saving.
  • a material using quartz is required as a material that can withstand high temperatures and ultraviolet rays.
  • a material using quartz is required as a material that can withstand high temperatures and ultraviolet rays.
  • in-plane uniformity of emission intensity is required as an important required characteristic.
  • Patent Document 1 an organic metal complex that absorbs ultraviolet light and emits light in the visible region is blended in the resin to improve the conversion efficiency of the solar cell.
  • the organometallic complexes used in Patent Document 1 and Patent Document 2 have poor light resistance, the organometallic complex deteriorates due to continuous light irradiation, and the conversion efficiency is lowered. Further, a resin is used as a sealing material. Therefore, there is a problem that this resin turns yellow.
  • Patent Document 3 As a wavelength conversion material for a xenon flash lamp used for excitation of an Nd: YAG laser, a material that converts ultraviolet light into visible light by doping copper into silica glass is disclosed (Patent Document 3).
  • Patent Document 3 has a problem in terms of cost and environmental load reduction because the manufacturing process is a high-temperature process and expensive manufacturing equipment is required.
  • an LED chip is surrounded by a protective resin containing a phosphor and the whole is surrounded by a sealing resin.
  • the coating resin (protective resin, sealing resin) deteriorates due to ultraviolet rays generated from the LED chip.
  • a protective resin and a sealing resin composed of an organic polymer compound in which elements such as carbon, hydrogen, oxygen, and nitrogen are bonded in a network form, the organic polymer network structure is cut when irradiated with ultraviolet rays. It is known that various optical properties and chemical properties deteriorate.
  • Patent Document 4 a method is known in which a phosphor is mixed in a solution containing a polysiloxane composition precursor, and the phosphor is sealed in silica glass by coating and heating.
  • the polysiloxane composition precursors have an organic functional group, and when the organic functional group is decomposed when heated, gas, cracks, etc. are likely to occur.
  • the silica glass from a polysiloxane composition precursor there has been a problem that mass production is difficult because complicated steps such as hydrolysis, polycondensation, drying and sintering are required.
  • LED lighting using a resin encapsulating a phosphor as described above is not suitable for such a use because it has high water vapor permeability and low chemical resistance.
  • the wavelength of excitation light to be used includes ultraviolet light of 400 nm or less
  • the ultraviolet light passes through the wavelength conversion material and is irradiated to the object, which causes various adverse effects such as deterioration and chemical reaction. there were.
  • the present invention has been made in view of the above-described problems of the prior art. First, it has high environmental resistance, heat resistance, durability, and color rendering properties, can be manufactured by a low-temperature process, and efficiently performs wavelength conversion.
  • An object of the present invention is to provide a quartz glass member for wavelength conversion that can be used and a method for manufacturing the same.
  • the present invention secondly prevents leakage of ultraviolet rays, is excellent in environmental resistance, heat resistance, durability, surface antifouling properties, surface stability, uniformity of light emission intensity, and color rendering, and is manufactured in a low temperature process.
  • An object of the present invention is to provide a quartz glass member for wavelength conversion capable of efficiently and wavelength-converting and a method for producing the same.
  • An object of the present invention is to provide a wavelength-converting quartz glass member that is excellent in performance, can be manufactured by a low-temperature process, and can efficiently perform wavelength conversion, and a manufacturing method thereof.
  • the present inventors use a quartz glass surface layer film and phosphor particles having excellent environmental resistance, heat resistance, and durability, and produce a quartz glass member for wavelength conversion that can be manufactured by a low-temperature process. As a result of intensive studies on the method for achieving the above, the present invention has been found.
  • the first aspect of the quartz glass member for wavelength conversion of the present invention is a quartz glass member for wavelength conversion in which a quartz glass substrate and a quartz glass surface layer film are formed on the surface thereof.
  • a polysilazane-containing solution containing phosphor particles having a particle diameter of 0.1 ⁇ m to 20 ⁇ m and spherical silica particles having a spherical, hydrophobic and average particle diameter of 1 nm to 100 nm is formed on the surface of the quartz glass substrate.
  • the ratio of phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7
  • the NH group concentration of the quartz glass surface layer film is 1000 ppm or less.
  • the thickness of the quartz glass surface layer film is preferably 1 ⁇ m to 500 ⁇ m.
  • the quartz glass used for the quartz glass substrate is preferably a synthetic quartz glass. More preferably, the quartz glass substrate is synthetic quartz produced by flame hydrolysis of a silicon tetrachloride compound, and the quartz glass substrate has an OH group concentration of 10 ppm to 1000 ppm.
  • the first aspect of the method for producing a wavelength-converting quartz glass member of the present invention is the phosphor particle having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m and a spherical, hydrophobic and average particle diameter on the surface of the quartz glass substrate.
  • a polysilazane-containing solution having a particle size of 1 to 100 nm and containing 0.1 to 10% by mass of silica fine particles is applied to the quartz glass substrate and heated in a water vapor atmosphere to form a quartz glass surface film.
  • a method for producing a quartz glass member, wherein the ratio of phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7 parts by mass.
  • the polysilazane-containing solution is applied on the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. in a water vapor atmosphere to form a quartz glass surface layer film having a thickness of 0.1 ⁇ m to 10 ⁇ m. It is preferable to form the laminated structure of the quartz glass surface layer film having a thickness of 1 to 500 ⁇ m by repeating the formation process of the quartz glass surface layer film a plurality of times.
  • a second aspect of the wavelength conversion quartz glass member of the present invention is a quartz glass substrate, a wavelength conversion quartz glass layer formed on the surface of the quartz glass substrate and containing phosphor particles, and the wavelength conversion quartz. And a transparent coating film formed on the surface of the glass layer.
  • the transparent coating film is a transparent inorganic film.
  • the transparent inorganic film is a Ti-containing inorganic film.
  • the Ti-containing inorganic film contains anatase crystallized titanium oxide.
  • An intermediate quartz glass layer having a phosphor particle concentration of about 10 to 60% of the phosphor particle concentration of the wavelength conversion quartz glass layer is formed between the wavelength conversion quartz glass layer and the transparent coating film. Is preferred. By forming the intermediate quartz glass layer in this way, there is an advantage that the transparent coating film is hardly peeled off.
  • the quartz glass substrate is preferably synthetic quartz glass. This is because synthetic quartz glass is excellent in ultraviolet transmission characteristics.
  • the quartz glass substrate is preferably a quartz glass containing one or more selected from the group consisting of Ga, Ce, Cu, and Ti. This is because inclusion of these elements has an effect of absorbing ultraviolet rays.
  • the quartz glass substrate is a light scattering quartz glass containing microbubbles and / or microinterfaces. This is because light is uniformly dispersed by using a light-scattering quartz glass containing microbubbles and / or microinterfaces.
  • a second aspect of the method for producing a wavelength-converting quartz glass member of the present invention is a method for producing the wavelength-converting quartz glass member, wherein the transparent coating film is silica and / or silica precursor.
  • a body-containing solution is formed by coating a thin film on the surface of the wavelength-converting quartz glass layer or the intermediate quartz glass layer, drying, and heating.
  • the transparent coating film and the wavelength conversion quartz glass layer are preferably formed by a sol-gel method.
  • a sol containing a silica precursor such as TEOS is hydrolyzed and polycondensed to form a gel state, and silica can be synthesized.
  • a polysilazane-containing solution containing phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m and spherical silica fine particles having a spherical hydrophobicity and an average particle diameter of 1 nm to 100 nm is applied to the quartz glass substrate. Then, drying in the air, followed by heat treatment in a water vapor atmosphere to form a wavelength conversion quartz glass layer on the surface of the quartz glass substrate, and the transparent coating on the surface of the wavelength conversion quartz glass layer.
  • NH group concentration is preferably 1000 ppm or less.
  • a TEOS hydrolyzed solution obtained by mixing phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m, water, and TEOS is applied to the quartz glass substrate, and then dried in the air.
  • a step of forming a wavelength-converting quartz glass layer on the surface of the substrate; and a step of forming the transparent coating film on the surface of the wavelength-converting quartz glass layer, and TEOS and phosphor in the TEOS hydrolysis solution The ratio of phosphor particles to the total amount of particles is preferably 10: 1 to 9 parts by mass.
  • the Ti-containing inorganic film is preferably formed by coating the surface of the wavelength-converting quartz glass layer with a Ti-containing solution and then sintering.
  • a third aspect of the quartz glass member for wavelength conversion of the present invention includes a quartz glass base material, and a wavelength conversion quartz glass layer formed on the surface of the quartz glass base material and containing phosphor particles, The phosphor concentration of the wavelength conversion quartz glass layer is distributed from a high concentration to a low concentration from the glass substrate side toward the surface side of the wavelength conversion quartz glass layer.
  • the thermal conductivity is changed to the quartz. It becomes high near the glass substrate. Therefore, the heat energy created by the silicon single crystal or LED element that is inside or in contact with the glass substrate is easily released to the outside, and the silicon single crystal or LED element is prevented from overheating, Power generation efficiency and luminous efficiency are not reduced.
  • the wavelength conversion quartz glass layer is formed by laminating, and the wavelength conversion quartz glass layer has a plurality of types of phosphors, and a plurality of different phosphors are used for each layer to form a plurality of layers. Since each phosphor has a different average particle size and density, in order to uniformly disperse and laminate each phosphor, it is necessary to laminate under appropriate conditions for each phosphor, thereby obtaining a uniform emission intensity distribution. be able to. If the lamination conditions are not changed, the phosphor distribution is uneven, and a uniform emission intensity distribution cannot be obtained. In this way, uniform in-plane emission intensity can be obtained by using the quartz glass member for wavelength conversion of the present invention for a glass sealing part of an optical element, for example, an LED element.
  • the quartz glass substrate is preferably synthetic quartz glass. This is because synthetic quartz glass is excellent in ultraviolet transmission characteristics.
  • the quartz glass substrate is quartz glass containing one or more selected from the group consisting of Ga, Ce, Cu and Ti. This is because inclusion of these elements has an effect of absorbing ultraviolet rays.
  • the quartz glass substrate is a light scattering quartz glass containing microbubbles and / or microinterfaces. This is because light is uniformly dispersed by using a light-scattering quartz glass containing microbubbles and / or microinterfaces.
  • the transparent coating film is a transparent inorganic film.
  • the transparent inorganic film is a Ti-containing inorganic film.
  • the Ti-containing inorganic film contains anatase crystallized titanium oxide.
  • An intermediate quartz glass layer having a phosphor particle concentration of about 10 to 60% of the phosphor particle concentration of the wavelength conversion quartz glass layer is formed between the wavelength conversion quartz glass layer and the transparent coating film. Is preferred. By forming the intermediate quartz glass layer in this way, the difference in thermal expansion between the transparent coating film and the wavelength conversion quartz glass layer is alleviated, and due to the difference in the amount of thermal expansion during heating, There is an advantage that peeling does not easily occur.
  • a third aspect of the method for producing a wavelength-converting quartz glass member of the present invention is a method for producing a wavelength-converting quartz glass member, wherein the transparent coating film comprises a solution containing silica and / or a silica precursor. It is formed by coating a thin film, drying, and heating.
  • the transparent coating film and the wavelength conversion quartz glass layer are preferably formed by a sol-gel method.
  • the Ti-containing inorganic film is preferably formed by coating a solution containing Ti on the surface of the wavelength conversion quartz glass layer and then sintering.
  • the third aspect of the method for producing a wavelength-converting quartz glass member of the present invention comprises phosphor particles having an average particle size of 0.1 ⁇ m to 20 ⁇ m, spherical and hydrophobic, and an average particle size of 1 nm to 100 nm. After applying a polysilazane-containing solution containing certain spherical silica fine particles to the quartz glass substrate, it is dried in the air and then heat-treated in a water vapor atmosphere to convert the wavelength to the surface of the quartz glass substrate.
  • Phosphor particles for the total amount of polysilazane and phosphor particles in the polysilazane-containing solution comprising: forming a quartz glass layer; and further forming a transparent coating film on the surface of the wavelength-converting quartz glass layer.
  • the ratio may be 10: 1 to 9 parts by mass, and the NH group concentration of the wavelength conversion quartz glass layer may be 1000 ppm or less.
  • the polysilazane-containing solution is applied onto the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. in a water vapor atmosphere to obtain a wavelength-converting quartz glass layer having a thickness of 0.1 ⁇ m to 10 ⁇ m. It is preferable to form a laminated structure of the wavelength-converting quartz glass layer having a thickness of 1 to 500 ⁇ m by repeating the formation process of the wavelength-converting quartz glass layer a plurality of times.
  • the third aspect of the method for producing a wavelength-converting quartz glass member of the present invention is to prepare a solution in which a TEOS hydrolysis solution is mixed with phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m and water.
  • the ratio of phosphor particles to the total amount of TEOS and phosphor particles in the TEOS hydrolysis solution may be 10: 1 to 9 parts by mass.
  • the TEOS hydrolysis solution is applied onto the quartz glass substrate, dried in the air, and then heated to 300 to 1000 ° C. to form a wavelength conversion quartz glass layer having a thickness of 0.1 ⁇ m to 10 ⁇ m. It is preferable to form a laminated structure of the wavelength-converting quartz glass layer having a thickness of 1 to 500 ⁇ m by repeating the formation process of the wavelength-converting quartz glass layer a plurality of times.
  • the phosphor concentration of each lamination of the wavelength conversion quartz glass layer is adjusted from a high concentration to a low concentration and laminated from the quartz glass substrate toward the transparent coating film.
  • the wavelength conversion quartz glass layer has a plurality of types of phosphors, and each layer is formed by stacking a plurality of phosphors using different phosphors.
  • a quartz glass member for wavelength conversion that has high environmental resistance, heat resistance, durability, and color rendering properties, can be manufactured by a low-temperature process, and can efficiently perform wavelength conversion, and its There is a remarkable effect that a manufacturing method can be provided.
  • the second and third aspects of the present invention leakage of ultraviolet rays is prevented, and environmental resistance, heat resistance, durability, surface antifouling properties, surface stability, uniformity of light emission intensity, and color rendering are excellent. There is a remarkable effect that it is possible to provide a quartz glass member for wavelength conversion that can be manufactured by a low-temperature process and that can efficiently perform wavelength conversion, and a manufacturing method thereof.
  • the quartz glass member for wavelength conversion of the present invention can be suitably used for an optical element, for example, a glass sealing part of an LED element.
  • surface which shows the result of having measured the chromaticity of the quartz glass member for wavelength conversion produced in Example 1 and Example 2 of the 1st aspect with the simple spectrometer. It is a cross-sectional schematic diagram which shows one Embodiment of the 2nd aspect of the quartz glass member for wavelength conversion of this invention. It is a cross-sectional schematic diagram which shows another embodiment of the 2nd aspect of the quartz glass member for wavelength conversion of this invention.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the first aspect of the quartz glass member for wavelength conversion of the present invention.
  • symbol 10 shows the quartz glass member for wavelength conversion of this invention.
  • the quartz glass member for wavelength conversion 10 is a quartz glass member for wavelength conversion in which a quartz glass substrate 12 and a quartz glass surface layer film 14 are formed on the surface thereof.
  • the quartz glass surface layer film 14 contains phosphor particles 16 and silica fine particles.
  • the concentration of the phosphor particles contained in the quartz glass surface film is such that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7 parts by mass. . That is, when the total amount of polysilazane and phosphor particles is 10 parts by mass, the amount of phosphor particles is preferably 3 to 7 parts by mass. Further, the ratio of phosphor particles to the total amount of polysilazane and phosphor particles is more preferably 10: 5 to 7 parts by mass.
  • the concentration of NH groups remaining in the quartz glass surface film is 1000 ppm or less, preferably 100 ppm or less. If it is below this concentration, coloring and cracking will not occur even when irradiated with ultraviolet rays for a long time or when exposed to high temperatures.
  • the film thickness of the quartz glass surface layer film is preferably 1 ⁇ m to 500 ⁇ m. More preferably, it is 10 ⁇ m to 100 ⁇ m or less.
  • the film thickness is less than 1 ⁇ m, not only the light from the light source is transmitted and the wavelength conversion efficiency is lowered, but also harmful ultraviolet rays are emitted when ultraviolet rays are used as the light source.
  • the film thickness exceeds 500 ⁇ m, the number of laminations increases, leading to an increase in manufacturing cost.
  • the quartz glass substrate used in the first aspect of the wavelength-converting quartz glass member of the present invention is preferably synthetic quartz glass, particularly preferably synthetic quartz glass produced by flame hydrolysis of silicon tetrachloride. .
  • the synthetic quartz glass produced by this method has few impurities such as metal impurities, and does not deteriorate such as coloring even when irradiated with ultraviolet rays for a long time. Further, the coefficient of thermal expansion is extremely small, and the generation of cracks due to heat treatment can be suppressed. Furthermore, since the transmittance of ultraviolet rays is high and the ultraviolet rays of the light source are not attenuated, the phosphor can emit light efficiently.
  • the OH group of the synthetic quartz glass produced by this method is 10 ppm to 1000 ppm.
  • the quartz glass surface layer film containing the phosphor particles and the silica fine particles is produced by drying and heating a polysilazane-containing solution containing the phosphor particles and the silica fine particles in a water vapor atmosphere.
  • the heat treatment is performed in the water vapor atmosphere when forming the quartz glass surface layer film, the NH group concentration of the quartz glass surface layer film becomes low. Since the heat treatment is performed in the water vapor atmosphere, a heating furnace or the like is not necessary, and manufacturing by a low temperature process becomes possible.
  • the average particle diameter of the phosphor particles used in the first aspect of the quartz glass member for wavelength conversion of the present invention is 0.1 ⁇ m to 20 ⁇ m. More preferably, it is 1 ⁇ m to 10 ⁇ m.
  • the particle size of the phosphor particles is less than 0.1 ⁇ m, light scattering increases with an increase in surface area, and the emission intensity decreases.
  • phosphor particles having a size exceeding 20 ⁇ m cause variations in emission chromaticity and intensity in the formed surface layer film.
  • the phosphor particles are preferably those which can be excited by ultraviolet rays having a wavelength of 200 nm to 400 nm and can be converted into visible light, and are commercially available and generally available.
  • Sr 10 (PO 4 ) 6 Cl 2 Eu 2+
  • CaS: Bi CaSrS: Bi
  • green phosphors ZnS: Cu , Al, Ba 2 SiO 4 : Eu, ZnGe 2 O 4 : Eu, red phosphor, Y 2 O 2 S: Eu 3+
  • the composition of the silica fine particles used in the first aspect of the quartz glass member for wavelength conversion of the present invention is preferably synthetic quartz glass particles. Since the synthetic silica glass surface layer film becomes a dense silica film after heat treatment, due to the compatibility of the refractive index and the thermal expansion coefficient, the use of synthetic silica glass particles as inorganic oxide particles causes color variations and cracks. Can be suppressed.
  • the silica fine particles function as an aggregate, and when the quartz glass surface layer film is laminated, a thick film can be formed at a time without causing cracks.
  • the average particle diameter of the silica fine particles used in the first embodiment of the quartz glass member for wavelength conversion of the present invention is 1 nm to 100 nm.
  • the thickness is preferably 3.0 nm to 80 nm, more preferably 5.0 nm to 50 nm.
  • silica fine particles of less than 1 nm it is difficult to obtain the particles themselves, and even if they are obtained, they have a large surface energy, so that aggregation occurs immediately.
  • silica fine particles having a particle diameter exceeding 100 nm increase light scattering and reduce the light utilization efficiency of the LED.
  • the silica fine particles used in the first embodiment of the quartz glass member for wavelength conversion of the present invention are spherical and hydrophobic.
  • the silica glass substrate is coated with a liquid containing silica fine particles, the liquid needs to have fluidity, but when non-spherical silica fine particles are used, the fluidity of the liquid is lost and uniform coating cannot be performed.
  • it since it is hydrophobic, it can be dispersed well in the polysilazane-containing solution, and a film in which silica fine particles are uniformly dispersed can be obtained.
  • the concentration of the silica fine particles is preferably such that the ratio of the silica fine particles to the total amount of the polysilazane, the phosphor particles and the silica fine particles in the polysilazane-containing solution is 10: 0.01 to 1 part by mass. That is, when the total amount of polysilazane, phosphor particles and silica fine particles is 10 parts by mass, the amount of silica fine particles is preferably 0.01 to 1 part by mass.
  • the ratio of silica fine particles to the total amount of polysilazane, phosphor particles and silica fine particles is more preferably 10: 0.05 to 0.5 parts by mass. When there are too few silica fine particles, the function as an aggregate will be lost, and when too large, it will cause irregular reflection and light extraction efficiency will fall.
  • perhydropolysilazane solution As the production of the quartz glass surface film, it is preferable to use a perhydropolysilazane solution as the polysilazane-containing solution.
  • a perhydropolysilazane solution When other silazane compounds or alkoxysilanes are used, cracks occur when the organic functional group decomposes during heating in a water vapor atmosphere due to the presence of the organic functional group.
  • perhydropolysilazane does not have an organic functional group, it can be converted to silica without giving energy for burning organic substances, and can be fired at low temperature by steam.
  • perhydropolysilazane By baking perhydropolysilazane in a water vapor atmosphere, perhydropolysilazane composed only of Si, N, and H changes to quartz glass composed of Si and O.
  • the polysilazane-containing solution, the silica fine particles, and the coating solution containing the phosphor particles are dried at, for example, 100 to 200 ° C. to evaporate most of the organic solvent, and then fired in a water vapor atmosphere. It is preferable to do this.
  • the firing time depends on the thickness of the quartz glass surface layer film, it can be produced in a firing time of about 10 seconds to 30 minutes.
  • a 1 ⁇ m quartz glass surface film can be produced in a water vapor atmosphere at 600 ° C. in 10 seconds.
  • Perhydropolysilazane causes the following reaction. (SiH 2 NH) + 2H 2 O ⁇ SiO 2 + NH 3 + 2H 2 Since this reaction proceeds to the right due to the presence of water, it can be converted to silica at a low temperature for a short time by heating under water vapor. By baking perhydropolysilazane in a water vapor atmosphere, the Si—N bonds in the skeleton change to Si—O bonds. At that time, since the molecular weight of the basic structural unit increases, a denser and harder film can be obtained.
  • the firing temperature for forming the quartz glass surface film under water vapor is preferably 100 to 600 ° C.
  • the temperature is too high, the phosphor is thermally deactivated, and the emission intensity is reduced. If the temperature is too low, water vapor does not diffuse into the interior and the reaction does not occur sufficiently.
  • the film thickness per layer is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 10 ⁇ m, and further preferably 0.5 ⁇ m to 5 ⁇ m. If the film thickness per layer is less than 0.1 ⁇ m, it takes time to form the quartz glass surface film, leading to an increase in manufacturing cost. On the other hand, when a film exceeding 10 ⁇ m per layer is formed at a time, cracks occur during firing due to gas generation during the reaction. By repeating this lamination process, the quartz glass surface film can be formed to a film thickness containing a desired amount of phosphor, and a laminated structure of the silica glass surface film of 1 to 500 ⁇ m can be formed.
  • the polysilazane-containing solution is applied on the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. or less in a water vapor atmosphere to form a quartz glass surface layer film having a thickness of 0.1 ⁇ m to 10 ⁇ m.
  • a laminated structure of the quartz glass surface layer film having a thickness of 1 to 500 ⁇ m can be obtained.
  • Perhydropolysilazane can be reduced in the number of times than other materials, can be simplified in operation, and can reduce manufacturing costs.
  • a wet coating method such as a spray method, a spin coating method, a dip coating method, or a roll coating method can be used.
  • FIG. 3 shows a schematic cross-sectional view showing one embodiment of the second aspect of the quartz glass member for wavelength conversion of the present invention.
  • reference numeral 30A denotes a quartz glass member for wavelength conversion according to the present invention.
  • the quartz glass member 30A for wavelength conversion includes a quartz glass substrate 32, a wavelength conversion quartz glass layer 34 formed on the surface of the quartz glass substrate 32 and containing phosphor particles 36, and the wavelength conversion quartz glass layer 34. And a transparent coating film 40 formed on the surface. Further, the wavelength conversion quartz glass layer 34 also contains silica fine particles 38.
  • FIG. 4 is a schematic cross-sectional view showing another embodiment of the second mode of the quartz glass member for wavelength conversion of the present invention.
  • reference numeral 30B indicates a quartz glass member for wavelength conversion according to the present invention.
  • the wavelength conversion quartz glass member 30B includes a quartz glass substrate 32, a wavelength conversion quartz glass layer 34 formed on the surface of the quartz glass substrate 32 and containing phosphor particles 36, and the wavelength conversion quartz glass layer 34. And a transparent coating film 40 formed on the surface.
  • An intermediate quartz having a phosphor particle concentration of about 10 to 60% of the concentration of the phosphor particles 36 of the wavelength conversion quartz glass layer 34 between the wavelength conversion quartz glass layer 34 and the transparent coating film 40.
  • a glass layer 42 is formed.
  • the intermediate quartz glass layer 42 has a silica particle concentration of about 10 to 60% of the concentration of the silica fine particles 38 of the wavelength conversion quartz glass layer 34.
  • the transparent coating film is formed on the surface of the wavelength conversion quartz glass layer, and contacts the metal element in the outer peripheral atmosphere, and then, for example, the phosphor in the wavelength conversion quartz glass layer by contact with S or an oxidizing gas. It is possible to prevent the generation of cracks and particles due to deactivation and volume changes due to phosphor oxidation and sulfurization.
  • the transparent coating film is preferably a transparent inorganic film, and the transparent inorganic film is more preferably a Ti-containing inorganic film.
  • the transparent coating film is a quartz glass coating film, but a general glass such as borosilicate glass or a coating film such as ceramic is also applicable. In the case of low temperature use, a silicone film may be used.
  • the transparent coating film creating step comprises applying a silica slurry to the wavelength conversion quartz glass layer and in a temperature range of 300 ° C. to 1200 ° C. in an oxidizing atmosphere. It includes a step of heat treatment and then sintering in a temperature range of 1000 ° C. to 1400 ° C.
  • the silica slurry is composed of silica particles having a particle size of 0.1 ⁇ m to 100 ⁇ m, preferably 0.5 ⁇ m to 50 ⁇ m, and a silica concentration of 50 to 95%, preferably A silica slurry prepared with 60 to 80% and cellulose derivative concentration of 0.05 to 10%, preferably 0.1 to 5%.
  • the cellulose derivative include methyl cellulose, hydroxypropyl methyl cellulose, hydroxymethyl cellulose, and the like, and methyl cellulose is preferable.
  • the method for applying the silica slurry is not particularly limited, and can be applied to a uniform thickness by spin coating. After coating, it is dried in the range of room temperature to 300 ° C.
  • the heat treatment in the oxidizing atmosphere is, for example, heat treatment in an oxygen atmosphere, an air atmosphere, etc. in a temperature range of 300 ° C. to 1200 ° C., preferably 500 ° C. to 1000 ° C., to decompose and remove organic matters such as carbon. To do.
  • the heat treatment time is not particularly limited, but is preferably 0.5 hours to 100 hours, more preferably 2 hours to 40 hours. When used in a semiconductor manufacturing process, it is necessary to have a high purity, and a purification process is introduced thereafter. That is, heat treatment is performed in an atmosphere containing chlorine, preferably in HCl gas, in a temperature range of 800 ° C. to 1400 ° C., preferably 1000 ° C. to 1200 ° C.
  • the coating layer is sintered in a temperature range of 1000 ° C. to 1400 ° C., preferably 1100 ° C. to 1300 ° C.
  • the sintering time is not particularly limited, but is preferably 0.2 hours to 20 hours, and more preferably 1 hour to 10 hours.
  • the transparent quartz glass portion after sintering contains 70 ppm or less (including 0), preferably 50 ppm or less, more preferably 30 ppm or less, in total of the metal impurities contained. If the content of the metal impurity exceeds 70 ppm, the metal impurity released from the surface increases. In particular, it becomes unsuitable as a quartz glass material used in the semiconductor manufacturing process, and an electrical abnormality of the manufactured semiconductor element is caused. Cause. There is no problem at 30 ppm or less. On the other hand, the concentration of carbon is 30 ppm or less, preferably 20 ppm or less, and more preferably 10 ppm or less.
  • carbon is considered as a cause of electrical abnormality of the manufactured semiconductor element in the semiconductor manufacturing process, and when it exceeds 30 ppm, it becomes unsuitable as a quartz glass material used in the semiconductor manufacturing process, There is no problem at 10 ppm or less.
  • the thickness of the formed transparent coating film is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m. If it is 1 ⁇ m or less, there is no covering effect, and if it is 1000 ⁇ m or more, bubbles frequently occur in the film, causing cracks and particles.
  • the transparent coating film creating step comprises applying a silica slurry to the wavelength conversion quartz glass layer, and in a temperature range of 300 ° C. to 1200 ° C. in an oxidizing atmosphere.
  • a heat treatment followed by sintering in a temperature range of 800 ° C. or higher and 1200 ° C. or lower.
  • the silica slurry uses silica particles having a particle size of 1 nm to 100 nm, preferably 2 nm to 50 nm, and the silica concentration is 1 to 50%, preferably 10 to 30. %, And an organic binder concentration of 0.05 to 10%, preferably 0.1 to 5%.
  • organic binder examples include cellulose (methyl cellulose, carboxymethyl cellulose, hydroxyethyl alcohol), agar, vinyl (polyvinyl alcohol, polyvinyl pyrrolidone), starch (dialdehyde starch, dextrin, polylactic acid), acrylic (poly Examples thereof include sodium acrylate and methyl methacrylate) and vegetable viscous substances, and polyvinyl alcohol or methyl cellulose is preferred.
  • the silica slurry coating method and the heat treatment in an oxidizing atmosphere can be performed in the same manner as in the first aspect of the transparent coating film creation step.
  • the temperature range in the sintering treatment is 800 ° C. to 1150 ° C., preferably 900 ° C. to 1100 ° C.
  • the sum of the metal impurity concentrations in the transparent quartz glass portion obtained by the second aspect of the transparent coating film creation step and the concentration of contained carbon are obtained by the first aspect of the transparent coating film creation step. The same as the transparent quartz glass portion.
  • a third aspect of the transparent coating film creating step is a method in which the transparent coating film creating step coats a polysilazane-containing solution containing silica fine particles in a thin film, and after drying, heats in a water vapor atmosphere.
  • the thickness of the formed transparent coating film is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m. If it is 1 ⁇ m or less, there is no covering effect, and if it is 1000 ⁇ m or more, bubbles frequently occur in the film, causing cracks and particles.
  • the sintering temperature is 100 ° C. to 1000 ° C., preferably 200 ° C. to 900 ° C. or less, and can prevent the phosphor from being deactivated.
  • a polysilazane-containing solution containing phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m and spherical silica fine particles having a spherical hydrophobicity and an average particle diameter of 1 nm to 100 nm is used as the quartz glass.
  • the transparent coating film can be prepared by a sol-gel method.
  • the fourth aspect of the transparent coating film creation step is a method in which the transparent coating film creation step coats and sinters a slurry using a TEOS hydrolysis solution or the like as a raw material.
  • the thickness of the formed transparent coating film is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m. If it is 1 ⁇ m or less, there is no covering effect, and if it is 1000 ⁇ m or more, bubbles frequently occur in the film, causing cracks and particles.
  • the sintering temperature is 300 ° C. to 1000 ° C., preferably 400 ° C. to 900 ° C., and can suppress the deactivation of the phosphor.
  • a TEOS hydrolysis solution obtained by mixing phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m, water, and TEOS is applied to the quartz glass substrate, and then dried in the air.
  • the fifth aspect of the transparent coating film creation step is a method in which the transparent coating film creation step coats and sinters a silica slurry using colloidal silica or the like as a raw material.
  • the thickness of the formed transparent coating film is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m. If it is 1 ⁇ m or less, there is no covering effect, and if it is 1000 ⁇ m or more, bubbles frequently occur in the film, causing cracks and particles.
  • the sintering temperature is 800 ° C. to 1300 ° C., preferably 900 ° C. to 1200 ° C., and the deactivation of the phosphor can be suppressed to some extent.
  • Ti-containing inorganic film As the transparent coating film, a Ti-containing inorganic film is preferably used.
  • the Ti-containing inorganic film is a thin film formed from titanium oxide crystallized by anatase or a thin film containing a high concentration.
  • the film thickness is preferably in the range of 0.1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m. If it is 0.1 ⁇ m or less, the absorption rate of ultraviolet rays of 300 nm or less is low, and if it is 20 ⁇ m or more, light transmission with a wavelength of 400 nm or more is greatly reduced.
  • the Ti-containing inorganic film is formed by coating a surface of the wavelength conversion quartz glass layer with a metal alkoxide containing Ti and then sintering. Specifically, a hydrolyzed solution of titanium tetraisopropoxide (Ti (OCH (CH 3 ) 2 ) 4 in isopropyl alcohol (2-propanol) (CH 3 CHOHCH 3 ) is applied to the surface of the target substrate. Coat and heat calcinate in the temperature range of 200 ° C. to 1000 ° C. At 200 ° C. or lower, anatase-type titanium oxide crystals are not formed after calcination, and at 900 ° C. or higher, rutile type titanium oxide with low photocatalytic activity Crystals are formed, preferably 500 ° C. to 800 ° C.
  • baking method method of applying commercially available anatase sol to the substrate, sputtering method of forming a film by sputtering an oxide target in high vacuum, organic matter or halogen
  • sputtering method of forming a film by sputtering an oxide target in high vacuum, organic matter or halogen
  • a CVD method in which a chemical compound is volatilized and decomposed in an electric furnace to form a film
  • a plasma spraying method in which solid particles are melted in a plasma generated in the atmosphere, and struck against the surface of the substrate, and the like can be applied.
  • the polysilazane-containing solution containing the phosphor particles and the silica fine particles is dried, water vapor This is a method of manufacturing by heating in an atmosphere.
  • a polysilazane-containing solution containing phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m and spherical silica fine particles having a spherical hydrophobicity and an average particle diameter of 1 nm to 100 nm is used as the quartz glass.
  • the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 1 to 9 parts by mass, and the NH group concentration of the wavelength conversion quartz glass layer is 1000 ppm or less. It is preferable to prepare the wavelength conversion quartz glass layer by the manufacturing method described above.
  • the heat treatment is performed in the water vapor atmosphere in forming the wavelength conversion quartz glass layer, the NH group concentration of the wavelength conversion quartz glass layer is lowered. Thereby, since it heat-processes in the said water vapor
  • the average particle diameter of the phosphor particles used in the present invention is preferably 0.1 ⁇ m to 20 ⁇ m. More preferably, it is 1 ⁇ m to 10 ⁇ m.
  • the particle size of the phosphor particles is less than 0.1 ⁇ m, light scattering increases with an increase in surface area, and the emission intensity decreases.
  • phosphor particles having a size exceeding 20 ⁇ m cause variations in emission chromaticity and intensity in the formed film.
  • the phosphor particles are preferably those which can be excited by ultraviolet rays having a wavelength of 200 nm to 400 nm and can be converted into visible light, and are commercially available and generally available.
  • Sr 10 (PO 4 ) 6 Cl 2 Eu 2+
  • CaS: Bi CaSrS: Bi
  • green phosphors ZnS: Cu , Al, Ba 2 SiO 4 : Eu, ZnGe 2 O 4 : Eu, red phosphor, Y 2 O 2 S: Eu 3+
  • the composition of the silica fine particles used in the present invention is preferably synthetic quartz glass particles. Since the wavelength conversion synthetic quartz glass layer becomes a dense silica film after heat treatment, color dispersion and cracks are generated by using synthetic quartz glass particles as inorganic oxide particles due to the compatibility of refractive index and thermal expansion coefficient. Can be suppressed.
  • the silica fine particles can act as an aggregate, and when laminating the wavelength-converting quartz glass layer, a thick film can be formed at one time without causing cracks. .
  • the average particle diameter of the silica fine particles used in the second aspect of the quartz glass member for wavelength conversion of the present invention is 1 nm to 100 nm.
  • the thickness is preferably 3.0 nm to 80 nm, more preferably 5.0 nm to 50 nm.
  • silica fine particles of less than 1 nm it is difficult to obtain the particles themselves, and even if they are obtained, they have a large surface energy, so that aggregation occurs immediately.
  • silica fine particles having a particle diameter exceeding 100 nm result in excessive light scattering, which reduces the light utilization efficiency of the LED.
  • the silica fine particles used in the present invention are spherical and hydrophobic.
  • the liquid needs to have fluidity, but when non-spherical silica fine particles are used, the fluidity of the liquid is lost and uniform coating cannot be performed.
  • it since it is hydrophobic, it can be dispersed well in the polysilazane-containing solution, and a film in which silica fine particles are uniformly dispersed can be obtained.
  • the concentration of the silica fine particles is preferably such that the ratio of the silica fine particles to the total amount of the polysilazane, the phosphor particles and the silica fine particles in the polysilazane-containing solution is 10: 0.01 to 1 part by mass. That is, when the total amount of polysilazane, phosphor particles and silica fine particles is 10 parts by mass, the amount of silica fine particles is preferably 0.01 to 1 part by mass.
  • the ratio of silica fine particles to the total amount of polysilazane, phosphor particles and silica fine particles is more preferably 10: 0.05 to 0.5 parts by mass. When there are too few silica fine particles, the function as an aggregate will be lost, and when too large, it will cause irregular reflection and light extraction efficiency will fall.
  • perhydropolysilazane solution As the polysilazane-containing solution, it is preferable to use a perhydropolysilazane solution as the polysilazane-containing solution.
  • a perhydropolysilazane solution When other silazane compounds or alkoxysilanes are used, cracks occur when the organic functional group decomposes during heating in a water vapor atmosphere due to the presence of the organic functional group.
  • perhydropolysilazane does not have an organic functional group, it can be converted to silica without giving energy for burning organic substances, and can be fired at low temperature by steam.
  • perhydropolysilazane By baking perhydropolysilazane in a water vapor atmosphere, perhydropolysilazane composed only of Si, N, and H changes to quartz glass composed of Si and O.
  • the polysilazane-containing solution, the silica fine particles, and the coating solution containing the phosphor particles are dried at, for example, 100 to 200 ° C. to evaporate most of the organic solvent, and then in a water vapor atmosphere. Baking is preferred. Although the firing time depends on the thickness of the wavelength-converted quartz glass layer, it can be produced with a firing time of about 10 seconds to 30 minutes. For example, a 1 ⁇ m wavelength-converted quartz glass layer can be produced in a water vapor atmosphere at 600 ° C. in 10 seconds.
  • Perhydropolysilazane causes the following reaction. (SiH 2 NH) + 2H 2 O ⁇ SiO 2 + NH 3 + 2H 2 Since this reaction proceeds to the right due to the presence of water, it can be converted to silica at a low temperature for a short time by heating under water vapor. By baking perhydropolysilazane in a water vapor atmosphere, the Si—N bonds in the skeleton change to Si—O bonds. At that time, since the molecular weight of the basic structural unit increases, a denser and harder film can be obtained.
  • the firing temperature for forming the wavelength conversion quartz glass layer under water vapor is 100 to 1000 ° C., preferably 200 to 900 ° C.
  • the temperature is too high, the phosphor is thermally deactivated, and the emission intensity is reduced. If the temperature is too low, water vapor will not diffuse into the interior and the reaction will not occur sufficiently.
  • the film thickness per layer is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 10 ⁇ m, and further preferably 0.5 ⁇ m to 5 ⁇ m. If the film thickness per layer is less than 0.1 ⁇ m, it takes time to form the wavelength conversion quartz glass layer, leading to an increase in manufacturing cost. On the other hand, if a film exceeding 10 ⁇ m per layer is formed at one time, cracks occur during firing due to the generation of H 2 gas during the reaction. By repeating this lamination process, the wavelength conversion quartz glass layer can be formed to a film thickness containing a desired amount of phosphor, and a laminated structure of wavelength conversion quartz glass layers of 1 to 500 ⁇ m can be formed.
  • the polysilazane-containing solution is applied on the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. or less in a water vapor atmosphere to obtain a wavelength-converted quartz glass having a thickness of 0.1 ⁇ m to 10 ⁇ m.
  • a laminated structure of the wavelength conversion quartz glass layer having a thickness of 1 to 500 ⁇ m can be obtained.
  • Perhydropolysilazane can be reduced in the number of times than other materials, can be simplified in operation, and can reduce manufacturing costs.
  • a wet coating method such as a spray method, a spin coating method, a dip coating method, or a roll coating method can be used.
  • the concentration of the phosphor particles contained in the wavelength conversion quartz glass layer is such that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7 parts by mass. preferable. That is, when the total amount of polysilazane and phosphor particles is 10 parts by mass, the amount of phosphor particles is preferably 3 to 7 parts by mass. Further, the ratio of phosphor particles to the total amount of polysilazane and phosphor particles is more preferably 10: 5 to 7 parts by mass.
  • concentration of the phosphor particles is low, the number of stacking steps must be increased accordingly, which increases the operation procedure. If the concentration is too high, it becomes difficult for light from the light source to enter the interior, resulting in a decrease in luminous efficiency.
  • concentration of NH groups remaining in the wavelength conversion quartz glass layer is 1000 ppm or less, preferably 100 ppm or less. If it is below this concentration, coloring and cracking will not occur even when irradiated with ultraviolet rays for a long time or when exposed to high temperatures.
  • the film thickness of the wavelength conversion quartz glass layer is preferably 1 ⁇ m to 500 ⁇ m. More preferably, it is 10 ⁇ m to 100 ⁇ m or less.
  • the film thickness is less than 1 ⁇ m, not only the light from the light source is transmitted and the wavelength conversion efficiency is lowered, but also harmful ultraviolet rays are emitted when ultraviolet rays are used as the light source.
  • the film thickness exceeds 500 ⁇ m, the number of laminations increases, leading to an increase in manufacturing cost.
  • the second aspect of the wavelength conversion quartz glass layer creation step used in the second aspect of the wavelength conversion quartz glass member of the present invention is to prepare a solution in which the phosphor particles are mixed with water in a TEOS hydrolysis solution, In this method, the surface of the quartz glass substrate is coated, dried and heated to produce a wavelength-converted quartz glass layer.
  • a TEOS hydrolysis solution obtained by mixing phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m, water, and TEOS is applied to the quartz glass substrate, and then dried in the air.
  • Tetraethoxysilane, ethanol and a small amount of nitric acid are mixed and stirred for about 1 hour to prepare a TEOS hydrolysis solution.
  • a preferred distribution of the TEOS hydrolysis solution is in the range of tetraethoxysilane (0.5 mol to 2 mol), ethanol (2 mol to 5 mol) and a small amount of nitric acid (0.0005 mol to 0.01 mol).
  • the TEOS hydrolysis solution, the same phosphor fine particles as in the first embodiment, and water are stirred with a homogenizer.
  • the preferred ranges of the stirring solution are respectively (1 mol to 4 mol) for the solution, (0.5 mol to 3 mol) for the phosphor particles, and (5 mol to 20 mol) for water.
  • the stirring solution is applied to the surface of the quartz glass substrate to form a wavelength conversion quartz glass layer having a thickness of 0.1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 5 ⁇ m. Dry at 100 ° C. Thereafter, this layer formation treatment is repeated a plurality of times to form a laminated structure of wavelength conversion glass layers having a thickness of 1 ⁇ m to 500 ⁇ m, preferably 10 ⁇ m to 300 ⁇ m.
  • the laminated quartz glass member is heated in the atmosphere at 300 ° C. to 1000 ° C., preferably 400 ° C. to 900 ° C.
  • a layer close to the surface of the quartz glass substrate uses a solution with a high phosphor concentration, and uses a solution with a low concentration along with the number of times of lamination.
  • a laminated structure of conversion glass layers is formed.
  • the high-concentration layer close to the quartz glass substrate has high thermal conductivity, and can efficiently conduct heat from the quartz glass substrate that has become high temperature during use, thereby suppressing heating.
  • the stability is increased as quartz glass, and the generation of cracks and particles due to the influence of heating and the external atmosphere is suppressed.
  • the amount of phosphor particles in the high concentration layer close to the vicinity of the quartz glass substrate is 6 to 9 parts by mass, preferably In the low concentration layer close to the surface, the amount of the phosphor particles is 1 to 5 parts by mass, preferably 1 to 2.
  • a single phosphor is prepared by forming a solution with a single phosphor and forming a plurality of layers. Thereby, a uniform phosphor distribution and light emission are obtained in each layer, and the light emission intensity in the entire surface layer is made uniform.
  • a solution is prepared by mixing different phosphors and the layer formation process is performed, the specific gravity of each phosphor is different, so the phosphors are likely to be unevenly distributed in the layer, and the emission intensity is in the surface area. Uneven.
  • the quartz glass substrate used in the present invention is preferably synthetic quartz glass, particularly synthetic quartz glass produced by flame hydrolysis of silicon tetrachloride.
  • the synthetic quartz glass produced by this method has few impurities such as metal impurities, and does not deteriorate such as coloring even when irradiated with ultraviolet rays for a long time. Further, the coefficient of thermal expansion is extremely small, and the generation of cracks due to heat treatment can be suppressed. Furthermore, since the transmittance of ultraviolet rays is high and the ultraviolet rays of the light source are not attenuated, the phosphor can emit light efficiently.
  • the OH group of the synthetic quartz glass produced by this method is preferably 10 ppm to 1000 ppm.
  • natural quartz glass, general glass, translucent ceramics, translucent fluorinated compounds, and the like are also applied to the substrate.
  • the concentration of each metal element is preferably 1 ppm to 1000 ppm, preferably 10 ppm to 500 ppm.
  • the excitation light is appropriately scattered, and the excitation light has a uniform surface distribution when it reaches the wavelength conversion quartz glass layer.
  • Light emission that has intensity and is excited in the wavelength-converted quartz glass layer is also more uniform.
  • Microbubbles and microinterface density should be 1 ⁇ 10 2 bubbles / cm 3 to 1 ⁇ 10 9 bubbles / cm 3 , preferably 1 ⁇ 10 3 bubbles / cm 3 to 1 ⁇ 10 8. Pieces / cm 3 are good.
  • FIG. 7 shows a schematic sectional view showing one embodiment of the third aspect of the quartz glass member for wavelength conversion of the present invention.
  • reference numeral 50A denotes one embodiment of the third aspect of the wavelength conversion quartz glass member of the present invention.
  • the wavelength conversion quartz glass member 50A includes a quartz glass substrate 52, a wavelength conversion quartz glass layer 54 formed on the surface of the quartz glass substrate 52 and containing phosphor particles 56, and the wavelength conversion quartz glass layer 54. And a transparent coating film 60 formed on the surface. Further, the wavelength conversion quartz glass layer 54 also contains silica fine particles 58. The phosphor concentration of the wavelength conversion quartz glass layer 54 is distributed from a high concentration to a low concentration from the quartz glass substrate 52 side toward the surface side of the wavelength conversion quartz glass layer 54.
  • FIG. 8 shows another embodiment of the wavelength conversion quartz glass member of the third aspect of the wavelength conversion quartz glass member of the present invention.
  • reference numeral 50B indicates another embodiment of the third aspect of the quartz glass member for wavelength conversion of the present invention.
  • the wavelength conversion quartz glass member 50B includes a quartz glass substrate 52, a wavelength conversion quartz glass layer 54 formed on the surface of the quartz glass substrate 52 and containing phosphor particles 56, and the wavelength conversion quartz glass layer 54. And a transparent coating film 60 formed on the surface. Further, an intermediate quartz having a phosphor particle concentration of about 10 to 60% of the concentration of the phosphor particles 56 of the wavelength conversion quartz glass layer 54 between the wavelength conversion quartz glass layer 54 and the transparent coating film 60. A glass layer 62 is formed.
  • the intermediate quartz glass layer 62 has a silica particle concentration of about 10 to 60% of the concentration of the silica fine particles 58 of the wavelength conversion quartz glass layer 54. Furthermore, the phosphor concentration of the wavelength conversion quartz glass layer 54 is distributed from a high concentration to a low concentration from the quartz glass substrate 52 side toward the surface side of the wavelength conversion quartz glass layer 54.
  • the transparent coating film may be the same as the second aspect of the wavelength conversion quartz glass member of the present invention described above.
  • the transparent coating film creation step in the second aspect of the wavelength conversion quartz glass member of the present invention described above also for the transparent coating film creation step in the third aspect of the wavelength conversion quartz glass member of the present invention. It is the same as the process.
  • the polysilazane-containing solution containing the phosphor particles and the silica fine particles is dried and steamed. This is a method of manufacturing by heating in an atmosphere.
  • a polysilazane-containing solution containing phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m and spherical silica fine particles having a spherical hydrophobicity and an average particle diameter of 1 nm to 100 nm is used as the quartz glass.
  • the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 1 to 9 parts by mass, and the NH group concentration of the wavelength conversion quartz glass layer is 1000 ppm or less It is preferable to prepare the wavelength conversion quartz glass layer by the manufacturing method described above.
  • the polysilazane-containing solution is applied on the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. or less in a water vapor atmosphere to obtain a wavelength-converted quartz glass having a thickness of 0.1 ⁇ m to 10 ⁇ m. It is preferable to form a layered structure of wavelength-converting quartz glass layers having a thickness of 1 to 500 ⁇ m by forming a layer and repeating the formation process of the wavelength-converting quartz glass layer a plurality of times.
  • the heat treatment is performed in the water vapor atmosphere in forming the wavelength conversion quartz glass layer, the NH group concentration of the wavelength conversion quartz glass layer is lowered. Thereby, since it heat-processes in the said water vapor
  • the average particle diameter of the phosphor particles used in the present invention is preferably 0.1 ⁇ m to 20 ⁇ m. More preferably, it is 1 ⁇ m to 10 ⁇ m.
  • the particle size of the phosphor particles is less than 0.1 ⁇ m, light scattering increases with an increase in surface area, and the emission intensity decreases.
  • phosphor particles having a size exceeding 20 ⁇ m cause variations in emission chromaticity and intensity in the formed film.
  • the phosphor particles are preferably those which can be excited by ultraviolet rays having a wavelength of 200 nm to 400 nm and can be converted into visible light, and are commercially available and generally available.
  • Sr 10 (PO 4 ) 6 Cl 2 Eu 2+
  • CaS: Bi CaSrS: Bi
  • green phosphors ZnS: Cu , Al, Ba 2 SiO 4 : Eu, ZnGe 2 O 4 : Eu, red phosphor, Y 2 O 2 S: Eu 3+
  • the composition of the silica fine particles used in the present invention is preferably synthetic quartz glass particles. Since the wavelength conversion synthetic quartz glass layer becomes a dense silica film after heat treatment, color dispersion and cracks are generated by using synthetic quartz glass particles as inorganic oxide particles due to the compatibility of refractive index and thermal expansion coefficient. Can be suppressed.
  • the silica fine particles can act as an aggregate, and when laminating the wavelength-converting quartz glass layer, a thick film can be formed at one time without causing cracks. .
  • the average particle size of the silica fine particles used in the present invention is 1 nm to 100 nm.
  • the thickness is preferably 3.0 nm to 80 nm, more preferably 5.0 nm to 50 nm.
  • silica fine particles of less than 1 nm it is difficult to obtain the particles themselves, and even if they are obtained, they have a large surface energy, so that aggregation occurs immediately.
  • silica fine particles having a particle diameter exceeding 100 nm result in excessive light scattering, which reduces the light utilization efficiency of the LED.
  • the silica fine particles used in the present invention are spherical and hydrophobic.
  • the liquid needs to have fluidity, but when non-spherical silica fine particles are used, the fluidity of the liquid is lost and uniform coating cannot be performed.
  • it since it is hydrophobic, it can be dispersed well in the polysilazane-containing solution, and a film in which silica fine particles are uniformly dispersed can be obtained.
  • the concentration of the silica fine particles is preferably such that the ratio of the silica fine particles to the total amount of the polysilazane, the phosphor particles and the silica fine particles in the polysilazane-containing solution is 10: 0.01 to 1 part by mass. That is, when the total amount of polysilazane, phosphor particles and silica fine particles is 10 parts by mass, the amount of silica fine particles is preferably 0.01 to 1 part by mass.
  • the ratio of silica fine particles to the total amount of polysilazane, phosphor particles and silica fine particles is more preferably 10: 0.05 to 0.5 parts by mass. When there are too few silica fine particles, the function as an aggregate will be lost, and when too large, it will cause irregular reflection and light extraction efficiency will fall.
  • perhydropolysilazane solution As the polysilazane-containing solution, it is preferable to use a perhydropolysilazane solution as the polysilazane-containing solution.
  • a perhydropolysilazane solution When other silazane compounds or alkoxysilanes are used, cracks occur when the organic functional group decomposes during heating in a water vapor atmosphere due to the presence of the organic functional group.
  • perhydropolysilazane does not have an organic functional group, it can be converted to silica without giving energy for burning organic substances, and can be fired at low temperature by steam.
  • perhydropolysilazane By baking perhydropolysilazane in a water vapor atmosphere, perhydropolysilazane composed only of Si, N, and H changes to quartz glass composed of Si and O.
  • the polysilazane-containing solution, the silica fine particles, and the coating solution containing the phosphor particles are dried at, for example, 100 to 200 ° C. to evaporate most of the organic solvent, and then in a water vapor atmosphere. Baking is preferred. Although the firing time depends on the thickness of the wavelength-converted quartz glass layer, it can be produced with a firing time of about 10 seconds to 30 minutes. For example, a 1 ⁇ m wavelength-converted quartz glass layer can be produced in a water vapor atmosphere at 600 ° C. in 10 seconds.
  • Perhydropolysilazane causes the following reaction. (SiH 2 NH) + 2H 2 O ⁇ SiO 2 + NH 3 + 2H 2 Since this reaction proceeds to the right due to the presence of water, it can be converted to silica at a low temperature for a short time by heating under water vapor. By baking perhydropolysilazane in a water vapor atmosphere, the Si—N bonds in the skeleton change to Si—O bonds. At that time, since the molecular weight of the basic structural unit increases, a denser and harder film can be obtained.
  • the firing temperature for forming the wavelength conversion quartz glass layer under water vapor is 100 to 1000 ° C., preferably 200 to 900 ° C.
  • the temperature is too high, the phosphor is thermally deactivated, and the emission intensity is reduced. If the temperature is too low, water vapor will not diffuse into the interior and the reaction will not occur sufficiently.
  • the film thickness per layer is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 10 ⁇ m, and further preferably 0.5 ⁇ m to 5 ⁇ m. If the film thickness per layer is less than 0.1 ⁇ m, it takes time to form the wavelength conversion quartz glass layer, leading to an increase in manufacturing cost. On the other hand, if a film exceeding 10 ⁇ m per layer is formed at one time, cracks occur during firing due to the generation of H 2 gas during the reaction. By repeating this lamination process, the wavelength conversion quartz glass layer can be formed to a film thickness containing a desired amount of phosphor, and a laminated structure of wavelength conversion quartz glass layers of 1 to 500 ⁇ m can be formed.
  • the polysilazane-containing solution is applied on the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. or less in a water vapor atmosphere to obtain a wavelength-converted quartz glass having a thickness of 0.1 ⁇ m to 10 ⁇ m.
  • a laminated structure of the wavelength conversion quartz glass layer having a thickness of 1 to 500 ⁇ m can be obtained.
  • Perhydropolysilazane can be reduced in the number of times than other materials, can be simplified in operation, and can reduce manufacturing costs.
  • a wet coating method such as a spray method, a spin coating method, a dip coating method, or a roll coating method can be used.
  • the concentration of the phosphor particles contained in the wavelength conversion quartz glass layer is such that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7 parts by mass. preferable. That is, when the total amount of polysilazane and phosphor particles is 10 parts by mass, the amount of phosphor particles is preferably 3 to 7 parts by mass. Further, the ratio of phosphor particles to the total amount of polysilazane and phosphor particles is more preferably 10: 5 to 7 parts by mass.
  • concentration of the phosphor particles is low, the number of stacking steps must be increased accordingly, which increases the operation procedure. If the concentration is too high, it becomes difficult for light from the light source to enter the interior, resulting in a decrease in luminous efficiency.
  • concentration of NH groups remaining in the wavelength conversion quartz glass layer is 1000 ppm or less, preferably 100 ppm or less. If it is below this concentration, coloring and cracking will not occur even when irradiated with ultraviolet rays for a long time or when exposed to high temperatures.
  • the film thickness of the wavelength conversion quartz glass layer is preferably 1 ⁇ m to 500 ⁇ m. More preferably, it is 10 ⁇ m to 100 ⁇ m or less.
  • the film thickness is less than 1 ⁇ m, not only the light from the light source is transmitted and the wavelength conversion efficiency is lowered, but also harmful ultraviolet rays are emitted when ultraviolet rays are used as the light source.
  • the film thickness exceeds 500 ⁇ m, the number of laminations increases, leading to an increase in manufacturing cost.
  • a solution in which the phosphor particles and water are mixed is prepared in a TEOS hydrolysis solution, coated on the surface of the quartz glass substrate, dried and then heated. And a wavelength conversion quartz glass layer.
  • a TEOS hydrolysis solution obtained by mixing phosphor particles having an average particle diameter of 0.1 ⁇ m to 20 ⁇ m, water, and TEOS is applied to the quartz glass substrate, and then dried in the air.
  • the TEOS hydrolysis solution is applied on the quartz glass substrate, dried in the air, and then heated to 300 to 1000 ° C. to form a wavelength conversion quartz glass layer having a thickness of 0.1 ⁇ m to 10 ⁇ m. Then, it is preferable to form a laminated structure of the wavelength conversion quartz glass layer having a thickness of 1 to 500 ⁇ m by repeating the wavelength conversion quartz glass layer forming process a plurality of times.
  • the phosphor concentration of each laminated layer of the wavelength conversion quartz glass layer is adjusted from the high concentration to the low concentration toward the transparent coating film.
  • the wavelength conversion quartz glass layer has a plurality of types of phosphors, and a plurality of different phosphors are used for each layer and are laminated and formed.
  • Tetraethoxysilane, ethanol and a small amount of nitric acid are mixed and stirred for about 1 hour to prepare a TEOS hydrolysis solution.
  • a preferred distribution of the TEOS hydrolysis solution is in the range of tetraethoxysilane (0.5 mol to 2 mol), ethanol (2 mol to 5 mol) and a small amount of nitric acid (0.0005 mol to 0.01 mol).
  • the TEOS hydrolysis solution, the same phosphor fine particles as in the first embodiment, and water are stirred with a homogenizer.
  • the preferred ranges of the stirring solution are respectively (1 mol to 4 mol) for the solution, (0.5 mol to 3 mol) for the phosphor particles, and (5 mol to 20 mol) for water.
  • the stirring solution is applied to the surface of the quartz glass substrate to form a wavelength conversion quartz glass layer having a thickness of 0.1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 5 ⁇ m. Dry at 100 ° C. Thereafter, this layer formation treatment is repeated a plurality of times to form a laminated structure of wavelength conversion glass layers having a thickness of 1 ⁇ m to 500 ⁇ m, preferably 10 ⁇ m to 300 ⁇ m.
  • the laminated quartz glass member is heated in the atmosphere at 300 ° C. to 1000 ° C., preferably 400 ° C. to 900 ° C.
  • a layer close to the surface of the quartz glass substrate uses a solution with a high phosphor concentration, and uses a solution with a low concentration along with the number of times of lamination.
  • a laminated structure of conversion glass layers is formed.
  • the high-concentration layer close to the quartz glass substrate has high thermal conductivity, and can efficiently conduct heat from the quartz glass substrate that has become high temperature during use, thereby suppressing heating.
  • the stability is increased as quartz glass, and the generation of cracks and particles due to the influence of heating and the external atmosphere is suppressed.
  • the amount of phosphor particles in the high concentration layer close to the vicinity of the quartz glass substrate is 6 to 9 parts by mass, preferably In the low concentration layer close to the surface, the amount of the phosphor particles is 1 to 5 parts by mass, preferably 1 to 2.
  • a single phosphor is prepared by forming a solution with a single phosphor and forming a plurality of layers. Thereby, a uniform phosphor distribution and light emission are obtained in each layer, and the light emission intensity in the entire surface layer is made uniform.
  • a solution is prepared by mixing different phosphors and the layer formation process is performed, the specific gravity of each phosphor is different, so the phosphors are likely to be unevenly distributed in the layer, and the emission intensity is in the surface area. Uneven.
  • the same quartz glass substrate as that of the second aspect of the wavelength conversion quartz glass member of the present invention described above can be applied.
  • preparation of the said quartz glass base material in the 2nd aspect of the quartz glass member for wavelength conversion of this invention mentioned above is carried out. It is the same as the process.
  • Examples and Comparative Examples of the first aspect of the quartz glass member for wavelength conversion of the present invention are shown in Examples 1 to 10 and Comparative Examples 1 to 8. *
  • Example 1 In a 500 ml zirconia container, spherical deep UV-excited phosphor (product name: QKL65E / S-C1 average particle size 30 ⁇ m (measurement device: Microtrack MT3000 Nikkiso Co., Ltd.)) 5 g, 2-methoxyethanol ( Viscosity 20 ° C 1.71mPa ⁇ s, 20 ° C vapor pressure 0.83kP) 10g, zirconia ball large (diameter 5mm) 30g, zirconia ball small (diameter 0.3mm) 15g, 6 sets for 30 minutes at 250rpm, planetary ball mill To obtain a phosphor dispersion.
  • spherical deep UV-excited phosphor product name: QKL65E / S-C1 average particle size 30 ⁇ m (measurement device: Microtrack MT3000 Nikkiso Co., Ltd.)
  • 2-methoxyethanol Viscosity 20 ° C 1.71mPa ⁇
  • Tresmile ANN120 polysilazane 20% by mass dibutyl ether solution containing no catalyst, manufactured by Sanwa Chemical Co., Ltd.
  • the ratio of phosphor particles to the total amount of pulverized phosphor-1 (polysilazane and phosphor particles) was mixed with a homogenizer (rotation speed: 8000 rpm) for 5 minutes.
  • Hydrophobic silicon dioxide (trade name: Admanano, spherical, bulk density 0.8 g / cm 3 , average particle size 10 nm, minimum particle size 3 nm, maximum particle size 15 nm, content in polysilazane-containing solution 0.5%) was mixed to obtain dispersion-1.
  • the obtained film was dried on a hot plate at 100 ° C. for 10 minutes, and then 30 minutes on a ceramic hot plate at 500 ° C. in the presence of water vapor (air flow rate 20 l / min, water vapor flow rate 0.7 ml / min) in the atmosphere. Heat treatment was performed for 1 minute, and then the mixture was cooled to room temperature to obtain a coating film having a thickness of 1.5 ⁇ m (residual NH group concentration of 100 ppm or less, light transmittance of 60% to 80% near 470 nm).
  • the above spray coating was repeated 10 times under the same conditions as above to obtain a quartz glass member for wavelength conversion of Example 1 (film thickness 12 ⁇ m, light transmittance 5% near 470 nm, residual NH group concentration 100 ppm or less).
  • Example 2 A quartz glass member for wavelength conversion of Example 2 (thickness 15 ⁇ m, light transmittance around 470 nm), except that the following pulverized phosphor-2 was used instead of the pulverized phosphor-1 used in Example 1. 4%, residual NH group concentration of 100 ppm or less).
  • the ultraviolet light excitation phosphor (trade name: QKL65E / S-C1 manufactured by Uvix Corporation) is used instead of the near ultraviolet light excitation phosphor (trade name: UVW365 manufactured by Uvix Corporation).
  • a pulverized phosphor-2 (average particle size 10 ⁇ m) was obtained in the same manner except that it was used.
  • Example 3 A quartz glass member for wavelength conversion of Example 3 was produced in the same manner as in Example 1 except that a natural quartz glass substrate was used instead of the synthetic quartz glass substrate-1 used in Example 1.
  • Example 4 The wavelength-converted quartz glass member of Example 4 (thickness of 15 ⁇ m, around 470 nm) was obtained in the same manner as in Example 1 except that the following pulverized phosphor-3 was used instead of the pulverized phosphor-1 used in Example 1. 4% light transmittance and residual NH group concentration of 100 ppm or less).
  • pulverized phosphor-3 (average particle size 1 ⁇ m) was obtained in the same manner as in Example 1 except that 12 sets were mixed at 250 rpm for 30 minutes and mixed with a planetary ball mill. .
  • Example 5 The wavelength-converted quartz glass member of Example 5 (thickness of 15 ⁇ m, around 470 nm) was obtained in the same manner as in Example 1 except that the following pulverized phosphor-4 was used instead of the pulverized phosphor-1 used in Example 1. 4% light transmittance and residual NH group concentration of 100 ppm or less).
  • a pulverized phosphor-4 (average particle size of 15 ⁇ m) was obtained in the same manner as in Example 1 except that one set was mixed at 250 rpm for 30 minutes and mixed with a planetary ball mill. .
  • Example 6 The wavelength-converted quartz glass member of Example 6 (thickness 15 ⁇ m, around 470 nm) in the same manner as in Example 1 except that spherical silica fine particles having a hydrophobic average particle diameter of 10 nm were used instead of the Admanano used in Example 1. Light transmittance of 4% and residual NH group concentration of 100 ppm or less).
  • Example 7 The wavelength-converted quartz glass member of Example 7 (thickness 15 ⁇ m, around 470 nm) in the same manner as in Example 1 except that spherical silica fine particles having a hydrophobic average particle diameter of 80 nm were used instead of the Admanano used in Example 1. Light transmittance of 4% and residual NH group concentration of 100 ppm or less).
  • Example 8 Wavelength conversion of Example 8 in the same manner as in Example 1 except that the ratio of phosphor particles to the total amount of polysilazane and phosphor particles in the pulverized phosphor used in Example 1 is 10: 4 parts by mass.
  • a quartz glass member (film thickness 15 ⁇ m, light transmittance around 470 nm 4%, residual NH group concentration 100 ppm or less) was prepared.
  • Example 9 Wavelength conversion of Example 9 in the same manner as in Example 1 except that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the pulverized phosphor used in Example 1 is 10: 6 parts by mass.
  • a quartz glass member (film thickness 15 ⁇ m, light transmittance around 470 nm 4%, residual NH group concentration 100 ppm or less) was prepared.
  • Example 10 In Example 1, the wavelength conversion quartz glass member of Example 10 (thickness 15 ⁇ m, light transmittance around 470 nm 4) was used in the same manner as Example 1 except that the heating was repeated in water vapor at 300 ° C. and the lamination was repeated. %, Residual NH group concentration 700 ppm).
  • Comparative Example 1 In Example 1, after drying at 100 ° C., in the heat treatment step of heating to 500 ° C. in water vapor, the wavelength conversion of Comparative Example 1 was performed in the same manner as in Example 1 except that heating was performed at 500 ° C. without using water vapor. A quartz glass member was prepared.
  • Comparative Example 2 A quartz glass member for wavelength conversion of Comparative Example 2 was produced in the same manner as in Example 1 except that Tresmile ANP310 (terminal methylated silazane) was used in place of the Tresmile ANN120 used in Example 1.
  • Tresmile ANP310 terminal methylated silazane
  • Comparative Example 3 A wavelength-converted quartz glass member of Comparative Example 3 was produced in the same manner as in Example 1 except that the deep ultraviolet light-excited phosphor (average particle size 30 ⁇ m) used in Example 1 was used without wet pulverization.
  • Comparative Example 4 A wavelength-converted quartz glass member of Comparative Example 4 in the same manner as in Example 1 except that spherical and hydrophilic silicon dioxide (trade name: SOE5 average particle size 300 ⁇ m) was used instead of Admanano used in Example 1. Was made.
  • SOE5 average particle size 300 ⁇ m spherical and hydrophilic silicon dioxide
  • Comparative Example 5 The wavelength-converted quartz glass of Comparative Example 5 was used in the same manner as in Example 1 except that network-like silicon dioxide (trade name: Aerosil 380, specific surface area 380 cm 2 / g) was used instead of Admanano used in Example 1. A member was prepared.
  • network-like silicon dioxide trade name: Aerosil 380, specific surface area 380 cm 2 / g
  • Comparative Example 6 The wavelength conversion of Comparative Example 6 was performed in the same manner as in Example 1 except that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the pulverized phosphor used in Example 1 was 10: 2 parts by mass. A quartz glass member was produced.
  • Comparative Example 7 The wavelength conversion of Comparative Example 7 was performed in the same manner as in Example 1 except that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the pulverized phosphor used in Example 1 was 10: 8 parts by mass. A quartz glass member was produced.
  • Example 8 a wavelength-converted quartz glass member of Comparative Example 8 was produced in the same manner as Example 1 except that no Admanano was used.
  • the dispersibility observation was acceptable when the element contained in the phosphor or the aggregate of the Si element within 70 ⁇ m ⁇ 50 ⁇ m of the EDS measurement screen was within 5 ⁇ m by EDS measurement.
  • Productivity was acceptable when the number of coat repetitions was 100 or less.
  • the determination was x.
  • the quartz glass member produced in Examples 1 and 3 to 10 was applied to a UV lamp (0.6 mW / cm 2 ) having an emission peak at 254 nm, and the quartz glass member produced in Example 2 was UV having an emission peak at 365 nm.
  • the chromaticity was evaluated with a simple spectroscope. The evaluation results are shown below.
  • Example 3 since the light emission of the base material itself was confirmed, it was set as ⁇ .
  • Example 11 In a 500 ml zirconia container, spherical deep ultraviolet light excitation phosphor (product name: QKL65E / S-C1, Y 2 O 2 S-Tb, Eu) 5 g, 2-methoxyethanol (viscosity 20 ° C, 1.71 mPa S, 10 g of vapor pressure 0.83 kP at 20 ° C. and 20 g of menor balls (diameter 5 mm) were added, and 5 sets of 15 minutes at 250 rpm were mixed with a planetary ball mill to obtain a phosphor dispersion. Thereafter, 2-methoxyethanol was evaporated in the air on a hot plate at 100 ° C.
  • pulverized phosphor-1 having an average particle diameter of 5 ⁇ m (bulk, bulk density of 0.3 g / cm 3 to 1.0 g / cm 3 , A minimum particle size of 1 ⁇ m and a maximum particle size of 10 ⁇ m) were obtained by drying.
  • Tresmile ANN120 polysilazane 20% by mass dibutyl ether solution containing no catalyst, manufactured by Sanwa Chemical Co., Ltd.
  • the ratio of phosphor particles to the total amount of pulverized phosphor-1 (polysilazane and phosphor particles) was mixed with a homogenizer (rotation speed: 8000 rpm) for 5 minutes.
  • Hydrophobic silicon oxide (trade name: Admanano (manufactured by Admatechs Co., Ltd., spherical, bulk density 0.4 g / cm 3 to 1.5 g / cm 3 , average particle size 10 nm, minimum particle size 3 nm, maximum particle size 15 nm) was mixed to obtain dispersion-1.
  • the obtained film was dried on a hot plate at 100 ° C. for 10 minutes, and then 30 minutes on a ceramic hot plate at 500 ° C. in the presence of water vapor (air flow rate 1 l / min, water vapor flow rate 1.0 ml / min) in the atmosphere. Heat treatment was performed for 1 minute, and then the mixture was cooled to room temperature to obtain a coating film having a thickness of 2 ⁇ m (residual NH group concentration of 100 ppm or less, light transmittance near 470 nm of 70%).
  • the above spray coating is repeated 20 times or less under the same conditions as above, and a wavelength conversion quartz glass layer having a film thickness of 15 ⁇ m, a light transmittance of about 470 nm of 20%, and a residual NH group concentration of 100 ppm or less is formed on a synthetic quartz glass substrate. Formed.
  • Example 12 A solution was prepared in the same manner as in Example 11, except that up to 10 spray coats were formed in the same manner, and after 20 spray coats, the weight ratio of the phosphor was reduced proportionally, and the surface Was formed into a solution having a phosphor weight ratio of 0%. Other than that was produced similarly to Example 11.
  • Example 13 A solution was prepared in the same manner as in Example 11, except that a blue phosphor, Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ was used for 1 to 7 spray coats, and 8 to 14 times. Up to spray coating, green phosphor, ZnS: Cu, Al is used. Up to 15 to 21 spray coatings, red phosphor, Y 2 O 2 S: Eu 3+ is used. Prepared as in Example 11.
  • Example 14 1 mol of TEOS, 3 mol of ethanol and 0.002 mol of nitric acid are stirred for 5 minutes, and 10 mol of water is added to prepare a TEOS hydrolysis solution. To 2 mol of this solution, 1 mol of phosphor similar to Example 11 and 10 mol of water are added. The mixture was stirred for 5 minutes with a homogenizer, and the other methods were the same as in Example 11. A 1 ⁇ m film was formed by spray coating, dried at 60 ° C., repeatedly laminated 20 times, and then a transparent layer was formed. Heating was performed at 800 ° C. for 2 hours.
  • Example 15 1 mol of TEOS, 3 mol of ethanol and 0.002 mol of nitric acid are stirred for 5 minutes, and 10 mol of water is added to prepare a TEOS hydrolysis solution. To 2 mol of this solution, 1 mol of phosphor similar to Example 11 and 10 mol of water are added. The mixture was stirred for 5 minutes with a homogenizer, a 1 ⁇ m film was formed by spray coating, dried at 60 ° C., repeatedly laminated 20 times, and then heated at 800 ° C. for 2 hours in the air. As the quartz substrate, synthetic quartz glass containing 100 ppm of Cu was used.
  • Example 16 A solution was prepared in the same manner as in Example 11, except that it was formed in the same manner up to 15 spray coats, and in the subsequent 5 spray coats, the weight ratio of the phosphor particles in the wavelength conversion quartz glass layer was changed. An intermediate quartz glass layer halved was formed, and a transparent layer similar to Example 11 was formed on the surface. That is, as the intermediate quartz glass layer, an intermediate quartz glass layer having a phosphor particle concentration of 50% of the phosphor particle concentration of the wavelength conversion quartz glass layer was formed. As the quartz substrate, opaque synthetic quartz glass having a bubble diameter of 5 to 20 ⁇ m, an average diameter of 20 ⁇ m, and a bubble density of 1 ⁇ 10 7 cells / cm 3 was used.
  • Example 9 A member for which a wavelength conversion quartz glass layer was formed on a synthetic quartz glass substrate was produced, and wavelength conversion quartz was obtained in the same manner as in Example 11 except that a transparent coating film was not formed on the surface of the wavelength conversion quartz glass layer. A glass member was prepared and evaluated in the same manner.
  • the quartz glass members produced in Examples 11 to 16 and Comparative Example 9 were applied to a UV lamp (0.6 mW / cm 2 ) having an emission peak at 254 nm, and the light transmitted through each member was measured with a spectrophotometer. And the spectral spectrum was evaluated.
  • Example 1 In a 500 ml zirconia container, spherical deep ultraviolet light excitation phosphor (product name: QKL65E / S-C1, Y 2 O 2 S-Tb, Eu) 5 g, 2-methoxyethanol (viscosity 20 ° C, 1.71 mPa S, 10 g of vapor pressure 0.83 kP at 20 ° C. and 20 g of menor balls (diameter 5 mm) were added, and 5 sets of 15 minutes at 250 rpm were mixed with a planetary ball mill to obtain a phosphor dispersion. Thereafter, 2-methoxyethanol was evaporated in the air on a hot plate at 100 ° C.
  • 2-methoxyethanol was evaporated in the air on a hot plate at 100 ° C.
  • pulverized phosphor-1 having an average particle diameter of 5 ⁇ m (bulk, bulk density of 0.3 g / cm 3 to 1.0 g / cm 3 , A minimum particle size of 1 ⁇ m and a maximum particle size of 10 ⁇ m) were obtained by drying.
  • Tresmile ANN120 polysilazane 20% by mass dibutyl ether solution containing no catalyst, manufactured by Sanwa Chemical Co., Ltd.
  • the ratio of phosphor particles to the total amount of pulverized phosphor-1 (polysilazane and phosphor particles) was mixed with a homogenizer (rotation speed: 8000 rpm) for 5 minutes.
  • Hydrophobic silicon oxide (trade name: Admanano (manufactured by Admatechs Co., Ltd., spherical, bulk density 0.4 g / cm 3 to 1.5 g / cm 3 , average particle size 10 nm, minimum particle size 3 nm, maximum particle size 15 nm) was mixed to obtain dispersion-1.
  • the obtained film was dried on a hot plate at 100 ° C. for 10 minutes, and then 30 minutes on a ceramic hot plate at 500 ° C. in the presence of water vapor (air flow rate 1 l / min, water vapor flow rate 1.0 ml / min) in the atmosphere. Heat treatment was performed for 1 minute, and then the mixture was cooled to room temperature to obtain a coating film having a thickness of 2 ⁇ m (residual NH group concentration of 100 ppm or less, light transmittance near 470 nm 70%).
  • the above spray coating is repeated 20 times or less under the same conditions as above, and a wavelength conversion quartz glass layer having a film thickness of 15 ⁇ m, a light transmittance of about 470 nm of 20%, and a residual NH group concentration of 100 ppm or less is formed on a synthetic quartz glass substrate. Formed.
  • Example 17 A solution was prepared in the same manner as in Experimental Example 1, except that up to 10 spray coats were formed in the same manner, and after 20 spray coats, the weight ratio of the phosphor particles was proportionally reduced. A 0% phosphor weight ratio solution was formed on the surface. Other than that was produced similarly to Experimental Example 1.
  • Example 18 A solution was prepared in the same manner as in Experimental Example 1, and a blue phosphor, Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ , a green phosphor, ZnS: Cu, Al, a red phosphor, Y 2 O 2
  • the solution containing S: Eu 3+ is coated in order, and in this order, the formation up to the ninth time is the same as in Experimental Example 1, and from the tenth coating, the solution concentration is gradually reduced.
  • the outermost coat was formed as a 0% phosphor weight ratio solution. Other than that, it produced similarly to Experimental example 1.
  • Example 19 (Example 19) Stir 1 mol of TEOS, 3 mol of ethanol and 0.002 mol of nitric acid for 5 minutes, add 10 mol of water to prepare a TEOS hydrolysis solution, and add 1 mol of phosphor and water in the same manner as in Experimental Example 1 to 2 mol of this solution. 10 mol was added, stirred for 5 min with a homogenizer, a 1 ⁇ m film was formed by spray coating, dried at 60 ° C., repeatedly laminated 20 times in the same manner as in Example 1, and then 800 ° C. in air. And heated for 2 hours.
  • Example 20 A solution was prepared in the same manner as in Example 17, except that the solution was formed in the same manner up to 15 spray coatings, and in the subsequent 5 spray coatings, the weight ratio of the phosphor particles in the wavelength conversion quartz glass layer was changed. An intermediate quartz glass layer halved from the 14th spray coating was formed, and the others were formed in the same manner as in Example 17. That is, as the intermediate quartz glass layer, an intermediate quartz glass layer having a phosphor particle concentration of 50% of the phosphor particle concentration of the wavelength conversion quartz glass layer was formed.
  • the quartz glass members produced in Examples 17, 18, 19, 20 and Comparative Example 10 were applied to a UV lamp (0.6 mW / cm 2 ) having an emission peak at 254 nm, and the light transmitted through each member was measured spectroscopically. The chromaticity and spectral spectrum were evaluated using a container.
  • Quartz glass member for wavelength conversion according to the first aspect of the present invention 12, 32, 52: Quartz glass substrate, 14: Quartz glass surface film, 16, 36, 56: Phosphor particles, 18, 38, 58 : Silica fine particles, 30A, 30B: quartz glass member for wavelength conversion according to the second aspect of the present invention, 34, 54: wavelength conversion quartz glass layer, 40, 60: transparent coating film, 42, 62: intermediate quartz glass layer , 50A, 50B: A quartz glass member for wavelength conversion according to the third aspect of the present invention.

Abstract

 環境耐性、耐熱性、耐久性、及び、演色性が高く、低温プロセスで製造でき、効率よく波長変換することが可能な波長変換用石英ガラス部材及びその製造方法を提供する。 石英ガラス基材とその表面に石英ガラス表層膜が形成されてなる波長変換用石英ガラス部材であり、前記石英ガラス表層膜は、平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材表面上に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより得られ、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3~7質量部であり、前記石英ガラス表層膜のNH基濃度が1000ppm以下である、ようにした。

Description

波長変換用石英ガラス部材及びその製造方法
 本発明は、発光の一部を吸収し、波長変換して発光させるための波長変換用石英ガラス部材及びその製造方法に関する。また、本発明は、発光の一部を吸収し、波長変換して発光させ、且つ、部材表面における有機物の付着を防止し、紫外線を遮断する機能を付与した、波長変換用石英ガラス部材及びその製造方法に関する。
 波長変換材料は、ある波長の光を波長変換し、利用用途に応じて、その波長より長波長の光を取り出し、効率を向上させるものである。
 近年、一般的な太陽電池では、シリコン結晶に太陽光を直接照射して励起を引き起こし、電気エネルギーを発生させているが、太陽光に含まれる紫外波長の光は熱に変化し、エネルギーロスとなっている。また、利用される太陽光エネルギーは大量に集約される為、集約部分の発熱度が非常に増大し、高温に耐えうる材料が求められている。このため、太陽光の紫外波長成分を、効率よく長波長に変換し、太陽電池の発電効率を向上させることができるとともに、高温でも耐えうる石英ガラス製の波長変換材料が求められている。
 次に、レーザー発信技術分野での技術例を説明する。大出力Nd:YAGレーザーの励起には、通常キセノンフラッシュランプが用いられている。その発光は200nm~1000nmに渡るブロード発光であるが、Nd:YAGレーザー励起に必要な波長は、530nm~550nm、580nm~600nmであるため、紫外域の光はエネルギーロスとなる。従って、この紫外線を波長変換し、Nd:YAGレーザーに有効な波長として利用できれば、レーザーの発光効率を向上することができる。この分野でも同様に、高温、紫外線に耐えうる材料として、石英を利用した材料が求められている。
 また、化合物半導体による青色、或いは、紫外線を放射するLEDチップが開発されつつあるが、このLEDチップと、種々の蛍光体とを組み合わせることにより、白色を含め、チップの光を波長変換した発光装置の開発が試みられている。この発光装置は、小型、軽量、省電力といった長所がある。この分野でも同様に、高温、紫外線に耐えうる材料として、石英を利用した材料が求められている。この分野でも同様に、高温、紫外線に耐えうる材料として、石英を利用した材料が求められている。また、これらの光関係用途では、発光強度の面内均一性が重要な要求特性として求められている。
 さらに、近年、植物工場用の照明が、蛍光灯に代わりLED化している。植物の成長には、植物種や成長段階によって様々な波長の光が必要であり、一般的には可視光が適している。この分野でも、波長変換効率に優れ、耐水性、耐薬品性に優れた材料として、石英を利用した材料が求められている。
 ところで、従来の太陽電池の波長変換材料には、紫外光を吸収して、可視領域で発光する有機金属錯体を樹脂中に配合して、太陽電池の変換効率が向上するとした、封止材、太陽電池が開示されている(特許文献1及び特許文献2)。
 しかし、特許文献1及び特許文献2に利用されている有機金属錯体は、耐光性に乏しく、光の連続照射によって有機金属錯体が劣化して変換効率が低下し、さらに封止材料に樹脂が利用されているため、この樹脂が黄変するといった問題があった。
 Nd:YAGレーザーの励起に利用するキセノンフラッシュランプの波長変換材料として、シリカガラス中に銅をドープし、紫外線を可視光に変換する材料について開示されている(特許文献3)。
 しかし、特許文献3で開示されている方法は、製造工程が高温プロセスであり、高価な製造設備が必要であり、コストや環境負荷の低減の観点から、問題があった。
 従来の青色、紫外LED発光置としては、蛍光体を含有する保護樹脂でLEDチップを包囲し、更に全体を封止樹脂で包囲するものがある。
 しかし、蛍光体を含有した樹脂を用いた従来の方法では、LEDチップから発生する紫外線によって、被覆樹脂(保護樹脂、封止樹脂)が劣化する。一般に、炭素、水素、酸素、窒素等の元素がネットワーク状に結合した有機高分子化合物によって構成される保護樹脂及び封止樹脂は、紫外線が照射されると、有機高分子のネットワーク構造が切断され、各種の光学的特性及び化学的特性が劣化することが知られている。
 さらに、ポリシロキサン組成物前駆体を含有する溶液に蛍光体を混合し、塗布、加熱することで蛍光体をシリカガラス中に封止する方法が知られている(特許文献4)。しかしながら、ポリシロキサン組成物前駆体は、その多くが有機官能基を有しており、加熱を行うとその有機官能基が分解される際、ガス、クラックなどが発生しやすい。また、ポリシロキサン組成物前駆体からシリカガラスを作製する際は、加水分解、重縮合、乾燥、焼結と、複雑な工程を経なければならないため、量産化が難しいという問題があった。
 植物工場では、水や肥料が多用される。そのため、上記記載のような蛍光体を封止した樹脂を利用したLED照明では、水蒸気透過性が高く、耐薬品性が低いため、このような用途に適していない。
 各々の従来例において、使用する励起光の波長が400nm以下の紫外線を含む場合、紫外線が波長変換材料を通過して、対象物に照射され、劣化や、化学反応など種々の悪影響をもたらす問題があった。
 また、各波長変換材の表面には、使用続けるにつれ、雰囲気中の埃、金属元素粒子、有機物の塵などが付着して張り付き、変換された光が反射、散乱、吸収され、波長変換材から放出されなくなることや、表面部分の強度劣化が進んで、表面より微小パーティクルが飛散するなど、機能が著しく低下する問題があった。
国際公開第2008/047427号公報 特開2010-258293公報 特開2005-272243号公報 国際公開第2010/110204号公報
 本発明は、上記した従来技術の問題点に鑑みなされたもので、第1に、環境耐性、耐熱性、耐久性、及び、演色性が高く、低温プロセスで製造でき、効率よく波長変換することが可能な波長変換用石英ガラス部材及びその製造方法を提供することを目的とする。
 また、本発明は、第2に、紫外線の漏洩を防止し、環境耐性、耐熱性、耐久性、表面防汚性、表面安定性、発光強度の均一性、演色性に優れ、低温プロセスで製造でき、効率よく波長変換することが可能な波長変換用石英ガラス部材及びその製造方法を提供することを目的とする。
更には、本発明は、第3に、紫外線の漏洩を防止し、環境耐性、発光強度の安定性、耐熱性、耐久性、表面防汚性、表面安定性、発光強度の均一性、演色性に優れ、低温プロセスで製造でき、効率よく波長変換することが可能な波長変換用石英ガラス部材及びその製造方法を提供することを目的とする。
 上記課題を解決するため、本発明者らは、環境耐性、耐熱性及び耐久性に優れた石英ガラス表層膜と蛍光体粒子を使用し、低温プロセスで製造できる波長変換用石英ガラス部材を作製するための方法に関し鋭意検討を行った結果、本発明を見出した。
 本発明の波長変換用石英ガラス部材の第1の態様は、石英ガラス基材とその表面に石英ガラス表層膜が形成されてなる波長変換用石英ガラス部材であり、前記石英ガラス表層膜は、平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材表面上に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより得られ、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3~7質量部であり、前記石英ガラス表層膜のNH基濃度が1000ppm以下である、ことを特徴とする。
 本発明の波長変換用石英ガラス部材は、前記石英ガラス表層膜の厚さが1μm~500μmであるのが好ましい。
 石英ガラス基材に用いられる石英ガラスが、合成石英ガラスであるのが好ましい。石英ガラス基材が、四塩化珪素化合物の火炎加水分解により生成され、前記石英ガラス基材のOH基濃度が10ppm~1000ppmの合成石英であるのがさらに好ましい。
 本発明の波長変換用石英ガラス部材の製造方法の第1の態様は、石英ガラス基材の表面に、平均粒径が0.1μm~20μmである蛍光体粒子及び球状で疎水性且つ平均粒径が1nm~100nmであり0.1~10質量%のシリカ微粒子を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布し、水蒸気雰囲気下で加熱して、石英ガラス表層膜を形成する波長変換用石英ガラス部材の製造方法であり、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3~7質量部であることを特徴とする。
 前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100~600℃に加熱せしめ、厚さ0.1μm~10μmの石英ガラス表層膜を形成し、前記石英ガラス表層膜の形成処理を複数回繰り返すことで、厚さ1~500μmの石英ガラス表層膜の積層構造を形成するのが好適である。
 本発明の波長変換用石英ガラス部材の第2の態様は、石英ガラス基材と、前記石英ガラス基材の表面に形成され且つ蛍光体粒子を含有する波長変換石英ガラス層と、前記波長変換石英ガラス層の表面に形成された透明被覆膜と、を含むことを特徴とする。
 前記透明被覆膜が、透明無機膜であるのが好適である。
 前記透明無機膜が、Ti含有無機膜であるのが好ましい。
 前記Ti含有無機膜が、アナターゼ結晶化した酸化チタンを含有するのが好適である。
 前記波長変換石英ガラス層と前記透明被覆膜との間に、前記波長変換石英ガラス層の蛍光体粒子濃度の10~60%程度の蛍光体粒子濃度を有する中間石英ガラス層が形成されてなるのが好ましい。このように中間石英ガラス層を形成することで、前記透明被覆膜が剥がれ難くなる利点がある。
 前記石英ガラス基材が、合成石英ガラスであるのが好ましい。合成石英ガラスは紫外線の透過特性に優れるからである。
 前記石英ガラス基材が、Ga、Ce、Cu、及びTiからなる群から選択された一つ以上を含む石英ガラスであるのが好ましい。これらの元素を含むことで、紫外線を吸収する効果があるからである。
 前記石英ガラス基材が、微小泡及び/又は微小界面を含む光散乱石英ガラスであるのが好適である。微小泡及び/又は微小界面を含む光散乱石英ガラスとすることで、光が均一に分散するからである。
 本発明の波長変換用石英ガラス部材の製造方法の第2の態様は、前記波長変換用石英ガラス部材を製造するための製造方法であって、前記透明被覆膜が、シリカ及び/又はシリカ前駆体を含有する溶液を前記波長変換石英ガラス層又は前記中間石英ガラス層の表面に薄膜コートし、乾燥後、加熱して形成されることを特徴とする。
 前記透明被覆膜及び波長変換石英ガラス層がゾルゲル法によって形成されるのが好ましい。例えばシリカをゾルゲル法で合成する場合には、TEOSなどのシリカ前駆体を含むゾルを、加水分解・重縮合反応させることでゲル状態とし、シリカを合成することができる。
 平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であり、前記波長変換石英ガラス層のNH基濃度が1000ppm以下であるのが好ましい。
 平均粒径が0.1μm~20μmである蛍光体粒子と、水と、TEOSとを混合してなるTEOS加水分解溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、前記TEOS加水分解溶液における、TEOS及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であるのが好ましい。
 また、前記Ti含有無機膜が、前記波長変換石英ガラス層の表面にTiを含有する溶液をコートし、その後、焼結することにより形成されるようにしてなるのが好ましい。
 本発明の波長変換用石英ガラス部材の第3の態様は、石英ガラス基材と、前記石英ガラス基材の表面に形成され且つ蛍光体粒子を含有する波長変換石英ガラス層と、を含み、前記波長変換石英ガラス層の蛍光体濃度が、ガラス基材側から前記波長変換石英ガラス層の表面側に向かって、高濃度から低濃度に分布していることを特徴とする。
 このように前記波長変換石英ガラス層の蛍光体濃度を、ガラス基材側から前記波長変換石英ガラス層の表面側に向かって、高濃度から低濃度に分布させることにより、熱伝導率が前記石英ガラス基材の近傍で高くなる。したがって、前記ガラス基材の内側にあるか、または、接触して配置されるシリコン単結晶やLED素子が作り出す熱エネルギーが容易に外部に放出され、シリコン単結晶やLED素子の過熱が抑制され、発電効率や発光効率の低下が起こらなくなる。
 前記波長変換石英ガラス層が積層されて形成され、前記波長変換石英ガラス層の蛍光体種類が複数であり、各層毎に異なる蛍光体を使用し、複数積層し、形成されているのが好ましい。蛍光体は、各々平均粒度や密度が異なるので、各々の蛍光体を均一に分散積層させるためには、各々の蛍光体に対する適性条件で積層する必要があり、それにより均一な発光強度分布を得ることができる。積層条件を変更しない場合は、蛍光体の分布にムラが生じ、均一な発光強度分布を得ることができない。このようにして、本発明の波長変換用石英ガラス部材を光関係素子、例えばLED素子のガラス封止部に用いることにより、均一な面内発光強度を得ることができる。
 前記石英ガラス基材が、合成石英ガラスであるのが好ましい。合成石英ガラスは紫外線の透過特性に優れるからである。
 また、前記石英ガラス基材が、Ga、Ce、Cu及びTiからなる群から選択された一つ以上を含む石英ガラスであるのが好ましい。これらの元素を含むことで、紫外線を吸収する効果があるからである。
 前記石英ガラス基材が、微小泡及び/又は微小界面を含む光散乱石英ガラスであるのが好適である。微小泡及び/又は微小界面を含む光散乱石英ガラスとすることで、光が均一に分散するからである。
 前記波長変換石英ガラス層の表面に形成された透明被覆膜をさらに含むのが好ましい。
 前記透明被覆膜が、透明無機膜であるのが好適である。
 前記透明無機膜が、Ti含有無機膜であるのが好ましい。
 前記Ti含有無機膜が、アナターゼ結晶化した酸化チタンを含有するのが好適である。
 前記波長変換石英ガラス層と前記透明被覆膜との間に、前記波長変換石英ガラス層の蛍光体粒子濃度の10~60%程度の蛍光体粒子濃度を有する中間石英ガラス層が形成されてなるのが好ましい。このように中間石英ガラス層を形成することで、透明被覆膜と波長変換石英ガラス層との熱膨張度の差が緩和され、加熱時の熱膨張量の違いによる、前記透明被覆膜の剥がれが発生し難くなる利点がある。
 本発明の波長変換用石英ガラス部材の製造方法の第3の態様は、波長変換用石英ガラス部材の製造方法であり、前記透明被覆膜が、シリカ及び/又はシリカ前駆体を含有する溶液を薄膜コートし、乾燥後、加熱して形成されることを特徴とする。
 前記透明被覆膜及び前記波長変換石英ガラス層がゾルゲル法によって形成されるのが好ましい。
 前記Ti含有無機膜が、Tiを含有する溶液を前記波長変換石英ガラス層の表面にコートし、その後、焼結して形成されるのが好ましい。
 また、本発明の波長変換用石英ガラス部材の製造方法の第3の態様は、平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、さらに前記波長変換石英ガラス層の表面に透明被覆膜を形成する工程と、を含み、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であり、前記波長変換石英ガラス層のNH基濃度が1000ppm以下である、ようにしてもよい。
 前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100~600℃に加熱せしめ、厚さ0.1μm~10μmの波長変換石英ガラス層を形成し、前記波長変換石英ガラス層の形成処理を複数回繰り返すことで、厚さ1~500μmまでの波長変換石英ガラス層の積層構造を形成するようにするのが好ましい。
 また、本発明の波長変換用石英ガラス部材の製造方法の第3の態様は、TEOS加水分解溶液に、平均粒径が0.1μm~20μmである蛍光体粒子と、水を混合した溶液を作成し、前記石英ガラス基材に塗布した後、大気中で乾燥し、前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に透明被覆膜を形成する工程と、を含み、前記TEOS加水分解溶液における、TEOS及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であるようにしてもよい。
 前記TEOS加水分解溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、300~1000℃に加熱せしめ、厚さ0.1μm~10μmの波長変換石英ガラス層を形成し、前記波長変換石英ガラス層の形成処理を複数回繰り返すことで、厚さ1~500μmまでの波長変換石英ガラス層の積層構造を形成するのが好ましい。
 前記波長変換石英ガラス層の各積層の蛍光体濃度が、前記石英ガラス基材から透明被覆膜に向かって、高濃度から低濃度に調整されて積層されるのが好適である。
 前記波長変換石英ガラス層の蛍光体種類が複数であり、各層毎に異なる蛍光体を使用し、複数積層し、形成するのが好適である。
 本発明の第1の態様によれば、環境耐性、耐熱性、耐久性、及び、演色性が高く、低温プロセスで製造でき、効率よく波長変換することが可能な波長変換用石英ガラス部材及びその製造方法を提供することができるという著大な効果を奏する。
 本発明の第2及び第3の態様によれば、紫外線の漏洩を防止し、環境耐性、耐熱性、耐久性、表面防汚性、表面安定性、発光強度の均一性、演色性に優れ、低温プロセスで製造でき、効率よく波長変換することが可能な波長変換用石英ガラス部材及びその製造方法を提供することができるという著大な効果を奏する。
 本発明の波長変換用石英ガラス部材は、光関係素子、例えばLED素子のガラス封止部に好適に用いることができる。
本発明の波長変換用石英ガラス部材の第1の態様の一つの実施の形態を示す断面模式図である。 第1の態様の実施例1と実施例2で作製された波長変換用石英ガラス部材の色度を簡易分光器で測定した結果を示す色度表である。 本発明の波長変換用石英ガラス部材の第2の態様の一つの実施の形態を示す断面模式図である。 本発明の波長変換用石英ガラス部材の第2の態様の別の実施の形態を示す断面模式図である。 第2の態様の実施例と比較例で作製された波長変換用石英ガラス部材の色度を発光分光器で測定した結果を示す色度図である。 第2の態様の実施例と比較例で作製された波長変換用石英ガラス部材のスペクトルを発光分光器で測定した結果を示す分光スペクトルである。 本発明の波長変換用石英ガラス部材の第3の態様の一つの実施の形態を示す断面模式図である。 本発明の波長変換用石英ガラス部材の第3の態様の別の実施の形態を示す断面模式図である。 第3の態様の実施例と比較例で作製された波長変換用石英ガラス部材の色度を発光分光器で測定した結果を示す色度図である。 第3の態様の実施例と比較例で作製された波長変換用石英ガラス部材のスペクトルを発光分光器で測定した結果を示す分光スペクトルである。
 以下に本発明の実施の形態を添付図面に基づいて説明するが、図示例は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。
  図1は、本発明の波長変換用石英ガラス部材の第1の態様の一つの実施の形態を示す断面模式図である。図1において、符号10は、本発明の波長変換用石英ガラス部材を示す。波長変換用石英ガラス部材10は、石英ガラス基材12とその表面に石英ガラス表層膜14が形成されてなる波長変換用石英ガラス部材である。前記石英ガラス表層膜14は、蛍光体粒子16とシリカ微粒子と、を含有する。
[石英ガラス表層膜]
 前記石英ガラス表層膜に含有される蛍光体粒子の濃度は、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3~7質量部であるのが好ましい。すなわち、ポリシラザン及び蛍光体粒子の合計量を10質量部とした場合、蛍光体粒子の量が3~7質量部であるのが好ましい。また、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:5~7質量部であるのがさらに好ましい。
 前記蛍光体粒子の濃度が少ないと、その分積層回数を増やさなくてはならないため、操作手順が増えてしまう。濃度が高すぎると、光源からの光が内部まで入りづらくなり、発光効率が低下する。前記石英ガラス表層膜に残留するNH基の濃度は1000ppm以下であり、好ましくは100ppm以下である。この濃度以下であれば、紫外線を長時間照射した場合や、高温にさらされた場合でも着色やクラックは発生しない。
 前記石英ガラス表層膜の膜厚は、1μm~500μmであることが好ましい。更に好ましくは10μm~100μm以下である。1μm未満の膜厚では、光源の光が透過し、波長変換効率が低下するだけでなく、紫外線を光源としている場合は有害な紫外線が放射されてしまう。一方、500μmを超える膜厚では、積層回数が増えて製造コストの増加につながる。
〔石英ガラス基材〕
 本発明の波長変換用石英ガラス部材の第1の態様に用いられる前記石英ガラス基材は、合成石英ガラスが好ましく、特に四塩化珪素を火炎加水分解して作製した合成石英ガラスであることが好ましい。この方法で作製した合成石英ガラスは、金属不純物などの不純物が少なく、紫外線を長時間照射しても着色などの劣化が起こらない。また、熱膨張係数が極めて小さく、熱処理によるクラックの発生を抑制することができる。さらに、紫外線の透過率も高く、光源の紫外線を減衰させないため、蛍光体を効率的に発光させることができる。この方法で作製した合成石英ガラスのOH基は、10ppm~1000ppmとなる。
[石英ガラス表層膜の形成方法]
 前記蛍光体粒子とシリカ微粒子とを含有する石英ガラス表層膜は、蛍光体粒子とシリカ微粒子とを含有するポリシラザン含有溶液を、乾燥、水蒸気雰囲気下で加熱することで作製したものである。
 本発明の波長変換用石英ガラス部材の第1の態様では、前記石英ガラス表層膜を形成するにあたって前記水蒸気雰囲気下で加熱処理するため、前記石英ガラス表層膜のNH基濃度が低くなる。前記水蒸気雰囲気下で加熱処理するため、加熱炉などが不要であり、低温プロセスでの製造が可能となる。
 本発明の波長変換用石英ガラス部材の第1の態様に用いられる前記蛍光体粒子の平均粒径は、0.1μm~20μmである。より好ましくは1μm~10μmである。前記蛍光体粒子の粒径が0.1μm未満となると、表面積の拡大に伴い光散乱が強くなり、発光強度が低下する。一方、20μmを超える大きさの蛍光体粒子では、形成された表層膜中の発光色度、強度のばらつきが起こる。
 前記蛍光体粒子としては、好ましくは、波長200nm~400nmの紫外線により励起し、可視光に変換可能なものであり、市販されており一般的に入手できるものであれば使用できる。具体的には、青色蛍光体では、Sr10(POCl:Eu2+、CaS:Bi、CaSrS:Bi、Ba1-aEuMgAl1017、緑色蛍光体では、ZnS:Cu,Al、BaSiO:Eu、ZnGe:Eu、赤色蛍光体では、YS:Eu3+、CaS:Eu、3.5MgO・0.5MgF・GeO:Mn、KEu2.5(WO)などが挙げられる。
 本発明の波長変換用石英ガラス部材の第1の態様に用いられる前記シリカ微粒子の組成は、合成石英ガラス粒子であることが好ましい。前記合成石英ガラス表層膜は、加熱処理後、緻密なシリカ膜となるため、屈折率、熱膨張係数の相性から、無機酸化物粒子に合成石英ガラス粒子を利用することで色ばらつきやクラック発生を抑制することができる。
 このようなシリカ微粒子を石英ガラス表層膜に含有させることで、シリカ微粒子が骨材として働き、石英ガラス表層膜を積層させる際、クラックが生じることなく一度で厚い膜を形成させることができる。
 本発明の波長変換用石英ガラス部材の第1の態様に用いられる前記シリカ微粒子の平均粒径は1nm~100nmである。好ましくは3.0nm~80nm、さらに好ましくは5.0nm~50nmである。1nm未満のシリカ微粒子では、そのものを得ること自体が難しく、得られても大きい表面エネルギーをもつことからすぐに凝集が起こってしまう。一方、100nmを超える粒径を持つシリカ微粒子では、光散乱が大きくなり、LEDの光利用効率が低下してしまう。
 本発明の波長変換用石英ガラス部材の第1の態様に用いられる前記シリカ微粒子は球状で疎水性である。前記石英ガラス基材上にシリカ微粒子を含む液体をコートする際、その液体に流動性がある必要があるが、球状でないシリカ微粒子を使用すると液体の流動性が失われ、均一なコートができない。また、疎水性であることにより、前記ポリシラザン含有溶液によく分散し、シリカ微粒子が均一に分散した膜を得ることができる。
 前記シリカ微粒子の濃度は、前記ポリシラザン含有溶液における、ポリシラザンと蛍光体粒子とシリカ微粒子との合計量に対するシリカ微粒子の比が、10:0.01~1質量部が好ましい。すなわち、ポリシラザンと蛍光体粒子とシリカ微粒子との合計量を10質量部とした場合、シリカ微粒子の量が0.01~1質量部であるのが好ましい。ポリシラザンと蛍光体粒子とシリカ微粒子との合計量に対するシリカ微粒子の比が、10:0.05~0.5質量部がより好ましい。シリカ微粒子が少なすぎると、骨材としての働きが失われ、多すぎると乱反射の原因となり、光取り出し効率が低下してしまう。
 前記石英ガラス表層膜の作製には、ポリシラザン含有溶液として、パーヒドロポリシラザン溶液を用いるのが好ましい。他のシラザン化合物やアルコキシシランを利用すると、有機官能基の存在により、水蒸気雰囲気での加熱時に有機官能基が分解する際、クラックが発生する。さらに、パーヒドロポリシラザンは有機官能基を有していないため、有機物を燃焼させるエネルギーを与えなくてもシリカに転化し、低温での水蒸気焼成が可能となる。パーヒドロポリシラザンを水蒸気雰囲気下で焼成することで、Si、N、Hのみから構成されるパーヒドロポリシラザンが、SiとOから構成される石英ガラスへ変化する。
 前記石英ガラス表層膜を作製する際、ポリシラザン含有溶液とシリカ微粒子、蛍光体粒子を含む塗布液を例えば100~200℃で乾燥させ、有機溶媒の大部分を蒸発させ、その後、水蒸気雰囲気下で焼成するのが好ましい。焼成時間は、石英ガラス表層膜の厚さにもよるが、10秒~30分程度の焼成時間で作製可能である。例えば1μmの石英ガラス表層膜ならば水蒸気雰囲気下600℃で10秒で作製可能である。
 ポリシラザン含有溶液としては、パーヒドロポリシラザン溶液があるが、パーヒドロポリシラザンは、以下の反応を起こす。
(SiH2NH)+2H2O → SiO2+NH3+2H2
水が存在することにより、この反応は右に進行するため、水蒸気下で加熱することにより短時間、低温でもシリカに転化できる。パーヒドロポリシラザンを水蒸気雰囲気下で焼成することにより、骨格中のSi-N結合が、Si-O結合に変わっていく。その際、基本構成単位の分子量が増加するため、より緻密で硬い膜を得ることができる。
 水蒸気下で、石英ガラス表層膜を形成する焼成温度は100~600℃であることが好ましい。高温過ぎると蛍光体の熱失活が起こり、発光強度が低下する。低温すぎると、水蒸気が内部へ拡散せず、且つ、反応が十分に起きない。
 ここで、積層する場合には、一層あたりの膜厚は0.1μm~10μmであることが好ましく、0.5μm~10μmがより好ましく、更に好ましくは0.5μm~5μmである。一層あたりの膜厚が0.1μm未満であると、石英ガラス表層膜を形成するのに時間がかかり、製造コストの増加につながる。一方、一層あたり10μmを超える膜を一度に形成すると、反応時のガス発生により、焼成時にクラックが生じる。この積層処理を繰り返すことにより、所望の蛍光体量を含有する膜厚まで、石英ガラス表層膜を形成し、1~500μmの石英ガラス表層膜の積層構造を形成することができる。
 前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100~600℃以下に加熱せしめ、厚さ0.1μm~10μmの石英ガラス表層膜を形成し、前記石英ガラス表層膜の形成処理を複数回繰り返すことで、厚さ1~500μmまでの石英ガラス表層膜の積層構造とすることができる。パーヒドロポリシラザンは、他の材料より、回数を減少させることができ、操作が単純化でき、製造コストを削減することが可能となる。前記石英ガラス表層膜の形成には、スプレー法、スピンコート法、ディップコート法、ロールコート法などの湿式塗布方法を用いることができる。
 次に、本発明の波長変換用石英ガラス部材の第2の態様の一つの実施の形態を示す断面模式図を図3に示す。
 図3において、符号30Aは、本発明の波長変換用石英ガラス部材を示す。波長変換用石英ガラス部材30Aは、石英ガラス基材32と、前記石英ガラス基材32の表面に形成され且つ蛍光体粒子36を含有する波長変換石英ガラス層34と、前記波長変換石英ガラス層34の表面に形成された透明被覆膜40と、を含む。さらに、波長変換石英ガラス層34は、シリカ微粒子38も含有してなる。
 また、図4に、本発明の波長変換用石英ガラス部材の第2の態様の別の実施の形態を示す断面模式図を示す。
 図4において、符号30Bは、本発明の波長変換用石英ガラス部材を示す。波長変換用石英ガラス部材30Bは、石英ガラス基材32と、前記石英ガラス基材32の表面に形成され且つ蛍光体粒子36を含有する波長変換石英ガラス層34と、前記波長変換石英ガラス層34の表面に形成された透明被覆膜40と、を含む。そして、前記波長変換石英ガラス層34と前記透明被覆膜40との間に、前記波長変換石英ガラス層34の蛍光体粒子36の濃度の10~60%程度の蛍光体粒子濃度を有する中間石英ガラス層42が形成されてなる。また、図示例では、中間石英ガラス層42は、前記波長変換石英ガラス層34のシリカ微粒子38の濃度の10~60%程度のシリカ粒子濃度を有する。
 [透明被覆膜]
 前記透明被覆膜は、波長変換石英ガラス層の表面に形成され、外周雰囲気中の金属元素との接触、それから例えばSや酸化性気体との接触による、波長変換石英ガラス層中の蛍光体の失活や、蛍光体の酸化や硫化に伴う体積変化を起因とするクラック発生とパーティクル発生を防止することができる。前記透明被覆膜は、透明無機膜であることが好ましく、前記透明無機膜が、Ti含有無機膜であることがさらに好ましい。好ましくは、透明被覆膜は、石英ガラス被覆膜がよいが、ホウ珪酸ガラスなどの一般ガラスや、セラミックなどの被覆膜も適用可能である。低温使用の場合は、シリコーン膜でもよい。
 次に、前記透明被覆膜作成工程について説明する。
 前記透明被覆膜作成工程の第一の態様は、前記透明被覆膜作成工程が、シリカスラリーを前記波長変換石英ガラス層に塗布し、酸化雰囲気中にて300℃~1200℃の温度域で加熱処理し、その後、1000℃~1400℃の温度範囲において、焼結する工程を含むものである。
 前記透明被覆膜作成工程の第一の態様において、前記シリカスラリーは、粒径0.1μm~100μm、好ましくは、0.5μm~50μmのシリカ粒子を、シリカ濃度50~95%、好ましくは、60~80%、セルロース誘導体濃度が0.05~10%、好ましくは、0.1~5%、で調合したシリカスラリーである。前記セルロース誘導体としては、例えば、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシメチルセルロース等が挙げられ、メチルセルロースが好ましい。
 シリカスラリーを塗布する方法は特に制限はなく、また、スピンコートで均一厚さに塗布することも可能である。塗布後、常温~300℃の範囲で乾燥させる。
 前記酸化雰囲気中での加熱処理は、例えば、酸素雰囲気、大気雰囲気などで、300℃~1200℃、好ましくは、500℃~1000℃の温度域で加熱処理し、炭素などの有機物分を分解除去するものである。加熱処理時間は特に制限はないが、0.5時間~100時間が好ましく、2時間~40時間がより好ましい。
 半導体製造工程に使用される場合は、高純度である必要があるので、この後、純化工程を導入する。即ち、塩素を含む雰囲気中、好ましくは、HClガス中で、800℃~1400℃、好ましくは、1000℃~1200℃の温度範囲で、加熱処理する。
 前記焼結処理は、1000℃~1400℃、好ましくは、1100℃~1300℃の温度範囲において、塗布層を焼結するものである。焼結時間は特に制限はないが、0.2時間~20時間が好ましく、1時間~10時間がより好ましい。
 焼結後の透明石英ガラス部分は、含有される金属不純物の総和が、70ppm以下(0を含む)、好ましくは50ppm以下、さらに好ましくは30ppm以下に含有される。70ppmを超える金属不純物の含有量であると、表面から放出される金属不純物が増大し、特に、半導体製造工程に使用される石英ガラス材料としては不適となり、製造された半導体素子の電気的異常の原因となる。30ppm以下では、問題は無い。
 一方、炭素の濃度は、30ppm以下となり、好ましくは、20ppm以下、さらに好ましくは、10ppm以下となる。炭素も金属不純物と同様に、半導体製造工程において、製造された半導体素子の電気的異常の原因として考えられていて、30ppmを超える場合、半導体製造工程に使用される石英ガラス材料としては不適となり、10ppm以下では、問題は無い。
 形成された透明被覆膜の厚さは、1μm~1000μmがよく、5μm~100μmがより好ましい。1μm以下では、被覆効果がなく、1000μm以上では、膜の中に泡が多発し、クラック及びパーティクル原因となる。
 前記透明被覆膜作成工程の第二の態様は、前記透明被覆膜作成工程が、シリカスラリーを、前記波長変換石英ガラス層に塗布し、酸化雰囲気中にて300℃~1200℃の温度域で加熱処理し、その後、800℃以上1200℃以下の温度範囲において、焼結する工程を含むものである。
 前記透明被覆膜作成工程の第二の態様において、前記シリカスラリーは、粒径1nm~100nm、好ましくは2nm~50nmのシリカ粒子を用い、シリカ濃度は、1~50%、好ましくは10~30%、有機系バインダーの濃度が、0.05~10%、好ましくは0.1~5%、で調合したシリカスラリーである。前記有機バインダーとしては、例えば、セルロース系(メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルアルコール)、寒天、ビニル系(ポリビニルアルコール、ポリビニルピロリドン)、デンプン系(ジアルデヒドデンプン、デキストリン、ポリ乳酸)、アクリル系(ポリアクリル酸ナトリウム、メタクリル酸メチル)、植物性粘性物質などが挙げられ、ポリビニルアルコール又はメチルセルロースが好適である。
 前記透明被覆膜作成工程の第二の態様において、前記シリカスラリーの塗布方法及び酸化雰囲気中での加熱処理は、前記透明被覆膜作成工程の第一の態様と同様に行うことができる。
 前記焼結処理における温度範囲は、800℃~1150℃、好ましくは、900℃~1100℃がよい。シリカ粒子の粒径が小さくなることで、粒子表面の反応活性度が増大し、より低温で、粒子表面のSi-O、Si・、Si-Hx、Si-CHx、が反応して、Si-O-Siとなって、透明ガラス化する。焼結時の圧力及び焼結時間は前記透明被覆膜作成工程の第一の態様と同様に行えばよい。
 前記透明被覆膜作成工程の第二の態様により得られる透明石英ガラス部分の金属不純物濃度の総和と、含有される炭素の濃度は、前記透明被覆膜作成工程の第一の態様により得られる透明石英ガラス部分と同様である。
 前記透明被覆膜作成工程の第三の態様は、前記透明被覆膜作成工程が、シリカ微粒子を含有するポリシラザン含有溶液を、薄膜コートし、乾燥後、水蒸気雰囲気下で加熱する方法である。形成された透明被覆膜の厚さは、1μm~1000μmがよく、5μm~100μmがより好ましい。1μm以下では、被覆効果がなく、1000μm以上では、膜の中に泡が多発し、クラック及びパーティクル原因となる。
 焼結温度は、100℃~1000℃、好ましくは、200℃~900℃以下で形成され、蛍光体の失活を防止できる。
 より詳しくは、平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であり、前記波長変換石英ガラス層のNH基濃度が1000ppm以下である、ようにした製造方法で前記透明被覆膜を作成するのが好適である。
 また、前記透明被覆膜はゾルゲル法によっても作成可能である。
 前記透明被覆膜作成工程の第四の態様は、前記透明被覆膜作成工程が、TEOS加水分解溶液などを原料とするスラリーを、薄膜コートし、焼結する方法である。形成された透明被覆膜の厚さは、1μm~1000μmがよく、5μm~100μmがより好ましい。1μm以下では、被覆効果がなく、1000μm以上では、膜の中に泡が多発し、クラック及びパーティクル原因となる。焼結温度は、300℃~1000℃、好ましくは、400℃~900℃であり、蛍光体の失活を抑制可能である。
 より詳しくは、平均粒径が0.1μm~20μmである蛍光体粒子と、水と、TEOSとを混合してなるTEOS加水分解溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、前記TEOS加水分解溶液における、TEOS及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部である、ようにした製造方法で前記透明被覆膜を作成するのが好適である。
 前記透明被覆膜作成工程の第五の態様は、前記透明被覆膜作成工程が、コロイダルシリカなどを原料とするシリカスラリーを、薄膜コートし、焼結する方法である。形成された透明被覆膜の厚さは、1μm~1000μmがよく、5μm~100μmがより好ましい。1μm以下では、被覆効果がなく、1000μm以上では、膜の中に泡が多発し、クラック及びパーティクル原因となる。焼結温度は、800℃~1300℃、好ましくは、900℃~1200℃であり、蛍光体の失活をある程度抑制可能である。
 [Ti含有無機膜]
 透明被覆膜として、Ti含有無機膜が好適に用いられるが、Ti含有無機膜は、アナターゼ結晶化した酸化チタンから形成される薄膜、或いは、高濃度に含有する薄膜である。膜厚は、0.1μm~20μmの範囲がよく、1μm~5μmがより好ましい。0.1μm以下では、300nm以下の紫外線の吸収率が低く、20μm以上では、400nm以上の波長の光透過が大きく低下してしまう。
 励起光の放出する388nm以下の波長の紫外線が、石英ガラス基材と波長変換石英ガラス層を透過してくる場合、その紫外線を吸収し、外部への漏洩を防止するとともに、そのエネルギーにより強力な酸化分解作用を持つ活性酸素(スーパーオキサイドイオンと水酸基ラジカル)が生成されて、光触媒反応が起こり、Ti含有無機膜表面に付着した有機物の浄化や汚れの酸化分解除去、そして細菌を死滅させる等して、表面がクリーニングされ、波長変換石英ガラス層中で波長変換されて生じた長波長の光が、表面付着有機物によって吸収や反射されることなく、透過、放射されるようになる。
 Ti含有無機膜は、Tiを含有する金属アルコキシドを波長変換石英ガラス層の表面にコートし、その後、焼結して形成する。具体的には、チタンテトライソプロポキシド(Ti(OCH(CH3)2)4を、イソプロピルアルコール(2-プロパノール)(CH3CHOHCH3)に溶いた加水分解溶液を、対象基材の表面にコートし、200℃から1000℃の温度範囲で、加熱焼成する。200℃以下では、焼成後に、アナターゼ型の酸化チタン結晶が生成されず、900℃以上では、光触媒活性の低いルチル型の酸化チタン結晶が生成する。好ましくは、500℃から800℃がよい。
 その他、酸化チタン粉末スラリー等を基体に塗布後、 焼成する塗布法、市販のアナターゼゾルを基体に塗布する方法、高真空中で酸化物のターゲットをスパッタリングして成膜するスパッタ法、有機物やハロゲン化物を揮発させ、電気炉の中で分解して成膜するCVD法、固体粒子を大気中で発生させたプラズマ中で溶融し、基体表面に叩き付けるプラズマ溶射等なども適用可能である。
 [波長変換石英ガラス層]
 本発明の波長変換用石英ガラス部材の第2の態様に用いられる波長変換石英ガラス層作成工程の第一の態様は、前記蛍光体粒子とシリカ微粒子とを含有するポリシラザン含有溶液を、乾燥、水蒸気雰囲気下で加熱することで作製する方法である。
 より詳しくは、平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、
前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であり、前記波長変換石英ガラス層のNH基濃度が1000ppm以下である、ようにした製造方法で前記波長変換石英ガラス層を作成するのが好適である。
 前記波長変換石英ガラス層を形成するにあたって前記水蒸気雰囲気下で加熱処理すると、前記波長変換石英ガラス層のNH基濃度が低くなる。これにより、前記水蒸気雰囲気下で加熱処理するため、加熱炉などが不要であり、低温プロセスでの製造が可能となる。
 本発明に用いられる前記蛍光体粒子の平均粒径は、好ましくは、0.1μm~20μmである。より好ましくは1μm~10μmである。前記蛍光体粒子の粒径が0.1μm未満となると、表面積の拡大に伴い光散乱が強くなり、発光強度が低下する。一方、20μmを超える大きさの蛍光体粒子では、形成された膜中の発光色度、強度のばらつきが起こる。
 前記蛍光体粒子としては、好ましくは、波長200nm~400nmの紫外線により励起し、可視光に変換可能なものであり、市販されており一般的に入手できるものであれば使用できる。具体的には、青色蛍光体では、Sr10(POCl:Eu2+、CaS:Bi、CaSrS:Bi、Ba1-aEuMgAl1017、緑色蛍光体では、ZnS:Cu,Al、BaSiO:Eu、ZnGe:Eu、赤色蛍光体では、YS:Eu3+、CaS:Eu、3.5MgO・0.5MgF・GeO:Mn、KEu2.5(WO)などが挙げられる。
 本発明に用いられる前記シリカ微粒子の組成は、合成石英ガラス粒子であることが好ましい。前記波長変換合成石英ガラス層は、加熱処理後、緻密なシリカ膜となるため、屈折率、熱膨張係数の相性から、無機酸化物粒子に合成石英ガラス粒子を利用することで色ばらつきやクラック発生を抑制することができる。
 このようなシリカ微粒子を波長変換石英ガラス層に含有させることで、シリカ微粒子が骨材として働き、波長変換石英ガラス層を積層させる際、クラックが生じることなく一度で厚い膜を形成させることができる。
 本発明の波長変換用石英ガラス部材の第2の態様に用いられる前記シリカ微粒子の平均粒径は1nm~100nmである。好ましくは3.0nm~80nm、さらに好ましくは5.0nm~50nmである。1nm未満のシリカ微粒子では、そのものを得ること自体が難しく、得られても大きい表面エネルギーをもつことからすぐに凝集が起こってしまう。一方、100nmを超える粒径を持つシリカ微粒子では、光散乱が大きくなりすぎ、LEDの光利用効率が低下してしまう。
 本発明に用いられる前記シリカ微粒子は球状で疎水性である。前記石英ガラス基材上にシリカ微粒子を含む液体をコートする際、その液体に流動性がある必要があるが、球状でないシリカ微粒子を使用すると液体の流動性が失われ、均一なコートができない。また、疎水性であることにより、前記ポリシラザン含有溶液によく分散し、シリカ微粒子が均一に分散した膜を得ることができる。
 前記シリカ微粒子の濃度は、前記ポリシラザン含有溶液における、ポリシラザンと蛍光体粒子とシリカ微粒子との合計量に対するシリカ微粒子の比が、10:0.01~1質量部が好ましい。すなわち、ポリシラザンと蛍光体粒子とシリカ微粒子との合計量を10質量部とした場合、シリカ微粒子の量が0.01~1質量部であるのが好ましい。ポリシラザンと蛍光体粒子とシリカ微粒子との合計量に対するシリカ微粒子の比が、10:0.05~0.5質量部がより好ましい。シリカ微粒子が少なすぎると、骨材としての働きが失われ、多すぎると乱反射の原因となり、光取り出し効率が低下してしまう。
 前記波長変換石英ガラス層の作製には、ポリシラザン含有溶液として、パーヒドロポリシラザン溶液を用いるのが好ましい。他のシラザン化合物やアルコキシシランを利用すると、有機官能基の存在により、水蒸気雰囲気での加熱時に有機官能基が分解する際、クラックが発生する。さらに、パーヒドロポリシラザンは有機官能基を有していないため、有機物を燃焼させるエネルギーを与えなくてもシリカに転化し、低温での水蒸気焼成が可能となる。パーヒドロポリシラザンを水蒸気雰囲気下で焼成することで、Si、N、Hのみから構成されるパーヒドロポリシラザンが、SiとOから構成される石英ガラスへ変化する。
 前記波長変換石英ガラス層を作製する際、ポリシラザン含有溶液とシリカ微粒子、蛍光体粒子を含む塗布液を例えば100~200℃で乾燥させ、有機溶媒の大部分を蒸発させ、その後、水蒸気雰囲気下で焼成するのが好ましい。焼成時間は、波長変換石英ガラス層の厚さにもよるが、10秒~30分程度の焼成時間で作製可能である。例えば1μmの波長変換石英ガラス層ならば水蒸気雰囲気下600℃で10秒で作製可能である。
 ポリシラザン含有溶液としては、パーヒドロポリシラザン溶液があるが、パーヒドロポリシラザンは、以下の反応を起こす。
(SiH2NH)+2H2O → SiO2+NH3+2H2
水が存在することにより、この反応は右に進行するため、水蒸気下で加熱することにより短時間、低温でもシリカに転化できる。パーヒドロポリシラザンを水蒸気雰囲気下で焼成することにより、骨格中のSi-N結合が、Si-O結合に変わっていく。その際、基本構成単位の分子量が増加するため、より緻密で硬い膜を得ることができる。
 水蒸気下で、波長変換石英ガラス層を形成する焼成温度は100~1000℃、好ましくは、200℃~900℃であることが好ましい。高温過ぎると蛍光体の熱失活が起こり、発光強度が低下する。低温すぎると、水蒸気が内部へ拡散せず、反応が十分に起きない。
 ここで、積層する場合には、一層あたりの膜厚は0.1μm~10μmであることが好ましく、0.5μm~10μmがより好ましく、更に好ましくは0.5μm~5μmである。一層あたりの膜厚が0.1μm未満であると、波長変換石英ガラス層を形成するのに時間がかかり、製造コストの増加につながる。一方、一層あたり10μmを超える膜を一度に形成すると、反応時のH2ガス発生により、焼成時にクラックが生じる。この積層処理を繰り返すことにより、所望の蛍光体量を含有する膜厚まで、波長変換石英ガラス層を形成し、1~500μmの波長変換石英ガラス層の積層構造を形成することができる。
 前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100~600℃以下に加熱せしめ、厚さ0.1μm~10μmの波長変換石英ガラス層を形成し、前記波長変換石英ガラス層の形成処理を複数回繰り返すことで、厚さ1~500μmまでの波長変換石英ガラス層の積層構造とすることができる。パーヒドロポリシラザンは、他の材料より、回数を減少させることができ、操作が単純化でき、製造コストを削減することが可能となる。前記波長変換石英ガラス層の形成には、スプレー法、スピンコート法、ディップコート法、ロールコート法などの湿式塗布方法を用いることができる。
 前記波長変換石英ガラス層に含有される蛍光体粒子の濃度は、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3~7質量部であるのが好ましい。すなわち、ポリシラザン及び蛍光体粒子の合計量を10質量部とした場合、蛍光体粒子の量が3~7質量部であるのが好ましい。また、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:5~7質量部であるのがさらに好ましい。
 前記蛍光体粒子の濃度が少ないと、その分積層回数を増やさなくてはならないため、操作手順が増えてしまう。濃度が高すぎると、光源からの光が内部まで入りづらくなり、発光効率が低下する。前記波長変換石英ガラス層に残留するNH基の濃度は1000ppm以下であり、好ましくは100ppm以下である。この濃度以下であれば、紫外線を長時間照射した場合や、高温にさらされた場合でも着色やクラックは発生しない。
 前記波長変換石英ガラス層の膜厚は、1μm~500μmであることが好ましい。更に好ましくは10μm~100μm以下である。1μm未満の膜厚では、光源の光が透過し、波長変換効率が低下するだけでなく、紫外線を光源としている場合は有害な紫外線が放射されてしまう。一方、500μmを超える膜厚では、積層回数が増えて製造コストの増加につながる。
 本発明の波長変換用石英ガラス部材の第2の態様に用いられる波長変換石英ガラス層作成工程の第二の態様は、TEOS加水分解溶液に、前記蛍光体粒子と水混合した溶液を作成し、石英ガラス基材表面に塗り、乾燥後、加熱し、波長変換石英ガラス層を作製する方法である。
 より詳しくは、平均粒径が0.1μm~20μmである蛍光体粒子と、水と、TEOSとを混合してなるTEOS加水分解溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、前記TEOS加水分解溶液における、TEOS及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部である、ようにした製造方法で前記波長変換石英ガラス層を作成するのが好適である。
 テトラエトキシシランとエタノールと微量の硝酸を混合し、1時間ほど攪拌して、TEOS加水分解溶液を作成する。TEOS加水分解溶液の好ましい配分は、テトラエトキシシラン(0.5mol~2mol)とエタノール(2mol~5mol)と微量の硝酸(0.0005mol~0.01mol)の範囲である。
 このTEOS加水分解溶液と、上述した第一の態様と同様な蛍光体微粒子と水をホモジナイザーで攪拌する。攪拌溶液の好ましい範囲は、それぞれ、溶液が(1mol~4mol)、蛍光体粒子が(0.5mol~3mol)、水が(5mol~20mol)である。
 この攪拌溶液を、石英ガラス基材表面に塗って、0.1μm~10μm、好ましくは、1μm~5μmの波長変換石英ガラス層を形成し、大気雰囲気中、0℃~200℃好ましくは、室温~100℃にて、乾燥させる。その後、この層形成処理を複数回繰り返して、厚さ1μm~500μm、好ましくは、10μm~300μmまでの、波長変換ガラス層の積層構造を形成する。積層後の石英ガラス部材は、大気中にて、300℃~1000℃、好ましくは、400℃~900℃で加熱される。
 前記波長変換石英ガラス層の層形成処理を複数回繰り返す際に、石英ガラス基板表面に近い層では、蛍光体濃度の高い溶液を使用し、積層回数とともに、低濃度の溶液を使用して、波長変換ガラス層の積層構造を形成する。石英ガラス基板に近い高濃度層では、熱伝導率が高く、使用中に高温となった石英ガラス基板から効率的に熱を伝導し、加熱を抑制することができる。表面に近い低濃度層では、石英ガラスとして安定性が高まり、加熱や外部雰囲気の影響によるクラックやパーティクル発生が抑制される。形成された波長変換石英ガラス層のシリカ及び蛍光体粒子の合計量を10質量部とした場合、石英ガラス基板近傍に近い高濃度層では、蛍光体粒子の量が6~9質量部、好ましくは、7~9重量部であり、表面に近い低濃度層では、蛍光体粒子の量が1~5質量部、好ましくは、1~2である。
 前記波長変換石英ガラス層の層形成処理を、複数回繰り返して積層する場合に、単一層形成には、単一蛍光体にて溶液を作成し、複数層形成を行う。これにより、各層において均一な蛍光体分布と発光が得られ、最表層全面域での発光強度が均一化する。異なる蛍光体を混合して溶液を作成し、層形成処理を行うと、各蛍光体の比重が異なることから、蛍光体が層の中で不均一に分布しやすく、発光強度が表層面域において、不均一化する。
〔石英ガラス基材〕
 本発明に用いられる石英ガラス基材は、合成石英ガラスが好ましく、特に四塩化珪素を火炎加水分解して作製した合成石英ガラスであることが好ましい。この方法で作製した合成石英ガラスは、金属不純物などの不純物が少なく、紫外線を長時間照射しても着色などの劣化が起こらない。また、熱膨張係数が極めて小さく、熱処理によるクラックの発生を抑制することができる。さらに、紫外線の透過率も高く、光源の紫外線を減衰させないため、蛍光体を効率的に発光させることができる。この方法で作製した合成石英ガラスのOH基は、10ppm~1000ppmであることが好ましい。
基材については、上記の他に、天然石英ガラス、一般ガラス、透光性セラミックス、透光性フッ化化合物なども適用される。
 また、前記石英ガラス基材が、Ga、Ce、Cu、Tiを含む石英ガラスであると、紫外線を透過しないので、励起光が紫外域の光を含む場合、外部への紫外線の漏洩を防止できる。各金属元素の濃度は、1ppm~1000ppmがよいが、好ましくは、10ppm~500ppmがよい。
 さらに、前記石英ガラス基材が、微小泡、微小界面を含む光散乱石英ガラスであると、励起光が適度に散乱され、さらに波長変換石英ガラス層に到達段階で、励起光が均一な面分布強度を持ち、波長変換石英ガラス層内で励起される発光も均一性が高まる。微小泡、微小界面密度は、100μm以下の気泡が、1×102個/cm3~1×109個/cm3がよく、好ましくは、1×103個/cm3~1×108個/cm3がよい。
 次に、本発明の波長変換用石英ガラス部材の第3の態様の一つの実施の形態を示す断面模式を図7に示す。
 図7において、符号50Aは、本発明の波長変換用石英ガラス部材の第3の態様の一つの実施の形態を示す。波長変換用石英ガラス部材50Aは、石英ガラス基材52と、前記石英ガラス基材52の表面に形成され且つ蛍光体粒子56を含有する波長変換石英ガラス層54と、前記波長変換石英ガラス層54の表面に形成された透明被覆膜60と、を含む。さらに、波長変換石英ガラス層54は、シリカ微粒子58も含有してなる。また、前記波長変換石英ガラス層54の蛍光体濃度が、石英ガラス基材52側から前記波長変換石英ガラス層54の表面側に向かって、高濃度から低濃度に分布している。
 また、図8に、本発明の波長変換用石英ガラス部材の第3の態様の波長変換用石英ガラス部材の別の実施の形態を示す。
 図8において、符号50Bは、本発明の波長変換用石英ガラス部材の第3の態様の別の実施の形態を示す。波長変換用石英ガラス部材50Bは、石英ガラス基材52と、前記石英ガラス基材52の表面に形成され且つ蛍光体粒子56を含有する波長変換石英ガラス層54と、前記波長変換石英ガラス層54の表面に形成された透明被覆膜60と、を含む。そして、前記波長変換石英ガラス層54と前記透明被覆膜60との間に、前記波長変換石英ガラス層54の蛍光体粒子56の濃度の10~60%程度の蛍光体粒子濃度を有する中間石英ガラス層62が形成されてなる。また、図示例では、中間石英ガラス層62は、前記波長変換石英ガラス層54のシリカ微粒子58の濃度の10~60%程度のシリカ粒子濃度を有する。さらに、前記波長変換石英ガラス層54の蛍光体濃度が、石英ガラス基材52側から前記波長変換石英ガラス層54の表面側に向かって、高濃度から低濃度に分布している。
 [透明被覆膜]
 本発明の波長変換用石英ガラス部材の第3の態様において、前記透明被覆膜は、前述した本発明の波長変換用石英ガラス部材の第2の態様と同様のものが適用できる。また、本発明の波長変換用石英ガラス部材の第3の態様における前記透明被覆膜作成工程についても、前述した本発明の波長変換用石英ガラス部材の第2の態様における前記透明被覆膜作成工程と同様である。
 [波長変換石英ガラス層]
 本発明の波長変換用石英ガラス部材の第3の態様に用いられる波長変換石英ガラス層作成工程の第一の態様は、前記蛍光体粒子とシリカ微粒子とを含有するポリシラザン含有溶液を、乾燥、水蒸気雰囲気下で加熱することで作製する方法である。
 より詳しくは、平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、
前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であり、前記波長変換石英ガラス層のNH基濃度が1000ppm以下である、ようにした製造方法で前記波長変換石英ガラス層を作成するのが好適である。
 前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100~600℃以下に加熱せしめ、厚さ0.1μm~10μmの波長変換石英ガラス層を形成し、前記波長変換石英ガラス層の形成処理を複数回繰り返すことで、厚さ1~500μmまでの波長変換石英ガラス層の積層構造を形成するのが好適である。
 前記波長変換石英ガラス層を形成するにあたって前記水蒸気雰囲気下で加熱処理すると、前記波長変換石英ガラス層のNH基濃度が低くなる。これにより、前記水蒸気雰囲気下で加熱処理するため、加熱炉などが不要であり、低温プロセスでの製造が可能となる。
 本発明に用いられる前記蛍光体粒子の平均粒径は、好ましくは、0.1μm~20μmである。より好ましくは1μm~10μmである。前記蛍光体粒子の粒径が0.1μm未満となると、表面積の拡大に伴い光散乱が強くなり、発光強度が低下する。一方、20μmを超える大きさの蛍光体粒子では、形成された膜中の発光色度、強度のばらつきが起こる。
 前記蛍光体粒子としては、好ましくは、波長200nm~400nmの紫外線により励起し、可視光に変換可能なものであり、市販されており一般的に入手できるものであれば使用できる。具体的には、青色蛍光体では、Sr10(POCl:Eu2+、CaS:Bi、CaSrS:Bi、Ba1-aEuMgAl1017、緑色蛍光体では、ZnS:Cu,Al、BaSiO:Eu、ZnGe:Eu、赤色蛍光体では、YS:Eu3+、CaS:Eu、3.5MgO・0.5MgF・GeO:Mn、KEu2.5(WO)などが挙げられる。
 本発明に用いられる前記シリカ微粒子の組成は、合成石英ガラス粒子であることが好ましい。前記波長変換合成石英ガラス層は、加熱処理後、緻密なシリカ膜となるため、屈折率、熱膨張係数の相性から、無機酸化物粒子に合成石英ガラス粒子を利用することで色ばらつきやクラック発生を抑制することができる。
 このようなシリカ微粒子を波長変換石英ガラス層に含有させることで、シリカ微粒子が骨材として働き、波長変換石英ガラス層を積層させる際、クラックが生じることなく一度で厚い膜を形成させることができる。
 本発明に用いられる前記シリカ微粒子の平均粒径は1nm~100nmである。好ましくは3.0nm~80nm、さらに好ましくは5.0nm~50nmである。1nm未満のシリカ微粒子では、そのものを得ること自体が難しく、得られても大きい表面エネルギーをもつことからすぐに凝集が起こってしまう。一方、100nmを超える粒径を持つシリカ微粒子では、光散乱が大きくなりすぎ、LEDの光利用効率が低下してしまう。
 本発明に用いられる前記シリカ微粒子は球状で疎水性である。前記石英ガラス基材上にシリカ微粒子を含む液体をコートする際、その液体に流動性がある必要があるが、球状でないシリカ微粒子を使用すると液体の流動性が失われ、均一なコートができない。また、疎水性であることにより、前記ポリシラザン含有溶液によく分散し、シリカ微粒子が均一に分散した膜を得ることができる。
 前記シリカ微粒子の濃度は、前記ポリシラザン含有溶液における、ポリシラザンと蛍光体粒子とシリカ微粒子との合計量に対するシリカ微粒子の比が、10:0.01~1質量部が好ましい。すなわち、ポリシラザンと蛍光体粒子とシリカ微粒子との合計量を10質量部とした場合、シリカ微粒子の量が0.01~1質量部であるのが好ましい。ポリシラザンと蛍光体粒子とシリカ微粒子との合計量に対するシリカ微粒子の比が、10:0.05~0.5質量部がより好ましい。シリカ微粒子が少なすぎると、骨材としての働きが失われ、多すぎると乱反射の原因となり、光取り出し効率が低下してしまう。
 前記波長変換石英ガラス層の作製には、ポリシラザン含有溶液として、パーヒドロポリシラザン溶液を用いるのが好ましい。他のシラザン化合物やアルコキシシランを利用すると、有機官能基の存在により、水蒸気雰囲気での加熱時に有機官能基が分解する際、クラックが発生する。さらに、パーヒドロポリシラザンは有機官能基を有していないため、有機物を燃焼させるエネルギーを与えなくてもシリカに転化し、低温での水蒸気焼成が可能となる。パーヒドロポリシラザンを水蒸気雰囲気下で焼成することで、Si、N、Hのみから構成されるパーヒドロポリシラザンが、SiとOから構成される石英ガラスへ変化する。
 前記波長変換石英ガラス層を作製する際、ポリシラザン含有溶液とシリカ微粒子、蛍光体粒子を含む塗布液を例えば100~200℃で乾燥させ、有機溶媒の大部分を蒸発させ、その後、水蒸気雰囲気下で焼成するのが好ましい。焼成時間は、波長変換石英ガラス層の厚さにもよるが、10秒~30分程度の焼成時間で作製可能である。例えば1μmの波長変換石英ガラス層ならば水蒸気雰囲気下600℃で10秒で作製可能である。
 ポリシラザン含有溶液としては、パーヒドロポリシラザン溶液があるが、パーヒドロポリシラザンは、以下の反応を起こす。
(SiH2NH)+2H2O → SiO2+NH3+2H2
水が存在することにより、この反応は右に進行するため、水蒸気下で加熱することにより短時間、低温でもシリカに転化できる。パーヒドロポリシラザンを水蒸気雰囲気下で焼成することにより、骨格中のSi-N結合が、Si-O結合に変わっていく。その際、基本構成単位の分子量が増加するため、より緻密で硬い膜を得ることができる。
 水蒸気下で、波長変換石英ガラス層を形成する焼成温度は100~1000℃、好ましくは、200℃~900℃であることが好ましい。高温過ぎると蛍光体の熱失活が起こり、発光強度が低下する。低温すぎると、水蒸気が内部へ拡散せず、反応が十分に起きない。
 ここで、積層する場合には、一層あたりの膜厚は0.1μm~10μmであることが好ましく、0.5μm~10μmがより好ましく、更に好ましくは0.5μm~5μmである。一層あたりの膜厚が0.1μm未満であると、波長変換石英ガラス層を形成するのに時間がかかり、製造コストの増加につながる。一方、一層あたり10μmを超える膜を一度に形成すると、反応時のH2ガス発生により、焼成時にクラックが生じる。この積層処理を繰り返すことにより、所望の蛍光体量を含有する膜厚まで、波長変換石英ガラス層を形成し、1~500μmの波長変換石英ガラス層の積層構造を形成することができる。
 前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100~600℃以下に加熱せしめ、厚さ0.1μm~10μmの波長変換石英ガラス層を形成し、前記波長変換石英ガラス層の形成処理を複数回繰り返すことで、厚さ1~500μmまでの波長変換石英ガラス層の積層構造とすることができる。パーヒドロポリシラザンは、他の材料より、回数を減少させることができ、操作が単純化でき、製造コストを削減することが可能となる。前記波長変換石英ガラス層の形成には、スプレー法、スピンコート法、ディップコート法、ロールコート法などの湿式塗布方法を用いることができる。
 前記波長変換石英ガラス層に含有される蛍光体粒子の濃度は、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3~7質量部であるのが好ましい。すなわち、ポリシラザン及び蛍光体粒子の合計量を10質量部とした場合、蛍光体粒子の量が3~7質量部であるのが好ましい。また、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:5~7質量部であるのがさらに好ましい。
 前記蛍光体粒子の濃度が少ないと、その分積層回数を増やさなくてはならないため、操作手順が増えてしまう。濃度が高すぎると、光源からの光が内部まで入りづらくなり、発光効率が低下する。前記波長変換石英ガラス層に残留するNH基の濃度は1000ppm以下であり、好ましくは100ppm以下である。この濃度以下であれば、紫外線を長時間照射した場合や、高温にさらされた場合でも着色やクラックは発生しない。
 前記波長変換石英ガラス層の膜厚は、1μm~500μmであることが好ましい。更に好ましくは10μm~100μm以下である。1μm未満の膜厚では、光源の光が透過し、波長変換効率が低下するだけでなく、紫外線を光源としている場合は有害な紫外線が放射されてしまう。一方、500μmを超える膜厚では、積層回数が増えて製造コストの増加につながる。
 本発明に用いられる波長変換石英ガラス層作成工程の第二の態様は、TEOS加水分解溶液に、前記蛍光体粒子と水混合した溶液を作成し、石英ガラス基材表面に塗り、乾燥後、加熱し、波長変換石英ガラス層を作製する方法である。
 より詳しくは、平均粒径が0.1μm~20μmである蛍光体粒子と、水と、TEOSとを混合してなるTEOS加水分解溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、前記TEOS加水分解溶液における、TEOS及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部である、ようにした製造方法で前記波長変換石英ガラス層を作成するのが好適である。
 前記TEOS加水分解溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、300~1000℃以下に加熱せしめ、厚さ0.1μm~10μmの波長変換石英ガラス層を形成し、前記波長変換石英ガラス層の形成処理を複数回繰り返すことで、厚さ1~500μmまでの波長変換石英ガラス層の積層構造を形成するのが好適である。
 なお、前記波長変換石英ガラス層の各積層の蛍光体濃度が、前記石英ガラス基材から透明被覆膜に向かって、高濃度から低濃度に調整されて積層されるのが好ましい。
 なお、前記波長変換石英ガラス層の蛍光体種類が複数であり、各層毎に異なる蛍光体を使用し、複数積層し、形成するのが好ましい。
 テトラエトキシシランとエタノールと微量の硝酸を混合し、1時間ほど攪拌して、TEOS加水分解溶液を作成する。TEOS加水分解溶液の好ましい配分は、テトラエトキシシラン(0.5mol~2mol)とエタノール(2mol~5mol)と微量の硝酸(0.0005mol~0.01mol)の範囲である。
 このTEOS加水分解溶液と、上述した第一の態様と同様な蛍光体微粒子と水をホモジナイザーで攪拌する。攪拌溶液の好ましい範囲は、それぞれ、溶液が(1mol~4mol)、蛍光体粒子が(0.5mol~3mol)、水が(5mol~20mol)である。
 この攪拌溶液を、石英ガラス基材表面に塗って、0.1μm~10μm、好ましくは、1μm~5μmの波長変換石英ガラス層を形成し、大気雰囲気中、0℃~200℃好ましくは、室温~100℃にて、乾燥させる。その後、この層形成処理を複数回繰り返して、厚さ1μm~500μm、好ましくは、10μm~300μmまでの、波長変換ガラス層の積層構造を形成する。積層後の石英ガラス部材は、大気中にて、300℃~1000℃、好ましくは、400℃~900℃で加熱される。
 前記波長変換石英ガラス層の層形成処理を複数回繰り返す際に、石英ガラス基板表面に近い層では、蛍光体濃度の高い溶液を使用し、積層回数とともに、低濃度の溶液を使用して、波長変換ガラス層の積層構造を形成する。石英ガラス基板に近い高濃度層では、熱伝導率が高く、使用中に高温となった石英ガラス基板から効率的に熱を伝導し、加熱を抑制することができる。表面に近い低濃度層では、石英ガラスとして安定性が高まり、加熱や外部雰囲気の影響によるクラックやパーティクル発生が抑制される。形成された波長変換石英ガラス層のシリカ及び蛍光体粒子の合計量を10質量部とした場合、石英ガラス基板近傍に近い高濃度層では、蛍光体粒子の量が6~9質量部、好ましくは、7~9重量部であり、表面に近い低濃度層では、蛍光体粒子の量が1~5質量部、好ましくは、1~2である。
 前記波長変換石英ガラス層の層形成処理を、複数回繰り返して積層する場合に、単一層形成には、単一蛍光体にて溶液を作成し、複数層形成を行う。これにより、各層において均一な蛍光体分布と発光が得られ、最表層全面域での発光強度が均一化する。異なる蛍光体を混合して溶液を作成し、層形成処理を行うと、各蛍光体の比重が異なることから、蛍光体が層の中で不均一に分布しやすく、発光強度が表層面域において、不均一化する。
 〔石英ガラス基材〕
 本発明の波長変換用石英ガラス部材の第3の態様において、石英ガラス基材としては、前述した本発明の波長変換用石英ガラス部材の第2の態様と同様の石英ガラス基材が適用できる。また、本発明の波長変換用石英ガラス部材の第3の態様における石英ガラス基材作成工程についても、前述した本発明の波長変換用石英ガラス部材の第2の態様における前記石英ガラス基材の作成工程と同様である。
 以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。
本発明の波長変換用石英ガラス部材の第1の態様における実施例及び比較例を、実施例1~10及び比較例1~8に示す。 
(実施例1)
 500mlジルコニア容器に、球状の深紫外光励起蛍光体(ユーヴィックス株式会社製 商品名:QKL65E/S-C1 平均粒径30μm(測定装置:マイクロトラックMT3000 日機装株式会社製))5g、2-メトキシエタノール(粘度20℃で1.71mPa・s、20℃で蒸気圧0.83kP)10g、ジルコニアボール大(直径5mm)30g、ジルコニアボール小(直径0.3mm)15gを入れ、250rpmで30分間を6セット、遊星ボールミルで混合し、蛍光体分散液を得た。その後、2-メトキシエタノールを大気中、100℃のドライオーブン内で5時間蒸発させ、粒径1~10μmの粉砕蛍光体-1(塊状、かさ密度0.6g/cm3、平均粒径5μm、最小粒径1μm、最大粒径10μm)を乾燥させて得た。
 次に、トレスマイルANN120(触媒を含有しないポリシラザン20質量%のジブチルエーテル溶液、サンワ化学株式会社製)の中に、粉砕蛍光体-1(ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が10:5質量部)を入れ、ホモジナイザー(回転速度8000rpm)で5分間混合した。その後、疎水性の二酸化珪素(株式会社アドマテックス製 商品名:アドマナノ、球状、かさ密度0.8g/cm3、平均粒径10nm、最小粒径3nm、最大粒径15nm、ポリシラザン含有溶液中の含有量は0.5%)を0.1g混合し、分散液-1を得た。
 分散液-1をスプレー容器に入れ、大気中室温20℃、湿度50%の環境下で、合成石英ガラス基盤-1(厚さ3mm、縦20mm×横20mm、OH濃度300ppm、表面粗さRa=0.05μm)上に、膜厚が5μm以下になるようにスプレーコートした。スプレー圧は0.1MPa、吹き付け時間は1秒間、使用ガスは空気、液体粒子の大きさ1.0μm、基材とスプレーの距離は10cm、角度は基板に対し、60°とした。
 得られた膜を、100℃のホットプレート上で10分間乾燥させ、その後、大気中で水蒸気(空気流量20l/min、水蒸気流量0.7ml/min)存在下で500℃のセラミックホットプレート上で30分間熱処理を行い、その後室温まで冷却し、1.5μmの膜厚の塗布膜(残留NH基濃度100ppm以下、470nm付近の光透過率60%~80%)を得た。
 上記と同様の条件で上記スプレーコートを10回繰り返し、実施例1(膜厚12μm、470nm付近の光透過率5%、残留NH基濃度100ppm以下)の波長変換用石英ガラス部材を得た。
(実施例2)
 実施例1で使用した粉砕蛍光体-1に代えて下記粉砕蛍光体-2を用いた以外は同様にして、実施例2の波長変換用石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
 上記粉砕蛍光体-1の調整において、紫外光励起蛍光体(ユーヴィックス株式会社製 商品名:QKL65E/S-C1)に代えて、近紫外光励起蛍光体(ユーヴィックス株式会社製 商品名:UVW365)を用いた以外は同様にして、粉砕蛍光体-2(平均粒径10μm)を得た。
(実施例3)
 実施例1で使用した合成石英ガラス基板-1に代えて天然石英ガラス基板を用いた以外は実施例1と同様にして、実施例3の波長変換用石英ガラス部材を作製した。
(実施例4)
 実施例1で使用した粉砕蛍光体-1に代えて下記粉砕蛍光体-3を用いた以外は実施例1と同様にして、実施例4の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
 上記粉砕蛍光体-1の蛍光体粉砕工程において、250rpmで30分間を12セット、遊星ボールミルで混合する以外は実施例1と同様にして、粉砕蛍光体-3(平均粒径1μm)を得た。
(実施例5)
 実施例1で使用した粉砕蛍光体-1に代えて下記粉砕蛍光体-4を用いた以外は実施例1と同様にして、実施例5の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
 上記粉砕蛍光体-1の蛍光体粉砕工程において、250rpmで30分間を1セット、遊星ボールミルで混合する以外は実施例1と同様にして、粉砕蛍光体-4(平均粒径15μm)を得た。
(実施例6)
 実施例1で使用したアドマナノに代えて疎水性の平均粒径10nmの球状シリカ微粒子を用いた以外は実施例1と同様にして、実施例6の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
(実施例7)
 実施例1で使用したアドマナノに代えて疎水性の平均粒径80nmの球状シリカ微粒子を用いた以外は実施例1と同様にして、実施例7の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
(実施例8)
 実施例1で使用した粉砕蛍光体の、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比を10:4質量部にすること以外は実施例1と同様にして、実施例8の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
(実施例9)
 実施例1で使用した粉砕蛍光体の、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比を10:6質量部にすること以外は実施例1と同様にして、実施例9の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
(実施例10)
 実施例1で、水蒸気中での加熱温度を300℃として積層を繰り返すこと以外は実施例1と同様にして、実施例10の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度700ppm)を作製した。
(比較例1)
 実施例1で、100℃乾燥後、水蒸気中で500℃に加熱する熱処理工程において、水蒸気を利用しないで、500℃で加熱すること以外は実施例1と同様にして、比較例1の波長変換用石英ガラス部材を作製した。
(比較例2)
 実施例1で使用したトレスマイルANN120に代えてトレスマイルANP310(末端メチル化シラザン)を用いた以外は実施例1と同様にして、比較例2の波長変換用石英ガラス部材を作製した。
(比較例3)
 実施例1で使用した深紫外光励起蛍光体(平均粒径30μm)を、湿式粉砕しないで用いること以外は実施例1と同様にして、比較例3の波長変換石英ガラス部材を作製した。
(比較例4)
 実施例1で使用したアドマナノに代えて、球状で親水性の二酸化珪素(商品名:SOE5平均粒径300μm)を用いた以外は実施例1と同様にして、比較例4の波長変換石英ガラス部材を作製した。
(比較例5)
 実施例1で使用したアドマナノに代えて、網目状の二酸化珪素(商品名:アエロジル380 比表面積380cm2/g)を用いた以外は実施例1と同様にして、比較例5の波長変換石英ガラス部材を作製した。
(比較例6)
 実施例1で使用した粉砕蛍光体の、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比を10:2質量部にすること以外は実施例1と同様にして、比較例6の波長変換石英ガラス部材を作製した。
(比較例7)
 実施例1で使用した粉砕蛍光体の、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比を10:8質量部にすること以外は実施例1と同様にして、比較例7の波長変換石英ガラス部材を作製した。
(比較例8)
 実施例1で、アドマナノを使用しないこと以外は実施例1と同様にして、比較例8の波長変換石英ガラス部材を作製した。
(評価)
実施例、比較例の全てにおいて、以下の評価を行った。
   ・ 目視観察
   ・ 254nm紫外線照射時の目視観察
   ・ 蛍光X線分光分析測定でのNH濃度
   ・ 分散性観察
 目視観察で、クラックや粒子ありの場合、判定を×とした。254nm紫外線照射時の目視観察で、強度弱の場合、判定を×とした。蛍光X線分光分析は、NH基の存在を調べる目的で測定を行った。分散性観察はEDS測定にて、EDS測定画面の70μm×50μmのうち、蛍光体に含有される元素、またはSi元素の凝集体が5μm以内であれば可とした。生産性は、コート繰り返し回数が100回以下である場合、可とした。蛍光X線、分散性観察、生産性のうち、どれか一つでも不可である場合、判定を×とした。
 実施例1、3~10で作製した石英ガラス部材を、254nmに発光ピークを持つUVランプ(0.6mW/cm2)に当て、実施例2で作製した石英ガラス部材を365nmに発光ピークを持つUVランプに当て、簡易分光器で色度の評価を行った。以下、評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の結果より、実施例以外では、すべての例で判定×であった。実施例3は、基材自体の発光が確認されたため、△とした。
 表2に記載の結果より、本発明の実施例1~10では、膜の状態も良好であり、可視光を発することがわかった(図2)。
次に、本発明の波長変換用石英ガラス部材の第2の態様における実施例及び比較例を、実施例11~16及び比較例9に示す。 
 (実施例11)
 500mlジルコニア容器に、球状の深紫外光励起蛍光体(ユーヴィックス株式会社製 商品名:QKL65E/S-C1、Y2O2S-Tb、Eu)5g、2-メトキシエタノール(粘度20℃で1.71mPa・s、20℃で蒸気圧0.83kP)10g、メノーボール(直径5mm)20gを入れ、250rpmで15分間を5セット、遊星ボールミルで混合し、蛍光体分散液を得た。その後、2-メトキシエタノールを大気中、100℃のホットプレート上で1時間蒸発させ、平均粒径5μmの粉砕蛍光体-1(塊状、かさ密度0.3g/cm3以上1.0g/cm3以下、最小粒径1μm、最大粒径10μm)を乾燥させて得た。
 次に、トレスマイルANN120(触媒を含有しないポリシラザン20質量%のジブチルエーテル溶液、サンワ化学株式会社製)の中に、粉砕蛍光体-1(ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が50質量部)を入れ、ホモジナイザー(回転速度8000rpm)で5分間混合した。その後、疎水性の酸化珪素(株式会社アドマテックス製 商品名:アドマナノ(球状、かさ密度0.4g/cm3以上1.5g/cm3以下、平均粒径10nm、最小粒径3nm、最大粒径15nm)を0.1g混合し、分散液-1を得た。
 分散液-1をスプレー容器に入れ、大気中室温20℃、湿度50%の環境下で、合成石英ガラス基盤-1(厚さ3mm、縦20mm×横20mm、OH濃度300ppm、表面粗さRa=0.5μm)上に、膜厚が5μm以下になるようにスプレーコートした。スプレー圧は0.1MPa、吹き付け時間20秒、使用ガスは空気、液体粒子の大きさ5μm、基材とスプレーの距離は15cm、角度は基板に対し、70°とした。
 得られた膜を、100℃のホットプレート上で10分間乾燥させ、その後、大気中で水蒸気(空気流量1l/min、水蒸気流量1.0ml/min)存在下で500℃のセラミックホットプレート上で30分間熱処理を行い、その後室温まで冷却し、2μmの膜厚の塗布膜(残留NH基濃度100ppm以下、470nm付近の光透過率70%)を得た。
 上記と同様の条件で上記スプレーコートを20回以下の回数繰り返し、膜厚15μm、470nm付近の光透過率20%、残留NH基濃度100ppm以下の波長変換石英ガラス層を合成石英ガラス基板の上に形成した。
 次に、チタンテトライソプロポキシド(和光純薬工業製 )5gとイソプロピルアルコール(純正化学株式会社製)10gを混合させ、回転速度400rpmのマグネチックスターラーで5分間撹拌後、塩酸溶液(35%塩酸1.5gと、イソプロピルアルコール1g)を滴下させ、pHを約2とした。その後、その溶液を回転速度400rpmで30分間撹拌させ、純水16g、イソプロピルアルコール7g、ジメチルホルムアミド(関東化学株式会社製)1gを混合させた溶液を添加し、回転速度400rpmで1時間撹拌させて加水分解を行い、酸化チタン前駆体を作製した。
 酸化チタン前駆体を上記と同様のスプレー容器に入れ、大気中室温20℃、湿度50%の環境下で、スプレー条件は塗布膜-2のスプレー条件と同様にして、波長変換石英ガラス層の上に、膜厚が約1μmになるようにスプレーコートした。その後、100℃のホットプレート上で10分乾燥させた後、大気中で550℃のホットプレート上で30分熱処理を行い、波長変換石英ガラス層の表面に透明なTi含有無機膜が形成された実施例11の波長変換用石英ガラス部材を作製した。
(実施例12)
 実施例11と同様な方法で溶液を作成し、但し、10回のスプレーコートまでは、同様に形成し、その後の20回のスプレーコートでは、比例的に蛍光体の重量比を低減させ、表面にて0%の蛍光体重量比の溶液とし、形成した。それ以外は実施例11と同様に作製した。
(実施例13)
 実施例11と同様な方法で溶液を作成し、但し、1~7回のスプレーコートまでは、青色蛍光体、Sr10(POCl:Eu2+ を使用し、8~14回のスプレーコートまでは、緑色蛍光体、ZnS:Cu,Alを使用し、15~21回のスプレーコートまでは、赤色蛍光体、YS:Eu3+、を使用して、それ以外は実施例11と同様に作製した。
(実施例14)
 TEOSを1モルとエタノールを3モル、硝酸を0.002モルを5分間攪拌し、水10mol加え、TEOS加水分解溶液を作製し、この溶液2molに実施例11と同様な蛍光体1molと水10molを加え、ホモジナイザーで5min攪拌し、その他は実施例11と同様な方法で、スプレーコートで1μmの膜を形成し、60℃で乾燥後、20回繰り返し積層し、その後透明層も形成し、その後、大気中にて、800℃で、2時間加熱を行った。
(実施例15)
 TEOSを1モルとエタノールを3モル、硝酸を0.002モルを5分間攪拌し、水10mol加え、TEOS加水分解溶液を作製し、この溶液2molに実施例11と同様な蛍光体1molと水10molを加え、ホモジナイザーで5min攪拌し、スプレーコートで1μmの膜を形成し、60℃で乾燥後、20回繰り返し積層し、その後、大気中にて、800℃で、2時間加熱を行った。石英基板は、Cuを100ppm含有した合成石英ガラスを用いた。
(実施例16)
 実施例11と同様な方法で溶液を作成し、但し、15回のスプレーコートまでは、同様に形成し、その後の5回のスプレーコートでは、波長変換石英ガラス層の蛍光体粒子の重量比を半減させた中間石英ガラス層を形成し、さらに、表面にて実施例11と同様な透明層を形成した。すなわち、中間石英ガラス層としては、波長変換石英ガラス層の蛍光体粒子濃度の50%の蛍光体粒子濃度を有する中間石英ガラス層を形成した。石英基板は、気泡径5~20μm、平均径20μm、気泡密度1×10個/cmの不透明合成石英ガラスを用いた。
(比較例9)
 合成石英ガラス基材に波長変換石英ガラス層を形成した部材を作製し、波長変換石英ガラス層の表面に透明被覆膜を形成しなかったこと以外は実施例11と同様にして波長変換用石英ガラス部材を作製し、同様に評価を行った。
(評価)
 実施例11~16と比較例9で作製した石英ガラス部材を、254nmに発光ピークを持つUVランプ(0.6mW/cm2)に当て、各部材を透過してきた光を、分光測定器で色度と、分光スペクトルの評価を行った。
Figure JPOXMLDOC01-appb-T000003
 表3に記載の結果より、本発明の実施例11~16では、膜の状態も良好であり、可視光を発することがわかった。(図5:色度図)
 さらに、各部材を透過してきた光の分光スペクトルの結果より、340nm以下の紫外線の波長域では、Ti含有無機膜の無い部材に比べて、スペクトル強度が著しく低下していることがわかった。(図6:分光スペクトル)
 さらに、実施例11のTi含有無機膜の表層をX線回折で測定したところ、アナターゼ型のTi結晶の回折ピークが確認された。
次に、本発明の波長変換用石英ガラス部材の第3の態様における実施例及び比較例を、実施例17~20及び比較例10に示す。 
(実験例1)
 500mlジルコニア容器に、球状の深紫外光励起蛍光体(ユーヴィックス株式会社製 商品名:QKL65E/S-C1、Y2O2S-Tb、Eu)5g、2-メトキシエタノール(粘度20℃で1.71mPa・s、20℃で蒸気圧0.83kP)10g、メノーボール(直径5mm)20gを入れ、250rpmで15分間を5セット、遊星ボールミルで混合し、蛍光体分散液を得た。その後、2-メトキシエタノールを大気中、100℃のホットプレート上で1時間蒸発させ、平均粒径5μmの粉砕蛍光体-1(塊状、かさ密度0.3g/cm3以上1.0g/cm3以下、最小粒径1μm、最大粒径10μm)を乾燥させて得た。
 次に、トレスマイルANN120(触媒を含有しないポリシラザン20質量%のジブチルエーテル溶液、サンワ化学株式会社製)の中に、粉砕蛍光体-1(ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が50質量部)を入れ、ホモジナイザー(回転速度8000rpm)で5分間混合した。その後、疎水性の酸化珪素(株式会社アドマテックス製 商品名:アドマナノ(球状、かさ密度0.4g/cm3以上1.5g/cm3以下、平均粒径10nm、最小粒径3nm、最大粒径15nm)を0.1g混合し、分散液-1を得た。
 分散液-1をスプレー容器に入れ、大気中室温20℃、湿度50%の環境下で、合成石英ガラス基盤-1(厚さ3mm、縦20mm×横20mm、OH濃度300ppm、表面粗さRa=0.5μm)上に、膜厚が5μm以下になるようにスプレーコートした。スプレー圧は0.1MPa、吹き付け時間20秒、使用ガスは空気、液体粒子の大きさ5μm、基材とスプレーの距離は15cm、角度は基板に対し、70°とした。
 得られた膜を、100℃のホットプレート上で10分間乾燥させ、その後、大気中で水蒸気(空気流量1l/min、水蒸気流量1.0ml/min)存在下で500℃のセラミックホットプレート上で30分間熱処理を行い、その後室温まで冷却し、2μmの膜厚の塗布膜(残留NH基濃度100ppm以下、470nm付近の光透過率70%)を得た。
 上記と同様の条件で上記スプレーコートを20回以下の回数繰り返し、膜厚15μm、470nm付近の光透過率20%、残留NH基濃度100ppm以下の波長変換石英ガラス層を合成石英ガラス基板の上に形成した。
 次に、チタンテトライソプロポキシド(和光純薬工業製)5gとイソプロピルアルコール(純正化学株式会社製)10gを混合させ、回転速度400rpmのマグネチックスターラーで5分間撹拌後、塩酸溶液(35%塩酸1.5gと、イソプロピルアルコール1g)を滴下させ、pHを約2とした。その後、その溶液を回転速度400rpmで30分間撹拌させ、純水16g、イソプロピルアルコール7g、ジメチルホルムアミド(関東化学株式会社製)1gを混合させた溶液を添加し、回転速度400rpmで1時間撹拌させて加水分解を行い、酸化チタン前駆体を作製した。
 酸化チタン前駆体を上記と同様のスプレー容器に入れ、大気中室温20℃、湿度50%の環境下で、スプレー条件は塗布膜-2のスプレー条件と同様にして、波長変換石英ガラス層の上に、膜厚が約1μmになるようにスプレーコートした。その後、100℃のホットプレート上で10分乾燥させた後、大気中で550℃のホットプレート上で30分熱処理を行い、波長変換石英ガラス層の表面に透明なTi含有無機膜が形成された実験例1の波長変換用石英ガラス部材を作製した。
(実施例17)
 実験例1と同様な方法で溶液を作成し、但し、10回のスプレーコートまでは、同様に形成し、その後の20回のスプレーコートでは、比例的に蛍光体粒子の重量比を低減させ、表面にて0%の蛍光体重量比の溶液とし、形成した。それ以外は実験例1と同様に作製した。
(実施例18)
 実験例1と同様な方法で溶液を作成し、青色蛍光体、Sr10(POCl:Eu2+と、緑色蛍光体、ZnS:Cu,Alと、赤色蛍光体、YS:Eu3+、を含有する溶液を順番にコートして、この順番で、9回目までは、実験例1と同様に形成し、10回目のコートからは、徐々に溶液濃度を低減させながら同様にコート形成し、最表面のコートは、0%の蛍光体重量比の溶液として、形成した。それ以外実験例1と同様に作製した。
(実施例19)
 TEOSを1モルとエタノールを3モル、硝酸を0.002モルを5分間攪拌し、水10mol加え、TEOS加水分解溶液を作製し、この溶液2molに実験例1と同様な方法で、蛍光体1molと水10molを加え、ホモジナイザーで5min攪拌し、スプレーコートで1μmの膜を形成し、60℃で乾燥後、実施例1と同様な方法で、20回繰り返し積層し、その後、大気中にて、800℃で、2時間加熱を行った。
(実施例20)
 実施例17と同様な方法で溶液を作成し、但し、15回のスプレーコートまでは、同様に形成し、その後の5回のスプレーコートでは、波長変換石英ガラス層の蛍光体粒子の重量比を14回目のスプレーコートより半減させた中間石英ガラス層を形成し、それ以外は、実施例17と同様に形成した。すなわち、中間石英ガラス層としては、波長変換石英ガラス層の蛍光体粒子濃度の50%の蛍光体粒子濃度を有する中間石英ガラス層を形成した。
(比較例10)
 合成石英ガラス基材に波長変換石英ガラス層を形成した部材を作製し、波長変換石英ガラス層の表面に透明被覆膜を形成しなかったこと以外は実験例1と同様にして波長変換用石英ガラス部材を作製し、同様に評価を行った。
(評価)
 実施例17,18,19,20と比較例10で作製した石英ガラス部材を、254nmに発光ピークを持つUVランプ(0.6mW/cm2)に当て、各部材を透過してきた光を、分光測定器で色度と、分光スペクトルの評価を行った。
Figure JPOXMLDOC01-appb-T000004
 表4に記載の結果より、本発明の実施例17~20では、膜の状態も良好であり、可視光を発することがわかった。(図9:色度図)
 さらに、各部材を透過してきた光の分光スペクトルの結果より、340nm以下の紫外線の波長域では、Ti含有無機膜の無い部材に比べて、スペクトル強度が著しく低下していることがわかった。(図10:分光スペクトル)
 さらに、実施例17のTi含有無機膜の表層をX線回折で測定したところ、アナターゼ型のTi結晶の回折ピークが確認された。
10:本発明の第1の態様の波長変換用石英ガラス部材、12,32,52:石英ガラス基材、14:石英ガラス表層膜、16,36,56:蛍光体粒子、18,38,58:シリカ微粒子、30A,30B:本発明の第2の態様の波長変換用石英ガラス部材、34,54:波長変換石英ガラス層、40,60:透明被覆膜、42,62:中間石英ガラス層、50A,50B:本発明の第3の態様の波長変換用石英ガラス部材。

Claims (36)

  1.   石英ガラス基材とその表面に石英ガラス表層膜が形成されてなる波長変換用石英ガラス部材であり、
     前記石英ガラス表層膜は、平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材表面上に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより得られ、
     前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3~7質量部であり、
     前記石英ガラス表層膜のNH基濃度が1000ppm以下である、
    ことを特徴とする波長変換用石英ガラス部材。
  2.   石英ガラス基材に用いられる石英ガラスが、合成石英ガラスであることを特徴とする請求項1記載の波長変換用石英ガラス部材。
  3.   石英ガラス基材の表面に、
     平均粒径が0.1μm~20μmである蛍光体粒子及び球状で疎水性且つ平均粒径が1nm~100nmであり0.1~10質量%のシリカ微粒子を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布し、水蒸気雰囲気下で加熱して、石英ガラス表層膜を形成する波長変換用石英ガラス部材の製造方法であり、
     前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3~7質量部である
     ことを特徴とする波長変換用石英ガラス部材の製造方法。
  4.   前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100~600℃に加熱せしめ、厚さ0.1μm~10μmの石英ガラス表層膜を形成し、前記石英ガラス表層膜の形成処理を複数回繰り返すことで、厚さ1~500μmの石英ガラス表層膜の積層構造を形成することを特徴とする請求項3記載の波長変換用石英ガラス部材の製造方法。
  5.   石英ガラス基材と、前記石英ガラス基材の表面に形成され且つ蛍光体粒子を含有する波長変換石英ガラス層と、前記波長変換石英ガラス層の表面に形成された透明被覆膜と、を含むことを特徴とする波長変換用石英ガラス部材。
  6.   前記透明被覆膜が、透明無機膜であることを特徴とする請求項5記載の波長変換用石英ガラス部材。
  7.   前記透明無機膜が、Ti含有無機膜であることを特徴とする請求項6記載の波長変換用石英ガラス部材。
  8.   前記Ti含有無機膜が、アナターゼ結晶化した酸化チタンを含有することを特徴とする請求項7記載の波長変換用石英ガラス部材。
  9.   前記波長変換石英ガラス層と前記透明被覆膜との間に、前記波長変換石英ガラス層の蛍光体粒子濃度の10~60%程度の蛍光体粒子濃度を有する中間石英ガラス層が形成されてなることを特徴とする請求項5~8いずれか1項記載の波長変換用石英ガラス部材。
  10.   前記石英ガラス基材が、合成石英ガラスであることを特徴とする請求項5~9いずれか1項記載の波長変換用石英ガラス部材。
  11.   前記石英ガラス基材が、Ga、Ce、Cu、及びTiからなる群から選択された一つ以上を含む石英ガラスであることを特徴とする請求項5~10いずれか1項記載の波長変換用石英ガラス部材。
  12.   前記石英ガラス基材が、微小泡及び/又は微小界面を含む光散乱石英ガラスであることを特徴とする請求項5~10いずれか1項記載の波長変換用石英ガラス部材。
  13.   請求項5~12いずれか1項記載の波長変換用石英ガラス部材を製造するための製造方法であって、
      前記透明被覆膜が、シリカ及び/又はシリカ前駆体を含有する溶液を前記波長変換石英ガラス層又は前記中間石英ガラス層の表面に薄膜コートし、乾燥後、加熱して形成されることを特徴とする波長変換用石英ガラス部材の製造方法。
  14.   前記透明被覆膜及び波長変換石英ガラス層がゾルゲル法によって形成されることを特徴とする請求項13記載の波長変換用石英ガラス部材の製造方法。
  15.   平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、
      前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、
     前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であり、
     前記波長変換石英ガラス層のNH基濃度が1000ppm以下である、
    ことを特徴とする請求項13記載の波長変換用石英ガラス部材の製造方法。
  16.   平均粒径が0.1μm~20μmである蛍光体粒子と、水と、TEOSとを混合してなるTEOS加水分解溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、
      前記波長変換石英ガラス層の表面に前記透明被覆膜を形成する工程と、を含み、
      前記TEOS加水分解溶液における、TEOS及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であることを特徴とする請求項13又は14記載の波長変換用石英ガラス部材の製造方法。
  17.   請求項7~12いずれか1項記載の波長変換用石英ガラス部材を製造するための製造方法であって、
      前記Ti含有無機膜が、前記波長変換石英ガラス層の表面にTiを含有する溶液をコートし、その後、焼結することにより形成されることを特徴とする波長変換用石英ガラス部材の製造方法。
  18.   石英ガラス基材と、前記石英ガラス基材の表面に形成され且つ蛍光体粒子を含有する波長変換石英ガラス層と、を含み、
     前記波長変換石英ガラス層の蛍光体濃度が、ガラス基材側から前記波長変換石英ガラス層の表面側に向かって、高濃度から低濃度に分布していることを特徴とする波長変換用石英ガラス部材。
  19.   前記波長変換石英ガラス層が積層であり、前記波長変換石英ガラス層の蛍光体種類が複数であり、各層毎に異なる蛍光体を使用し、複数積層し、形成されていることを特徴とする請求項18記載の波長変換用石英ガラス部材。
  20.   前記石英ガラス基材が、合成石英ガラスであることを特徴とする請求項18又は19記載の波長変換用石英ガラス部材。
  21.   前記石英ガラス基材が、Ga、Ce、Cu及びTiからなる群から選択された一つ以上を含む石英ガラスであることを特徴とする請求項18~20いずれか1項記載の波長変換用石英ガラス部材。
  22.   前記石英ガラス基材が、微小泡及び/又は微小界面を含む光散乱石英ガラスであることを特徴とする請求項18~21いずれか1項記載の波長変換用石英ガラス部材。
  23.   前記波長変換石英ガラス層の表面に形成された透明被覆膜をさらに含むことを特徴とする請求項18~22いずれか1項記載の波長変換用石英ガラス部材。
  24.   前記透明被覆膜が、透明無機膜であることを特徴とする請求項23記載の波長変換用石英ガラス部材。
  25.   前記透明無機膜が、Ti含有無機膜であることを特徴とする請求項24記載の波長変換用石英ガラス部材。
  26.   前記Ti含有無機膜が、アナターゼ結晶化した酸化チタンを含有することを特徴とする請求項25記載の波長変換用石英ガラス部材。
  27.   前記波長変換石英ガラス層と前記透明被覆膜との間に、前記波長変換石英ガラス層の蛍光体粒子濃度の10~60%程度の蛍光体粒子濃度を有する中間石英ガラス層が形成されてなることを特徴とする請求項23~26いずれか1項記載の波長変換用石英ガラス部材。
  28.   請求項23~27いずれか1項記載の波長変換用石英ガラス部材の製造方法であり、
      前記透明被覆膜が、シリカ及び/又はシリカ前駆体を含有する溶液を薄膜コートし、乾燥後、加熱して形成されることを特徴とする波長変換用石英ガラス部材の製造方法。
  29.   前記透明被覆膜及び前記波長変換石英ガラス層がゾルゲル法によって形成されることを特徴とする請求項28記載の波長変換用石英ガラス部材の製造方法。
  30.   前記Ti含有無機膜が、Tiを含有する溶液を前記波長変換石英ガラス層の表面にコートし、その後、焼結して形成されることを特徴とする請求項28又は29記載の波長変換用石英ガラス部材の製造方法。
  31.   請求項18~27いずれか1項記載の波長変換用石英ガラス部材の製造方法であり、
      平均粒径が0.1μm~20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm~100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、さらに前記波長変換石英ガラス層の表面に透明被覆膜を形成する工程と、を含み、
     前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であり、
     前記波長変換石英ガラス層のNH基濃度が1000ppm以下である、
    ことを特徴とする波長変換用石英ガラス部材の製造方法。
  32.   前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100~600℃に加熱せしめ、厚さ0.1μm~10μmの波長変換石英ガラス層を形成し、前記波長変換石英ガラス層の形成処理を複数回繰り返すことで、厚さ1~500μmまでの波長変換石英ガラス層の積層構造を形成することを特徴とする請求項31記載の波長変換用石英ガラス部材の製造方法。
  33.   請求項18~27いずれか1項記載の波長変換用石英ガラス部材の製造方法であり、
      TEOS加水分解溶液に、平均粒径が0.1μm~20μmである蛍光体粒子と、水を混合した溶液を作成し、前記石英ガラス基材に塗布した後、大気中で乾燥し、前記石英ガラス基材の表面に波長変換石英ガラス層を形成する工程と、前記波長変換石英ガラス層の表面に透明被覆膜を形成する工程と、を含み、前記TEOS加水分解溶液における、TEOS及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:1~9質量部であることを特徴とする波長変換用石英ガラス部材の製造方法。
  34.   前記TEOS加水分解溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、300~1000℃に加熱せしめ、厚さ0.1μm~10μmの波長変換石英ガラス層を形成し、前記波長変換石英ガラス層の形成処理を複数回繰り返すことで、厚さ1~500μmまでの波長変換石英ガラス層の積層構造を形成することを特徴とする請求項33記載の波長変換用石英ガラス部材の製造方法。
  35.   前記波長変換石英ガラス層の各積層の蛍光体濃度が、前記石英ガラス基材から透明被覆膜に向かって、高濃度から低濃度に調整されて積層されることを特徴とする請求項28~34いずれか1項記載の波長変換用石英ガラス部材の製造方法。
  36.   前記波長変換石英ガラス層の蛍光体種類が複数であり、各層毎に異なる蛍光体を使用し、複数積層し、形成することを特徴とする請求項28~34いずれか1項記載の波長変換用石英ガラス部材の製造方法。
PCT/JP2014/084398 2013-12-26 2014-12-25 波長変換用石英ガラス部材及びその製造方法 WO2015099084A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480004250.0A CN104903266A (zh) 2013-12-26 2014-12-25 波长变换用石英玻璃构件及其制造方法
KR1020157017265A KR20150092213A (ko) 2013-12-26 2014-12-25 파장 변환용 석영 유리 부재 및 그 제조 방법
EP14873492.4A EP2944620A1 (en) 2013-12-26 2014-12-25 Silica glass member for wavelength conversion, and production method therefor
US14/764,879 US20150353417A1 (en) 2013-12-26 2014-12-25 Quartz glass member for wavelength conversion and method of manufacturing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-268645 2013-12-26
JP2013268645 2013-12-26
JP2014-157758 2014-08-01
JP2014157758 2014-08-01
JP2014157754 2014-08-01
JP2014-157754 2014-08-01
JP2014-184093 2014-09-10
JP2014184093A JP2015143324A (ja) 2013-12-26 2014-09-10 波長変換用石英ガラス部材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015099084A1 true WO2015099084A1 (ja) 2015-07-02

Family

ID=54035041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084398 WO2015099084A1 (ja) 2013-12-26 2014-12-25 波長変換用石英ガラス部材及びその製造方法

Country Status (6)

Country Link
US (1) US20150353417A1 (ja)
EP (1) EP2944620A1 (ja)
KR (1) KR20150092213A (ja)
CN (1) CN104903266A (ja)
TW (1) TW201532999A (ja)
WO (1) WO2015099084A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202437A (ja) * 2016-05-09 2017-11-16 公立大学法人首都大学東京 光触媒ガラス
WO2018150686A1 (ja) * 2017-02-17 2018-08-23 日本特殊陶業株式会社 波長変換部材
WO2022210009A1 (ja) * 2021-04-01 2022-10-06 日本電気硝子株式会社 波長変換部材及び発光デバイス

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497500B1 (ko) * 2014-06-16 2015-03-03 한국과학기술연구원 파장변환층을 구비하는 태양전지 및 그의 제조 방법
CN105090826B (zh) * 2015-08-10 2018-01-23 京东方科技集团股份有限公司 背光模组和显示装置
JP6672805B2 (ja) * 2016-01-12 2020-03-25 セイコーエプソン株式会社 波長可変干渉フィルター、電子部品、電子部品の製造方法、および電子機器
CN105693108A (zh) * 2016-01-13 2016-06-22 南京大学 一种反射式荧光玻璃光转换组件的制备及应用
JP6439723B2 (ja) * 2016-03-09 2018-12-19 信越化学工業株式会社 合成石英ガラス基板の製造方法
JP2019512447A (ja) * 2016-03-31 2019-05-16 ダウ グローバル テクノロジーズ エルエルシー 疎水性シリカ粒子の作製方法
JP6686780B2 (ja) * 2016-08-05 2020-04-22 日本電気硝子株式会社 波長変換部材及びその製造方法
JP2018060946A (ja) * 2016-10-06 2018-04-12 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018074111A (ja) * 2016-11-04 2018-05-10 株式会社ディスコ 発光ダイオードチップの製造方法
JP2018074110A (ja) * 2016-11-04 2018-05-10 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018074109A (ja) * 2016-11-04 2018-05-10 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018116964A (ja) * 2017-01-16 2018-07-26 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018129341A (ja) * 2017-02-06 2018-08-16 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018129343A (ja) * 2017-02-06 2018-08-16 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
DE102017104133A1 (de) * 2017-02-28 2018-08-30 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
US10794569B2 (en) * 2017-03-02 2020-10-06 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source and lighting device
JP2018148013A (ja) * 2017-03-06 2018-09-20 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018148016A (ja) * 2017-03-06 2018-09-20 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018148017A (ja) * 2017-03-06 2018-09-20 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018148015A (ja) * 2017-03-06 2018-09-20 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
WO2019043845A1 (ja) 2017-08-30 2019-03-07 日本碍子株式会社 透明封止部材
EP3712663B1 (en) * 2017-11-16 2023-09-20 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion element
CN110361912B (zh) * 2018-04-10 2021-08-17 深圳光峰科技股份有限公司 波长转换装置
JP6987021B2 (ja) * 2018-05-28 2021-12-22 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
KR102561114B1 (ko) * 2018-06-04 2023-07-28 삼성디스플레이 주식회사 색변환 표시판의 제조 방법 및 색변환 표시판을 포함하는 표시 장치의 제조 방법
JP7161100B2 (ja) 2018-09-25 2022-10-26 日亜化学工業株式会社 発光装置及びその製造方法
KR102576253B1 (ko) * 2021-05-11 2023-09-11 대주전자재료 주식회사 파장 변환 부재 및 이를 포함하는 발광장치
CN113415978B (zh) * 2021-07-03 2022-06-24 四川神光石英科技有限公司 一种耐辐照石英玻璃的制备方法及制备用坩埚和料架

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223867A (ja) * 1993-12-17 1995-08-22 Tonen Corp セラミックスの低温形成方法
JPH0948951A (ja) * 1995-08-08 1997-02-18 Tonen Corp 着色コーティング用組成物及びそれを用いた着色ガラスとその製造方法
JP2005272243A (ja) 2004-03-25 2005-10-06 Shinetsu Quartz Prod Co Ltd 波長変換シリカガラス
WO2008047427A1 (fr) 2006-10-18 2008-04-24 National Institute Of Advanced Industrial Science And Technology Composition de résine fluorescente et module de batterie solaire utilisant ladite composition
JP2009263621A (ja) * 2008-04-23 2009-11-12 Samsung Electronics Co Ltd 量子ドット−無機マトリックス複合体の製造方法
WO2010110204A1 (ja) 2009-03-27 2010-09-30 コニカミノルタオプト株式会社 蛍光体部材、蛍光体部材の製造方法、及び照明装置
JP2010258293A (ja) 2009-04-27 2010-11-11 Hitachi Chem Co Ltd 波長変換フィルム、これを用いた太陽電池モジュール及びこれらの製造方法
WO2011077548A1 (ja) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 発光装置
JP2013035953A (ja) * 2011-08-09 2013-02-21 Nihon Ceratec Co Ltd 蛍光体成形材料、蛍光体成形材料の製造方法、および発光装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540483A (en) * 1978-09-15 1980-03-21 Sumitomo Electric Ind Ltd Production of bundle fiber
US4584428A (en) * 1984-09-12 1986-04-22 Hughes Aircraft Company Solar energy converter employing a fluorescent wavelength shifter
US6387844B1 (en) * 1994-10-31 2002-05-14 Akira Fujishima Titanium dioxide photocatalyst
JP2003142262A (ja) * 2001-11-06 2003-05-16 Seiko Epson Corp 電気光学装置、膜状部材、積層膜、低屈折率膜、多層積層膜、電子機器
US20060204886A1 (en) * 2003-05-30 2006-09-14 Hideyuki Nakamura Heat transfer sheet, image forming material and image forming method
JP2008153159A (ja) * 2006-12-20 2008-07-03 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
DE102009018647A1 (de) * 2009-04-23 2010-10-28 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
DE202010018292U1 (de) * 2010-06-02 2015-07-14 Thomas Kreuzberger Quarzglaskörper und Gelbkörper zur Herstellung eines Quarzglaskörpers
WO2012063864A1 (ja) * 2010-11-10 2012-05-18 シャープ株式会社 発光素子および表示装置
KR102178256B1 (ko) * 2013-03-27 2020-11-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223867A (ja) * 1993-12-17 1995-08-22 Tonen Corp セラミックスの低温形成方法
JPH0948951A (ja) * 1995-08-08 1997-02-18 Tonen Corp 着色コーティング用組成物及びそれを用いた着色ガラスとその製造方法
JP2005272243A (ja) 2004-03-25 2005-10-06 Shinetsu Quartz Prod Co Ltd 波長変換シリカガラス
WO2008047427A1 (fr) 2006-10-18 2008-04-24 National Institute Of Advanced Industrial Science And Technology Composition de résine fluorescente et module de batterie solaire utilisant ladite composition
JP2009263621A (ja) * 2008-04-23 2009-11-12 Samsung Electronics Co Ltd 量子ドット−無機マトリックス複合体の製造方法
WO2010110204A1 (ja) 2009-03-27 2010-09-30 コニカミノルタオプト株式会社 蛍光体部材、蛍光体部材の製造方法、及び照明装置
JP2010258293A (ja) 2009-04-27 2010-11-11 Hitachi Chem Co Ltd 波長変換フィルム、これを用いた太陽電池モジュール及びこれらの製造方法
WO2011077548A1 (ja) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 発光装置
JP2013035953A (ja) * 2011-08-09 2013-02-21 Nihon Ceratec Co Ltd 蛍光体成形材料、蛍光体成形材料の製造方法、および発光装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202437A (ja) * 2016-05-09 2017-11-16 公立大学法人首都大学東京 光触媒ガラス
WO2018150686A1 (ja) * 2017-02-17 2018-08-23 日本特殊陶業株式会社 波長変換部材
JP2018131577A (ja) * 2017-02-17 2018-08-23 日本特殊陶業株式会社 波長変換部材
WO2022210009A1 (ja) * 2021-04-01 2022-10-06 日本電気硝子株式会社 波長変換部材及び発光デバイス

Also Published As

Publication number Publication date
US20150353417A1 (en) 2015-12-10
CN104903266A (zh) 2015-09-09
TW201532999A (zh) 2015-09-01
KR20150092213A (ko) 2015-08-12
EP2944620A1 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2015099084A1 (ja) 波長変換用石英ガラス部材及びその製造方法
JP6552269B2 (ja) 波長変換用石英ガラス部材及びその製造方法
TWI685132B (zh) 發光裝置
TWI522444B (zh) 表面改質矽酸鹽發光物質
US8294357B2 (en) Wavelength conversion element and light emitting device
Lee et al. Yellow phosphors coated with TiO2 for the enhancement of photoluminescence and thermal stability
JP2017207757A (ja) ポリシラザン及び波長変換剤を含むコーティング組成物、及びこれを利用して製造された波長変換シート
WO2014046173A1 (ja) 複合波長変換粉体、複合波長変換粉体含有樹脂組成物及び発光装置
JP7212319B2 (ja) 波長変換部材及び発光装置
KR101497500B1 (ko) 파장변환층을 구비하는 태양전지 및 그의 제조 방법
TWI636970B (zh) Phosphor dispersion glass
TW201545863A (zh) 陶瓷磷光板及包括其之照明裝置
JP2016143742A (ja) 波長変換部材、発光装置、および波長変換部材の製造方法
JP6560534B2 (ja) 波長変換用石英ガラス部材及びその製造方法
Trung et al. Single-composition Al 3+-singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications
JP6186201B2 (ja) 発光装置
JP2015143324A (ja) 波長変換用石英ガラス部材及びその製造方法
Komukai et al. A high-luminescence BaZrSi3O9: Eu2+ blue–green-emitting phosphor: Synthesis and mechanism
Zhang et al. Research progress on surface modifications for phosphors used in light-emitting diodes (LEDs)
WO2014021353A1 (ja) 蛍光体材料および発光装置
WO2018150686A1 (ja) 波長変換部材
JP6489543B2 (ja) 波長変換部材、発光装置、および波長変換部材の製造方法
Lei et al. Structure and luminescence properties of Cu+ doped glasses prepared by ion exchange
WO2015064046A1 (ja) 波長変換粒子とその製造方法、波長変換部材及び発光装置
JP2018185367A (ja) 波長変換部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157017265

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14764879

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014873492

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE