WO2015099081A1 - スパークプラグ - Google Patents
スパークプラグ Download PDFInfo
- Publication number
- WO2015099081A1 WO2015099081A1 PCT/JP2014/084392 JP2014084392W WO2015099081A1 WO 2015099081 A1 WO2015099081 A1 WO 2015099081A1 JP 2014084392 W JP2014084392 W JP 2014084392W WO 2015099081 A1 WO2015099081 A1 WO 2015099081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spark plug
- magnetic
- magnetic body
- region
- rear end
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/02—Details
- H01T13/04—Means providing electrical connection to sparking plugs
- H01T13/05—Means providing electrical connection to sparking plugs combined with interference suppressing or shielding means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P11/00—Safety means for electric spark ignition, not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/40—Sparking plugs structurally combined with other devices
- H01T13/41—Sparking plugs structurally combined with other devices with interference suppressing or shielding means
Definitions
- This disclosure relates to a spark plug.
- spark plugs have been used in internal combustion engines.
- a technique of providing a resistor in a through hole of an insulator has been proposed.
- a technique of providing a magnetic body in the through hole of the insulator has been proposed.
- This disclosure discloses a technique capable of suppressing radio noise using a magnetic material.
- a spark plug comprising:
- the connecting portion is A resistor, A magnetic body structure including a magnetic body and a conductor disposed at a position away from the resistor on the front end side or rear end side of the resistor; Have Of the resistor and the magnetic structure, when the member disposed on the front end side is the first member and the member disposed on the rear end side is the second member,
- the connecting portion further includes: A first conductive seal portion disposed on a distal end side of the first member and in contact with the first member; A second conductive seal portion disposed between the first member and the second member and in contact with the first member and the second member; A third conductive seal portion disposed on the rear end side of the
- the first, second, and third conductive seal portions can suppress poor electrical contact at both ends of the resistor and poor electrical contact at both ends of the magnetic structure.
- radio noise can be appropriately suppressed using both the resistor and the magnetic structure.
- This configuration can suppress the heat generation of the magnetic structure. Therefore, the malfunction (for example, alteration of a magnetic body etc.) by the heat_generation
- the heat generation of the magnetic structure can be further suppressed. Accordingly, it is possible to further suppress problems due to heat generation of the magnetic body structure (for example, alteration of the magnetic body).
- the spark plug according to any one of Application Examples 1 to 3 includes a spiral coil surrounding at least a part of the outer periphery of the magnetic body, The electrical resistance value of the coil is lower than the electrical resistance value of the magnetic material, Spark plug.
- the radio wave noise can be appropriately suppressed by the coil while suppressing the heat generation of the magnetic body.
- the spark plug according to any one of Application Examples 1 to 3 The conductor includes a conductive portion that penetrates the magnetic body in the direction of the axis. Spark plug.
- the spark plug according to any one of Application Examples 1 to 5 The magnetic structure is a spark plug disposed on a rear end side of the resistor.
- the spark plug according to any one of Application Examples 1 to 6, The spark plug further includes a covering portion that covers at least a part of an outer surface of the magnetic structure and is interposed between the magnetic structure and the insulator.
- This configuration can suppress direct contact between the insulator and the magnetic structure.
- the spark plug according to any one of Application Examples 1 to 7, The magnetic body is a spark plug formed using a ferromagnetic material containing iron oxide.
- the spark plug according to application example 8 is a spark plug, wherein the ferromagnetic material is spinel ferrite.
- This configuration can easily suppress radio noise.
- the spark plug according to any one of Application Examples 1 to 9 The spark plug is a NiZ ferrite or a Mn Zn ferrite.
- the spark plug according to any one of Application Examples 1 to 3,
- the magnetic structure is 1) a conductive substance as the conductor; 2) an iron-containing oxide as the magnetic material; 3) a ceramic containing at least one of silicon (Si), boron (B), and phosphorus (P); Including In a cross section including the axis of the magnetic structure, When a rectangular region whose center line is the center line, the size in the direction perpendicular to the axis is 2.5 mm, and the size in the direction of the axis is 5.0 mm is the target region, In the target region, the iron-containing oxide region includes a plurality of granular regions, In the target region, at least a part of each edge of the plurality of granular regions is covered with the conductive substance, When the coverage is defined as the ratio of the length of the portion covered with the conductive material to the total length of the edge of the granular region, the average of the coverage of the plurality of granular regions in the target region The value is 50% or
- the spark plug according to any one of Application Examples 11 to 13, In the target region on the cross-section of the magnetic structure, the spark plug has a minimum thickness of 1 ⁇ m or more and 25 ⁇ m or less covering an edge of the granular region.
- connection portion includes a magnetic body structure including a magnetic body and a conductor,
- the magnetic structure is 1) a conductive substance as the conductor; 2) an iron-containing oxide as the magnetic material; 3) a ceramic containing at least one of silicon (Si), boron (B), and phosphorus (P);
- Si silicon
- B boron
- P phosphorus
- the application example 16 may be combined with one or more application examples arbitrarily selected from the application examples 1 to 15.
- FIG. 5 is an enlarged view of a part of the cross-sectional view of FIG. 4. It is sectional drawing of the spark plug 100e of 4th Embodiment.
- FIG. 1 is a cross-sectional view of the spark plug 100 of the first embodiment.
- the illustrated line CL indicates the central axis of the spark plug 100.
- the illustrated cross section is a cross section including the central axis CL.
- the central axis CL is also referred to as “axis line CL”
- the direction parallel to the central axis CL is also referred to as “direction of the axis line CL” or simply “axial direction”.
- the radial direction of the circle centered on the central axis CL is also simply referred to as “radial direction”
- the circumferential direction of the circle centered on the central axis CL is also referred to as “circumferential direction”.
- the downward direction in FIG. 1 is referred to as a leading end direction D1
- the upward direction is also referred to as a trailing end direction D2.
- the tip direction D1 is a direction from the terminal fitting 40 described later toward the electrodes 20 and 30. 1 is referred to as the front end side of the spark plug 100, and the rear end direction D2 side in FIG. 1 is referred to as the rear end side of the spark plug 100.
- the spark plug 100 includes an insulator 10 (also referred to as “insulator 10”), a center electrode 20, a ground electrode 30, a terminal fitting 40, a metal shell 50, a first conductive seal portion 60, a resistor 70, the second conductive seal portion 75, the magnetic body structure 200, the covering portion 290, the third conductive seal portion 80, the front end side packing 8, the talc 9, and the first rear end side packing 6 And a second rear end side packing 7.
- the insulator 10 is a substantially cylindrical member having a through hole 12 (also referred to as “shaft hole 12”) extending along the central axis CL and penetrating the insulator 10.
- the insulator 10 is formed by firing alumina (other insulating materials can also be used).
- the insulator 10 includes a leg portion 13, a first reduced outer diameter portion 15, a distal end side body portion 17, a flange portion 19, and a second reduced outer diameter portion, which are arranged in order from the front end side to the rear end side. 11 and a rear end side body portion 18.
- the flange portion 19 is a maximum outer diameter portion of the insulator 10.
- the outer diameter of the first reduced outer diameter portion 15 on the front end side with respect to the flange portion 19 gradually decreases from the rear end side toward the front end side.
- a reduced inner diameter portion 16 In the vicinity of the first reduced outer diameter portion 15 of the insulator 10 (in the example of FIG. 1, the front end side body portion 17), a reduced inner diameter portion 16 whose inner diameter gradually decreases from the rear end side toward the front end side is formed.
- the outer diameter of the second reduced outer diameter portion 11 on the rear end side with respect to the flange portion 19 gradually decreases from the front end side toward the rear end side.
- a center electrode 20 is inserted on the distal end side of the through hole 12 of the insulator 10.
- the center electrode 20 is a rod-shaped member extending along the center axis CL.
- the center electrode 20 includes an electrode base material 21 and a core material 22 embedded in the electrode base material 21.
- the electrode base material 21 is formed using, for example, Inconel (“INCONEL” is a registered trademark) which is an alloy containing nickel as a main component.
- the core material 22 is formed of a material (for example, an alloy containing copper) having a higher thermal conductivity than the electrode base material 21.
- the center electrode 20 includes a leg portion 25 that forms an end on the front end direction D 1 side, a flange portion 24 provided on the rear end side of the leg portion 25, and a flange portion 24. And a head portion 23 provided on the rear end side.
- the head portion 23 and the flange portion 24 are disposed in the through hole 12, and the surface of the flange portion 24 on the tip direction D 1 side is supported by the reduced inner diameter portion 16 of the insulator 10.
- a portion on the distal end side of the leg portion 25 is exposed outside the through hole 12 on the distal end side of the insulator 10.
- a terminal fitting 40 is inserted on the rear end side of the through hole 12 of the insulator 10.
- the terminal fitting 40 is formed using a conductive material (for example, a metal such as low carbon steel).
- a metal layer for corrosion protection can be formed on the surface of the terminal fitting 40.
- the Ni layer is formed by plating.
- the terminal fitting 40 includes a flange portion 42, a cap mounting portion 41 that forms a portion on the rear end side from the flange portion 42, and a leg portion 43 that forms a portion on the front end side from the flange portion 42.
- the cap mounting portion 41 is exposed outside the through hole 12 on the rear end side of the insulator 10.
- the leg 43 is inserted into the through hole 12 of the insulator 10.
- a resistor 70 for suppressing electrical noise is disposed between the terminal fitting 40 and the center electrode 20.
- the resistor 70 includes glass particles (for example, B 2 O 3 —SiO 2 glass) as main components, ceramic particles other than glass (for example, ZrO 2 ), and conductive materials (for example, carbon particles). And a composition comprising:
- a magnetic structure 200 for suppressing electrical noise is disposed between the resistor 70 and the terminal fitting 40.
- the right part of FIG. 1 shows a perspective view of the magnetic body structure 200 covered with the covering portion 290 and a perspective view of the magnetic body structure 200 with the covering portion 290 removed.
- the magnetic body structure 200 includes a magnetic body 210 and a conductor 220.
- the magnetic body 210 is a substantially columnar member centered on the central axis CL.
- the magnetic body 210 is formed using, for example, a ferromagnetic material containing iron oxide.
- a ferromagnetic material containing iron oxide for example, spinel ferrite, hexagonal ferrite, or the like can be used.
- the spinel type ferrite for example, NiZn (nickel-zinc) ferrite, MnZn (manganese-zinc) ferrite, CuZn (copper-zinc) ferrite or the like can be used.
- the conductor 220 is a spiral coil surrounding the outer periphery of the magnetic body 210.
- the conductor 220 is formed using a metal wire, for example, an alloy wire mainly containing nickel and chromium.
- the conductor 220 is wound over a range from the vicinity of the end on the front end direction D1 side of the magnetic body 210 to the vicinity of the end on the rear end direction D2 side.
- a first seal portion 60 that contacts the resistor 70 and the center electrode 20 is disposed between the resistor 70 and the center electrode 20.
- a second conductive seal portion 75 that is in contact with the resistor 70 and the magnetic body structure 200 is disposed between the resistor 70 and the center electrode 20.
- the 3rd electroconductive seal part 80 which contacts the magnetic body structure 200 and the terminal metal fitting 40 is arrange
- the seal portions 60, 75, and 80 include, for example, glass particles similar to the resistor 70 and metal particles (Cu, Fe, etc.).
- the center electrode 20 and the terminal fitting 40 are electrically connected through the resistor 70, the magnetic structure 200, and the seal portions 60, 75, and 80. That is, the first conductive seal portion 60, the resistor 70, the second conductive seal portion 75, the magnetic body structure 200, and the third conductive seal portion 80 are the center electrode 20 and the terminal fitting 40. A conductive path for electrically connecting the two is formed.
- the conductive seal portions 60, 75, and 80 the contact resistance between the stacked members 20, 60, 70, 75, 200, 80, and 40 is stabilized, and the contact between the center electrode 20 and the terminal fitting 40 is stabilized.
- the electric resistance value can be stabilized.
- connection portion 300 the whole of the plurality of members 60, 70, 75, 200, 290, 80 that connect the center electrode 20 and the terminal fitting 40 in the through hole 12 is also referred to as a “connection portion 300”.
- FIG. 1 shows an end position 72 on the rear end direction D2 side of the resistor 70 (referred to as “rear end position 72”).
- the inner diameter of the portion on the rear end direction D2 side from the rear end position 72 is the portion on the front end direction D1 side from the rear end position 72 (particularly, the first conductive seal portion 60 and the resistance). It is slightly larger than the inner diameter of the portion accommodating the body 70. However, both inner diameters may be the same.
- the outer peripheral surface of the magnetic structure 200 is covered with a covering portion 290.
- the covering portion 290 is a cylindrical member that covers the outer periphery of the magnetic body structure 200.
- the covering portion 290 is interposed between the inner peripheral surface 10 i of the insulator 10 and the outer peripheral surface of the magnetic structure 200.
- the covering portion 290 is formed using glass (for example, borosilicate glass).
- the metal shell 50 is a substantially cylindrical member having a through hole 59 extending along the central axis CL and penetrating the metal shell 50.
- the metal shell 50 is formed using a low carbon steel material (other conductive materials (for example, metal materials) can also be used).
- a metal layer for anticorrosion can be formed on the surface of the metal shell 50.
- the Ni layer is formed by plating.
- the insulator 10 is inserted into the through hole 59 of the metal shell 50, and the metal shell 50 is fixed to the outer periphery of the insulator 10.
- the distal end of the insulator 10 (in this embodiment, the portion on the distal end side of the leg portion 13) is exposed outside the through hole 59.
- the rear end of the insulator 10 (in this embodiment, the portion on the rear end side of the rear end side body portion 18) is exposed outside the through hole 59.
- the metal shell 50 includes a body portion 55, a seat portion 54, a deformation portion 58, a tool engaging portion 51, and a caulking portion 53, which are arranged in order from the front end side to the rear end side.
- the seat part 54 is a bowl-shaped part.
- the outer diameter of the body portion 55 on the distal end direction D1 side of the seat portion 54 is smaller than the outer diameter of the seat portion 54.
- a screw portion 52 for screwing into a mounting hole of an internal combustion engine for example, a gasoline engine
- An annular gasket 5 formed by bending a metal plate is fitted between the seat portion 54 and the screw portion 52.
- the metal shell 50 has a reduced inner diameter portion 56 disposed on the distal direction D1 side with respect to the deformable portion 58.
- the inner diameter of the reduced inner diameter portion 56 gradually decreases from the rear end side toward the front end side.
- the front end packing 8 is sandwiched between the reduced inner diameter portion 56 of the metal shell 50 and the first reduced outer diameter portion 15 of the insulator 10.
- the front end side packing 8 is an iron O-ring (other materials (for example, metal materials such as copper) can also be used).
- the deformed portion 58 of the metal shell 50 is deformed so that the central portion protrudes toward the outside in the radial direction (the direction away from the central axis CL).
- a tool engagement portion 51 is provided on the rear end side of the deformation portion 58.
- the shape of the tool engaging portion 51 is a shape (for example, a hexagonal column) with which the spark plug wrench is engaged.
- On the rear end side of the tool engaging portion 51 a caulking portion 53 that is thinner than the tool engaging portion 51 is provided.
- the caulking portion 53 is disposed on the rear end side of the second reduced outer diameter portion 11 of the insulator 10 and forms the rear end of the metal shell 50 (that is, the end on the rear end direction D2 side).
- the caulking portion 53 is bent toward the inner side in the radial direction.
- an annular space SP is formed between the inner peripheral surface of the metal shell 50 and the outer peripheral surface of the insulator 10.
- the space SP is surrounded by the crimped portion 53 and the tool engaging portion 51 of the metal shell 50, and the second reduced outer diameter portion 11 and the rear end side body portion 18 of the insulator 10. It is space.
- a first rear end side packing 6 is disposed on the rear end side in the space SP, and a second rear end side packing 7 is disposed on the front end side in the space SP.
- these rear end side packings 6 and 7 are iron C-rings (other materials are also employable).
- powder of talc (talc) 9 is filled.
- the crimping portion 53 is crimped so as to be bent inward. And the crimping part 53 is pressed to the front end direction D1 side. Thereby, the deformation
- the front end side packing 8 is pressed between the first reduced outer diameter portion 15 and the reduced inner diameter portion 56 and seals between the metal shell 50 and the insulator 10. As a result, the gas in the combustion chamber of the internal combustion engine is prevented from leaking outside through the metal shell 50 and the insulator 10. In addition, the metal shell 50 is fixed to the insulator 10.
- the ground electrode 30 is joined to the tip of the metal shell 50 (that is, the end on the tip direction D1 side).
- the ground electrode 30 is a rod-shaped electrode.
- the ground electrode 30 extends from the metal shell 50 in the distal direction D1, bends toward the central axis CL, and reaches the distal end portion 31.
- the distal end portion 31 forms a gap g with the distal end surface 20s1 (surface 20s1 on the distal end direction D1 side) of the center electrode 20.
- the ground electrode 30 is joined to the metal shell 50 so as to be electrically connected (for example, laser welding).
- the ground electrode 30 has a base material 35 that forms the surface of the ground electrode 30 and a core portion 36 embedded in the base material 35.
- the base material 35 is formed using, for example, Inconel.
- the core part 36 is formed using a material (for example, pure copper) whose thermal conductivity is higher than that of the base material 35.
- the magnetic body 210 is disposed in the middle of the conductive path connecting the center electrode 20 and the terminal fitting 40. Therefore, radio wave noise caused by discharge can be suppressed.
- the conductor 220 is connected in parallel with at least a part of the magnetic body 210. Therefore, it is possible to suppress an increase in the electrical resistance value between the center electrode 20 and the terminal fitting 40. Further, since the conductor 220 is a spiral coil, radio noise can be further suppressed.
- A-2. Production method As a manufacturing method of the spark plug 100 of the first embodiment, any method can be adopted. For example, the following manufacturing method can be employed. First, the insulator 10, the center electrode 20, the terminal fitting 40, the respective material powders of the conductive seal portions 60, 75, and 80, the material powder of the resistor 70, and the magnetic body structure 200 are prepared. To do. The magnetic body structure 200 is formed by winding a conductor 220 around a magnetic body 210 formed by a known method.
- the center electrode 20 is inserted from the opening on the rear end direction D2 side of the through hole 12 of the insulator 10 (hereinafter referred to as “rear opening 14”). As described with reference to FIG. 1, the center electrode 20 is disposed at a predetermined position in the through hole 12 by being supported by the reduced inner diameter portion 16 of the insulator 10.
- the first conductive seal portion 60, the resistor 70, and the second conductive seal portion 75 are charged with the respective material powders, and the molded powder material is molded in the order of the members 60, 70, and 75. Done.
- the powder material is charged from the rear opening 14 of the through hole 12. Molding of the charged powder material is performed using a rod inserted from the rear opening 14.
- the material powder is formed into substantially the same shape as the corresponding member.
- the magnetic body structure 200 is disposed on the rear end direction D2 side of the second conductive seal portion 75 through the rear opening 14 of the through hole 12. And the material powder of the coating
- the material powder of the third conductive seal portion 80 is charged from the rear opening 14 of the through hole 12.
- the insulator 10 is heated to a predetermined temperature higher than the softening point of the glass component contained in each material powder, and the terminal fitting 40 is passed through the through-hole 12 from the rear opening 14 in the heated state. 12 is inserted. As a result, each material powder is compressed and sintered to form the conductive seal portions 60, 75, 80, the resistor 70, and the covering portion 290.
- the metal shell 50 is assembled to the outer periphery of the insulator 10, and the ground electrode 30 is fixed to the metal shell 50.
- the ground electrode 30 is bent to complete the spark plug.
- FIG. 2 is a cross-sectional view of the spark plug 100b of the second embodiment.
- the only difference from the spark plug 100 of the first embodiment shown in FIG. 1 is that the magnetic body structure 200 is replaced with a magnetic body structure 200b.
- Other configurations of the spark plug 100b are the same as the configuration of the spark plug 100 of FIG. Among the elements in FIG. 2, the same elements as those in FIG.
- the magnetic body structure 200b is disposed between the resistor 70 and the terminal fitting 40 in the through hole 12 of the insulator 10.
- 2 is a perspective view of the magnetic body structure 200b covered with the covering portion 290b (referred to as “first perspective view P1”), and a magnetic body structure with the covering portion 290b removed.
- a perspective view of 200b (referred to as “second perspective view P2”) is shown.
- the second perspective view P2 shows a state in which a part of the magnetic body structure 200b is cut out so as to represent the internal configuration of the magnetic body structure 200b.
- the magnetic body structure 200b includes a magnetic body 210b and a conductor 220b.
- the conductor 220b is hatched.
- the magnetic body 210b is a cylindrical member centered on the central axis CL.
- various magnetic materials can be employed (for example, a ferromagnetic material containing iron oxide), similarly to the material of the magnetic body 210 in FIG.
- the conductor 220b penetrates the magnetic body 210b along the central axis CL.
- the conductor 220b extends from the end on the front end direction D1 side to the end on the rear end direction D2 side of the magnetic body 210b.
- various conductive materials can be employed as in the material of the conductor 220 in FIG. 1 (for example, an alloy mainly including nickel and chromium).
- the outer peripheral surface of the magnetic structure 200b is covered with a covering portion 290b.
- the covering portion 290b is a cylindrical member that covers the magnetic body structure 200b, similarly to the covering portion 290 of FIG.
- the covering portion 290b suppresses misalignment between the insulator 10 and the magnetic structure 200b by being interposed between the inner peripheral surface 10i of the insulator 10 and the outer peripheral surface of the magnetic structure 200b.
- various materials can be employed as in the case of the material of the covering part 290 in FIG. 1 (for example, glass such as borosilicate glass).
- a second conductive seal portion 75 b that contacts the magnetic structure 200 b and the resistor 70 is disposed between the magnetic structure 200 b and the resistor 70.
- a third conductive seal portion 80 b that contacts the magnetic body structure 200 b and the terminal fitting 40 is disposed between the magnetic body structure 200 b and the terminal fitting 40.
- various conductive materials can be adopted as in the case of the respective materials of the conductive seal portions 75 and 80 in FIG. Material containing glass particles and metal particles (Cu, Fe, etc.).
- the end on the tip direction D1 side of the magnetic body structure 200b that is, the end on the tip direction D1 side of each of the magnetic body 210b and the conductor 220b is electrically connected to the resistor 70 by the second conductive seal portion 75b.
- the end on the rear end direction D2 side of the magnetic body structure 200b that is, the end on the rear end direction D2 side of each of the magnetic body 210b and the conductor 220b is connected to the terminal fitting 40 by the third conductive seal portion 80b.
- the first conductive seal portion 60, the resistor 70, the second conductive seal portion 75b, the magnetic body structure 200b, and the third conductive seal portion 80b electrically connect the center electrode 20 and the terminal fitting 40.
- Conductive paths are formed.
- the contact resistance between the stacked members 20, 60, 70, 75 b, 200 b, 80 b, and 40 is stabilized, and the contact between the center electrode 20 and the terminal fitting 40 is stabilized.
- the electric resistance value can be stabilized.
- the plurality of members 60, 70, 75 b, 200 b, 290 b, and 80 b that connect the center electrode 20 and the terminal fitting 40 in the through hole 12 are also referred to as “connecting portions 300 b”.
- the magnetic body 210b is disposed in the middle of the conductive path connecting the center electrode 20 and the terminal fitting 40. Therefore, radio wave noise caused by discharge can be suppressed.
- the conductor 220b is connected in parallel with the magnetic body 210b. Therefore, it is possible to suppress an increase in the electrical resistance value between the center electrode 20 and the terminal fitting 40.
- the conductor 220b is embedded in the magnetic body 210b. That is, the conductor 220b is covered with the magnetic body 210b over the entire area except for both ends. Therefore, damage to the conductor 220b can be suppressed. For example, the conductor 220b can be prevented from being disconnected by vibration.
- the spark plug 100b of 2nd Embodiment can be manufactured using the same method as the spark plug 100 of 1st Embodiment.
- the magnetic body structure 200b is formed by inserting the conductor 220b into the through hole of the magnetic body 210b formed by a known method.
- FIG. 3 is a cross-sectional view of a spark plug 100c of a reference example.
- This spark plug 100c is used as a reference example in an evaluation test described later.
- a difference from the spark plugs 100 and 100b of the embodiment shown in FIGS. 1 and 2 is that the magnetic body structures 200 and 200b and the third conductive seal portions 80 and 80b are omitted.
- the leg portion 43c of the terminal fitting 40c is longer than the leg portion 43 of the embodiment so that the end of the leg portion 43c on the tip direction D1 side reaches the vicinity of the resistor 70.
- the 2nd electroconductive seal part 75c which contacts the leg part 43c and the resistor 70 is arrange
- As the material of the second conductive seal portion 75c the same material as that of the second conductive seal portion 75 of the above embodiment can be used.
- FIG. 3 shows a position 44 in the middle of a portion of the through hole 12c of the insulator 10c that accommodates the leg 43c (referred to as “halfway position 44”).
- the inner diameter of the portion on the rear end direction D2 side from the midway position 44 is the portion on the front end direction D1 side from the midway position 44 (particularly, the first conductive seal portion 60, the resistor 70, and the second conductive This is slightly larger than the inner diameter of the sealable portion 75c and the portion of the leg portion 43).
- both inner diameters may be the same.
- the configuration of the other parts of the spark plug 100c of the reference example is the same as the configuration of the spark plugs 100 and 100b shown in FIGS.
- the entirety of the first conductive seal portion 60, the resistor 70, and the second conductive seal portion 75c forms a connection portion 300c that connects the center electrode 20 and the terminal fitting 40c within the through hole 12c.
- the spark plug 100c of such a reference example can be manufactured using the same method as the spark plugs 100 and 100b of the embodiment.
- D. Evaluation test D-1. Spark plug sample configuration: An evaluation test using a plurality of types of spark plug samples will be described. Table 1 shown below shows the configuration of each sample and the evaluation results of the four evaluation tests.
- Configuration I in which the conductor 220b is replaced with a conductor of 1 k ⁇ The third conductive seal portion 80 is omitted in the configuration of FIG.
- Table 1 The presence or absence of the covering parts 290, 290b It is determined independently of the configurations A to K described above.
- the configurations common to the configurations A to K are as follows. 1) Material of resistor 70: B 2 O 3 —SiO 2 glass, ZrO 2 as ceramic particles and C as conductive material 2) Material of magnetic bodies 210 and 210b: MnZn ferrite 3) Conductivity Material of body 220, 220b: alloy mainly including nickel and chromium 4) Material of conductive seal portion 60, 75, 75b, 80, 80b, 80c: B 2 O 3 —SiO 2 glass and metal particles
- the electrical resistance value of the conductor is an electrical resistance value between the end on the front end direction D1 side and the end on the rear end direction D2 side.
- the electrical resistance value between the end on the front end direction D1 side and the end on the rear end direction D2 side is referred to as a “both end resistance value”.
- Radio noise characteristics evaluation test The radio noise characteristics are evaluated using the insertion loss measured according to the method specified in JASO D002-2. Specifically, an improved insertion loss (in dB) at a frequency of 300 MHz when the third sample is used as a reference was adopted as an evaluation result.
- the evaluation result of “m (m is an integer of 0 or more and 10 or less)” indicates that the improvement value of the insertion loss from the third sample is m (dB) or more and less than m + 1 (dB). Is shown. For example, the evaluation result of “5” indicates that the improvement value is 5 dB or more and less than 6 dB. When the improvement value was 10 dB or more, the evaluation result was determined to be “10”.
- the average value of the insertion loss of five samples having the same configuration was used as the insertion loss of each type of sample.
- the electrical resistance value between the center electrode 20 and the terminal fittings 40 and 40c is in a range where the width centered on 5 k ⁇ is 0.6 k ⁇ , that is, 4.7 k ⁇ or more, and 5 Five samples in the range of .3 k ⁇ or less were employed. For No. 11 and No. 12, since the variation in electric resistance value was large and five samples having electric resistance values within the above range could not be secured, evaluation was omitted.
- the evaluation results of No. 1 and No. 6 having the coiled conductor 220 are the best “10”, and the evaluation results of No. 2 and No. 7 having the linear conductor 220b are lower than 10. It was “6”.
- radio wave noise can be greatly suppressed.
- the magnetic body structure 200 is more distal than the resistor 70 when the magnetic body structure 200 is disposed on the rear end direction D2 side than the resistor 70.
- the evaluation result was better than No. 4 arranged on the direction D1 side.
- the magnetic body structure 200b is located closer to the rear end direction D2 than the resistor 70, and the magnetic body structure 200b is more than the resistor 70.
- the evaluation result was better than No. 5 arranged on the tip direction D1 side.
- the gap between the center electrode 20 and the terminal fitting 40 is It was difficult to stabilize the electrical resistance value.
- the electrical resistance value could be stabilized by providing the second conductive seal portion 75 and the third conductive seal portion 80.
- Impact resistance evaluation test The impact resistance property is evaluated based on an impact resistance test defined in 7.4 of JIS B8031: 2006. An evaluation result of “0” indicates that an abnormality occurred in the impact resistance test. If no abnormality occurred in the impact resistance test, an additional 30-minute vibration test was performed. And the difference between the measured value of the electrical resistance value before performing the evaluation test and the measured value of the electrical resistance value after performing the evaluation test was calculated.
- the electrical resistance value is an electrical resistance value between the center electrode 20 and the terminal fittings 40 and 40c.
- the evaluation result of “5” indicates that the absolute value of the difference between the electrical resistance values exceeded 10% of the electrical resistance value before the test.
- the evaluation result of “10” indicates that the absolute value of the difference between the electrical resistance values is 10% or less of the electrical resistance value before the test.
- the evaluation result of No. 11 and No. 12 in which at least one of the second conductive seal portion 75 and the third conductive seal portion 80 sandwiching the magnetic structure 200 is omitted is “0”. there were.
- the evaluation results of No. 1 to No. 10 and No. 13 having two conductive seal portions (for example, the conductive seal portions 75 and 80 in FIG. 1) sandwiching the magnetic body structures 200 and 200b are Nos. 11 and 12 It was “5” or “10”, which was better than the evaluation result with the number.
- the impact resistance could be improved by sandwiching the magnetic body structures 200 and 200b between the two conductive seal portions.
- the evaluation results of No. 6 and No. 7 without the covering portions 290 and 290b were “5”.
- the evaluation results of No. 1 to No. 5, No. 8 to No. 10, and No. 13 having two conductive seal portions sandwiching the magnetic body structures 200 and 200b and the covering portions 290 and 290b were “10”. .
- the covering portions 290 and 290b may be omitted.
- Resistance value stability evaluation test Resistance value stability is evaluated based on the standard deviation of the electrical resistance value between the center electrode 20 and the terminal fittings 40 and 40c.
- the spark plug used in the evaluation test is obtained by heating the insulator 10 in a state where the material of the connection portion (for example, the connection portion 300 in FIG. 1) is disposed in the through holes 12 and 12c. Manufactured. By this heating, the powder material of the conductive seal portions 60, 75, 75b, 75c, 80, and 80b can flow. This flow may cause the electric resistance value to vary. The magnitude of this variation was evaluated. Specifically, 100 spark plugs having the same configuration are manufactured for each type of sample.
- the electrical resistance value between the center electrode 20 and the terminal metal fittings 40 and 40c is measured, and the standard deviation of the measured electrical resistance value is calculated.
- An evaluation result of “0” indicates that the standard deviation is greater than 0.8
- an evaluation result of “5” indicates that the standard deviation is greater than 0.5 and less than or equal to 0.8
- the evaluation result of “10” indicates that the standard deviation is 0.5 or less.
- the evaluation result of No. 11 and No. 12 in which at least one of the second conductive seal portion 75 and the third conductive seal portion 80 sandwiching the magnetic structure 200 is omitted is “0”. there were.
- the evaluation results of No. 1 to No. 10 and No. 13 having two conductive seal portions (for example, the conductive seal portions 75 and 80 in FIG. 1) sandwiching the magnetic body structures 200 and 200b are Nos. 11 and 12 It was “10” which was better than the evaluation result with the number.
- the electrical resistance value could be greatly stabilized by sandwiching the magnetic body structures 200 and 200b between the two conductive seal portions.
- Durability evaluation test The durability indicates durability against discharge. In order to evaluate this durability, a spark plug sample was connected to a transistor ignition device for an automobile, and an operation of repeating discharge under the following conditions was performed. Temperature: 350 degrees Celsius Voltage applied to the spark plug: 20 kV Discharge cycle: 3600 times / minute Operation time: 100 hours In the evaluation test, the operation was performed under the above conditions, and then the electrical resistance value at room temperature between the center electrode 20 and the terminal fittings 40 and 40c was measured. . When the electrical resistance value after the evaluation test was less than 1.5 times the electrical resistance value before the evaluation test, the evaluation result was determined as “10”. When the electrical resistance value after the evaluation test was 1.5 times or more the electrical resistance value before the evaluation test, the evaluation result was determined as “1”.
- the evaluation result of No. 2 having the conductor 220b was “10”.
- the evaluation result of No. 13 having a 200 ⁇ conductor instead of the conductor 220b was “10”.
- the evaluation result of No. 10 having a 1 k ⁇ conductor instead of the conductor 220b was “10”.
- the evaluation result of No. 9 having a conductor of 2 k ⁇ instead of the conductor 220b was “1”.
- the resistance value at both ends of the conductor 220b was approximately 50 ⁇ . As described above, by reducing the resistance value at both ends of the conductor of the magnetic structure (specifically, the conductor connected to the magnetic body 210b), durability against discharge could be improved.
- the reason why the durability against discharge can be improved by reducing the resistance at both ends of the conductor of the magnetic structure can be estimated as follows. That is, at the time of discharging, current flows through the conductor connected to the magnetic body 210b, so that the conductor generates heat. The magnitude of the current during discharge does not depend on the internal configuration of the spark plug, and is adjusted so as to realize appropriate spark generation in the gap g. Therefore, the higher the resistance value at both ends of the conductor, the higher the temperature of the conductor. When the temperature of the conductor increases, the possibility of disconnection of the conductor increases. When the conductor is disconnected, the electrical resistance value between the center electrode 20 and the terminal fitting 40 can be increased.
- the temperature of the magnetic body 210b when the temperature of the conductor increases, the temperature of the magnetic body 210b also increases.
- the magnetic body 210b is more easily damaged when the temperature is higher than when the temperature is low (for example, a crack occurs in the magnetic body 210b).
- the resistance value at both ends of the magnetic body 210b increases, so that the electrical resistance value between the center electrode 20 and the terminal fitting 40 can increase.
- the smaller the resistance value at both ends of the conductor the more the damage to the magnetic body 210b and the disconnection of the conductor can be suppressed. As a result, it can be estimated that durability against discharge can be improved.
- radio noise may occur due to current flowing along the surface of the conductor as in discharge. From the above, it is preferable that the resistance value at both ends of the conductor of the magnetic structure is small.
- the resistance values at both ends of the conductors 220b of No. 2, No. 13, and No. 10 at which the durability evaluation result “10” was obtained were 50 ⁇ , 200 ⁇ , and 1 k ⁇ . Any value among these values can be adopted as the upper limit of the preferable range (range between the lower limit and the upper limit) of the resistance value at both ends of the conductor 220b. Moreover, any value below the upper limit among these values can be adopted as the lower limit. For example, a value of 1 k ⁇ or less can be adopted as the resistance value at both ends of the conductor 220b. More preferably, a value of 200 ⁇ or less can be adopted as the resistance value at both ends of the conductor 220b. In addition to the above value, zero ⁇ can be adopted as the lower limit of the preferable range of the resistance value at both ends of the conductor 220b.
- the resistance values at both ends of the magnetic body structures 200 and 200b which are the entirety of the magnetic bodies 210 and 210b and the conductors 220 and 220b are small.
- a preferable range of the resistance values at both ends of the magnetic body structures 200 and 200b for example, a range of zero ⁇ or more and 3 k ⁇ or less can be adopted. However, a value larger than 3 k ⁇ may be adopted.
- 10 conductors for which excellent durability evaluation results were obtained are 50 ⁇ , 200 ⁇ and 1 k ⁇ , respectively.
- an arbitrary value of the resistance values at both ends can be set to a preferable range of the resistance values at both ends of the magnetic structures 200 and 200b (range between the lower limit and the upper limit). ).
- any value below the upper limit among these values can be adopted as the lower limit.
- a value of 1 k ⁇ or less can be adopted as the resistance value at both ends of the magnetic body structures 200 and 200b.
- a value of 200 ⁇ or less can be adopted as the resistance value at both ends of the magnetic structures 200 and 200b.
- zero ⁇ can be adopted as the lower limit of the preferable range of the resistance values at both ends of the magnetic body structures 200 and 200b.
- the resistance values at both ends of the conductors 220 and 220b are lower than the resistance values at both ends of the magnetic bodies 210 and 210b. According to this configuration, the resistance values at both ends of the magnetic body structures 200 and 200b can be reduced by connecting the conductors 220 and 220b to the magnetic bodies 210 and 210b. As a result, the heat generation of the magnetic body structures 200 and 200b can be suppressed.
- the resistance values at both ends of the magnetic bodies 210 and 210b are several k ⁇ , and the resistance values at both ends of the conductor (for example, the conductors 220 and 220b) are Is also big.
- the samples No. 1 to No. 8, No. 10, and No. 13 show evaluation results with good durability.
- the evaluation results of No. 11 and No. 12 in which at least one of the second conductive seal portion 75 and the third conductive seal portion 80 sandwiching the magnetic structure 200 is omitted are “1”.
- the samples No. 1 to No. 8, No. 10, No. 13, and No. 13 that obtained a favorable evaluation result of “10” are both two conductive seal portions (for example, FIG. 1) sandwiching the magnetic structure 200, 200b. Conductive seal portions 75 and 80).
- the durability against discharge could be improved by sandwiching the magnetic body structures 200 and 200b between the two conductive seal portions.
- the following method is employable as a method of measuring the both-ends resistance value of the magnetic body structure provided in the spark plug.
- the spark plugs 100 and 100b shown in FIGS. 1 and 2 will be described as an example.
- the metal shell 50 is removed from the insulator 10, and then the insulator 10 is cut using a cutting tool such as a diamond blade, and the connecting portions 300 and 300b disposed in the through hole 12 are taken out.
- the conductive seal portion that contacts the magnetic body structures 200 and 200b is removed from the magnetic body structures 200 and 200b using a cutting tool such as a nipper.
- the corresponding portions are cut and polished by cutting, thereby removing the covering portions 290 and 290b from the magnetic body structures 200 and 200b. Remove.
- the resistance values at both ends are measured by bringing the probe of the resistance measuring instrument into contact with the end on the front end direction D1 side and the end on the rear end direction D2 side of the magnetic body structures 200 and 200b thus obtained.
- the conductors 220 and 220b are obtained by removing the magnetic bodies 210 and 210b from the magnetic body structures 200 and 200b obtained by the above method using a cutting tool such as a nipper.
- the resistance values at both ends are measured by bringing the probe of the resistance value measuring instrument into contact with the end on the front end direction D1 side and the end on the rear end direction D2 side of the obtained conductors 220 and 220b.
- the following method can be adopted. That is, from the magnetic body structures 200 and 200b obtained by the above method, after observing the internal structure by CT scan, the corresponding portions are cut and polished to cut the tip direction of the magnetic bodies 210 and 210b. The resistance value at both ends is measured by bringing the probe of the resistance value measuring instrument into contact with the end on the D1 side and the end on the rear end direction D2 side.
- At least one of the end on the front end direction D1 side and the end on the rear end direction D2 side may be a surface.
- the minimum resistance value obtained by bringing the probe into contact with an arbitrary position on the surface is adopted.
- FIG. 4 is a cross-sectional view of the spark plug 100d of the third embodiment.
- a magnetic body structure 200d is provided instead of the magnetic body structures 200 and 200b of the embodiment shown in FIGS. 4 is a perspective view of the magnetic body structure 200d.
- the magnetic body structure 200d is a substantially columnar member centered on the central axis CL.
- the portion on the rear end direction D2 side of the center electrode 20 from the front end direction D1 side toward the rear end direction D2, the first conductive seal portion 60d, the resistor 70d, The second conductive seal portion 75d, the magnetic structure 200d, the third conductive seal portion 80d, and the leg portion 43d of the terminal fitting 40d are arranged in this order.
- the magnetic body structure 200d is disposed on the rear end direction D2 side of the resistor 70d.
- the entire members 60d, 70d, 75d, 200d, and 80d form a connection portion 300d that connects the center electrode 20 and the terminal fitting 40d within the through hole 12d.
- the configuration of the other parts of the spark plug 100d of the third embodiment is substantially the same as the configuration of the spark plugs 100 and 100b shown in FIGS.
- the other parts of the spark plug 100d of the third embodiment are denoted by the same reference numerals as the corresponding parts of the spark plugs 100, 100b of FIGS.
- FIG. 5 is an explanatory diagram of the magnetic structure 200d.
- a perspective view of the magnetic body structure 200d is shown in the upper left part of FIG. This perspective view shows the magnetic body structure 200d with a part cut.
- a cross section 900 in the figure is a cross section of the magnetic body structure 200d by a plane including the central axis CL.
- a schematic diagram in which a part 800 on the cross section 900 is enlarged is shown in the upper center of FIG. 5 (hereinafter referred to as “target region 800”).
- the target area 800 is a rectangular area having the central axis CL as the center line, and the rectangular shape includes two sides parallel to the central axis CL and two sides perpendicular to the central axis CL.
- the shape of the target region 800 is line symmetric with the central axis CL as the symmetry axis.
- the first length La in the drawing is the length in the direction perpendicular to the central axis CL of the target region 800
- the second length Lb is the length in the direction parallel to the central axis CL of the target region 800.
- the first length La is 2.5 mm
- the second length Lb is 5.0 mm.
- the target region 800 (that is, the cross section of the magnetic structure 200d) includes a ceramic region 810, a conductive region 820, and a magnetic region 830.
- the magnetic region 830 includes a plurality of granular regions 835 (hereinafter also referred to as “magnetic grain region 835” or simply “grain region 835”).
- the magnetic region 830 is formed of an iron-containing oxide as a magnetic material.
- the iron-containing oxide for example, (Ni, Zn) Fe 2 O 4 that is spinel ferrite, BaFe 12 O 19 that is hexagonal ferrite, or the like can be used.
- the plurality of magnetic grain regions 835 are formed by using iron-containing oxide powder as the material of the magnetic structure 200d.
- one particle of iron-containing oxide contained in the material powder can form one magnetic grain region 835.
- a plurality of particles of the iron-containing oxide contained in the powder of the material can be bonded to each other to form one particle-like structure, and the formed one particle-like structure can form the magnetic particle region 835.
- the particulate structure is formed, for example, by adding and mixing a binder to the iron-containing oxide material powder.
- the plurality of particles of the iron-containing oxide can form a particulate structure having a large diameter by sticking to each other via a binder.
- a three-dimensional particle element that forms one magnetic particle region 835 is used. Called “magnetic particles”.
- One magnetic grain region 835 shows a cross section of one magnetic grain.
- the surfaces of the plurality of magnetic particles forming the plurality of magnetic grain regions 835 are covered with a conductive material coating layer.
- a conductive material coating layer for example, metals (Ni, Cu, etc.), perovskite oxides (SrTiO 3 , SrCrO 3 etc.), carbon (C), carbon compounds (Cr 3 C 2 , TiC, etc.) can be adopted. .
- the conductive region 820 covers the edge of the magnetic grain region 835.
- the conductive region 820 includes a plurality of covering regions 825 that cover the plurality of magnetic grain regions 835.
- a portion covering one magnetic grain region 835 corresponds to one coating region 825.
- One magnetic grain region 835 and one covering region 825 covering the magnetic grain region 835 form a particulate region 840 (referred to as “composite grain region 840”).
- the plurality of composite grain regions 840 are arranged such that the covering region 825 is in contact with each other.
- the plurality of covering regions 825 that are in contact with each other form a current path extending from the rear end direction D2 side to the front end direction D1 side.
- two composite grain regions 840 may be arranged apart from each other on the target region 800 (that is, the cross section 900).
- the two composite grain regions 840 that are separated from each other on the target region 800 represent cross sections of two three-dimensional particle portions that are in contact with each other at a position deeper than or in front of the target region 800.
- the plurality of composite grain regions 840 that are in contact with each other or separated from each other on the target region 800 can form a current path extending from the rear end direction D2 side to the front end direction D1 side.
- current flows through the magnetic body structure 200d through the plurality of coating regions 825 (that is, the conductive regions 820) of the plurality of composite grain regions 840.
- the conductive region 820 covers the magnetic region 830. That is, the current path is configured to surround the magnetic body.
- the magnetic body is disposed in the vicinity of the conductive path, radio noise generated by the discharge is suppressed.
- radio noise is suppressed by the conductive path functioning as an inductance element.
- radio noise is suppressed by increasing the impedance of the conductive path.
- the ceramic region 810 is made of ceramic.
- a ceramic containing at least one of silicon (Si), boron (B), and phosphorus (P) can be used.
- the glass described in the first embodiment can be used.
- a substance containing one or more oxides arbitrarily selected from silica (SiO 2 ), boric acid (B 2 O 5 ), and phosphoric acid (P 2 O 5 ) can be used.
- a plurality of composite grain regions 840 that is, a plurality of magnetic grain regions 835 and a plurality of coating regions 825 covering the plurality of magnetic grain regions 835) are surrounded by a ceramic region 810.
- FIG. 5 shows one grain region 835 and one circle 835c in the lower center portion.
- the circle 835c is a virtual circle having the same area as that of the grain region 835 (hereinafter referred to as “virtual circle 835c”).
- the diameter Dc in the figure is the diameter of the virtual circle 835c.
- the diameter Dc is a diameter obtained by approximating the grain region 835 with a circle (hereinafter also referred to as “approximate diameter Dc”).
- the approximate diameter Dc is larger as the grain region 835 is larger.
- the large approximate diameter Dc of each of the plurality of grain regions 835 means that each of the plurality of covering regions 825 is large, that is, the current path is thick.
- the durability of the current path is better as the current path is thicker. Therefore, the larger the number of magnetic grain regions 835 having a large approximate diameter Dc (for example, an approximate diameter Dc within a range of 400 ⁇ m or more and 1500 ⁇ m or less) among the plurality of grain regions 835 included in the target region 800, the more current paths As a result, the durability of the magnetic structure 200d can be improved.
- the minimum thickness T in the figure is the minimum thickness of the conductive region 820 in the target region 800.
- the minimum thickness T is small, the durability of the conductive region 820 can be reduced. Further, when the minimum thickness T is large, the amount of material of the conductive region 820 for forming the magnetic body structure 200d increases.
- the ceramic region 810 is formed by using ceramic powder as the material of the magnetic body structure 200d. Accordingly, pores may be generated in the ceramic region 810 on the target region 800. In the lower left part of FIG. 5, an enlarged view of the ceramic region 810 is shown. As shown, pores 812 are formed in the ceramic region 810. During the discharge of the spark plug 100d, partial discharge can also occur in the pores 812. When partial discharge occurs in the pores 812, the magnetic body structure 200d is deteriorated, and radio noise can be generated. Therefore, the ratio of the pores 812 to the magnetic structure 200d (for example, the ratio of the area of the pores 812 to the area of the remaining region excluding the magnetic region 830 from the target region 800) is preferably small.
- FIG. 6 is an enlarged view of a part of the cross-sectional view of FIG. In the drawing, the vicinity of the caulking portion 53 of the metal shell 50 is shown.
- the protrusion distance Ld in the figure is a distance parallel to the central axis CL between the rear end 53e of the crimped portion 53 (that is, the rear end of the metal shell 50) and the rear end 200de of the magnetic body structure 200d. is there.
- the protrusion distance Ld is a positive value.
- the distance between the leg part 43d of the terminal metal fitting 40d and the main metal fitting 50 is so large that the protrusion distance Ld is large.
- an insulator 10d is disposed between the terminal metal fitting 40d and the metal shell 50. That is, the terminal metal fitting 40d and the metal shell 50 form a capacitor that sandwiches the insulator 10d. Therefore, radio noise can flow from the terminal fitting 40d to the metallic shell 50 having the same potential as the ground electrode 30 via the insulator 10d. As a result, the effect of suppressing radio noise can be reduced.
- the protrusion distance Ld is large, the distance between the terminal metal fitting 40d and the metal shell 50 is large, so that the capacitance of the capacitor is small.
- the capacitance of the capacitor is small, the magnitude (absolute value) of the impedance of the capacitor is large. Therefore, compared with the case where the distance between the terminal metal fitting 40d and the metal shell 50 is small, radio noise can be suppressed.
- the spark plug 100d having the magnetic structure 200d can be manufactured by the same procedure as the manufacturing method described in the first embodiment.
- the members in the through hole 12d of the insulator 10d are as follows.
- Each material powder of the conductive seal portions 60d, 75d, and 80d, a material powder of the resistor 70d, and a material powder of the magnetic structure 200d are prepared.
- the material powders of the conductive seal portions 60d, 75d, 80d and the resistor 70d are the same as the material powders of the conductive seal portions 60, 75, 80 and the resistor 70 described in the first embodiment. Can be adopted.
- the material powder of the magnetic body structure 200d is prepared as follows, for example.
- a conductive material coating layer is formed on the magnetic powder by electroless plating to cover the surface of the magnetic particles.
- the material powder of the magnetic body structure 200d is prepared by mixing the magnetic powder covered with the coating layer and the ceramic powder. Further, instead of plating, a coating layer may be formed by applying a binder to the surface of the magnetic powder and attaching the particles of the conductive material to the surface of the magnetic particles. Then, the material powder of the magnetic body structure 200d may be prepared by mixing the magnetic powder covered with the coating layer and the ceramic powder.
- the center electrode 20 is disposed at a predetermined position supported by the reduced inner diameter portion 16 in the through hole 12d.
- the first conductive seal portion 60d, the resistor 70d, the second conductive seal portion 75d, the magnetic body structure 200d, and the third conductive seal portion 80d are charged and charged into the through holes 12d.
- the formed powder material is formed in the order of the members 60d, 70d, 75d, 200d, and 80d.
- the powder material is charged from the rear opening 14 of the through hole 12d. Molding of the charged powder material is performed using a rod inserted from the rear opening 14.
- the material powder is formed into substantially the same shape as the corresponding member.
- the insulator 10d is heated to a predetermined temperature higher than the softening point of the glass component contained in each material powder, and the terminal fitting 40d is passed through the through-hole 12d from the rear opening 14 in the heated state. Insert into 12d.
- each material powder is compressed and sintered to form the conductive seal portions 60d, 75d, and 80d, the resistor 70d, and the magnetic structure 200d.
- FIG. 7 is a cross-sectional view of the spark plug 100e of the fourth embodiment.
- the difference from the spark plug 100d in FIG. 4 is that the resistor 70d and the second conductive seal portion 75d are omitted.
- the center electrode 20 and the magnetic body structure 200d are connected by the first conductive seal portion 60e, and the magnetic body structure 200d and the leg portion 43e of the terminal fitting 40e are The two conductive seal portions 80e are connected.
- the members 60e, 200d, and 80e as a whole form a connection portion 300e that connects the center electrode 20 and the terminal fitting 40e within the through hole 12d.
- the entirety of the magnetic body structure 200d is disposed on the front end direction D1 side with respect to the rear end 53e of the metal shell 50. However, at least a part of the magnetic body structure 200d may be disposed closer to the rear end direction D2 side than the rear end 53e of the metal shell 50.
- the configuration of the other parts of the spark plug 100e of the fourth embodiment is substantially the same as the configuration of the spark plug 100d shown in FIG. In FIG. 7, the other parts of the spark plug 100e of the fourth embodiment are denoted by the same reference numerals as the corresponding parts of the spark plug 100d of FIG.
- the magnetic body structure 200d of the fourth embodiment is the same as the magnetic body structure 200d described in FIG. As described above, since the conductive region 820 that forms a current path passes through the vicinity of the magnetic region 830 in the magnetic structure 200d, the magnetic structure 200d can suppress radio noise.
- spark plug 100e of the fourth embodiment can be manufactured by the same method as the method of manufacturing the spark plug 100d described in FIG.
- the material powder of the conductive seal portions 60e and 80e the same material powder as that of the conductive seal portions 60d and 80d in FIG. 4 can be used.
- G. Evaluation test G-1. Outline An evaluation test using a plurality of types of samples of the spark plug 100d in FIG. 4 and a plurality of types of samples of the spark plug 100e in FIG. 7 will be described. Table 2, Table 3, and Table 4 shown below show the configuration of each sample and the results of the evaluation test.
- Tables 2, 3 and 4 show the sample numbers and the internal structure of the magnetic structure 200d (here, the structure of the iron-containing oxide, the structure of the conductive material, the elements contained in the ceramic, the pores) Rate), protrusion distance Ld, presence / absence of the seal portion 75d, presence / absence of the resistor 70d), and the result of the noise test before and after the durability test.
- the structure of parts other than the internal structure of the magnetic body structure 200d and the connection parts 300d and 300e was the same among the 34 types of samples of the spark plug.
- the shape of the magnetic body structure 200d is approximately the same among the 34 types of samples.
- the outer diameter of the magnetic body structure 200d (that is, the inner diameter of the portion of the through hole 12d that accommodates the magnetic body structure 200d) was 3.9 mm.
- the composition of the iron-containing oxide As the composition of the iron-containing oxide, the composition and the number (number of grains) of specific magnetic grain regions 835 are shown.
- the composition of the iron-containing oxide was specified from the material of the iron-containing oxide included in the material of the magnetic body structure 200d.
- the specific magnetic grain region 835 counted by the number of grains is a magnetic grain region 835 having an approximate diameter Dc (FIG. 5) in the range of 400 ⁇ m or more and 1500 ⁇ m or less.
- the approximate diameter Dc was calculated as follows.
- the sample magnetic body structure 200d is cut along a plane including the central axis CL, and the cross section of the magnetic body structure 200d is processed by a cross section polisher that processes the cross section of the sample with an ion beam such as argon ions. Processed.
- region 800 (FIG. 5) on a cross section was image
- the SEM acceleration voltage was set to 15.0 kV, and the working distance was set in the range of 10 mm to 12 mm.
- the obtained SEM image represented an image as shown in the target area 800 at the upper center of FIG.
- the SEM image was binarized using image analysis software (Analysis 5 manufactured by Soft Imaging System GmbH).
- the threshold for binarization was set as follows.
- the magnetic region 830 and the conductive region 820 (that is, the magnetic grain region 835 and the covering region 825) were separated.
- the area of each of the plurality of magnetic grain regions 835 was calculated using the binarized image.
- the approximate diameter Dc of each of the plurality of magnetic grain regions 835 was calculated using the calculated area.
- the number of magnetic grain regions 835 having an approximate diameter Dc of 400 ⁇ m or more and 1500 ⁇ m or less was counted (hereinafter also referred to as “specific grain number”).
- specific grain number When a part of one magnetic grain region 835 protrudes outside the target region 800, the number of specific magnetic grain regions 835 is determined as the magnetic grain region 835 being the magnetic grain region 835 in the target region 800. Counted.
- the number of magnetic grain regions 835 having an approximate diameter Dc smaller than the above range was large. That is, in the sample having a large specific particle number, the ratio of the magnetic particle region 835 having a large approximate diameter Dc as compared with the sample having a small specific particle number, that is, the magnetic particle region 835 having an approximate diameter Dc of 400 ⁇ m to 1500 ⁇ m. The rate was high.
- the coverage is the ratio of the length of the portion covered by the covering region 825 to the total length (one round length) of the edge of the magnetic grain region 835.
- the coverage was calculated by analyzing the binarized image.
- the coverage in the table is an average value of the coverage of the plurality of magnetic grain regions 835 in the target region 800. When a part of the magnetic grain region 835 protrudes outside the target region 800, the coverage is calculated assuming that the magnetic grain region 835 is the magnetic grain region 835 in the target region 800.
- metals specifically, Ni, Cu, Fe
- perovskite oxides specifically, LaMnO 3 , YMnO 3
- carbon specifically, carbon black
- a material selected from carbon compounds specifically TiC
- the minimum thickness T was calculated using the above binarized image.
- the covered region 825 covers only a part of the edge of the magnetic grain region 835.
- an example of a covering region 825 that covers a part of the edge of the magnetic grain region 835 is shown.
- the covering region 825 covers a portion from the first end E1 to the second end E2 on the edge of the magnetic grain region 835.
- the thickness of the covered region 825 can be locally reduced in the vicinity of the ends E1 and E2.
- the minimum thickness T is calculated using the remaining part of the covering region 825 excluding the end portions EP1 and EP2 whose linear distance from the ends E1 and E2 is equal to or less than a predetermined value (here, 50 ⁇ m). (In the figure, the ends EP1 and EP2 are hatched).
- the element contained in the ceramic was specified from the element contained in the ceramic material (in this evaluation test, an amorphous glass material).
- elements other than oxygen are shown.
- SiO 2 the notation of oxygen (O) is omitted and “Si” is shown.
- additive components may be added to the ceramic material.
- elements of such additive components are also shown (for example, Ca, Na). Note that the elements contained in the ceramic can also be specified by EPMA analysis of the ceramic region 810.
- the porosity is the area ratio of the pores 812 (FIG. 5) in the remaining region excluding the magnetic region 830 from the target region 800.
- the porosity was calculated as follows.
- the SEM image was binarized by the same method as described above. Here, the threshold value for binarization was adjusted so that the pores 812 and other regions could be separated. By such binarization, the pores 812 and other regions were separated.
- the area of the pores 812 was calculated (referred to as “first area”).
- second Called "Area”
- the porosity is the first area / second area.
- the protrusion distance Ld is the protrusion distance Ld described in FIG. In the table, the description of the protrusion distance Ld is omitted for the sample in which the entire magnetic structure 200d is arranged on the front end direction D1 side with respect to the rear end 53e of the metal shell 50.
- the numerical values obtained by analyzing the cross-sectional image of the magnetic structure 200d are 10 sheets.
- the average value of 10 values obtained from the image of the cross section was adopted. Images of 10 cross sections of one type of sample were taken using 10 cross sections of 10 samples of the same type produced under the same conditions.
- the intensity of noise was measured in accordance with JASO D002-2 (Japan Automobile Technical Association Transmission Standard D-002-2) “Automobile-Radio Noise Characteristics-Part 2: Measuring Method of Preventor Current Method”. . Specifically, the gap g distance of the spark plug sample was adjusted to 0.9 mm ⁇ 0.01 mm, and a voltage in the range of 13 kV to 16 kV was applied to the sample for discharge. And at the time of discharge, the electric current which flows through the terminal metal fittings 40d and 40e was measured using the current probe, and the measured value was converted into dB for comparison. As noise, noise of three types of frequencies of 30 MHz, 100 MHz, and 200 MHz was measured.
- the numerical values in the table indicate the noise intensity with respect to a predetermined standard. The larger the value, the stronger the noise. “Before durability” indicates a result of a noise test before the durability test described later, and “After durability” indicates a result of the noise test after the durability test.
- the durability test is a test in which a spark plug sample is discharged for 400 hours at a discharge voltage of 20 kV in an environment of 200 degrees Celsius. By such an endurance test, the deterioration of the magnetic body structure 200d can proceed. As the deterioration of the magnetic body structure 200d proceeds, the “after durability” noise can be stronger than the “before durability” noise.
- the noise intensity was smaller as the frequency was higher both before and after the endurance.
- G-2 About average coverage of conductive materials: In A-1 to A-6, the average coverage of the conductive material was in the range of 50% to 100%. Such A-1 to A-6 were able to realize a sufficiently small noise intensity of 66 dB or less at all frequencies before endurance. Even after the endurance, the noise intensity was 77 dB or less at all frequencies, and an increase in noise could be suppressed. That is, good durability of the magnetic body structure 200d was realized. Moreover, the increase amount of the noise intensity by the durability test was in the range of 8 dB or more and 13 dB or less at all frequencies.
- the average coverage of B-1 in Table 4 was 49%, which was smaller than the average coverage of A-1 to A-6.
- the noise intensity of No. B-1 was larger than the noise intensity of the same frequency of any sample of Nos. A-1 to A-6.
- the increase in noise intensity by the durability test was 21 dB (30 MHz), 24 dB (100 MHz), and 22 dB (200 MHz).
- the increase amount from No. A-1 to No. A-6 (8 dB or more and 13 dB or less) was improved by 8 dB or more compared with the increase amount at the same frequency as No. B-1 (21 dB or more and 24 dB or less).
- the average coverage of No. B-2 in Table 4 was 42%, which is smaller than the average coverage of No. B-1.
- the noise intensity of No. B-2 was larger than the noise intensity of the same frequency of any sample of Nos. A-1 to A-6.
- the increase in noise intensity by the durability test was 24 dB24 (30 MHz), 23 dB (100 MHz), and 22 dB (200 MHz).
- the amount of increase from A-1 to A-6 (8 dB or more and 13 dB or less) was improved by 11 dB or more compared with the amount of increase at the same frequency as B-2 (22 dB or more and 24 dB or less).
- A-1 to A-6 which have a relatively high average coverage, achieve better durability than B-1 and B-2, which have a relatively low average coverage. did it. This is because when the average coverage is large, the current path formed by the conductive region 820 (FIG. 5) is thicker than when the average coverage is small, and the conductive region 820 is formed. It is presumed that there are many current paths.
- the average coverage of conductive materials No. A-1 to No. A-6 that suppresses noise and achieves good durability is 50, 55, 69, 72, 94, 100 (%) in ascending order.
- a preferable range (range between the lower limit and the upper limit) of each of the plurality of magnetic grain regions 835 in the target region 800 can be determined using the above six values. Specifically, any value among the above six values can be adopted as the lower limit of the preferable range of the average coverage. Also, any value above the lower limit of these values can be adopted as the upper limit. For example, as a preferable range of the average value of the coverage of the plurality of magnetic grain regions 835 in the target region 800, a range of 50% or more and 100% or less can be adopted.
- the coverage is 50% or more, it is highly likely that both the surface on the specific direction side and the surface on the opposite direction side of the grain region 835 are covered with the coating region 825. Therefore, there is a high possibility that one covered region 825 is in contact with a plurality of other covered regions 825. Therefore, it is possible to suppress the formation of a high resistance portion having a high electrical resistance locally in the magnetic body structure 200d.
- the high resistance portion generates more heat due to current than the low resistance portion. Due to such heat generation, the magnetic body structure 200d may be deteriorated.
- the average value of the coverage of the plurality of magnetic grain regions 835 in the target region 800 is 50% or more, the formation of the high resistance portion is suppressed, so that the durability of the magnetic body structure 200d can be improved.
- the plurality of magnetic particle regions 835 in the target region 800 may include magnetic particle regions 835 having an average coverage outside the above preferable range. Also in this case, it is estimated that the spark plug can suppress noise as compared with the case where the magnetic body structure 200d is omitted.
- the average coverage can be increased by increasing the plating time of electroless plating of a conductive material.
- the average coverage can be increased by increasing the amount of the conductive material.
- the average coverage was adjusted as follows. A material powder of magnetic particles whose entire surface was coated with a conductive material was prepared. And in order to implement
- the ceramics of the magnetic body structures 200d Nos. A-1 to A-6 contained at least one of Si, B, and P.
- the ceramics of the magnetic structure 200d of No. B-3 and No. B-4 in Table 4 did not contain any of Si, B, and P, and instead contained Ca, Mg, and K.
- the average coverage of B-3 and B-4 was 68% and 75%.
- the noise intensity of Nos. A-1 to A-6 was the same as or smaller than the noise intensity of the same frequency of any sample of B-3 and B-4. After endurance, the noise intensity of Nos. A-1 to A-6 was smaller than the noise intensity of the same frequency of any sample of B-3 and B-4.
- A-1 to A-6 having a ceramic containing at least one of Si, B, and P are Nos. B-3, B having a ceramic containing none of Si, B, and P. Noise was suppressed compared to -4.
- the amount of increase in noise by the durability test of B-3 and B-4 was 21 dB or more and 26 dB or less.
- the increase from A-1 to A-6 (8 dB or more, 13 dB or less) was improved by 8 dB or more compared with the increase at the same frequency of B-3 and B-4.
- a ceramic that does not contain any of Si, B, and P reacts with an iron-containing oxide by heat generated by a current during discharge, compared to a ceramic that contains at least one of Si, B, and P (eg, glass). Easy to do. Therefore, a new phase can be formed by the reaction between the ceramic and the iron-containing oxide by the durability test. As a result, the number of pores 812 increases, and the diameter of the pores 812 increases.
- the ceramic containing at least one of Si, B, and P is a kind of glass.
- the magnetic body forming the magnetic region 830 of the magnetic body structure 200d includes Fe 2 O 3 , Fe 3 O 4 , and FeO that are iron oxides, (Ni, Zn) Fe 2 O 4 that is spinel ferrite, and hexagonal crystals.
- a material selected from BaFe 12 O 19 and SrFe 12 O 19 which are ferrites was used.
- the ceramic of the magnetic body structure 200d contained at least one of silicon (Si), boron (B), and phosphorus (P).
- the second material of the same type as the first material often has the same characteristics as the first material. Therefore, it is estimated that the preferable range of the average coverage of the conductive material can be applied even when another material of the same type is used instead of the material of the magnetic body structure 200d.
- the magnetic body structure 200d has the following configurations Z1 to Z3, it is estimated that a preferable range of the average coverage is applicable.
- the magnetic body structure 200d includes a conductive material as a conductor.
- the magnetic body structure 200d includes an iron-containing oxide as a magnetic body.
- the magnetic body structure 200d includes a ceramic containing at least one of silicon (Si), boron (B), and phosphorus (P).
- the porosity of A-1 to A-6 in Table 2 was in the range of 4.3% to 5%. As described above, Nos. A-1 to A-6 were able to suppress noise and realize good durability. The porosities of Nos. A-29 and A-30 in Table 3 were larger than those of Nos. A-1 to A-6 and were 6.6 and 7.2 (%). The other configurations of A-29 and A-30 were as follows. That is, the average coverage was 56, 62 (%).
- the ceramic of the magnetic body structure 200d contained at least one of Si, B, and P.
- the noise intensity from No. A-1 to No. A-6 was smaller than the noise intensity at the same frequency of any sample of Nos. A-29 and A-30 before and after endurance.
- A-1 to A-6 having relatively small porosity were able to suppress noise compared to A-29 and A-30 having relatively large porosity. The reason for this is presumed that when the porosity is small, partial discharge in the pores 812 (FIG. 5) is suppressed as compared with the case where the porosity is large.
- the porosity of No. A-1 to No. A-6 which had relatively good noise suppression capability, was 4.3, 4.6, 4.8, 5 (%) in ascending order. Any value of these four values can be used as the upper limit of the preferable porosity range (lower limit or higher and lower limit or higher). Moreover, any value below the upper limit among these values can be adopted as the lower limit. For example, a value of 4.3% or more and 5% or less can be adopted as the porosity. In addition, it is estimated that the noise suppression capability and durability are better as the porosity is lower. Therefore, you may employ
- the noise suppression performance of Nos. A-1 to A-6 is better than that of a general spark plug (for example, a spark plug in which the magnetic structure 200d is omitted). Therefore, even when the porosity is higher, it is estimated that a practical noise suppression capability can be realized. Therefore, it is estimated that a larger value (for example, 10%) can be adopted as the upper limit of the porosity. For example, any configuration of A-29 and A-30 may be adopted.
- any method can be adopted as a method for adjusting the porosity. For example, by increasing the firing temperature of the magnetic body structure 200d (for example, the heating temperature of the insulator 10d that accommodates the material of the connection portions 300d and 300e in the through holes 12d), the ceramic material of the magnetic body structure 200d is increased. It becomes easy to melt and the porosity can be reduced. Further, by increasing the force applied to the terminal fittings 40d and 40e when the terminal fittings 40d and 40e are inserted into the through holes 12d, the pores 812 can be crushed and the porosity can be reduced. Moreover, the porosity can be reduced by reducing the particle size of the ceramic material of the magnetic body structure 200d.
- G-6 Regarding the number of specific magnetic grain regions 835 (number of specific grains): In Tables A-1 to A-6, the total number of magnetic grain regions 835 having a specific number of grains, that is, an approximate diameter Dc in the range of 400 ⁇ m or more and 1500 ⁇ m or less is 3 or more and 5 or less. there were.
- the specific grain number from A-7 to A-11 was larger than the specific grain number from A-1 to A-6, and was in the range of 6 to 8.
- the other configurations of A-7 to A-11 were as follows. That is, the average coverage was 56% or more and 74% or less. The porosity was 4% or more and 4.3% or less.
- the ceramic of the magnetic body structure 200d contained at least one of Si, B, and P.
- the noise intensity from A-7 to A-11 was smaller than the noise intensity at the same frequency of any sample from A-1 to A-6.
- the specific number of grains that is, the number of magnetic grain regions 835 having a relatively large approximate diameter Dc
- noise can be suppressed as compared with the case where the specific number of grains is small.
- the reason is estimated as follows.
- the large number of specific grains indicates that a large magnetic material is disposed in the vicinity of the conductive region 820 (that is, the current path).
- noise can be suppressed as compared with a case where the magnetic body in the vicinity of the current path is small.
- the amount of increase in noise in the durability test from A-7 to A-11 was 8 dB at all frequencies.
- the increase amount from A-1 to A-6 was in the range of 8 dB to 13 dB, which was larger than the increase amount from A-7 to A-11.
- the reason is estimated as follows.
- the large number of specific grains indicates that the approximate diameter Dc of the magnetic grain region 835 is large.
- a large approximate diameter Dc indicates that the covering region 825 and, in turn, the current path is thick. When the current path is thick, it is possible to improve the durability of the current path, and thus the magnetic body structure 200d, as compared with the case where the current path is thin.
- A-7 to A-11 also achieved good noise suppression capability and durability.
- the specific grain numbers from A-1 to A-11 were 3, 4, 5, 6, 7, and 8 in ascending order. Any value among these six values can be adopted as the lower limit of the preferred range (the lower limit and the upper limit) of the specific number of grains. For example, a value of 3 or more can be adopted as the specific number of grains. In addition, any value that is equal to or higher than the lower limit of these six values can be used as the upper limit. For example, a value of 8 or less can be adopted as the specific number of grains.
- the specific number of grains from No. A-7 to No. A-11 that realized better noise suppression capability and durability were 6, 7, and 8 in ascending order. Therefore, it is preferable to arbitrarily select the lower limit of the preferable range of the specific number of grains from these three values. For example, a value of 6 or more may be adopted as the specific number of grains.
- the samples A-12 to A-28 achieved better noise suppression capability and durability.
- the specific grain numbers from A-1 to A-28 were 3, 4, 5, 6, 7, 8, 9, 10, 11 in ascending order. Any value among these 9 values can be adopted as the lower limit of the preferred range of the specific number of grains.
- an arbitrary value equal to or higher than the lower limit among these nine values can be adopted as the upper limit. For example, a value of 11 or less may be employed as the specific number of grains.
- the specific number of grains can be increased by increasing the particle diameter of the iron-containing oxide material powder. Note that the specific number of grains may be outside the above preferred range.
- the minimum thickness T of the conductive material was less than 1 ⁇ m, or 28 ⁇ m or more. Further, the minimum thickness T from A-12 to A-17 in Table 3 was 1 ⁇ m or more and 25 ⁇ m or less.
- the other configurations of A-12 to A-17 were as follows. That is, the average coverage was 58% or more and 69% or less. The porosity was 3.6% or more and 4% or less. The number of specific grains was 6 or more and 9 or less.
- the ceramic of the magnetic body structure 200d contained at least one of Si, B, and P.
- the noise intensity from No. A-12 to No. A-17 was smaller than the noise intensity at the same frequency of any sample from No. A-1 to No. A-6 before and after endurance.
- the reason is estimated as follows.
- the minimum thickness T is smaller than 1 ⁇ m, the conductive region 820 is thin, so that even before the endurance, the current path may be damaged due to various causes (for example, current due to heating or test discharge during manufacturing). obtain. Thereby, compared with the case where the minimum thickness T is large, noise can become strong.
- the minimum thickness T is 28 ⁇ m or more, since the conductive region 820 is thick, the current can flow in a position far from the magnetic grain region 835. Therefore, noise can be stronger than when the minimum thickness T is small.
- the increase in noise intensity in the durability test from A-12 to A-17 was in the range of 4 dB to 6 dB.
- the increase from A-12 to A-17 (4 dB or more, 6 dB or less) is the increase at the same frequency from A-1 to A-3 having the minimum thickness T smaller than 1 ⁇ m (8 dB or more) 3 dB or less), which is improved by 3 dB or more.
- the reason is estimated as follows. When the minimum thickness T is smaller than 1 ⁇ m, the current path is easily damaged. Therefore, the durability can be lower than when the minimum thickness T is large.
- the minimum thickness T from No. A-12 to No. A-17 that realized good noise suppression capability and durability was 1, 11, 16, 19, 22, 25 ( ⁇ m) in ascending order. Any value among these six values can be used as the upper limit of the preferable range (the lower limit or more and the upper limit or less) of the minimum thickness T. Moreover, any value below the upper limit among these values can be adopted as the lower limit. For example, a value of 1 ⁇ m or more and 25 ⁇ m or less can be adopted as the minimum thickness T. However, the minimum thickness T may be outside the preferable range, as in A-1 to A-6.
- any method can be adopted as a method of adjusting the minimum thickness T.
- the minimum thickness T can be increased by increasing the plating time.
- the minimum thickness T can be increased by increasing the particle size of the conductive material particles.
- the protrusion distance Ld Unlike the other samples, Nos. A-18 to A-28 in Table 3 are samples of the spark plug 100d in FIG. 4, and the protruding distance Ld (FIG. 6) was larger than zero. Specifically, the protrusion distance Ld from A-18 to A-23 was 10 mm. The protrusion distance Ld from A-24 to A-28 was 1, 3, 5, 7, 9 (mm) in the order of sample numbers.
- the other configurations of A-18 to A-28 were as follows. That is, the average coverage was 69% or more and 95% or less. The porosity was 3.3% or more and 3.9% or less. The specific number of grains was 8 or more and 11 or less. The minimum thickness T was 3 ⁇ m or more and 13 ⁇ m or less.
- the ceramic of the magnetic body structure 200d contained at least one of Si, B, and P.
- the noise intensity from No. A-18 to No. A-28 was smaller than the noise intensity at the same frequency of any sample from No. A-1 to No. A-17 before and after endurance.
- the reason for this is that, as described with reference to FIG. 6, when the protruding distance Ld is large, the capacitance of the capacitor formed by the terminal metal fitting 40d and the main metal fitting 50 becomes small, so that radio wave noise is insulated from the terminal metal fitting 40d. This is because the flow to the metallic shell 50 through 10d is suppressed.
- the protrusion distance Ld is larger than zero, that is, when the rear end 200de of the magnetic body structure 200d is located on the rear end direction D2 side with respect to the rear end 53e of the metal shell 50, the magnetic body It is presumed that noise can be suppressed as compared with the case where the entire structure 200d is disposed closer to the front end direction D1 than the rear end 53e of the metal shell 50. Further, it is estimated that a larger value (for example, 20 mm) can be adopted as the upper limit of the protrusion distance Ld. Moreover, it is estimated that the above description regarding the preferable range of the protrusion distance Ld can be applied to the spark plugs 100, 100b, and 100d having the resistors 70 and 70d. However, as in A-1 to A-17, the entire magnetic structure 200d may be disposed on the front end direction D1 side with respect to the rear end 53e of the metal shell 50.
- iron-containing oxides examples include the iron-containing oxides in Tables 2 to 4, such as FeO, Fe 2 O 3 , Fe 3 O 4 , Ni, Mn, Cu, An iron-containing oxide containing at least one of Sr, Ba, Zn, and Y can be employed.
- the iron-containing oxide that can suppress radio noise is not limited to the iron-containing oxides included in the samples in Tables 2 to 4, but other various iron-containing oxides (for example, various ferrites) are used. Presumed to be possible.
- the magnetic region 830 may be formed of a plurality of types of iron-containing oxides.
- the spark plug 100d (FIG. 4) sample having the resistor 70d and the spark plug 100e (FIG. 7) sample not having the resistor 70d are used to construct the spark plug (for example, a magnetic structure). 200d) was studied.
- the resistor 70d is omitted, the magnetic body structure 200d can function as a resistor that suppresses current instead of the resistor 70d. Therefore, it is presumed that a preferable configuration derived from the evaluation result of the sample of the spark plug 100d having the resistor 70d (FIG. 4) can be applied to the spark plug 100e having no resistor 70d (FIG. 7).
- a preferable range of the protrusion distance Ld may be applied to the spark plug 100e in FIG.
- led-out from the evaluation result of the sample of the spark plug 100e (FIG. 7) which does not have the resistor 70d is applicable to the spark plug 100d (FIG. 4) which has the resistor 70d.
- the material may be applied to the spark plug 100d of FIG.
- the material of the magnetic bodies 210 and 210b is not limited to MnZn ferrite, and various magnetic materials can be employed.
- various ferromagnetic materials can be used.
- the ferromagnetic material is a material that forms spontaneous magnetization.
- various materials such as a material containing iron oxide such as ferrite (including spinel type) and an iron alloy such as alnico (Al—Ni—Co) can be adopted. If such a ferromagnetic material is employed, radio noise can be appropriately suppressed.
- a ferromagnetic material but a paramagnetic material may be adopted. Also in this case, radio noise can be suppressed.
- the configuration of the magnetic structure is not limited to the configuration shown in FIGS. 1 and 2, and various configurations having a magnetic body and a conductor can be employed.
- a coiled conductor may be embedded in the magnetic body.
- the structure is such that the conductor is connected in parallel with at least a part of the magnetic body on the conductive path connecting the end on the front end direction D1 side and the end on the rear end direction D2 side of the magnetic structure. It is preferable to adopt. If such a configuration is adopted, radio noise can be suppressed by the magnetic material. Furthermore, since both-ends resistance value of a magnetic body structure can be reduced with a conductor, it can suppress that the temperature of a magnetic body structure becomes high. As a result, damage to the magnetic structure can be suppressed.
- the conductive material may include a plurality of types of conductive materials (for example, both a metal and a perovskite oxide).
- the magnetic body may include a plurality of types of iron-containing oxides (for example, both Fe 2 O 3 and BaFe 12 O 19 which is hexagonal ferrite).
- the ceramic may contain a plurality of types of components (for example, both SiO 2 and B 2 O 3 ).
- the combination of the conductive material, the iron-containing oxide as the magnetic material, and the ceramic is not limited to the combination of the samples in Tables 2 and 3, and various other combinations can be adopted. is there.
- the composition of the conductive substance and the composition of the iron-containing oxide can be specified by various methods.
- the composition may be specified by a micro X-ray diffraction method.
- the ceramic contained in the magnetic body structure 200d supports a conductive substance and a magnetic body (here, iron-containing oxide).
- a conductive substance such as SiO 2 , B 2 O 3 , and P 2 O 5
- a crystalline ceramic such as Li 2 O—Al 2 O 3 —SiO 2 glass may be employed.
- ceramics containing at least one of silicon (Si), boron (B), and phosphorus (P) are employed as shown in Tables 2 and 3, from A-1 to A-30. By doing so, it is estimated that appropriate noise suppression capability and appropriate durability can be realized.
- conductive material forming the conductive region 820 of the magnetic structure 200d can be used as various conductive materials.
- a conductive material having good oxidation resistance it is preferable to employ a conductive material having good oxidation resistance.
- a conductive material having an electrical resistivity of 50 ⁇ ⁇ m or less is used, deterioration due to heat generation when a large current flows can be suppressed.
- a material of the conductive region 820 a material including at least one of metal, carbon, a carbon compound, and a perovskite oxide may be used.
- metal for example, one or more metals arbitrarily selected from Ag, Cu, Ni, Sn, Fe, Cr, Inconel, Sendust, and Permalloy can be used.
- carbon compound for example, one or more compounds arbitrarily selected from Cr 3 C 2 and TiC can be adopted.
- the perovskite oxide is as follows.
- the perovskite oxide is represented by the general formula ABO 3 .
- the leading element A (for example, “La” of LaMnO 3 ) indicates an A-site element
- the subsequent element B (for example, “Mn” of LaMnO 3 ) indicates an B-site element.
- the B site is a 6-coordinate site and is surrounded by an octahedron composed of oxygen
- the A site is a 12-coordinate site.
- Examples of such a perovskite oxide include LaMnO 3 , LaCrO 3 , LaCoO 3 , LaFeO 3 , NdMnO 3 , PrMnO 3 , YbMnO 3 , YMnO 3 , SrTiO 3 , and SrCrO 3.
- One or more selected oxides can be employed. Since these oxides have a small electric resistance and are stable, it is possible to realize a good noise suppression capability and durability.
- the elements at the B site are different, a plurality of types of perovskite oxides having the same element at the A site can achieve the same level of noise suppression capability and the same level of durability. It is estimated to be.
- the element at the A site of the ten perovskite oxides is selected from La, Nd, Pr, Yb, Y, and Sr.
- the conductive material of the magnetic body structure 200d includes a perovskite oxide whose A site is at least one of La, Nd, Pr, Yb, Y, and Sr, noise can be suppressed and good durability can be obtained. It is estimated that can be realized.
- the perovskite oxide an oxide having a plurality of types of elements as the element at the A site may be employed.
- the conductive material may include a plurality of types of perovskite oxides.
- the elements contained in the conductive region 820 of the magnetic structure 200d can be specified by EPMA analysis.
- the method of manufacturing the magnetic body structure 200d described with reference to FIGS. 4, 5, and 7 is a method in which the material of the magnetic body structure 200d is placed in the through hole 12d of the insulator 10d and fired.
- the cylindrical magnetic body structure 200d may be formed by forming the material of the magnetic body structure 200d into a cylindrical shape using a molding die and firing the molded body.
- the material powder of another member for example, the members 60d, 70d, 75d, and 80d in FIG. 4 or the members 60e and 80e in FIG.
- connection part for example, the connection part 300d in FIG. 4 or the connection part 300e in FIG. 7.
- the configuration of the magnetic body structure is not limited to the configurations shown in FIGS. 1, 2, 4, 5, and 7, and various other configurations can be employed.
- the configuration of the magnetic body structure 200d described with reference to FIGS. 4 and 5 may be applied to the magnetic body structures 200 and 200b of FIGS.
- the magnetic bodies 210 and 210b in FIGS. 1 and 2 members having the same configuration as the magnetic body structure 200d described in FIGS. 4 and 5 may be employed.
- the configuration of the spark plug 100d described with reference to FIG. 6 may be applied to the spark plugs 100, 100b, and 100e of FIGS.
- 1, 2, and 7 may be positioned on the rear end direction D2 side with respect to the rear end of the metal shell 50.
- the rear ends of the magnetic body structures 200, 200 b, and 200 d may be positioned closer to the front end direction D 1 than the rear ends of the metal shell 50.
- the configuration of the spark plugs 100 and 100b described with reference to FIGS. 1 and 2 may be applied to the spark plugs 100d and 100e of FIGS. For example, you may coat
- the magnetic body structure 200d may be formed so that the resistance values at both ends of the magnetic body structure 200d are within the above-described preferable range of the resistance values at both ends of the magnetic body structures 200 and 200b (for example, zero). ⁇ or more and 3 k ⁇ or less, or zero ⁇ or more and 1 k ⁇ or less). However, the resistance value at both ends of the magnetic structure 200d may be outside the above preferred range.
- at least one of the resistors 70 and 70d and the seal portions 60, 60d, 60e, 75, 75b, 75d, 80, 80b, 80d, and 80e may include crystalline ceramic.
- the magnetic body structure 200d may be disposed closer to the distal direction D1 than the resistor 70d. Further, at least one of the seal portions 60, 60d, 60e, 75, 75b, 75d, 80, 80b, 80d, and 80e may be omitted.
- the configuration of the spark plug is not limited to the configurations described in FIGS. 1, 2, Table 1, FIGS. 4 to 7, and Tables 2 to 4, and various configurations can be employed.
- a noble metal tip may be provided in a portion of the center electrode 20 where the gap g is formed.
- a noble metal tip may be provided in a portion of the ground electrode 30 where the gap g is formed.
- an alloy containing a noble metal such as iridium or platinum can be employed.
- the tip 31 of the ground electrode 30 is opposed to the tip surface 20s1 that is the surface facing the tip direction D1 side of the center electrode 20 to form the gap g.
- the tip of the ground electrode 30 may be opposed to the outer peripheral surface of the center electrode 20 to form a gap.
- the present disclosure can be suitably used for a spark plug used for an internal combustion engine or the like.
- ground electrode 31 ... tip, 35 ... base material, 36 ... core, 40, 40c, 40d, 40e ... terminal fitting, 41 ... cap mounting part, 42 ... collar part, 43, 43c, 43d, 43e ... leg part, 50 ... metal shell, 51 ... tool engaging part, 52 ... screw part, 53 ... caulking part, 54 ... seat, 55 ... trunk 56 ... Reduced inner diameter part, 58 ... Deformed part, 59 ... Through-hole, 60, 60d, 60e ... First conductive seal part, 70, 70d ... Resistor, 75, 75b 75c, 75d, 80e ... second conductive seal part, 80, 80b, 80d ...
- third conductive seal part 100, 100b, 100c, 100d, 100e ... spark plug, 200, 200b, 200d ... Magnetic structure, 210, 210b ... Magnetic, 220, 220b ... Conductor, 290, 290b ... Covering part, 300, 300b, 300c, 300d, 300e ... Connection part , 800 ... Target area, 810 ... Ceramic area, 812 ... Pore 812, 820 ... Conductive area, 825 ... Covered area 825, 830 ... Magnetic area, 835 ... Magnetic grain Region, 840 ... composite grain region, g ... gap, CL ... central axis (axis)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Spark Plugs (AREA)
- Gasket Seals (AREA)
Abstract
Description
軸線の方向に延びる貫通孔を有する絶縁体と、
前記貫通孔の先端側に少なくとも一部が挿入された中心電極と、
前記貫通孔の後端側に少なくとも一部が挿入された端子金具と、
前記貫通孔内で、前記中心電極と前記端子金具とを接続する接続部と、
を備えるスパークプラグであって、
前記接続部は、
抵抗体と、
前記抵抗体の先端側または後端側の前記抵抗体から離れた位置に配置された、磁性体と導電体とを含む磁性体構造物と、
を有し、
前記抵抗体と前記磁性体構造物とのうち、先端側に配置された部材を第1部材とし、後端側に配置された部材を第2部材としたときに、
前記接続部は、さらに、
前記第1部材の先端側に配置され、前記第1部材に接触する第1導電性シール部と、
前記第1部材と前記第2部材との間に配置され、前記第1部材と前記第2部材とに接触する第2導電性シール部と、
前記第2部材の後端側に配置され、前記第2部材に接触する第3導電性シール部と、
を有する、スパークプラグ。
適用例1に記載のスパークプラグであって、
前記磁性体構造物の先端から後端までの電気抵抗値は3kΩ以下である、
スパークプラグ。
適用例2に記載のスパークプラグであって、
前記磁性体構造物の前記先端から前記後端までの電気抵抗値は1kΩ以下である、
スパークプラグ。
適用例1から3のいずれか1項に記載のスパークプラグであって、
前記導電体は、前記磁性体の外周の少なくとも一部を囲む螺旋状のコイルを含み、
前記コイルの電気抵抗値は、前記磁性体の電気抵抗値よりも、低い、
スパークプラグ。
適用例1から3のいずれか1項に記載のスパークプラグであって、
前記導電体は、前記磁性体を前記軸線の方向に貫通する導電部を含む、
スパークプラグ。
適用例1から5のいずれか1項に記載のスパークプラグであって、
前記磁性体構造物は、前記抵抗体の後端側に配置されている、スパークプラグ。
適用例1から6のいずれか1項に記載のスパークプラグであって、
前記接続部は、さらに、前記磁性体構造物の外表面の少なくとも一部を覆い、前記磁性体構造物と前記絶縁体との間に介在する被覆部を有する、スパークプラグ。
適用例1から7のいずれか1項に記載のスパークプラグであって、
前記磁性体は、酸化鉄を含む強磁性の材料を用いて形成されている、スパークプラグ。
適用例8に記載のスパークプラグであって、
前記強磁性の材料は、スピネル型フェライトである、スパークプラグ。
適用例1から9のいずれか1項に記載のスパークプラグであって、
前記磁性体は、NiZnフェライト、または、MnZnフェライトである、スパークプラグ。
適用例1から3のいずれか1項に記載のスパークプラグであって、
前記磁性体構造物は、
1)前記導電体としての、導電性物質と、
2)前記磁性体としての、鉄含有酸化物と、
3)珪素(Si)とホウ素(B)とリン(P)とのうちの少なくとも1つを含むセラミックと、
を含み、
前記磁性体構造物の前記軸線を含む断面において、
前記軸線を中心線とし、前記軸線に垂直な方向の大きさが2.5mmであり、前記軸線の方向の大きさが5.0mmである矩形領域を、対象領域としたときに、
前記対象領域において、前記鉄含有酸化物の領域は、複数の粒状の領域を含み、
前記対象領域において、前記複数の粒状の領域のそれぞれの縁の少なくとも一部は、前記導電性物質によって被覆されており、
前記粒状の領域の前記縁の全長に対する前記導電性物質によって被覆されている部分の長さの割合を被覆率としたときに、前記対象領域において、前記複数の粒状の領域の前記被覆率の平均値は、50%以上である、
スパークプラグ。
適用例11に記載のスパークプラグであって、
前記磁性体構造物の前記断面上の前記対象領域のうち、前記鉄含有酸化物の前記領域を除いた残りの領域において、気孔率が5%以下である、
スパークプラグ。
適用例11または12に記載のスパークプラグであって、
前記磁性体構造物の前記断面上の前記対象領域内において、前記粒状の領域の面積と同じ面積を有する円の直径が、400μm以上、1500μm以下の範囲内である粒状の領域の総数が、6以上である、
スパークプラグ。
適用例11から13のいずれか1項に記載のスパークプラグであって、
前記磁性体構造物の前記断面上の前記対象領域において、前記粒状の領域の縁を被覆する前記導電性物質の最小の厚さは、1μm以上、25μm以下である、スパークプラグ。
適用例11から14のいずれか1項に記載のスパークプラグであって、
前記絶縁体の径方向の周囲に配置される主体金具を有し、
前記磁性体構造物は、前記抵抗体の後端側に配置され、
前記磁性体構造物の後端は、前記主体金具の後端よりも後端側に位置している、
スパークプラグ。
軸線の方向に延びる貫通孔を有する絶縁体と、
前記貫通孔の先端側に少なくとも一部が挿入された中心電極と、
前記貫通孔の後端側に少なくとも一部が挿入された端子金具と、
前記貫通孔内で、前記中心電極と前記端子金具とを接続する接続部と、
を備えるスパークプラグであって、
前記接続部は、磁性体と導電体とを含む磁性体構造物を含み、
前記磁性体構造物は、
1)前記導電体としての、導電性物質と、
2)前記磁性体としての、鉄含有酸化物と、
3)珪素(Si)とホウ素(B)とリン(P)とのうちの少なくとも1つを含むセラミックと、
を含み、
前記磁性体構造物の前記軸線を含む断面において、
前記軸線を中心線とし、前記軸線に垂直な方向の大きさが2.5mmであり、前記軸線の方向の大きさが5.0mmである矩形領域を、対象領域としたときに、
前記対象領域において、前記鉄含有酸化物の領域は、複数の粒状の領域を含み、
前記対象領域において、前記複数の粒状の領域のそれぞれの縁の少なくとも一部は、前記導電性物質によって被覆されており、
前記粒状の領域の前記縁の全長に対する前記導電性物質によって被覆されている部分の長さの割合を被覆率としたときに、前記対象領域において、前記複数の粒状の領域の前記被覆率の平均値は、50%以上である、
スパークプラグ。
A-1.スパークプラグの構成:
図1は、第1実施形態のスパークプラグ100の断面図である。図示されたラインCLは、スパークプラグ100の中心軸を示している。図示された断面は、中心軸CLを含む断面である。以下、中心軸CLのことを「軸線CL」とも呼び、中心軸CLと平行な方向を「軸線CLの方向」または、単に「軸線方向」とも呼ぶ。中心軸CLを中心とする円の径方向を、単に「径方向」とも呼び、中心軸CLを中心とする円の円周方向を「周方向」とも呼ぶ。中心軸CLと平行な方向のうち、図1における下方向を先端方向D1と呼び、上方向を後端方向D2とも呼ぶ。先端方向D1は、後述する端子金具40から電極20、30に向かう方向である。また、図1における先端方向D1側をスパークプラグ100の先端側と呼び、図1における後端方向D2側をスパークプラグ100の後端側と呼ぶ。
第1実施形態のスパークプラグ100の製造方法としては、任意の方法を採用可能である。例えば、以下の製造方法を採用可能である。まず、絶縁体10と、中心電極20と、端子金具40と、導電性シール部60、75、80のそれぞれの材料粉末と、抵抗体70の材料粉末と、磁性体構造物200と、を準備する。磁性体構造物200は、公知の方法で形成された磁性体210に、導電体220を巻き付けることによって、形成される。
図2は、第2実施形態のスパークプラグ100bの断面図である。図1に示す第1実施形態のスパークプラグ100との差異は、磁性体構造物200が、磁性体構造物200bに置換されている点だけである。スパークプラグ100bの他の構成は、図1のスパークプラグ100の構成と、同じである。図2の要素のうち、図1の要素と同じ要素には、同じ符号を付して、その説明を省略する。
図3は、参考例のスパークプラグ100cの断面図である。このスパークプラグ100cは、後述する評価試験で、参考例として用いられる。図1、図2に示す実施形態のスパークプラグ100、100bとの差異は、磁性体構造物200、200bと第3導電性シール部80、80bとが省略されている点である。参考例では、端子金具40cの脚部43cは、脚部43cの先端方向D1側の端が抵抗体70の近傍に届くように、実施形態の脚部43よりも長い。脚部43cと抵抗体70との間には、脚部43cと抵抗体70とに接触する第2導電性シール部75cが配置されている。第2導電性シール部75cの材料としては、上記実施形態の第2導電性シール部75の材料と同じ材料を、採用可能である。
D-1.スパークプラグのサンプルの構成:
スパークプラグの複数種類のサンプルを用いた評価試験について説明する。以下に示す表1は、各サンプルのそれぞれの構成と、4つの評価試験のそれぞれの評価結果と、を示している。
A:図1の構成
B:図2の構成
C:図3の構成
D:図1の構成において、抵抗体70と磁性体構造物200との配置を入れ替えた構成
E:図2の構成において、抵抗体70と磁性体構造物200bとの配置を入れ替えた構成
F:図1の構成において、磁性体210を、アルミナ製の同形状の部材に置換した構成
G:図2の構成において、導電体220bを、2kΩの導電体に置換した構成
H:図2の構成において、導電体220bを、1kΩの導電体に置換した構成
I:図1の構成において、第3導電性シール部80を省略した構成
J:図1の構成において、第2導電性シール部75を省略した構成
K:図2の構成において、導電体220bを、200Ωの導電体に置換した構成
なお、表1に示すように、被覆部290、290bの有無は、上記の構成A~Kとは独立に、決定される。
1)抵抗体70の材料:B2O3-SiO2系のガラスとセラミック粒子としてのZrO2と導電性材料としてのCとの混合物
2)磁性体210、210bの材料:MnZnフェライト
3)導電体220、220bの材料:主にニッケルとクロムとを含む合金
4)導電性シール部60、75、75b、80、80b、80cの材料:B2O3-SiO2系のガラスと金属粒子としてのCuとの混合物
ここで、導電体の電気抵抗値は、先端方向D1側の端と後端方向D2側の端との間の電気抵抗値である。以下、先端方向D1側の端と後端方向D2側の端との間の電気抵抗値を「両端抵抗値」と呼ぶ。次に、各評価試験の内容と結果について説明する。
電波ノイズ特性は、JASO D002-2に規定された方法に従って測定された挿入損を用いて、評価されている。具体的には、3番のサンプルを基準とした場合の300MHzの周波数での挿入損の改善値(単位はdB)を、評価結果として採用した。「m(mはゼロ以上、かつ、10以下の整数)」の評価結果は、3番のサンプルからの挿入損の改善値が、m(dB)以上、かつ、m+1(dB)未満であることを示している。例えば、「5」の評価結果は、改善値が、5dB以上、かつ、6dB未満であることを示している。改善値が10dB以上である場合、評価結果を「10」に決定した。なお、この評価試験では、サンプルの各種類の挿入損として、構成が同じ5本のサンプルの挿入損の平均値を用いた。5本のサンプルとしては、中心電極20と端子金具40、40cとの間の電気抵抗値が、5kΩを中心とする幅が0.6kΩである範囲内、すなわち、4.7kΩ以上、かつ、5.3kΩ以下の範囲内にある5本のサンプルが、採用された。11番と12番とについては、電気抵抗値のバラツキが大きく、電気抵抗値が上記の範囲内である5本のサンプルを確保できなかったので、評価を省略した。
耐衝撃特性は、JIS B8031:2006の7.4に規定された耐衝撃性試験に基づいて、評価されている。「0」の評価結果は、耐衝撃性試験によって異常が生じたことを示している。耐衝撃性試験によって異常が生じなかった場合、さらに、追加の30分間の振動試験をおこなった。そして、評価試験を行う前の電気抵抗値の測定値と、評価試験を行った後の電気抵抗値の測定値と、の間の差分を算出した。ここで、電気抵抗値は、中心電極20と端子金具40、40cとの間の電気抵抗値である。「5」の評価結果は、電気抵抗値の差分の絶対値が、試験前の電気抵抗値の10%を超えたことを示している。「10」の評価結果は、電気抵抗値の差分の絶対値が、試験前の電気抵抗値の10%以下であることを示している。
抵抗値安定性は、中心電極20と端子金具40、40cとの間の電気抵抗値の標準偏差に基づいて評価されている。評価試験で用いたスパークプラグは、上述したように、接続部(例えば、図1の接続部300)の材料が貫通孔12、12c内に配置された状態で、絶縁体10を加熱することによって、製造される。この加熱によって、導電性シール部60、75、75b、75c、80、80bの粉末材料は、流動し得る。この流動によって、電気抵抗値がばらつく場合がある。このばらつきの大きさを、評価した。具体的には、サンプルの各種類毎に、構成が同じ100本のスパークプラグを製造する。そして、中心電極20と端子金具40、40cとの間の電気抵抗値を測定し、測定された電気抵抗値の標準偏差を算出する。「0」の評価結果は、標準偏差が0.8よりも大きいことを示し、「5」の評価結果は、標準偏差が0.5より大きく、かつ、0.8以下であることを示し、「10」の評価結果は、標準偏差が0.5以下であることを示している。
耐久性は、放電に対する耐久性を示している。この耐久性を評価するために、スパークプラグのサンプルを自動車用のトランジスタ点火装置に接続し、以下の条件下で放電を繰り返す運転を行った。
温度 :摂氏350度
スパークプラグに印加される電圧 :20kV
放電周期 :3600回/分
運転時間 :100時間
評価試験では、上記条件下での運転を行い、その後に、中心電極20と端子金具40、40cとの間の常温での電気抵抗値を測定した。そして、評価試験後の電気抵抗値が評価試験前の電気抵抗値の1.5倍未満である場合、評価結果を「10」に決定した。評価試験後の電気抵抗値が評価試験前の電気抵抗値の1.5倍以上である場合、評価結果を「1」に決定した。
E-1.スパークプラグの構成:
図4は、第3実施形態のスパークプラグ100dの断面図である。第3実施形態では、図1、図2に示す実施形態の磁性体構造物200、200bの代わりに、磁性体構造物200dが設けられている。図4の右部には、磁性体構造物200dの斜視図が示されている。磁性体構造物200dは、中心軸CLを中心とする略円柱状の部材である。絶縁体10dの貫通孔12d内には、先端方向D1側から後端方向D2に向かって、中心電極20の後端方向D2側の部分と、第1導電性シール部60dと、抵抗体70dと、第2導電性シール部75dと、磁性体構造物200dと、第3導電性シール部80dと、端子金具40dの脚部43dとが、この順番に配置されている。磁性体構造物200dは、抵抗体70dの後端方向D2側に配置されている。そして、部材60d、70d、75d、200d、80dの全体は、貫通孔12d内で中心電極20と端子金具40dとを接続する接続部300dを形成している。第3実施形態のスパークプラグ100dの他の部分の構成は、図1、図2に示すスパークプラグ100、100bの構成と、概ね同じである。図4では、第3実施形態のスパークプラグ100dの他の部分については、図1、図2のスパークプラグ100、100bの対応する部分と同じ符号を付して、説明を省略する。
磁性体構造物200dを有するスパークプラグ100dは、第1実施形態で説明した製造方法と同じ手順で製造可能である。絶縁体10dの貫通孔12d内の部材については、以下の通りである。導電性シール部60d、75d、80dのそれぞれの材料粉末と、抵抗体70dの材料粉末と、磁性体構造物200dの材料粉末と、を準備する。導電性シール部60d、75d、80dと抵抗体70dとのそれぞれの材料粉末としては、第1実施形態で説明した導電性シール部60、75、80と抵抗体70とのそれぞれの材料粉末と同じものを採用可能である。磁性体構造物200dの材料粉末は、例えば、以下のように準備される。磁性体の粉末に、無電解メッキによって、磁性体の粒子の表面を覆う導電性物質の被覆層を形成する。被覆層で覆われた磁性体の粉末と、セラミックの粉末とを、混合することによって、磁性体構造物200dの材料粉末を準備する。また、メッキに代えて、磁性体の粉末の表面にバインダを塗布し、導電性物質の粒子を磁性体の粒子の表面に付着させることによって、被覆層を形成してもよい。そして、被覆層に覆われた磁性体の粉末と、セラミックの粉末とを、混合することによって、磁性体構造物200dの材料粉末を準備してもよい。
図7は、第4実施形態のスパークプラグ100eの断面図である。図4のスパークプラグ100dとの差異は、抵抗体70dと第2導電性シール部75dとが省略されている点である。第4実施形態のスパークプラグ100eでは、中心電極20と磁性体構造物200dとは、第1導電性シール部60eによって接続され、磁性体構造物200dと端子金具40eの脚部43eとは、第2導電性シール部80eによって接続されている。部材60e、200d、80eの全体は、貫通孔12d内で中心電極20と端子金具40eとを接続する接続部300eを形成している。図7では、磁性体構造物200dの全体は、主体金具50の後端53eよりも先端方向D1側に配置されている。ただし、磁性体構造物200dの少なくとも一部が、主体金具50の後端53eよりも後端方向D2側に配置されてもよい。第4実施形態のスパークプラグ100eの他の部分の構成は、図4に示すスパークプラグ100dの構成と、概ね同じである。図7では、第4実施形態のスパークプラグ100eの他の部分については、図4のスパークプラグ100dの対応する部分と同じ符号を付して、説明を省略する。
G-1.概要
図4のスパークプラグ100dの複数種類のサンプルと、図7のスパークプラグ100eの複数種類のサンプルと、を用いた評価試験について説明する。以下に示す表2、表3、表4は、各サンプルのそれぞれの構成と、評価試験の結果と、を示している。
(1)SEM画像のうちの二次電子像及び反射電子像を確認し、反射電子像における濃色の境界(結晶粒界に相当する)にラインを引き、結晶粒界の位置を明確にした。
(2)反射電子像の画像を改善するために、結晶粒界のエッジを保ちながら反射電子像の画像を滑らかにした。
(3)反射電子像の画像から、横軸に明るさ、縦軸に頻度をとったグラフを作成した。得られるグラフは二山状のグラフになる。この二つの山の中間点の明るさを2値化の閾値に設定した。
シール部75dと抵抗体70dとの両方が「A」であるサンプルは、図4のスパークプラグ100dのサンプルである。シール部75dと抵抗体70dとの両方が「N」であるサンプルは、図7のスパークプラグ100eのサンプルである。
A-1番からA-6番では、導電性物質の平均被覆率は、50%以上、100%以下の範囲内であった。このようなA-1番からA-6番は、耐久前には、全ての周波数において66dB以下という十分に小さいノイズ強度を実現できた。また、耐久後であっても、全ての周波数においてノイズ強度は77dB以下であり、ノイズの増大を抑制できた。すなわち、磁性体構造物200dの良好な耐久性を実現できた。また、耐久試験によるノイズ強度の増大量は、全ての周波数において、8dB以上、13dB以下の範囲内であった。
A-1番からA-6番の磁性体構造物200dのセラミックは、Si、B、Pのうちの少なくとも1つを含んでいた。表4のB-3番とB-4番の磁性体構造物200dのセラミックは、Si、B、Pのいずれも含んでおらず、代わりに、Ca、Mg、Kを含んでいた。なお、B-3番、B-4番の平均被覆率は、68%、75%であった。
ノイズを抑制し、そして、良好な耐久性を実現したA-1番からA-6番のサンプルでは、以下の材料が用いられた。磁性体構造物200dの磁性領域830を形成する磁性体は、酸化鉄であるFe2O3、Fe3O4、FeOと、スピネルフェライトである(Ni,Zn)Fe2O4と、六方晶フェライトであるBaFe12O19、SrFe12O19と、から選択された材料が用いられた。磁性体構造物200dのセラミックは、珪素(Si)とホウ素(B)とリン(P)とのうちの少なくとも1つを含んでいた。
[構成Z1]磁性体構造物200dは、導電体としての、導電性物質を含む。
[構成Z2]磁性体構造物200dは、磁性体としての、鉄含有酸化物を含む。
[構成Z3]磁性体構造物200dは、珪素(Si)とホウ素(B)とリン(P)とのうちの少なくとも1つを含むセラミックを含む。
表2のA-1番からA-6番の気孔率は、4.3%以上、5%以下の範囲内であった。そして、A-1番からA-6番は、上述したように、ノイズを抑制でき、そして、良好な耐久性を実現できた。表3のA-29番、A-30番の気孔率は、A-1番からA-6番の気孔率と比べて大きく、6.6、7.2(%)であった。なお、A-29番、A-30番の他の構成については、以下の通りであった。すなわち、平均被覆率は、56、62(%)であった。そして、磁性体構造物200dのセラミックは、Si、B、Pのうちの少なくとも1つを含んでいた。
表2のA-1番からA-6番では、特定粒数、すなわち、近似径Dcが400μm以上、1500μm以下の範囲内である磁性粒領域835の総数は、3個以上、5個以下であった。A-7番からA-11番の特定粒数は、A-1番からA-6番の特定粒数よりも多く、6個以上8個以下の範囲内であった。なお、A-7番からA-11番の他の構成については、以下の通りであった。すなわち、平均被覆率は、56%以上、74%以下であった。気孔率は、4%以上、4.3%以下であった。そして、磁性体構造物200dのセラミックは、Si、B、Pのうちの少なくとも1つを含んでいた。
表2のA-1番からA-6番の最小厚さTは、1μm未満、または、28μm以上であった。また、表3のA-12番からA-17番の最小厚さTは、1μm以上、25μm以下であった。なお、A-12番からA-17番の他の構成については、以下の通りであった。すなわち、平均被覆率は、58%以上、69%以下であった。気孔率は、3.6%以上、4%以下であった。特定粒数は、6個以上、9個以下であった。そして、磁性体構造物200dのセラミックは、Si、B、Pのうちの少なくとも1つを含んでいた。
表3のA-18番からA-28番は、他のサンプルとは異なり、図4のスパークプラグ100dのサンプルであり、突出距離Ld(図6)がゼロよりも大きかった。具体的には、A-18番からA-23番の突出距離Ldは、10mmであった。また、A-24番からA-28番の突出距離Ldは、サンプル番号の順に、1、3、5、7、9(mm)であった。なお、A-18番からA-28番の他の構成については、以下の通りであった。すなわち、平均被覆率は、69%以上、95%以下であった。気孔率は、3.3%以上、3.9%以下であった。特定粒数は、8個以上、11個以下であった。最小厚さTは、3μm以上、13μm以下であった。そして、磁性体構造物200dのセラミックは、Si、B、Pのうちの少なくとも1つを含んでいた。
磁性領域830を形成する鉄含有酸化物としては、表2から表4の鉄含有酸化物、例えば、FeOと、Fe2O3と、Fe3O4と、Niと、Mnと、Cuと、Srと、Baと、Znと、Yと、のうちの少なくとも1つを含む鉄含有酸化物を採用可能である。また、電波ノイズを抑制可能な鉄含有酸化物としては、表2から表4のサンプルに含まれる鉄含有酸化物に限らず、他の種々の鉄含有酸化物(例えば、種々のフェライト)を採用可能と推定される。また、磁性領域830が、複数種類の鉄含有酸化物で形成されてもよい。
(1)磁性体210、210bの材料としては、MnZnフェライトに限らず、種々の磁性材料を採用可能である。例えば、種々の強磁性材料を採用可能である。ここで、強磁性材料は、自発磁化を形成している材料である。強磁性材料としては、例えば、フェライト(スピネル型を含む)などの酸化鉄を含む材料や、アルニコ(Al-Ni-Co)などの鉄合金などの、種々の材料を採用可能である。このような強磁性材料を採用すれば、電波ノイズを適切に抑制できる。また、強磁性材料に限らず、常磁性材料を採用してもよい。この場合も、電波ノイズを抑制できる。
Claims (16)
- 軸線の方向に延びる貫通孔を有する絶縁体と、
前記貫通孔の先端側に少なくとも一部が挿入された中心電極と、
前記貫通孔の後端側に少なくとも一部が挿入された端子金具と、
前記貫通孔内で、前記中心電極と前記端子金具とを接続する接続部と、
を備えるスパークプラグであって、
前記接続部は、
抵抗体と、
前記抵抗体の先端側または後端側の前記抵抗体から離れた位置に配置された、磁性体と導電体とを含む磁性体構造物と、
を有し、
前記抵抗体と前記磁性体構造物とのうち、先端側に配置された部材を第1部材とし、後端側に配置された部材を第2部材としたときに、
前記接続部は、さらに、
前記第1部材の先端側に配置され、前記第1部材に接触する第1導電性シール部と、
前記第1部材と前記第2部材との間に配置され、前記第1部材と前記第2部材とに接触する第2導電性シール部と、
前記第2部材の後端側に配置され、前記第2部材に接触する第3導電性シール部と、
を有する、スパークプラグ。 - 請求項1に記載のスパークプラグであって、
前記磁性体構造物の先端から後端までの電気抵抗値は3kΩ以下である、
スパークプラグ。 - 請求項2に記載のスパークプラグであって、
前記磁性体構造物の前記先端から前記後端までの電気抵抗値は1kΩ以下である、
スパークプラグ。 - 請求項1から3のいずれか1項に記載のスパークプラグであって、
前記導電体は、前記磁性体の外周の少なくとも一部を囲む螺旋状のコイルを含み、
前記コイルの電気抵抗値は、前記磁性体の電気抵抗値よりも、低い、
スパークプラグ。 - 請求項1から3のいずれか1項に記載のスパークプラグであって、
前記導電体は、前記磁性体を前記軸線の方向に貫通する導電部を含む、
スパークプラグ。 - 請求項1から5のいずれか1項に記載のスパークプラグであって、
前記磁性体構造物は、前記抵抗体の後端側に配置されている、スパークプラグ。 - 請求項1から6のいずれか1項に記載のスパークプラグであって、
前記接続部は、さらに、前記磁性体構造物の外表面の少なくとも一部を覆い、前記磁性体構造物と前記絶縁体との間に介在する被覆部を有する、スパークプラグ。 - 請求項1から7のいずれか1項に記載のスパークプラグであって、
前記磁性体は、酸化鉄を含む強磁性の材料を用いて形成されている、スパークプラグ。 - 請求項8に記載のスパークプラグであって、
前記強磁性の材料は、スピネル型フェライトである、スパークプラグ。 - 請求項1から9のいずれか1項に記載のスパークプラグであって、
前記磁性体は、NiZnフェライト、または、MnZnフェライトである、スパークプラグ。 - 請求項1から3のいずれか1項に記載のスパークプラグであって、
前記磁性体構造物は、
1)前記導電体としての、導電性物質と、
2)前記磁性体としての、鉄含有酸化物と、
3)珪素(Si)とホウ素(B)とリン(P)とのうちの少なくとも1つを含むセラミックと、
を含み、
前記磁性体構造物の前記軸線を含む断面において、
前記軸線を中心線とし、前記軸線に垂直な方向の大きさが2.5mmであり、前記軸線の方向の大きさが5.0mmである矩形領域を、対象領域としたときに、
前記対象領域において、前記鉄含有酸化物の領域は、複数の粒状の領域を含み、
前記対象領域において、前記複数の粒状の領域のそれぞれの縁の少なくとも一部は、前記導電性物質によって被覆されており、
前記粒状の領域の前記縁の全長に対する前記導電性物質によって被覆されている部分の長さの割合を被覆率としたときに、前記対象領域において、前記複数の粒状の領域の前記被覆率の平均値は、50%以上である、
スパークプラグ。 - 請求項11に記載のスパークプラグであって、
前記磁性体構造物の前記断面上の前記対象領域のうち、前記鉄含有酸化物の前記領域を除いた残りの領域において、気孔率が5%以下である、
スパークプラグ。 - 請求項11または12に記載のスパークプラグであって、
前記磁性体構造物の前記断面上の前記対象領域内において、前記粒状の領域の面積と同じ面積を有する円の直径が、400μm以上、1500μm以下の範囲内である粒状の領域の総数が、6以上である、
スパークプラグ。 - 請求項11から13のいずれか1項に記載のスパークプラグであって、
前記磁性体構造物の前記断面上の前記対象領域において、前記粒状の領域の縁を被覆する前記導電性物質の最小の厚さは、1μm以上、25μm以下である、スパークプラグ。 - 請求項11から14のいずれか1項に記載のスパークプラグであって、
前記絶縁体の径方向の周囲に配置される主体金具を有し、
前記磁性体構造物は、前記抵抗体の後端側に配置され、
前記磁性体構造物の後端は、前記主体金具の後端よりも後端側に位置している、
スパークプラグ。 - 軸線の方向に延びる貫通孔を有する絶縁体と、
前記貫通孔の先端側に少なくとも一部が挿入された中心電極と、
前記貫通孔の後端側に少なくとも一部が挿入された端子金具と、
前記貫通孔内で、前記中心電極と前記端子金具とを接続する接続部と、
を備えるスパークプラグであって、
前記接続部は、磁性体と導電体とを含む磁性体構造物を含み、
前記磁性体構造物は、
1)前記導電体としての、導電性物質と、
2)前記磁性体としての、鉄含有酸化物と、
3)珪素(Si)とホウ素(B)とリン(P)とのうちの少なくとも1つを含むセラミックと、
を含み、
前記磁性体構造物の前記軸線を含む断面において、
前記軸線を中心線とし、前記軸線に垂直な方向の大きさが2.5mmであり、前記軸線の方向の大きさが5.0mmである矩形領域を、対象領域としたときに、
前記対象領域において、前記鉄含有酸化物の領域は、複数の粒状の領域を含み、
前記対象領域において、前記複数の粒状の領域のそれぞれの縁の少なくとも一部は、前記導電性物質によって被覆されており、
前記粒状の領域の前記縁の全長に対する前記導電性物質によって被覆されている部分の長さの割合を被覆率としたときに、前記対象領域において、前記複数の粒状の領域の前記被覆率の平均値は、50%以上である、
スパークプラグ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480071137.4A CN105849992B (zh) | 2013-12-25 | 2014-12-25 | 火花塞 |
EP14874713.2A EP3089291B1 (en) | 2013-12-25 | 2014-12-25 | Spark plug |
JP2015555022A JP6026022B2 (ja) | 2013-12-25 | 2014-12-25 | スパークプラグ |
US15/108,075 US9590395B2 (en) | 2013-12-25 | 2014-12-25 | Spark plug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-266957 | 2013-12-25 | ||
JP2013266957 | 2013-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015099081A1 true WO2015099081A1 (ja) | 2015-07-02 |
Family
ID=53478924
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/084393 WO2015099082A1 (ja) | 2013-12-25 | 2014-12-25 | スパークプラグ |
PCT/JP2014/084392 WO2015099081A1 (ja) | 2013-12-25 | 2014-12-25 | スパークプラグ |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/084393 WO2015099082A1 (ja) | 2013-12-25 | 2014-12-25 | スパークプラグ |
Country Status (6)
Country | Link |
---|---|
US (2) | US9595814B2 (ja) |
EP (2) | EP3089291B1 (ja) |
JP (2) | JP6026022B2 (ja) |
CN (2) | CN105849991B (ja) |
BR (1) | BR112016015116A2 (ja) |
WO (2) | WO2015099082A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017183122A (ja) * | 2016-03-31 | 2017-10-05 | 日本特殊陶業株式会社 | スパークプラグ |
WO2018105292A1 (ja) * | 2016-12-05 | 2018-06-14 | 日本特殊陶業株式会社 | スパークプラグ |
JP2019036511A (ja) * | 2017-08-22 | 2019-03-07 | 日本特殊陶業株式会社 | スパークプラグ |
US10277012B2 (en) * | 2017-08-22 | 2019-04-30 | Ngk Spark Plug Co., Ltd. | Spark plug including a magnetic substance and a conductor disposed thereon |
JP2019185934A (ja) * | 2018-04-05 | 2019-10-24 | 日本特殊陶業株式会社 | スパークプラグの製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5902757B2 (ja) * | 2014-06-24 | 2016-04-13 | 日本特殊陶業株式会社 | スパークプラグ |
JP2018073588A (ja) * | 2016-10-27 | 2018-05-10 | 日本特殊陶業株式会社 | 点火プラグ |
JP6626473B2 (ja) * | 2017-06-09 | 2019-12-25 | 日本特殊陶業株式会社 | 点火プラグ |
JP6611769B2 (ja) | 2017-09-02 | 2019-11-27 | 日本特殊陶業株式会社 | 点火プラグ |
CN109555630A (zh) * | 2017-09-27 | 2019-04-02 | 三协富有限公司 | 车用点火装置 |
CN108847323B (zh) * | 2018-06-14 | 2019-12-27 | 西北核技术研究所 | 一种用于均压的高压固体电阻及多间隙串联气体开关电极 |
DE102022200450A1 (de) * | 2022-01-17 | 2023-07-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Zündkerzenwiderstandselementanordnung, Verfahren zur Herstellung desselben und Zündkerze für eine Verbrennungskraftmaschine |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS523944A (en) * | 1975-06-24 | 1977-01-12 | Ngk Spark Plug Co Ltd | Ignition plug for preventing electric wave noise |
JPS52125947A (en) * | 1976-04-15 | 1977-10-22 | Hitachi Ltd | Spart plug |
JPS52125946A (en) * | 1976-04-15 | 1977-10-22 | Hitachi Ltd | Spart plug |
JPS54151736A (en) | 1978-05-20 | 1979-11-29 | Ngk Spark Plug Co Ltd | Ignition plug filled with glassy resistor |
JPS54151737A (en) * | 1978-05-20 | 1979-11-29 | Ngk Spark Plug Co Ltd | Noise preventive ignition plug |
JPS56172914U (ja) * | 1980-05-23 | 1981-12-21 | ||
JPS61104580A (ja) | 1984-10-25 | 1986-05-22 | 株式会社デンソー | 点火プラグ |
JPS61135079A (ja) | 1984-12-05 | 1986-06-23 | 株式会社デンソー | 抵抗入点火プラグ |
JPS61208768A (ja) | 1985-03-12 | 1986-09-17 | 株式会社デンソー | 抵抗入りプラグ |
JPS61230281A (ja) | 1985-04-04 | 1986-10-14 | 株式会社デンソー | 点火プラグ |
JPS61284903A (ja) * | 1985-06-11 | 1986-12-15 | 株式会社デンソー | 抵抗入りプラグ用抵抗体の製造方法 |
JPS62150681A (ja) | 1985-12-24 | 1987-07-04 | 株式会社デンソー | 抵抗体入り点火プラグ |
JPH02284374A (ja) | 1989-03-06 | 1990-11-21 | John A Mcdougal | 点火プラグ及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3882341A (en) * | 1974-01-24 | 1975-05-06 | Champion Spark Plug Co | Spark plug with inductive suppressor |
JPS54151735A (en) * | 1978-05-20 | 1979-11-29 | Ngk Spark Plug Co Ltd | Low noise ignition plug |
US4456900A (en) | 1980-05-23 | 1984-06-26 | Tdk Electronics Co., Ltd. | High frequency coil |
JPS6139385A (ja) | 1984-07-28 | 1986-02-25 | 株式会社デンソー | 点火プラグ |
JPS6139386A (ja) * | 1984-07-28 | 1986-02-25 | 株式会社デンソー | 点火プラグ |
US5210458A (en) | 1989-03-06 | 1993-05-11 | Mcdougal John A | Spark plug |
-
2014
- 2014-12-25 EP EP14874713.2A patent/EP3089291B1/en active Active
- 2014-12-25 CN CN201480071112.4A patent/CN105849991B/zh not_active Expired - Fee Related
- 2014-12-25 US US15/108,115 patent/US9595814B2/en active Active
- 2014-12-25 US US15/108,075 patent/US9590395B2/en active Active
- 2014-12-25 WO PCT/JP2014/084393 patent/WO2015099082A1/ja active Application Filing
- 2014-12-25 BR BR112016015116-0A patent/BR112016015116A2/ja not_active IP Right Cessation
- 2014-12-25 JP JP2015555022A patent/JP6026022B2/ja not_active Expired - Fee Related
- 2014-12-25 JP JP2015517549A patent/JP5901850B2/ja not_active Expired - Fee Related
- 2014-12-25 CN CN201480071137.4A patent/CN105849992B/zh not_active Expired - Fee Related
- 2014-12-25 WO PCT/JP2014/084392 patent/WO2015099081A1/ja active Application Filing
- 2014-12-25 EP EP14874467.5A patent/EP3089290B1/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS523944A (en) * | 1975-06-24 | 1977-01-12 | Ngk Spark Plug Co Ltd | Ignition plug for preventing electric wave noise |
JPS52125947A (en) * | 1976-04-15 | 1977-10-22 | Hitachi Ltd | Spart plug |
JPS52125946A (en) * | 1976-04-15 | 1977-10-22 | Hitachi Ltd | Spart plug |
JPS54151736A (en) | 1978-05-20 | 1979-11-29 | Ngk Spark Plug Co Ltd | Ignition plug filled with glassy resistor |
JPS54151737A (en) * | 1978-05-20 | 1979-11-29 | Ngk Spark Plug Co Ltd | Noise preventive ignition plug |
JPS56172914U (ja) * | 1980-05-23 | 1981-12-21 | ||
JPS61104580A (ja) | 1984-10-25 | 1986-05-22 | 株式会社デンソー | 点火プラグ |
JPS61135079A (ja) | 1984-12-05 | 1986-06-23 | 株式会社デンソー | 抵抗入点火プラグ |
JPS61208768A (ja) | 1985-03-12 | 1986-09-17 | 株式会社デンソー | 抵抗入りプラグ |
JPS61230281A (ja) | 1985-04-04 | 1986-10-14 | 株式会社デンソー | 点火プラグ |
JPS61284903A (ja) * | 1985-06-11 | 1986-12-15 | 株式会社デンソー | 抵抗入りプラグ用抵抗体の製造方法 |
JPS62150681A (ja) | 1985-12-24 | 1987-07-04 | 株式会社デンソー | 抵抗体入り点火プラグ |
JPH02284374A (ja) | 1989-03-06 | 1990-11-21 | John A Mcdougal | 点火プラグ及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3089291A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017183122A (ja) * | 2016-03-31 | 2017-10-05 | 日本特殊陶業株式会社 | スパークプラグ |
US9997894B2 (en) | 2016-03-31 | 2018-06-12 | Ngk Spark Plug Co., Ltd. | Spark plug having a resistor element |
WO2018105292A1 (ja) * | 2016-12-05 | 2018-06-14 | 日本特殊陶業株式会社 | スパークプラグ |
JP2018092806A (ja) * | 2016-12-05 | 2018-06-14 | 日本特殊陶業株式会社 | スパークプラグ |
JP2019036511A (ja) * | 2017-08-22 | 2019-03-07 | 日本特殊陶業株式会社 | スパークプラグ |
US10277012B2 (en) * | 2017-08-22 | 2019-04-30 | Ngk Spark Plug Co., Ltd. | Spark plug including a magnetic substance and a conductor disposed thereon |
JP2019185934A (ja) * | 2018-04-05 | 2019-10-24 | 日本特殊陶業株式会社 | スパークプラグの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
BR112016015116A2 (ja) | 2018-06-26 |
EP3089290A4 (en) | 2017-10-11 |
EP3089291B1 (en) | 2020-10-21 |
EP3089290B1 (en) | 2020-03-25 |
EP3089291A1 (en) | 2016-11-02 |
US20160329687A1 (en) | 2016-11-10 |
CN105849992A (zh) | 2016-08-10 |
JPWO2015099082A1 (ja) | 2017-03-23 |
EP3089290A1 (en) | 2016-11-02 |
CN105849991B (zh) | 2017-10-13 |
JPWO2015099081A1 (ja) | 2017-03-23 |
US20160322789A1 (en) | 2016-11-03 |
CN105849991A (zh) | 2016-08-10 |
US9595814B2 (en) | 2017-03-14 |
JP6026022B2 (ja) | 2016-11-16 |
WO2015099082A1 (ja) | 2015-07-02 |
US9590395B2 (en) | 2017-03-07 |
JP5901850B2 (ja) | 2016-04-13 |
EP3089291A4 (en) | 2017-08-30 |
CN105849992B (zh) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6026022B2 (ja) | スパークプラグ | |
US10090646B2 (en) | Spark plug | |
WO2016203713A1 (ja) | スパークプラグ | |
JP2020053175A (ja) | 点火プラグ | |
CN109428266B (zh) | 火花塞 | |
WO2018079089A1 (ja) | 点火プラグ | |
CN109428265B (zh) | 火花塞 | |
JP2020053174A (ja) | 点火プラグ | |
WO2018105292A1 (ja) | スパークプラグ | |
JP2020053173A (ja) | 点火プラグ | |
JP6267779B1 (ja) | スパークプラグ | |
JP2016009568A (ja) | スパークプラグ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874713 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015555022 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014874713 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014874713 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15108075 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016015046 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112016015046 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160627 |