JP2018092806A - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
JP2018092806A
JP2018092806A JP2016235724A JP2016235724A JP2018092806A JP 2018092806 A JP2018092806 A JP 2018092806A JP 2016235724 A JP2016235724 A JP 2016235724A JP 2016235724 A JP2016235724 A JP 2016235724A JP 2018092806 A JP2018092806 A JP 2018092806A
Authority
JP
Japan
Prior art keywords
conductive layer
ceramic phase
particles
magnetic particles
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2016235724A
Other languages
English (en)
Inventor
和浩 黒澤
Kazuhiro Kurosawa
和浩 黒澤
勝哉 高岡
Katsuya Takaoka
勝哉 高岡
邦治 田中
Kuniharu Tanaka
邦治 田中
啓一 黒野
Keiichi Kurono
啓一 黒野
裕則 上垣
Hironori Uegaki
裕則 上垣
広大 横山
Kodai Yokoyama
広大 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016235724A priority Critical patent/JP2018092806A/ja
Priority to PCT/JP2017/040226 priority patent/WO2018105292A1/ja
Publication of JP2018092806A publication Critical patent/JP2018092806A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes

Landscapes

  • Spark Plugs (AREA)

Abstract

【課題】電波ノイズを抑制できるスパークプラグを提供すること。【解決手段】絶縁体は先端側から後端側へと軸線の方向に延びる軸孔を有する。中心電極は軸孔の先端側に少なくとも一部が挿入され、端子金具は軸孔の後端側に少なくとも一部が挿入される。接続部は、端子金具と中心電極とを軸孔内で接続し、フェライトの粒子と、粒子を被覆する導電性物質と、をそれぞれ備える複数の磁性粒子を含み、複数の磁性粒子のうちの任意の2つの磁性粒子の導電性物質が接する導電層部を有する。導電層部は、端から端までの直線距離は100μm以上であり、厚さは2μm以上である。【選択図】図3

Description

本発明はスパークプラグに関し、特に磁性体を内蔵したスパークプラグに関するものである。
放電時に発生する電波ノイズを抑えるために、絶縁体に抵抗体を内蔵したスパークプラグがある。また、絶縁体に磁性体を内蔵したスパークプラグも提案されている。
特開平2−284374号公報 特開昭62−150681号公報 特開昭61−230281号公報 特開昭54−151736号公報 特開昭61−135079号公報 特開昭61−104580号公報 特開昭61−208768号公報
しかしながら、上記従来の技術では、磁性体を用いて電波ノイズを抑制する点について十分な工夫がなされていない。
本発明は上述した問題点を解決するためになされたものであり、電波ノイズを抑制できるスパークプラグを提供することを目的としている。
この目的を達成するために本発明のスパークプラグは、先端側から後端側へと軸線の方向に延びる軸孔を有する絶縁体と、軸孔の先端側に少なくとも一部が挿入された中心電極と、軸孔の後端側に少なくとも一部が挿入された端子金具と、端子金具と中心電極とを軸孔内で接続する接続部と、を備えている。接続部は、フェライトの粒子と、粒子を被覆する導電性物質と、をそれぞれ備える複数の磁性粒子を含み、複数の磁性粒子のうちの任意の2つの磁性粒子の導電性物質が接する導電層部を有し、導電層部は、端から端までの直線距離が100μm以上であり、厚さは2μm以上である。
請求項1記載のスパークプラグによれば、絶縁体は先端側から後端側へと軸線の方向に延びる軸孔を有する。中心電極は軸孔の先端側に少なくとも一部が挿入され、端子金具は軸孔の後端側に少なくとも一部が挿入される。接続部は、端子金具と中心電極とを軸孔内で接続する。接続部は、フェライトの粒子と、粒子を被覆する導電性物質と、をそれぞれ備える複数の磁性粒子を含み、複数の磁性粒子のうちの任意の2つの磁性粒子の導電性物質が接する導電層部を有する。導電層部は、端から端までの直線距離は100μm以上であり、厚さは2μm以上なので、導電層部を損傷させることなく接続部に放電電流を流すことができる。フェライトは、放電電流のうち電波ノイズの原因となる周波数帯を遮断または吸収するので、電波ノイズを抑制できる効果がある。
請求項2記載のスパークプラグによれば、導電層部は厚さが40μm以下である。電波ノイズの原因となる高周波帯の電流は、表皮効果によって、粒子から離れた導電層部の表面を流れ易い。電流が流れる導電層部の表面とフェライトの粒子との距離が大きくなるとノイズ減衰効果が低下する。しかし、導電層部の厚さが40μm以下なので、請求項1の効果に加え、高周波帯の放電電流による電波ノイズを抑制できる効果がある。
請求項3記載のスパークプラグによれば、接続部は、複数の磁性粒子の周囲に、ケイ素、ホウ素およびリンのうちの少なくとも1種と、アルカリ金属およびアルカリ土類金属のうちの少なくとも1種とを含むセラミック相を備えている。セラミック相によって磁性粒子を固定できるので、請求項1又は2の効果に加え、耐衝撃性を確保できる効果がある。
請求項4記載のスパークプラグによれば、セラミック相は気孔率が5%以下なので、請求項3の効果に加え、耐衝撃性をさらに向上できる効果がある。
請求項5記載のスパークプラグによれば、セラミック相は磁性粒子とは異なるフェライトを含有しているので、磁性粒子によるノイズ減衰効果に加え、セラミック相によるノイズ減衰効果が得られる。よって、請求項3又は4の効果に加え、ノイズ減衰効果を向上できる効果がある。
本発明の一実施の形態におけるスパークプラグの片側断面図である。 接続部の模式図である。 図1のIIIで示す部分を拡大して示した接続部の断面図である。
以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の一実施の形態におけるスパークプラグ10の片側断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。スパークプラグ10は、絶縁体11、中心電極14及び端子金具15を備えている。
絶縁体11は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された部材であり、軸線Oに沿って貫通する軸孔12が形成されている。軸孔12は、先端に向かって内径が次第に小さくなる段部13が先端側に設けられている。
中心電極14は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われている。中心電極14は、軸孔12の段部13に係止され、先端が軸孔12から露出する。
端子金具15は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具15は、先端側が軸孔12に圧入された状態で、絶縁体11の後端に固定されている。
絶縁体11は、端子金具15と軸線O方向に間隔をあけて、外周の先端側に主体金具16が加締め固定されている。主体金具16は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具16は、径方向の外側へ鍔状に張り出す座部17と、座部17より先端側の外周面に形成されたねじ部18とを備えている。主体金具16は、内燃機関(シリンダヘッド)のねじ穴(図示せず)にねじ部18を締結して固定される。
接地電極19は、主体金具16の先端に接合される金属製(例えばニッケル基合金製)の部材である。本実施の形態では、接地電極19は棒状に形成されており、先端側が屈曲し中心電極14と対向する。接地電極19は、中心電極14との間に火花ギャップを形成する。
接続部20は、中心電極14と端子金具15とを電気的に接続する部位であり、軸孔12に配置されている。接続部20は、中心電極14と複合部23とに接触する第1シール部21と、複合部23と端子金具15とに接触する第2シール部22と、磁性体と導電体とを含む複合部23とを備えている。
第1シール部21及び第2シール部22は、例えばB−SiO系、BaO−B系、SiO−B−CaO−BaO系などのガラス粒子と金属粒子(Cu,Fe等)とを含む組成物で形成されており、導電性を有している。複合部23は放電時に生じる電波ノイズを抑制するための部位である。
図2は接続部20の模式図である。接続部20は、第1シール部21、複合部23及び第2シール部22が直列に接続されている。複合部23は、導電性を有する複数の磁性粒子24と、磁性粒子24を固定するセラミック相28とを備えている。複合部23の先端に存在する磁性粒子24は第1シール部21に接触し、複合部23の後端に存在する磁性粒子24は第2シール部22に接触する。磁性粒子24は互いに接触して、第1シール部21と第2シール部22とを電気的に接続する3次元的な導電経路を形成する。磁性粒子24が形成した導電経路はセラミック相28によって固定される。
図3は図1のIIIで示す部分を拡大して示した接続部20の断面図である。磁性粒子24は、フェライト(軟磁性体)の粒子25と、粒子25を被覆する導電性物質26とを備えている。
粒子25は、例えばスピネル型、ガーネット型等のフェライトで形成されている。粒子25は、フェライトの複数の一次粒子が凝集した二次粒子、フェライトが表面拡散し粒成長した一次粒子等が用いられる。フェライトは、放電時に第1シール部21と第2シール部22との間を流れる電流のうち電波ノイズの原因となる周波数帯を遮断または吸収する。
フェライトは、例えばMnFe2−X,NiFe2−X,CuFe2−X,ZnFe2−X,CoFe2−X,FeFe2−X,CaFe2−X,MgFe2−X,YFe12,DyFe12,LuFe12,YbFe12,TmFe12,ErFe12,HoFe12,TbFe12,GdFe12,SmFe12等の単元フェライト、これらの単元フェライトが任意の割合で互いに固溶した(Mn1−XZn)Fe,(Ni1−XZn)Fe等の複合フェライトが挙げられる。これらのフェライトのうち1種ないしは複数種を適宜選択して用いることができる。
粒子25は、平均粒径が0.5mm〜2mm程度のものが好適に用いられる。粒子25の平均粒径は、SEM画像(加速電圧15kV)を画像処理により2値化して得られる投影面積を用いて算出される球の平均径である。
導電性物質26は、粒子25の表面を被覆する導電体である。導電性物質26は、例えばNi,Cu,Sn,Fe,インコネル(INCONELは登録商標)等の金属、LaMnO,SrTiO,SrCrO等の導電性または半導性の複合酸化物、炭素、Cr,TiC等の炭素化合物等が用いられる。これらの導電性物質のうち1種ないしは複数種を適宜選択して用いることができる。
粒子25の表面を導電性物質26で覆う手段としては、公知の手段を適宜採用できる。例えば、導電性物質26の粒子を粒子25と共に混合・撹拌して機械的に粒子25の表面に付着させたり、バインダ等を用いて導電性物質26の粒子を粒子25の表面に付着させたり、無電解メッキによって導電性物質26を粒子25の表面に析出させたりする手段が挙げられる。
磁性粒子24は、隣り合う磁性粒子24との間で導電性物質26同士が接する導電層部27を形成する。導電層部27は、2つの磁性粒子24の導電性物質26同士が単に接触している形態、2つの磁性粒子24の導電性物質26同士が融着している形態など、導電経路を形成する任意の形態が含まれる。磁性粒子24の導電性物質26が導電層部27で接続され、第1シール部21と第2シール部22とを電気的に接続する3次元の導電経路が複合部23に形成される。
放電時に接続部20に流れる放電電流は、磁性粒子24の導電性物質26と導電層部27とを通る。導電性物質26及び導電層部27を流れる電流のうち電波ノイズの原因となる周波数帯の電流は、粒子25を構成するフェライトのインピーダンスや磁気損失等によって遮断または吸収される。その結果、電波ノイズを抑制できる。
導電層部27は、導電層部27の端から端までを結んだ最短の直線距離Dが100μm以上、粒子25の表面と交差する方向の最小の厚さTが2μm以上とされる。導電層部27の直線距離Dは、複合部23の軸線Oと平行な断面から求められる。一つの導電層部27は3次元的に延びる線状または面状に形成されており、複合部23の複数か所に導電層部27が存在する。そこで、導電層部27の直線距離Dは、軸線Oと直交する深さ方向に位置(深さ)の異なる複数の断面を作り、各断面において複数か所に存在する導電層部27を一つずつ観察して、各々の導電層部27の両端を特定して求めることができる。
導電層部27の直線距離Dは、複合部23に存在する10個の導電層部27の平均値である。複合部23に11個以上の導電層部27が存在する場合には、直線距離Dの長いものから順に選択した10個の導電層部27の直線距離Dの平均値とする。
導電層部27の厚さTは、導電層部27の直線距離Dと同様に、複合部23の軸線Oと平行な断面から求められる。厚さTは、軸線Oと直交する深さ方向に位置(深さ)の異なる複数の断面を作り、各断面において複数か所に存在する導電層部27を一つずつ観察して求められる。導電層部27の厚さTは、複合部23に存在する10個の導電層部27の平均値である。複合部23に11個以上の導電層部27が存在する場合には、厚さTの厚いものから順に選択した10個の導電層部27の厚さTの平均値とする。
導電層部27は直線距離Dが100μm以上、厚さTが2μm以上とされるので、導電層部27を損傷させることなく複合部23に放電電流を流すことができる。ここで、導電層部27の直線距離Dが100μm未満か、厚さTが2μm未満であると、その部分が電流によって発熱して導電層部27が断線したりセラミック相28が溶けたりするおそれがある。セラミック相28が溶けると、導電層部27が圧迫されて断線し易くなったり耐衝撃性が低下したりする可能性がある。導電層部27の直線距離Dを100μm以上、厚さTを2μm以上とすることにより、接続部20の耐久性を確保できる。
なお、複合部23に形成される全ての導電層部27の直線距離Dが100μm以上、且つ、全ての導電層部27の厚さTが2μm以上であると、接続部20の耐久性をより向上できるので好ましい。但し、第1シール部21と第2シール部22とを電気的に接続する導電経路でない部分は、磁性粒子24の導電性物質26同士が接触していても導電層部ではない。
また、導電層部27は厚さTが40μm以下であるのが好ましい。電波ノイズの原因となる高周波帯の電流は、表皮効果によって、粒子25から離れた導電層部27の表面を流れ易い。電流が流れる導電層部27の表面とフェライトの粒子25との距離が大きくなるとノイズ減衰効果が低下する。従って、導電層部27の厚さを40μm以下にすることにより、表皮効果によるノイズ減衰効果の低下を防ぐことができ、高周波帯の放電電流が原因の電波ノイズを抑制できる。
セラミック相28は磁性粒子24を複合部23に固定するための部分である。セラミック相28は、高温下の強度や絶縁性をある程度確保できれば、任意の材質を採用できる。セラミック相28は、例えばSiO,Al等が用いられる。また、LiO−Al−SiO系ガラス等の結晶化ガラスをセラミック相28に用いることも可能である。
なお、セラミック相28は、ケイ素(Si)、ホウ素(B)及びリン(P)のうちの少なくとも1種と、アルカリ金属およびアルカリ土類金属のうちの少なくとも1種と、を含むと好ましい。セラミック相28の軟化点を低下させセラミック相28をガラス化できるので、磁性粒子24を強固に固定することができ、耐衝撃性を確保できるからである。
セラミック相28は気孔を有していると、スパーク時にセラミック相28の気孔の部分で放電が生じる可能性がある。気孔の部分で生じる放電は、セラミック相28を劣化させる可能性があり、また電波ノイズの原因となる可能性がある。セラミック相28の気孔率が5%以下であると、スパーク時にセラミック相28で生じる可能性のある放電を抑制することができる。その結果、放電によるセラミック相28の劣化を抑制できると共に、セラミック相28の放電が原因の電波ノイズを抑制できる。また、気孔が少ないとセラミック相28による磁性粒子24の固定を強固にできるので、耐衝撃性を向上できる。
セラミック相28は、フェライトを含有するのが好ましい。磁性粒子24によるノイズ減衰効果に加え、セラミック相28が含有するフェライトによるノイズ減衰効果が得られるからである。
セラミック相28が含有するフェライトは、粒子25を構成するフェライトと同様に、例えばMnFe2−X,NiFe2−X,CuFe2−X,ZnFe2−X,CoFe2−X,FeFe2−X,CaFe2−X,MgFe2−X,YFe12,DyFe12,LuFe12,YbFe12,TmFe12,ErFe12,HoFe12,TbFe12,GdFe12,SmFe12等の単元フェライト、これらの単元フェライトが任意の割合で互いに固溶した(Mn1−XZn)Fe,(Ni1−XZn)Fe等の複合フェライトが挙げられる。これらのフェライトのうち1種ないしは複数種を適宜選択して用いることができる。セラミック相28が含有するフェライトは、粒子25を構成するフェライトと同じ種類のものや異なる種類のものを適宜選択できる。
スパークプラグ10は、例えば、以下のような方法によって製造される。まず、絶縁体11の軸孔12に中心電極14を挿入し、中心電極14を段部13で係止する。次に、第1シール部21の原料粉末を軸孔12から入れて、中心電極14の周りに充填する。圧縮用棒材(図示せず)を用いて、軸孔12に充填した第1シール部21の原料粉末を予備圧縮する。
成形された第1シール部21の原料粉末の成形体の上に、セラミック相28の原料粉末と磁性粒子24とを混合した複合部23の原料粉末を充填する。磁性粒子24は、フェライトの一次粒子が凝集した二次粒子(粒子25)に、バインダを用いて導電性物質26の粒子を付着させたり、無電解メッキによって導電性物質26を析出させたりして得られる。軸孔12に充填した複合部23の原料粉末を、圧縮用棒材(図示せず)を用いて予備圧縮する。
次に、複合部23の原料粉末の上に、第2シール部22の原料粉末を充填する。圧縮用棒材(図示せず)を用いて、軸孔12に充填した第2シール部22の原料粉末を予備圧縮する。
次いで、第1シール部21、複合部23及び第2シール部22の原料粉末を順に充填した絶縁体11を炉内に移送し、例えば第1シール部21及び第2シール部22の各原料粉末に含まれるガラス成分の軟化点より高い温度まで加熱する。加熱後、絶縁体11の軸孔12に端子金具15を圧入し、端子金具15の先端によって第1シール部21、複合部23及び第2シール部22の原料粉末を軸方向へ圧縮する。この結果、各原料粉末が圧縮・焼結され、絶縁体11の内部に第1シール部21、複合部23及び第2シール部22が形成される。
次に絶縁体11を炉外へ移送し、絶縁体11の外周に主体金具16を組み付ける。接地電極19を主体金具16に接合した後、接地電極19の先端が中心電極14と対向するように接地電極19を屈曲して、スパークプラグ10を得る。
複合部23の導電層部27の直線距離Dや厚さTは、端子金具15を用いて第1シール部21、複合部23及び第2シール部22の原料粉末を軸方向へ圧縮するときの荷重によって調整できる。また、第1シール部21及び第2シール部22を軟化させるときの温度を変えたり、セラミック相28の原料粉末に含まれるガラス成分の種類を変えたりしても導電層部27の直線距離Dや厚さTを調整できる。
セラミック相28の気孔率は、複合部23の原料粉末を軸方向へ圧縮するときの荷重によって調整できる。また、第1シール部21及び第2シール部22を軟化させるときの温度を変えたり、セラミック相28の原料粉末に含まれるガラス成分の種類を変えたりしても気孔率を調整できる。
本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。
実施の形態で説明したスパークプラグのサンプルを作成し、放電電流のレベル、放電試験前後の抵抗の変化率、耐衝撃性試験後の異状の有無を評価した。作成したサンプル1〜18の磁性粒子24の組成、導電層部27の直線距離D及び厚さT、セラミック相28のAl以外の含有物(元素)及び気孔率、セラミック相28に含まれるフェライトの組成、並びに評価結果を表1に示す。
Figure 2018092806
磁性粒子24の組成は、ICP(Inductively Coupled Plasma)、微小部X線回折(Micro Area X-ray Diffraction)及びEPMA(Electron Probe Micro Analyzer)によって特定した。なお、表1にはフェライト及び導電性物質26の組成のみを示した。磁性粒子24には、製造工程で混入する微量(例えば1ppm程度)の種々の不純物が含まれ得る。
導電層部27の直線距離D及び厚さTは、SEMを用いて軸線と平行な複合部23の研磨断面を複数観察して求めた。複数の断面から導電層部27の両端を3次元的に特定し、その端と端との直線距離Dを求めた。直線距離Dは、直線距離Dの長いものから順に選択した10か所の導電層部27の直線距離Dの平均値である。厚さTは、厚さTの厚いものから順に選択した10か所の導電層部27の厚さTの平均値である。
セラミック相28のAl以外の含有物(元素)は、セラミック相28の原料粉末から特定した。ICP,EPMA等を用いてセラミック相28の断面を分析して含有物(元素)を特定しても良い。表1に含有物(元素)が示されていないサンプルのセラミック相28はAlであった。なお、表1には、ケイ素、ホウ素、リン、アルカリ金属およびアルカリ土類金属に該当する元素のみを示した。
アルカリ金属やアルカリ土類金属のセラミック相28における含有率(ICPによる分析結果)は0.1〜9wt%の範囲であった。この含有率は、アルカリ金属やアルカリ土類金属の量をアルカリ金属やアルカリ土類金属の酸化物に換算して得られる含有率である。セラミック相28には、製造工程で混入する微量(例えば1ppm程度)の種々の不純物が含まれ得る。
セラミック相28の気孔率は、セラミック相28の断面(1視野200μm×200μmの領域)のSEM画像(加速電圧15kV)を画像処理により2値化して求めた。表1に記載した数値は10視野の気孔率の平均値である。
セラミック相28に含まれるフェライトの組成は微小部X線回折により特定した。フェライトのセラミック相28における含有率(ICPによる分析結果)は5〜50wt%の範囲であった。
なお、ケイ素、ホウ素、リン、アルカリ金属およびアルカリ土類金属に該当する元素をセラミック相28が含まないサンプル1〜4,14〜18(セラミック相28はAl)は、気孔率が10%以上あったので、表1に気孔率を示さなかった。
放電電流のレベルは、JASO D002−2(2004年)「自動車−電波雑音特性−第2部:防止器の測定方法 電流法」に従って測定した。具体的には、各サンプルの中心電極14と接地電極19との火花ギャップの距離を0.9mm±0.01mmに調整し、13kVから16kVの範囲内の電圧を端子金具15と主体金具17との間に印加して放電させた。電流プローブを用いて放電時に端子金具15を流れる電流を測定し、30MHz,100MHz,200MHzにおける放電電流のレベル(所定の基準に対する換算値(単位:dB))を算出し、その3つの値の平均値を求めた。評価は、平均値が55dB以下を「◎:優れる」、55dBより大きく65dB以下を「〇:良い」、65dBより大きく75dB以下を「△:満足できる」、75dBより大きいものを「×:劣る」とした。
放電試験は、各サンプルの中心電極14と接地電極19との火花ギャップの距離を0.9mm±0.01mmに調整し、400℃のチャンバー内に各サンプルを保管した状態で、25kVの電圧を端子金具15と主体金具16との間に印加して放電させる試験であった。毎秒60回の割合で放電させる試験を100時間行った後、試験前の端子金具15と中心電極14との間の抵抗(R1)に対する試験後の端子金具15と中心電極14との間の抵抗(R2)の変化率((R2−R1)/R1×100)を求めた。評価は、抵抗の変化率が±10%以下を「◎:優れる」、変化率が±50%以下を「〇:良い」、変化率が±50%を超えるものを「×:劣る」とした。
耐衝撃性は、JIS B8031(2006年)7.4項 耐衝撃性試験に準じて評価した。各サンプルを試験装置に取り付け、毎分400回の割合(振動振幅22mm)で10分間衝撃を加えた後、端子金具15と中心電極14との間の導通を調べた。サンプル数は20であり、異状率(%)は20個のサンプルのうち導通を確認できなかった(断線した)割合である。
表1の「放電電流のレベル」に示すように、フェライトの粒子25が導電性物質26で覆われた磁性粒子24を備えるサンプル1〜15,16,18は、アルミナの粒子が導電性物質で覆われたサンプル17に比べ、放電時の30MHz,100MHz,200MHzにおける電流のレベルを小さくすることができた。サンプル1〜15,16,18は、電波ノイズの原因となる高周波数帯の電流のレベルを小さくできるので、電波ノイズを抑制できることが明らかである。
特に、セラミック相28にフェライトを含有するサンプル11〜13は、セラミック相28にフェライトを含有しないサンプル1〜10,14〜16,18に比べ、放電時の30MHz,100MHz,200MHzにおける電流のレベルを小さくすることができた。サンプル11〜13は、セラミック相28のフェライトによって、電波ノイズの原因となる高周波数帯の電流のレベルをさらに小さくできるので、電波ノイズの抑制効果をさらに向上できる。
なお、サンプル16はサンプル1〜15,18に比べて放電時の電流のレベルを小さくできなかった。サンプル1〜15,18は導電層部27の厚さが1〜40μmなのに対し、サンプル16の導電層部27の厚さは60μmであった。サンプル16は導電層部27が厚いので、電流が流れ易い導電層部27の表面と粒子25との距離が大きくなり、30MHz,100MHz,200MHzの電流をフェライト(粒子25)が遮断したり吸収したりする効果が低下したと推察される。
表1の「放電試験」に示すように、導電層部27の直線距離が100μm以上、且つ、導電層部27の厚さが2μm以上のサンプル1〜13は、導電層部の直線距離が100μm未満、又は、導電層部の厚さが2μm未満のサンプル14,15,18に比べ、放電試験前後の抵抗の変化率を小さくすることができた。サンプル14,15,18は導電層部の直線距離が100μm未満、又は、導電層部の厚さが2μm未満(いずれも平均値)なので、導電層部のうちの細い部分が放電電流によって発熱し、その部分が溶融したり、その部分の周囲のセラミック相が溶融して導電層部を変形させたりして、抵抗が変化したと推察される。
一方、サンプル1〜13は、導電層部27の直線距離が100μm以上、且つ、導電層部27の厚さが2μm以上(いずれも平均値)なので、放電電流が流れることによる導電層部27の損傷を防ぐことができ、複合部23の抵抗の変化を抑制できた。
特に、Si,B,Pのうちの少なくとも1種と、アルカリ金属およびアルカリ土類金属のうちの少なくとも1種とをセラミック相28に含むサンプル5〜13は、抵抗の変化率を±5%以下にできた。これは、サンプル5〜13のセラミック相28の気孔率は10%未満と小さいので、仮に導電層部27のうちの細い部分が放電電流によって発熱したとしても、その部分(導電層部)が変形する余地(セラミック相の気孔)が少ないため、抵抗が変化し難いと推察される。
表1の「耐衝撃性」に示すように、セラミック相28の気孔率が5%以下のサンプル8〜13は、耐衝撃性の評価において異状率を0%にすることができた。セラミック相28の気孔率を5%以下にすることにより、セラミック相28により磁性粒子24を強固に固定し、磁性粒子24による導電経路を確保できたと推察される。
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
上記実施の形態では、接続部20において軸孔12に充填されたセラミック相28によって磁性粒子24が固定化される場合について説明したが、必ずしもこれに限られるものではない。セラミック相28を省略して、軸孔12に磁性粒子24を充填しても、磁性粒子24による電波ノイズの抑制効果は得られる。従って、セラミック相28は当然に省略できる。
上記実施の形態では、第1シール部21及び第2シール部22が接続部20に設けられる場合について説明したが、必ずしもこれに限られるものではない。第1シール部21及び第2シール部22を省略することは当然可能である。磁性粒子24はフェライトの粒子25が導電性物質26で覆われているので、第1シール部21及び第2シール部22を省略しても、磁性粒子24を含有する接続部20と中心電極14や端子電極15との電気的な接続を確保できるからである。
第1シール部21及び第2シール部22を省略する場合には、接続部20のうち中心電極14や端子電極15と接触する部分に、B−SiO系、BaO−B系、SiO−B−CaO−BaO系などのガラス粒子を磁性粒子24に混合したものを配置できる。これにより、磁性粒子24を含有する接続部20と中心電極14や端子電極15との電気的な接続と気密性とを確保できる。接続部20のうち中心電極14や端子電極15と接触する部分に、さらに金属粒子(Cu,Fe等)を加えることは当然可能である。中心電極14や端子電極15と接続部20との接触抵抗を低減するためである。
上記実施の形態では、スパークプラグ10の製造方法として、第1シール部21、複合部23及び第2シール部22の原料粉末を軸孔12に充填した絶縁体11を炉内で加熱して接続部20を形成する場合を例示したが、必ずしもこれに限られるものではない。例えば、成形型を用いて複合部23の原料粉末を円柱状に成形し、その成形体を焼成して予め複合部23を形成することが可能である。その場合には、第1シール部21の原料粉末、焼成された複合部23、第2シール部22の原料粉末を順に絶縁体11の軸孔12に充填し、絶縁体11を炉内で加熱した状態で端子金具15を軸孔12に圧入して、接続部20を形成する。
上記実施の形態では、中心電極14の先端に接地電極19が対向するスパークプラグ10について説明したが、スパークプラグの構造は必ずしもこれに限られるものではない。スパークプラグの他の構造としては、例えば、中心電極14の側面に接地電極19が対向するスパークプラグ、主体金具17に複数の接地電極19を接合した多極のスパークプラグが挙げられる。
10 スパークプラグ
11 絶縁体
12 軸孔
14 中心電極
15 端子金具
20 接続部
24 磁性粒子
25 粒子
26 導電性物質
27 導電層部
28 セラミック相
D 直線距離
O 軸線
T 厚さ
本発明はスパークプラグに関し、特に磁性体を内蔵したスパークプラグに関するものである。
放電時に発生する電波ノイズを抑えるために、絶縁体に抵抗体を内蔵したスパークプラグがある。また、絶縁体に磁性体を内蔵したスパークプラグも提案されている。
特開平2−284374号公報 特開昭62−150681号公報 特開昭61−230281号公報 特開昭54−151736号公報 特開昭61−135079号公報 特開昭61−104580号公報 特開昭61−208768号公報
しかしながら、上記従来の技術では、磁性体を用いて電波ノイズを抑制する点について十分な工夫がなされていない。
本発明は上述した問題点を解決するためになされたものであり、電波ノイズを抑制できるスパークプラグを提供することを目的としている。
この目的を達成するために本発明のスパークプラグは、先端側から後端側へと軸線の方向に延びる軸孔を有する絶縁体と、軸孔の先端側に少なくとも一部が挿入された中心電極と、軸孔の後端側に少なくとも一部が挿入された端子金具と、端子金具と中心電極とを軸孔内で接続する接続部と、を備えている。接続部は、フェライトの粒子と、粒子を被覆する導電性物質と、をそれぞれ備える複数の磁性粒子を含み、複数の磁性粒子は、互いに接触して中心電極と端子金具とを電気的に接続する導電経路を形成する。導電経路は、導電性物質が互いに接する導電層部を備え、導電層部は、端から端までの直線距離が100μm以上であり、厚さ2μm以上である。
請求項1記載のスパークプラグによれば、絶縁体は先端側から後端側へと軸線の方向に延びる軸孔を有する。中心電極は軸孔の先端側に少なくとも一部が挿入され、端子金具は軸孔の後端側に少なくとも一部が挿入される。接続部は、端子金具と中心電極とを軸孔内で接続する。接続部は、フェライトの粒子と、粒子を被覆する導電性物質と、をそれぞれ備える複数の磁性粒子を含み、磁性粒子の導電性物質が接する導電層部を有する。導電層部は、端から端までの直線距離100μm以上であり、厚さ2μm以上なので、導電層部を損傷させることなく接続部に放電電流を流すことができる。フェライトは、放電電流のうち電波ノイズの原因となる周波数帯を遮断または吸収するので、電波ノイズを抑制できる効果がある。
請求項2記載のスパークプラグによれば、導電層部は厚さが40μm以下である。電波ノイズの原因となる高周波帯の電流は、表皮効果によって、粒子から離れた導電層部の表面を流れ易い。電流が流れる導電層部の表面とフェライトの粒子との距離が大きくなるとノイズ減衰効果が低下する。しかし、導電層部の厚さが40μm以下なので、請求項1の効果に加え、高周波帯の放電電流による電波ノイズを抑制できる効果がある。
請求項3記載のスパークプラグによれば、接続部は、複数の磁性粒子の周囲に、ケイ素、ホウ素およびリンのうちの少なくとも1種と、アルカリ金属およびアルカリ土類金属のうちの少なくとも1種とを含むセラミック相を備えている。セラミック相によって磁性粒子を固定できるので、請求項1又は2の効果に加え、耐衝撃性を確保できる効果がある。
請求項4記載のスパークプラグによれば、セラミック相は気孔率が5%以下なので、請求項3の効果に加え、耐衝撃性をさらに向上できる効果がある。
請求項5記載のスパークプラグによれば、セラミック相は磁性粒子とは異なるフェライトを含有しているので、磁性粒子によるノイズ減衰効果に加え、セラミック相によるノイズ減衰効果が得られる。よって、請求項3又は4の効果に加え、ノイズ減衰効果を向上できる効果がある。
本発明の一実施の形態におけるスパークプラグの片側断面図である。 接続部の模式図である。 図1のIIIで示す部分を拡大して示した接続部の断面図である。
以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の一実施の形態におけるスパークプラグ10の片側断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。スパークプラグ10は、絶縁体11、中心電極14及び端子金具15を備えている。
絶縁体11は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された部材であり、軸線Oに沿って貫通する軸孔12が形成されている。軸孔12は、先端に向かって内径が次第に小さくなる段部13が先端側に設けられている。
中心電極14は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われている。中心電極14は、軸孔12の段部13に係止され、先端が軸孔12から露出する。
端子金具15は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具15は、先端側が軸孔12に圧入された状態で、絶縁体11の後端に固定されている。
絶縁体11は、端子金具15と軸線O方向に間隔をあけて、外周の先端側に主体金具16が加締め固定されている。主体金具16は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具16は、径方向の外側へ鍔状に張り出す座部17と、座部17より先端側の外周面に形成されたねじ部18とを備えている。主体金具16は、内燃機関(シリンダヘッド)のねじ穴(図示せず)にねじ部18を締結して固定される。
接地電極19は、主体金具16の先端に接合される金属製(例えばニッケル基合金製)の部材である。本実施の形態では、接地電極19は棒状に形成されており、先端側が屈曲し中心電極14と対向する。接地電極19は、中心電極14との間に火花ギャップを形成する。
接続部20は、中心電極14と端子金具15とを電気的に接続する部位であり、軸孔12に配置されている。接続部20は、中心電極14と複合部23とに接触する第1シール部21と、複合部23と端子金具15とに接触する第2シール部22と、磁性体と導電体とを含む複合部23とを備えている。
第1シール部21及び第2シール部22は、例えばB−SiO系、BaO−B系、SiO−B−CaO−BaO系などのガラス粒子と金属粒子(Cu,Fe等)とを含む組成物で形成されており、導電性を有している。複合部23は放電時に生じる電波ノイズを抑制するための部位である。
図2は接続部20の模式図である。接続部20は、第1シール部21、複合部23及び第2シール部22が直列に接続されている。複合部23は、導電性を有する複数の磁性粒子24と、磁性粒子24を固定するセラミック相28とを備えている。複合部23の先端に存在する磁性粒子24は第1シール部21に接触し、複合部23の後端に存在する磁性粒子24は第2シール部22に接触する。磁性粒子24は互いに接触して、第1シール部21と第2シール部22とを電気的に接続する3次元的な導電経路を形成する。磁性粒子24が形成した導電経路はセラミック相28によって固定される。
図3は図1のIIIで示す部分を拡大して示した接続部20の断面図である。磁性粒子24は、フェライト(軟磁性体)の粒子25と、粒子25を被覆する導電性物質26とを備えている。
粒子25は、例えばスピネル型、ガーネット型等のフェライトで形成されている。粒子25は、フェライトの複数の一次粒子が凝集した二次粒子、フェライトが表面拡散し粒成長した一次粒子等が用いられる。フェライトは、放電時に第1シール部21と第2シール部22との間を流れる電流のうち電波ノイズの原因となる周波数帯を遮断または吸収する。
フェライトは、例えばMnFe2−X,NiFe2−X,CuFe2−X,ZnFe2−X,CoFe2−X,FeFe2−X,CaFe2−X,MgFe2−X,YFe12,DyFe12,LuFe12,YbFe12,TmFe12,ErFe12,HoFe12,TbFe12,GdFe12,SmFe12等の単元フェライト、これらの単元フェライトが任意の割合で互いに固溶した(Mn1−XZn)Fe,(Ni1−XZn)Fe等の複合フェライトが挙げられる。これらのフェライトのうち1種ないしは複数種を適宜選択して用いることができる。
粒子25は、平均粒径が0.5mm〜2mm程度のものが好適に用いられる。粒子25の平均粒径は、SEM画像(加速電圧15kV)を画像処理により2値化して得られる投影面積を用いて算出される球の平均径である。
導電性物質26は、粒子25の表面を被覆する導電体である。導電性物質26は、例えばNi,Cu,Sn,Fe,インコネル(INCONELは登録商標)等の金属、LaMnO,SrTiO,SrCrO等の導電性または半導性の複合酸化物、炭素、Cr,TiC等の炭素化合物等が用いられる。これらの導電性物質のうち1種ないしは複数種を適宜選択して用いることができる。
粒子25の表面を導電性物質26で覆う手段としては、公知の手段を適宜採用できる。例えば、導電性物質26の粒子を粒子25と共に混合・撹拌して機械的に粒子25の表面に付着させたり、バインダ等を用いて導電性物質26の粒子を粒子25の表面に付着させたり、無電解メッキによって導電性物質26を粒子25の表面に析出させたりする手段が挙げられる。
磁性粒子24は、隣り合う磁性粒子24との間で導電性物質26同士が接する導電層部27を形成する。導電層部27は、2つの磁性粒子24の導電性物質26同士が単に接触している形態、2つの磁性粒子24の導電性物質26同士が融着している形態など、導電経路を形成する任意の形態が含まれる。磁性粒子24の導電性物質26が導電層部27で接続され、第1シール部21と第2シール部22とを電気的に接続する3次元の導電経路が複合部23に形成される。
放電時に接続部20に流れる放電電流は、磁性粒子24の導電性物質26と導電層部27とを通る。導電性物質26及び導電層部27を流れる電流のうち電波ノイズの原因となる周波数帯の電流は、粒子25を構成するフェライトのインピーダンスや磁気損失等によって遮断または吸収される。その結果、電波ノイズを抑制できる。
導電層部27は、導電層部27の端から端までを結んだ最短の直線距離Dが100μm以上、粒子25の表面と交差する方向の最小の厚さTが2μm以上とされる。導電層部27の直線距離Dは、複合部23の軸線Oと平行な断面から求められる。一つの導電層部27は3次元的に延びる線状または面状に形成されており、複合部23の複数か所に導電層部27が存在する。そこで、導電層部27の直線距離Dは、軸線Oと直交する深さ方向に位置(深さ)の異なる複数の断面を作り、各断面において複数か所に存在する導電層部27を一つずつ観察して、各々の導電層部27の両端を特定して求めることができる。
導電層部27の直線距離Dは、複合部23に存在する10個の導電層部27の平均値である。複合部23に11個以上の導電層部27が存在する場合には、直線距離Dの長いものから順に選択した10個の導電層部27の直線距離Dの平均値とする。
導電層部27の厚さTは、導電層部27の直線距離Dと同様に、複合部23の軸線Oと平行な断面から求められる。厚さTは、軸線Oと直交する深さ方向に位置(深さ)の異なる複数の断面を作り、各断面において複数か所に存在する導電層部27を一つずつ観察して求められる。導電層部27の厚さTは、複合部23に存在する10個の導電層部27の平均値である。複合部23に11個以上の導電層部27が存在する場合には、厚さTの厚いものから順に選択した10個の導電層部27の厚さTの平均値とする。
導電層部27は直線距離Dが100μm以上、厚さTが2μm以上とされるので、導電層部27を損傷させることなく複合部23に放電電流を流すことができる。ここで、導電層部27の直線距離Dが100μm未満か、厚さTが2μm未満であると、その部分が電流によって発熱して導電層部27が断線したりセラミック相28が溶けたりするおそれがある。セラミック相28が溶けると、導電層部27が圧迫されて断線し易くなったり耐衝撃性が低下したりする可能性がある。導電層部27の直線距離Dを100μm以上、厚さTを2μm以上とすることにより、接続部20の耐久性を確保できる。
なお、複合部23に形成される全ての導電層部27の直線距離Dが100μm以上、且つ、全ての導電層部27の厚さTが2μm以上であると、接続部20の耐久性をより向上できるので好ましい。但し、第1シール部21と第2シール部22とを電気的に接続する導電経路でない部分は、磁性粒子24の導電性物質26同士が接触していても導電層部ではない。
また、導電層部27は厚さTが40μm以下であるのが好ましい。電波ノイズの原因となる高周波帯の電流は、表皮効果によって、粒子25から離れた導電層部27の表面を流れ易い。電流が流れる導電層部27の表面とフェライトの粒子25との距離が大きくなるとノイズ減衰効果が低下する。従って、導電層部27の厚さを40μm以下にすることにより、表皮効果によるノイズ減衰効果の低下を防ぐことができ、高周波帯の放電電流が原因の電波ノイズを抑制できる。
セラミック相28は磁性粒子24を複合部23に固定するための部分である。セラミック相28は、高温下の強度や絶縁性をある程度確保できれば、任意の材質を採用できる。セラミック相28は、例えばSiO,Al等が用いられる。また、LiO−Al−SiO系ガラス等の結晶化ガラスをセラミック相28に用いることも可能である。
なお、セラミック相28は、ケイ素(Si)、ホウ素(B)及びリン(P)のうちの少なくとも1種と、アルカリ金属およびアルカリ土類金属のうちの少なくとも1種と、を含むと好ましい。セラミック相28の軟化点を低下させセラミック相28をガラス化できるので、磁性粒子24を強固に固定することができ、耐衝撃性を確保できるからである。
セラミック相28は気孔を有していると、スパーク時にセラミック相28の気孔の部分で放電が生じる可能性がある。気孔の部分で生じる放電は、セラミック相28を劣化させる可能性があり、また電波ノイズの原因となる可能性がある。セラミック相28の気孔率が5%以下であると、スパーク時にセラミック相28で生じる可能性のある放電を抑制することができる。その結果、放電によるセラミック相28の劣化を抑制できると共に、セラミック相28の放電が原因の電波ノイズを抑制できる。また、気孔が少ないとセラミック相28による磁性粒子24の固定を強固にできるので、耐衝撃性を向上できる。
セラミック相28は、フェライトを含有するのが好ましい。磁性粒子24によるノイズ減衰効果に加え、セラミック相28が含有するフェライトによるノイズ減衰効果が得られるからである。
セラミック相28が含有するフェライトは、粒子25を構成するフェライトと同様に、例えばMnFe2−X,NiFe2−X,CuFe2−X,ZnFe2−X,CoFe2−X,FeFe2−X,CaFe2−X,MgFe2−X,YFe12,DyFe12,LuFe12,YbFe12,TmFe12,ErFe12,HoFe12,TbFe12,GdFe12,SmFe12等の単元フェライト、これらの単元フェライトが任意の割合で互いに固溶した(Mn1−XZn)Fe,(Ni1−XZn)Fe等の複合フェライトが挙げられる。これらのフェライトのうち1種ないしは複数種を適宜選択して用いることができる。セラミック相28が含有するフェライトは、粒子25を構成するフェライトと同じ種類のものや異なる種類のものを適宜選択できる。
スパークプラグ10は、例えば、以下のような方法によって製造される。まず、絶縁体11の軸孔12に中心電極14を挿入し、中心電極14を段部13で係止する。次に、第1シール部21の原料粉末を軸孔12から入れて、中心電極14の周りに充填する。圧縮用棒材(図示せず)を用いて、軸孔12に充填した第1シール部21の原料粉末を予備圧縮する。
成形された第1シール部21の原料粉末の成形体の上に、セラミック相28の原料粉末と磁性粒子24とを混合した複合部23の原料粉末を充填する。磁性粒子24は、フェライトの一次粒子が凝集した二次粒子(粒子25)に、バインダを用いて導電性物質26の粒子を付着させたり、無電解メッキによって導電性物質26を析出させたりして得られる。軸孔12に充填した複合部23の原料粉末を、圧縮用棒材(図示せず)を用いて予備圧縮する。
次に、複合部23の原料粉末の上に、第2シール部22の原料粉末を充填する。圧縮用棒材(図示せず)を用いて、軸孔12に充填した第2シール部22の原料粉末を予備圧縮する。
次いで、第1シール部21、複合部23及び第2シール部22の原料粉末を順に充填した絶縁体11を炉内に移送し、例えば第1シール部21及び第2シール部22の各原料粉末に含まれるガラス成分の軟化点より高い温度まで加熱する。加熱後、絶縁体11の軸孔12に端子金具15を圧入し、端子金具15の先端によって第1シール部21、複合部23及び第2シール部22の原料粉末を軸方向へ圧縮する。この結果、各原料粉末が圧縮・焼結され、絶縁体11の内部に第1シール部21、複合部23及び第2シール部22が形成される。
次に絶縁体11を炉外へ移送し、絶縁体11の外周に主体金具16を組み付ける。接地電極19を主体金具16に接合した後、接地電極19の先端が中心電極14と対向するように接地電極19を屈曲して、スパークプラグ10を得る。
複合部23の導電層部27の直線距離Dや厚さTは、端子金具15を用いて第1シール部21、複合部23及び第2シール部22の原料粉末を軸方向へ圧縮するときの荷重によって調整できる。また、第1シール部21及び第2シール部22を軟化させるときの温度を変えたり、セラミック相28の原料粉末に含まれるガラス成分の種類を変えたりしても導電層部27の直線距離Dや厚さTを調整できる。
セラミック相28の気孔率は、複合部23の原料粉末を軸方向へ圧縮するときの荷重によって調整できる。また、第1シール部21及び第2シール部22を軟化させるときの温度を変えたり、セラミック相28の原料粉末に含まれるガラス成分の種類を変えたりしても気孔率を調整できる。
本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。
実施の形態で説明したスパークプラグのサンプルを作成し、放電電流のレベル、放電試験前後の抵抗の変化率、耐衝撃性試験後の異状の有無を評価した。作成したサンプル1〜18の磁性粒子24の組成、導電層部27の直線距離D及び厚さT、セラミック相28のAl以外の含有物(元素)及び気孔率、セラミック相28に含まれるフェライトの組成、並びに評価結果を表1に示す。
Figure 2018092806
磁性粒子24の組成は、ICP(Inductively Coupled Plasma)、微小部X線回折(Micro Area X-ray Diffraction)及びEPMA(Electron Probe Micro Analyzer)によって特定した。なお、表1にはフェライト及び導電性物質26の組成のみを示した。磁性粒子24には、製造工程で混入する微量(例えば1ppm程度)の種々の不純物が含まれ得る。
導電層部27の直線距離D及び厚さTは、SEMを用いて軸線と平行な複合部23の研磨断面を複数観察して求めた。複数の断面から導電層部27の両端を3次元的に特定し、その端と端との直線距離Dを求めた。直線距離Dは、直線距離Dの長いものから順に選択した10か所の導電層部27の直線距離Dの平均値である。厚さTは、厚さTの厚いものから順に選択した10か所の導電層部27の厚さTの平均値である。
セラミック相28のAl以外の含有物(元素)は、セラミック相28の原料粉末から特定した。ICP,EPMA等を用いてセラミック相28の断面を分析して含有物(元素)を特定しても良い。表1に含有物(元素)が示されていないサンプルのセラミック相28はAlであった。なお、表1には、ケイ素、ホウ素、リン、アルカリ金属およびアルカリ土類金属に該当する元素のみを示した。
アルカリ金属やアルカリ土類金属のセラミック相28における含有率(ICPによる分析結果)は0.1〜9wt%の範囲であった。この含有率は、アルカリ金属やアルカリ土類金属の量をアルカリ金属やアルカリ土類金属の酸化物に換算して得られる含有率である。セラミック相28には、製造工程で混入する微量(例えば1ppm程度)の種々の不純物が含まれ得る。
セラミック相28の気孔率は、セラミック相28の断面(1視野200μm×200μmの領域)のSEM画像(加速電圧15kV)を画像処理により2値化して求めた。表1に記載した数値は10視野の気孔率の平均値である。
セラミック相28に含まれるフェライトの組成は微小部X線回折により特定した。フェライトのセラミック相28における含有率(ICPによる分析結果)は5〜50wt%の範囲であった。
なお、ケイ素、ホウ素、リン、アルカリ金属およびアルカリ土類金属に該当する元素をセラミック相28が含まないサンプル1〜4,14〜18(セラミック相28はAl)は、気孔率が10%以上あったので、表1に気孔率を示さなかった。
放電電流のレベルは、JASO D002−2(2004年)「自動車−電波雑音特性−第2部:防止器の測定方法 電流法」に従って測定した。具体的には、各サンプルの中心電極14と接地電極19との火花ギャップの距離を0.9mm±0.01mmに調整し、13kVから16kVの範囲内の電圧を端子金具15と主体金具17との間に印加して放電させた。電流プローブを用いて放電時に端子金具15を流れる電流を測定し、30MHz,100MHz,200MHzにおける放電電流のレベル(所定の基準に対する換算値(単位:dB))を算出し、その3つの値の平均値を求めた。評価は、平均値が55dB以下を「◎:優れる」、55dBより大きく65dB以下を「〇:良い」、65dBより大きく75dB以下を「△:満足できる」、75dBより大きいものを「×:劣る」とした。
放電試験は、各サンプルの中心電極14と接地電極19との火花ギャップの距離を0.9mm±0.01mmに調整し、400℃のチャンバー内に各サンプルを保管した状態で、25kVの電圧を端子金具15と主体金具16との間に印加して放電させる試験であった。毎秒60回の割合で放電させる試験を100時間行った後、試験前の端子金具15と中心電極14との間の抵抗(R1)に対する試験後の端子金具15と中心電極14との間の抵抗(R2)の変化率((R2−R1)/R1×100)を求めた。評価は、抵抗の変化率が±10%以下を「◎:優れる」、変化率が±50%以下を「〇:良い」、変化率が±50%を超えるものを「×:劣る」とした。
耐衝撃性は、JIS B8031(2006年)7.4項 耐衝撃性試験に準じて評価した。各サンプルを試験装置に取り付け、毎分400回の割合(振動振幅22mm)で10分間衝撃を加えた後、端子金具15と中心電極14との間の導通を調べた。サンプル数は20であり、異状率(%)は20個のサンプルのうち導通を確認できなかった(断線した)割合である。
表1の「放電電流のレベル」に示すように、フェライトの粒子25が導電性物質26で覆われた磁性粒子24を備えるサンプル1〜15,16,18は、アルミナの粒子が導電性物質で覆われたサンプル17に比べ、放電時の30MHz,100MHz,200MHzにおける電流のレベルを小さくすることができた。サンプル1〜15,16,18は、電波ノイズの原因となる高周波数帯の電流のレベルを小さくできるので、電波ノイズを抑制できることが明らかである。
特に、セラミック相28にフェライトを含有するサンプル11〜13は、セラミック相28にフェライトを含有しないサンプル1〜10,14〜16,18に比べ、放電時の30MHz,100MHz,200MHzにおける電流のレベルを小さくすることができた。サンプル11〜13は、セラミック相28のフェライトによって、電波ノイズの原因となる高周波数帯の電流のレベルをさらに小さくできるので、電波ノイズの抑制効果をさらに向上できる。
なお、サンプル16はサンプル1〜15,18に比べて放電時の電流のレベルを小さくできなかった。サンプル1〜15,18は導電層部27の厚さが1〜40μmなのに対し、サンプル16の導電層部27の厚さは60μmであった。サンプル16は導電層部27が厚いので、電流が流れ易い導電層部27の表面と粒子25との距離が大きくなり、30MHz,100MHz,200MHzの電流をフェライト(粒子25)が遮断したり吸収したりする効果が低下したと推察される。
表1の「放電試験」に示すように、導電層部27の直線距離が100μm以上、且つ、導電層部27の厚さが2μm以上のサンプル1〜13は、導電層部の直線距離が100μm未満、又は、導電層部の厚さが2μm未満のサンプル14,15,18に比べ、放電試験前後の抵抗の変化率を小さくすることができた。サンプル14,15,18は導電層部の直線距離が100μm未満、又は、導電層部の厚さが2μm未満(いずれも平均値)なので、導電層部のうちの細い部分が放電電流によって発熱し、その部分が溶融したり、その部分の周囲のセラミック相が溶融して導電層部を変形させたりして、抵抗が変化したと推察される。
一方、サンプル1〜13は、導電層部27の直線距離が100μm以上、且つ、導電層部27の厚さが2μm以上(いずれも平均値)なので、放電電流が流れることによる導電層部27の損傷を防ぐことができ、複合部23の抵抗の変化を抑制できた。
特に、Si,B,Pのうちの少なくとも1種と、アルカリ金属およびアルカリ土類金属のうちの少なくとも1種とをセラミック相28に含むサンプル5〜13は、抵抗の変化率を±5%以下にできた。これは、サンプル5〜13のセラミック相28の気孔率は10%未満と小さいので、仮に導電層部27のうちの細い部分が放電電流によって発熱したとしても、その部分(導電層部)が変形する余地(セラミック相の気孔)が少ないため、抵抗が変化し難いと推察される。
表1の「耐衝撃性」に示すように、セラミック相28の気孔率が5%以下のサンプル8〜13は、耐衝撃性の評価において異状率を0%にすることができた。セラミック相28の気孔率を5%以下にすることにより、セラミック相28により磁性粒子24を強固に固定し、磁性粒子24による導電経路を確保できたと推察される。
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
上記実施の形態では、接続部20において軸孔12に充填されたセラミック相28によって磁性粒子24が固定化される場合について説明したが、必ずしもこれに限られるものではない。セラミック相28を省略して、軸孔12に磁性粒子24を充填しても、磁性粒子24による電波ノイズの抑制効果は得られる。従って、セラミック相28は当然に省略できる。
上記実施の形態では、第1シール部21及び第2シール部22が接続部20に設けられる場合について説明したが、必ずしもこれに限られるものではない。第1シール部21及び第2シール部22を省略することは当然可能である。磁性粒子24はフェライトの粒子25が導電性物質26で覆われているので、第1シール部21及び第2シール部22を省略しても、磁性粒子24を含有する接続部20と中心電極14や端子電極15との電気的な接続を確保できるからである。
第1シール部21及び第2シール部22を省略する場合には、接続部20のうち中心電極14や端子電極15と接触する部分に、B−SiO系、BaO−B系、SiO−B−CaO−BaO系などのガラス粒子を磁性粒子24に混合したものを配置できる。これにより、磁性粒子24を含有する接続部20と中心電極14や端子電極15との電気的な接続と気密性とを確保できる。接続部20のうち中心電極14や端子電極15と接触する部分に、さらに金属粒子(Cu,Fe等)を加えることは当然可能である。中心電極14や端子電極15と接続部20との接触抵抗を低減するためである。
上記実施の形態では、スパークプラグ10の製造方法として、第1シール部21、複合部23及び第2シール部22の原料粉末を軸孔12に充填した絶縁体11を炉内で加熱して接続部20を形成する場合を例示したが、必ずしもこれに限られるものではない。例えば、成形型を用いて複合部23の原料粉末を円柱状に成形し、その成形体を焼成して予め複合部23を形成することが可能である。その場合には、第1シール部21の原料粉末、焼成された複合部23、第2シール部22の原料粉末を順に絶縁体11の軸孔12に充填し、絶縁体11を炉内で加熱した状態で端子金具15を軸孔12に圧入して、接続部20を形成する。
上記実施の形態では、中心電極14の先端に接地電極19が対向するスパークプラグ10について説明したが、スパークプラグの構造は必ずしもこれに限られるものではない。スパークプラグの他の構造としては、例えば、中心電極14の側面に接地電極19が対向するスパークプラグ、主体金具17に複数の接地電極19を接合した多極のスパークプラグが挙げられる。
10 スパークプラグ
11 絶縁体
12 軸孔
14 中心電極
15 端子金具
20 接続部
24 磁性粒子
25 粒子
26 導電性物質
27 導電層部
28 セラミック相
D 直線距離
O 軸線
T 厚さ

Claims (5)

  1. 先端側から後端側へと軸線の方向に延びる軸孔を有する絶縁体と、
    前記軸孔の先端側に少なくとも一部が挿入された中心電極と、
    前記軸孔の後端側に少なくとも一部が挿入された端子金具と、
    前記端子金具と前記中心電極とを前記軸孔内で接続する接続部と、を備えるスパークプラグであって、
    前記接続部は、フェライトの粒子と、前記粒子を被覆する導電性物質と、をそれぞれ備える複数の磁性粒子を含み、
    前記複数の磁性粒子のうちの任意の2つの磁性粒子の前記導電性物質が接する導電層部を有し、
    前記導電層部は、端から端までの直線距離は100μm以上であり、厚さは2μm以上であることを特徴とするスパークプラグ。
  2. 前記導電層部は、厚さが40μm以下であることを特徴とする請求項1記載のスパークプラグ。
  3. 前記接続部は、前記複数の磁性粒子の周囲に、ケイ素、ホウ素およびリンのうちの少なくとも1種と、アルカリ金属およびアルカリ土類金属のうちの少なくとも1種とを含むセラミック相を備えていることを特徴とする請求項1又は2に記載のスパークプラグ。
  4. 前記セラミック相は、気孔率が5%以下であることを特徴とする請求項3記載のスパークプラグ。
  5. 前記セラミック相は、前記磁性粒子とは異なるフェライトを含有していることを特徴とする請求項3又は4に記載のスパークプラグ。
JP2016235724A 2016-12-05 2016-12-05 スパークプラグ Ceased JP2018092806A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016235724A JP2018092806A (ja) 2016-12-05 2016-12-05 スパークプラグ
PCT/JP2017/040226 WO2018105292A1 (ja) 2016-12-05 2017-11-08 スパークプラグ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016235724A JP2018092806A (ja) 2016-12-05 2016-12-05 スパークプラグ

Publications (1)

Publication Number Publication Date
JP2018092806A true JP2018092806A (ja) 2018-06-14

Family

ID=62491008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016235724A Ceased JP2018092806A (ja) 2016-12-05 2016-12-05 スパークプラグ

Country Status (2)

Country Link
JP (1) JP2018092806A (ja)
WO (1) WO2018105292A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099081A1 (ja) * 2013-12-25 2015-07-02 日本特殊陶業株式会社 スパークプラグ
JP5996044B1 (ja) * 2015-06-18 2016-09-21 日本特殊陶業株式会社 スパークプラグ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099081A1 (ja) * 2013-12-25 2015-07-02 日本特殊陶業株式会社 スパークプラグ
WO2015099082A1 (ja) * 2013-12-25 2015-07-02 日本特殊陶業株式会社 スパークプラグ
JP5996044B1 (ja) * 2015-06-18 2016-09-21 日本特殊陶業株式会社 スパークプラグ

Also Published As

Publication number Publication date
WO2018105292A1 (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6026022B2 (ja) スパークプラグ
JP6246063B2 (ja) スパークプラグ
JP5996044B1 (ja) スパークプラグ
US9373940B2 (en) Spark plug
EP2950406B1 (en) Spark plug
JP2014035902A (ja) 点火プラグ
WO2018105292A1 (ja) スパークプラグ
JP6267779B1 (ja) スパークプラグ
JP6606136B2 (ja) スパークプラグ
JP6548701B2 (ja) スパークプラグ
WO2018079089A1 (ja) 点火プラグ
JP2017117626A (ja) スパークプラグ
JP6997679B2 (ja) スパークプラグ
JP7028720B2 (ja) スパークプラグ
JP6294982B2 (ja) スパークプラグ
JP2016009568A (ja) スパークプラグ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20180828