WO2015098914A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2015098914A1
WO2015098914A1 PCT/JP2014/084048 JP2014084048W WO2015098914A1 WO 2015098914 A1 WO2015098914 A1 WO 2015098914A1 JP 2014084048 W JP2014084048 W JP 2014084048W WO 2015098914 A1 WO2015098914 A1 WO 2015098914A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
substrate
conversion element
layer
insulating material
Prior art date
Application number
PCT/JP2014/084048
Other languages
English (en)
French (fr)
Inventor
岡田 顕一
克佳 遠藤
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014232630A external-priority patent/JP2016103495A/ja
Priority claimed from JP2014232629A external-priority patent/JP2016103494A/ja
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201480065981.6A priority Critical patent/CN105793941B/zh
Priority to US15/108,161 priority patent/US10580587B2/en
Priority to EP14874545.8A priority patent/EP3089182A4/en
Priority to JP2015554931A priority patent/JP6208774B2/ja
Publication of WO2015098914A1 publication Critical patent/WO2015098914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element.
  • photoelectric conversion elements As photoelectric conversion elements, photoelectric conversion elements using dyes such as dye-sensitized solar cell elements are attracting attention because they are inexpensive and have high photoelectric conversion efficiency, and various developments have been made on such photoelectric conversion elements. It has been broken.
  • a photoelectric conversion element using a dye includes at least one photoelectric conversion cell, and the photoelectric conversion cell is an annular substrate that connects a conductive substrate, a counter substrate such as a counter electrode, and the conductive substrate and the counter substrate. And a sealing portion.
  • the conductive substrate includes a transparent substrate and a transparent conductive layer formed thereon, and an oxide semiconductor layer is provided between the conductive substrate and the counter substrate.
  • Patent Document 1 As such a photoelectric conversion element, for example, the one described in Patent Document 1 below is known.
  • the photoelectric conversion element which consists of a photoelectric conversion cell which has a sealing material provided between is disclosed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a photoelectric conversion element having excellent durability while realizing a good appearance.
  • the present invention has at least one photoelectric conversion cell, and the photoelectric conversion cell faces a conductive substrate having a transparent substrate and a transparent conductive layer provided on the transparent substrate, and the conductive substrate.
  • an insulating material is provided between the sealing portion and the insulating material is colored.
  • the insulating material is colored, when the photoelectric conversion element is viewed from the conductive substrate side, the color and shape of the sealing portion and the counter substrate on the back side of the insulating material are hidden. Is possible. Furthermore, by coloring the insulating material, it is possible to freely display desired characters and designs on the conductive substrate of the photoelectric conversion element. For this reason, a favorable external appearance can be realized. In addition, it is possible to color the sealing part by introducing a colorant into the sealing part and hide the color of the counter substrate. However, compared to this case, the durability of the photoelectric conversion element can be improved. it can.
  • the insulating material is provided over the entire circumference along the outer shape of the sealing portion.
  • the photoelectric conversion element further has a coating layer on the surface of the transparent substrate opposite to the transparent conductive layer, and the coating layer is seen when the coating layer is viewed in the thickness direction of the transparent substrate.
  • the oxide semiconductor layer is covered, and it is preferable that the maximum absorption peak wavelength in the visible light wavelength region of the coating layer is different from the maximum absorption peak wavelength in the visible light wavelength region of the oxide semiconductor layer.
  • the maximum absorption peak wavelength in the visible light wavelength region of the coating layer is different from the maximum absorption peak wavelength in the visible light wavelength region of the oxide semiconductor layer. For this reason, it can suppress that the light which should be fully absorbed by an oxide semiconductor layer is fully absorbed by a coating layer. Accordingly, it is possible to suppress a decrease in photoelectric conversion characteristics in the photoelectric conversion element.
  • the color of the oxide semiconductor layer of the photoelectric conversion element can be adjusted to a desired color.
  • the transparent conductive layer has a main body disposed inside the sealing portion, a groove is formed in the transparent conductive layer, and at least a part of the groove is the sealing portion.
  • the insulating material enters the first groove and continuously covers the edge portion of the main body portion.
  • a groove is formed in the transparent conductive layer, and this groove has a first groove formed along the outer shape of the annular sealing portion.
  • the insulating material enters the first groove, and the insulating material continuously covers the edge of the main body. For this reason, even if a crack is formed along the groove inside the transparent substrate and below the groove, and the crack is connected to the edge of the main body, the outside of the sealing part that has passed through the crack. Intrusion of moisture from the substrate is sufficiently suppressed by the insulating material. For this reason, according to the photoelectric conversion element of this invention, it becomes possible to have the outstanding durability.
  • the groove includes: The first groove and a second groove formed along an edge of the transparent conductive layer excluding the main body, and intersecting a peripheral edge of the back sheet, and the insulating material
  • the transparent conductive layer covers the edge of the portion excluding the main body while entering the second groove.
  • the second groove intersects with the peripheral edge of the back sheet, moisture can enter the space between the back sheet and the transparent conductive substrate through the second groove.
  • an insulating material enters the second groove, and the insulating material also covers the edge of the transparent conductive layer excluding the main body, so that moisture can enter from the outside to the inside of the back sheet. Is sufficiently suppressed. For this reason, the water
  • the insulating material is continuously provided on the conductive substrate along the entire circumference of the peripheral edge of the back sheet.
  • the insulating material is colored, the color and surface shape of the back sheet can be hidden by the insulating material. Further, by coloring the insulating material, it is possible to freely display desired characters and designs on the conductive substrate of the photoelectric conversion element. For this reason, even when a photoelectric conversion element is provided with a back sheet, a good appearance can be realized.
  • the photoelectric conversion element includes a plurality of the photoelectric conversion cells, and the conductive substrate is formed of a common conductive substrate of a plurality of photoelectric conversion cells, and the grooves including the first grooves
  • the plurality of photoelectric conversion cells are preferably insulated.
  • the transparent conductive layer is formed on a region where the insulating material is not provided in a region on the conductive substrate between the sealing portion and the edge of the conductive substrate.
  • the insulating material in a region between the conductive portion having at least one terminal portion provided so as to come into contact with the conductive substrate, the sealing portion, and an edge portion of the conductive substrate. Is provided at least in a region adjacent to the terminal portion, and further includes a light transmission preventing layer for preventing light transmission, wherein at least a part of the terminal portion and the light transmission preventing layer are respectively provided. It is preferable that it is colored.
  • the photoelectric conversion element since at least a part of the terminal portion is colored and the light transmission preventing layer adjacent to at least a part of the terminal portion is colored, the photoelectric conversion element is viewed in the thickness direction of the conductive substrate. In this case, it is possible to sufficiently suppress the terminal portion from being clearly seen. For this reason, a favorable external appearance can be realized. Moreover, according to the photoelectric conversion element of this invention, since it is not necessary to color a transparent conductive layer, the fall of the photoelectric conversion characteristic of a photoelectric conversion element can fully be suppressed.
  • the difference in L * of L * a * b * color space between the oxide semiconductor layer and the light transmission preventing layer is 5 or less, is colored with the oxide semiconductor layer and the difference between the L * of L * a * b * color space between the said terminal portion there are 5 or less.
  • the colors of the terminal portion and the light transmission preventing layer can be made closer to the color of the oxide semiconductor layer.
  • the colors of the terminal portion, the light transmission preventing layer, and the oxide semiconductor layer can be made close to a single color. For this reason, it is more sufficiently suppressed that the terminal portion and the light transmission preventing layer are conspicuously seen with respect to the oxide semiconductor layer. For this reason, a better appearance can be realized.
  • the conductive portion is connected to at least one wiring member provided on the sealing portion side of the conductive substrate, and one end of the wiring member, and the photoelectric conversion element is connected to the photoelectric conversion element.
  • the first connection portion disposed outside the sealing portion and the second connection portion connected to the other end of the wiring member are provided.
  • the light transmission preventing layer is preferably provided between the wiring member and the conductive substrate so as to overlap the wiring member in the thickness direction of the conductive substrate.
  • the wiring material and the light transmission preventing layer are provided so as to overlap each other between the conductive substrate and the wiring material, when the photoelectric conversion element is viewed in the thickness direction of the conductive substrate, light transmission is prevented. It is possible to hide the wiring material on the back side of the layer. For this reason, a favorable external appearance can be realized.
  • the counter substrate is composed of an electrode having a metal substrate, and at least one of the second connection portions is composed of the metal substrate.
  • At least one of the second connection portions is disposed outside the sealing portion, and the first connection portion and the second connection portion are directly provided on the common transparent conductive layer. It may be done.
  • the light transmission preventing layer is formed on the surface of the conductive substrate on the sealing unit side, in the region between the sealing unit and the edge of the conductive substrate.
  • the photoelectric conversion element is preferably provided so as to cover the entire region other than the insulating material and the conductive portion.
  • the photoelectric conversion element when the photoelectric conversion element is viewed from the transparent substrate side in the thickness direction of the conductive substrate, at least other than the insulating material and the conductive portion in the region between the sealing portion and the edge of the conductive substrate. This area is hidden by the light transmission preventing layer, so that a better appearance can be realized.
  • the photoelectric conversion element when the photoelectric conversion element is viewed from the transparent substrate side in the thickness direction of the conductive substrate, a different color portion having a color different from that of the light transmission preventing layer is provided on the conductive substrate. It is preferable that
  • the different color portion shows a different color from the light transmission preventing layer
  • the photoelectric conversion element is viewed from the transparent substrate side in the thickness direction of the conductive substrate, a desired character or design is displayed by the different color portion. Is possible.
  • the light transmission preventing layer is formed on the surface of the conductive substrate on the sealing unit side, in the region between the sealing unit and the edge of the conductive substrate.
  • the photoelectric conversion element is preferably provided so as to cover at least all of the regions other than the insulating material, the conductive portion, and the different color portion.
  • the photoelectric conversion element when the photoelectric conversion element is viewed from the transparent substrate side in the thickness direction of the conductive substrate, at least the insulating material, the conductive portion, and the different color in the region between the sealing portion and the edge of the conductive substrate. Since the area other than the portion is hidden by the light transmission preventing layer, a better appearance can be realized.
  • the “light transmission preventing layer” refers to a layer having an average light transmittance of 50% or less in the visible light wavelength region.
  • the visible light wavelength region refers to a wavelength region of 380 to 800 nm.
  • the “photoelectric conversion element” includes a dye-sensitized photoelectric conversion element that generates power using a photosensitizing dye.
  • the “dye-sensitized photoelectric conversion element” includes a dye-sensitized photoelectric conversion element that generates power by sunlight, and a dye-sensitized photoelectric conversion element that generates power by light that is not sunlight, such as an indoor light. .
  • the “photoelectric conversion cell” includes a dye-sensitized photoelectric conversion cell in which power generation is performed using a photosensitizing dye.
  • the “dye-sensitized photoelectric conversion cell” includes a dye-sensitized photoelectric conversion cell in which power generation is performed by sunlight and a dye-sensitized photoelectric conversion cell in which power generation is performed by light other than sunlight, such as an indoor light. .
  • a photoelectric conversion element having excellent durability while realizing a good appearance is provided.
  • FIG. 1 is a cross-sectional end view showing a first embodiment of a photoelectric conversion element of the present invention. It is a top view which shows a part of 1st Embodiment of the photoelectric conversion element of this invention. It is a top view which shows the pattern of the transparent conductive layer in the photoelectric conversion element of FIG. It is a top view which shows the 1st integrated sealing part of FIG. It is a top view which shows the 2nd integrated sealing part of FIG. It is the top view which looked at the photoelectric conversion element of FIG. 1 from the electroconductive board
  • FIG. 3 is a cross-sectional end view taken along the line VII-VII in FIG. 2.
  • FIG. 12 is a cross-sectional end view taken along line XII-XII in FIG. 11. It is a top view which shows the working electrode which formed the insulating material and the light transmission prevention layer for fixing a back seat
  • FIGS. 1 is a cross-sectional end view showing a first embodiment of the photoelectric conversion element of the present invention
  • FIG. 2 is a plan view showing a part of the first embodiment of the photoelectric conversion element of the present invention
  • FIG. 4 is a plan view showing a pattern of a transparent conductive layer in one photoelectric conversion element
  • FIG. 4 is a plan view showing a first integrated sealing portion in FIG. 1
  • FIG. 5 is a plan view showing the second integrated sealing portion in FIG.
  • FIG. 6 is a plan view of the photoelectric conversion element of FIG. 1 viewed from the conductive substrate side
  • FIG. 7 is a cross-sectional end view taken along line VII-VII of FIG.
  • the photoelectric conversion element 100 includes a plurality (four in FIG. 1) of photoelectric conversion cells (hereinafter sometimes simply referred to as “cells”) 50 and a back provided so as to cover the cells 50. And a sheet 80. As shown in FIG. 2, the plurality of cells 50 are connected in series by a wiring material 60P as a conductive material.
  • the four cells 50 in the photoelectric conversion element 100 may be referred to as cells 50A to 50D.
  • each of the plurality of cells 50 includes a conductive substrate 15, a counter substrate 20 facing the conductive substrate 15, and an annular sealing portion 30 ⁇ / b> A that joins the conductive substrate 15 and the counter substrate 20. And an oxide semiconductor layer 13 provided between the conductive substrate 15 and the counter substrate 20. A cell space formed by the conductive substrate 15, the counter substrate 20, and the annular sealing portion 30 ⁇ / b> A is filled with an electrolyte 40.
  • the oxide semiconductor layer 13 carries a dye.
  • the counter substrate 20 is configured as a counter electrode in the present embodiment, and includes a metal substrate 21 serving as a substrate and an electrode, and a catalyst layer 22 provided on the conductive substrate 15 side of the metal substrate 21 to promote a catalytic reaction. ing. Further, in two adjacent cells 50, the counter substrates 20 are separated from each other.
  • the conductive substrate 15 includes a transparent substrate 11 and a transparent conductive layer 12 as an electrode provided on the transparent substrate 11.
  • the transparent substrate 11 is used as a common transparent substrate for the cells 50A to 50D.
  • At least one oxide semiconductor layer 13 is provided on the transparent conductive layer 12 of the conductive substrate 15.
  • the oxide semiconductor layer 13 is disposed inside the annular sealing portion 30A.
  • a connection terminal 16 is provided on the transparent conductive layer 12 of the conductive substrate 15.
  • a colored insulating material 33 is provided between the conductive substrate 15 and the sealing portion 30A.
  • the working electrode 10 is configured by the conductive substrate 15 and the oxide semiconductor layer 13.
  • the transparent conductive layer 12 is composed of transparent conductive layers 12A to 12F provided in a state of being insulated from each other. That is, the transparent conductive layers 12A to 12F are disposed with the groove 90 interposed therebetween.
  • the transparent conductive layers 12A to 12D constitute the transparent conductive layers 12 of the plurality of cells 50A to 50D, respectively.
  • the transparent conductive layer 12E is arranged so as to be bent along the sealing portion 30A.
  • the transparent conductive layer 12F is an annular transparent electrode layer 12 for fixing the peripheral edge 80a of the back sheet 80 (see FIG. 1).
  • each of the transparent conductive layers 12A to 12D includes a rectangular main body portion 12a having a side edge portion 12b and a protruding portion 12c protruding sideways from the side edge portion 12b of the main body portion 12a.
  • the protruding portion 12c of the transparent conductive layer 12C among the transparent conductive layers 12A to 12D has a protruding portion 12d protruding sideways with respect to the arrangement direction X of the cells 50A to 50D, and the protruding portion 12d. It has a facing portion 12e that extends along the arrangement direction X of the cells 50A to 50D and faces the main body portion 12a of the adjacent cell 50D through the groove 90.
  • the protruding portion 12c of the transparent conductive layer 12B has an overhanging portion 12d and a facing portion 12e. Also in the cell 50A, the protruding portion 12c of the transparent conductive layer 12A has an overhanging portion 12d and a facing portion 12e.
  • the cell 50D is already connected to the cell 50C, and there is no other cell 50 to be connected. For this reason, in the cell 50D, the protruding portion 12c of the transparent conductive layer 12D does not have the facing portion 12e. In other words, the protruding portion 12c of the transparent conductive layer 12D is constituted only by the overhang portion 12d.
  • the transparent conductive layer 12D connects the first current extraction portion 12f for extracting the current generated in the photoelectric conversion element 100 to the outside, the first current extraction portion 12f, and the main body portion 12a, so that the transparent conductive layers 12A ⁇ It further has a connection portion 12g extending along the side edge portion 12b of 12C.
  • the first current extraction portion 12f is arranged around the cell 50A and on the opposite side of the transparent conductive layer 12B with respect to the transparent conductive layer 12A.
  • the transparent conductive layer 12E also has a second current extraction portion 12h for extracting the current generated in the photoelectric conversion element 100 to the outside, and the second current extraction portion 12h is around the cell 50A and is transparent.
  • the conductive layer 12A is disposed on the opposite side of the transparent conductive layer 12B.
  • the first current extraction portion 12f and the second current extraction portion 12h are arranged adjacent to each other through the groove 90 around the cell 50A.
  • the groove 90 is formed along the edge of the first groove 90A formed along the outer shape of the annular sealing portion 30A and the portion of the transparent conductive layer 12 excluding the main body portion 12a.
  • the second groove 90 ⁇ / b> B intersects with the peripheral edge 80 a of the sheet 80.
  • the first groove 90 ⁇ / b> A is formed along the edge of the main body 12 a of the transparent conductive layer 12.
  • connection terminal 16 is provided on each protrusion 12c of the transparent conductive layers 12A to 12C and the transparent conductive layer 12E. Specifically, the connection terminal 16 is provided outside the sealing portion 30 ⁇ / b> A when the photoelectric conversion element 100 is viewed from the transparent substrate 11 side in the thickness direction of the conductive substrate 15.
  • Each connection terminal 16 is connected to the wiring material 60P, and the wiring material connection portion 16A, which is a conductive material connection portion extending along the sealing portion 30A outside the sealing portion 30A, and the sealing portion from the wiring material connection portion 16A.
  • the wiring member non-connecting portion 16B which is a conductive material non-connecting portion extending along the sealing portion 30A outside the 30A.
  • the wiring material connection portion 16A of the connection terminals 16 is provided on the facing portion 12e of the protruding portion 12c, and the main body of the adjacent cell 50 to be connected. It faces the portion 12a.
  • the wiring material connection portion 16A of the connection terminals 16 faces the main body portion 12a of the adjacent cell 50A to be connected.
  • the width of the wiring material non-connecting portion 16B is narrower than the width of the wiring material connecting portion 16A.
  • the widths of the wiring material connecting portion 16A and the wiring material non-connecting portion 16B are constant.
  • the width of the wiring material connecting portion 16A is the length in the direction orthogonal to the extending direction of the wiring material connecting portion 16A and means the narrowest width among the widths of the wiring material connecting portion 16A.
  • the width of the portion 16B is the length in the direction orthogonal to the extending direction of the wiring material non-connecting portion 16B and means the narrowest width among the widths of the wiring material non-connecting portion 16B.
  • connection terminal 16A of the connection terminal 16 provided on the protrusion part 12c of the transparent conductive layer 12C in the cell 50C and the metal substrate 21 of the counter substrate 20 in the adjacent cell 50D are connected via the wiring material 60P.
  • the wiring member 60P is disposed so as to pass over the sealing portion 30A.
  • the wiring material connection portion 16A of the connection terminal 16 in the cell 50B and the metal substrate 21 of the counter substrate 20 in the adjacent cell 50C are connected via the wiring material 60P, and the wiring material connection portion of the connection terminal 16 in the cell 50A.
  • connection terminal 16A and the metal substrate 21 of the counter substrate 20 in the adjacent cell 50B are connected via the wiring material 60P, and the wiring material connection portion 16A of the connection terminal 16 on the transparent conductive layer 12E and the counter substrate 20 in the adjacent cell 50A.
  • the metal substrate 21 is connected via a wiring material 60P.
  • one end of the wiring member 60P is connected to the connection terminal 16 of the cell 50C, and the other end of the wiring member 60P is connected to the metal substrate 21 of the counter substrate 20 of the cell 50D.
  • the metal substrate 21 constitutes the second connection portion
  • the connection terminal 16 constitutes the first connection portion. That is, the connection terminal 16 as a terminal portion also serves as the first connection portion.
  • one end of the wiring material 60P is connected to the connection terminal 16 of the cell 50B, and the other end of the wiring material 60P is connected to the metal substrate 21 of the counter substrate 20 of the cell 50C. Furthermore, one end of the wiring member 60P is connected to the connection terminal 16 of the cell 50A, and the other end of the wiring member 60P is connected to the metal substrate 21 of the counter substrate 20 of the cell 50B. Furthermore, one end of the wiring material 60P is connected to the connection terminal 16 on the transparent conductive layer 12E, and the other end of the wiring material 60P is connected to the metal substrate 21 of the counter substrate 20 of the cell 50A.
  • External connection terminals 18a and 18b are provided on the first current extraction unit 12f and the second current extraction unit 12h, respectively.
  • the sealing portion 30A is provided so as to overlap the first sealing portion 31A and the annular first sealing portion 31A provided between the conductive substrate 15 and the counter substrate 20, It has the 2nd sealing part 32A which clamps the edge part 20a of the opposing board
  • adjacent first sealing portions 31 ⁇ / b> A are integrated to form a first integrated sealing portion 31.
  • the first integrated sealing portion 31 includes an annular portion (hereinafter referred to as “annular portion”) 31a that is not provided between two adjacent counter substrates 20, and two adjacent counter substrates.
  • partition portion 31b a portion (hereinafter referred to as “partition portion”) 31b that partitions the inner opening 31c of the annular portion 31a.
  • the second sealing portions 32 ⁇ / b> A are integrated between the adjacent counter substrates 20 to constitute a second integrated sealing portion 32.
  • the second integrated sealing portion 32 is formed between an annular portion (hereinafter referred to as “annular portion”) 32 a that is not provided between two adjacent counter substrates 20 and two adjacent counter substrates 20. It is provided, and is comprised by the part (henceforth "partition part”) 32b which partitions off the inner side opening 32c of the cyclic
  • a gap is provided between the inner wall surface of the first sealing portion 31 ⁇ / b> A and the oxide semiconductor layer 13. In other words, the inner wall surface of the first sealing portion 31A and the oxide semiconductor layer 13 are separated from each other.
  • the groove 90 between the adjacent transparent conductive layers 12A to 12F enters and spans the adjacent transparent conductive layer 12.
  • an insulating material 33 is provided on the entire circumference along the outer shape of the annular sealing portion 30A. More specifically, the insulating material 33 is formed in the first groove 90A in the portion of the groove 90 where the first groove 90A formed along the edge of the main body 12a of the transparent conductive layer 12 is formed. While entering, it also covers the edge of the main body portion 12a that continuously forms the first groove 90A.
  • the insulating material 33 is also formed on the transparent conductive layer 12 between the main body portion 12a and the projecting portion 12c where the first groove 90A is not formed, and the entire periphery along the outer shape of the sealing portion 30A.
  • An insulating material 33 is formed over the entire area.
  • the insulating material 33 continuously covers the edge of the transparent conductive layer 12 on the opposite side of the main body portion 12a with the first groove 90A interposed therebetween, and is provided to the outside of the sealing portion 30A.
  • the second groove 90B of the groove 90 and the groove connecting the first groove 90A and the second groove 90B are not covered with the insulating material 33.
  • a back sheet 80 is provided on the conductive substrate 15.
  • the back sheet 80 is provided so as to cover the cell 50 on the side of the transparent substrate 11 on which the transparent conductive layer 12 is provided.
  • the back sheet 80 includes a laminated body 80A including a weather resistant layer and a metal layer, and a colored insulating connecting portion 14 (hereinafter referred to as “insulating material 14”) provided on the opposite side of the laminated body 80A from the metal layer. ”) And an adhesive portion 80B that adheres to the conductive substrate 15.
  • the bonding portion 80B is for bonding the back sheet 80 to the conductive substrate 15, and as long as it is formed on the peripheral portion of the stacked body 80A as shown in FIG.
  • the bonding portion 80B may be provided on the entire surface of the stacked body 80A on the cell 50 side.
  • the peripheral edge portion 80a of the back sheet 80 is connected to the transparent conductive layers 12D, 12E, and 12F of the transparent conductive layer 12 through the insulating material 14 by the adhesive portion 80B.
  • the bonding portion 80 ⁇ / b> B is separated from the sealing portion 30 ⁇ / b> A of the cell 50.
  • the insulating material 14 is also separated from the sealing portion 30A.
  • the space inside the back sheet 80 and outside the sealing portion 30A is not filled with the electrolyte 40.
  • the wiring member 17 extends so as to pass through the main body portion 12a, the connection portion 12g, and the current extraction portion 12f.
  • the wiring member 17 is a current collecting wiring, and has a lower resistance and current collecting function than the transparent conductive layer 12D.
  • the wiring member 17 is disposed so as not to intersect the insulating material 14 between the back sheet 80 and the conductive substrate 15. In other words, the wiring member 17 is disposed inside the insulating material 14.
  • bypass diodes 70A to 70D are connected in parallel to the cells 50A to 50D, respectively.
  • the bypass diode 70A is fixed on the partition part 32b of the second integrated sealing part 32 between the cell 50A and the cell 50B, and the bypass diode 70B is provided between the cell 50B and the cell 50C.
  • the bypass diode 70C is fixed on the partition portion 32b of the second integrated sealing portion 32 between the cell 50C and the cell 50D, and is fixed on the partition portion 32b of the second integrated sealing portion 32.
  • the bypass diode 70D is fixed on the sealing portion 30A of the cell 50D.
  • a wiring member 60Q is fixed to the metal substrate 21 of the counter substrate 20 so as to pass through the bypass diodes 70A to 70D. Further, the wiring material 60P branches from the wiring material 60Q between the bypass diodes 70A and 70B, between the bypass diodes 70B and 70C, and between the bypass diodes 70C and 70D, respectively, and the wiring material connecting portion 16A on the transparent conductive layer 12A, the transparent conductive layer The wiring material connecting portion 16A on 12B and the wiring material connecting portion 16A on the transparent conductive layer 12C are connected. The wiring member 60P is also fixed to the metal substrate 21 of the counter substrate 20 of the cell 50A.
  • the wiring member 60P connects the bypass diode 70A and the wiring member connecting portion 16A of the connection terminal 16 on the transparent conductive layer 12E. ing. Further, the bypass diode 70D is connected to the transparent conductive layer 12D through the wiring material 60P.
  • a desiccant 95 is provided on the counter substrate 20 of each cell 50.
  • a groove 90 is provided, and the groove 90 has a first groove 90A formed along the outer shape of the annular sealing portion 30A. Then, the insulating material 33 enters the first groove 90A, and the insulating material 33 continuously covers the edge of the main body 12a. For this reason, even if a crack is formed along the groove 90 in the transparent substrate 11 and below the groove 90, and the crack is connected to the edge of the main body 12 a, the crack is sealed. Intrusion of moisture from the outside of the stop 30A is sufficiently suppressed by the insulating material 33. For this reason, the photoelectric conversion element 100 can have excellent durability.
  • the insulating material 33 is colored, when the photoelectric conversion element 100 is viewed from the conductive substrate 15, as shown in FIG. The color and shape of the sealing portion 31A and the counter substrate 20 can be hidden. Furthermore, by coloring the insulating material 33, it is possible to freely display desired characters and designs on the conductive substrate 15 of the photoelectric conversion element 100. For this reason, a favorable external appearance can be realized. In addition, it is possible to color the sealing portion 30A by introducing a colorant into the sealing portion 30A and hide the color of the counter substrate 20, but compared to this case, the durability of the photoelectric conversion element 100 is improved. Can be improved.
  • the insulating material 33 is provided over the entire circumference along the outer shape of the sealing portion 30A, it is possible to block the intrusion path of moisture from the outside over the entire circumference. It is possible to have better durability.
  • the first groove 90A is provided along the edge of the main body 12a. For this reason, compared with the case where the 1st groove
  • the insulating material 14 is provided on the entire periphery of the peripheral edge portion 80a of the back sheet 80, it is sufficient that moisture enters the back sheet 80 from the outside of the back sheet 80. Can be suppressed.
  • the photoelectric conversion element 100 can suppress the current flowing between the transparent conductive layers 12. And sufficient insulation can be ensured. For this reason, a photoelectric conversion characteristic can be improved.
  • the sealing portion 30A and the insulating material 33 are arranged so as to overlap each other. For this reason, compared with the case where the insulating material 33 is arrange
  • the first current extraction portion 12f and the second current extraction portion 12h are disposed around the cell 50A and on the opposite side of the transparent conductive layer 12B with respect to the transparent conductive layer 12A.
  • the first current extraction portion 12f and the second current extraction portion 12h of the transparent conductive layer 12F are arranged adjacent to each other via the groove 90.
  • the external connection terminals 18a and 18b can be arranged adjacent to each of the first current extraction unit 12f and the second current extraction unit 12h. Therefore, the number of connectors for taking out current from the external connection terminals 18a and 18b to the outside can be reduced to one.
  • the external connection terminals 18a and 18b are also arranged far apart.
  • two connectors of a connector connected to the external connection terminal 18a and a connector connected to the external connection terminal 18b are required.
  • the external connection terminals 18a and 18b can be arranged adjacent to each other, only one connector is required. For this reason, according to the photoelectric conversion element 100, space saving can be achieved.
  • the generated current is small. Specifically, the generated current is 2 mA or less. Therefore, a part of the transparent conductive layer 12D of the cell 50D at one end of the cells 50A and 50D at both ends of the cells 50A to 50D is electrically connected to the metal substrate 21 of the counter substrate 20 of the cell 50A at the other end. Even if it arrange
  • the cells 50A to 50D are arranged in a line along the X direction, and the transparent conductive layer 12D of the cell 50D on one end side of the cells 50A and 50D on both ends of the cells 50A to 50D includes: It has a main body part 12a provided inside the sealing part 30A, a first current extraction part 12f, and a connection part 12g that connects the main body part 12a and the first current extraction part 12f.
  • the cells 50C and 50D which are a part of the cells 50A to 50D, are folded halfway and the two adjacent cells 50 are compared with each other as compared with the case where the cells 50A and 50D are arranged so as to be adjacent to each other.
  • connection terminal 16 provided along the arrangement direction of the cells 50A to 50D (X direction in FIG. 2) for connection, and it is possible to further reduce the space.
  • the photoelectric conversion element 100 when the photoelectric conversion element 100 is used in a low illumination environment, since the generated current is usually small, the photoelectric conversion element 100 includes the main body portion 12a and the first current extraction portion 12f. Even if it has the connection part 12g which connects to, the fall of a photoelectric conversion characteristic can fully be suppressed.
  • the wiring member 17 is arranged so as not to intersect the insulating material 14 between the back sheet 80 and the conductive substrate 15. Since the wiring member 17 is generally porous, it has air permeability and allows gas such as water vapor to pass through. As a result, the wiring member 17 is insulated between the back sheet 80 and the conductive substrate 15. If it is arranged so as not to intersect the material 14, it is possible to prevent water vapor or the like from entering the space between the back sheet 80 and the conductive substrate 15 through the wiring material 17 from the outside. As a result, the photoelectric conversion element 100 can have excellent durability. Further, since the wiring member 17 has a resistance lower than that of the transparent conductive layer 12D, even if the generated current is increased, the deterioration of the photoelectric conversion characteristics can be sufficiently suppressed.
  • connection terminal 16 when the photoelectric conversion element 100 is placed in an environment with a large temperature change, the connection terminal 16 is less likely to be peeled off from the protruding portion 12 c of the transparent conductive layer 12 as the width of the connection terminal 16 is narrower.
  • the wiring material non-connection portion 16B of the connection terminals 16 has a narrower width than the wiring material connection portion 16A connected to the wiring material 60P. For this reason, the wiring material non-connecting portion 16 ⁇ / b> B of the connecting terminal 16 is difficult to peel off from the protruding portion 12 c of the transparent conductive layer 12.
  • the wiring material connecting portion 16A is peeled off from the protruding portion 12c of the transparent conductive layer 12
  • the wiring material non-connecting portion 16B is not peeled off from the transparent conductive layer 12, and the connection to the transparent conductive layer 12 can be maintained. It becomes.
  • the photoelectric conversion element 100 can operate normally. Therefore, according to the photoelectric conversion element 100, connection reliability can be improved.
  • the wiring member 60P connected to the metal substrate 21 of the counter substrate 20 in one cell 50 of the two adjacent cells 50 is connected to the wiring member connecting portion 16A on the protruding portion 12c in the other cell 50,
  • the wiring material connecting portion 16A is provided outside the sealing portion 30A on the protruding portion 12c. That is, the connection between two adjacent cells 50 is performed outside the sealing portion 30A. For this reason, according to the photoelectric conversion element 100, it becomes possible to improve an aperture ratio.
  • the projecting portion 12c extends from the body portion 12a to the side and extends from the body portion 12a.
  • the opposing portion 12e facing the main body portion 12a of the adjacent cell 50, and at least the wiring material connecting portion 16A of the connection terminals 16 is provided on the opposing portion 12e.
  • connection portion 16A of the connection terminals 16 is provided on the facing portion 12e facing the main body portion 12a of the adjacent cell 50, at least the wiring material connection portion 16A of the connection terminals 16 is provided. Unlike the case where it is not provided on the facing portion 12e facing the main body portion 12a of the adjacent cell 50, the wiring material 60P connected to the wiring material connecting portion 16A is a metal substrate of the facing substrate 20 of the adjacent cell 50. Crossing 21 can be sufficiently prevented. As a result, it is possible to sufficiently prevent a short circuit between adjacent cells 50.
  • the wiring material connecting portion 16A and the wiring material non-connecting portion 16B are both arranged along the sealing portion 30A. For this reason, compared with the case where wiring material connection part 16A and wiring material non-connection part 16B are arrange
  • the adhesive portion 80B of the back sheet 80 is separated from the sealing portion 30A of the cell 50. For this reason, it is sufficiently suppressed that the adhesive portion 80B contracts at a low temperature to pull the sealing portion 30A and an excessive stress is applied to the interface between the sealing portion 30A and the conductive substrate 15 or the counter substrate 20. Is done. In addition, even at a high temperature, the adhesive portion 80B sufficiently expands and pushes the sealing portion 30A to apply an excessive stress to the interface between the sealing portion 30A and the conductive substrate 15 or the counter substrate 20. Is done. That is, excessive stress is sufficiently suppressed from being applied to the interface between the sealing portion 30 ⁇ / b> A and the conductive substrate 15 or the counter substrate 20 at both high and low temperatures. For this reason, the photoelectric conversion element 100 can have excellent durability.
  • the conductive substrate 15, the connection terminal 16, the oxide semiconductor 13, the insulating materials 14 and 33, the dye, the counter substrate 20, the sealing portion 30A, the electrolyte 40, the wiring materials 60P and 60Q, the back sheet 80, and the desiccant 95 Will be described in detail.
  • the material constituting the transparent substrate 11 included in the conductive substrate 15 may be, for example, a transparent material.
  • a transparent material include borosilicate glass, soda lime glass, white plate glass, and quartz glass. Examples thereof include glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), and polyether sulfone (PES).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PES polyether sulfone
  • the thickness of the transparent substrate 11 is appropriately determined according to the size of the photoelectric conversion element 100, and is not particularly limited, but may be in the range of 50 to 10,000 ⁇ m, for example.
  • Examples of the material included in the transparent conductive layer 12 included in the conductive substrate 15 include conductive metal oxides such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-added tin oxide (FTO). It is done.
  • the transparent conductive layer 12 may be a single layer or a laminate of a plurality of layers containing different conductive metal oxides. When the transparent conductive layer 12 is composed of a single layer, the transparent conductive layer 12 preferably includes FTO because it has high heat resistance and chemical resistance.
  • the transparent conductive layer 12 may further include a glass frit.
  • the thickness of the transparent conductive layer 12 may be in the range of 0.01 to 2 ⁇ m, for example.
  • connection part 12g of the transparent conductive layer 12D in the transparent conductive layer 12 is not particularly limited, but is preferably equal to or less than the resistance value represented by the following formula (1).
  • Resistance value number of cells 50 connected in series ⁇ 120 ⁇ (1)
  • the performance deterioration of the photoelectric conversion element 100 can be sufficiently suppressed.
  • the resistance value represented by the above formula (1) is 480 ⁇ , and therefore the resistance value of the connection portion 12g is preferably 480 ⁇ or less.
  • the groove 90 formed in the transparent conductive layer 12 has the first groove 90A and the second groove 90B, but the groove 90 does not necessarily have the second groove 90B. Good.
  • connection terminal 16 includes a metal material.
  • the metal material include silver, copper, and indium. You may use these individually or in combination of 2 or more types.
  • connection terminal 16 may be made of the same material as the wiring material 60P or may be made of a different material, but is preferably made of the same material.
  • connection terminal 16 and the wiring material 60P are made of the same material, the adhesion between the connection terminal 16 and the wiring material 60P can be more sufficiently improved. For this reason, the connection reliability in the photoelectric conversion element 100 can be further improved.
  • the width of the wiring material non-connection portion 16B is not particularly limited as long as it is narrower than the width of the wiring material connection portion 16A, but is preferably 1/2 or less of the width of the wiring material connection portion 16A.
  • connection reliability in the photoelectric conversion element 100 can be further improved as compared with the case where the width of the wiring material non-connection portion 16B exceeds 1/2 of the width of the wiring material connection portion 16A.
  • the width of the wiring material connecting portion 16A is not particularly limited, but is preferably 0.5 to 5 mm, and more preferably 0.8 to 2 mm.
  • the widths of the wiring material connecting portion 16A and the wiring material non-connecting portion 16B of the connection terminal 16 may not be constant.
  • the widths of the wiring material connecting portion 16 ⁇ / b> A and the wiring material non-connecting portion 16 ⁇ / b> B may change along the extending direction of the connection terminal 16.
  • the width monotonously increases from the end farthest from the wiring material connection portion 16A to the end closest to the wiring material non-connection portion 16B, and the wiring material non-connection portion of the wiring material connection portion 16A.
  • the width may monotonously increase from the end portion on the 16B side toward the end portion farthest from the conductive member non-connecting portion 16B.
  • the wiring material connecting portion 16A and the wiring material non-connecting portion 16B are provided along the sealing portion 30A, they may be formed to extend in a direction away from the sealing portion 30A. However, in this case, it is preferable that the wiring material connection portion 16A is disposed at a position closer to the sealing portion 30A than the wiring material non-connection portion 16B. In this case, the wiring material 60P can be made shorter.
  • the wiring material non-connecting portion 16B may be arranged so as to be orthogonal to the wiring material connecting portion 16A.
  • the oxide semiconductor layer 13 is composed of oxide semiconductor particles.
  • the oxide semiconductor particles include titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), and strontium titanate (SrTiO 3 ).
  • the oxide semiconductor layer 13 is usually composed of an absorption layer for absorbing light, but may be composed of an absorption layer and a reflection layer that reflects light transmitted through the absorption layer and returns it to the absorption layer.
  • the thickness of the oxide semiconductor layer 13 is usually 0.5 to 50 ⁇ m, but is preferably 18 to 35 ⁇ m.
  • the oxide semiconductor layer 13 It is possible to sufficiently suppress the surroundings of the image from appearing bright.
  • the thickness is 18 to 35 ⁇ m, the oxide semiconductor layer 13 is peeled off from the transparent conductive layer 12 and the generation of cracks in the oxide semiconductor layer 13 is more sufficient than when the thickness exceeds 35 ⁇ m. Can be suppressed.
  • the insulating material 33 As the insulating material 33, an inorganic material such as a colored glass frit or a colored resin can be used.
  • the insulating material 33 is preferably a colored glass frit. Since the colored glass frit has a higher sealing ability than the resin material, it is possible to effectively suppress the intrusion of moisture and the like from the first groove 90A.
  • the thickness of the insulating material 33 is usually 10 to 30 ⁇ m, preferably 15 to 25 ⁇ m. Further, the width of the insulating material 33 covering the edge of the transparent conductive layer 12 is preferably 0.2 mm or more, and more preferably 0.5 mm or more.
  • the width covering the edge of the transparent conductive layer 12 By setting the width covering the edge of the transparent conductive layer 12 to 0.2 mm or more, sufficient insulation between the transparent conductive layers 12 of the adjacent cells 50 can be secured.
  • the width of the insulating material 33 covering the edge of the transparent conductive layer 12 is preferably 5 mm or less.
  • the color of the insulating material 33 is not particularly limited, and various colors can be used depending on the purpose. For example, if characters and designs are not displayed on the conductive substrate 15, the color of the insulating material 33 may be the same color as that of the oxide semiconductor layer 13.
  • the color of the same system as the oxide semiconductor layer 13 means that the difference between the insulating material 33 and the oxide semiconductor layer 13 is L * , a * , b * in the L * a * b * color space. Each color is 5 or less.
  • the material constituting the insulating material 14 is not particularly limited as long as it can adhere the back sheet 80 and the transparent conductive layer 12, is colored and has an insulating property, and the material constituting the insulating material 14.
  • a colored glass frit a resin material similar to the resin material used for the sealing portion 31 ⁇ / b> A, and a coloring agent may be used.
  • the insulating material 14 is a colored glass frit. Since the colored glass frit has a higher sealing ability than the resin material, it is possible to effectively suppress intrusion of moisture and the like from the outside of the back sheet 80.
  • the insulating material 14 is colored, the color and surface shape of the back sheet 80 can be hidden by the insulating material 14. In addition, by coloring the insulating material 14, desired characters and designs can be freely displayed on the conductive substrate 15 of the photoelectric conversion element 100. For this reason, even when the photoelectric conversion element 100 includes the back sheet 80, a good appearance can be realized.
  • the dye examples include a photosensitizing dye such as a ruthenium complex having a ligand containing a bipyridine structure or a terpyridine structure, an organic dye such as porphyrin, eosin, rhodamine, or merocyanine, or an organic-type such as a lead halide perovskite.
  • a photosensitizing dye such as a ruthenium complex having a ligand containing a bipyridine structure or a terpyridine structure, an organic dye such as porphyrin, eosin, rhodamine, or merocyanine, or an organic-type such as a lead halide perovskite.
  • the photoelectric conversion element 100 is a dye-sensitized photoelectric conversion element.
  • a photosensitizing dye comprising a ruthenium complex having a ligand containing a bipyridine structure or a terpyridine structure is preferable.
  • the photoelectric conversion characteristics of the photoelectric conversion element 100 can be further improved.
  • the counter substrate 20 includes the metal substrate 21 serving as a substrate and an electrode, and the conductive catalyst layer that is provided on the conductive substrate 15 side of the metal substrate 21 and promotes the reduction reaction on the surface of the counter substrate 20. 22.
  • the metal substrate 21 is made of a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, tungsten, aluminum, and stainless steel.
  • the thickness of the metal substrate 21 is appropriately determined according to the size of the photoelectric conversion element 100 and is not particularly limited, but may be, for example, 0.005 to 0.1 mm.
  • the catalyst layer 22 is composed of platinum, a carbon-based material, a conductive polymer, or the like.
  • a carbon-based material is preferable.
  • examples of the carbon-based material include carbon black, carbon nanotube, and ketjen black. These can be used alone or in combination of two or more.
  • the sealing unit 30A includes a first sealing unit 31A and a second sealing unit 32A.
  • Examples of the material constituting the first sealing portion 31A include a modified polyolefin resin containing, for example, an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, and ultraviolet curing.
  • a modified polyolefin resin containing, for example, an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, and ultraviolet curing.
  • examples thereof include resins and resins such as vinyl alcohol polymers.
  • the thickness of the first sealing portion 31A is usually 40 to 90 ⁇ m, preferably 60 to 80 ⁇ m.
  • the material constituting the second sealing portion 32A is, for example, an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, as in the first sealing portion 31A.
  • resins such as modified polyolefin resins, UV curable resins, and vinyl alcohol polymers.
  • the thickness of the second sealing portion 32A is usually 20 to 45 ⁇ m, preferably 30 to 40 ⁇ m.
  • the second sealing portion 32A may be omitted from the sealing portion 30A.
  • the width P of the bonding portion between the counter substrate 20 and the partition portion 31b is 25% or more and less than 100% of the width Q of the bonding portion between the counter substrate 20 and the annular portion 31a of the first integrated sealing portion 31. preferable. In this case, compared with the case where the width
  • the width P of the bonding portion is more preferably 30% or more of the width Q of the bonding portion, and further preferably 40% or more.
  • the width R of the partition part 31b of the first integrated sealing part 31 is 100% or more and less than 200% of the width T of the annular part 31a of the first integrated sealing part 31. Preferably, it is 120 to 180%.
  • the width P of the bonding portion between the surface on the conductive substrate 15 side of the counter substrate 20 and the partition portion 31 b of the first integrated sealing portion 31 is the conductive substrate 15 of the counter substrate 20. It is preferable that the width is narrower than the width Q of the bonding portion between the side surface and the annular portion 31 a of the first integrated sealing portion 31.
  • the aperture ratio in the photoelectric conversion element 100 can be more sufficiently improved.
  • the width P of the bonding portion may be equal to or greater than the width Q of the bonding portion.
  • the adjacent first sealing portions 31A and the adjacent second sealing portions 32A are integrated between the adjacent counter substrates 20.
  • the adjacent first sealing portions 31A are not integrated, there are two sealing portions exposed to the atmosphere between the adjacent cells 50.
  • the adjacent first sealing portions 31A are integrated, there is one sealing portion exposed to the atmosphere between the adjacent cells 50.
  • the 1st integrated sealing part 31 is comprised by the cyclic
  • the first sealing portions 31A are integrated with each other, the penetration distance of moisture and the like from the atmosphere to the electrolyte 40 is extended.
  • the sealing ability of the photoelectric conversion element 100 can be sufficiently improved.
  • adjacent 1st sealing part 31A is integrated. Therefore, the width P of the bonding portion between the surface of the counter substrate 20 on the conductive substrate 15 side and the partition portion 31b of the first integrated sealing portion 31 is the same as the surface of the counter substrate 20 on the conductive substrate 15 side. Even if it is narrower than the width Q of the bonding portion between the first integrated sealing portion 31 and the annular portion 31a, a sufficient sealing width can be secured in the partition portion 31b.
  • the adhesive strength between the first sealing portion 31A and the conductive substrate 15 and the adhesive strength between the first sealing portion 31A and the counter substrate 20 are improved while improving the aperture ratio. It can be made sufficiently large. As a result, the aperture ratio can be improved, and when the photoelectric conversion element 100 is used at a high temperature, the electrolyte 40 expands and an excessive stress is applied from the inside to the outside of the first sealing portion 31A. However, peeling of the first sealing portion 31A from the conductive substrate 15 and the counter substrate 20 can be sufficiently suppressed, and excellent durability can be achieved.
  • the width R of the partition portion 31b of the first integrated sealing portion 31 is preferably 100% or more and less than 200% of the width T of the annular portion 31a of the first integrated sealing portion 31.
  • the width of the partition part 31b is 100% or more of the width T of the annular part 31a.
  • the width R of the partition portion 31b is less than 100% of the width T of the annular portion 31a.
  • the penetration distance of moisture and the like from the atmosphere to the electrolyte 40 is further extended. For this reason, it can suppress more fully that a water
  • the width R of the partition part 31b exceeds 200% of the width T of the annular part 31a, the aperture ratio can be further improved.
  • the width R of the partition part 31b may be less than 100% of the width T of the annular part 31a of the first integrated sealing part 31, or 200% or more.
  • the second integrated sealing portion 32 includes a main body portion 32d provided on the opposite side of the counter substrate 20 from the working electrode 10 and an adhesive portion 32e provided between the adjacent counter substrates 20. Yes. It is preferable that the 2nd integrated sealing part 32 is adhere
  • edge portion 20a of the counter substrate 20 is sandwiched between the first sealing portion 31A and the second sealing portion 32A.
  • the second sealing portion 32A may not be bonded to the first sealing portion 31A.
  • the annular first sealing portions 31A of the adjacent cells 50 do not necessarily have to be integrated. That is, the annular first sealing portions 31A may be separated from each other.
  • the electrolyte 40 includes a redox couple such as I ⁇ / I 3 ⁇ and an organic solvent.
  • organic solvents include acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, ⁇ -butyrolactone, valeronitrile, pivalonitrile, glutaronitrile, methacrylonitrile, isobutyronitrile, Phenylacetonitrile, acrylonitrile, succinonitrile, oxalonitrile, pentanitrile, adiponitrile and the like can be used.
  • the electrolyte 40 may use an ionic liquid instead of the organic solvent.
  • the ionic liquid for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used.
  • room temperature molten salts examples include 1-hexyl-3-methylimidazolium iodide, 1-ethyl-3-propylimidazolium iodide, dimethylimidazolium iodide, ethylmethylimidazolium iodide, and dimethylpropyl.
  • Imidazolium iodide, butylmethylimidazolium iodide, or methylpropyl imidazolium iodide is preferably used.
  • the electrolyte 40 may be a mixture of the ionic liquid and the organic solvent instead of the organic solvent.
  • An additive can be added to the electrolyte 40.
  • the additive include LiI, I 2 , 4-t-butylpyridine, guanidinium thiocyanate, 1-methylbenzimidazole, 1-butylbenzimidazole and the like.
  • a nano-composite gel electrolyte which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 , carbon nanotubes, etc. into the electrolyte, may be used, and polyvinylidene fluoride may be used.
  • an electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.
  • the electrolyte 40 preferably includes an oxidation-reduction pair consisting of I ⁇ / I 3 ⁇ and the concentration of I 3 ⁇ is preferably 0.006 mol / liter or less.
  • the concentration of I 3 ⁇ is preferably 0.005 mol / liter or less, more preferably 0 to 6 ⁇ 10 ⁇ 6 mol / liter, and 0 to 6 ⁇ 10 ⁇ 8 mol / liter. Is more preferable.
  • the color of the electrolyte 40 can be made inconspicuous when the photoelectric conversion element 100 is viewed from the light incident side of the conductive substrate 15.
  • Wiring material As the wiring members 60P and 60Q, for example, a metal film is used.
  • a metal material constituting the metal film for example, silver or copper can be used.
  • the back sheet 80 is provided on the surface of the laminated body 80A including the weather resistant layer and the metal layer, and the surface of the laminated body 80A on the cell 50 side, and adheres the laminated body 80A and the insulating material 14 together. Part 80B.
  • the weather-resistant layer may be made of, for example, polyethylene terephthalate or polybutylene terephthalate.
  • the thickness of the weather resistant layer may be, for example, 50 to 300 ⁇ m.
  • the metal layer may be made of a metal material containing aluminum, for example.
  • the metal material is usually composed of aluminum alone, but may be an alloy of aluminum and another metal. Examples of other metals include copper, manganese, zinc, magnesium, lead, and bismuth. Specifically, 1000 series aluminum obtained by adding a trace amount of other metals to 98% or more pure aluminum is desirable. This is because the 1000 series aluminum is cheaper and more workable than other aluminum alloys.
  • the thickness of the metal layer is not particularly limited, but may be, for example, 12 to 30 ⁇ m.
  • the laminated body 80A may further include a resin layer.
  • the material constituting the resin layer include butyl rubber, nitrile rubber, thermoplastic resin, and the like. These can be used alone or in combination of two or more.
  • the resin layer may be formed on the entire surface of the metal layer opposite to the weather-resistant layer, or may be formed only on the peripheral edge.
  • Examples of the material constituting the adhesive portion 80B include butyl rubber, nitrile rubber, thermoplastic resin, and the like. These can be used alone or in combination of two or more.
  • the thickness of the bonding portion 80B is not particularly limited, but may be, for example, 300 to 1000 ⁇ m.
  • the back sheet 80 and the transparent conductive layer 12 do not necessarily have to be bonded via the insulating material 14.
  • the photoelectric conversion element 100 does not necessarily have the back sheet 80.
  • the desiccant 95 may be a sheet or a granule.
  • the desiccant 95 only needs to absorb moisture, for example, and examples of the desiccant 95 include silica gel, alumina, and zeolite.
  • FIG. 8 is a plan view showing a working electrode in which a connecting portion for fixing the insulating material and the back sheet for covering the groove is formed
  • FIG. 9 is a first view for forming the first integrated sealing portion of FIG. It is a top view which shows an integrated sealing part formation body.
  • a laminate in which a transparent conductive layer is formed on one transparent substrate 11 is prepared.
  • the transparent conductive layer As a method for forming the transparent conductive layer, sputtering, vapor deposition, spray pyrolysis, CVD, or the like is used.
  • a groove 90 is formed in the transparent conductive layer, and transparent conductive layers 12A to 12F arranged in an insulating state with the groove 90 interposed therebetween are formed.
  • the four transparent conductive layers 12A to 12D corresponding to the cells 50A to 50D are formed to have a rectangular main body portion 12a and protruding portions 12c.
  • the protruding portion 12c extends not only from the overhanging portion 12d but also from the overhanging portion 12d to face the main body portion 12a of the adjacent cell 50. 12e is also formed.
  • the transparent conductive layer 12D includes not only the rectangular main body 12a and the overhanging portion 12d, but also the first current extraction portion 12f and a connection portion 12g that connects the first current extraction portion 12f and the main body portion 12a.
  • the first current extraction portion 12f is formed to be disposed on the opposite side of the transparent conductive layer 12B with respect to the transparent conductive layer 12A.
  • the transparent conductive layer 12E is formed so that the second current extraction portion 12h is formed.
  • the second current extraction portion 12h is disposed on the opposite side of the transparent conductive layer 12B with respect to the transparent conductive layer 12A, and is disposed adjacent to the first current extraction portion 12f via the groove 90.
  • the groove 90 can be formed by a laser scribing method using, for example, a YAG laser or a CO 2 laser as a light source.
  • a conductive substrate 15 formed by forming the transparent conductive layer 12 on the transparent substrate 11 is obtained.
  • a precursor of the connection terminal 16 composed of the wiring material connection portion 16A and the wiring material non-connection portion 16B is formed on the protruding portion 12c of the transparent conductive layers 12A to 12C.
  • the precursor of the connection terminal 16 is formed so that the wiring material connection portion 16A is provided on the facing portion 12e. Further, the precursor of the connection terminal 16 is also formed on the transparent conductive layer 12E.
  • the precursor of the wiring material non-connecting portion 16B is formed to be narrower than the width of the wiring material connecting portion 16A.
  • the precursor of the connection terminal 16 can be formed, for example, by applying a silver paste and drying it.
  • a precursor of the wiring material 17 is formed on the connection portion 12g of the transparent conductive layer 12D.
  • the precursor of the wiring material 17 can be formed by applying and drying a silver paste, for example.
  • precursors of external connection terminals 18a and 18b for taking out current to the outside are formed on the first current extraction portion 12f and the second current extraction portion 12h of the transparent conductive layer 12A, respectively.
  • the precursor of the terminal for external connection can be formed, for example, by applying a silver paste and drying it.
  • the precursor of the insulating material 33 is formed so as to enter the first groove 90A formed along the edge of the main body 12a and also cover the edge of the main body 12a.
  • the insulating material 33 can be formed, for example, by applying and drying a paste containing colored glass frit.
  • the annular insulating material 14 is surrounded by the insulating material 33 and passes through the transparent conductive layer 12D, the transparent conductive layer 12E, and the transparent conductive layer 12F in the same manner as the insulating material 33.
  • a precursor is formed.
  • a precursor of the oxide semiconductor layer 13 is formed on the main body portion 12a of each of the transparent conductive layers 12A to 12D.
  • the precursor of the oxide semiconductor layer 13 can be formed by printing a porous oxide semiconductor layer forming paste containing oxide semiconductor particles and then drying the paste.
  • the oxide semiconductor layer forming paste includes a resin such as polyethylene glycol and a solvent such as terpineol in addition to the oxide semiconductor particles.
  • a method for printing the oxide semiconductor layer forming paste for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.
  • the precursor of the connection terminal 16, the precursor of the insulating material 33, the precursor of the insulating material 14, and the precursor of the oxide semiconductor layer 13 are collectively baked, and the connection terminal 16, the insulating material 33, the insulating material 14, Then, the oxide semiconductor layer 13 is formed.
  • the firing temperature varies depending on the types of oxide semiconductor particles and glass frit, but is usually 350 to 600 ° C.
  • the firing time also varies depending on the types of oxide semiconductor particles and glass frit, but usually 1 to 5 It's time.
  • the working electrode 10 on which the insulating material 14 for fixing the insulating material 33 and the back sheet 80 is formed is obtained.
  • a dye is supported on the oxide semiconductor layer 13 of the working electrode 10.
  • the working electrode 10 is immersed in a solution containing a dye, the dye is adsorbed on the oxide semiconductor layer 13, and then the excess dye is washed away with the solvent component of the solution and dried.
  • the dye may be adsorbed on the oxide semiconductor layer 13.
  • the dye can be supported on the oxide semiconductor layer 13 even after the dye is adsorbed to the oxide semiconductor layer 13 by applying a solution containing the dye to the oxide semiconductor layer 13 and then drying. .
  • the electrolyte 40 is disposed on the oxide semiconductor layer 13.
  • a first integrated sealing portion forming body 131 for forming the first integrated sealing portion 31 is prepared.
  • the first integrated sealing portion forming body 131 prepares one sealing resin film made of the material constituting the first integrated sealing portion 31, and the number of cells 50 is set in the sealing resin film. It can be obtained by forming a corresponding rectangular opening 131a.
  • the first integrated sealing portion forming body 131 has a structure in which a plurality of first sealing portion forming bodies 131A are integrated.
  • the first integrated sealing portion forming body 131 is adhered on the working electrode 10. At this time, the first integrated sealing portion forming body 131 is bonded to the working electrode 10 so as to overlap the insulating material 33.
  • the first integrated sealing portion forming body 131 can be adhered to the working electrode 10 by heating and melting the first integrated sealing portion forming body 131.
  • the first integrated sealing portion forming body 131 is bonded to the working electrode 10 so that the main body portion 12 a of the transparent conductive layer 12 is disposed inside the first integrated sealing portion forming body 131.
  • the counter substrate 20 can be obtained by forming a conductive catalyst layer 22 that promotes a reduction reaction on the surface of the counter substrate 20 on the metal substrate 21.
  • the first integrated sealing portion forming body 131 bonded to the counter substrate 20 and the first integrated sealing portion forming body 131 bonded to the working electrode 10 are overlapped to form a first integrated sealing portion.
  • the body 131 is heated and melted while being pressurized.
  • the first integrated sealing portion 31 is formed between the working electrode 10 and the counter substrate 20.
  • the width P of the bonding portion between the surface of the counter substrate 20 on the conductive substrate 15 side and the partition portion 31b of the first integrated sealing portion 31 is equal to the surface of the counter substrate 20 on the conductive substrate 15 side.
  • the first integrated sealing portion 31 is formed so as to be narrower than the width Q of the bonding portion between the first integrated sealing portion 31 and the annular portion 31a.
  • the first integrated sealing is performed such that the width R of the partition portion 31b of the first integrated sealing portion 31 is not less than 100% and less than 200% of the width T of the annular portion 31a of the first integrated sealing portion 31.
  • a portion 31 is formed.
  • the formation of the first integrated sealing portion 31 may be performed under atmospheric pressure or under reduced pressure, but is preferably performed under reduced pressure.
  • the second integrated sealing portion 32 has a structure formed by integrating a plurality of first sealing portions 32A.
  • the second integrated sealing portion 32 can be obtained by preparing a single sealing resin film and forming the rectangular openings 32c corresponding to the number of cells 50 in the sealing resin film. .
  • the second integrated sealing portion 32 is bonded to the counter substrate 20 so as to sandwich the edge portion 20 a of the counter substrate 20 together with the first integrated sealing portion 31.
  • the adhesion of the second integrated sealing portion 32 to the counter substrate 20 can be performed by heating and melting the second integrated sealing portion 32.
  • the sealing resin film examples include an ionomer, an ethylene-vinyl acetic anhydride copolymer, an ethylene-methacrylic acid copolymer, an ethylene-vinyl alcohol copolymer, a modified polyolefin resin, an ultraviolet curable resin, and a vinyl.
  • the constituent material of the sealing resin film for forming the second integrated sealing portion 32 has a higher melting point than the constituent material of the sealing resin film for forming the first integrated sealing portion 31. It is preferable. In this case, since the second sealing portion 32A is harder than the first sealing portion 31A, it is possible to effectively prevent the opposing substrates 20 of the adjacent cells 50 from contacting each other. In addition, since the first sealing portion 31A is softer than the second sealing portion 32A, the stress applied to the sealing portion 30A can be effectively relieved.
  • bypass diodes 70A, 70B, and 70C are fixed to the partition portion 32b of the second sealing portion 32.
  • the bypass diode 70D is also fixed on the sealing portion 30A of the cell 50D.
  • the wiring member 60Q is fixed to the metal substrate 21 of the counter substrate 20 of the cells 50B to 50C so as to pass through the bypass diodes 70A to 70D. Further, between the bypass diodes 70A and 70B, between the bypass diodes 70B and 70C, between the bypass diodes 70C and 70D, the wiring material connection portion 16A on the transparent conductive layer 12A, and the wiring material connection portion on the transparent conductive layer 12B. A wiring material 60P is formed so as to connect 16A and the wiring material connecting portion 16A on the transparent conductive layer 12C.
  • the wiring member 60P is fixed to the metal substrate 21 of the counter substrate 20 of the cell 50A so as to connect the wiring member connecting portion 16A on the transparent conductive layer 12E and the bypass diode 70A. Further, the transparent conductive layer 12D and the bypass diode 70D are connected by the wiring material 60P.
  • the wiring material 60P prepares a paste containing a metal material constituting the wiring material 60P, and this paste is applied from the counter substrate 20 to the wiring material connection portion 16A of the connection terminal 16 of the adjacent cell 50, Harden.
  • a paste containing a metal material constituting the wiring material 60Q is prepared, and this paste is applied on each counter substrate 20 so as to connect adjacent bypass diodes, and is cured.
  • the paste it is preferable to use a low-temperature curable paste that can be cured at a temperature of 90 ° C. or lower from the viewpoint of avoiding adverse effects on the pigment.
  • a back sheet 80 is prepared, and the peripheral edge 80a of the back sheet 80 is bonded to the insulating material 14. At this time, the backsheet 80 is disposed so that the adhesive portion 80B of the backsheet 80 and the sealing portion 30A of the cell 50 are separated from each other.
  • the photoelectric conversion element 100 is obtained as described above.
  • connection terminal 16 in order to form the connection terminal 16, the wiring material 17, the insulating material 33, the insulating material 14, and the oxide semiconductor layer 13, the precursor of the connecting terminal 16, the precursor of the wiring material 17, and the insulation.
  • the precursor of the material 33, the precursor of the insulating material 14, and the precursor of the oxide semiconductor layer 13 are baked together, but the connection terminal 16, the wiring material 17, the insulating material 33, the insulating material 14, Alternatively, the oxide semiconductor layer 13 may be formed by firing the precursor separately.
  • FIGS. 10 is a cross-sectional end view showing a second embodiment of the photoelectric conversion element of the present invention
  • FIG. 11 is a plan view showing a part of the second embodiment of the photoelectric conversion element of the present invention
  • FIG. 11 is a cross-sectional end view taken along line XII-XII of FIG. 11
  • FIG. 13 is a plan view showing a working electrode on which an insulating material and a light transmission preventing layer for fixing the backsheet are formed
  • FIG. It is the top view which looked at this photoelectric conversion element from the conductive substrate side.
  • symbol is attached
  • one end of the wiring member 17 is connected to the terminal portion 35a directly connected to the transparent conductive layer 12D, and the other end of the wiring member 17 is connected.
  • the photoelectric conversion element 100 is different from the photoelectric conversion element 100 of the first embodiment in that it is connected to the terminal portion 35b that is directly connected to the transparent conductive layer 12D.
  • the photoelectric conversion element 200 of the present embodiment includes the insulating material 14 and the insulating material 14 in the region between the first sealing portion 31A of the cells 50A to 50D and the edge of the conductive substrate 15 on the conductive substrate 15.
  • An insulating light transmission preventing layer 34 is provided in a region where the insulating material 33 is not provided so as to be adjacent to at least the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b, and prevents light transmission. Is further different from the photoelectric conversion element 100 of the first embodiment.
  • the light transmission preventing layer 34 is colored.
  • the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b are on the conductive substrate 15 and between the first sealing portion 31A of the cells 50A to 50D and the edge of the conductive substrate 15.
  • the region where the insulating material 14 and the insulating material 33 are not provided is provided so as to be in contact with the transparent conductive layer 15.
  • the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b are colored, and constitute the terminal portion and the conductive portion in the present invention.
  • the wiring material 17 and the wiring material 60P also comprise the electroconductive part.
  • the terminal part 35a comprises the 1st connection part
  • the terminal part 35b comprises the 2nd connection part.
  • the light transmission preventing layer 34 is formed in a region between the first sealing portion 31A of the cells 50A to 50D and the edge of the conductive substrate 15 on the surface of the conductive substrate 15 on the sealing portion 30A side.
  • the photoelectric conversion element 200 when the photoelectric conversion element 200 is viewed in the thickness direction of the conductive substrate 15, the photoelectric conversion element 200 is provided so as to cover at least all of the regions other than the insulating material 14, the insulating material 33, and the conductive portion.
  • the insulating material 14 is colored and made of the same material as the light transmission preventing layer 34, the insulating material 14 also serves as the light transmission preventing layer 34.
  • the light transmission preventing layer 34 is provided so as to surround the insulating material 33.
  • the light transmission preventing layer 34 is integrated with the insulating material 33. Therefore, the light transmission preventing layer 34 also covers the second groove 90B between the transparent conductive layers 12 provided outside the sealing portion 30A.
  • the light transmission preventing layer 34 is provided between the wiring material 60P and the conductive substrate 15 so as to overlap the wiring material 60P as a conductive portion in the thickness direction of the conductive substrate 15. .
  • the light transmission preventing layer 34 is provided between the wiring member 17 and the conductive substrate 15 so as to overlap with the wiring member 17 as a conductive portion in the thickness direction of the conductive substrate 15.
  • at least a part of the wiring member 17 may be provided directly on the light transmission preventing layer 34 between the terminal portions 35 a and 35 b, and directly on the light transmission preventing layer 34. It may not be provided.
  • “cover all” means that when the insulating material 14 also serves as the light transmission preventing layer 34, the light transmission preventing layer 34 covers the surface of the conductive substrate 15 on the sealing portion 30 ⁇ / b> A side with the thickness of the conductive substrate 15.
  • it means that 90% or more of the area between the first sealing portion 31A of the cells 50A to 50D and the edge of the conductive substrate 15 is covered.
  • the edge of the opening also constitutes the edge of the conductive substrate 15. Therefore, the area of the opening is the first sealing of the cells 50A to 50D. This is excluded from the area of the region between the portion 31A and the edge of the conductive substrate 15.
  • the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b constituting the terminal portion in the present invention are colored, and the light transmission preventing layer 34 is also colored.
  • the light transmission preventing layer 34 is adjacent to the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b.
  • the photoelectric conversion element 200 when the photoelectric conversion element 200 is viewed in the thickness direction of the conductive substrate 15 between the conductive substrate 15 and the wiring material 60P, the wiring material 60P and the light transmission preventing layer 34 overlap. Thus, the light transmission preventing layer 34 is provided. Further, a light transmission preventing layer 34 is provided between the conductive substrate 15 and the wiring material 17 so that the wiring material 17 and the light transmission preventing layer 34 overlap each other. For this reason, it is possible to hide the wiring member 60P and the wiring member 17 on the back side of the light transmission preventing layer 34. Therefore, a better appearance can be realized.
  • the light transmission preventing layer 34 is insulative, it is possible to prevent the connection terminals 16 that are the first connection portions of the transparent conductive layers 12A to 12C and 12E from being short-circuited.
  • the insulating material 33 functions as a layer that prevents light transmission by being integrated with the light transmission preventing layer 34. Therefore, when the photoelectric conversion element 200 is viewed from the conductive substrate 15 in the thickness direction as shown in FIG. 14, the color of the first sealing portion 31A and the counter substrate 20 on the back side of the insulating material 33 It is also possible to hide the shape. For this reason, a favorable external appearance can be realized. In addition, it is possible to color the sealing portion 30A by introducing a colorant into the sealing portion 30A and hide the color of the counter substrate 20, but compared to this case, the durability of the photoelectric conversion element 200 is improved. Can be improved.
  • the insulating material 33 and the light transmission preventing layer 34 are integrated. For this reason, even if moisture enters the back sheet 80, no interface is formed between the insulating material 33 and the light transmission preventing layer 34, so that it is possible to integrally prevent moisture from entering. For this reason, it becomes possible to have much more excellent durability.
  • the first sealing portion 31A of the cells 50A to 50D and the conductive substrate are formed on the surface of the conductive substrate 15 on the sealing portion 30A side. 15, so as to cover at least all of the regions other than the insulating material 14, the insulating material 33, and the conductive portion when the photoelectric conversion element 200 is viewed in the thickness direction of the conductive substrate 15.
  • An insulating light transmission preventing layer 34 for preventing light transmission is provided in an annular shape.
  • the insulating light transmission preventing layer 34 is provided over the entire periphery of the peripheral edge 80a of the back sheet 80, moisture enters the back sheet 80 from the outside of the back sheet 80. This can be sufficiently suppressed.
  • the second groove 90 ⁇ / b> B that intersects the peripheral edge portion 80 a of the back sheet 80 is covered with the light transmission preventing layer 34. For this reason, the following effect is acquired. That is, in the photoelectric conversion element 200, the light transmission preventing layer 34 enters the second groove 90B, and the light transmission preventing layer 34 also covers the edge of the transparent conductive layer 12 except for the main body 12a.
  • the material constituting the light transmission preventing layer 34 may be made of an insulating material that can prevent light transmission and is colored.
  • examples of such an insulating material include a colored resin and a colored inorganic insulating material, and among them, a colored inorganic insulating material is preferable. In this case, the following effects can be obtained. That is, the light transmission preventing layer 34 also covers the second groove 90B.
  • the light transmission preventing layer 34 is made of an inorganic insulating material instead of a resin, the intrusion of moisture from the second groove 90B can be more sufficiently suppressed.
  • the colored inorganic insulating material for example, an inorganic insulating material such as colored glass frit is used.
  • the terminal portion is colored, is not particularly limited difference in L * of L * a * b * color space between the light transmission preventing layer 34 is preferably 3 or less 1 or less is more preferable.
  • the color of the light transmission preventing layer 34 is closer to the colors of the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b, the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portion 35a. , 35b can be more sufficiently suppressed from being noticeable.
  • L * of L * a * b * color space between the oxide semiconductor layer 13 and the light transmission preventing layer 34 preferably 5 or less, 3 or less More preferably.
  • the color of the light transmission preventing layer 34 is not particularly limited as long as it is colored, and various colors can be used according to the purpose.
  • the thickness of the light transmission preventing layer 34 is usually 10 to 30 ⁇ m, preferably 15 to 25 ⁇ m.
  • connection terminal 16 as the terminal portion and the conductive portion includes a conductive material such as a metal material or carbon.
  • the metal material include silver, copper, and indium. You may use these individually or in combination of 2 or more types.
  • the conductive material is preferably composed of carbon. Since carbon is black while having excellent conductivity, it is more sufficiently suppressed that the connection terminal 16 is conspicuous as compared with a case where a metal material such as silver is included.
  • the connection terminal 16 includes a resin in addition to the conductive material.
  • the resin include an epoxy resin, a polyester resin, and an acrylic resin.
  • an epoxy resin and a polyester resin are preferable because they are less likely to thermally expand even at a high temperature and change in resistance with time can be further reduced.
  • connection terminal 16 is a terminal portion which is colored, the difference in L * of L * a * b * color space between the external connection terminals 18a, 18b and the terminal portions 35a, 35b is particularly it but are not limited, if the difference between the L * of L * a * b * color space between the oxide semiconductor layer 13 and the light transmission preventing layer 34 is 5 or less is 5 or less Is preferred.
  • the colors of the connection terminal 16, the external connection terminals 18a and 18b, the terminal portions 35a and 35b, and the light transmission preventing layer 34 can be made closer to the color of the oxide semiconductor layer 13.
  • the colors of the connection terminal 16, the external connection terminals 18a and 18b, the terminal portions 35a and 35b, the light transmission preventing layer 34, and the oxide semiconductor layer 13 can be made close to a single color.
  • the connection terminal 16, the external connection terminals 18 a and 18 b, the terminal portions 35 a and 35 b, and the light transmission preventing layer 34 are more sufficiently suppressed from being conspicuous with respect to the oxide semiconductor layer 13.
  • the oxide semiconductor layer 13, connecting terminals 16, the external connection terminals 18a, 18b and the terminal portion 35a, that is the difference in L * of L * a * b * color space between the 35b is 3 or less More preferred.
  • the external connection terminals 18a and 18b as the terminal part and the conductive part may be made of the same material as the connection terminal 16 or different materials as long as they are colored, but are made of the same material. It is preferable.
  • the terminal portions 35a and 35b as the terminal portion and the conductive portion may be made of the same material as the connection terminal 16 or different materials as long as they are colored, but are made of the same material. Is preferred.
  • the wiring member 17 and the wiring member 60P are provided on the opposite side of the light transmission preventing layer 34 to the conductive substrate 15 so as to overlap the light transmission preventing layer 34, they may be colored, It may not be colored.
  • the wiring member 17 and the wiring member 60P may be made of the same material as the connection terminal 16 or different materials, but the same material. It is preferable that it is comprised.
  • each of the wiring member 17 and the wiring member 60P may be formed of a stacked body of a colored colored conductive layer and an uncolored non-colored conductive layer.
  • the wiring member 17 may be provided directly on the transparent conductive layer 12 of the conductive substrate 15. That is, the wiring member 17 may be provided on the side opposite to the conductive substrate 15 in the light transmission preventing layer 34 so as not to overlap the light transmission preventing layer 34. In this case, the wiring member 17 may be colored or may not be colored, but is preferably colored.
  • the manufacturing method of the photoelectric conversion element 200 of the present embodiment is different from the manufacturing method of the photoelectric conversion element 100 of the first embodiment only in terms of the manufacturing method of the working electrode 10. Therefore, a method for manufacturing the working electrode 10 will be described below.
  • the conductive substrate 15 is obtained in the same manner as in the first embodiment.
  • a precursor of the connection terminal 16 composed of the wiring material connection portion 16A and the wiring material non-connection portion 16B is formed on the protruding portion 12c of the transparent conductive layers 12A to 12C of the conductive substrate 15.
  • the precursor of the connection terminal 16 is formed so that the wiring material connection portion 16A is provided on the facing portion 12e. Further, the precursor of the connection terminal 16 is also formed on the transparent conductive layer 12E.
  • the precursor of the wiring material non-connecting portion 16B is formed to be narrower than the width of the wiring material connecting portion 16A.
  • the precursor of the connection terminal 16 can be formed by applying and drying a paste containing a conductive material, for example.
  • the conductive material is composed of carbon, it is preferable to include a colored master batch containing carbon and resin in the paste.
  • an epoxy resin or a polyester resin is preferable as the resin.
  • the precursors of the terminal portions 35a and 35b are formed on the main body portion 12a and the first current extraction portion 12f of the transparent conductive layer 12D.
  • the precursor of the terminal portions 35a and 35b the same precursor as that of the connection terminal 16 can be used.
  • the precursors of the terminal portions 35a and 35b can be formed, for example, by applying a silver paste and drying it.
  • the insulating material 33 and the precursor of the light transmission preventing layer 34 are formed so as to cover the regions excluding the connecting terminal 16, the external connecting terminals 18a and 18b, and the terminal portions 35a and 35b.
  • the precursor of the insulating material 33 and the light transmission preventing layer 34 can be formed, for example, by applying and drying a paste containing a colored glass frit.
  • a precursor of the wiring material 17 is formed on the light transmission preventing layer 34 so as to connect the terminal portions 35a and 35b.
  • the precursor of the wiring member 17 the same precursor as that of the connection terminal 16 can be used.
  • a precursor of the oxide semiconductor layer 13 is formed on the main body 12a of each of the transparent conductive layers 12A to 12D in the same manner as in the first embodiment.
  • connection terminal 16 The precursor of the connection terminal 16, the precursor of the external connection terminals 18a and 18b, the precursor of the terminal portions 35a and 35b, the precursor of the wiring member 17, the precursor of the insulating material 33, and the precursor of the light transmission preventing layer 34 And the precursor of the oxide semiconductor layer 13 are collectively baked, and the connection terminal 16, the external connection terminals 18a and 18b, the terminal portions 35a and 35b, the wiring material 17, the insulating material 33, the light transmission preventing layer 34, and the oxide semiconductor Layer 13 is formed.
  • the firing temperature varies depending on the types of oxide semiconductor particles and glass frit, but is usually 350 to 600 ° C.
  • the firing time also varies depending on the types of oxide semiconductor particles and glass frit, but usually 1 to 5 It's time.
  • the working electrode 10 in which the insulating material 33 and the light transmission preventing layer 34 for fixing the back sheet 80 are formed is obtained.
  • the precursor of the connection terminal 16 the precursor of the terminal for external connection, and the precursor of the terminal portions 35a and 35b are made of a paste containing a colored master batch containing carbon and resin.
  • the precursor of the connection terminal 16, the precursor of the terminal for external connection, and the precursor of the terminal portions 35a and 35b are preferably covered with a protective film in advance.
  • a protective film in advance.
  • the light transmission preventing layer 34 is provided in an annular shape so as to cover at least all of the regions other than the insulating material 14, the insulating material 33, and the conductive portion.
  • the light transmission preventing layer 34 is formed on the surface of the conductive substrate 15 on the side of the sealing portion 30A, in the region between the first sealing portion 31A of the cells 50A to 50D and the outer peripheral edge of the conductive substrate 15.
  • the conversion element When the conversion element is viewed in the thickness direction of the conductive substrate 15, it is not always necessary to cover at least all of the regions other than the insulating material 14, the insulating material 33, and the conductive portion. In short, the light transmission preventing layer 34 only needs to be adjacent to at least the terminal portion including the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b.
  • connection terminal 16 all of the connection terminal 16, the external connection terminals 18 a and 18 b and the terminal portions 35 a and 35 b that are terminal portions are colored, but the connection terminal 16, the external connection terminals 18 a and 18 b, and the terminal portions 35 a, Only one of 35b may be colored.
  • the portion of the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b that are hidden by the housing when the photoelectric conversion device is viewed from the outside It may not be colored.
  • portions of the connection terminal 16, the external connection terminals 18a and 18b, and the terminal portions 35a and 35b that are not hidden by the housing are colored.
  • the terminal parts 35a and 35b may not be colored in that case.
  • connection terminal 16 and the external connection terminals 18a and 18b are colored, they are not necessarily colored. It does not have to be.
  • one end of the wiring material 60P is connected to the transparent conductive layer 12 via the connection terminal 16, but one end of the wiring material 60P may be directly connected to the transparent conductive layer 12. In this case, the transparent conductive layer 12 becomes the first connection portion.
  • one end of the wiring member 17 is connected to the transparent conductive layer 12 via the terminal portion 35a, but one end of the wiring member 17 may be directly connected to the transparent conductive layer 12.
  • the terminal part 35a becomes unnecessary, and the transparent conductive layer 12 becomes the first connection part.
  • the other end of the wiring member 17 is connected to the transparent conductive layer 12 via the terminal portion 35b as the second connection portion, but the other end of the wiring member 17 is directly connected to the transparent conductive layer 12. It may be connected.
  • the terminal part 35b becomes unnecessary, and the transparent conductive layer 12 becomes the second connection part.
  • the photoelectric conversion element 100 includes the wiring member 17, but the photoelectric conversion element of the present invention does not necessarily have the wiring member 17. In this case, the terminal portions 35a and 35b are also unnecessary. In this case, the conductive portion is composed of only the connection terminal 16 and the external connection terminals 18a and 18b.
  • the light transmission preventing layer 34 and the insulating material 33 are made of the same material and integrated, but the insulating material 33 and the light transmission preventing layer 34 are made of different materials. Also good.
  • the light transmission preventing layer 34 may not be colored, and the insulating material 33 may be colored.
  • the insulating material 33 has the same color as that of the oxide semiconductor layer 13, for example.
  • the insulating material 33 only needs to be colored and does not necessarily have a light transmission preventing function.
  • the wiring member 60P and the metal substrate 21 of the counter substrate 20 are connected, but the wiring member 60P may be configured by a part of the metal substrate 21 of the counter substrate 20.
  • the photoelectric conversion element when the photoelectric conversion element is viewed from the transparent substrate 11 side in the thickness direction of the conductive substrate 15, the light transmission to the conductive substrate 15 is prevented. It is preferable that a different color portion M having a color different from that of the layer 34 is provided. In this case, since the different color portion M shows a color different from that of the light transmission preventing layer 34, when the photoelectric conversion element is viewed from the thickness direction of the conductive substrate 15, a desired character or design is displayed by the different color portion M. Is possible.
  • the light transmission preventing layer 34 is formed on the surface of the conductive substrate 15 on the sealing portion 30A side with the first sealing portion 31A of the cells 50A to 50D.
  • the different color portion M shown in FIG. 15 is provided directly on the transparent conductive layer 12 of the conductive substrate 15, and the light transmission preventing layer 34 is provided thereon so as to overlap.
  • the different color portion M can be formed by printing directly on the transparent conductive layer 12 or the like.
  • the "color different from the light transmission preventing layer 34" refers to the L * a * b * color space of the different color portion M L * a * b * color space L * and the light transmission preventing layer 34 L * and The difference value is 5 or more.
  • the light transmission preventing layer 34 may not be provided on the different color portion M. Further, the different color portion M can be formed by surrounding the space with the light transmission preventing layer 34.
  • the light transmission preventing layer 34 is made of an insulating material, but the light transmission preventing layer 34 may be made of a conductive material as long as it is not provided so as to straddle the groove 90.
  • the present invention is not limited to the above embodiment.
  • the cells 50A to 50D are arranged in a line along the X direction in FIG. 2, but are a part of the cells 50A to 50D like the photoelectric conversion element 300 shown in FIG.
  • the cells 50C and 50D may be folded back, and the cells 50A and 50D may be arranged so that they are adjacent to each other.
  • the back sheet 80 is omitted.
  • the transparent conductive layer 12D does not need to provide the connection portion 12g between the main body portion 12a and the first current extraction portion 12f. For this reason, it is not necessary to provide the wiring material 17 either.
  • the cells 50C and 50D that are a part of the cells 50A to 50D are folded halfway, and the cell 50A and the cell 50D are adjacent to each other. You may arrange as follows.
  • the second groove 90B intersecting the insulating material 14 between the back sheet 80 and the conductive substrate 15 is not covered with the insulating material 33, but the photoelectric conversion element shown in FIG. Like 400, the second groove 90 ⁇ / b> B is preferably covered with the insulating material 33.
  • the back sheet 80 is omitted. As shown in FIG. 17, when the second groove 90B intersects the insulating material 14, moisture may enter the space between the back sheet 80 and the conductive substrate 15 through the second groove 90B. It becomes possible.
  • the insulating material 33 enters the second groove 90 ⁇ / b> B, and the insulating material 33 also covers the edge of the transparent conductive layer 12 except for the main body portion 12 a, so that the back sheet 80 is inward from the outside. Moisture penetration into the water is sufficiently suppressed. For this reason, the water
  • the insulating material 33 enters all the groove
  • the edges of the transparent conductive layer 12 on both sides of the groove 90 are preferably covered.
  • the insulating material 33 since the insulating material 33 enters all the grooves 90 and covers the edges of the transparent conductive layer 12 on both sides of all the grooves 90, moisture cannot enter the grooves 90 in the first place, and is formed in the grooves 90. Since moisture cannot enter the cracks, it is possible to further prevent moisture from entering through the grooves 90.
  • the insulating material 33 covers the edges of the transparent conductive layers 12 on both sides of all the grooves 90, sufficient insulation can be secured between the transparent conductive layers 12 on both sides of the grooves 90. Moreover, since the insulating material 33 has entered the photoelectric conversion element 100 in all of the first grooves 90A between the transparent conductive layers 12 of the adjacent cells 50, the current flowing between the transparent conductive layers 12 is further increased. Insulation can be sufficiently secured. For this reason, a photoelectric conversion characteristic can be improved more.
  • the first current extraction unit 12f and the second current extraction unit 12h are arranged around the cell 50A.
  • the current extraction unit 12f and the second current extraction unit 12h may be disposed around the cell 50D side.
  • the first current extraction portion 12f is provided so as to protrude to the outside of the sealing portion 30A on the side opposite to the cell 50C with respect to the main body portion 12a of the transparent conductive layer 12D.
  • the second current extraction portion 12h is provided on the opposite side of the cell 50C with respect to the main body portion 12a of the transparent conductive layer 12D.
  • the first current extraction portion 12f and the second current extraction portion 12h are arranged around the cell 50A side.
  • the current extraction unit 12f and the second current extraction unit 12h may be disposed around the cell 50D side.
  • the first current extraction portion 12f is provided so as to protrude to the outside of the sealing portion 30A on the side opposite to the cell 50C with respect to the main body portion 12a of the transparent conductive layer 12D.
  • the second current extraction portion 12h is provided on the opposite side of the cell 50C with respect to the main body portion 12a of the transparent conductive layer 12D.
  • a connecting portion 12i for connecting the second current extraction portion 12h and the metal substrate 21 of the counter substrate 20 of the cell 50A extends along the transparent conductive layers 12A to 12D.
  • a wiring material 417 having a lower resistance than the transparent conductive layer 12 and having a current collecting function is provided on the light transmission preventing layer 34 along the connection portion 12i.
  • One end and a wiring member 60P extending from the bypass diode 70A are connected, and the other end of the wiring member 417 is provided in a through-hole penetrating the light transmission preventing layer 34 and is directly connected to the first current extraction portion 12h. 635 is connected.
  • the wiring member 417 forms a conductive portion
  • the metal substrate 21 of the cell 50A forms a second connection portion
  • the terminal portion 635 forms a first connection portion, a terminal portion, and a conductive portion.
  • the other end of the wiring member 417 is indirectly connected to the second current extraction portion 12h of the transparent conductive layer 12E via the terminal portion 635.
  • the terminal portion 635 may be omitted, and the other end of the wiring member 417 may be directly connected to the second current extraction portion 12h of the transparent conductive layer 12E.
  • the transparent conductive layer 12E constitutes the first connection portion.
  • at least a part of the wiring member 417 may be provided directly on the light transmission preventing layer 34 between the metal substrate 21 and the terminal portion 635 of the cell 50A. 34 may not be directly provided.
  • a gap is provided between the inner wall surface of the first sealing portion 31 ⁇ / b> A and the oxide semiconductor layer 13.
  • a gap may not be provided between the inner wall surface of the sealing portion 31 ⁇ / b> A and the oxide semiconductor layer 13. That is, the inner wall surface of the first sealing portion 31A and the oxide semiconductor layer 13 may be in contact with each other. In this case, the color of the electrolyte 40 seen through the gap between the inner wall surface of the first sealing portion 31A and the oxide semiconductor layer 13 and the color or shape of the counter substrate 20 can be hidden.
  • a gap may not be provided between the inner wall surface of the first sealing portion 31A and the oxide semiconductor layer 13.
  • no film is formed on the surface of the transparent substrate 11 opposite to the transparent conductive layer 12.
  • a coating layer 96 may be further provided on the surface opposite to the transparent conductive layer 12.
  • the coating layer 96 covers the oxide semiconductor layer 13 when the coating layer 96 is viewed in the thickness direction of the transparent substrate 11, and the maximum absorption peak wavelength in the visible light wavelength region of the coating layer 96;
  • the maximum absorption peak wavelength in the visible light wavelength region of the oxide semiconductor layer 13 is preferably different from each other.
  • the maximum absorption peak wavelength ( ⁇ 1) of the covering layer 96 in the visible light wavelength region is different from the maximum absorption peak wavelength ( ⁇ 2) of the oxide semiconductor layer 13 in the visible light wavelength region.
  • the color of the oxide semiconductor layer 13 of the photoelectric conversion element 800 can be adjusted to a desired color.
  • ⁇ 1- ⁇ 2 may be non-zero and is not particularly limited, but is preferably 50 to 300 nm, more preferably 100 to 300 nm.
  • the color of the covering layer 96 is preferably a complementary color of the oxide semiconductor layer 13. That is, it is preferable that the color seen when the oxide semiconductor layer 13 and the covering layer 96 are overlapped is black.
  • the refractive index of the covering layer 96 is preferably approximately the same as the refractive index of the conductive substrate 15. Specifically, the difference in refractive index between the conductive substrate 15 and the coating layer 96 is preferably 0 to 0.5. In this case, the interface reflection between the conductive substrate 15 and the coating layer 96 is more sufficiently suppressed, and the color can be adjusted more beautifully.
  • An overcoat layer may be further provided on the coating layer 96 from the viewpoint of protecting the coating layer 96.
  • a cover layer 96 may be further provided on the surface of the transparent substrate 11 opposite to the transparent conductive layer 12 as in the photoelectric conversion element 800 shown in FIG. Good.
  • channel 90A is formed along the edge of the main-body part 12a of the transparent conductive layer 12, like the photoelectric conversion element 900 shown in FIG. As long as it follows the outer shape of 30A, it does not have to be formed along the edge of the main body 12a of the transparent conductive layer 12. Specifically, the first groove 90 ⁇ / b> A is formed at a position away from the annular sealing portion 30 ⁇ / b> A on the transparent conductive layer 12. Even in this case, the insulating material 33 enters the first groove 90A formed along the outer shape of the annular sealing portion 30A and continuously covers the edge of the main body portion 12a. Also in the photoelectric conversion element 200 of the second embodiment, as long as the first groove 90A is along the outer shape of the annular sealing portion 30A, like the photoelectric conversion element 900 shown in FIG. It may not be formed along the edge of the main body 12a.
  • the insulating material 33 and the insulating material 14 were spaced apart, it is preferable that it is comprised and integrated with the same material like the photoelectric conversion element 900 shown in FIG. .
  • the insulating material 33 and the insulating material 14 are made of the same material and are integrated, even if moisture enters the back sheet 80, an interface does not occur between the insulating material 14 and the insulating layer 33. Together, it can prevent moisture from entering. For this reason, it becomes possible to have much more excellent durability.
  • a plurality of cells 50 are used.
  • only one cell may be used as in the photoelectric conversion element 1000 shown in FIG.
  • the cells 50A to 50C are omitted from the photoelectric conversion element 100, and the connection terminal 16 provided on the second current extraction portion 12h and the metal of the counter substrate 20 of the cell 50D are arranged.
  • the substrate 21 is electrically connected via the wiring member 60P.
  • the connection terminal 16 includes only the wiring material connection portion 16A, and the wiring material connection portion 16A is disposed between the sealing portion 30A and the insulating material 14.
  • the wiring material connection portion 16A is not disposed at a position facing the side edge portion 12b of the main body portion 12a in the transparent conductive layer 12D of the cell 50D.
  • the photoelectric conversion element 100 of 1st Embodiment it becomes possible to expand the oxide semiconductor layer 13 to the space of the part in which the wiring material connection part 16A was arrange
  • only one cell may be used like the photoelectric conversion element 1000 shown in FIG.
  • the counter substrate 20 is configured with a counter electrode.
  • an insulating substrate 1101 may be used instead of the counter electrode as the counter substrate.
  • a structure 1102 including the oxide semiconductor layer 13, the porous insulating layer 1103, and the counter electrode 1120 is disposed in a space between the insulating substrate 1101, the sealing portion 30A, and the conductive substrate 15.
  • the structure 1102 can be provided on the surface of the conductive substrate 15 on the insulating substrate 1101 side.
  • the structure 1102 includes an oxide semiconductor layer 13, a porous insulating layer 1103, and a counter electrode 1120 in this order from the conductive substrate 15 side.
  • An electrolyte 40 is disposed in the space.
  • the electrolyte 40 is impregnated into the oxide semiconductor layer and the porous insulating layer.
  • the insulating substrate 110 for example, a glass substrate or a resin film can be used.
  • the counter electrode 1120 the thing similar to the counter substrate 20 of the said embodiment can be used.
  • the counter electrode 1120 may be composed of a single porous layer containing, for example, carbon.
  • the porous insulating layer 1103 is mainly for preventing physical contact between the oxide semiconductor layer 13 and the counter electrode 1120 and impregnating the electrolyte 40 therein.
  • a porous insulating layer 1103 for example, a fired body of an oxide can be used. Note that in the photoelectric conversion element 1100 illustrated in FIG.
  • only one structure 1102 is provided in the space between the sealing portion 31, the conductive substrate 15, and the insulating substrate 1001.
  • a plurality may be provided.
  • the porous insulating layer 1103 is provided between the oxide semiconductor layer 13 and the counter electrode 1120, but is not provided between the oxide semiconductor layer 13 and the counter electrode 1120, and surrounds the oxide semiconductor layer 13. Further, it may be provided between the conductive substrate 15 and the counter electrode 1120. Even in this configuration, physical contact between the oxide semiconductor layer 13 and the counter electrode 1120 can be prevented.
  • the photoelectric conversion element of the present invention is particularly useful when installed in the vicinity of an electronic device such as a display.
  • Example 1 First, a laminate was prepared by forming a transparent conductive layer made of FTO having a thickness of 1 ⁇ m on a transparent substrate made of glass having a thickness of 1 mm. Next, as shown in FIG. 3, grooves 90 were formed in the transparent conductive layer 12 using a CO 2 laser (V-460 manufactured by Universal System Co.) to form the transparent conductive layers 12A to 12F. At this time, the width of the groove 90 was 1 mm.
  • Each of the transparent conductive layers 12A to 12C was formed so as to have a rectangular main body portion of 4.6 cm ⁇ 2.0 cm and a protruding portion protruding from one side edge of the main body portion.
  • the transparent conductive layer 12D was formed to have a 4.6 cm ⁇ 2.1 cm rectangular main body and a protruding portion protruding from one side edge of the main body. Further, of the transparent conductive layers 12A to 12D, the protruding portions 12c of the three transparent conductive layers 12A to 12C are extended from the one side edge portion 12b of the main body portion 12a and the adjacent transparent portion extending from the extended portion 12d.
  • the conductive layer 12 is composed of a facing portion 12e facing the main body portion 12a. Further, the protruding portion 12c of the transparent conductive layer 12D is configured only by the overhanging portion 12d protruding from the one side edge portion 12b of the main body portion 12a.
  • the length of the overhang portion 12d in the overhang direction was 2.1 mm, and the width of the overhang portion 12d was 9.8 mm.
  • the width of the facing portion 12e was 2.1 mm, and the length of the facing portion 12e in the extending direction was 9.8 mm.
  • the transparent conductive layer 12D is formed so as to have not only the main body portion 12a and the protruding portion 12c but also the first current extraction portion 12f and the connection portion 12g that connects the first current extraction portion 12f and the main body portion 12a. did.
  • the transparent conductive layer 12E was formed to have the second current extraction portion 12h. At this time, the width of the connecting portion 12g was 1.3 mm, and the length was 59 mm. Further, the resistance value of the connecting portion 12g was measured by a four-terminal method and found to be 100 ⁇ .
  • a precursor of the connection terminal 16 composed of the wiring material connecting portion 16A and the wiring material non-connecting portion 16B was formed on the protruding portion 12c of the transparent conductive layers 12A to 12C.
  • the precursor of the connection terminal 16 is provided such that the precursor of the wiring material non-connection portion 16B is provided on the overhanging portion 12d so that the precursor of the wiring material connection portion 16A is provided on the facing portion 12e. Formed.
  • the precursor of the wiring material non-connecting portion 16B was formed to be narrower than the width of the wiring material connecting portion 16A.
  • the precursor of the connection terminal 16 was formed by applying a silver paste (“GL-6000X16” manufactured by Fukuda Metal Foil Co., Ltd.) by screen printing and drying.
  • a precursor of the wiring material 17 was formed on the connection part 12g of the transparent conductive layer 12D.
  • the precursor of the wiring material 17 was formed by applying a silver paste by screen printing and drying.
  • precursors for external connection terminals 18a and 18b for taking out currents were formed on the first current extraction portion 12f and the second current extraction portion 12h of the transparent conductive layer 12A, respectively.
  • the precursor of the terminal for external connection was formed by applying a silver paste by screen printing and drying.
  • the precursor of the insulating material 33 was formed so as to enter the first groove 90A and cover the edges of the transparent conductive layer on both sides of the first groove 90A.
  • the precursor of the insulating material 33 was formed by applying and drying a paste containing glass frit by screen printing. At this time, as the glass frit, a red glass enamel (lead glass type, manufactured by Johnson Matthey, Inc.) and a black glass enamel (lead glass type, manufactured by Johnson Matthey, Inc.) of 95: 5 are used. What was blended at a mass ratio was used. At this time, the width of the edge of the transparent conductive layer covered with the insulating material 33 was 0.2 mm from the groove 90.
  • an annular ring made of glass frit is formed so as to surround the insulating material 33 and pass through the transparent conductive layer 12D, the transparent conductive layer 12E, and the transparent conductive layer 12F.
  • a precursor of insulating material 14 was formed. At this time, the precursor of the insulating material 14 was formed so that the precursor of the wiring material 17 was disposed inside thereof. Further, the insulating material 14 was formed so that the first current extraction portion and the second current extraction portion were disposed on the outside thereof.
  • the insulating material 14 was formed by applying and drying a paste containing glass frit by screen printing.
  • a precursor of the oxide semiconductor layer 13 was formed on each main body portion 12a of the transparent conductive layers 12A to 12D.
  • a paste for forming a porous oxide semiconductor layer containing titania particles having an average particle diameter of 21 nm (“PST-21NR” manufactured by JGC Catalysts & Chemicals Co., Ltd.) is applied three times by screen printing and dried. And then dried.
  • the precursor of the connection terminal 16, the precursor of the wiring member 17, the precursor of the external connection terminals 18a and 18b, the precursor of the insulating material 33, the precursor of the insulating material 14, the precursor of the insulating material 33, the oxidation The precursor of the physical semiconductor layer 13 was baked at 500 ° C. for 15 minutes to form the connection terminal 16, the wiring material 17, the external connection terminals 18 a and 18 b, the insulating material 14, and the insulating material 33. Further, the precursor of the oxide semiconductor layer 13 was repeatedly applied four times so as to cover a part of the insulating material 33 and then baked at 500 ° C. for 15 minutes. Thus, the oxide semiconductor layer 13 was formed.
  • the width of the wiring material connection portion of the connection terminal 16 was 1.0 mm, and the width of the wiring material non-connection portion was 0.3 mm. Further, the length along the extending direction of the wiring material connecting portion was 7.0 mm, and the length along the extending direction of the wiring material non-connecting portion was 7.0 mm.
  • the dimensions of the wiring member 17, the external connection terminals 18a and 18b, the insulating material 14, and the oxide semiconductor layer 13 were as follows. Wiring member 17: thickness 4 ⁇ m, width 200 ⁇ m, length 79 mm along the X direction in FIG. 2, length 21 mm along the direction orthogonal to the X direction in FIG.
  • External connection terminals 18a and 18b thickness 20 ⁇ m, width 2 mm, length 7 mm Insulating material 14: 50 ⁇ m, width 3 mm Oxide semiconductor layer 13: thickness 18 ⁇ m, length 56 mm in the X direction in FIG. 2, length 91 mm in the direction perpendicular to the X direction in FIG.
  • the working electrode is immersed overnight in a dye solution containing 0.2 mM of a photosensitizing dye composed of N719 and a solvent in which acetonitrile and tert-butanol are mixed at a volume ratio of 1: 1. Then, it was taken out and dried, and a photosensitizing dye was supported on the oxide semiconductor layer.
  • a photosensitizing dye composed of N719 and a solvent in which acetonitrile and tert-butanol are mixed at a volume ratio of 1: 1.
  • the first integrated sealing portion forming body prepares one sealing resin film made of maleic anhydride-modified polyethylene (trade name: Binnel, manufactured by DuPont) of 8.0 cm ⁇ 4.6 cm ⁇ 50 ⁇ m, It was obtained by forming four rectangular openings in the sealing resin film. At this time, each opening has a size of 1.7 cm ⁇ 4.4 cm ⁇ 50 ⁇ m, the width of the annular portion is 2 mm, and the width of the partition portion that partitions the inner opening of the annular portion is 2.6 mm.
  • the 1st integrated sealing part formation body was produced.
  • the first integrated sealing portion forming body is overlaid on the insulating material 33 on the working electrode, the first integrated sealing portion forming body is bonded to the insulating material 33 on the working electrode by heating and melting. It was.
  • counter electrodes were prepared. Of the four counter electrodes, two counter electrodes were prepared by forming a catalyst layer of platinum having a thickness of 5 nm on a 4.6 cm ⁇ 1.9 cm ⁇ 40 ⁇ m titanium foil by sputtering. The remaining two counter electrodes among the four counter electrodes were prepared by forming a catalyst layer made of platinum having a thickness of 5 nm on a 4.6 cm ⁇ 2.0 cm ⁇ 40 ⁇ m titanium foil by sputtering. In addition, another first integrated sealing portion forming body was prepared, and this first integrated sealing portion forming body was adhered to the surface of the counter electrode facing the working electrode in the same manner as described above. .
  • the first integrated sealing portion forming body bonded to the working electrode and the first integrated sealing portion forming body bonded to the counter electrode are opposed to each other, and the first integrated sealing portion forming bodies are overlapped with each other.
  • the first integrated sealing portion forming body was heated and melted while pressurizing the first integrated sealing portion forming body.
  • the first sealing portion was formed between the working electrode and the counter electrode.
  • the width P of the bonded portion between the partition portion of the first integrated sealing portion and the surface on the transparent conductive substrate side of the counter electrode, and the transparent conductive portion of the annular portion and the counter electrode of the first integrated sealing portion was formed between the working electrode and the counter electrode.
  • the width Q of the bonded portion with the surface on the conductive substrate side, the width R of the partition portion of the first integrated sealing portion, and the width T of the annular portion were as follows.
  • the second integrated sealing portion is prepared by preparing a sealing resin film made of maleic anhydride-modified polyethylene (trade name: Binnel, manufactured by DuPont) of 8.0 cm ⁇ 4.6 cm ⁇ 50 ⁇ m. It was obtained by forming four rectangular openings in the stopping resin film. At this time, each opening has a size of 1.7 cm ⁇ 4.4 cm ⁇ 50 ⁇ m, the width of the annular portion is 2 mm, and the width of the partition portion that partitions the inner opening of the annular portion is 2.6 mm.
  • a second integrated sealing portion was prepared. The second integrated sealing portion was bonded to the counter electrode so as to sandwich the edge of the counter electrode together with the first integrated sealing portion. At this time, the first integrated sealing portion and the second integrated sealing portion were bonded to the counter electrode and the first integrated sealing portion by heating and melting while pressing the second integrated sealing portion against the counter electrode.
  • a desiccant sheet was affixed with a double-sided tape on each counter electrode metal substrate.
  • the dimensions of the desiccant sheet were 1 mm thick ⁇ 3 cm long ⁇ 1 cm wide, and a zeo sheet (trade name, manufactured by Shinagawa Kasei Co., Ltd.) was used as the desiccant sheet.
  • bypass diodes 70A to 70C and low-temperature curing silver paste Dotite D500, manufactured by Fujikura Chemical Co., Ltd. It fixed by apply
  • the bypass diode 70D is placed on the annular portion of the second integrated sealing portion of the cell 50D, and the low-temperature curing type silver paste is applied to the counter electrode from one of the terminals at both ends of the diode. It was fixed by applying so as to lead to.
  • the wiring member 60Q was formed so as to connect two adjacent bypass diodes to the four bypass diodes 70A to 70D. At this time, the wiring member 60Q was formed by curing the low temperature curable silver paste at 30 ° C. for 12 hours.
  • the bypass diode RB751V-40 manufactured by ROHM was used.
  • a low temperature curing type silver paste (Dotite D-500, manufactured by Fujikura Kasei Co., Ltd.) is used so as to connect each wiring member 60Q between the bypass diodes and the wiring member connecting portions on the three transparent conductive layers 12A to 12C.
  • the wiring material 60P was formed by applying and curing. Further, for the bypass diode 70A, the wiring material 60P was formed by applying and curing the above-mentioned low-temperature curing type silver paste so as to be connected to the wiring material connecting portion on the transparent conductive layer 12E. At this time, the wiring member 60P was formed by curing the low temperature curable silver paste at 30 ° C. for 12 hours.
  • butyl rubber (“Aikamelt” manufactured by Aika Kogyo Co., Ltd.) was applied onto the insulating material 14 with a dispenser while heating at 200 ° C. to form a precursor of the bonded portion.
  • a laminate is prepared by laminating a film (thickness 50 ⁇ m) made of polybutylene terephthalate (PBT) resin film (thickness 50 ⁇ m), aluminum foil (thickness 25 ⁇ m), and binel (trade name, manufactured by DuPont) in this order. did. And it piled up on the peripheral part of this laminated body 80A, and the precursor of the adhesion part 80B, and pressurized for 10 seconds.
  • a back sheet 80 composed of the adhesive portion 80B and the laminated body 80A was obtained on the insulating material 14.
  • a photoelectric conversion element was obtained as described above.
  • Example 2 Photoelectric conversion is performed in the same manner as in Example 1 except that the insulating material 33 made of glass frit enters the second groove 90B and covers the edge of the transparent conductive layer 12 forming the second groove 90B. An element was produced. The width of the edge of the transparent conductive layer covered with the insulating material 33 was 0.2 mm from the groove.
  • Example 3 A photoelectric conversion element was produced in the same manner as in Example 1 except that when the precursor of the annular coupling portion was formed, an uncolored glass frit (bismuth oxide-based low melting point glass frit) was used as the glass frit. .
  • an uncolored glass frit bismuth oxide-based low melting point glass frit
  • Example 4 A photoelectric conversion element was produced in the same manner as in Example 1 except that the thickness of the oxide semiconductor layer 13 was changed to 25 ⁇ m.
  • Example 5 A photoelectric conversion element was produced in the same manner as in Example 1 except that the thickness of the oxide semiconductor layer 13 was changed to 32 ⁇ m.
  • Example 6 After obtaining the back sheet 80, after forming a coating layer by applying a light blue paint (Epilite Pink Indigo, manufactured by Jujo Chemical Co., Ltd.) on the surface of the transparent substrate opposite to the transparent conductive layer, and drying it, A photoelectric conversion element was produced in the same manner as in Example 1 except that an antireflection film (product name: BSIP6N01FH, manufactured by Buffalo Co., Ltd.) was attached. At this time, the maximum absorption peak wavelength in the visible light wavelength region of the oxide semiconductor layer was 700 nm, and the maximum absorption peak wavelength in the visible light wavelength region of the coating layer was 550 nm.
  • a light blue paint Epilite Pink Indigo, manufactured by Jujo Chemical Co., Ltd.
  • Example 7 A photoelectric conversion element was produced in the same manner as in Example 1 except that a counter electrode was prepared by forming a catalyst layer made of carbon (trade name: Ketjen Black, manufactured by Lion Corporation) having a thickness of 1000 nm on a titanium foil. did.
  • a catalyst layer made of carbon trade name: Ketjen Black, manufactured by Lion Corporation
  • Example 1 A photoelectric conversion element was produced in the same manner as in Example 1 except that when the precursor of the insulating material 33 was formed, an uncolored glass frit (bismuth oxide-based low melting point glass frit) was used as the glass frit.
  • an uncolored glass frit bismuth oxide-based low melting point glass frit
  • Comparative Example 2 As the resin film for sealing used when preparing the first integrated sealing part forming body, a resin film containing 5% by mass of a colorant (product name: Dipiroxide, manufactured by Dainichi Seika Kogyo Co., Ltd.) was used. Except for the above, a photoelectric conversion element was produced in the same manner as in Comparative Example 1.
  • a colorant product name: Dipiroxide, manufactured by Dainichi Seika Kogyo Co., Ltd.
  • the photoelectric conversion element of the present invention has excellent durability while realizing a good appearance.
  • Terminal part (conductive part, second connection part) 50, 50A to 50D Photoelectric conversion cell 60P: Wiring material (conductive portion) 80 ... Back sheet 90 ... Groove 90A ... First groove 90B ... Second groove 100-1100 ... Photoelectric conversion element 635 ... Terminal portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 少なくとも1つの光電変換セルを有する光電変換素子が開示されている。光電変換セルは、透明基板および透明基板の上に設けられる透明導電層を有する導電性基板と、導電性基板に対向する対向基板と、導電性基板又は対向基板上に設けられる酸化物半導体層と、導電性基板及び対向基板を接合させる環状の封止部とを備えている。少なくとも導電性基板と封止部との間には絶縁材が設けられており、絶縁材が着色されている。

Description

光電変換素子
 本発明は、光電変換素子に関する。
 光電変換素子として、安価で、高い光電変換効率が得られることから色素増感太陽電池素子などの色素を用いた光電変換素子が注目されており、このような光電変換素子に関して種々の開発が行われている。
 色素を用いた光電変換素子は一般に、少なくとも1つの光電変換セルを備えており、光電変換セルは、導電性基板と、対極などの対向基板と、導電性基板と対向基板とを連結する環状の封止部とを備えている。そして、導電性基板は、透明基板と、その上に形成された透明導電層とを有し、導電性基板と対向基板との間には酸化物半導体層が設けられている。
 このような光電変換素子として、例えば下記特許文献1記載のものが知られている。下記特許文献1には、透明導電性基板と、透明導電性基板に対向する対極と、透明導電性基板上に設けられ、所定の色を呈する多孔質酸化チタン層と、透明導電性基板と対極との間に設けられる封止材とを有する光電変換セルからなる光電変換素子が開示されている。
特開2010-3468号公報
 しかし、上記特許文献1に記載の光電変換素子は、以下に示す課題を有していた。
 すなわち、上記特許文献1に記載の光電変換素子では、光電変換素子を基板の光入射面側から見た場合に、封止部を通して酸化物半導体層の周囲に望ましくない色や形状等が見える場合があった。すなわち、外観が良好でない場合があった。
 ここで、封止部に着色剤を含有させることも考えられるが、この場合、着色剤は封止性能に寄与しないため、封止部の封止性能が低下して耐久性が低下するものと考えられる。
 本発明は上記事情に鑑みてなされたものであり、良好な外観を実現しながら優れた耐久性を有する光電変換素子を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した。例えば上記特許文献1の光電変換素子において良好な外観を得るために、封止部を通して見える対極の色を変更することを考えた。しかし、対極の色は、光電変換素子の性能を発揮するために好適な材料を用いた結果として得られるものであるため、外観を重視して対極の色を変更しようとすると、光電変換素子の耐久性などを低下させるおそれがある。そこで、本発明者らは鋭意研究を重ねた結果、以下の発明により上記課題を解決しうることを見出した。
 すなわち、本発明は、少なくとも1つの光電変換セルを有し、前記光電変換セルが、透明基板および前記透明基板の上に設けられる透明導電層を有する導電性基板と、前記導電性基板に対向する対向基板と、前記導電性基板又は前記対向基板上に設けられる酸化物半導体層と、前記導電性基板及び前記対向基板を接合させる環状の封止部とを備えており、少なくとも前記導電性基板と前記封止部との間に絶縁材が設けられており、前記絶縁材が着色されている光電変換素子である。
 この光電変換素子によれば、絶縁材が着色されているため、光電変換素子を導電性基板側から見た場合に、絶縁材の裏側にある封止部や対向基板の色や形状を隠すことが可能となる。さらに、絶縁材を着色させることにより、光電変換素子の導電性基板に所望の文字やデザインを自由に表示させることが可能となる。このため、良好な外観を実現することができる。また、封止部に着色剤を導入することによって封止部を着色させ、対向基板の色を隠すことも可能であるが、この場合に比べて、光電変換素子の耐久性を向上させることができる。
 上記光電変換素子において、前記絶縁材は、前記封止部の外形に沿って、全周に渡って設けられていることが好ましい。
 この場合、外部からの水分の侵入経路を全周に渡って遮断することができるため、より優れた耐久性を有することが可能となる。
 また上記光電変換素子は、前記透明基板のうち前記透明導電層と反対側の表面に被覆層をさらに有し、前記被覆層が、前記透明基板の厚さ方向に前記被覆層を見た場合に前記酸化物半導体層を覆っており、前記被覆層の可視光の波長領域における最大吸収ピーク波長と、前記酸化物半導体層の可視光の波長領域における最大吸収ピーク波長とが互いに異なることが好ましい。
 この場合、被覆層の可視光の波長領域における最大吸収ピーク波長が、酸化物半導体層の可視光の波長領域における最大吸収ピーク波長と異なる。このため、酸化物半導体層で十分に吸収されるべき光が被覆層で十分に吸収されることを抑制することができる。従って、光電変換素子における光電変換特性の低下を抑制できる。また光電変換素子の酸化物半導体層の色を所望の色に調整することもできる。
 上記光電変換素子において、前記透明導電層が、前記封止部の内側に配置される本体部を有し、前記透明導電層に溝が形成され、少なくとも一部の前記溝が、前記封止部の外形に沿って形成される第1の溝を有し、前記絶縁材が、前記第1の溝に入り込むとともに、連続して前記本体部の縁部をも覆っていることが好ましい。
 この光電変換素子によれば、透明導電層に溝が形成され、この溝が、環状の封止部の外形に沿って形成される第1の溝を有する。そして、その第1の溝に、絶縁材が入り込むとともに、この絶縁材が、連続して本体部の縁部をも覆っている。このため、透明基板の内部であって溝の下方の位置に溝に沿ってクラックが形成され、そのクラックが本体部の縁部にまでつながっていたとしても、そのクラックを経た封止部の外部からの水分の侵入が絶縁材によって十分に抑制される。このため、本発明の光電変換素子によれば、優れた耐久性を有することが可能となる。
 上記光電変換素子が、前記導電性基板の上において、前記光電変換セルを前記透明基板のうち前記透明導電層が設けられている面側で覆うバックシートをさらに備える場合には、前記溝が、前記第1の溝と、前記透明導電層のうち前記本体部を除く部分の縁部に沿って形成され、前記バックシートの周縁部と交差する第2の溝とを有し、前記絶縁材が、前記第2の溝に入り込むとともに前記透明導電層のうち前記本体部を除く部分の縁部をも覆っていることが好ましい。
 上記第2の溝が前記バックシートの周縁部と交差していると、その第2の溝を通じて水分がバックシートと透明導電性基板との間の空間に侵入することが可能となる。この場合、第2の溝に絶縁材が入り込み、絶縁材が、透明導電層のうち前記本体部を除く部分の縁部をも覆っていることで、バックシートの外側から内側への水分の侵入が十分に抑制される。このため、バックシートと透明導電性基板との間の空間に侵入した水分が封止部を通じて封止部の内側に入り込むことが十分に抑制される。このため、光電変換素子の耐久性の低下を十分に抑制することが可能となる。
 上記光電変換素子において、前記導電性基板上であって、前記バックシートの周縁部全周に沿って連続して前記絶縁材が設けられていることが好ましい。
 この場合、バックシートの外側からバックシートの内側に水分が侵入することを、十分に抑制することができる。また絶縁材が着色されているため、絶縁材によってバックシートの色や表面形状を隠すことが可能となる。また、絶縁材を着色させることにより、光電変換素子の導電性基板に所望の文字やデザインを自由に表示させることが可能となる。このため、光電変換素子がバックシートを備える場合でも良好な外観を実現することができる。
 上記光電変換素子は、前記光電変換セルを複数具備し、前記導電性基板が、複数の光電変換セルの共通の導電性基板で構成されており、前記第1の溝を含む前記溝によって、前記複数の光電変換セルは絶縁されていることが好ましい。
 複数の光電変換セルの間では、隣り合う2つのセルの透明導電層同士の間に溝を設けて絶縁していても、汚れ等により透明導電層同士の間で微小な電流が流れてしまい絶縁が不十分な可能性がある。この場合、少なくとも第1の溝に絶縁材が入り込んでいることで、透明導電層同士の間に流れる漏れ電流を抑制することができ絶縁性を十分に確保することができる。このため、光電変換特性を向上させることができる。
 上記光電変換素子においては、前記導電性基板上であって前記封止部と、前記導電性基板の縁部との間の領域のうち、前記絶縁材が設けられていない領域に前記透明導電層と接触するように設けられる少なくとも1つの端子部を有する導電部と、前記導電性基板上であって前記封止部と、前記導電性基板の縁部との間の領域のうち、前記絶縁材が設けられていない領域に、少なくとも前記端子部と隣接するように設けられ、光の透過を防止する光透過防止層とをさらに備え、前記端子部の少なくとも一部及び前記光透過防止層がそれぞれ着色されていることが好ましい。
 この光電変換素子では、端子部の少なくとも一部が着色されるとともに、端子部の少なくとも一部に隣接する光透過防止層が着色されるため、光電変換素子を導電性基板の厚さ方向に見た場合、端子部が際立って見えることを十分に抑制することが可能となる。このため、良好な外観を実現することができる。また、本発明の光電変換素子によれば、透明導電層を着色させないで済むため、光電変換素子の光電変換特性の低下を十分に抑制することができる。
 上記光電変換素子においては、前記酸化物半導体層と前記光透過防止層との間におけるL色空間のL*の差が5以下であり、前記酸化物半導体層と着色されている前記端子部との間におけるL色空間のL*の差が5以下であることが好ましい。
 この場合、端子部及び光透過防止層の各々の色を酸化物半導体層の色により近づけることが可能となる。別言すると、端子部、光透過防止層及び酸化物半導体層の色を単一色に近づけることが可能となる。このため、端子部及び光透過防止層が酸化物半導体層に対して際立って見えることがより十分に抑制される。このため、より良好な外観を実現できる。
 上記光電変換素子においては、前記導電部が、前記導電性基板のうちの前記封止部側に設けられる少なくとも1本の配線材と、前記配線材の一端に接続され且つ前記光電変換素子を前記透明基板側から前記導電性基板の厚さ方向に見た場合に前記封止部の外側に配置される第1接続部と、前記配線材の他端に接続される第2接続部とを有し、前記光透過防止層が、前記配線材と前記導電性基板との間に、前記導電性基板の厚さ方向において前記配線材と重なるように設けられていることが好ましい。
 この場合、導電性基板と配線材との間で配線材と光透過防止層とが重なるように設けられているため、光電変換素子を導電性基板の厚さ方向に見た場合、光透過防止層の裏側にある配線材を隠すことが可能となる。このため、良好な外観を実現することができる。
 上記光電変換素子においては、前記対向基板が、金属基板を有する電極で構成され、前記第2接続部のうちの少なくとも1つが前記金属基板で構成されることが好ましい。
 上記光電変換素子においては、前記第2接続部のうちの少なくとも1つが前記封止部の外側に配置され、前記第1接続部及び前記第2接続部が共通の前記透明導電層上に直接設けられていていてもよい。
 上記光電変換素子においては、前記光透過防止層が、前記導電性基板の前記封止部側の表面において、前記封止部と、前記導電性基板の縁部との間の領域のうち、前記光電変換素子を前記導電性基板の厚さ方向に見た場合に前記絶縁材及び前記導電部以外の領域の全てを覆うように設けられていることが好ましい。
 この場合、光電変換素子を透明基板側から導電性基板の厚さ方向に見た場合に、封止部と、導電性基板の縁部との間の領域のうち、少なくとも絶縁材及び導電部以外の領域が光透過防止層によって隠されるので、より良好な外観を実現できる。
 上記光電変換素子においては、前記光電変換素子を前記透明基板側から前記導電性基板の厚さ方向に見た場合に、前記導電性基板に前記光透過防止層と異なる色を有する異色部が設けられていることが好ましい。
 この場合、異色部は光透過防止層と異なる色を示すため、光電変換素子を透明基板側から導電性基板の厚さ方向に見た場合にその異色部によって所望の文字やデザインを表示させることが可能となる。
 上記光電変換素子においては、前記光透過防止層が、前記導電性基板の前記封止部側の表面において、前記封止部と、前記導電性基板の縁部との間の領域のうち、前記光電変換素子を前記導電性基板の厚さ方向に見た場合に少なくとも前記絶縁材、前記導電部及び前記異色部以外の領域の全てを覆うように設けられていることが好ましい。
 この場合、光電変換素子を透明基板側から導電性基板の厚さ方向に見た場合に、封止部と、導電性基板の縁部との間の領域のうち少なくとも絶縁材、導電部及び異色部以外の領域が光透過防止層によって隠されるので、より良好な外観を実現できる。
 なお、本発明において、「着色されている」とは、L色空間のL*が35未満であることを言う。ここで、Lは、CIEのD65標準光に対する700nmの分光反射率をx、546.1nmの分光反射率をy、435.8nmの分光反射率をzとしたときに下記式で定義される。
=116×(0.2126z+0.7152y+0.0722x)1/3-16
 また「光透過防止層」とは、可視光の波長領域における光の平均透過率が50%以下である層を言う。また可視光の波長領域とは、380~800nmの波長域を言う。
 さらに本発明において、「光電変換素子」には、光増感色素を用いて発電が行われる色素増感光電変換素子が含まれる。また「色素増感光電変換素子」には、太陽光によって発電が行われる色素増感光電変換素子、及び、屋内灯などの太陽光でない光によって発電が行われる色素増感光電変換素子が含まれる。
 また本発明において、「光電変換セル」には、光増感色素を用いて発電が行われる色素増感光電変換セルが含まれる。また「色素増感光電変換セル」には、太陽光によって発電が行われる色素増感光電変換セル、及び、屋内灯などの太陽光でない光によって発電が行われる色素増感光電変換セルが含まれる。
 本発明によれば、良好な外観を実現しながら優れた耐久性を有する光電変換素子が提供される。
本発明の光電変換素子の第1実施形態を示す切断面端面図である。 本発明の光電変換素子の第1実施形態の一部を示す平面図である。 図1の光電変換素子における透明導電層のパターンを示す平面図である。 図1の第1一体化封止部を示す平面図である。 図1の第2一体化封止部を示す平面図である。 図1の光電変換素子を導電性基板側から見た平面図である。 図2のVII-VII線に沿った切断面端面図である。 絶縁材およびバックシートを固定するための連結部を形成した作用極を示す平面図である。 図4の第1一体化封止部を形成するための第1一体化封止部形成体を示す平面図である。 本発明の光電変換素子の第2実施形態を示す切断面端面図である。 本発明の光電変換素子の第2実施形態の一部を示す平面図である。 図11のXII-XII線に沿った切断面端面図である。 絶縁材、及び、バックシートを固定するための光透過防止層を形成した作用極を示す平面図である。 図10の光電変換素子を導電性基板側から見た平面図である。 本発明の光電変換素子の第11実施形態の一部を導電性基板側から見た状態を示す平面図である。 本発明の光電変換素子の第3実施形態の一部を示す平面図である。 本発明の光電変換素子の第4実施形態の一部を示す平面図である。 本発明の光電変換素子の第5実施形態の一部を示す平面図である。 本発明の光電変換素子の第6実施形態の一部を示す平面図である。 本発明の光電変換素子の第7実施形態を導電性基板側から見た状態を示す平面図である。 本発明の光電変換素子の第8実施形態の一部を示す切断面端面図である。 本発明の光電変換素子の第9実施形態の一部を示す切断面端面図である。 本発明の光電変換素子の第10実施形態の一部を示す平面図である。 本発明の光電変換素子の第11実施形態の一部を示す切断面端面図である。
 <第1実施形態>
 以下、本発明の光電変換素子の好適な第1実施形態について図1~図7を参照しながら詳細に説明する。図1は、本発明の光電変換素子の第1実施形態を示す切断面端面図、図2は、本発明の光電変換素子の第1実施形態の一部を示す平面図、図3は、図1の光電変換素子における透明導電層のパターンを示す平面図、図4は、図1の第1一体化封止部を示す平面図、図5は、図1の第2一体化封止部を示す平面図、図6は、図1の光電変換素子を導電性基板側から見た平面図、図7は、図2のVII-VII線に沿った切断面端面図である。
 図1に示すように、光電変換素子100は、複数(図1では4つ)の光電変換セル(以下、単に「セル」と呼ぶことがある)50と、セル50を覆うように設けられるバックシート80とを有している。図2に示すように、複数のセル50は、導電材としての配線材60Pによって直列に接続されている。以下、説明の便宜上、光電変換素子100における4つのセル50をセル50A~50Dと呼ぶことがある。
 図1に示すように、複数のセル50の各々は、導電性基板15と、導電性基板15に対向する対向基板20と、導電性基板15及び対向基板20を接合させる環状の封止部30Aと、導電性基板15と対向基板20との間に設けられる酸化物半導体層13とを備えている。導電性基板15、対向基板20及び環状の封止部30Aによって形成されるセル空間には電解質40が充填されている。また酸化物半導体層13には色素が担持されている。
 対向基板20は、本実施形態では対極で構成されており、基板と電極を兼ねる金属基板21と、金属基板21の導電性基板15側に設けられて触媒反応を促進する触媒層22とを備えている。また隣り合う2つのセル50において、対向基板20同士は互いに離間している。
 図1および図2に示すように、導電性基板15は、透明基板11と、透明基板11の上に設けられる電極としての透明導電層12とを有している。透明基板11は、セル50A~50Dの共通の透明基板として使用されている。導電性基板15の透明導電層12の上には少なくとも1つの酸化物半導体層13が設けられている。酸化物半導体層13は、環状の封止部30Aの内側に配置されている。また導電性基板15の透明導電層12上には接続端子16が設けられている。また導電性基板15と封止部30Aとの間には、着色された絶縁材33が設けられている。本実施形態では、導電性基板15及び酸化物半導体層13によって作用極10が構成されている。
 図2および図3に示すように、透明導電層12は、互いに絶縁された状態で設けられる透明導電層12A~12Fで構成されている。すなわち、透明導電層12A~12Fは互いに溝90を介在させて配置されている。ここで、透明導電層12A~12Dはそれぞれ複数のセル50A~50Dの透明導電層12を構成している。また透明導電層12Eは、封止部30Aに沿って折れ曲がるようにして配置されている。透明導電層12Fは、バックシート80の周縁部80aを固定するための環状の透明電極層12である(図1参照)。
 図3に示すように、透明導電層12A~12Dはいずれも、側縁部12bを有する四角形状の本体部12aと、本体部12aの側縁部12bから側方に突出する突出部12cとを有している。
 図2に示すように、透明導電層12A~12Dのうち透明導電層12Cの突出部12cは、セル50A~50Dの配列方向Xに対して側方に張り出す張出し部12dと、張出し部12dからセル50A~50Dの配列方向Xに沿って延びて、隣りのセル50Dの本体部12aに溝90を介して対向する対向部12eとを有している。
 セル50Bにおいても、透明導電層12Bの突出部12cは、張出し部12dと対向部12eとを有している。またセル50Aにおいても、透明導電層12Aの突出部12cは、張出し部12dと対向部12eとを有している。
 なお、セル50Dは、既にセル50Cと接続されており、他に接続されるべきセル50が存在しない。このため、セル50Dにおいて、透明導電層12Dの突出部12cは対向部12eを有していない。すなわち透明導電層12Dの突出部12cは張出し部12dのみで構成される。
 但し、透明導電層12Dは、光電変換素子100で発生した電流を外部に取り出すための第1電流取出し部12fと、第1電流取出し部12fと本体部12aとを接続し、透明導電層12A~12Cの側縁部12bに沿って延びる接続部12gとをさらに有している。第1電流取出し部12fは、セル50Aの周囲であって透明導電層12Aに対して透明導電層12Bと反対側に配置されている。
 一方、透明導電層12Eも、光電変換素子100で発生した電流を外部に取り出すための第2電流取出し部12hを有しており、第2電流取出し部12hは、セル50Aの周囲であって透明導電層12Aに対して透明導電層12Bと反対側に配置されている。そして、第1電流取出し部12fおよび第2電流取出し部12hは、セル50Aの周囲において溝90を介して隣り合うように配置されている。ここで、溝90は、環状の封止部30Aの外形に沿って形成される第1の溝90Aと、透明導電層12のうち本体部12aを除く部分の縁部に沿って形成され、バックシート80の周縁部80aと交差する第2の溝90Bとで構成されている。具体的には、第1の溝90Aは、透明導電層12の本体部12aの縁部に沿って形成されている。
 また、透明導電層12A~12Cの各突出部12cおよび透明導電層12Eの上には、接続端子16が設けられている。接続端子16は具体的には、光電変換素子100を透明基板11側から導電性基板15の厚さ方向に見た場合に封止部30Aの外側に設けられている。各接続端子16は、配線材60Pと接続され、封止部30Aの外側で封止部30Aに沿って延びる導電材接続部である配線材接続部16Aと、配線材接続部16Aから封止部30Aの外側で封止部30Aに沿って延びる導電材非接続部である配線材非接続部16Bとを有する。本実施形態では、透明導電層12A~12Cにおいては、接続端子16のうち少なくとも配線材接続部16Aは、突起部12cの対向部12e上に設けられており、接続される隣りのセル50の本体部12aに対向している。透明導電層12Eにおいては、接続端子16のうちの配線材接続部16Aは、接続される隣りのセル50Aの本体部12aに対向している。そして、配線材非接続部16Bの幅は、配線材接続部16Aの幅より狭くなっている。ここで、配線材接続部16Aおよび配線材非接続部16Bの幅はそれぞれ一定となっている。なお、配線材接続部16Aの幅とは、配線材接続部16Aの延び方向に直交する方向の長さであって配線材接続部16Aの幅のうち最も狭い幅を意味し、配線材非接続部16Bの幅とは、配線材非接続部16Bの延び方向に直交する方向の長さであって配線材非接続部16Bの幅のうち最も狭い幅を意味するものとする。
 そして、セル50Cにおける透明導電層12Cの突出部12c上に設けられる接続端子16の配線材接続部16Aと隣りのセル50Dにおける対向基板20の金属基板21とが配線材60Pを介して接続されている。配線材60Pは、封止部30Aの上を通るように配置されている。同様に、セル50Bにおける接続端子16の配線材接続部16Aと隣りのセル50Cにおける対向基板20の金属基板21とは配線材60Pを介して接続され、セル50Aにおける接続端子16の配線材接続部16Aと隣りのセル50Bにおける対向基板20の金属基板21とは配線材60Pを介して接続され、透明導電層12E上の接続端子16の配線材接続部16Aと隣りのセル50Aにおける対向基板20の金属基板21とは配線材60Pを介して接続されている。別言すると、配線材60Pの一端はセル50Cの接続端子16に接続され、配線材60Pの他端はセル50Dの対向基板20の金属基板21に接続されている。ここで、金属基板21が第2接続部を構成し、接続端子16が第1接続部を構成している。即ち、端子部としての接続端子16が第1接続部を兼ねている。同様に、配線材60Pの一端がセル50Bの接続端子16に接続され、配線材60Pの他端がセル50Cの対向基板20の金属基板21に接続されている。さらに配線材60Pの一端がセル50Aの接続端子16に接続され、配線材60Pの他端がセル50Bの対向基板20の金属基板21に接続されている。さらに配線材60Pの一端が透明導電層12E上の接続端子16に接続され、配線材60Pの他端がセル50Aの対向基板20の金属基板21に接続されている。
 また第1電流取出し部12f、第2電流取出し部12h上にはそれぞれ、外部接続端子18a,18bが設けられている。
 図1に示すように、封止部30Aは、導電性基板15と対向基板20との間に設けられる環状の第1封止部31Aと、第1封止部31Aと重なるように設けられ、第1封止部31Aと共に対向基板20の縁部20aを挟持する第2封止部32Aとを有している。そして、図4に示すように、隣り合う第1封止部31A同士は一体化されて第1一体化封止部31を構成している。別言すると、第1一体化封止部31は、隣り合う2つの対向基板20の間に設けられていない環状の部分(以下、「環状部」と呼ぶ)31aと、隣り合う2つの対向基板20の間に設けられており、環状の部分31aの内側開口31cを仕切る部分(以下、「仕切部」と呼ぶ)31bとで構成されている。また図5に示すように、第2封止部32A同士は、隣り合う対向基板20の間で一体化され、第2一体化封止部32を構成している。第2一体化封止部32は、隣り合う2つの対向基板20の間に設けられていない環状の部分(以下、「環状部」と呼ぶ)32aと、隣り合う2つの対向基板20の間に設けられており、環状の部分32aの内側開口32cを仕切る部分(以下、「仕切部」と呼ぶ)32bとで構成されている。なお、本実施形態では、第1封止部31Aの内壁面と酸化物半導体層13との間には隙間が設けられている。別言すると、第1封止部31Aの内壁面と酸化物半導体層13とは互いに離間している。
 また図1に示すように、第1封止部31Aと導電性基板15との間には、隣り合う透明導電層12A~12F同士間の溝90に入り込み且つ隣り合う透明導電層12にまたがるように、環状の封止部30Aの外形に沿って全周に絶縁材33が設けられている。詳しく述べると、絶縁材33は、溝90のうち透明導電層12の本体部12aの縁部に沿って形成される第1の溝90Aが形成されている部分においては、第1の溝90Aに入り込むとともに、連続して第1の溝90Aを形成している本体部12aの縁部をも覆っている。一方、第1の溝90Aが形成されていない本体部12aと突出部12cとの間においても、透明導電層12上に絶縁材33が形成され、封止部30Aの外形に沿って、全周に渡って絶縁材33が形成されている。また、絶縁材33は、第1の溝90Aを挟んで本体部12aと反対側の透明導電層12の縁部も連続して覆っており、封止部30Aの外側まで設けられている。なお、本実施形態では、溝90のうち第2の溝90Bや、第1の溝90Aと第2の溝90Bとを接続する溝は絶縁材33で覆われていない。
 図1に示すように、導電性基板15の上にはバックシート80が設けられている。バックシート80は、セル50を、透明基板11のうち透明導電層12が設けられている面側で覆うように設けられている。バックシート80は、耐候性層と、金属層とを含む積層体80Aと、積層体80Aに対し金属層と反対側に設けられ、着色された絶縁性の連結部14(以下、「絶縁材14」と呼ぶ)を介して導電性基板15と接着する接着部80Bとを含む。ここで、接着部80Bは、バックシート80を導電性基板15に接着させるためのものであり、図1に示すように、積層体80Aの周縁部に形成されていればよい。但し、接着部80Bは、積層体80Aのうちセル50側の面全体に設けられていてもよい。バックシート80の周縁部80aは、接着部80Bによって、絶縁材14を介して透明導電層12のうち透明導電層12D,12E,12Fと接続されている。ここで、接着部80Bはセル50の封止部30Aと離間している。また絶縁材14も封止部30Aと離間している。なお、バックシート80より内側で且つ封止部30Aの外側の空間に電解質40は充填されていない。
 また図2に示すように、透明導電層12Dにおいては、本体部12a、接続部12gおよび電流取出し部12fを通るように、配線材17が延びている。ここで、配線材17は集電配線であり、透明導電層12Dよりも低い抵抗及び集電機能を有する。この配線材17は、バックシート80と導電性基板15との間の絶縁材14と交差しないように配置されている。別言すると、配線材17は、絶縁材14よりも内側に配置されている。
 なお、図2に示すように、各セル50A~50Dにはそれぞれ、バイパスダイオード70A~70Dが並列に接続されている。具体的には、バイパスダイオード70Aは、セル50Aとセル50Bとの間の第2一体化封止部32の仕切部32b上に固定され、バイパスダイオード70Bは、セル50Bとセル50Cとの間の第2一体化封止部32の仕切部32b上に固定され、バイパスダイオード70Cは、セル50Cとセル50Dとの間の第2一体化封止部32の仕切部32b上に固定されている。バイパスダイオード70Dは、セル50Dの封止部30A上に固定されている。そして、バイパスダイオード70A~70Dを通るように対向基板20の金属基板21に配線材60Qが固定されている。またバイパスダイオード70A,70B間、バイパスダイオード70B,70C間、バイパスダイオード70C,70D間の配線材60Qからはそれぞれ配線材60Pが分岐し、透明導電層12A上の配線材接続部16A、透明導電層12B上の配線材接続部16A、透明導電層12C上の配線材接続部16Aにそれぞれ接続されている。またセル50Aの対向基板20の金属基板21にも配線材60Pが固定され、この配線材60Pは、バイパスダイオード70Aと、透明導電層12E上の接続端子16の配線材接続部16Aとを接続している。さらにバイパスダイオード70Dは、配線材60Pを介して透明導電層12Dに接続されている。
 また、図1に示すように、各セル50の対向基板20上には、乾燥剤95が設けられている。
 上記光電変換素子100では、溝90が設けられており、溝90は、環状の封止部30Aの外形に沿って形成される第1の溝90Aを有する。そして、その第1の溝90Aに、絶縁材33が入り込むとともに、この絶縁材33が、連続して本体部12aの縁部をも覆っている。このため、透明基板11の内部であって溝90の下方の位置に溝90に沿ってクラックが形成され、そのクラックが本体部12aの縁部にまでつながっていたとしても、そのクラックを経た封止部30Aの外部からの水分の侵入が絶縁材33によって十分に抑制される。このため、光電変換素子100によれば、優れた耐久性を有することが可能となる。また光電変換素子100によれば、絶縁材33が着色されているため、光電変換素子100を図6に示すように、導電性基板15から見た場合に、絶縁材33の裏側にある第1封止部31Aや対向基板20の色や形状を隠すことが可能となる。さらに、絶縁材33を着色させることにより、光電変換素子100の導電性基板15に所望の文字やデザインを自由に表示させることが可能となる。このため、良好な外観を実現することができる。また、封止部30Aに着色剤を導入することによって封止部30Aを着色させ、対向基板20の色を隠すことも可能であるが、この場合に比べて、光電変換素子100の耐久性を向上させることができる。
 また光電変換素子100では、絶縁材33は、封止部30Aの外形に沿って、全周に渡って設けられているため、外部からの水分の侵入経路を全周に渡って遮断することができ、より優れた耐久性を有することが可能となる。
 さらに光電変換素子100では、第1の溝90Aが、本体部12aの縁部に沿って設けられている。このため、第1の溝90Aが本体部12aの縁部よりも外側に形成される場合に比べ、第1の溝90Aで囲まれる領域を小さくすることができ、光電変換素子100を小型化することができる。
 また光電変換素子100では、バックシート80の周縁部80aの全周に、絶縁材14が設けられているため、バックシート80の外側からバックシート80の内側に水分が侵入することを、十分に抑制することができる。
 さらに光電変換素子100は、隣接するセル50の透明導電層12の間の第1の溝90Aにも絶縁材33が入り込んでいるため、透明導電層12同士の間に流れる電流を抑制することができ絶縁性を十分に確保することができる。このため、光電変換特性を向上させることができる。
 また光電変換素子100では、封止部30Aと絶縁材33とが重なるように配置されている。このため、絶縁材33が封止部30Aと重ならないように配置されている場合に比べて、光電変換素子100の受光面側から見た、発電に寄与する部分の面積をより増加させることができる。このため、開口率をより向上させることができる。
 また光電変換素子100では、第1電流取出し部12fおよび第2電流取出し部12hは、セル50Aの周囲であって透明導電層12Aに対し透明導電層12Bと反対側に配置され、透明導電層12Aの第1電流取出し部12fおよび透明導電層12Fの第2電流取出し部12hは互いに溝90を介して隣り合うように配置されている。このため、光電変換素子100においては、第1電流取出し部12fおよび第2電流取出し部12hのそれぞれに外部接続端子18a,18bを隣り合うように配置することが可能となる。従って、外部接続端子18a,18bから電流を外部に取り出すためのコネクタの数を1つとすることが可能となる。すなわち、仮に、第1電流取出し部12fが透明導電層12Dに対し透明導電層12Cと反対側に配置されている場合、第1電流取出し部12fおよび第2電流取出し部12hが互いに大きく離れて配置されるため、外部接続端子18a,18bも大きく離れて配置されることになる。この場合、光電変換素子100から電流を取り出すには、外部接続端子18aに接続するコネクタと、外部接続端子18bに接続するコネクタの2つのコネクタが必要になる。しかし、光電変換素子100によれば、外部接続端子18a,18bを隣り合うように配置することが可能となるため、コネクタは1つで済む。このため、光電変換素子100によれば、省スペース化を図ることができる。また、光電変換素子100は、低照度下で使用されると、発電電流が小さい。具体的には、発電電流は2mA以下である。このため、セル50A~50Dの両端のセル50A,50Dのうち一端側のセル50Dの透明導電層12Dの一部を、他端側のセル50Aの対向基板20の金属基板21に電気的に接続された第2電流取出し部12hの隣りに溝90を介して第1電流取出し部12fとして配置しても、光電変換素子100の光電変換性能の低下を十分に抑制することができる。
 また、光電変換素子100では、セル50A~50DがX方向に沿って一列に配列されており、セル50A~50Dの両端のセル50A,50Dのうち一端側のセル50Dの透明導電層12Dが、封止部30Aの内側に設けられる本体部12aと、第1電流取出し部12fと、本体部12aと第1電流取出し部12fとを接続する接続部12gとを有する。このため、セル50A~50Dの一部であるセル50C、50Dを途中で折り返し、セル50Aとセル50Dとをそれらが互いに隣り合うように配置する場合に比べて、隣り合う2つのセル50同士を接続するためにセル50A~50Dの配列方向(図2のX方向)に沿って設けられる接続端子16の設置領域をより短くすることが可能となり、より省スペース化を図ることが可能となる。また、光電変換素子100によれば、当該光電変換素子100が低照度環境下で使用される場合、通常、発電電流が小さいため、光電変換素子100が、本体部12aと第1電流取出し部12fとを接続する接続部12gをさらに有していても、光電変換特性の低下を十分に抑制することができる。
 さらに、光電変換素子100では、配線材17が、バックシート80と導電性基板15との間の絶縁材14と交差しないように配置されている。配線材17は一般に、多孔質であるため通気性を有しており、水蒸気等のガスが透過可能となっているところ、配線材17が、バックシート80と導電性基板15との間の絶縁材14と交差しないように配置されていると、配線材17を通してバックシート80と導電性基板15との間の空間に外部から水蒸気等が侵入することを防止することができる。その結果、光電変換素子100は優れた耐久性を有することが可能となる。また配線材17は、透明導電層12Dよりも低い抵抗を有するため、発電電流が大きくなっても、光電変換特性の低下を十分に抑制することができる。
 さらに、光電変換素子100が温度変化の大きい環境下に置かれた場合、接続端子16の幅が狭いほど、接続端子16は、透明導電層12の突出部12cから剥離しにくくなる。その点、光電変換素子100では、接続端子16のうち配線材非接続部16Bが、配線材60Pと接続される配線材接続部16Aより狭い幅を有する。このため、接続端子16のうち配線材非接続部16Bは、透明導電層12の突出部12cから剥離しにくくなる。従って、仮に配線材接続部16Aが透明導電層12の突出部12cから剥離しても、配線材非接続部16Bは透明導電層12から剥離せず透明導電層12に対する接続を維持することが可能となる。また配線材接続部16Aが透明導電層12の突出部12cから剥離しても、光電変換素子100は正常に動作することが可能である。従って、光電変換素子100によれば、接続信頼性を向上させることが可能となる。また、隣り合う2つのセル50のうち一方のセル50における対向基板20の金属基板21に接続された配線材60Pは、他方のセル50における突出部12c上の配線材接続部16Aと接続され、配線材接続部16Aは、突出部12c上で封止部30Aの外側に設けられている。すなわち、隣り合う2つのセル50同士の接続が封止部30Aの外側で行われる。このため、光電変換素子100によれば、開口率を向上させることが可能となる。
 また光電変換素子100では、セル50A~50Dのうち隣りのセル50と接続されるセル50において、突出部12cが、本体部12aから側方に張り出す張出し部12dと、張出し部12dから延びて、隣りのセル50の本体部12aに対向する対向部12eとを有し、接続端子16のうち少なくとも配線材接続部16Aが対向部12e上に設けられている。
 この場合、接続端子16のうち少なくとも配線材接続部16Aが、隣りのセル50の本体部12aに対向する対向部12e上に設けられているため、接続端子16のうち少なくとも配線材接続部16Aが、隣りのセル50の本体部12aに対向する対向部12e上に設けられていない場合と異なり、配線材接続部16Aに接続される配線材60Pが、隣りのセル50の対向基板20の金属基板21を横切ることを十分に防止することが可能となる。その結果、隣り合うセル50同士間の短絡を十分に防止することが可能となる。
 また光電変換素子100では、配線材接続部16Aおよび配線材非接続部16Bはいずれも封止部30Aに沿って配置されている。このため、配線材接続部16Aおよび配線材非接続部16Bを封止部30Aから遠ざかる方向に沿って配置する場合に比べて、接続端子16のために要するスペースを省くことができる。
 さらに光電変換素子100では、バックシート80の接着部80Bは、セル50の封止部30Aと離間している。このため、接着部80Bが、低温時において収縮することにより封止部30Aを引っ張って、封止部30Aと導電性基板15又は対向基板20との界面に過大な応力が加わることが十分に抑制される。また、高温時においても、接着部80Bが、膨張することにより封止部30Aを押して、封止部30Aと導電性基板15又は対向基板20との界面に過大な応力を加えることが十分に抑制される。すなわち、高温時でも低温時でも、封止部30Aと導電性基板15又は対向基板20との界面に過大な応力が加わることが十分に抑制される。このため、光電変換素子100は、優れた耐久性を有することが可能となる。
 次に、導電性基板15、接続端子16、酸化物半導体13、絶縁材14、33、色素、対向基板20、封止部30A、電解質40、配線材60P,60Q、バックシート80および乾燥剤95について詳細に説明する。
 (導電性基板)
 導電性基板15に含まれる透明基板11を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、および、ポリエーテルスルフォン(PES)などが挙げられる。透明基板11の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50~10000μmの範囲にすればよい。
 導電性基板15に含まれる透明導電層12に含まれる材料としては、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(FTO)などの導電性金属酸化物が挙げられる。透明導電層12は、単層でも、異なる導電性金属酸化物を含む複数の層の積層体で構成されてもよい。透明導電層12が単層で構成される場合、透明導電層12は、高い耐熱性及び耐薬品性を有することから、FTOを含むことが好ましい。透明導電層12は、ガラスフリットをさらに含んでもよい。透明導電層12の厚さは例えば0.01~2μmの範囲にすればよい。
 また透明導電層12のうち透明導電層12Dの接続部12gの抵抗値は、特に制限されるものではないが、下記式(1)で表される抵抗値以下であることが好ましい。
抵抗値=直列接続されるセル50の数×120Ω    (1)
 この場合、接続部12gの抵抗値が、上記式(1)で表される抵抗値を超える場合と比べて、光電変換素子100の性能低下を十分に抑制することができる。本実施形態では、セル50の数は4であるから、上記式(1)で表わされる抵抗値は480Ωとなるので、接続部12gの抵抗値は480Ω以下であることが好ましい。
 なお、透明導電層12に形成される溝90は、第1の溝90Aと第2の溝90Bとを有しているが、溝90は、必ずしも第2の溝90Bを有していなくてもよい。
 (接続端子)
 接続端子16は、金属材料を含む。金属材料としては、例えば銀、銅およびインジウムなどが挙げられる。これらは単独で又は2種以上を組み合せて用いてもよい。
 また接続端子16は、配線材60Pと同一の材料で構成されていても異なる材料で構成されていてもよいが、同一の材料で構成されていることが好ましい。
 この場合、接続端子16および配線材60Pが同一の材料で構成されているため、接続端子16と配線材60Pとの密着性をより十分に向上させることができる。このため、光電変換素子100における接続信頼性をより向上させることが可能となる。
 接続端子16においては、配線材非接続部16Bの幅は、配線材接続部16Aの幅より狭ければ特に制限されないが、配線材接続部16Aの幅の1/2以下であることが好ましい。
 この場合、配線材非接続部16Bの幅が配線材接続部16Aの幅の1/2を超える場合に比べて、光電変換素子100における接続信頼性をより向上させることが可能となる。
 配線材接続部16Aの幅は特に制限されないが、好ましくは0.5~5mmであり、より好ましくは0.8~2mmである。
 また接続端子16の配線材接続部16Aおよび配線材非接続部16Bの幅は、一定でなくてもよい。例えば配線材接続部16Aおよび配線材非接続部16Bの幅はそれぞれ、接続端子16の延び方向に沿って変化してもよい。例えば配線材非接続部16Bのうち配線材接続部16Aから最も遠い側の端部から最も近い側の端部に向かって幅が単調に増加し、配線材接続部16Aのうち配線材非接続部16B側の端部から導電部材非接続部16Bより最も遠い側の端部に向かって幅が単調に増加してもよい。
 また配線材接続部16Aおよび配線材非接続部16Bはそれぞれ封止部30Aに沿って設けられているが、これらは、封止部30Aから遠ざかる方向に延びるように形成されていてもよい。但し、この場合、配線材接続部16Aが配線材非接続部16Bよりも封止部30Aに近い位置に配置されていることが好ましい。この場合、配線材60Pをより短くすることができる。
 あるいは、透明導電層12A~12C上に形成される接続端子16においては、配線材非接続部16Bは、配線材接続部16Aに直交するように配置されてもよい。
 (酸化物半導体層)
 酸化物半導体層13は、酸化物半導体粒子で構成される。酸化物半導体粒子は、例えば酸化チタン(TiO)、酸化シリコン(SiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される。
 酸化物半導体層13は通常、光を吸収するための吸収層で構成されるが、吸収層と吸収層を透過した光を反射して吸収層に戻す反射層とで構成されてもよい。
 酸化物半導体層13の厚さは通常は、0.5~50μmとすればよいが、18~35μmとすることが好ましい。この場合、厚さが18μm未満である場合に比べて、酸化物半導体層13からの反射光又は散乱光により、光電変換素子100を導電性基板15側から見た場合に、酸化物半導体層13の周囲が明るく見えることを十分に抑制することができる。一方、厚さが18~35μmであると、厚さが35μmを超える場合に比べて、透明導電層12からの酸化物半導体層13の剥離や、酸化物半導体層13におけるひび割れの発生をより十分に抑制できる。
 (絶縁材)
 絶縁材33としては、着色されたガラスフリット等の無機材料や、着色された樹脂を用いることができる。中でも、絶縁材33は、着色されたガラスフリットであることが好ましい。着色されたガラスフリットは樹脂材料に比べて高い封止能を有するため、第1の溝90Aからの水分等の侵入を効果的に抑制することができる。絶縁材33の厚さは通常、10~30μmであり、好ましくは15~25μmである。また、絶縁材33が透明導電層12の縁部を覆う幅は、0.2mm以上であることが好ましく、0.5mm以上であることがより好ましい。透明導電層12の縁部を覆う幅を0.2mm以上とすることで、隣接するセル50の透明導電層12の間の絶縁性を十分に確保することができる。但し、絶縁材33が透明導電層12の縁部を覆う幅は、5mm以下であることが好ましい。
 絶縁材33の色は特に限定されるものではなく、目的に応じて種々の色を用いることが可能である。例えば導電性基板15に文字やデザインを表示させないのであれば、絶縁材33の色は、酸化物半導体層13と同系統の色にすればよい。ここで、酸化物半導体層13と同系統の色とは、絶縁材33と酸化物半導体層13との間において、L色空間のL、a、bの差がそれぞれ5以下になる色を言う。
 絶縁材14を構成する材料は、バックシート80と透明導電層12とを接着させることができ、着色されており且つ絶縁性を有するものであれば特に制限されず、絶縁材14を構成する材料としては、例えば色付きのガラスフリット、封止部31Aに用いられる樹脂材料と同様の樹脂材料に着色剤を配合してなるものなどを用いることができる。中でも、絶縁材14は、色付きのガラスフリットであることが好ましい。色付きのガラスフリットは樹脂材料に比べて高い封止能を有するため、バックシート80の外側からの水分等の侵入を効果的に抑制することができる。
 絶縁材14は着色されているので、絶縁材14によってバックシート80の色や表面形状を隠すことが可能となる。また、絶縁材14を着色させることにより、光電変換素子100の導電性基板15に所望の文字やデザインを自由に表示させることが可能となる。このため、光電変換素子100がバックシート80を備える場合でも良好な外観を実現することができる。
 (色素)
 色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素などの光増感色素や、ハロゲン化鉛系ペロブスカイトなどの有機-無機複合色素などが挙げられる。ハロゲン化鉛系ペロブスカイトとしては、例えばCHNHPbX(X=Cl、Br、I)が用いられる。ここで、色素として、光増感色素を用いる場合には、光電変換素子100は色素増感光電変換素子となる。
 上記色素の中でも、ビピリジン構造又はターピリジン構造を含む配位子を有するルテニウム錯体からなる光増感色素が好ましい。この場合、光電変換素子100の光電変換特性をより向上させることができる。
 (対向基板)
 対向基板20は、上述したように、基板と電極を兼ねる金属基板21と、金属基板21のうち導電性基板15側に設けられて対向基板20の表面における還元反応を促進する導電性の触媒層22とを備える。
 金属基板21は、例えばチタン、ニッケル、白金、モリブデン、タングステン、アルミ、ステンレス等の耐食性の金属材料で構成される。金属基板21の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005~0.1mmとすればよい。
 触媒層22は、白金、炭素系材料又は導電性高分子などから構成される。中でも、光電変換素子100を導電性基板15の光入射側から見た場合に、酸化物半導体層13と封止部30との間の隙間から見える対向基板20の色や形状等を目立たなくするという観点からは、炭素系材料が好ましい。ここで、炭素系材料としては、カーボンブラック、カーボンナノチューブ及びケッチェンブラックなどが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 (封止部)
 封止部30Aは、第1封止部31Aと、第2封止部32Aとで構成される。
 第1封止部31Aを構成する材料としては、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体等を含む変性ポリオレフィン樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。
 第1封止部31Aの厚さは通常、40~90μmであり、好ましくは60~80μmである。
 第2封止部32Aを構成する材料としては、第1封止部31Aと同様、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体等を含む変性ポリオレフィン樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。
 第2封止部32Aの厚さは通常、20~45μmであり、好ましくは30~40μmである。
 なお、封止部30Aにおいて第2封止部32Aは省略されてもよい。
 対向基板20と仕切部31bとの接着部の幅Pは、対向基板20と第1一体化封止部31の環状部31aとの接着部の幅Qの25%以上100%未満であることが好ましい。この場合、接着部の幅Pが、接着部の幅Qの25%未満である場合と比べて、より優れた耐久性を有することが可能となる。接着部の幅Pは、接着部の幅Qの30%以上であることがより好ましく、40%以上であることがさらに好ましい。
 光電変換素子100においては、第1一体化封止部31の仕切部31bの幅Rは、第1一体化封止部31の環状部31aの幅Tの100%以上200%未満であることが好ましく、120~180%であることがより好ましい。
 この場合、大きな開口率と優れた耐久性とをバランスさせることができる。
 図7に示すように、対向基板20のうち導電性基板15側の面と第1一体化封止部31の仕切部31bとの接着部の幅Pは、対向基板20のうち導電性基板15側の面と第1一体化封止部31の環状部31aとの接着部の幅Qよりも狭くなっていることが好ましい。
 この場合、光電変換素子100における開口率をより十分に向上させることができる。但し、接着部の幅Pは、接着部の幅Q以上であってもよい。
 また光電変換素子100では、隣り合う第1封止部31A同士、及び、隣り合う第2封止部32A同士が、隣り合う対向基板20の間で一体化されていることが好ましい。
 ここで、隣り合う第1封止部31A同士が一体化されなければ、隣り合うセル50の間においては、大気に対して露出される封止部が2箇所となる。これに対し、光電変換素子100においては、隣り合う第1封止部31A同士が一体化されているため、隣り合うセル50の間において、大気に対して露出される封止部が1箇所となる。すなわち、第1一体化封止部31は、環状部31aと、仕切部31bとで構成されているため、隣り合うセル50の間において、大気に対して露出される封止部が仕切部31bの1箇所のみとなる。また第1封止部31A同士が一体化されることで、大気から電解質40までの水分等の侵入距離が延びる。このため、隣り合うセル50間において、セル50の外部から侵入する水分や空気の量を十分に低減することができる。すなわち、光電変換素子100の封止能を十分に向上させることができる。また光電変換素子100によれば、隣り合う第1封止部31A同士が一体化されている。このため、対向基板20のうち導電性基板15側の面と第1一体化封止部31の仕切部31bとの接着部の幅Pが、対向基板20のうち導電性基板15側の面と第1一体化封止部31の環状部31aとの接着部の幅Qよりも狭くても、その仕切部31bにおいて十分な封止幅を確保することが可能となる。すなわち、光電変換素子100によれば、開口率を向上させながら、第1封止部31Aと導電性基板15との接着強度、及び、第1封止部31Aと対向基板20との接着強度を十分に大きくすることが可能となる。その結果、開口率を向上させることができると共に、光電変換素子100が高温下で使用される場合に電解質40が膨張して第1封止部31Aの内側から外側に向かう過大な応力が加えられても、導電性基板15及び対向基板20からの第1封止部31Aの剥離を十分に抑制することができ、優れた耐久性を有することが可能となる。
 さらに、第1一体化封止部31の仕切部31bの幅Rは、第1一体化封止部31の環状部31aの幅Tの100%以上200%未満となっていることが好ましい。
 この場合、第1一体化封止部31の仕切部31bにおいて、仕切部31bの幅が環状部31aの幅Tの100%以上であるため、第1一体化封止部31の仕切部31bにおいて、仕切部31bの幅Rが環状部31aの幅Tの100%未満である場合と比べて、大気から電解質40までの水分等の侵入距離がより延びることになる。このため、隣り合うセル50間にある仕切部31bを通して外部から水分が侵入することをより十分に抑制することができる。一方、仕切部31bの幅Rが環状部31aの幅Tの200%を超える場合と比べて、開口率をより向上させることができる。但し、仕切部31bの幅Rは、第1一体化封止部31の環状部31aの幅Tの100%未満であってもよく、200%以上であってもよい。
 また、第2一体化封止部32は、対向基板20のうち作用極10と反対側に設けられる本体部32dと、隣り合う対向基板20同士の間に設けられる接着部32eとを有している。第2一体化封止部32は、接着部32eによって第1一体化封止部31に接着されていることが好ましい。
 このため、対向基板20に対して作用極10から離れる方向の応力が作用しても、その剥離が第2封止部32Aによって十分に抑制される。また、第2一体化封止部32の仕切部32bは、隣り合う対向基板20同士間の隙間Sを通って第1封止部31Aに接着されているため、隣り合うセル50の対向基板20同士が接触することが確実に防止される。
 ここで、対向基板20の縁部20aが第1封止部31Aと第2封止部32Aとによって挟持されていることがより好ましい。
 なお、但し、第2封止部32Aは第1封止部31Aに接着されていなくてもよい。また隣り合うセル50の環状の第1封止部31A同士は必ずしも一体化されていなくてもよい。すなわち、環状の第1封止部31A同士は互いに離間されていてもよい。
 (電解質)
 電解質40は、例えばI/I などの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ-ブチロラクトン、バレロニトリル、ピバロニトリル、グルタロニトリル、メタクリロニトリル、イソブチロニトリル、フェニルアセトニトリル、アクリロニトリル、スクシノニトリル、オキサロニトリル、ペンタニトリル、アジポニトリルなどを用いることができる。酸化還元対としては、例えばI/I のほか、臭素/臭化物イオン、亜鉛錯体、鉄錯体、コバルト錯体などのレドックス対が挙げられる。また電解質40は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば、1-ヘキシル-3-メチルイミダゾリウムヨーダイド、1-エチル-3-プロピルイミダゾリウムヨーダイド、ジメチルイミダゾリウムアイオダイド、エチルメチルイミダゾリウムアイオダイド、ジメチルプロピルイミダゾリウムアイオダイド、ブチルメチルイミダゾリウムアイオダイド、又は、メチルプロピルイミダゾリウムアイオダイドが好適に用いられる。
 また、電解質40は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。
 また電解質40には添加剤を加えることができる。添加剤としては、LiI、I、4-t-ブチルピリジン、グアニジウムチオシアネート、1-メチルベンゾイミダゾール、1-ブチルベンゾイミダゾールなどが挙げられる。
 さらに電解質40としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。
 なお、電解質40は、I/I からなる酸化還元対を含み、I の濃度が0.006mol/リットル以下であることが好ましい。この場合、電子を運ぶI の濃度が低いため、漏れ電流をより減少させることができる。このため、開放電圧をより増加させることができるため、光電変換特性をより向上させることができる。特に、I の濃度は0.005mol/リットル以下であることが好ましく、0~6×10-6mol/リットルであることがより好ましく、0~6×10-8mol/リットルであることがさらに好ましい。この場合、光電変換素子100を導電性基板15の光入射側から見た場合に、電解質40の色を目立たなくすることができる。
 (配線材)
 配線材60P,60Qとしては、例えば金属膜が用いられる。金属膜を構成する金属材料としては、例えば銀又は銅などを用いることができる。
 (バックシート)
 バックシート80は、上述したように、耐候性層と、金属層とを含む積層体80Aと、積層体80Aのセル50側の面に設けられ、積層体80Aと絶縁材14とを接着する接着部80Bとを含む。
 耐候性層は、例えばポリエチレンテレフタレート又はポリブチレンテレフタレートで構成されていればよい。
 耐候性層の厚さは、例えば50~300μmであればよい。
 金属層は、例えばアルミニウムを含む金属材料で構成されていればよい。金属材料は通常、アルミニウム単体で構成されるが、アルミニウムと他の金属との合金であってもよい。他の金属としては、例えば銅、マンガン、亜鉛、マグネシウム、鉛、及び、ビスマスが挙げられる。具体的には、98%以上の純アルミニウムにその他の金属が微量添加された1000系アルミニウムが望ましい。これは、この1000系アルミニウムが、他のアルミニウム合金と比較して、安価で、加工性に優れているためである。
 金属層の厚さは特に制限されるものではないが、例えば12~30μmであればよい。
 積層体80Aは、さらに樹脂層を含んでいてもよい。樹脂層を構成する材料としては、例えばブチルゴム、ニトリルゴム、熱可塑性樹脂などが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。樹脂層は、金属層のうち耐候性層と反対側の表面全体に形成されていてもよいし、周縁部にのみ形成されていてもよい。
 接着部80Bを構成する材料としては、例えばブチルゴム、ニトリルゴム、熱可塑性樹脂などが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。接着部80Bの厚さは特に制限されるものではないが、例えば300~1000μmであればよい。
 なお、バックシート80と透明導電層12とは、必ずしも絶縁材14を介して接着されている必要はない。また光電変換素子100は、必ずしもバックシート80を有していなくてもよい。
 (乾燥剤)
 乾燥剤95は、シート状であっても、粒状であってもよい。乾燥剤95は、例えば水分を吸収するものであればよく、乾燥剤95としては、例えばシリカゲル、アルミナ、ゼオライトなどが挙げられる。
 次に、光電変換素子100の製造方法について図3、図8および図9を参照しながら説明する。図8は、溝を覆う絶縁材およびバックシートを固定するための連結部を形成した作用極を示す平面図、図9は、図4の第1一体化封止部を形成するための第1一体化封止部形成体を示す平面図である。
 まず1つの透明基板11の上に透明導電層を形成してなる積層体を用意する。
 透明導電層の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法又はCVD法などが用いられる。
 次に、図3に示すように、透明導電層に対して溝90を形成し、互いに溝90を介在させて絶縁状態で配置される透明導電層12A~12Fを形成する。具体的には、セル50A~50Dに対応する4つの透明導電層12A~12Dは、四角形状の本体部12a及び突出部12cを有するように形成する。このとき、セル50A~50Cに対応する透明導電層12A~12Cについては、突出部12cが張出し部12dのみならず、張出し部12dから延びて、隣りのセル50の本体部12aに対向する対向部12eをも有するように形成する。また透明導電層12Dについては、四角形状の本体部12a及び張出し部12dのみならず、第1電流取出し部12fと、第1電流取出し部12fと本体部12aとを接続する接続部12gとを有するように形成する。このとき、第1電流取出し部12fは、透明導電層12Aに対し、透明導電層12Bと反対側に配置されるように形成する。さらに、透明導電層12Eは、第2電流取出し部12hが形成されるように形成する。このとき、第2電流取出し部12hは、透明導電層12Aに対し、透明導電層12Bと反対側に配置され、且つ、第1電流取出し部12fの隣りに溝90を介して配置されるように形成する。
 溝90は、例えばYAGレーザ又はCOレーザ等を光源として用いたレーザスクライブ法によって形成することができる。
 こうして、透明基板11の上に透明導電層12を形成してなる導電性基板15が得られる。
 次に、透明導電層12A~12Cのうちの突出部12c上に、配線材接続部16Aと配線材非接続部16Bとで構成される接続端子16の前駆体を形成する。具体的には、接続端子16の前駆体は、配線材接続部16Aが対向部12e上に設けられるように形成する。また透明導電層12Eにも接続端子16の前駆体を形成する。また配線材非接続部16Bの前駆体は、配線材接続部16Aの幅よりも狭くなるように形成する。接続端子16の前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
 さらに、透明導電層12Dの接続部12gの上には配線材17の前駆体を形成する。配線材17の前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
 また、透明導電層12Aの第1電流取出し部12f,第2電流取出し部12h上にはそれぞれ外部に電流を取り出すための外部接続用端子18a,18bの前駆体を形成する。外部接続用端子の前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
 さらに、本体部12aの縁部に沿って形成される第1の溝90Aに入り込み且つ本体部12aの縁部をも覆うように、絶縁材33の前駆体を形成する。絶縁材33は、例えば着色されたガラスフリットを含むペーストを塗布し乾燥させることによって形成することができる。
 またバックシート80を固定するために、絶縁材33と同様にして、絶縁材33を囲むように且つ透明導電層12D、透明導電層12E、透明導電層12Fを通るように環状の絶縁材14の前駆体を形成する。
 さらに透明導電層12A~12Dの各々の本体部12aの上に、酸化物半導体層13の前駆体を形成する。酸化物半導体層13の前駆体は、酸化物半導体粒子を含む多孔質酸化物半導体層形成用ペーストを印刷した後、乾燥させることで形成することができる。
 酸化物半導体層形成用ペーストは、酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。
 酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、又はバーコート法などを用いることができる。
 そして、接続端子16の前駆体、絶縁材33の前駆体、絶縁材14の前駆体、酸化物半導体層13の前駆体を一括して焼成し、接続端子16、絶縁材33、絶縁材14、および酸化物半導体層13を形成する。
 このとき、焼成温度は酸化物半導体粒子やガラスフリットの種類により異なるが、通常は350~600℃であり、焼成時間も、酸化物半導体粒子やガラスフリットの種類により異なるが、通常は1~5時間である。
 こうして、図8に示すように、絶縁材33とバックシート80を固定するための絶縁材14が形成された作用極10が得られる。
 次に、作用極10の酸化物半導体層13に色素を担持させる。このためには、作用極10を、色素を含有する溶液の中に浸漬させ、その色素を酸化物半導体層13に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させることで、色素を酸化物半導体層13に吸着させればよい。但し、色素を含有する溶液を酸化物半導体層13に塗布した後、乾燥させることによって色素を酸化物半導体層13に吸着させても、色素を酸化物半導体層13に担持させることが可能である。
 次に、酸化物半導体層13の上に電解質40を配置する。
 次に、図9に示すように、第1一体化封止部31を形成するための第1一体化封止部形成体131を準備する。第1一体化封止部形成体131は、第1一体化封止部31を構成する材料からなる1枚の封止用樹脂フィルムを用意し、その封止用樹脂フィルムにセル50の数に応じた四角形状の開口131aを形成することによって得ることができる。第1一体化封止部形成体131は、複数の第1封止部形成体131Aを一体化させてなる構造を有する。
 そして、この第1一体化封止部形成体131を、作用極10の上に接着させる。このとき、第1一体化封止部形成体131は、絶縁材33と重なるように作用極10に接着する。第1一体化封止部形成体131の作用極10への接着は、第1一体化封止部形成体131を加熱溶融させることによって行うことができる。また第1一体化封止部形成体131は、透明導電層12の本体部12aが第1一体化封止部形成体131の内側に配置されるように作用極10に接着する。
 一方、セル50の数と同数の対向基板20を用意する。
 対向基板20は、金属基板21上に、対向基板20の表面における還元反応を促進する導電性の触媒層22を形成することにより得ることができる。
 次に、上述した第1一体化封止部形成体131をもう1つ用意する。そして、複数の対向基板20の各々を、第1一体化封止部形成体131の各開口131aを塞ぐように貼り合わせる。
 次に、対向基板20に接着した第1一体化封止部形成体131と、作用極10に接着した第1一体化封止部形成体131とを重ね合わせ、第1一体化封止部形成体131を加圧しながら加熱溶融させる。こうして作用極10と対向基板20との間に第1一体化封止部31が形成される。このとき、対向基板20のうち導電性基板15側の面と第1一体化封止部31の仕切部31bとの接着部の幅Pが、対向基板20のうち導電性基板15側の面と第1一体化封止部31の環状部31aとの接着部の幅Qよりも狭くなるように第1一体化封止部31を形成する。また第1一体化封止部31の仕切部31bの幅Rは、第1一体化封止部31の環状部31aの幅Tの100%以上200%未満となるように第1一体化封止部31を形成する。第1一体化封止部31の形成は、大気圧下で行っても減圧下で行ってもよいが、減圧下で行うことが好ましい。
 次に、第2一体化封止部32を準備する(図5参照)。第2一体化封止部32は、複数の第1封止部32Aを一体化させてなる構造を有する。第2一体化封止部32は、1枚の封止用樹脂フィルムを用意し、その封止用樹脂フィルムにセル50の数に応じた四角形状の開口32cを形成することによって得ることができる。第2一体化封止部32は、第1一体化封止部31と共に対向基板20の縁部20aを挟むように対向基板20に貼り合わせる。第2一体化封止部32の対向基板20への接着は、第2一体化封止部32を加熱溶融させることによって行うことができる。
 封止用樹脂フィルムとしては、例えばアイオノマー、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体、エチレン-ビニルアルコール共重合体等を含む変性ポリオレフィン樹脂、紫外線硬化樹脂、及び、ビニルアルコール重合体などの樹脂が挙げられる。第2一体化封止部32の形成のための封止用樹脂フィルムの構成材料は、第1一体化封止部31の形成のための封止用樹脂フィルムの構成材料よりも高い融点を有することが好ましい。この場合、第2封止部32Aは、第1封止部31Aよりも硬くなるため、隣り合うセル50の対向基板20同士の接触を効果的に防止することができる。また第1封止部31Aは第2封止部32Aよりも軟らかくなるため、封止部30Aに加わる応力を効果的に緩和することができる。
 次に、第2封止部32の仕切部32bにバイパスダイオード70A,70B,70Cを固定する。またセル50Dの封止部30A上にもバイパスダイオード70Dを固定する。
 そして、バイパスダイオード70A~70Dを通るように配線材60Qをセル50B~50Cの対向基板20の金属基板21に固定する。さらにバイパスダイオード70A,70B間、バイパスダイオード70B,70C間、バイパスダイオード70C,70D間の各配線材60Qと、透明導電層12A上の配線材接続部16A、透明導電層12B上の配線材接続部16A、透明導電層12C上の配線材接続部16Aとをそれぞれ接続するように配線材60Pを形成する。また、透明導電層12E上の配線材接続部16Aとバイパスダイオード70Aとを接続するようにセル50Aの対向基板20の金属基板21に配線材60Pを固定する。さらに、透明導電層12Dとバイパスダイオード70Dとを配線材60Pによって接続する。
 このとき、配線材60Pは、配線材60Pを構成する金属材料を含むペーストを用意し、このペーストを、対向基板20から、隣りのセル50の接続端子16の配線材接続部16Aにわたって塗布し、硬化させる。配線材60Qは、配線材60Qを構成する金属材料を含むペーストを用意し、このペーストを、各対向基板20上に隣り合うバイパスダイオードを結ぶように塗布し、硬化させる。このとき、上記ペーストとしては、色素への悪影響を避ける観点から、90℃以下の温度で硬化させることが可能な低温硬化型のペーストを用いることが好ましい。
 最後に、バックシート80を用意し、このバックシート80の周縁部80aを絶縁材14に接着させる。このとき、バックシート80の接着部80Bとセル50の封止部30Aとが離間するようにバックシート80を配置する。
 以上のようにして光電変換素子100が得られる。
 なお、上述した説明では、接続端子16、配線材17、絶縁材33、絶縁材14、および酸化物半導体層13を形成するために、接続端子16の前駆体、配線材17の前駆体、絶縁材33の前駆体、絶縁材14の前駆体、酸化物半導体層13の前駆体を一括して焼成する方法を用いているが、接続端子16、配線材17、絶縁材33、絶縁材14、および酸化物半導体層13はそれぞれ別々に前駆体を焼成して形成してもよい。
 <第2実施形態>
 次に、本発明の光電変換素子の第2実施形態について図10~14を参照しながら詳細に説明する。図10は、本発明の光電変換素子の第2実施形態を示す切断面端面図、図11は、本発明の光電変換素子の第2実施形態の一部を示す平面図、図12は、図11のXII-XII線に沿った切断面端面図、図13は、絶縁材、及び、バックシートを固定するための光透過防止層を形成した作用極を示す平面図、図14は、図10の光電変換素子を導電性基板側から見た平面図である。なお、第1実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。
 図10~図14に示すように、本実施形態の光電変換素子200は、配線材17の一端が、透明導電層12Dに直接接続される端子部35aに接続され、配線材17の他端が、透明導電層12Dに直接接続される端子部35bに接続される点で第1実施形態の光電変換素子100と相違する。
 また本実施形態の光電変換素子200は、導電性基板15上であってセル50A~50Dの第1封止部31Aと導電性基板15の縁部との間の領域のうち、絶縁材14及び絶縁材33が設けられていない領域に、少なくとも接続端子16、外部接続端子18a,18b及び端子部35a,35bと隣接するように設けられ、光の透過を防止する絶縁性の光透過防止層34をさらに備える点でも第1実施形態の光電変換素子100と相違する。
 ここで、光透過防止層34は着色されている。また接続端子16、外部接続端子18a,18b及び端子部35a,35bは、導電性基板15上であってセル50A~50Dの第1封止部31Aと導電性基板15の縁部との間の領域のうち、絶縁材14及び絶縁材33が設けられていない領域に、透明導電層15と接触するように設けられている。接続端子16、外部接続端子18a,18b及び端子部35a,35bは着色されており、本発明における端子部及び導電部を構成している。また本実施形態では、配線材17及び配線材60Pも導電部を構成している。さらに本実施形態では、端子部35aが第1接続部を構成し、端子部35bが第2接続部を構成している。
 ここで、光透過防止層34は、導電性基板15のうち封止部30A側の表面において、セル50A~50Dの第1封止部31Aと導電性基板15の縁部との間の領域のうち、光電変換素子200を導電性基板15の厚さ方向に見た場合に少なくとも絶縁材14、絶縁材33及び導電部以外の領域の全てを覆うように設けられている。ここで、絶縁材14が着色され、光透過防止層34と同一材料で構成される場合、絶縁材14は光透過防止層34を兼ねることになる。この場合、光透過防止層34は絶縁材33を包囲するように設けられることになる。ここで、光透過防止層34は絶縁材33と一体になっている。従って、光透過防止層34は、封止部30Aの外側に設けられる透明導電層12同士間の第2の溝90Bをも覆っている。
 また本実施形態では、光透過防止層34は、導電性基板15の厚さ方向において、導電部としての配線材60Pと重なるように配線材60Pと導電性基板15との間に設けられている。また光透過防止層34は、導電性基板15の厚さ方向において、導電部としての配線材17とも重なるように配線材17と導電性基板15との間に設けられている。ここで、光電変換素子200では、端子部35a,35bの間において、配線材17の少なくとも一部が光透過防止層34上に直接設けられていていてもよく、光透過防止層34上に直接設けられていなくてもよい。
 なお、「全てを覆う」とは、絶縁材14が光透過防止層34を兼ねる場合、光透過防止層34が、導電性基板15のうち封止部30A側の表面を導電性基板15の厚さ方向に見た場合に、セル50A~50Dの第1封止部31Aと導電性基板15の縁部との間の領域の90%以上を覆っていることを言うものとする。ここで、仮に導電性基板15に開口が形成される場合には、開口の縁部も導電性基板15の縁部を構成するため、その開口の面積は、セル50A~50Dの第1封止部31Aと導電性基板15の縁部との間の領域の面積から除外される。
 上記光電変換素子200では、本発明における端子部を構成する接続端子16、外部接続端子18a,18b及び端子部35a,35bが着色されるとともに、光透過防止層34も着色されている。そして、光透過防止層34が接続端子16、外部接続端子18a,18b及び端子部35a,35bに隣接している。このため、光電変換素子200を導電性基板15の厚さ方向に見た場合、接続端子16、外部接続端子18a,18b及び端子部35a,35bが際立って見えることを十分に抑制することが可能となる。このため、良好な外観を実現することができる。また、光電変換素子200によれば、透明導電層12を着色させないで済むため、光電変換素子200の光電変換特性の低下を十分に抑制することができる。
 また光電変換素子200では、導電性基板15と配線材60Pとの間において、光電変換素子200を導電性基板15の厚さ方向に見た場合に配線材60Pと光透過防止層34とが重なるように光透過防止層34が設けられている。また、導電性基板15と配線材17との間には、配線材17と光透過防止層34とが重なるように光透過防止層34が設けられている。このため、光透過防止層34の裏側にある配線材60P及び配線材17を隠すことが可能となる。従って、より良好な外観を実現することができる。
 また光電変換素子200では、光透過防止層34が絶縁性であるため、透明導電層12A~12C及び12Eの第1接続部である接続端子16同士が短絡することを防止することができる。
 また光電変換素子200では、絶縁材33が、光透過防止層34と一体となって、光の透過を防止する層として機能する。このため、光電変換素子200を図14に示すように、導電性基板15からその厚さ方向に見た場合に、絶縁材33の裏側にある第1封止部31Aや対向基板20の色や形状を隠すことも可能となる。このため、良好な外観を実現することができる。また、封止部30Aに着色剤を導入することによって封止部30Aを着色させ、対向基板20の色を隠すことも可能であるが、この場合に比べて、光電変換素子200の耐久性を向上させることができる。また、光電変換素子200では、絶縁材33及び光透過防止層34が一体化されている。このため、バックシート80内に水分が侵入したとしても、絶縁材33と光透過防止層34との間に界面が生じないので、一体となって水分の侵入を防止することができ。このため、より一層優れた耐久性を有することが可能となる。
 また光電変換素子200では、絶縁材14が光透過防止層34を兼ねる場合、導電性基板15のうち封止部30A側の表面において、セル50A~50Dの第1封止部31Aと導電性基板15の外周縁との間の領域のうち、光電変換素子200を導電性基板15の厚さ方向に見た場合に少なくとも絶縁材14、絶縁材33及び導電部以外の領域の全てを覆うように、光の透過を防止する絶縁性の光透過防止層34が環状に設けられている。このため、光電変換素子200を透明基板11側から導電性基板15の厚さ方向に見た場合に、封止部30Aと、導電性基板15の縁部との間の領域のうち、絶縁材14、絶縁材33及び導電部以外の領域が光透過防止層34によって隠されるので、より良好な外観を実現できる。
 また光電変換素子200では、バックシート80の周縁部80aの全周にわたって、絶縁性の光透過防止層34が設けられているため、バックシート80の外側からバックシート80の内側に水分が侵入することを、十分に抑制することができる。特に、光電変換素子200では、バックシート80の周縁部80aと交差する第2の溝90Bが、光透過防止層34で覆われている。このため、次の効果が得られる。すなわち、光電変換素子200では、第2の溝90Bに光透過防止層34が入り込み、光透過防止層34が、透明導電層12のうち本体部12aを除く部分の縁部をも覆っているため、第2の溝90Bを通じて水分がバックシート80の周縁部80aの内側に侵入した場合でも、バックシート80の外側からバックシート80と導電性基板15との間の空間への水分の侵入が十分に抑制される。このため、バックシート80と導電性基板15との間の空間に侵入した水分が封止部30Aを通じて封止部30Aの内側に入り込むことが十分に抑制される。このため、光電変換素子200の耐久性の低下を十分に抑制することが可能となる。
 次に、光透過防止層34及び導電部について説明する。
 (光透過防止層)
 光透過防止層34を構成する材料は、光の透過を防止することが可能で且つ着色されている絶縁材料で構成されていればよい。このような絶縁材料としては、着色された樹脂や着色された無機絶縁材料が挙げられるが、中でも、着色された無機絶縁材料が好ましい。この場合、次の効果が得られる。すなわち、光透過防止層34は第2の溝90Bをも覆っている。ここで、光透過防止層34が樹脂ではなく無機絶縁材料で構成されると、第2の溝90Bからの水分の侵入をより十分に抑制できる。
 着色された無機絶縁材料としては、例えば着色されたガラスフリット等の無機絶縁材料が用いられる。
 ここで、着色されている端子部と、光透過防止層34との間におけるL色空間のL*の差は特に制限されるものではないが、3以下であることが好ましく、1以下であることがより好ましい。この場合、光透過防止層34の色が接続端子16、外部接続端子18a,18b及び端子部35a,35bの色により近づくことになるため、接続端子16、外部接続端子18a,18b及び端子部35a,35bが際立って見えることをより十分に抑制することが可能となる。
 また酸化物半導体層13と光透過防止層34との間におけるL色空間のL*の差も特に制限されるものではないが、5以下であることが好ましく、3以下であることがより好ましい。
 光透過防止層34の色は着色されている限り特に限定されるものではなく、目的に応じて種々の色を用いることが可能である。光透過防止層34の厚さは通常、10~30μmであり、好ましくは15~25μmである。
 (導電部)
 端子部及び導電部としての接続端子16は、金属材料、カーボンなどの導電材料を含む。金属材料としては、例えば銀、銅およびインジウムなどが挙げられる。これらは単独で又は2種以上を組み合せて用いてもよい。中でも、導電材料はカーボンで構成されることが好ましい。カーボンは優れた導電性を有しながらも黒色であるため、銀などの金属材料を含む場合に比べて、接続端子16が際立って見えることがより十分に抑制される。
 接続端子16は、上記導電材料のほか、樹脂も含む。樹脂としては、エポキシ樹脂やポリエステル樹脂、アクリル樹脂などが挙げられるが、中でも、高温になっても熱膨張しにくく、抵抗の経時的変化をより小さくできることから、エポキシ樹脂やポリエステル樹脂が好ましい。
 酸化物半導体層13と、着色されている端子部である接続端子16、外部接続端子18a,18b及び端子部35a,35bとの間におけるL色空間のL*の差は特に制限されるものではないが、酸化物半導体層13と光透過防止層34との間におけるL色空間のL*の差が5以下である場合には、5以下であることが好ましい。この場合、接続端子16、外部接続端子18a,18b及び端子部35a,35b、並びに、光透過防止層34の各々の色を酸化物半導体層13の色により近づけることが可能となる。別言すると、接続端子16、外部接続端子18a,18b及び端子部35a,35b、光透過防止層34並びに酸化物半導体層13の色を単一色に近づけることが可能となる。このため、接続端子16、外部接続端子18a,18b及び端子部35a,35b、並びに、光透過防止層34が酸化物半導体層13に対して際立って見えることがより十分に抑制される。ここで、酸化物半導体層13と、接続端子16、外部接続端子18a,18b及び端子部35a,35bとの間におけるL色空間のL*の差は3以下であることがより好ましい。
 端子部及び導電部としての外部接続端子18a,18bは、着色されている限り、接続端子16と同一の材料で構成されても異なる材料で構成されてもよいが、同一の材料で構成されることが好ましい。
 端子部及び導電部としての端子部35a,35bも、着色されている限り、接続端子16と同一の材料で構成されても異なる材料で構成されてもよいが、同一の材料で構成されることが好ましい。
 配線材17及び配線材60Pは、光透過防止層34のうち導電性基板15と反対側に、光透過防止層34と重なるように設けられている場合には、着色されていてもよいし、着色されていなくてもよい。配線材17及び配線材60Pが着色されている場合には、配線材17及び配線材60Pは、接続端子16と同一の材料で構成されても異なる材料で構成されてもよいが、同一の材料で構成されることが好ましい。ここで、配線材17及び配線材60Pはいずれも、色付きの着色導電層と、着色されていない非着色導電層との積層体で構成されてもよい。
 また配線材17は、導電性基板15の透明導電層12上に直接設けられていてもよい。すなわち、配線材17は、光透過防止層34のうち導電性基板15と反対側に、光透過防止層34と重ならないように設けられていてもよい。この場合、配線材17は、着色されていてもよいし、着色されていなくてもよいが、着色されていることが好ましい。
 次に、本実施形態の光電変換素子200の製造方法について説明する。
 本実施形態の光電変換素子200の製造方法は、作用極10の製造方法の点でのみ第1実施形態の光電変換素子100の製造方法と相違する。そこで、以下、作用極10の製造方法について説明する。
 まず第1実施形態と同様にして導電性基板15を得る。
 次に、導電性基板15の透明導電層12A~12Cのうちの突出部12c上に、配線材接続部16Aと配線材非接続部16Bとで構成される接続端子16の前駆体を形成する。具体的には、接続端子16の前駆体は、配線材接続部16Aが対向部12e上に設けられるように形成する。また透明導電層12Eにも接続端子16の前駆体を形成する。また配線材非接続部16Bの前駆体は、配線材接続部16Aの幅よりも狭くなるように形成する。接続端子16の前駆体は、例えば導電材を含むペーストを塗布し乾燥させることで形成することができる。ここで、導電材がカーボンで構成される場合には、カーボンと樹脂とを含む着色されたマスターバッチをペーストに含めることが好ましい。樹脂としては、上述したように、エポキシ樹脂やポリエステル樹脂が好ましい。
 また、透明導電層12Dの第1電流取出し部12f、透明導電層12Fの第2電流取出し部12h上にはそれぞれ、第1実施形態と同様にして外部に電流を取り出すための外部接続用端子18a,18bの前駆体を形成する。
 また、透明導電層12Dの本体部12a及び第1電流取出し部12fの上には端子部35a,35bの前駆体を形成する。端子部35a,35bの前駆体としては、接続端子16の前駆体と同様のものを用いることができる。端子部35a,35bの前駆体は、例えば銀ペーストを塗布し乾燥させることで形成することができる。
 さらに、本体部12aの縁部に沿って形成される第1の溝90Aに入り込み且つ本体部12aの縁部をも覆うように、且つ、導電性基板15の透明導電層12側の表面のうち、接続端子16、外部接続端子18a,18b、及び端子部35a,35bの前駆体を除く領域を覆うように絶縁材33及び光透過防止層34の前駆体を形成する。絶縁材33及び光透過防止層34の前駆体は、例えば着色されたガラスフリットを含むペーストを塗布し乾燥させることによって形成することができる。
 さらに光透過防止層34の上に、端子部35a,35bを接続するように、配線材17の前駆体を形成する。配線材17の前駆体としては、接続端子16の前駆体と同様のものを用いることができる。
 さらに透明導電層12A~12Dの各々の本体部12aの上に、第1実施形態と同様にして酸化物半導体層13の前駆体を形成する。
 そして、接続端子16の前駆体、外部接続端子18a,18bの前駆体、端子部35a,35bの前駆体、配線材17の前駆体、絶縁材33の前駆体、光透過防止層34の前駆体及び酸化物半導体層13の前駆体を一括して焼成し、接続端子16、外部接続端子18a,18b、端子部35a,35b、配線材17、絶縁材33及び光透過防止層34および酸化物半導体層13を形成する。
 このとき、焼成温度は酸化物半導体粒子やガラスフリットの種類により異なるが、通常は350~600℃であり、焼成時間も、酸化物半導体粒子やガラスフリットの種類により異なるが、通常は1~5時間である。
 こうして、図13に示すように、絶縁材33とバックシート80を固定するための光透過防止層34とが形成された作用極10が得られる。
 作用極10の酸化物半導体層13に色素を担持させるには、第1実施形態と同様にして行えばよい。このとき、接続端子16の前駆体、外部接続用端子の前駆体、及び、端子部35a,35bの前駆体が、カーボンと樹脂とを含む着色されたマスターバッチを含むペーストで構成される場合には、作用極10を、色素溶液中に浸漬する前に、接続端子16の前駆体、外部接続用端子の前駆体、及び、端子部35a,35bの前駆体を保護フィルムで予め覆うことが好ましい。この場合、作用極10が、色素溶液中に浸漬されても、着色されたマスターバッチやカーボンが色素溶液中に溶け出すことが十分に防止され、色素が劣化することを十分に抑制することができる。このとき、保護フィルムとしては、例えばリニアポリエチレンフィルムなどを用いることができる。
 なお、本実施形態では、導電性基板15のうち封止部30A側の表面において、セル50A~50Dの第1封止部31Aと導電性基板15の外周縁との間の領域のうち、光電変換素子を導電性基板15の厚さ方向に見た場合に少なくとも絶縁材14、絶縁材33及び導電部以外の領域の全てを覆うように光透過防止層34が環状に設けられているが、光透過防止層34は、導電性基板15のうち封止部30A側の表面において、セル50A~50Dの第1封止部31Aと導電性基板15の外周縁との間の領域のうち、光電変換素子を導電性基板15の厚さ方向に見た場合に少なくとも絶縁材14、絶縁材33及び導電部以外の領域の全てを覆っていることは必ずしも必要ではない。要するに、光透過防止層34は、少なくとも接続端子16、外部接続端子18a,18b、端子部35a,35bで構成される端子部に隣接していさえすればよい。
 また本実施形態では、端子部である接続端子16、外部接続端子18a,18b及び端子部35a,35bの全てが着色されているが、接続端子16、外部接続端子18a,18b及び端子部35a,35bのうちいずれか一つのみが着色されていてもよい。例えば光電変換素子が筐体内に収容される場合、接続端子16、外部接続端子18a,18b及び端子部35a,35bのうち光電変換素子を外から見た場合に筐体によって隠される部分については、着色されていなくてもよい。但し、接続端子16、外部接続端子18a,18b及び端子部35a,35bのうち筐体によって隠されていない部分については着色されていることが好ましい。例えば端子部35aや端子部35bは筐体によって隠される場合があるので、その場合には、端子部35a,35bは着色されていなくてもよい。
 また端子部35a,35bは筐体によって隠されなくても、導電性が最も必要な部分であるため、接続端子16及び外部接続端子18a,18bが着色されている場合には、必ずしも着色されていなくてもよい。
 また本実施形態では、配線材60Pの一端は、接続端子16を介して透明導電層12に接続されているが、配線材60Pの一端は、透明導電層12に直接接続されていてもよい。この場合は、透明導電層12が第1接続部となる。
 また本実施形態では、配線材17の一端は、端子部35aを介して透明導電層12に接続されているが、配線材17の一端は透明導電層12に直接接続されていてもよい。この場合は、端子部35aは不要となり、透明導電層12が第1接続部となる。また本実施形態では、配線材17の他端は、第2接続部としての端子部35bを介して透明導電層12に接続されているが、配線材17の他端は透明導電層12に直接接続されていてもよい。この場合は、端子部35bは不要となり、透明導電層12が第2接続部となる。
 また本実施形態では、光電変換素子100が配線材17を有しているが、本発明の光電変換素子は、必ずしも配線材17を有していなくてもよい。この場合は端子部35a,35bも不要となる。この場合、導電部は、接続端子16及び外部接続端子18a,18bのみで構成されることになる。
 さらに本実施形態では、光透過防止層34と絶縁材33とが同一の材料で構成され、一体となっているが、絶縁材33と光透過防止層34とは別々の材料で構成されていてもよい。例えば光透過防止層34は着色させず、絶縁材33は着色させるようにしてもよい。この場合、絶縁材33は、例えば酸化物半導体層13と同系統の色とされる。また絶縁材33は着色されていさえすればよく、必ずしも光透過防止機能を有していなくてもよい。
 さらに本実施形態では、配線材60Pと対向基板20の金属基板21とが接続されているが、配線材60Pが、対向基板20の金属基板21の一部で構成されてもよい。
 また本実施形態では、図15に示すように、導電性基板15において、光電変換素子を透明基板11側から導電性基板15の厚さ方向に見た場合に、導電性基板15に光透過防止層34と異なる色を有する異色部Mが設けられていることが好ましい。この場合、異色部Mは光透過防止層34と異なる色を示すため、光電変換素子を導電性基板15の厚さ方向から見た場合にその異色部Mによって所望の文字やデザインを表示させることが可能となる。ここで、導電性基板15に異色部Mが設けられる場合、光透過防止層34は、導電性基板15のうち封止部30A側の表面において、セル50A~50Dの第1封止部31Aと導電性基板15の縁部との間の領域のうち、光電変換素子200を導電性基板15の厚さ方向に見た場合に少なくとも絶縁材14、絶縁材33、導電部及び異色部M領域以外の領域の全てを覆うように設けられることが好ましい。
 図15に示す異色部Mは、導電性基板15の透明導電層12の上に直接設けられており、その上に光透過防止層34が重なるように設けられている。異色部Mは、透明導電層12の上に直接印刷することなどによって形成することが可能である。ここで、「光透過防止層34と異なる色」とは、異色部MのL色空間のL*と光透過防止層34のL色空間のL*との差の値が5以上であることを言う。
 なお、異色部Mの上には、光透過防止層34が設けられていなくてもよい。さらに異色部Mは、光透過防止層34によって空間を包囲することによって形成することも可能である。
 さらに本実施形態では、光透過防止層34は絶縁材料で構成されているが、光透過防止層34は、溝90をまたぐように設けられないならば、導電性材料で構成されてもよい。
 本発明は、上記実施形態に限定されるものではない。例えば上記第1実施形態では、セル50A~50Dが図2のX方向に沿って一列に配列されているが、図16に示す光電変換素子300のように、セル50A~50Dの一部であるセル50C、50Dを途中で折り返し、セル50Aとセル50Dとをそれらが互いに隣り合うように配置してもよい。なお、図16において、バックシート80は省略してある。この場合、透明導電層12Dは、光電変換素子100と異なり、本体部12aと第1電流取出し部12fとの間に接続部12gを設ける必要がない。このため、配線材17も設ける必要がない。第2実施形態の光電変換素子200においても、光電変換素子300のように、セル50A~50Dの一部であるセル50C、50Dを途中で折り返し、セル50Aとセル50Dとをそれらが互いに隣り合うように配置してもよい。
 また上記第1実施形態では、バックシート80と導電性基板15との間の絶縁材14と交差する第2の溝90Bが、絶縁材33で覆われていないが、図17に示す光電変換素子400のように、第2の溝90Bは、絶縁材33で覆われていることが好ましい。なお、図17において、バックシート80は省略してある。図17に示すように、第2の溝90Bが絶縁材14と交差していると、その第2の溝90Bを通じて水分がバックシート80と導電性基板15との間の空間に侵入することが可能となる。この場合、第2の溝90Bに絶縁材33が入り込み、絶縁材33が、透明導電層12のうち本体部12aを除く部分の縁部をも覆っていることで、バックシート80の外側から内側への水分の侵入が十分に抑制される。このため、バックシート80と導電性基板15との間の空間に侵入した水分が封止部30Aを通じて封止部30Aの内側に入り込むことが十分に抑制される。このため、光電変換素子400の耐久性の低下を十分に抑制することが可能となる。
 さらに上記第1実施形態では、溝90の一部は絶縁材33によって覆われていないが、図17に示す光電変換素子400のように、絶縁材33が溝90のすべてに入り込むとともに、すべての溝90の両側の透明導電層12の縁部を覆っていることが好ましい。この場合、絶縁材33がすべての溝90に入り込むとともにすべての溝90の両側の透明導電層12の縁部を覆っているため、そもそも溝90に水分が侵入できず、溝90に形成されたクラックにも水分が侵入できなくなるため、溝90を介して水分が侵入することをより一層抑制することができる。また、絶縁材33がすべての溝90の両側の透明導電層12の縁部も覆っているため、溝90の両側の透明導電層12の間での絶縁性も十分に確保することができる。また、光電変換素子100は、隣接するセル50の透明導電層12の間の第1の溝90Aのすべてにも絶縁材33が入り込んでいるため、透明導電層12同士の間に流れる電流をより抑制することができ絶縁性を十分に確保することができる。このため、光電変換特性をより向上させることができる。
 また上記第1実施形態では、第1電流取出し部12fおよび第2電流取出し部12hが、セル50A側の周囲に配置されているが、図18に示す光電変換素子500に示すように、第1電流取出し部12fおよび第2電流取出し部12hは、セル50D側の周囲に配置されていてもよい。この場合、第1電流取出し部12fは、透明導電層12Dの本体部12aに対しセル50Cと反対側に封止部30Aの外側まで突出するように設けられる。一方、第2電流取出し部12hは、透明導電層12Dの本体部12aに対しセル50Cと反対側に設けられる。また透明導電層12A~12Dに沿って第2接続部としての接続部12iが延びており、この接続部12iが、第2電流取出し部12fとセル50Aの対向基板20の金属基板21とを接続している。具体的には、接続部12iの上に、接続部12iに沿って透明導電層12よりも低い抵抗を有し且つ集電機能を有する配線材417が設けられ、この配線材417とバイパスダイオード70Aから延びる配線材60Pとが接続されている。この光電変換素子500によれば、優れた光電変換特性を有しながら省スペース化を図ることができる。なお、この場合に、接続部12iの抵抗値が、下記式(1)で表される抵抗値以下であることが好ましいのは、上記第1実施形態と同様である。
抵抗値=直列接続されるセル50の数×120Ω    (1)
 また上記第2実施形態では、第1電流取出し部12fおよび第2電流取出し部12hが、セル50A側の周囲に配置されているが、図19に示す光電変換素子600に示すように、第1電流取出し部12fおよび第2電流取出し部12hは、セル50D側の周囲に配置されていてもよい。この場合、第1電流取出し部12fは、透明導電層12Dの本体部12aに対しセル50Cと反対側に封止部30Aの外側まで突出するように設けられる。一方、第2電流取出し部12hは、透明導電層12Dの本体部12aに対しセル50Cと反対側に設けられる。また透明導電層12A~12Dに沿って第2電流取出し部12hとセル50Aの対向基板20の金属基板21とを接続するための接続部12iが延びている。具体的には、光透過防止層34の上には、接続部12iに沿って透明導電層12よりも低い抵抗を有し且つ集電機能を有する配線材417が設けられ、この配線材417の一端とバイパスダイオード70Aから延びる配線材60Pとが接続され、配線材417の他端は、光透過防止層34を貫通する貫通孔に設けられ、第1電流取出部12hと直接接続される端子部635と接続されている。光電変換素子600においては、配線材417が導電部を構成し、セル50Aの金属基板21が第2接続部を構成し、端子部635が第1接続部、端子部及び導電部を構成している。この光電変換素子600において、端子部635が着色されている場合には、着色した光透過防止層34が端子部635に隣接して設けられることになる。この場合、端子部635の色を目立たなくすることができる。またこの光電変換素子600によれば、優れた光電変換特性を有しながら省スペース化を図ることができる。なお、この場合に、接続部12iの抵抗値が、下記式(1)で表される抵抗値以下であることが好ましいのは、図18に示す光電変換素子500と同様である。
抵抗値=直列接続されるセル50の数×120Ω    (1)
 なお、光電変換素子600では、配線材417の他端が端子部635を介して透明導電層12Eの第2電流取出し部12hに間接的に接続されているが、光電変換素子600では、端子部635が省略され、配線材417の他端が透明導電層12Eの第2電流取出し部12hに直接接続されてもよい。この場合、透明導電層12Eが第1接続部を構成することになる。また光電変換素子600では、セル50Aの金属基板21と端子部635との間において、配線材417の少なくとも一部が光透過防止層34上に直接設けられていていてもよく、光透過防止層34上に直接設けられていなくてもよい。
 また上記第1実施形態では、第1封止部31Aの内壁面と酸化物半導体層13との間には隙間が設けられているが、図20に示す光電変換素子700のように、第1封止部31Aの内壁面と酸化物半導体層13との間には隙間が設けられていなくてもよい。すなわち、第1封止部31Aの内壁面と酸化物半導体層13とは互いに接していてもよい。この場合、第1封止部31Aの内壁面と酸化物半導体層13との間の隙間を通じて見える電解質40の色や、対向基板20の色又は形状を隠すことができる。第2実施形態の光電変換素子200においても、第1封止部31Aの内壁面と酸化物半導体層13との間には隙間が設けられていなくてもよい。
 また上記第1実施形態では、透明基板11のうち透明導電層12と反対側の表面に何らの膜も形成されていないが、図21に示す光電変換素子800のように、透明基板11のうち透明導電層12と反対側の表面に被覆層96がさらに設けられてもよい。ここで、被覆層96は、透明基板11の厚さ方向に被覆層96を見た場合に酸化物半導体層13を覆っており、被覆層96の可視光の波長領域における最大吸収ピーク波長と、酸化物半導体層13の可視光の波長領域における最大吸収ピーク波長とが互いに異なることが好ましい。この場合、被覆層96の可視光の波長領域における最大吸収ピーク波長(λ1)が、酸化物半導体層13の可視光の波長領域における最大吸収ピーク波長(λ2)と異なる。このため、酸化物半導体層13で十分に吸収されるべき光が被覆層96で十分に吸収されることを抑制することができる。すなわち、光電変換素子800における光電変換特性の低下を抑制できる。また光電変換素子800の酸化物半導体層13の色を所望の色に調整することもできる。λ1-λ2は0でなければよく、特に限定されないが、好ましくは50~300nmであり、より好ましくは100~300nmである。ここで、被覆層96の色は、酸化物半導体層13の補色であることが好ましい。すなわち、酸化物半導体層13と被覆層96とを重ねてみた場合に見える色が黒色であることが好ましい。この場合、酸化物半導体層13で十分に吸収されるべき光が被覆層96で十分に吸収されることをより十分に抑制することができる。ここで、黒色とは、L値が26以下となる色を言う。また被覆層96の屈折率は導電性基板15の屈折率と同程度にすることが好ましい。具体的には、導電性基板15と被覆層96との屈折率の差が0~0.5とすることが好ましい。この場合、導電性基板15と被覆層96との界面反射がより十分に抑制され、色をよりきれいに調整することができる。
 被覆層96の上には、被覆層96を保護する観点から、さらにオーバーコート層が設けられてもよい。
 なお、第2実施形態の光電変換素子200においても、図21に示す光電変換素子800のように、透明基板11のうち透明導電層12と反対側の表面に被覆層96がさらに設けられてもよい。
 さらに上記実施形態では、第1の溝90Aは、透明導電層12の本体部12aの縁部に沿って形成されているが、図22に示す光電変換素子900のように、環状の封止部30Aの外形に沿ってさえいれば、透明導電層12の本体部12aの縁部に沿って形成されていなくてもよい。具体的には、透明導電層12上の環状の封止部30Aよりも外側に離れた位置おいて第1の溝90Aが形成されている。この場合でも、絶縁材33は、環状の封止部30Aの外形に沿って形成された第1の溝90Aに入り込むとともに、連続して本体部12aの縁部を覆っている。第2実施形態の光電変換素子200においても、第1の溝90Aは、環状の封止部30Aの外形に沿ってさえいれば、図22に示す光電変換素子900のように、透明導電層12の本体部12aの縁部に沿って形成されていなくてもよい。
 また、上記第1実施形態では、絶縁材33と絶縁材14は、離間していたが、図22に示す光電変換素子900のように、同一の材料で構成され一体化されていることが好ましい。この場合、絶縁材33と絶縁材14が同一材料からなり一体化されているため、バックシート80内に水分が侵入したとしても、絶縁材14と絶縁層33の間に界面が生じないので、一体となって水分の侵入を防止することができ。このため、より一層優れた耐久性を有することが可能となる。
 さらに上記第1実施形態では、複数のセル50が用いられているが、図23に示す光電変換素子1000のように、本発明では、セルは1つのみ用いてもよい。なお、図23に示す光電変換素子1000は、光電変換素子100においてセル50A~セル50Cを省略し、第2電流取出部12h上に設けられた接続端子16と、セル50Dの対向基板20の金属基板21とが配線材60Pを介して電気的に接続したものである。また光電変換素子1000においては、接続端子16が配線材接続部16Aのみで構成され、この配線材接続部16Aは、封止部30Aと絶縁材14との間に配置されている。すなわち、配線材接続部16Aは、セル50Dの透明導電層12Dのうちの本体部12aの側縁部12bに対向する位置に配置されていない。このため、第1実施形態の光電変換素子100において配線材接続部16Aが配置されていた部分のスペースまで酸化物半導体層13を拡大することが可能となる。この場合、無駄なスペースが有効利用されるとともに発電面積を拡大することができる。なお、第2実施形態の光電変換素子200においても、図23に示す光電変換素子1000のように、セルが1つのみ用いられていてもよい。
 さらに上記実施形態では、複数のセル50が直列接続されているが、並列接続されていてもよい。
 また上記実施形態では、対向基板20が対極で構成されているが、図24に示す光電変換素子1100のように、対向基板としては、対極に代えて、絶縁性基板1101を用いてもよい。この場合、絶縁性基板1101と封止部30Aと導電性基板15との間の空間に酸化物半導体層13、多孔質絶縁層1103及び対極1120で構成される構造体1102が配置される。構造体1102は、導電性基板15のうち絶縁性基板1101側の面上に設けることができる。構造体1102は、導電性基板15側から順に、酸化物半導体層13、多孔質絶縁層1103及び対極1120で構成される。また上記空間には電解質40が配置されている。電解質40は、酸化物半導体層及び多孔質絶縁層の内部にまで含浸される。ここで、絶縁性基板1101としては、例えばガラス基板又は樹脂フィルムなどを用いることができる。また対極1120としては、上記実施形態の対向基板20と同様のものを用いることができる。あるいは、対極1120は、例えばカーボン等を含む多孔質の単一の層で構成されてもよい。多孔質絶縁層1103は、主として、酸化物半導体層13と対極1120との物理的接触を防ぎ、電解質40を内部に含浸させるためのものである。このような多孔質絶縁層1103としては、例えば酸化物の焼成体を用いることができる。なお、図24に示す光電変換素子1100においては、封止部31と導電性基板15と絶縁性基板1001との間の空間に構造体1102が1つのみ設けられているが、構造体1102は複数設けられていてもよい。また、多孔質絶縁層1103は、酸化物半導体層13と対極1120との間に設けられているが、酸化物半導体層13と対極1120との間に設けず、酸化物半導体層13を囲むように、導電性基板15と対極1120の間に設けてもよい。この構成でも、酸化物半導体層13と対極1120との物理的接触を防ぐことができる。
 本発明の光電変換素子は、ディスプレイなどの電子機器の近傍に設置する場合に特に有用である。
 以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 (実施例1)
 まずガラスからなる厚さ1mmの透明基板の上に、厚さ1μmのFTOからなる透明導電層を形成してなる積層体を準備した。次に、図3に示すように、COレーザ(ユニバーサルシステム社製V-460)によって透明導電層12に溝90を形成し、透明導電層12A~12Fを形成した。このとき、溝90の幅は1mmとした。また透明導電層12A~12Cはそれぞれ、4.6cm×2.0cmの四角形状の本体部と、本体部の片側側縁部から突出する突出部とを有するように形成した。また透明導電層12Dは、4.6cm×2.1cmの四角形状の本体部と、本体部の片側側縁部から突出する突出部とを有するように形成した。また透明導電層12A~12Dのうち3つの透明導電層12A~12Cの突出部12cについては、本体部12aの片側縁部12bから張り出す張出し部12dと、張出し部12dから延びて、隣りの透明導電層12の本体部12aに対向する対向部12eとで構成されるようにした。また透明導電層12Dの突起部12cについては、本体部12aの片側縁部12bから張り出す張出し部12dのみで構成されるようにした。このとき、張出し部12dの張出し方向(図2のX方向に直交する方向)の長さは2.1mmとし、張出し部12dの幅は9.8mmとした。また対向部12eの幅は2.1mmとし、対向部12eの延び方向の長さは9.8mmとなるようにした。
 また透明導電層12Dについては、本体部12aおよび突出部12cのみならず、第1電流取出し部12fと、第1電流取出し部12fと本体部12aとを接続する接続部12gとを有するように形成した。透明導電層12Eについては、第2電流取出し部12hを有するように形成した。このとき、接続部12gの幅は、1.3mmとし、長さは59mmとした。また接続部12gの抵抗値を四端子法にて測定したところ、100Ωであった。
 次に、透明導電層12A~12Cのうちの突出部12c上に、配線材接続部16Aと配線材非接続部16Bとで構成される接続端子16の前駆体を形成した。具体的には、接続端子16の前駆体は、配線材接続部16Aの前駆体が対向部12e上に設けられるように、配線材非接続部16Bの前駆体が張出し部12d上に設けられるように形成した。このとき、配線材非接続部16Bの前駆体は、配線材接続部16Aの幅よりも狭くなるように形成した。接続端子16の前駆体は、スクリーン印刷により銀ペースト(福田金属箔粉工業社製「GL-6000X16」)を塗布し乾燥させることで形成した。
 さらに、透明導電層12Dの接続部12gの上に配線材17の前駆体を形成した。配線材17の前駆体は、スクリーン印刷により銀ペーストを塗布し乾燥させることで形成した。
 また、透明導電層12Aの第1電流取出し部12f,第2電流取出し部12h上にそれぞれ外部に電流を取り出すための外部接続用端子18a,18bの前駆体を形成した。外部接続用端子の前駆体は、スクリーン印刷により銀ペーストを塗布し乾燥させることで形成した。
 さらに、絶縁材33の前駆体を、第1の溝90Aに入り込み且つ第1の溝90Aの両側の透明導電層の縁部を覆うように形成した。絶縁材33の前駆体は、スクリーン印刷によりガラスフリットを含むペーストを塗布し乾燥させることによって形成した。このとき、ガラスフリットとしては、赤色のガラスエナメル(鉛ガラス系、ジョンソン・マッセイ・インコーポレイテッド製)と、黒色のガラスエナメル(鉛ガラス系、ジョンソン・マッセイ・インコーポレイテッド製)とを95:5の質量比で配合したものを用いた。また、このとき、絶縁材33で覆った透明導電層の縁部の幅は、溝90から0.2mmであった。
 またバックシート80を固定するために、絶縁材33と同様にして、絶縁材33を囲むように且つ透明導電層12D、透明導電層12E、透明導電層12Fを通るようにガラスフリットからなる環状の絶縁材14の前駆体を形成した。またこのとき、絶縁材14の前駆体は、その内側に配線材17の前駆体が配置されるように形成した。また絶縁材14は、その外側に、第1電流取出し部および第2電流取出し部が配置されるように形成した。絶縁材14は、スクリーン印刷によりガラスフリットを含むペーストを塗布し乾燥させることによって形成した。
 さらに透明導電層12A~12Dの各々の本体部12aの上に、酸化物半導体層13の前駆体を形成した。酸化物半導体層13の前駆体は、平均粒径21nmのチタニア粒子を含む多孔質酸化物半導体層形成用ペースト(日揮触媒化成社製「PST-21NR」)をスクリーン印刷により3回塗布し、乾燥させた後、乾燥させることで形成した。
 次に、接続端子16の前駆体、配線材17の前駆体、外部接続用端子18a,18bの前駆体、絶縁材33の前駆体、絶縁材14の前駆体、絶縁材33の前駆体、酸化物半導体層13の前駆体を500℃で15分間焼成し、接続端子16、配線材17、外部接続用端子18a,18b、絶縁材14及び絶縁材33を形成した。さらに酸化物半導体層13の前駆体を絶縁材33の一部を覆うように4回繰り返し塗布した後、500℃で15分間焼成した。こうして酸化物半導体層13を形成した。このとき、接続端子16のうち配線材接続部の幅は1.0mmであり、配線材非接続部の幅は0.3mmであった。また配線材接続部の延び方向に沿った長さは7.0mmであり、配線材非接続部の延び方向に沿った長さは7.0mmであった。また配線材17、外部接続用端子18a,18b、絶縁材14、および酸化物半導体層13の寸法はそれぞれ以下の通りであった。
 
配線材17:厚さ4μm、幅200μm、図2のX方向に沿った長さ79mm、図2のX方向に直交する方向に沿った長さ21mm
外部接続用端子18a,18b:厚さ20μm、幅2mm、長さ7mm
絶縁材14:50μm、幅3mm
酸化物半導体層13:厚さ18μm、図2のX方向の長さ56mm、図2のX方向に直交する方向の長さ91mm
 
 次に、作用極を、N719からなる光増感色素を0.2mM含み、溶媒を、アセトニトリルとtertブタノールとを1:1の体積比で混合してなる混合溶媒とした色素溶液中に一昼夜浸漬させた後、取り出して乾燥させ、酸化物半導体層に光増感色素を担持させた。
 次に、酸化物半導体層の上に、3-メトキシプロピオニトリルからなる溶媒中に、へキシルメチルイミダゾリウムヨージド2M、n-メチルベンゾイミダゾール0.3M、グアニジウムチオシアネート0.1Mからなる電解質を塗布し乾燥させて電解質を配置した。
 次に、第1封止部を形成するための第1一体化封止部形成体を準備した。第1一体化封止部形成体は、8.0cm×4.6cm×50μmの無水マレイン酸変性ポリエチレン(商品名:バイネル、デュポン社製)からなる1枚の封止用樹脂フィルムを用意し、その封止用樹脂フィルムに、4つの四角形状の開口を形成することによって得た。このとき、各開口が1.7cm×4.4cm×50μmの大きさとなるように、且つ、環状部の幅が2mm、環状部の内側開口を仕切る仕切部の幅が2.6mmとなるように第1一体化封止部形成体を作製した。
 そして、この第1一体化封止部形成体を、作用極上の絶縁材33に重ね合わせた後、第1一体化封止部形成体を加熱溶融させることによって作用極上の絶縁材33に接着させた。
 次に、4枚の対極を用意した。4枚の対極のうち2枚の対極は、4.6cm×1.9cm×40μmのチタン箔の上にスパッタリング法によって厚さ5nmの白金からなる触媒層を形成することによって用意した。4枚の対極のうち残りの2枚の対極は、4.6cm×2.0cm×40μmのチタン箔の上にスパッタリング法によって厚さ5nmの白金からなる触媒層を形成することによって用意した。また、上記第1一体化封止部形成体をもう1つ準備し、この第1一体化封止部形成体を、対極のうち作用極と対向する面に、上記と同様にして接着させた。
 そして、作用極に接着させた第1一体化封止部形成体と、対極に接着させた第1一体化封止部形成体とを対向させ、第1一体化封止部形成体同士を重ね合わせた。そして、この状態で第1一体化封止部形成体を加圧しながら第1一体化封止部形成体を加熱溶融させた。こうして作用極と対極との間に第1封止部を形成した。このとき、第1一体化封止部の仕切部と対極のうち透明導電性基板側の面との接着部の幅P、第1一体化封止部のうちの環状部と対極のうち透明導電性基板側の面との接着部の幅Q、第1一体化封止部の仕切部の幅Rおよび環状部の幅Tはそれぞれ以下の通りであった。
 
P=1.0mm
Q=2.0mm
R=2.6mm
T=2.2mm
 
 次に、第2一体化封止部を準備した。第2一体化封止部は、8.0cm×4.6cm×50μmの無水マレイン酸変性ポリエチレン(商品名:バイネル、デュポン社製)からなる1枚の封止用樹脂フィルムを用意し、その封止用樹脂フィルムに、4つの四角形状の開口を形成することによって得た。このとき、各開口が、1.7cm×4.4cm×50μmの大きさとなるように且つ、環状部の幅が2mmで、環状部の内側開口を仕切る仕切部の幅が2.6mmとなるように第2一体化封止部を作製した。第2一体化封止部は、第1一体化封止部と共に対極の縁部を挟むように対極に貼り合わせた。このとき、第2一体化封止部を対極に押しつけながら第1一体化封止部及び第2一体化封止部を加熱溶融させることによって対極及び第1一体化封止部に貼り合せた。
 次に、各対極の金属基板上に、乾燥剤シートを両面テープで貼り付けた。乾燥剤シートの寸法は、厚さ1mm×縦3cm×横1cmであり、乾燥剤シートとしては、ゼオシート(商品名、品川化成社製)を用いた。
 次に、図2に示すように、第2一体化封止部の3つの仕切部にそれぞれバイパスダイオード70A~70Cを、低温硬化型の銀ペースト(藤倉化成社製、ドータイトD500)を、バイパスダイオードの両端の端子から対向基板20の金属基板21につながるように塗布することによって固定した。また4つのセル50A~50Dのうちセル50Dの第2一体化封止部の環状部上にバイパスダイオード70Dを、上記低温硬化型の銀ペーストを、ダイオードの両端の端子のうち一方の端子から対極につながるように塗布することによって固定した。こうして、4つのバイパスダイオード70A~70Dに対して、隣り合う2つのバイパスダイオード同士を結ぶように配線材60Qを形成した。このとき、配線材60Qは、上記低温硬化型の銀ペーストを30℃で12時間硬化させることによって形成した。バイパスダイオードとしては、ローム社製RB751V-40を用いた。
 またバイパスダイオード間の各配線材60Qと、3つの透明導電層12A~12C上の配線材接続部とをそれぞれ接続するように低温硬化型の銀ペースト(藤倉化成社製、ドータイトD-500)を塗布し、硬化させることによって配線材60Pを形成した。さらにバイパスダイオード70Aについては、透明導電層12E上の配線材接続部と接続するように上記低温硬化型の銀ペーストを塗布し硬化させることによって配線材60Pを形成した。このとき、配線材60Pは、上記低温硬化型の銀ペーストを、30℃で12時間硬化させることによって形成した。
 次に、ブチルゴム(アイカ工業社製「アイカメルト」)を200℃で加熱しながらディスペンサで絶縁材14上に塗布し、接着部の前駆体を形成した。一方、ポリブチレンテレフタレート(PBT)樹脂フィルム(厚さ50μm)、アルミ箔(厚さ25μm)、バイネル(商品名、デュポン社製)からなるフィルム(厚さ50μm)をこの順に積層した積層体を用意した。そして、この積層体80Aの周縁部と接着部80Bの前駆体の上に重ね合わせ、10秒間加圧した。こうして、絶縁材14に、接着部80Bと積層体80Aとで構成されるバックシート80を得た。以上のようにして光電変換素子を得た。
 (実施例2)
 ガラスフリットからなる絶縁材33が第2の溝90Bに入り込むとともに、第2の溝90Bを形成する透明導電層12の縁部をも覆うようにしたこと以外は実施例1と同様にして光電変換素子を作製した。なお、絶縁材33で覆った透明導電層の縁部の幅は、溝から0.2mmとした。
 (実施例3)
 環状の連結部の前駆体を形成する際、ガラスフリットとして、着色していないガラスフリット(酸化ビスマス系低融点ガラスフリット)を用いたこと以外は実施例1と同様にして光電変換素子を作製した。
 (実施例4)
 酸化物半導体層13の厚さを25μmに変更したこと以外は実施例1と同様にして光電変換素子を作製した。
 (実施例5)
 酸化物半導体層13の厚さを32μmに変更したこと以外は実施例1と同様にして光電変換素子を作製した。
 (実施例6)
 バックシート80を得た後、透明基板のうち透明導電層と反対側の表面に水色の塗料(エピライトピンク藍色、十条ケミカル社製)を塗布して乾燥することにより被覆層を形成した後、反射防止フィルム(製品名:BSIP6N01FH、株式会社バッファロー製)を貼り付けたこと以外は実施例1と同様にして光電変換素子を作製した。このとき、酸化物半導体層の可視光の波長領域における最大吸収ピーク波長は700nmであり、被覆層の可視光の波長領域における最大吸収ピーク波長は550nmであった。
 (実施例7)
 チタン箔の上に厚さ1000nmのカーボン(商品名:ケッチェンブラック、ライオン社製)からなる触媒層を形成することによって対極を用意したこと以外は実施例1と同様にして光電変換素子を作製した。
 (比較例1)
 絶縁材33の前駆体を形成する際、ガラスフリットとして、着色していないガラスフリット(酸化ビスマス系低融点ガラスフリット)を用いたこと以外は実施例1と同様にして光電変換素子を作製した。
 (比較例2)
 第1一体化封止部形成体を準備する際に使用した封止用樹脂フィルムとして、着色剤(製品名:ダイピロキサイド、大日精化工業社製)を5質量%含むものを用いたこと以外は比較例1と同様にして光電変換素子を作製した。
 (特性評価)
 (耐久性)
 実施例1~7および比較例1~2で得られた光電変換素子について、初期出力(η)を測定した。続いて、実施例1~7および比較例1~2で得られた光電変換素子について、JIS C 8938に準じたヒートサイクル試験を行った後の出力(η)も測定した。そして、下記式:
出力の保持率(%)=η/η×100
に基づき、出力の保持率(出力保持率)を算出した。結果を表1に示す。
 (外観)
 また実施例1~7および比較例1~2で得られた光電変換素子について、光入射側から見たときの外観を評価した。結果を表1に示す。なお、表1において、「A」、「B」、「C」はそれぞれ外観について以下のように評価したものである。
A・・・電解質の色や対極の色又は形状が全く見えない
B・・・電解質の色や対極の色又は形状がわずかに見える
C・・・電解質の色や対極の色又は形状がよく見える
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、実施例1~7の光電変換素子は、比較例2の光電変換素子に比べて、高い出力保持率を示すことが分かった。また、実施例1~7の光電変換素子は、比較例1の光電変換素子に比べて、良好な外観を実現できることも分かった。
 以上より、本発明の光電変換素子によれば、良好な外観を実現しながら優れた耐久性を有することが確認された。
 11…透明基板
 12…透明導電層
 12a…本体部
 13…酸化物半導体層
 14…絶縁材
 15…透明導電性基板(導電性基板)
 16…接続端子(導電部、端子部、第1接続部)
 17,417…配線材(導電部)
 18a,18b…外部接続端子(導電部、端子部)
 20…対極(対向基板)
 21…金属基板(導電部、第2接続部)
 30A…封止部
 33…絶縁材
 34…光透過防止層
 35a…端子部(導電部、第1接続部)
 35b…端子部(導電部、第2接続部)
 50,50A~50D…光電変換セル
 60P…配線材(導電部)
 80…バックシート
 90…溝
 90A…第1の溝
 90B…第2の溝
 100~1100…光電変換素子
 635…端子部

Claims (15)

  1.  少なくとも1つの光電変換セルを有し、
     前記光電変換セルが、
     透明基板および前記透明基板の上に設けられる透明導電層を有する導電性基板と、
     前記導電性基板に対向する対向基板と、
     前記導電性基板又は前記対向基板上に設けられる酸化物半導体層と、
     前記導電性基板及び前記対向基板を接合させる環状の封止部とを備えており、
     少なくとも前記導電性基板と前記封止部との間に絶縁材が設けられており、前記絶縁材が着色されている、光電変換素子。
  2.  前記絶縁材は、前記封止部の外形に沿って、全周に渡って設けられている、請求項1に記載の光電変換素子。
  3.  前記透明基板のうち前記透明導電層と反対側の表面に被覆層をさらに有し、前記被覆層が、前記透明基板の厚さ方向に前記被覆層を見た場合に前記酸化物半導体層を覆っており、前記被覆層の可視光の波長領域における最大吸収ピーク波長と、前記酸化物半導体層の可視光の波長領域における最大吸収ピーク波長とが互いに異なる、請求項1又は2に記載の光電変換素子。
  4.  前記透明導電層が、前記封止部の内側に配置される本体部を有し、
     前記透明導電層に溝が形成され、少なくとも一部の前記溝が、前記封止部の外形に沿って形成される第1の溝を有し、
     前記絶縁材が、前記第1の溝に入り込むとともに、連続して前記本体部の縁部をも覆っている、請求項1~3のいずれか一項に記載の光電変換素子。
  5.  前記導電性基板の上において、前記光電変換セルを前記透明基板のうち前記透明導電層が設けられている面側で覆うバックシートをさらに備え、
     前記溝が、
     前記第1の溝と、
     前記透明導電層のうち前記本体部を除く部分の縁部に沿って形成され、前記バックシートの周縁部と交差する第2の溝とを有し、
     前記絶縁材が、前記第2の溝に入り込むとともに前記透明導電層のうち前記本体部を除く部分の縁部をも覆っている、請求項4に記載の光電変換素子。
  6.  前記導電性基板上であって、前記バックシートの周縁部全周に沿って連続して前記絶縁材が設けられている、請求項5に記載の光電変換素子。
  7.  前記光電変換セルを複数具備し、
    前記導電性基板が、複数の光電変換セルの共通の導電性基板で構成されており、
    前記第1の溝を含む前記溝によって、前記複数の光電変換セルの間は絶縁されている、請求項4~6のいずれか一項に記載の光電変換素子。
  8.  前記導電性基板上であって前記封止部と、前記導電性基板の縁部との間の領域のうち、前記絶縁材が設けられていない領域に前記透明導電層と接触するように設けられる少なくとも1つの端子部を有する導電部と、前記導電性基板上であって前記封止部と、前記導電性基板の縁部との間の領域のうち、前記絶縁材が設けられていない領域に、少なくとも前記端子部と隣接するように設けられ、光の透過を防止する光透過防止層とをさらに備え、
     前記端子部の少なくとも一部及び前記光透過防止層がそれぞれ着色されている、請求項1~7のいずれか一項に記載の光電変換素子。
  9.  前記酸化物半導体層と前記光透過防止層との間におけるL色空間のL*の差が5以下であり、
     前記酸化物半導体層と着色されている前記端子部との間におけるL色空間のL*の差が5以下である、請求項8に記載の光電変換素子。
  10.  前記導電部が、
     前記導電性基板のうちの前記封止部側に設けられる少なくとも1本の配線材と、
     前記配線材の一端に接続され且つ前記光電変換素子を前記透明基板側から前記導電性基板の厚さ方向に見た場合に前記封止部の外側に配置される第1接続部と、
     前記配線材の他端に接続される第2接続部とを有し、
     前記光透過防止層が、前記配線材と前記導電性基板との間に、前記導電性基板の厚さ方向において前記配線材と重なるように設けられている、請求項8又は9に記載の光電変換素子。
  11.  前記対向基板が、金属基板を有する電極で構成され、前記第2接続部のうちの少なくとも1つが前記金属基板で構成される、請求項10に記載の光電変換素子。
  12.  前記第2接続部のうちの少なくとも1つが前記封止部の外側に配置され、前記第1接続部及び前記第2接続部が共通の前記透明導電層上に直接設けられている、請求項10又は11に記載の光電変換素子。
  13.  前記光透過防止層が、前記導電性基板の前記封止部側の表面において、前記封止部と、前記導電性基板の縁部との間の領域のうち、前記光電変換素子を前記導電性基板の厚さ方向に見た場合に少なくとも前記絶縁材及び前記導電部以外の領域の全てを覆うように設けられている、請求項8~12のいずれか一項に記載の光電変換素子。
  14.  前記光電変換素子を前記透明基板側から前記導電性基板の厚さ方向に見た場合に、前記導電性基板に前記光透過防止層と異なる色を有する異色部が設けられている、請求項8~12のいずれか一項に記載の光電変換素子。
  15.  前記光透過防止層が、前記導電性基板の前記封止部側の表面において、前記封止部と、前記導電性基板の縁部との間の領域のうち、前記光電変換素子を前記導電性基板の厚さ方向に見た場合に少なくとも前記絶縁材、前記導電部及び前記異色部以外の領域の全てを覆うように設けられている、請求項14に記載の光電変換素子。
PCT/JP2014/084048 2013-12-24 2014-12-24 光電変換素子 WO2015098914A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480065981.6A CN105793941B (zh) 2013-12-24 2014-12-24 光电转换元件
US15/108,161 US10580587B2 (en) 2013-12-24 2014-12-24 Photoelectric conversion element
EP14874545.8A EP3089182A4 (en) 2013-12-24 2014-12-24 Photoelectric conversion element
JP2015554931A JP6208774B2 (ja) 2013-12-24 2014-12-24 光電変換素子

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013264908 2013-12-24
JP2013-264908 2013-12-24
JP2014-232630 2014-11-17
JP2014232630A JP2016103495A (ja) 2014-11-17 2014-11-17 色素増感光電変換素子
JP2014-232629 2014-11-17
JP2014232629A JP2016103494A (ja) 2014-11-17 2014-11-17 色素増感光電変換素子

Publications (1)

Publication Number Publication Date
WO2015098914A1 true WO2015098914A1 (ja) 2015-07-02

Family

ID=53478766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084048 WO2015098914A1 (ja) 2013-12-24 2014-12-24 光電変換素子

Country Status (4)

Country Link
US (1) US10580587B2 (ja)
EP (1) EP3089182A4 (ja)
CN (1) CN105793941B (ja)
WO (1) WO2015098914A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905619B1 (ja) * 2015-03-31 2016-04-20 株式会社フジクラ 色素増感光電変換素子の製造方法
JP2017028094A (ja) * 2015-07-22 2017-02-02 株式会社フジクラ 光電変換素子
JP2017028095A (ja) * 2015-07-22 2017-02-02 株式会社フジクラ 光電変換素子
EP3376514A4 (en) * 2015-11-20 2019-08-14 Fujikura Ltd. PHOTOELECTRIC CONVERSION ELEMENT

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158709A (ja) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd 光電変換素子および光電変換モジュール
JP2006339086A (ja) * 2005-06-06 2006-12-14 Sekisui Jushi Co Ltd 色素増感型太陽電池
JP2010003468A (ja) 2008-06-19 2010-01-07 Sony Corp 色素増感太陽電池およびその製造方法
JP2010153073A (ja) * 2008-12-24 2010-07-08 Kyocera Corp 光電変換装置
JP2011048974A (ja) * 2009-08-26 2011-03-10 Aisin Seiki Co Ltd 色素増感型太陽電池
WO2012118028A1 (ja) * 2011-03-02 2012-09-07 株式会社フジクラ 色素増感太陽電池モジュール
JP2012182040A (ja) * 2011-03-02 2012-09-20 Fujikura Ltd 色素増感太陽電池モジュール
JP2015046223A (ja) * 2013-03-30 2015-03-12 株式会社フジクラ 色素増感太陽電池素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142597C (zh) * 1998-03-25 2004-03-17 Tdk株式会社 太阳能电池组件
JP5208974B2 (ja) 2008-02-06 2013-06-12 株式会社フジクラ 色素増感太陽電池
WO2009144898A1 (ja) * 2008-05-27 2009-12-03 株式会社フジクラ 光電変換素子
JP2011076869A (ja) * 2009-09-30 2011-04-14 Tdk Corp 色素増感型太陽電池及びその製造方法、並びに、色素増感型太陽電池用の作用電極の製造方法
US8563853B2 (en) * 2009-10-20 2013-10-22 Industrial Technology Research Institute Solar cell device
JP2012226855A (ja) * 2011-04-15 2012-11-15 Nitto Denko Corp 色素増感型太陽電池およびそれに用いるシール材
JP5327306B2 (ja) * 2011-12-19 2013-10-30 大日本印刷株式会社 色素増感型太陽電池素子、色素増感型太陽電池モジュール、色素増感型太陽電池素子の製造方法および酸化物半導体電極基板
US9257585B2 (en) * 2013-08-21 2016-02-09 Siva Power, Inc. Methods of hermetically sealing photovoltaic modules using powder consisting essentially of glass

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158709A (ja) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd 光電変換素子および光電変換モジュール
JP2006339086A (ja) * 2005-06-06 2006-12-14 Sekisui Jushi Co Ltd 色素増感型太陽電池
JP2010003468A (ja) 2008-06-19 2010-01-07 Sony Corp 色素増感太陽電池およびその製造方法
JP2010153073A (ja) * 2008-12-24 2010-07-08 Kyocera Corp 光電変換装置
JP2011048974A (ja) * 2009-08-26 2011-03-10 Aisin Seiki Co Ltd 色素増感型太陽電池
WO2012118028A1 (ja) * 2011-03-02 2012-09-07 株式会社フジクラ 色素増感太陽電池モジュール
JP2012182040A (ja) * 2011-03-02 2012-09-20 Fujikura Ltd 色素増感太陽電池モジュール
JP2015046223A (ja) * 2013-03-30 2015-03-12 株式会社フジクラ 色素増感太陽電池素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089182A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905619B1 (ja) * 2015-03-31 2016-04-20 株式会社フジクラ 色素増感光電変換素子の製造方法
JP2017028094A (ja) * 2015-07-22 2017-02-02 株式会社フジクラ 光電変換素子
JP2017028095A (ja) * 2015-07-22 2017-02-02 株式会社フジクラ 光電変換素子
EP3376514A4 (en) * 2015-11-20 2019-08-14 Fujikura Ltd. PHOTOELECTRIC CONVERSION ELEMENT
US10395847B2 (en) 2015-11-20 2019-08-27 Fujikura Ltd. Photoelectric conversion element

Also Published As

Publication number Publication date
EP3089182A4 (en) 2017-08-30
CN105793941A (zh) 2016-07-20
US10580587B2 (en) 2020-03-03
CN105793941B (zh) 2018-06-22
EP3089182A1 (en) 2016-11-02
US20160322173A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
WO2014034913A1 (ja) 低照度用色素増感太陽電池素子
WO2015098914A1 (ja) 光電変換素子
WO2016052452A1 (ja) 色素増感型光電変換素子
JP5451920B1 (ja) 色素増感太陽電池素子
WO2014034914A1 (ja) 色素増感太陽電池素子
JP6122156B2 (ja) 光電変換素子
WO2014162639A1 (ja) 色素増感太陽電池素子
JP6573497B2 (ja) 光電変換素子
JP6143911B2 (ja) 低照度用色素増感太陽電池素子
WO2017086424A1 (ja) 光電変換素子
JP5870196B2 (ja) 色素増感太陽電池素子
JP5456118B2 (ja) 色素増感太陽電池素子
JP5412593B1 (ja) 色素増感太陽電池素子
JP6208774B2 (ja) 光電変換素子
WO2014122859A1 (ja) 色素増感太陽電池素子
JP5380619B1 (ja) 色素増感太陽電池素子
JP2016103494A (ja) 色素増感光電変換素子
JP5382827B1 (ja) 色素増感太陽電池モジュール
JP6541487B2 (ja) 光電変換素子
WO2014162640A1 (ja) 色素増感太陽電池素子
JP2016207949A (ja) 光電変換素子
JP2016103495A (ja) 色素増感光電変換素子
JP5945012B2 (ja) 色素増感太陽電池素子
JP5456119B2 (ja) 色素増感太陽電池モジュール
JP5377787B1 (ja) 色素増感太陽電池素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15108161

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014874545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874545

Country of ref document: EP