WO2015098795A1 - アンテナ装置および電子機器 - Google Patents

アンテナ装置および電子機器 Download PDF

Info

Publication number
WO2015098795A1
WO2015098795A1 PCT/JP2014/083830 JP2014083830W WO2015098795A1 WO 2015098795 A1 WO2015098795 A1 WO 2015098795A1 JP 2014083830 W JP2014083830 W JP 2014083830W WO 2015098795 A1 WO2015098795 A1 WO 2015098795A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
antenna
planar conductor
coil antenna
antenna device
Prior art date
Application number
PCT/JP2014/083830
Other languages
English (en)
French (fr)
Inventor
伊藤宏充
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201490000388.9U priority Critical patent/CN205429169U/zh
Priority to JP2015520453A priority patent/JP5812224B1/ja
Priority to GB1510755.0A priority patent/GB2536511B/en
Publication of WO2015098795A1 publication Critical patent/WO2015098795A1/ja
Priority to US14/803,262 priority patent/US10164347B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/04Details of telephonic subscriber devices including near field communication means, e.g. RFID

Definitions

  • the present invention relates to an antenna device and an electronic device used in, for example, an HF band communication system.
  • the planar conductor has a function of collecting magnetic flux generated from a communication partner to the coil antenna and a function of radiating magnetic flux generated from the coil antenna. And it is disclosed that a magnetic flux is efficiently guided to a coil antenna by arranging a plurality of coil antennas on a planar conductor.
  • a coil antenna is used as an antenna device, and communication is performed in a state where the coil antennas are magnetically coupled to each other. Therefore, in order to improve communication performance, it is important to increase the coupling coefficient between coil antennas.
  • Patent Document 1 there are cases where the coupling between the coil antenna and the communication antenna cannot be increased simply by arranging a plurality of coil antennas on a planar conductor.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an antenna device with a higher coupling coefficient with a coil antenna of a predetermined communication partner antenna device, and further a small electronic device. It is in.
  • the antenna device of the present invention includes a plurality of coil antennas having a coil conductor wound around a winding axis, and a surface having a first end and a second end that sandwich a corner or a curved portion.
  • a conductor Among the plurality of coil antennas, the first coil antenna has one coil opening overlapping the planar conductor in plan view, at a position along the first end side of the planar conductor, and near the corner or It is arranged at a position near the music part,
  • the second coil antenna has one coil opening that overlaps the planar conductor in plan view and is disposed at a position along the second end side of the planar conductor,
  • the magnetic fluxes generated by the first coil antenna and the second coil antenna are connected so as to be in phase in the inner and outer directions with the first end side and the second end side of the planar conductor as a boundary.
  • the coupling coefficient with the coil antenna of the communication partner antenna device is increased, and the antenna characteristics are improved.
  • the second coil antenna is disposed at a position near the corner portion or the curved portion. As a result, the coupling coefficient with the coil antenna of the communication partner antenna device becomes higher, and the antenna characteristics are improved.
  • the winding axis of the first coil antenna and the winding axis of the second coil antenna intersect or have a twisted positional relationship. As a result, the position range coupled with the communication partner antenna device is expanded, and the communicable range is expanded.
  • An electronic device includes the antenna device according to any one of (1) to (3), and a communication circuit connected to the plurality of coil antennas.
  • an antenna device including a coil antenna that is coupled with a coil antenna of a communication partner antenna device with a high coupling coefficient and an electronic device having high communication performance while being small.
  • FIG. 1 is a plan view of an antenna device 201 according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the coil antenna 100A.
  • FIGS. 3A and 3B are circuit diagrams showing examples of connection forms of two coil antennas.
  • 4A and 4B are diagrams illustrating the relationship of the coupling coefficient with the communication partner antenna device depending on the planar position of the coil antenna with respect to the planar conductor 11.
  • 5A and 5B are views showing the position of the coil antenna 100A with respect to the edge of the planar conductor 11 and the operational effects of the planar conductor 11.
  • FIG. FIG. 6 is a diagram illustrating an effect of improving the coupling coefficient due to the two coil antennas 100A and 100B being close to the corner portion CO of the planar conductor 11.
  • FIG. 7A, 7B, and 7C are diagrams showing the effect of the winding axes of the two coil antennas 100A and 100B intersecting.
  • FIG. 8 is a plan view of another antenna device according to the first embodiment.
  • FIG. 9 is a plan view of the antenna device 202 according to the second embodiment.
  • FIG. 10 is a plan view of an antenna device 203 according to the third embodiment.
  • FIGS. 11A and 11B are plan views of antenna devices 204A and 204B according to the fourth embodiment.
  • FIG. 12A is a plan view of the inside of the electronic apparatus 305 provided with the antenna device according to the fifth embodiment, and FIG. 12B is a cross-sectional view taken along the line AA in FIG. It is.
  • the antenna device and electronic device of each embodiment described below are used in an HF band RFID system such as NFC (Near Field Communication), for example.
  • NFC Near Field Communication
  • FIG. 1 is a plan view of an antenna device 201 according to the first embodiment.
  • the antenna device 201 includes a first coil antenna 100A, a second coil antenna 100B, and a planar conductor 11, as shown in FIG.
  • the first coil antenna 100A has a coil conductor wound around the winding axis CC1
  • the second coil antenna 100B has a coil conductor wound around the winding axis CC2.
  • the planar conductor 11 is rectangular and has a first end ES1 and a second end ES2 that sandwich the corner CO.
  • the coil antennas 100A and 100B each have a first coil opening end CA1 and a second coil opening end CA2.
  • the second coil opening end CA2 overlaps the planar conductor 11 in a plan view, is located at a position along the first end ES1 of the planar conductor 11, and from the center of the first end ES1. It is arranged at a position near the corner CO.
  • the second coil opening end CA2 overlaps the planar conductor 11 in a plan view, is at a position along the second end ES2 of the planar conductor 11, and from the center of the second end ES2. It is arranged at a position near the corner CO.
  • the direction of the arrow along the coil winding axes CC1 and CC2 represents the direction of the magnetic flux at a certain timing (phase angle).
  • the magnetic flux generated by the first coil antenna 100A and the second coil antenna 100B is such that the first end ES1 and the second end ES2 of the planar conductor 11 are the same.
  • the winding axis CC1 of the first coil antenna 100A and the winding axis CC2 of the second coil antenna 100B intersect. In this embodiment, they are orthogonal.
  • the planar conductor 11 is made of, for example, a metal foil such as Cu, Ag, or Al, and is provided on a hard resin base material such as an epoxy resin.
  • FIG. 2 is an exploded perspective view of the coil antenna 100A. Since the coil antenna 100B is the same as the coil antenna 100A, only the coil antenna 100A is shown here.
  • the coil antenna 100A is composed of a laminate of base material layers 91-98.
  • the base material layers 91, 92, 93, 97, and 98 are nonmagnetic layers such as nonmagnetic ferrite, and the base material layers 94, 95, and 96 are magnetic layers such as magnetic ferrite.
  • Terminal electrodes 81a, 81b, 82a, 82b are formed on the base material layers 91, 92.
  • the terminal electrodes 81a and 82a are connected via via electrodes (interlayer connection conductors), and the terminal electrodes 81b and 82b are connected via via electrodes.
  • Linear electrodes (in-plane coil conductors) 83c and 84c are formed on one surface of the base material layers 93 and 94, and side electrodes (side coil conductors) 83e and 84e are formed on both side surfaces.
  • Each of the linear electrodes 83c and 84c is connected in parallel by a via electrode.
  • Both outer ends of the linear electrodes 83c and 84c are connected to the terminal electrodes 82a and 82b through via electrodes.
  • Side electrodes 85e and 86e are formed on both side surfaces of the base material layers 95 and 96, respectively.
  • Linear electrodes 87 c and 88 c are formed on one surface of the base material layers 97 and 98. Each of the linear electrodes 87c and 88c is connected in parallel by a via electrode.
  • the linear electrodes 83c and 84c are connected in parallel and the linear electrodes 87c and 88c are connected in parallel, the DC resistance component of the coil is reduced. Further, the linear electrodes 83c, 84c, 87c, 88c pass through the outer periphery of the magnetic layer, and the side electrodes 83e, 84e, 85e, 86e pass through the side surfaces of the stack, so that the coil opening is enlarged and the magnetic flux is increased. The confinement is reduced.
  • FIGS. 3A and 3B are circuit diagrams showing examples of connection forms of two coil antennas.
  • the two coil antennas 100A and 100B are connected in series as shown in FIG. 3A or in parallel as shown in FIG.
  • the power feeding circuit FC is, for example, an RFIC.
  • the feed circuit includes reactance elements such as a capacitor C for impedance matching with the coil antennas 100A and 100B and for setting a resonance frequency, as necessary.
  • the inductance value of the coil antenna can be increased. Further, when the coil conductors of the plurality of coil antennas are connected in parallel to the power feeding circuit, the loss is reduced (Q value is improved).
  • FIGS. 4A and 4B are views showing the position of the coil antenna 100A with respect to the edge of the planar conductor 11 and the function and effect of the planar conductor 11.
  • FIG. 4A is a diagram showing the position of the coil antenna 100A with respect to the edge of the planar conductor 11 and the function and effect of the planar conductor 11.
  • the magnetic flux directed to the planar conductor 11 is canceled by the magnetic field component perpendicular to the planar conductor 11 due to the magnetic flux generated by the induced current generated in the planar conductor 11. Magnetic flux is distributed along the planar conductor 11.
  • the arrows in FIGS. 4A and 4B indicate the distribution of the magnetic flux.
  • the coil antenna 100A Since the coil antenna 100A is close to the edge ES1 of the planar conductor 11, the coil antenna 100A is coupled to a current path that goes around the edge of the planar conductor 11 where the induced current easily flows, and the planar conductor 11 acts as a radiating element (booster). As a result, the antenna characteristics (the radiation effect of the magnetic flux to the communication partner antenna device and the magnetic flux collection effect of the magnetic flux from the communication counterpart antenna device) are enhanced.
  • the distribution of magnetic flux along the planar conductor 11 from the coil antenna 100A is the winding axis. Axisymmetric with respect to CC1.
  • the distribution of magnetic flux generated from the coil antenna 100A and along the planar conductor 11 is It is axisymmetric with respect to the winding axis CC1. More specifically, the magnetic flux density is higher in the region from the winding axis CC1 to the corner CO side than in the region from the winding axis CC1 of the coil antenna 100A to the center direction of the edge ES1.
  • the amount of magnetic flux that is canceled out by the induced current generated at 11 is small.
  • the number of magnetic field lines passing through the area indicated by the dashed ellipse is different. Therefore, the magnetic flux density in the region along the edges ES1 and ES2 is high.
  • the magnetic flux density near the corner CO can be increased as described above.
  • FIG. 5 is a diagram showing an effect of improving the coupling coefficient due to the two coil antennas 100A and 100B being close to the corner portion CO of the planar conductor 11.
  • the inductance of the antenna device 201 by the coil antennas 100A and 100B and the planar conductor 11 is L1
  • the inductance of the communication partner antenna device is L2
  • the mutual inductance between the antenna device 201 and the communication partner antenna device is M.
  • the coupling coefficient k is in the relationship of the following equation.
  • the coupling coefficient k is the ratio of the magnetic flux that contributes to the coupling with the communication partner antenna device out of the magnetic flux generated by the antenna device 201.
  • the magnetic flux along the planar conductor 11 due to the first coil antenna 100A shown in FIG. 4A is originally a magnetic flux directed to the planar conductor 11, and therefore does not contribute to the coupling with the communication partner antenna device. There is a lot of magnetic flux. Specifically, it is a magnetic flux that forms a small loop in parallel with the planar conductor 11 or a magnetic flux (described later) that forms a loop around the planar conductor 11 opposite to the coil antenna 100A.
  • the magnetic flux that does not contribute to the coupling with the communication partner antenna device decreases, and the ratio of the magnetic flux that contributes to the coupling with the communication counterpart antenna device increases.
  • the coupling coefficient becomes high. Since the coil antennas 100A and 100B are arranged near the corner portion CO, the magnetic flux that does not contribute to the coupling with the communication partner antenna device can be reduced efficiently, and the antenna device 201 and the communication partner antenna device can be reduced. The coupling coefficient is increased and the antenna characteristics are improved.
  • 6 (A) and 6 (B) are diagrams illustrating the relationship of the coupling coefficient with the communication partner antenna device depending on the planar position of the coil antenna with respect to the planar conductor 11.
  • the coil antenna 100B As shown in FIG. 6B, when both the first coil opening end CA1 and the second coil opening end CA2 of the coil antenna 100B are out of the planar conductor 11 in plan view, the coil antenna 100B Most of the magnetic flux radiated from the second coil opening end CA2 toward the planar conductor 11 (magnetic flux toward the lower side of the coil antenna 100B in the direction of FIG. 6) is a magnetic flux that does not follow the planar conductor 11. Most of these magnetic fluxes do not go to the communication partner antenna device, and therefore do not contribute to communication. Therefore, even if a plurality of coil antennas are provided, a high coupling coefficient cannot be obtained.
  • FIGS. 7A, 7B, and 7C are diagrams illustrating the effect of the winding axes of the two coil antennas 100A and 100B intersecting.
  • 7A, 7B, and 7C are plan views showing the positional relationship between the antenna device 201 according to the present embodiment and the RF tag 500 of the communication partner.
  • the outer shape of the RF tag 500 is indicated by a broken line.
  • the shape of the coil antenna in the RF tag 500 is a loop shape along the broken line.
  • FIG. 7A shows a positional relationship when the RF tag 500 is shifted in the X-axis direction with respect to the antenna device 201.
  • the coil antenna 100A whose winding axis is the Y-axis direction is arranged along the first end ES1 extending in the X-axis direction, so that the RF tag is moved to the arrangement position of the coil antenna 100A of the antenna device 201.
  • the communicable range when 500 is placed close has room in the X-axis direction. That is, the antenna device 201 can communicate even if it is shifted in the X-axis direction within the range shown in FIG.
  • FIG. 7B shows a positional relationship when the RF tag 500 is shifted in the Y-axis direction with respect to the antenna device 201.
  • the coil antenna 100B whose winding axis is in the X-axis direction is arranged along the second end ES2 extending in the Y-axis direction, so that the RF tag is moved to the arrangement position of the coil antenna 100B of the antenna device 201.
  • the communicable range when the 500 is brought close has a margin in the Y-axis direction. That is, the antenna device 201 can communicate even if it is shifted in the Y-axis direction within the range shown in FIG.
  • the reading range in the XY plane is expanded.
  • FIG. 7C is a diagram showing a positional relationship between the hot spot HS of the antenna device 201 and the RF tag 500. Since the coil antennas 100 ⁇ / b> A and 100 ⁇ / b> B are located near the corner portion CO of the planar conductor 11, the hot spot HS of the antenna device 201 (the region where the RF tag 500 and the coil antennas 100 ⁇ / b> A and 100 ⁇ / b> B are most coupled) is the planar conductor 11. Located near the corner CO.
  • the outer dimension of the planar conductor 11 is larger than the outer dimension of the coil antenna of the RF tag 500 is considered.
  • the coil antenna of the RF tag 500 that faces the planar conductor 11 in plan view from the vertical direction of the main surface of the planar conductor 11 is used. There are relatively few parts. As a result, there are few unnecessary couplings between the coil antenna of the RF tag 500 and the planar conductor 11, and fluctuations in the inductance and resonance frequency of the antenna part of the RF tag 500 due to the unnecessary couplings can be suppressed.
  • the example in which the rectangular planar conductor 11 is provided has been described.
  • the present invention is similarly applied to an antenna device including the conductor 11.
  • the coil winding axes CC1 and CC2 are preferably parallel to the planar conductor 11. When perpendicular to the planar conductor 11, much of the magnetic flux that is to be generated from the coil antenna (100A, 100B, etc.) is canceled out by the induced current flowing in the planar conductor 11, and the amount of magnetic flux generated from the antenna device This is because there is a decrease.
  • the “parallel” is within ⁇ 45 °.
  • the coil winding axes CC1 and CC2 are preferably perpendicular to the ends ES1 and ES2 of the planar conductor 11. Since the edge (edge) of the planar conductor 11 is vertical, the coil antenna can be strongly coupled to the edge of the planar conductor 11, so that the planar conductor 11 functions as a booster for the antenna device. Rise. The “vertical” is within ⁇ 45 °. In the sense that the coil antenna collects magnetic flux that does not contribute to communication, the coil winding axis has the most appropriate direction depending on the arrangement location, and does not need to be constant.
  • FIG. 9 is a plan view of the antenna device 202 according to the second embodiment.
  • This antenna device 202 includes a first coil antenna 100A, a second coil antenna 100B, and a planar conductor 11, as shown in FIG.
  • the antenna device 201 shown in FIG. 1 in the first embodiment is different in the following points.
  • the second coil antenna 100B has a relationship of W2A> W2B.
  • the first coil opening end CA1 of the first coil antenna 100A is outside the planar conductor 11 in plan view.
  • the first coil opening end CA1 of the second coil antenna 100B is inside the second end ES21 of the planar conductor 11 and outside the partial second end ES22.
  • At least one coil antenna (first coil antenna 100A) among the plurality of coil antennas is positioned along one end side (first end side ES1) of the planar conductor 11 and at a corner portion. It only needs to be arranged at a position closer to the CO (W1A ⁇ W1B).
  • the magnetic flux density that does not contribute to communication is high on the planar conductor 11 near the corner CO (region indicated by the dimension W1A in FIG. 9). Therefore, the magnetic flux that does not contribute to communication generated from the two coil antennas 100A and 100B can be suppressed by merely bringing the second coil antenna 100B close to the other end ES21 sandwiching the corner portion CO.
  • the coupling coefficient with the antenna device can be increased.
  • the coil antenna 100B is housed inside from the end side ES21 of the planar conductor 11, but the first coil opening end CA1 of the coil antenna 100B protrudes from the end side ES22. This increases the magnetic flux collection effect, and a high coupling coefficient can be obtained over a wide angle.
  • first coil antenna 100A may also be arranged in the same manner as the second coil antenna 100B. That is, the first end ES1 is formed in a bay shape like the second ends ES21 and ES22, and the first coil opening end CA1 of the first coil antenna 100A is the first end ES1 of the planar conductor 11. It may be located more inside and outside the partial second end ES1.
  • FIG. 10 is a plan view of an antenna device 203 according to the third embodiment.
  • the antenna device 203 of this embodiment includes five coil antennas 100A, 100B, 100C, 100D, and 100E.
  • the coil antennas 100A and 100B are arranged so that the first opening ends CA1 thereof are close to the first end ES1 of the planar conductor 11, and the coil antennas 100C, 100D, and 100E are respectively arranged at the first opening ends.
  • CA ⁇ b> 1 is arranged so as to be close to the second end ES ⁇ b> 2 of the planar conductor 11.
  • three or more coil antennas may be arranged.
  • at least one coil antenna should just be arrange
  • the coupling coefficient with the communication partner antenna device can be increased by adopting the configuration shown in the first embodiment for the coil antennas 100B and 100C that are closest to the corner portion CO. Further, if the number of coil antennas is three or more, more magnetic flux is coupled to the communication partner antenna device via the planar conductor 11 or directly, so that the antenna characteristics are further improved.
  • FIGS. 11A and 11B are plan views of antenna devices 204A and 204B according to the fourth embodiment.
  • the planar conductor does not spread in a region facing the corner portion CO of the planar conductor 11 (on the opposite side) where the coil antennas 100A and 100B are close.
  • the distance from the corner portion CO to the coil antenna 100A close to the corner portion CO is W1A
  • the region of ⁇ W1A around the coil antenna 100A is represented by the regions Z11 and Z12
  • the region up to the side ES4 is represented by Z13
  • the magnetic flux density that does not contribute to communication is higher in the region Z11 than in the region Z13.
  • Magnetic flux that does not contribute to communication generated from the coil antenna (first coil antenna 100A) on one end side (first end side ES1) is a coil antenna (second coil antenna) on the other end side (second end side ES2).
  • the effect of being canceled by the magnetic flux generated from 100B) is due to the presence of the planar conductor in the region Z11. Therefore, the planar conductor 11 may not be in the region Z13.
  • the distance from the corner portion CO to the coil antenna 100B close to the corner portion CO is W2A
  • the region of ⁇ W2A around the coil antenna 100B is represented by the regions Z21 and Z22
  • the edge of the planar conductor 11 from the region Z22 is represented by Z23
  • the magnetic flux density that does not contribute to communication is higher in the region Z21 than in the region Z23.
  • the magnetic flux density that does not contribute to communication and is generated from the coil antenna (second coil antenna 100B) on one end (second end ES2) is high in the region on the corner CO side, and the other end (first end ES1). ) Is canceled by the magnetic flux generated from the coil antenna (first coil antenna 100A). This is due to the presence of the planar conductor in the region Z21. Therefore, the planar conductor 11 may not be in the region Z23.
  • FIG. 12A is a plan view of the interior of the mobile terminal device 305 according to the fifth embodiment
  • FIG. 12B is a cross-sectional view taken along the line AA in FIG.
  • illustration of electronic components such as active components and passive components on a circuit board and devices such as a display is omitted.
  • the display panel 20 is provided in the terminal housing 320.
  • the substrate 10 Inside the terminal housing 320, the substrate 10, the battery pack 112, and the like are built.
  • the substrate 10 is a multilayer substrate, for example.
  • the substrate 10 is formed with a radiating element 12 that acts as a main antenna (UHF band antenna) for a mobile phone.
  • a ground conductor 111 is formed on the substrate 10.
  • the radiating element 12 and the ground conductor 111 act as part of the planar conductor.
  • the battery pack 112 also functions as a part of the planar conductor. That is, the antenna device includes the substrate 10, the coil antennas 100A and 100B, the battery pack 112, and the like.
  • the substrate 10 is provided with a communication circuit, and the communication circuits are connected to the coil antennas 100A and 100B.
  • the edge of the planar conductor formed by the ground conductor 111 and the battery pack 112 is cut at a gap between the ground conductor 111 and the battery pack 112, but the magnetic flux draws a magnetic path that avoids metal by an induced current. If narrow, the ground conductor 111 and the battery pack 112 act as an integral planar conductor.
  • the planar conductor is a conductor that is at least partially configured to be planar. Therefore, it also includes the ground conductor of the circuit board in the electronic device, the surface of the battery pack, the shield plate, and the like. Even if there is a step as shown in FIG. 12B, the magnetic flux draws a magnetic path along the planar conductor.
  • the antenna device may include a plurality of planar conductors.
  • the present invention includes communication terminal devices such as so-called smartphones and mobile phone terminals, tablet PCs, notebook computers, wearable terminals such as so-called smart glasses and smart watches, RFID tags such as game machines, cameras, cards, etc.
  • the present invention can be similarly applied to all electronic devices equipped with an antenna device.
  • connection method of the plurality of coil antennas includes, in addition to series connection and parallel connection, series connected circuits in parallel, parallel connected circuits in series, and combinations thereof. It may be.
  • the first coil antenna (coil antenna 100A, etc.) and the second coil antenna (coil antenna 100B, etc.) are arranged on the same plane, so that the winding axis of the first coil antenna
  • the present invention is not limited to this structure.
  • the winding axis of the first coil antenna and the second coil The winding axis of the antenna may be related to the position of twist.
  • the crossing angle in a plan view between the winding axis of the first coil antenna and the winding axis of the second coil antenna is not limited to 90 degrees.
  • Capacitor CA1 ... First coil opening end CA2 ... Second coil opening end CC1, CC2 ... Coil winding axis CO ... Corner portion CU ... Curved portion ES1 ... First end side ES2, ES21, ES22 ... Second end side ES3 , ES4 ... edge FC ... feeding circuit HS ... hot spots Z11, Z12, Z13, Z21, Z22, Z23 ... area 10 ... substrate 11 ... planar conductor 12 ... radiation element 20 ... display panels 81a, 81b, 82a, 82b ... Terminal electrodes 83c, 84c, 87c, 88c ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)

Abstract

 巻回軸回りに巻回された形状のコイル導体を有する複数のコイルアンテナ(100A,100B)と、角部(CO)または曲部を挟む第1端辺(ES1)および第2端辺(ES2)を有する面状導体(11)とを備え、第1コイルアンテナ(100A)は、一つのコイル開口が面状導体(11)に平面視で重なり、面状導体(11)の第1端辺(ES1)に沿った位置で、且つ、角部(CO)寄りまたは曲部寄りの位置に配置され、第2コイルアンテナ(100B)は、一つのコイル開口が面状導体(11)に平面視で重なり、面状導体(11)の第2端辺(ES2)に沿った位置に配置され、第1コイルアンテナ(100A)および第2コイルアンテナ(100B)の発生する磁束は、面状導体(11)の第1端辺(ES1)および第2端辺(ES2)を境界とする内外方向で同相になるように接続される。

Description

アンテナ装置および電子機器
 本発明は、例えばHF帯の通信システムに用いられるアンテナ装置および電子機器に関するものである。
 コイルアンテナを平面導体上に配置することにより、平面導体が通信相手から発生した磁束をコイルアンテナに集磁する機能や、コイルアンテナから発生した磁束を放射する機能を有することが知られている。そして、複数のコイルアンテナを平面導体に配置することにより、コイルアンテナに磁束を効率良く導くことが開示されている。
国際公開2012-033031号公報
 HF帯を通信周波数として利用したシステムにおいては、アンテナ装置にコイルアンテナが用いられ、コイルアンテナ同士が磁界結合した状態で通信が行われる。そのため、通信性能を高めるためには、コイルアンテナ同士の結合係数を高めることが重要である。
 しかし、特許文献1に示されているように、単に複数のコイルアンテナを平面導体上に配置するだけでは、コイルアンテナと通信アンテナとの結合を大きくすることができない場合がある。
 本発明は、上述した実情に鑑みてなされたものであり、その目的は、所定の通信相手側アンテナ装置のコイルアンテナとの結合係数を高めたアンテナ装置、さらには小型の電子機器を提供することにある。
(1)本発明のアンテナ装置は、巻回軸回りに巻回された形状のコイル導体を有する複数のコイルアンテナと、角部または曲部を挟む第1端辺および第2端辺を有する面状導体とを備え、
 前記複数のコイルアンテナのうち第1コイルアンテナは、一つのコイル開口が前記面状導体に平面視で重なり、前記面状導体の前記第1端辺に沿った位置で、且つ前記角部寄りまたは前記曲部寄りの位置に配置され、
 前記複数のコイルアンテナのうち第2コイルアンテナは、一つのコイル開口が前記面状導体に平面視で重なり、前記面状導体の前記第2端辺に沿った位置に配置され、
 前記第1コイルアンテナおよび前記第2コイルアンテナの発生する磁束は、前記面状導体の前記第1端辺および第2端辺を境界とする内外方向で同相になるように接続されることを特徴とする。
 上記構成により、通信相手側アンテナ装置のコイルアンテナとの結合係数が高くなってアンテナ特性が向上する。
(2)前記第2コイルアンテナは前記角部寄りまたは前記曲部寄りの位置に配置されることが好ましい。これにより、通信相手側アンテナ装置のコイルアンテナとの結合係数がより高くなってアンテナ特性が向上する。
(3)上記(1)または(2)において、前記第1コイルアンテナの巻回軸と前記第2コイルアンテナの巻回軸とは、交わる、またはねじれの位置の関係にあることが好ましい。これにより、通信相手側アンテナ装置と結合する位置範囲が広がり、通信可能範囲が拡大する。
(4)本発明の電子機器は、上記(1)~(3)のいずれかに記載のアンテナ装置、および前記複数のコイルアンテナに接続される通信回路を備えることを特徴とする。
 本発明によれば、小型でありながら、通信相手側アンテナ装置のコイルアンテナと高い結合係数で結合するコイルアンテナを備えたアンテナ装置および通信性能の高い電子機器が構成できる。
図1は第1の実施形態に係るアンテナ装置201の平面図である。 図2はコイルアンテナ100Aの分解斜視図である。 図3(A)(B)は、2つのコイルアンテナの接続形態の例を示す回路図である。 図4(A)(B)は、面状導体11に対するコイルアンテナの平面位置による、通信相手側アンテナ装置との結合係数の関係について示す図である。 図5(A)(B)は、面状導体11の端辺に対するコイルアンテナ100Aの位置と、面状導体11による作用効果について示す図である。 図6は、2つのコイルアンテナ100A,100Bが面状導体11の角部COに寄っていることによる、結合係数向上効果を示す図である。 図7(A)(B)(C)は、2つのコイルアンテナ100A,100Bの巻回軸が交わることによる効果について示す図である。 図8は第1の実施形態に係る別のアンテナ装置の平面図である。 図9は第2の実施形態に係るアンテナ装置202の平面図である。 図10は第3の実施形態に係るアンテナ装置203の平面図である。 図11(A)(B)は第4の実施形態に係るアンテナ装置204A,204Bの平面図である。 図12(A)は、第5の実施形態に係るアンテナ装置を備えた電子機器305の内部の平面図であり、図12(B)は、図12(A)におけるA-A部分の断面図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
 以降に示す各実施形態のアンテナ装置および電子機器は、例えばNFC(NearField Communication)等のHF帯RFIDシステムで利用される。
《第1の実施形態》
 図1は第1の実施形態に係るアンテナ装置201の平面図である。
 このアンテナ装置201は、図1に示すように、第1コイルアンテナ100A、第2コイルアンテナ100Bおよび面状導体11を備える。第1コイルアンテナ100Aは、巻回軸CC1回りに巻回された形状のコイル導体を有し、第2コイルアンテナ100Bは、巻回軸CC2回りに巻回された形状のコイル導体を有する。面状導体11は矩形状であり、角部COを挟む第1端辺ES1および第2端辺ES2を有する。
 コイルアンテナ100A,100Bは、いずれも第1コイル開口端CA1および第2コイル開口端CA2を有する。第1コイルアンテナ100Aは、第2コイル開口端CA2が面状導体11に平面視で重なり、面状導体11の第1端辺ES1に沿った位置で、且つ、第1端辺ES1の中央より角部CO寄りの位置に配置されている。第2コイルアンテナ100Bは、第2コイル開口端CA2が面状導体11に平面視で重なり、面状導体11の第2端辺ES2に沿った位置で、且つ、第2端辺ES2の中央より角部CO寄りの位置に配置されている。
 ここで、第1端辺ES1の両端から第1コイルアンテナ100Aまでの距離をW1A,W1Bで表すと、W1A<W1Bの関係にある。また、第2端辺ES2の両端から第2コイルアンテナ100Bまでの距離をW2A,W2Bで表すと、W2A<W2Bの関係にある。
 図1においてコイル巻回軸CC1,CC2に沿った矢印の向きはあるタイミング(位相角)での磁束の方向を表している。このように、第1コイルアンテナ100Aおよび第2コイルアンテナ100Bは、第1コイルアンテナ100Aおよび第2コイルアンテナ100Bの発生する磁束が、面状導体11の第1端辺ES1および第2端辺ES2を境界とする内外方向で同相になるように並列接続または直列接続されている。
 第1コイルアンテナ100Aの巻回軸CC1および第2コイルアンテナ100Bの巻回軸CC2は交わっている。本実施形態では直交している。
 面状導体11は、例えばCu、Ag、Al等の金属箔によって構成されていて、エポキシ樹脂等の硬質樹脂基材上に設けられている。
 図2はコイルアンテナ100Aの分解斜視図である。コイルアンテナ100Bはコイルアンテナ100Aと同じであるので、ここではコイルアンテナ100Aについて示す。コイルアンテナ100Aは基材層91~98の積層体で構成されている。基材層91,92,93,97,98は非磁性フェライト等の非磁性層、基材層94,95,96は磁性フェライト等の磁性層である。
 基材層91,92には端子電極81a,81b,82a,82bが形成されている。端子電極81aと82aはビア電極(層間接続導体)を介して接続されていて、端子電極81bと82bはビア電極を介して接続されている。基材層93,94の一方面には線状電極(面内コイル導体)83c,84cが形成されていて、両側面には側面電極(側面コイル導体)83e,84eが形成されている。線状電極83c,84cのそれぞれはビア電極で並列接続されている。線状電極83c,84cの両外側の端部はビア電極を介して端子電極82a,82bに接続されている。基材層95,96の両側面には側面電極85e,86eが形成されている。基材層97,98の一方面には線状電極87c,88cが形成されている。線状電極87c,88cのそれぞれはビア電極で並列接続されている。
 線状電極83c,84cが並列接続されていて、線状電極87c,88cが並列接続されていることにより、コイルの直流抵抗成分を低減している。また、線状電極83c,84c,87c,88cが磁性層の外周を通り、側面電極83e,84e,85e,86eが積体の側面を通るようにしたことで、コイル開口を大きくするとともに、磁束の閉じ込めを低減している。
 図3(A)(B)は、2つのコイルアンテナの接続形態の例を示す回路図である。2つのコイルアンテナ100A,100Bは、図3(A)のように直列接続されるか、図3(B)のように並列接続される。給電回路FCは例えばRFICである。給電回路には、コイルアンテナ100A,100Bとのインピーダンス整合用および共振周波数設定用のキャパシタC等のリアクタンス素子が必要に応じて含まれる。
 複数のコイルアンテナのコイル導体が、給電回路に対して直列に接続されていると、コイルアンテナのインダクタンス値を増大させることができる。また、複数のコイルアンテナのコイル導体を給電回路に対して並列に接続されていると、損失が低下(Q値が向上)する。
 図4(A)(B)は、面状導体11の端辺に対するコイルアンテナ100Aの位置と、面状導体11による作用効果について示す図である。
 コイルアンテナ100Aのコイル開口から出た磁束のうち、面状導体11に向かう磁束は、面状導体11に生じる誘導電流によって生じる磁束により、面状導体11に垂直な磁界成分が打ち消されることで、面状導体11に沿う様に磁束が分布する。図4(A)(B)における矢印はその磁束の分布を表している。
 コイルアンテナ100Aが面状導体11の端辺ES1に近接していることで、コイルアンテナ100Aは、誘導電流が流れ易い面状導体11の縁端部を周回する電流経路に結合し、面状導体11が放射素子(ブースター)として作用する。このことにより、アンテナ特性(通信相手側アンテナ装置への磁束の放射効果および通信相手側アンテナ装置からの磁束の集磁効果)が高まる。
 図4(B)に示すように、コイルアンテナ100Aが面状導体11の第1端辺ES1の中央に配置される場合、コイルアンテナ100Aから面状導体11に沿う磁束の分布は、巻回軸CC1に対して線対称となる。
 これに対し、図4(A)に示すように、コイルアンテナ100Aが面状導体11の角部CO寄りに配置される場合、コイルアンテナ100Aから生じて面状導体11に沿う磁束の分布は、巻回軸CC1に対して非線対称となる。より具体的には、コイルアンテナ100Aの巻回軸CC1から端辺ES1の中央方向への領域に比べて、巻回軸CC1から角部CO側方向への領域の方が磁束密度は高い。
 これは次のように説明できる。コイルアンテナ100Aが面状導体11の角部CO寄りに配置されている場合、角部CO側とは反対側の、面状導体11の端辺ES4までの距離が遠い。また、面状導体11に生じる誘導電流によって打ち消される磁束の量も多い。したがって、角部CO側とは反対側の、面状導体11の端辺ES4に沿う領域の磁束密度は小さい。一方、コイルアンテナ100Aのコイル開口端CA1から出る磁束のうち、角部CO側の磁束は面状導体11の端辺ES1,ES2よりも先には面状導体11が存在しないため、面状導体11に生じる誘導電流により打ち消される磁束の量は少ない。図4(A)(B)において、破線の楕円で示す領域を通る磁力線の数は異なる。したがって、端辺ES1,ES2に沿う領域の磁束密度は高い。
 このように、コイルアンテナ100Aを第1端辺ES1の中央より角部CO寄りの位置に配置することにより、上述のとおり、角部CO付近の磁束密度を高められる。
 図5は、2つのコイルアンテナ100A,100Bが面状導体11の角部COに寄っていることによる、結合係数向上効果を示す図である。
 ここで、コイルアンテナ100A,100Bおよび面状導体11によるアンテナ装置201のインダクタンスをL1、通信相手側アンテナ装置のインダクタンスをL2、アンテナ装置201と通信相手側アンテナ装置との相互インダクタンスをMで表すと、結合係数kは次式の関係にある。
 k=M/√(L1・L2)
 つまり、結合係数kは、アンテナ装置201が発生する磁束のうち、通信相手側アンテナ装置との結合に寄与する磁束の割合である。
 図4(A)に示した第1コイルアンテナ100Aに起因して面状導体11を沿う磁束は、元々が面状導体11に向かう磁束であるため、通信相手側アンテナ装置との結合に寄与しない磁束も多い。具体的には、面状導体11に対して平行に小さなループを形成する磁束や、面状導体11に対してコイルアンテナ100Aとは反対側に回ってループを形成する磁束(後述)である。
 ここで、2つのコイルアンテナ100A,100Bを、角部COを挟んで配置し、同相で駆動する場合を考える。一方のコイルアンテナ(第1コイルアンテナ100A)から発生する、面状導体11に沿う磁束φAは、他方のコイルアンテナ(第2コイルアンテナ100B)と鎖交する。同様に、他方のコイルアンテナ(第2コイルアンテナ100B)から発生する面状導体に沿う磁束φBは一方のコイルアンテナ(第1コイルアンテナ100A)と鎖交する。このとき、それぞれ鎖交する磁束は逆回りの関係であるため、相殺され(弱められ)、2つのコイルアンテナ100A,100Bから発生する合成された磁束には現れない。したがって、2つのコイルアンテナ100A,100Bから発生する磁束のうち、通信相手側アンテナ装置との結合に寄与しない磁束が減少し、通信相手側アンテナ装置との結合に寄与する磁束の割合が多くなるため、結合係数が高くなる。そして、コイルアンテナ100A,100Bは角部CO寄りに配置されているため、通信相手側アンテナ装置との結合に寄与しない磁束を効率良く減らすことができ、アンテナ装置201と通信相手側アンテナ装置との結合係数は高まり、アンテナ特性が向上する。
 図6(A)(B)は、面状導体11に対するコイルアンテナの平面位置による、通信相手側アンテナ装置との結合係数の関係について示す図である。
 図6(B)に示すように、コイルアンテナ100Bの第1コイル開口端CA1、第2コイル開口端CA2の両方が、平面視で面状導体11の外部に出ていると、コイルアンテナ100Bの第2コイル開口端CA2から面状導体11に向かって放射される磁束(図6の向きではコイルアンテナ100Bの下方へ向かう磁束)のほとんどは、面状導体11に沿わない磁束となる。これらの磁束の多くは通信相手側アンテナ装置に向かわないため、通信に寄与しない。そのため、複数のコイルアンテナを備えても高い結合係数が得られない。
 これに対し、図6(A)に示すように、コイルアンテナ100Bの第2コイル開口端CA2が面状導体11上に存在する場合、一方のコイルアンテナ(コイルアンテナ100B)から生じたそのコイルアンテナの下方に向かう磁束の多くが面状導体11上を沿って他方のコイルアンテナ(コイルアンテナ100A)と鎖交する。つまり、通信に寄与しない磁束が面状導体11を介して他方のコイルアンテナに集められるため、結果的に通信相手側アンテナ装置との結合係数を高めることができる。
 図7(A)(B)(C)は、2つのコイルアンテナ100A,100Bの巻回軸が交わることによる効果について示す図である。図7(A)(B)(C)は、いずれも本実施形態に係るアンテナ装置201と、通信相手のRFタグ500との位置関係を示す平面図である。但し、RFタグ500はその外形を破線で表している。RFタグ500内のコイルアンテナの形状は、この破線に沿ったループ状である。図7(A)は、アンテナ装置201に対してRFタグ500がX軸方向にずれる場合の位置関係を示している。アンテナ装置201は、X軸方向に延びる第1端辺ES1に沿って巻回軸がY軸方向であるコイルアンテナ100Aが配置されているので、アンテナ装置201のコイルアンテナ100Aの配置位置へRFタグ500を近接させるときの、通信可能範囲はX軸方向に余裕がある。すなわち、アンテナ装置201は図7(A)に示す範囲でX軸方向にずれても通信が可能である。また、図7(B)は、アンテナ装置201に対してRFタグ500がY軸方向にずれる場合の位置関係を示している。アンテナ装置201は、Y軸方向に延びる第2端辺ES2に沿って巻回軸がX軸方向であるコイルアンテナ100Bが配置されているので、アンテナ装置201のコイルアンテナ100Bの配置位置へRFタグ500を近接させるときの、通信可能範囲はY軸方向に余裕がある。すなわち、アンテナ装置201は図7(B)に示す範囲でY軸方向にずれても通信が可能である。
 このように、2つのコイルアンテナ100A,100Bの巻回軸が交わることにより、すなわち巻回軸の異なる複数のコイルアンテナを備えることにより、X-Y平面での読み取り範囲が広がる。
 図7(C)はアンテナ装置201のホットスポットHSとRFタグ500との位置関係を示す図である。コイルアンテナ100A,100Bが面状導体11の角部CO付近に位置するため、アンテナ装置201のホットスポットHS(RFタグ500とコイルアンテナ100A,100Bとが最も結合する領域)は面状導体11の当該角部CO付近に位置する。ここで、RFタグ500のコイルアンテナの外形寸法よりも面状導体11の外形寸法の方が大きい場合を考える。確実に通信を行うためにRFタグ500をホットスポットHSを覆う位置にかざすと、面状導体11の主面の垂直方向からの平面視で面状導体11と対向するRFタグ500のコイルアンテナの部分は比較的少ない。このことで、RFタグ500のコイルアンテナと面状導体11との不要な結合が少なく、その不要結合による、RFタグ500のアンテナ部のインダクタンスの変動および共振周波数の変動が抑えられる。
 以上に示した例では、矩形状の面状導体11を備えた例を示したが、例えば図8に示すように、曲部CUを挟む第1端辺ES1および第2端辺ES2を有する面状導体11を備えるアンテナ装置にも本発明は同様に適用される。
 なお、コイル巻回軸CC1,CC2は面状導体11に対して平行であることが好ましい。面状導体11に対して垂直であると、コイルアンテナ(100A,100B等)から生じようとする磁束の多くが面状導体11に流れる誘導電流により打ち消されて、アンテナ装置から発生する磁束の量が減ってしまうからである。上記「平行」とは±45°以内である。
 また、コイル巻回軸CC1,CC2は面状導体11の端辺ES1,ES2に対して垂直であることが好ましい。面状導体11の端辺(縁端部)が垂直であることにより、コイルアンテナが面状導体11の縁端部と強く結合できるため、面状導体11の、アンテナ装置のブースターとしての機能が高まる。上記「垂直」とは±45°以内である。なお、コイルアンテナが通信に寄与しない磁束を回収するという意味では、コイル巻回軸は配置場所によって最も適切な向きがあり、一定である必要はない。
《第2の実施形態》
 図9は第2の実施形態に係るアンテナ装置202の平面図である。
 このアンテナ装置202は、図9に示すように、第1コイルアンテナ100A、第2コイルアンテナ100Bおよび面状導体11を備える。第1の実施形態で図1に示したアンテナ装置201とは次の点で異なる。
(1)第2コイルアンテナ100BはW2A>W2Bの関係である。
(2)第1コイルアンテナ100Aの第1コイル開口端CA1は、平面視で面状導体11の外側にある。
(3)第2コイルアンテナ100Bの第1コイル開口端CA1は、面状導体11の第2端辺ES21より内側にあり、且つ部分的な第2端辺ES22より外側にある。
 その他の構成は第1の実施形態で示したアンテナ装置201と同じである。
 このように、複数のコイルアンテナのうち少なくとも1つのコイルアンテナ(第1コイルアンテナ100A)が、面状導体11の1つの端辺(第1端辺ES1)に沿った位置で、且つ、角部CO寄りの位置に配置(W1A<W1B)されていればよい。
 上記の配置により、第1コイルアンテナ100Aから生じる磁束の中で、角部CO寄りの面状導体11上(図9内の寸法W1Aで示す領域)で、通信に寄与しない磁束密度が高い。そのため、第2コイルアンテナ100Bを、角部COを挟むもう一つの端辺ES21に近接させることだけでも、2つのコイルアンテナ100A,100Bから発生する、通信に寄与しない磁束は抑えられ、通信相手側アンテナ装置との結合係数を高めることができる。
 また、コイルアンテナ100Bは面状導体11の端辺ES21から内側に収まっているが、コイルアンテナ100Bの第1コイル開口端CA1は端辺ES22よりはみ出ている。このことにより集磁効果が高まり、広角度に亘り高い結合係数が得られる。
 なお、第1コイルアンテナ100Aについても、第2コイルアンテナ100Bと同様に配置してもよい。すなわち、第1端辺ES1が第2端辺ES21、ES22と同様に湾状に形成されていて、第1コイルアンテナ100Aの第1コイル開口端CA1は、面状導体11の第1端辺ES1より内側にあり、且つ部分的な第2端辺ES1より外側に配置されていてもよい。
《第3の実施形態》
 図10は第3の実施形態に係るアンテナ装置203の平面図である。本実施形態のアンテナ装置203は5つのコイルアンテナ100A,100B,100C,100D,100Eを備えている。コイルアンテナ100A,100Bは、それぞれの第1開口端CA1が面状導体11の第1端辺ES1に近接するように配置されていて、コイルアンテナ100C,100D,100Eは、それぞれの第1開口端CA1が面状導体11の第2端辺ES2に近接するように配置されている。
 このようにコイルアンテナは3以上配置されていてもよい。その場合、少なくとも1つのコイルアンテナが、角部CO寄りに配置されていればよい。この場合においても、角部COに最も寄っているコイルアンテナ100B,100Cについて第1の実施形態で示した構成を採ることにより、通信相手側アンテナ装置との結合係数を高めることができる。また、コイルアンテナの数が3以上の複数であれば、より多くの磁束が面状導体11を介して、または直接に、通信相手側アンテナ装置と結合するので、よりアンテナ特性が向上する。
《第4の実施形態》
 本実施形態では非矩形の面状導体11を備えるアンテナ装置の例を示す。図11(A)(B)は第4の実施形態に係るアンテナ装置204A,204Bの平面図である。これらの例では、コイルアンテナ100A,100Bが寄っている、面状導体11の角部COと対向する(反対側の)領域に面状導体が広がっていない。
 ここで、角部COからこの角部COに近いコイルアンテナ100Aまでの距離をW1Aとし、コイルアンテナ100Aを中心として±W1Aの領域を領域Z11,Z12で表し、領域Z12から面状導体11の端辺ES4までの領域をZ13で表すと、領域Z13に比べて、領域Z11では、通信に寄与しない磁束密度が高い。一方の端辺(第1端辺ES1)のコイルアンテナ(第1コイルアンテナ100A)から生じる、通信に寄与しない磁束が、他方の端辺(第2端辺ES2)のコイルアンテナ(第2コイルアンテナ100B)から生じる磁束で打ち消される、という作用効果は、領域Z11の面状導体の存在による。そのため、領域Z13に面状導体11は無くてもよい。
 同様に、角部COからこの角部COに近いコイルアンテナ100Bまでの距離をW2Aとし、コイルアンテナ100Bを中心として±W2Aの領域を領域Z21,Z22で表し、領域Z22から面状導体11の端辺ES3までの領域をZ23で表すと、この領域Z23に比べて、領域Z21では、通信に寄与しない磁束密度が高い。一方の端辺(第2端辺ES2)のコイルアンテナ(第2コイルアンテナ100B)から生じる、通信に寄与しない磁束密度は角部CO側の領域で高く、他方の端辺(第1端辺ES1)のコイルアンテナ(第1コイルアンテナ100A)から生じる磁束により打ち消される、という作用効果は領域Z21の面状導体の存在による。そのため、領域Z23に面状導体11は無くてもよい。
 なお、上記、領域Z13に面状導体11が無くてもよい、という構成と、領域Z23に面状導体11が無くてもよい、という構成は、いずれか一方だけでもよい。図11(B)に示す例では、領域Z13に面状導体11が無い。この場合でも、通信相手側アンテナ装置との通信に寄与しない磁束同士が相殺することによる結合係数の向上効果は得られる。
《第5の実施形態》
 第5の実施形態では、電子機器の一例としての携帯端末装置について示す。図12(A)は、第5の実施形態に係る携帯端末装置305の内部の平面図であり、図12(B)は、図12(A)におけるA-A部分の断面図である。但し、回路基板上の能動部品や受動部品等の電子部品やディスプレイ等のデバイスの図示は省略している。
 携帯端末装置305において、端末筐体320には表示パネル20が設けられている。端末筐体320の内部には、基板10およびバッテリーパック112等が内蔵されている。基板10は例えば多層基板である。基板10には、携帯電話用のメインアンテナ(UHF帯のアンテナ)として作用する放射素子12が形成されている。また、基板10にはグランド導体111が形成されている。放射素子12およびグランド導体111は面状導体の一部として作用する。また、バッテリーパック112も面状導体の一部として作用する。すなわち、アンテナ装置は、基板10、コイルアンテナ100A,100B、およびバッテリーパック112等によって構成されている。基板10には通信回路が設けられていて、コイルアンテナ100A,100Bには通信回路が接続されている。
 グランド導体111とバッテリーパック112とによる面状導体の端辺は、グランド導体111とバッテリーパック112との隙間で切れているが、磁束は誘導電流により金属を避ける磁路を描くため、上記隙間が狭ければ、グランド導体111とバッテリーパック112は一体の面状導体として作用する。
 本発明における、面状導体は、少なくとも一部が面状に構成されている導体のことである。よって、電子機器内の回路基板のグランド導体、バッテリーパックの表面、シールド板なども含む。また、図12(B)に示すように段差があったとしても、磁束は面状導体に沿った磁路を描く。
 本実施形態のように、アンテナ装置は複数の面状導体を備えてもよい。
 なお、本発明は、いわゆるスマートフォンや携帯電話端末などの通信端末装置、タブレットPC、ノートパソコン、いわゆるスマートグラスやスマートウォッチ等のウェアラブル端末、ゲーム機、カメラ、カード等のRFIDタグ等、本発明のアンテナ装置を搭載した全ての電子機器に同様に適用できる。
 なお、いずれの実施形態についても、複数のコイルアンテナの接続方法は、直列接続、並列接続以外に、直列接続した回路を並列接続する、並列接続した回路を直列接続する、さらには、これらの組み合わせであってもよい。
 また、以上に示した実施形態では、第1コイルアンテナ(コイルアンテナ100A等)と第2コイルアンテナ(コイルアンテナ100B等)とを同一面に配置することで、第1コイルアンテナの巻回軸と第2コイルアンテナの巻回軸とは交わる場合について示したが、本発明はこの構造に限らない。第1コイルアンテナ(コイルアンテナ100A等)と第2コイルアンテナ(コイルアンテナ100B等)とを異なる面に(段差のある状態で)配置することで、第1コイルアンテナの巻回軸と第2コイルアンテナの巻回軸とは、ねじれの位置の関係であってもよい。また、第1コイルアンテナの巻回軸と第2コイルアンテナの巻回軸との平面視での交差角は90度に限らない。
C…キャパシタ
CA1…第1コイル開口端
CA2…第2コイル開口端
CC1,CC2…コイル巻回軸
CO…角部
CU…曲部
ES1…第1端辺
ES2,ES21,ES22…第2端辺
ES3,ES4…端辺
FC…給電回路
HS…ホットスポット
Z11,Z12,Z13,Z21,Z22,Z23…領域
10…基板
11…面状導体
12…放射素子
20…表示パネル
81a,81b,82a,82b…端子電極
83c,84c,87c,88c…線状電極
83e,84e,85e,86e…側面電極
91~98…基材層
100A,100B,100C,100D,100E…コイルアンテナ
111…グランド導体
112…バッテリーパック
201~203…アンテナ装置
204A,204B…アンテナ装置
305…携帯端末装置
320…端末筐体
500…RFタグ

Claims (4)

  1.  巻回軸回りに巻回された形状のコイル導体を有する複数のコイルアンテナと、角部または曲部を挟む第1端辺および第2端辺を有する面状導体とを備え、
     前記複数のコイルアンテナのうち第1コイルアンテナは、一つのコイル開口が前記面状導体に平面視で重なり、前記面状導体の前記第1端辺に沿った位置で、且つ前記角部寄りまたは前記曲部寄りの位置に配置され、
     前記複数のコイルアンテナのうち第2コイルアンテナは、一つのコイル開口が前記面状導体に平面視で重なり、前記面状導体の前記第2端辺に沿った位置に配置され、
     前記第1コイルアンテナおよび前記第2コイルアンテナの発生する磁束は、前記面状導体の前記第1端辺および第2端辺を境界とする内外方向で同相になるように接続されることを特徴とするアンテナ装置。
  2.  前記第2コイルアンテナは前記角部寄りまたは前記曲部寄りの位置に配置される、請求項1に記載のアンテナ装置。
  3.  前記第1コイルアンテナの巻回軸と前記第2コイルアンテナの巻回軸とは交わる、またはねじれの位置の関係である、請求項1または2に記載のアンテナ装置。
  4.  請求項1~3のいずれかに記載のアンテナ装置、および前記複数のコイルアンテナに接続される通信回路を備えた、電子機器。
PCT/JP2014/083830 2013-12-26 2014-12-22 アンテナ装置および電子機器 WO2015098795A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201490000388.9U CN205429169U (zh) 2013-12-26 2014-12-22 天线装置及电子设备
JP2015520453A JP5812224B1 (ja) 2013-12-26 2014-12-22 アンテナ装置および電子機器
GB1510755.0A GB2536511B (en) 2013-12-26 2014-12-22 Antenna device and electronic appliance
US14/803,262 US10164347B2 (en) 2013-12-26 2015-07-20 Antenna device and electronic appliance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-269923 2013-12-26
JP2013269923 2013-12-26
JP2014140995 2014-07-09
JP2014-140995 2014-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/803,262 Continuation US10164347B2 (en) 2013-12-26 2015-07-20 Antenna device and electronic appliance

Publications (1)

Publication Number Publication Date
WO2015098795A1 true WO2015098795A1 (ja) 2015-07-02

Family

ID=53478649

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/083828 WO2015098794A1 (ja) 2013-12-26 2014-12-22 アンテナ装置および電子機器
PCT/JP2014/083830 WO2015098795A1 (ja) 2013-12-26 2014-12-22 アンテナ装置および電子機器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083828 WO2015098794A1 (ja) 2013-12-26 2014-12-22 アンテナ装置および電子機器

Country Status (4)

Country Link
US (2) US10164347B2 (ja)
JP (2) JP5776868B1 (ja)
CN (2) CN205039258U (ja)
WO (2) WO2015098794A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118379A1 (ja) * 2010-03-24 2011-09-29 株式会社村田製作所 Rfidシステム
US9992818B2 (en) * 2015-10-06 2018-06-05 Medtronic Minimed, Inc. Protocol translation device
KR101658011B1 (ko) * 2016-01-08 2016-09-20 주식회사 아모텍 적층형 안테나 모듈
CN109075446B (zh) * 2016-01-29 2020-09-08 夏普株式会社 天线设备
KR101813386B1 (ko) 2016-06-21 2017-12-28 삼성전기주식회사 자성체를 포함하는 무선 통신 안테나
US10476162B2 (en) * 2016-09-21 2019-11-12 Wits Co., Ltd. Wireless communication antenna and mobile device including the same
CN208862187U (zh) * 2016-09-26 2019-05-14 株式会社村田制作所 天线装置以及电子设备
WO2018211548A1 (ja) * 2017-05-15 2018-11-22 Smk-Logomotion株式会社 アンテナ装置
FR3071988B1 (fr) * 2017-10-03 2020-11-06 Continental Automotive France Dispositif de communication en champ proche
SK500072019A3 (sk) * 2019-02-27 2020-09-03 Logomotion Sro Anténová sústava s dvoma solenoidovými anténami, najmä na NFC príjem a vysielanie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127368A (ja) * 2009-12-18 2011-06-30 Tokai Rika Co Ltd 電子キーシステムの通信エリア形成装置
JP2011147104A (ja) * 2009-12-18 2011-07-28 Tokai Rika Co Ltd 通信端末位置判定装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579899B2 (ja) * 1995-01-13 2004-10-20 ソニー株式会社 Icカードのリーダ/ライタ
JP2000183632A (ja) * 1998-12-16 2000-06-30 Aisin Seiki Co Ltd 高速デ−タ伝送用のル−プアンテナ装置
JP2001053518A (ja) * 1999-08-06 2001-02-23 Sony Corp アンテナ装置及び携帯無線機
JP2003152443A (ja) * 2001-11-15 2003-05-23 Alps Electric Co Ltd 受信アンテナの配置方法
AU2003304672A1 (en) 2003-11-28 2005-06-17 Fujitsu Limited Information processing device having non-contact reader and/or writer and coil antenna for magnetic connection
JP4957683B2 (ja) * 2008-08-29 2012-06-20 株式会社村田製作所 アンテナ装置
JP4905506B2 (ja) * 2009-06-22 2012-03-28 株式会社村田製作所 アンテナ装置
JP4798317B2 (ja) * 2009-09-25 2011-10-19 株式会社村田製作所 アンテナ装置及び携帯端末
EP2498207B1 (en) * 2009-11-04 2014-12-31 Murata Manufacturing Co., Ltd. Wireless ic tag, reader/writer, and information processing system
JP4883208B2 (ja) 2010-07-28 2012-02-22 パナソニック株式会社 アンテナ装置及びこれを備えた通信装置
CN102959800B (zh) 2010-09-07 2015-03-11 株式会社村田制作所 天线装置以及通信终端装置
WO2012111430A1 (ja) * 2011-02-15 2012-08-23 株式会社村田製作所 アンテナ装置および通信端末装置
JPWO2013061502A1 (ja) * 2011-10-27 2015-04-02 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America アンテナ装置及び無線通信装置
CN106299706B (zh) * 2012-05-28 2019-03-05 株式会社村田制作所 天线装置及无线通信装置
WO2013183552A1 (ja) 2012-06-04 2013-12-12 株式会社村田製作所 アンテナ装置及び通信端末機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127368A (ja) * 2009-12-18 2011-06-30 Tokai Rika Co Ltd 電子キーシステムの通信エリア形成装置
JP2011147104A (ja) * 2009-12-18 2011-07-28 Tokai Rika Co Ltd 通信端末位置判定装置

Also Published As

Publication number Publication date
JPWO2015098795A1 (ja) 2017-03-23
CN205039258U (zh) 2016-02-17
JPWO2015098794A1 (ja) 2017-03-23
JP5776868B1 (ja) 2015-09-09
JP5812224B1 (ja) 2015-11-11
CN205429169U (zh) 2016-08-03
WO2015098794A1 (ja) 2015-07-02
US20150325918A1 (en) 2015-11-12
US10164347B2 (en) 2018-12-25
US20150325927A1 (en) 2015-11-12
US9705208B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
JP5812224B1 (ja) アンテナ装置および電子機器
JP6197918B2 (ja) アンテナ素子
JP6308338B2 (ja) アンテナ装置および電子機器
JP5472153B2 (ja) アンテナ装置、アンテナ付きバッテリーパックおよび通信端末装置
US10181637B2 (en) Antenna device and communication apparatus
JP4978756B2 (ja) 通信端末
JP4934784B2 (ja) アンテナ装置及び通信端末装置
KR101374302B1 (ko) 안테나 장치 및 통신단말장치
JP6249141B2 (ja) アンテナ装置および電子機器
WO2017073588A1 (ja) アンテナ装置および電子機器
JP6269902B2 (ja) アンテナ装置および電子機器
KR20170018278A (ko) 안테나 디바이스
JP6701948B2 (ja) アンテナ装置および電子機器
WO2016152662A1 (ja) アンテナ装置および電子機器
GB2536511A (en) Antenna device and electronic appliance
JP2015211422A (ja) アンテナ装置
JP2015211420A (ja) アンテナ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015520453

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201510755

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141222

WWE Wipo information: entry into national phase

Ref document number: 1510755

Country of ref document: GB

Ref document number: 1510755.0

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874859

Country of ref document: EP

Kind code of ref document: A1