WO2015097877A1 - Optical device and optical device manufacturing method - Google Patents
Optical device and optical device manufacturing method Download PDFInfo
- Publication number
- WO2015097877A1 WO2015097877A1 PCT/JP2013/085152 JP2013085152W WO2015097877A1 WO 2015097877 A1 WO2015097877 A1 WO 2015097877A1 JP 2013085152 W JP2013085152 W JP 2013085152W WO 2015097877 A1 WO2015097877 A1 WO 2015097877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- optical device
- layer
- optical
- opening
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 125
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 239000012044 organic layer Substances 0.000 claims abstract description 38
- 238000007789 sealing Methods 0.000 claims abstract description 31
- 239000002274 desiccant Substances 0.000 claims abstract description 28
- 239000011347 resin Substances 0.000 claims abstract description 27
- 229920005989 resin Polymers 0.000 claims abstract description 27
- 239000010410 layer Substances 0.000 claims description 114
- 239000002245 particle Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000011368 organic material Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 42
- 239000000463 material Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000005525 hole transport Effects 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- -1 for example Polymers 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
- H01L31/0468—PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80521—Cathodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/874—Passivation; Containers; Encapsulations including getter material or desiccant
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to an optical device and a method for manufacturing the optical device.
- organic EL elements As optical elements, development of optical devices using organic EL elements as optical elements has been progressing.
- the organic EL element is deteriorated by moisture or the like because an organic layer is used for an optical functional layer such as a light emitting layer or a photoelectric conversion layer.
- an inorganic material such as glass is used for the substrate, and the organic EL element is sealed using a sealing member.
- Patent Document 1 describes providing a plurality of holes in an upper electrode in a display device using an inorganic EL material for a light emitting layer. Patent Document 1 describes that by providing a hole in the upper electrode, the area of the light emitting pixel is reduced, and as a result, the element capacitance is reduced and the current consumption is reduced.
- the invention according to claim 1 is a substrate having a resin; An optical element having a first electrode, a second electrode, and an organic layer positioned between the first electrode and the second electrode; A sealing member for sealing the optical element; With The first electrode is disposed on the substrate side, The second electrode has an opening; An optical device including a desiccant disposed in the opening or between the second electrode and the sealing member.
- Sealing the optical element with a sealing member With In the step of forming the optical element, an opening is formed in the second electrode, Furthermore, it is a manufacturing method of the optical apparatus provided with the process of arrange
- FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. 6 is a cross-sectional view illustrating a configuration of an optical device according to Embodiment 2.
- FIG. 7 is a cross-sectional view illustrating a configuration of an optical device according to Example 3.
- FIG. 1 is a cross-sectional view illustrating a configuration of an optical device 100 according to an embodiment.
- the optical device 100 shown in this figure includes a substrate 110, an optical element 102, and a sealing member 180.
- the substrate 110 has a resin.
- the optical element 102 includes a first electrode 120, an organic layer 130, and a second electrode 140.
- the first electrode 120 is located between the organic layer 130 and the substrate 110.
- the second electrode 140 sandwiches the organic layer 130 between the first electrode 120 and the second electrode 140.
- the second electrode 140 has an opening 142.
- the optical device 100 further includes a desiccant 170.
- the desiccant 170 is disposed in the opening 142 or between the second electrode 140 and the sealing member 180. In the example shown in FIG. 1, the desiccant 170 is disposed between the second electrode 140 and the sealing member 180.
- the optical element 102 is, for example, a light emitting element or a photoelectric conversion element.
- the optical device 100 is, for example, a display device or a lighting device.
- the optical device 100 is, for example, a photovoltaic device or an imaging element. Details will be described below.
- the substrate 110 is formed of a resin, for example, PEN (polyethylene naphthalate) or polyimide, PES (polyethersulfone), PC (polycarbonate), or a composite material composed of an inorganic material and an organic material. .
- the thickness of the substrate 110 is, for example, 10 ⁇ m or more and 500 ⁇ m or less.
- the optical apparatus 100 has flexibility.
- an inorganic layer 160 is provided between the substrate 110 and the first electrode 120 (that is, one surface side of the substrate 110).
- the inorganic layer 160 includes at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
- the inorganic layer 160 is provided to prevent moisture and oxygen from passing through the substrate 110 (barrier film). Note that the inorganic layer 160 may be provided on the opposite surface side of the substrate 110 (in the example illustrated in this drawing, the surface opposite to the first electrode 120).
- the organic layer 130 has a light emitting layer.
- the organic layer 130 has a configuration in which, for example, a hole transport layer, a light emitting layer, and an electron transport layer are stacked in this order.
- a hole injection layer may be formed between the hole transport layer and the first electrode 120.
- an electron injection layer may be formed between the electron transport layer and the second electrode 140.
- At least one layer (for example, a hole transport layer) of the organic layer 130 is formed by a coating method. In this case, this layer is formed by, for example, an inkjet method, a slit coat method, a printing method, or a spray method.
- the remaining layers of the organic layer 130 are formed by a vapor deposition method.
- the first electrode 120 functions as one of an anode and a cathode of the optical element 102, for example, and the second electrode 140 functions as the other of the anode and the cathode of the optical element 102, for example.
- One of the first electrode 120 and the second electrode 140 (the first electrode 120 in the example shown in the figure) is a transparent electrode having optical transparency.
- the optical element 102 is a light emitting element, the light emitted from the optical element 102 passes through the electrode (the first electrode 120 in the example shown in the figure) that is a transparent electrode of the first electrode 120 and the second electrode 140. To the outside.
- the optical element 102 When the optical element 102 is a photoelectric conversion element, light enters the optical element 102 through an electrode that is a transparent electrode among the first electrode 120 and the second electrode 140.
- the material of the transparent electrode includes, for example, an inorganic material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), or a conductive polymer such as a polythiophene derivative.
- the other of the first electrode 120 and the second electrode 140 is a member of the first group of Al, Mg, Au, Ag, Pt, Sn, Zn, and In. Or a metal layer made of an alloy of metals selected from the first group.
- the second electrode 140 is provided with a plurality of openings 142.
- the first electrode 120 is an anode and a transparent electrode
- the second electrode 140 is a cathode, and includes a metal layer.
- the organic layer 130 has at least an organic electron donor layer and an electric acceptor layer.
- the organic electron donor layer (hereinafter sometimes referred to as “p-type layer”) is not particularly limited as long as the charge carrier is a hole and the material exhibits p-type semiconductor characteristics.
- the electron donor constituting the electron acceptor layer (hereinafter sometimes referred to as “n-type layer”) is particularly limited as long as the charge carrier is an electron and the material exhibits n-type semiconductor characteristics. There is no.
- an electron acceptor layer may be formed on an organic electron donor layer, and an organic electron donor layer may be formed on an electron acceptor layer.
- a layer (i-type layer) containing both a p-type material and an n-type material may be formed between the electron acceptor layer and the organic electron donor layer.
- This layer may be a co-deposited layer in which both a p-type layer and an n-type layer are deposited, or a layer coated with a material in which a p-type material and an n-type material are mixed.
- the first electrode 120 is an electrode for efficiently collecting holes generated in the organic layer 130, and an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function is used. It is preferable.
- an electrode material an electrode material usually used as an anode of a solar cell may be used.
- the second electrode 140 for example, a metal layer such as Ag, Cu, Au, In, Sn, Al, Zn, or the like can be used. As described above, since it is not necessary to select a material having transparency, the room for selection of the material used as the second electrode 140 is widened. In particular, here, when the electrode material having no transparency is used for the second electrode 140, the light incident from the opposite side of the substrate 110 is not transmitted through the second electrode 140. Can be used for An opening 142 is formed in the second electrode 140.
- the sealing member 180 has, for example, a shape in which the entire circumference of the edge of a metal foil or a metal plate (for example, an Al foil or an Al plate) is pushed down. The edge is fixed to the substrate 110 with an adhesive or an adhesive.
- the sealing member 180 may be a substrate using an inorganic material or a substrate in which a sealing layer (for example, a metal layer or an inorganic layer) is formed on a substrate using a resin material.
- a desiccant 170 is provided on the surface of the sealing member 180 facing the second electrode 140.
- the desiccant 170 is in the form of a sheet, for example, and is fixed to the sealing member 180 via an adhesive layer.
- the desiccant 170 may be mixed in the adhesive layer.
- the desiccant 170 is, for example, calcium oxide, barium oxide, or zeolite.
- a resin layer 150 is provided between the desiccant 170 and the second electrode 140.
- the resin layer 150 is a layer (adhesive layer) that fixes the sealing member 180 having the desiccant 170 to the second electrode 140.
- the desiccant 170 is provided between the resin layer 150 and the sealing member 180.
- the resin layer 150 is a layer in which the expanded desiccant 170 comes into contact with the optical element 102 or a layer that forms the optical element 102 (for example, the second electrode 140, the organic layer 130).
- the optical element 102 is prevented from being damaged by an external force applied to (for example, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer) and the first electrode 120).
- the resin layer 150 may be a buffer layer in which the resin layer 150 itself is deformed as the drying agent 170 is deformed due to expansion or the like.
- FIG. 2 is a plan view of the second electrode 140.
- the plurality of openings 142 are formed in the second electrode 140.
- the width W of the opening 142 is preferably 150 ⁇ m or less from the viewpoint that it is not larger than a size that can be visually recognized by humans.
- the function of the optical element 102 decreases in the portion of the optical element 102 that overlaps the opening 142. .
- the optical element 102 is a light emitting element
- the width of the opening 142 is set to 150 ⁇ m or less, it becomes difficult for a person to visually recognize that the emission intensity is reduced in the portion of the optical element 102 overlapping the opening 142.
- the optical element 102 is a photoelectric conversion element, the charges generated in the organic layer 130 located in a portion overlapping with the opening 142 are easily collected by the second electrode 140 located in the periphery thereof.
- the interval L between the adjacent openings 142 is preferably 150 ⁇ m or less.
- the second electrode 140 is partially oxidized to partially increase the resistance. And when the 2nd electrode 140 becomes high resistance partially, the brightness
- the distance L between the adjacent second electrodes 140 is set to 150 ⁇ m or less, it is possible to suppress the width of the high-resistance portion of the second electrode 140 described above from exceeding 150 ⁇ m.
- the presence of the other opening 142 in a region having a distance of 150 ⁇ m or less from the predetermined opening 142 can suppress the width of the high resistance portion of the second electrode 140 from becoming larger than 150 ⁇ m. Therefore, even if the luminance of the optical element 102 is partially reduced, it is difficult for a person to visually recognize the reduced portion.
- the shape of the opening 142 is circular.
- the shape of the opening 142 is not limited to a circle.
- the shape of the opening 142 may be a polygon (for example, a rectangle) or an ellipse.
- at least one opening 142 may have a different shape from the other openings 142.
- the optical element 102 is formed on the substrate 110.
- the optical element 102 is sealed with a sealing member 180.
- an opening 142 is formed in the second electrode 140.
- positioning the desiccant 170 is also provided. Details will be described below.
- the substrate 110 is prepared.
- the substrate 110 may be formed in a sheet shape in advance, or may be formed in a sheet shape by a known technique such as spin coating by applying a resin on a support substrate different from the substrate 110.
- an inorganic layer 160 is formed on one surface of the substrate 110.
- the inorganic layer 160 is formed using, for example, a vapor deposition method, a sputtering method, a CVD method, or an ALD method. Note that a portion having a thin film or a pinhole may be formed in the inorganic layer 160 in some cases. When these are formed, moisture or the like passes through the substrate 110 from this portion.
- the first electrode 120 and the organic layer 130 are formed on the substrate 110.
- the first electrode 120 is formed by a dry method such as a coating method (wet method) such as an inkjet method, a sputtering method, or a vapor deposition method.
- the organic layer 130 is formed by, for example, a coating method or a vapor deposition method. Some layers of the organic layer 130 may be formed by a method different from other layers.
- the second electrode 140 is formed.
- the second electrode 140 is formed using, for example, a vapor deposition method.
- the opening 142 is formed by using, for example, a mask.
- a sealing member 180 is prepared. Then, a desiccant 170 is provided on the surface of the sealing member 180 that faces the optical element 102. Next, the desiccant 170 and the sealing member 180 are fixed on the second electrode 140 using the resin layer 150.
- an opening 142 is formed in the second electrode 140. For this reason, even if moisture or the like permeates the substrate 110, at least a part of the moisture is absorbed by the desiccant 170 through the opening 142 and the resin layer 150. Therefore, even when a substrate made of a resin is used as the substrate 110, it is possible to suppress deterioration of the optical element 102 due to accumulation of moisture or the like in the layer of the optical element 102 closer to the substrate 110 than the second electrode 140.
- the optical device 100 according to the present example is the same as the optical device 100 shown in the embodiment except for the manufacturing method of the second electrode 140.
- the second electrode 140 is formed by performing film formation by a vapor deposition method using a mask a plurality of times (for example, twice). At this time, the opening pattern of the mask is different for each film formation by the vapor deposition method.
- FIG. 4A is a plan view of the first mask 200 used in the first film formation
- FIG. 4B is a plan view of the second mask 202 used in the second film formation. It is.
- FIG. 4C is a plan view of the second electrode 140.
- each of the first mask 200 and the second mask 202 has a linear or dotted opening pattern, but these opening patterns extend. Directions are different from each other (for example, a crossing direction or a perpendicular direction).
- the portion of the second electrode 140 that becomes the optical element 102 includes a plurality of linear or dotted first conductive layers and a plurality of linear or dotted first conductive layers. The two conductive layers are formed so as to intersect with each other. The plurality of first conductive layers extend in parallel with each other, and the plurality of second conductive layers extend in parallel with each other.
- the second electrode 140 has an electrode extraction portion 141 formed therein.
- the electrode extraction portion 141 is formed in a portion of the second electrode that does not become the optical element 102 (that is, a portion that does not overlap with the organic layer 130), and the second electrode 140 is a conductive layer formed on the substrate 110. (For example, a wiring or a terminal).
- the electrode extraction part 141 does not have an opening in order to reduce the resistance.
- FIG. 5 is a diagram schematically showing an enlarged portion of the second electrode 140 shown in FIG. 4C that overlaps the optical element 102.
- 6 is a cross-sectional view taken along the line AA in FIG.
- the second electrode 140 is formed by performing vacuum deposition a plurality of times (for example, twice). In each vacuum deposition, conductive layers (first conductive layer 144 and second conductive layer 146) extending in different directions are formed. As shown in FIG. 6, the second electrode 140 is thicker than the other part (thick film part) at the part where the first conductive layer 144 and the second conductive layer 146 intersect. Note that, in the portion where the first conductive layer 144 and the second conductive layer 146 overlap, the boundary between the first conductive layer 144 and the second conductive layer 146 may be clear or unclear.
- the second electrode 140 since the second electrode 140 has the opening 142, even if a substrate made of resin is used as the substrate 110, the layer on the substrate 110 side of the second electrode 140 in the optical element 102. It is possible to suppress the deterioration of the optical element 102 due to the accumulation of moisture or the like.
- the second electrode 140 is formed using a plurality of masks, a fine opening 142 can be easily formed. Further, by forming a plurality of linear openings from one end to the other end of the mask, the rigidity of the mask can be secured and a plurality of relatively small openings can be formed.
- FIG. 7 is a cross-sectional view illustrating the configuration of the optical device 100 according to the second embodiment.
- the optical device 100 according to the present example has the same configuration as that of the optical device 100 according to the embodiment or Example 1 except that the optical device 100 includes the inorganic layers 162 and 164 and the planarization layer 190.
- an inorganic layer 162 is formed on one surface of the substrate 110.
- the inorganic layer 162 is provided on the surface of the substrate 110 opposite to the inorganic layer 160.
- the inorganic layer 162 includes at least one layer of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film, and is formed using a sputtering method, a CVD method, or an ALD method.
- a planarization layer 190 and an inorganic layer 164 are formed in this order.
- the planarization layer 190 planarizes the surface (first electrode 120 side) of the substrate 110, for example.
- the planarization layer 190 is provided to planarize the surface (first electrode 120 side) of the uneven inorganic layer 164 formed on one surface of the substrate 110, for example.
- the planarization layer 190 is formed by slit coating a resin such as epoxy or acrylic.
- the inorganic layer 164 includes at least one layer of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film, and is formed using a sputtering method, a CVD method, or an ALD method.
- the second electrode 140 since the second electrode 140 has the opening 142, even if a substrate made of resin is used as the substrate 110, moisture in the layer closer to the substrate 110 than the second electrode 140 in the optical element 102 is obtained. It is possible to suppress the deterioration of the optical element 102 due to accumulation of the like. In addition, since the planarization layer 190 is provided, the yield of the optical element 102 can be improved. Furthermore, since the inorganic layers 162 and 164 are provided, it is possible to prevent moisture and the like from entering the optical element 102.
- FIG. 8 is a cross-sectional view illustrating the configuration of the optical device 100 according to the third embodiment.
- the optical device 100 according to the present example has the same configuration as the optical device 100 according to the embodiment or Example 2 except for the following points. This figure shows a case similar to the second embodiment.
- a plurality of particles 132 are positioned on the first electrode 120.
- the plurality of particles 132 are located in the opening 142.
- the diameter of the particle 132 is larger than the sum of the thicknesses of the organic layer 130, the second electrode 140, or the organic layer 130 and the second electrode 140, and is, for example, 100 nm or more and 100 ⁇ m or less.
- the particles 132 are arranged before the second electrode 140 is formed. Therefore, an opening 142 is formed in the second electrode 140 by the particles 132.
- the particles 132 are covered with a material constituting the organic layer 130.
- the material of the organic layer 130 covering the particles 132 may be a part of the layers constituting the organic layer 130.
- Particle 132 is an insulating inorganic material, but is preferably a hygroscopic material (eg, zeolite, silica gel). In this case, a desiccant is disposed in the opening 142. Note that the particles 132 may be formed of an oxide (eg, metal oxide) such as calcium oxide, magnesium oxide, zirconium oxide, yttrium oxide, aluminum oxide, or silicon oxide.
- oxide eg, metal oxide
- the 2nd electrode 140 when forming the 2nd electrode 140 by a vapor deposition method, the 2nd electrode 140 is also formed on the particle
- the second electrode 140 does not adhere to the lower half of the surface of the particle 132 (in other words, the surface facing the organic layer 130). For this reason, as shown in FIG. 9, the second electrode 140 has an opening 142 in a region overlapping the particle 132. Note that the central portion of the opening 142 is blocked by the particles 132.
- FIG. 10 is a diagram showing a first example of the arrangement method of the particles 132.
- the organic layer 130 for example, a hole transport layer
- grains 132 are contained in this coating liquid. For this reason, the particles 132 are disposed on the first electrode 120 when the organic layer 130 is formed by a coating method.
- FIG. 11 is a diagram showing a second example of the arrangement method of the particles 132.
- the particles 132 are disposed on the first electrode 120 before the organic layer 130 is formed.
- the particles 132 are arranged by applying a coating liquid containing the particles 132 to the first electrode 120.
- FIG. 12 is a diagram showing a third example of the arrangement method of the particles 132.
- the particles 132 are disposed on the organic layer 130 after forming the organic layer 130 and before forming the second electrode 140.
- the particles 132 are arranged by applying a coating solution containing the particles 132 to the organic layer 130.
- the second electrode 140 may be formed by a method similar to the method (embodiment 1) shown in FIGS.
- the substrate 110 Even in this embodiment, even when a substrate made of a resin is used as the substrate 110, it is possible to suppress deterioration of the optical element 102 due to accumulation of moisture or the like in the layer on the substrate 110 side of the second electrode 140 in the optical element 102. . In addition, when a hygroscopic material is used as the particles 132, moisture transmitted through the substrate 110 is also absorbed by the particles 132, so that deterioration of the optical element 102 can be further suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
Abstract
A substrate (110) is configured from a resin. An optical element (102) has a first electrode (120), an organic layer (130), and a second electrode (140). The first electrode (120) is positioned between the organic layer (130) and the substrate (110). The second electrode (140) sandwiches the organic layer (130) between the first electrode (120) and the second electrode. The second electrode (140) has an opening (142). An optical device (100) also has a desiccant (170). The desiccant (170) is disposed in the opening (142) or between the second electrode (140) and a sealing member (180). The desiccant (170) is disposed, for instance, between the second electrode (140) and the sealing member (180).
Description
本発明は、光装置及び光装置の製造方法に関する。
The present invention relates to an optical device and a method for manufacturing the optical device.
近年は、有機EL素子を光素子として利用した光装置の開発が進んでいる。有機EL素子は、発光層や光電変換層などの光機能層に有機層を用いているため、水分などによって劣化する。このため、一般的に、有機EL素子を製造する際、基板にはガラスなどの無機材料が使用され、かつ、封止部材を用いて有機EL素子を封止している。
In recent years, development of optical devices using organic EL elements as optical elements has been progressing. The organic EL element is deteriorated by moisture or the like because an organic layer is used for an optical functional layer such as a light emitting layer or a photoelectric conversion layer. For this reason, generally, when manufacturing an organic EL element, an inorganic material such as glass is used for the substrate, and the organic EL element is sealed using a sealing member.
なお、特許文献1には、無機EL材料を発光層に用いた表示装置において、上側の電極に複数の穴を設けることが記載されている。特許文献1には、上側の電極に穴を設けることによって発光画素の面積が減少し、その結果、素子容量が減少して消費電流が減少する、と記載されている。
Note that Patent Document 1 describes providing a plurality of holes in an upper electrode in a display device using an inorganic EL material for a light emitting layer. Patent Document 1 describes that by providing a hole in the upper electrode, the area of the light emitting pixel is reduced, and as a result, the element capacitance is reduced and the current consumption is reduced.
有機EL素子の基板として樹脂からなる基板を用いる場合、この基板を介して有機EL素子に水分が届く可能性が出てくる。この場合、有機EL素子の劣化が早くなってしまう。
When a substrate made of a resin is used as the substrate of the organic EL element, there is a possibility that moisture will reach the organic EL element through this substrate. In this case, the deterioration of the organic EL element is accelerated.
本発明が解決しようとする課題としては、有機EL素子の基板として樹脂からなる基板を用いる場合において、有機EL素子の劣化を抑制することが一例として挙げられる。
As a problem to be solved by the present invention, when a substrate made of a resin is used as a substrate of an organic EL element, suppression of deterioration of the organic EL element is mentioned as an example.
請求項1に記載の発明は、樹脂を有する基板と、
第1電極、第2電極、及び、前記第1電極と前記第2電極の間に位置する有機層を有する光素子と、
前記光素子を封止する封止部材と、
を備え、
前記第1電極は前記基板側に配置され、
前記第2電極は開口を有しており、
前記開口内、又は前記第2電極と前記封止部材の間に配置された乾燥剤を備える光装置である。 The invention according to claim 1 is a substrate having a resin;
An optical element having a first electrode, a second electrode, and an organic layer positioned between the first electrode and the second electrode;
A sealing member for sealing the optical element;
With
The first electrode is disposed on the substrate side,
The second electrode has an opening;
An optical device including a desiccant disposed in the opening or between the second electrode and the sealing member.
第1電極、第2電極、及び、前記第1電極と前記第2電極の間に位置する有機層を有する光素子と、
前記光素子を封止する封止部材と、
を備え、
前記第1電極は前記基板側に配置され、
前記第2電極は開口を有しており、
前記開口内、又は前記第2電極と前記封止部材の間に配置された乾燥剤を備える光装置である。 The invention according to claim 1 is a substrate having a resin;
An optical element having a first electrode, a second electrode, and an organic layer positioned between the first electrode and the second electrode;
A sealing member for sealing the optical element;
With
The first electrode is disposed on the substrate side,
The second electrode has an opening;
An optical device including a desiccant disposed in the opening or between the second electrode and the sealing member.
請求項17に記載の発明は、樹脂を有する基板の上に、第1電極、第2電極、及び、前記第1電極と前記第2電極の間にある有機層を有する光素子を形成する工程と、
前記光素子を封止部材で封止する工程と、
を備え、
前記光素子を形成する工程において、前記第2電極に開口を形成し、
さらに、前記開口内、又は前記第2電極と前記封止部材の間に乾燥剤を配置する工程を備える光装置の製造方法である。 According to a seventeenth aspect of the present invention, there is provided a step of forming an optical element having a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode on a substrate having a resin. When,
Sealing the optical element with a sealing member;
With
In the step of forming the optical element, an opening is formed in the second electrode,
Furthermore, it is a manufacturing method of the optical apparatus provided with the process of arrange | positioning a desiccant in the said opening or between the said 2nd electrode and the said sealing member.
前記光素子を封止部材で封止する工程と、
を備え、
前記光素子を形成する工程において、前記第2電極に開口を形成し、
さらに、前記開口内、又は前記第2電極と前記封止部材の間に乾燥剤を配置する工程を備える光装置の製造方法である。 According to a seventeenth aspect of the present invention, there is provided a step of forming an optical element having a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode on a substrate having a resin. When,
Sealing the optical element with a sealing member;
With
In the step of forming the optical element, an opening is formed in the second electrode,
Furthermore, it is a manufacturing method of the optical apparatus provided with the process of arrange | positioning a desiccant in the said opening or between the said 2nd electrode and the said sealing member.
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
図1は、実施形態に係る光装置100の構成を示す断面図である。本図に示す光装置100は、基板110、光素子102、及び封止部材180を備えている。基板110は、樹脂を有している。光素子102は、第1電極120、有機層130、及び第2電極140を有している。第1電極120は、有機層130と基板110の間に位置している。第2電極140は、第1電極120との間に有機層130を挟んでいる。第2電極140は、開口142を有している。そして、光装置100は、さらに乾燥剤170を有している。乾燥剤170は、開口142内、又は第2電極140と封止部材180の間に配置されている。図1に示す例では、乾燥剤170は、第2電極140と封止部材180の間に配置されている。
FIG. 1 is a cross-sectional view illustrating a configuration of an optical device 100 according to an embodiment. The optical device 100 shown in this figure includes a substrate 110, an optical element 102, and a sealing member 180. The substrate 110 has a resin. The optical element 102 includes a first electrode 120, an organic layer 130, and a second electrode 140. The first electrode 120 is located between the organic layer 130 and the substrate 110. The second electrode 140 sandwiches the organic layer 130 between the first electrode 120 and the second electrode 140. The second electrode 140 has an opening 142. The optical device 100 further includes a desiccant 170. The desiccant 170 is disposed in the opening 142 or between the second electrode 140 and the sealing member 180. In the example shown in FIG. 1, the desiccant 170 is disposed between the second electrode 140 and the sealing member 180.
光素子102は、例えば発光素子又は光電変換素子である。光素子102が発光素子である場合、光装置100は、例えば表示装置又は照明装置である。光素子102が光電変換素子である場合、光装置100は、例えば光発電装置又は撮像素子である。以下、詳細に説明する。
The optical element 102 is, for example, a light emitting element or a photoelectric conversion element. When the optical element 102 is a light emitting element, the optical device 100 is, for example, a display device or a lighting device. When the optical element 102 is a photoelectric conversion element, the optical device 100 is, for example, a photovoltaic device or an imaging element. Details will be described below.
基板110は、上記したように樹脂、例えばPEN(ポリエチレンナフタレート)又はポリイミド、PES(ポリエーテルサルホン),PC(ポリカーボネート),又は無機材料と有機材料で構成されるコンポジット材料から形成されている。基板110の厚さは、例えば10μm以上500μm以下である。そして基板110を樹脂を用いて形成しているため、光装置100は可撓性を有している。
As described above, the substrate 110 is formed of a resin, for example, PEN (polyethylene naphthalate) or polyimide, PES (polyethersulfone), PC (polycarbonate), or a composite material composed of an inorganic material and an organic material. . The thickness of the substrate 110 is, for example, 10 μm or more and 500 μm or less. And since the board | substrate 110 is formed using resin, the optical apparatus 100 has flexibility.
また、基板110と第1電極120の間(すなわち基板110の一面側)には、無機層160が設けられている。無機層160は、酸化シリコン膜、窒化シリコン膜、及び酸窒化シリコン膜の少なくとも一つを有している。無機層160は、水分や酸素が基板110を透過することを抑制するために設けられている(バリア膜)。なお、無機層160は、基板110の反対面側(本図に示す例では、第1電極120とは逆側の面)に設けられていてもよい。
Further, an inorganic layer 160 is provided between the substrate 110 and the first electrode 120 (that is, one surface side of the substrate 110). The inorganic layer 160 includes at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film. The inorganic layer 160 is provided to prevent moisture and oxygen from passing through the substrate 110 (barrier film). Note that the inorganic layer 160 may be provided on the opposite surface side of the substrate 110 (in the example illustrated in this drawing, the surface opposite to the first electrode 120).
光素子102が発光素子である場合、有機層130は、発光層を有している。有機層130は、例えば、正孔輸送層、発光層、及び電子輸送層をこの順に積層させた構成を有している。正孔輸送層と第1電極120との間には正孔注入層が形成されていてもよい。また、電子輸送層と第2電極140との間には電子注入層が形成されていてもよい。有機層130の少なくとも一つの層(例えば正孔輸送層)は、塗布法によって形成されている。この場合、この層は、例えば、インクジェット法、スリットコート法、印刷法、又はスプレー法で形成される。なお、有機層130の残りの層は、蒸着法によって形成されている。
When the optical element 102 is a light emitting element, the organic layer 130 has a light emitting layer. The organic layer 130 has a configuration in which, for example, a hole transport layer, a light emitting layer, and an electron transport layer are stacked in this order. A hole injection layer may be formed between the hole transport layer and the first electrode 120. In addition, an electron injection layer may be formed between the electron transport layer and the second electrode 140. At least one layer (for example, a hole transport layer) of the organic layer 130 is formed by a coating method. In this case, this layer is formed by, for example, an inkjet method, a slit coat method, a printing method, or a spray method. The remaining layers of the organic layer 130 are formed by a vapor deposition method.
光装置100が発光装置である場合、第1電極120は、例えば光素子102の陽極及び陰極の一方として機能し、第2電極140は、例えば光素子102の陽極及び陰極の他方として機能する。第1電極120及び第2電極140の一方(本図に示す例では第1電極120)は、光透過性を有する透明電極である。光素子102が発光素子の場合、光素子102が発光した光は、第1電極120及び第2電極140のうち透明電極となっている電極(本図に示す例では第1電極120)を介して外部に出射する。また光素子102が光電変換素子の場合、光は、第1電極120及び第2電極140のうち透明電極となっている電極を介して光素子102に入射する。透明電極の材料は、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)等の無機材料、またはポリチオフェン誘導体などの導電性高分子を含んでいる。
When the optical device 100 is a light emitting device, the first electrode 120 functions as one of an anode and a cathode of the optical element 102, for example, and the second electrode 140 functions as the other of the anode and the cathode of the optical element 102, for example. One of the first electrode 120 and the second electrode 140 (the first electrode 120 in the example shown in the figure) is a transparent electrode having optical transparency. When the optical element 102 is a light emitting element, the light emitted from the optical element 102 passes through the electrode (the first electrode 120 in the example shown in the figure) that is a transparent electrode of the first electrode 120 and the second electrode 140. To the outside. When the optical element 102 is a photoelectric conversion element, light enters the optical element 102 through an electrode that is a transparent electrode among the first electrode 120 and the second electrode 140. The material of the transparent electrode includes, for example, an inorganic material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), or a conductive polymer such as a polythiophene derivative.
また、第1電極120及び第2電極140の他方(本図に示す例では第2電極140)は、Al、Mg、Au、Ag、Pt、Sn、Zn、及びInからなる第1群の中から選択される金属、又はこの第1群から選択される金属の合金からなる金属層を含んでいる。そして、第2電極140には複数の開口142が設けられている。
The other of the first electrode 120 and the second electrode 140 (the second electrode 140 in the example shown in the figure) is a member of the first group of Al, Mg, Au, Ag, Pt, Sn, Zn, and In. Or a metal layer made of an alloy of metals selected from the first group. The second electrode 140 is provided with a plurality of openings 142.
なお、本図に示す例では、第1電極120が陽極かつ透明電極であり、第2電極140が陰極であり、また金属層を含んでいる。
In the example shown in this figure, the first electrode 120 is an anode and a transparent electrode, the second electrode 140 is a cathode, and includes a metal layer.
一方、光素子102が光電変換素子である場合、有機層130は、少なくとも有機電子供与体層と電気受容体層を有している。有機電子供与体層(以下、「p型層」という場合もある)としては、電荷キャリアが正孔であることと、p型半導体特性を示す材料であれば、特に限定されるものではない。電子受容体層(以下、「n型層」という場合もある)を構成する電子供与体としては、電荷キャリアが電子であること、n型半導体特性を示す材料であれば、特に限定されることはない。そして、有機電子供与体層の上に電子受容体層が形成されてもよいし、電子受容体層の上に有機電子供与体層が形成されてもよい。また、電子受容体層と有機電子供与体層の間に、p型材料とn型材料を共に含む層(i型層)を形成してもよい。この層は、p型層とn型層を共に蒸着させた共蒸着層であってもよいし、p型材料とn型材料を混合した材料を塗布した層であってもよい。
On the other hand, when the optical element 102 is a photoelectric conversion element, the organic layer 130 has at least an organic electron donor layer and an electric acceptor layer. The organic electron donor layer (hereinafter sometimes referred to as “p-type layer”) is not particularly limited as long as the charge carrier is a hole and the material exhibits p-type semiconductor characteristics. The electron donor constituting the electron acceptor layer (hereinafter sometimes referred to as “n-type layer”) is particularly limited as long as the charge carrier is an electron and the material exhibits n-type semiconductor characteristics. There is no. And an electron acceptor layer may be formed on an organic electron donor layer, and an organic electron donor layer may be formed on an electron acceptor layer. Further, a layer (i-type layer) containing both a p-type material and an n-type material may be formed between the electron acceptor layer and the organic electron donor layer. This layer may be a co-deposited layer in which both a p-type layer and an n-type layer are deposited, or a layer coated with a material in which a p-type material and an n-type material are mixed.
また、第1電極120は、有機層130で発生した正孔を効率よく収集するための電極であり、仕事関数の大きい金属、合金、電気伝導性化合物、あるいはこれらの混合物からなる電極材料を用いることが好ましい。このような電極材料としては、通常太陽電池の陽極として用いられるような電極材料を用いればよい。例えばITO(インジウム錫酸化物)、SnO2、AZO、IZO、GZO等の導電性と透明性を兼ね備えた材料がある。
The first electrode 120 is an electrode for efficiently collecting holes generated in the organic layer 130, and an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function is used. It is preferable. As such an electrode material, an electrode material usually used as an anode of a solar cell may be used. For example, there are materials having both conductivity and transparency, such as ITO (indium tin oxide), SnO 2 , AZO, IZO, and GZO.
また、第2電極140としては、例えば、Ag、Cu、Au、In、Sn、Al、Znなどの金属層を用いることができる。このように、透明性をもつ材料を選択する必要がないため、第2電極140として用いられる材料の選択の余地が広がる。特にここでは、透明性をもたない電極材料を第2電極140に用いる方が基板110と逆側から入射された光が第2電極140で透過されることがないため、入射した光を有効に使用できる。そして、第2電極140には、開口142が形成されている。
Also, as the second electrode 140, for example, a metal layer such as Ag, Cu, Au, In, Sn, Al, Zn, or the like can be used. As described above, since it is not necessary to select a material having transparency, the room for selection of the material used as the second electrode 140 is widened. In particular, here, when the electrode material having no transparency is used for the second electrode 140, the light incident from the opposite side of the substrate 110 is not transmitted through the second electrode 140. Can be used for An opening 142 is formed in the second electrode 140.
封止部材180は、例えば、金属箔又は金属板(例えばAl箔又はAl板)の縁部の全周を押し下げた形状を有している。そして、縁部は接着材又は粘着材等で基板110に固定されている。なお、封止部材180は、無機材料を用いた基板であってもよいし、樹脂材料を用いた基板に封止層(例えば金属層又は無機層)を形成した基板であってもよい。
The sealing member 180 has, for example, a shape in which the entire circumference of the edge of a metal foil or a metal plate (for example, an Al foil or an Al plate) is pushed down. The edge is fixed to the substrate 110 with an adhesive or an adhesive. Note that the sealing member 180 may be a substrate using an inorganic material or a substrate in which a sealing layer (for example, a metal layer or an inorganic layer) is formed on a substrate using a resin material.
封止部材180のうち第2電極140に対向する面には、乾燥剤170が設けられている。乾燥剤170は、例えばシート状であり、接着層を介して封止部材180に固定されている。なお、乾燥剤170は、接着層の中に混入されていてもよい。乾燥剤170は、例えば酸化カルシウム、酸化バリウム、又はゼオライトである。
A desiccant 170 is provided on the surface of the sealing member 180 facing the second electrode 140. The desiccant 170 is in the form of a sheet, for example, and is fixed to the sealing member 180 via an adhesive layer. The desiccant 170 may be mixed in the adhesive layer. The desiccant 170 is, for example, calcium oxide, barium oxide, or zeolite.
また、乾燥剤170と第2電極140の間には樹脂層150が設けられている。樹脂層150は、乾燥剤170を有する封止部材180を、第2電極140に固定している層(接着層)である。言い換えると、乾燥剤170は、樹脂層150と封止部材180の間に設けられている。また、樹脂層150は、乾燥剤170が吸湿によって膨張した際に、膨張した乾燥剤170が光素子102に接触する層、又は光素子102を形成する層(例えば第2電極140、有機層130(例えば電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層)、及び第1電極120)に外力が加わって光素子102に損傷が生じることを防止する。このとき、樹脂層150は、乾燥剤170の膨張等による変形に伴って樹脂層150そのものが変形する、緩衝層であってもよい。
Also, a resin layer 150 is provided between the desiccant 170 and the second electrode 140. The resin layer 150 is a layer (adhesive layer) that fixes the sealing member 180 having the desiccant 170 to the second electrode 140. In other words, the desiccant 170 is provided between the resin layer 150 and the sealing member 180. Further, when the desiccant 170 expands due to moisture absorption, the resin layer 150 is a layer in which the expanded desiccant 170 comes into contact with the optical element 102 or a layer that forms the optical element 102 (for example, the second electrode 140, the organic layer 130). The optical element 102 is prevented from being damaged by an external force applied to (for example, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer) and the first electrode 120). At this time, the resin layer 150 may be a buffer layer in which the resin layer 150 itself is deformed as the drying agent 170 is deformed due to expansion or the like.
図2は、第2電極140の平面図である。上記したように、第2電極140には複数の開口142が形成されている。開口142の幅Wは、150μm以下であるのが、人間が視認できる大きさ以下である点で好ましい。第2電極140に開口142を設けた場合、光素子102のうち開口142と重なる部分において、光素子102の機能(例えば発光強度、又は第2電極140による電荷の収集能力)が低下してしまう。これに対して、光素子102が発光素子の場合、開口142の幅を150μm以下にすると、光素子102のうち開口142と重なる部分において発光強度が低下していることを人が視認しにくくなる。また、光素子102が光電変換素子の場合、開口142と重なる部分に位置する有機層130で生成した電荷は、その周囲に位置する第2電極140に収集されやすくなる。
FIG. 2 is a plan view of the second electrode 140. As described above, the plurality of openings 142 are formed in the second electrode 140. The width W of the opening 142 is preferably 150 μm or less from the viewpoint that it is not larger than a size that can be visually recognized by humans. In the case where the opening 142 is provided in the second electrode 140, the function of the optical element 102 (for example, the light emission intensity or the charge collecting ability of the second electrode 140) decreases in the portion of the optical element 102 that overlaps the opening 142. . On the other hand, when the optical element 102 is a light emitting element, if the width of the opening 142 is set to 150 μm or less, it becomes difficult for a person to visually recognize that the emission intensity is reduced in the portion of the optical element 102 overlapping the opening 142. . Further, when the optical element 102 is a photoelectric conversion element, the charges generated in the organic layer 130 located in a portion overlapping with the opening 142 are easily collected by the second electrode 140 located in the periphery thereof.
また、隣り合う開口142の間隔Lは、150μm以下であるのが好ましい。光素子102の劣化の一因として、第2電極140が部分的に酸化することにより、部分的に高抵抗になる。そして、第2電極140が部分的に高抵抗になると、この高抵抗な部分において、光素子102の輝度は低下してしまう(非発光部となる)。これに対して、隣り合う第2電極140の間隔Lを150μm以下にすると、上記した第2電極140の高抵抗な部分の幅が150μmより大きくなることを抑制できる。言い換えれば、所定の開口142から距離150μm以下の領域に他の開口142があることで、第2電極140のうち高抵抗な部分の幅が150μmより大きくなることを抑制できる。よって、光素子102の輝度が部分的に低下しても、この低下した部分を人が視認しにくくなる。
Further, the interval L between the adjacent openings 142 is preferably 150 μm or less. As a cause of the deterioration of the optical element 102, the second electrode 140 is partially oxidized to partially increase the resistance. And when the 2nd electrode 140 becomes high resistance partially, the brightness | luminance of the optical element 102 will fall in this high resistance part (it becomes a non-light-emission part). On the other hand, when the distance L between the adjacent second electrodes 140 is set to 150 μm or less, it is possible to suppress the width of the high-resistance portion of the second electrode 140 described above from exceeding 150 μm. In other words, the presence of the other opening 142 in a region having a distance of 150 μm or less from the predetermined opening 142 can suppress the width of the high resistance portion of the second electrode 140 from becoming larger than 150 μm. Therefore, even if the luminance of the optical element 102 is partially reduced, it is difficult for a person to visually recognize the reduced portion.
なお、図2に示す例において、開口142の形状は円形である。ただし、開口142の形状は円形に限定されない。例えば図3に示すように、開口142の形状は多角形(例えば矩形)であってもよいし、楕円形であってもよい。さらには、少なくとも一つの開口142は、他の開口142と異なる形状であってもよい。
In the example shown in FIG. 2, the shape of the opening 142 is circular. However, the shape of the opening 142 is not limited to a circle. For example, as shown in FIG. 3, the shape of the opening 142 may be a polygon (for example, a rectangle) or an ellipse. Furthermore, at least one opening 142 may have a different shape from the other openings 142.
次に、光装置100の製造方法について説明する。まず、基板110の上に光素子102を形成する。次いで、光素子102を封止部材180で封止する。光素子102を形成する際、第2電極140には開口142が形成される。また、乾燥剤170を配置する工程も備える。以下、詳細に説明する。
Next, a method for manufacturing the optical device 100 will be described. First, the optical element 102 is formed on the substrate 110. Next, the optical element 102 is sealed with a sealing member 180. When the optical element 102 is formed, an opening 142 is formed in the second electrode 140. Moreover, the process of arrange | positioning the desiccant 170 is also provided. Details will be described below.
まず、基板110を準備する。基板110は、予めシート状に形成されたものであってもよいし、基板110とは異なる支持基板上に樹脂を塗布し、スピンコート等の公知の手法によりシート状に形成されてもよい。そして、基板110の一面に、無機層160を形成する。無機層160は、例えば蒸着法、スパッタリング法、CVD法、又はALD法を用いて形成される。なお、無機層160には、部分的に膜が薄い部分や、ピンホールが形成されることがある。これらが形成されると、この部分から水分等が基板110を透過してしまう。
First, the substrate 110 is prepared. The substrate 110 may be formed in a sheet shape in advance, or may be formed in a sheet shape by a known technique such as spin coating by applying a resin on a support substrate different from the substrate 110. Then, an inorganic layer 160 is formed on one surface of the substrate 110. The inorganic layer 160 is formed using, for example, a vapor deposition method, a sputtering method, a CVD method, or an ALD method. Note that a portion having a thin film or a pinhole may be formed in the inorganic layer 160 in some cases. When these are formed, moisture or the like passes through the substrate 110 from this portion.
次いで、基板110上に第1電極120及び有機層130を形成する。第1電極120は、例えばインクジェット法等の塗布法(湿式法)、スパッタリング法、蒸着法などの乾式法により形成される。有機層130は、例えば塗布法又は蒸着法で形成される。有機層130のうち一部の層は、他の層と異なる方法で形成されてもよい。
Next, the first electrode 120 and the organic layer 130 are formed on the substrate 110. The first electrode 120 is formed by a dry method such as a coating method (wet method) such as an inkjet method, a sputtering method, or a vapor deposition method. The organic layer 130 is formed by, for example, a coating method or a vapor deposition method. Some layers of the organic layer 130 may be formed by a method different from other layers.
次いで、第2電極140を形成する。第2電極140は、例えば蒸着法を用いて形成する。この際、例えばマスクを用いることにより、開口142が形成される。
Next, the second electrode 140 is formed. The second electrode 140 is formed using, for example, a vapor deposition method. At this time, the opening 142 is formed by using, for example, a mask.
また、封止部材180を準備する。そして、封止部材180のうち光素子102に対向する面に、乾燥剤170を設ける。次いで、乾燥剤170及び封止部材180を、樹脂層150を用いて第2電極140の上に固定する。
Also, a sealing member 180 is prepared. Then, a desiccant 170 is provided on the surface of the sealing member 180 that faces the optical element 102. Next, the desiccant 170 and the sealing member 180 are fixed on the second electrode 140 using the resin layer 150.
本実施形態において、第2電極140には開口142が形成される。このため、水分等が基板110を透過してきても、この水分の少なくとも一部は開口142及び樹脂層150を介して、乾燥剤170に吸収される。従って、基板110として樹脂からなる基板を用いても、光素子102のうち第2電極140よりも基板110側の層に水分等が溜まって光素子102が劣化することを抑制できる。
In the present embodiment, an opening 142 is formed in the second electrode 140. For this reason, even if moisture or the like permeates the substrate 110, at least a part of the moisture is absorbed by the desiccant 170 through the opening 142 and the resin layer 150. Therefore, even when a substrate made of a resin is used as the substrate 110, it is possible to suppress deterioration of the optical element 102 due to accumulation of moisture or the like in the layer of the optical element 102 closer to the substrate 110 than the second electrode 140.
(実施例1)
本実施例に係る光装置100は、第2電極140の製造方法を除いて、実施形態に示した光装置100と同様である。本実施例において、第2電極140は、マスクを用いた蒸着法による成膜を複数回(例えば2回)行うことにより、形成される。この際、マスクの開口パターンは蒸着法による成膜毎に異なっている。 (Example 1)
Theoptical device 100 according to the present example is the same as the optical device 100 shown in the embodiment except for the manufacturing method of the second electrode 140. In this embodiment, the second electrode 140 is formed by performing film formation by a vapor deposition method using a mask a plurality of times (for example, twice). At this time, the opening pattern of the mask is different for each film formation by the vapor deposition method.
本実施例に係る光装置100は、第2電極140の製造方法を除いて、実施形態に示した光装置100と同様である。本実施例において、第2電極140は、マスクを用いた蒸着法による成膜を複数回(例えば2回)行うことにより、形成される。この際、マスクの開口パターンは蒸着法による成膜毎に異なっている。 (Example 1)
The
図4(a)は、第1回目の成膜時で用いられる第1マスク200の平面図であり、図4(b)は第2回目の成膜時で用いられる第2マスク202の平面図である。図4(c)は、第2電極140の平面図である。
4A is a plan view of the first mask 200 used in the first film formation, and FIG. 4B is a plan view of the second mask 202 used in the second film formation. It is. FIG. 4C is a plan view of the second electrode 140.
図4(a),(b)に示すように、第1マスク200及び第2マスク202は、いずれも線状又は点状の開口パターンを有しているが、これらの開口パターンが延在している方向は、互いに異なる(例えば、交差する方向や直交する方向)。これにより、図4(c)に示すように、第2電極140のうち光素子102となる部分は、線状又は点状の複数の第1導電層と、線状又は点状の複数の第2導電層とが交差して形成されている。複数の第1導電層は互いに平行に延在しており、複数の第2導電層は互いに平行に延在している。
As shown in FIGS. 4A and 4B, each of the first mask 200 and the second mask 202 has a linear or dotted opening pattern, but these opening patterns extend. Directions are different from each other (for example, a crossing direction or a perpendicular direction). As a result, as shown in FIG. 4C, the portion of the second electrode 140 that becomes the optical element 102 includes a plurality of linear or dotted first conductive layers and a plurality of linear or dotted first conductive layers. The two conductive layers are formed so as to intersect with each other. The plurality of first conductive layers extend in parallel with each other, and the plurality of second conductive layers extend in parallel with each other.
なお、第2電極140には、電極取出部141が形成されている。電極取出部141は、第2電極のうち光素子102とはならない部分(すなわち有機層130とは重ならない部分)に形成されており、第2電極140を、基板110上に形成された導電層(例えば配線又は端子)に接続している。電極取出部141は、抵抗を低くするために、開口を有していない。
The second electrode 140 has an electrode extraction portion 141 formed therein. The electrode extraction portion 141 is formed in a portion of the second electrode that does not become the optical element 102 (that is, a portion that does not overlap with the organic layer 130), and the second electrode 140 is a conductive layer formed on the substrate 110. (For example, a wiring or a terminal). The electrode extraction part 141 does not have an opening in order to reduce the resistance.
図5は、図4(c)に示した第2電極140のうち光素子102と重なる部分を拡大して模式的に示した図である。図6は、図5のA-A断面図である。上記したように、第2電極140は、真空蒸着を複数回(例えば2回)行うことにより、形成されている。そして、各真空蒸着において、互いに異なる方向に延在する導電層(第1導電層144及び第2導電層146)が形成される。そして、図6に示すように、第1導電層144と第2導電層146が交差する部分において、第2電極140は、他の部分よりも厚くなっている(厚膜部)。なお、第1導電層144と第2導電層146が重なっている部分において、第1導電層144と第2導電層146の境界は、明確な場合もあれば不明確な場合もある。
FIG. 5 is a diagram schematically showing an enlarged portion of the second electrode 140 shown in FIG. 4C that overlaps the optical element 102. 6 is a cross-sectional view taken along the line AA in FIG. As described above, the second electrode 140 is formed by performing vacuum deposition a plurality of times (for example, twice). In each vacuum deposition, conductive layers (first conductive layer 144 and second conductive layer 146) extending in different directions are formed. As shown in FIG. 6, the second electrode 140 is thicker than the other part (thick film part) at the part where the first conductive layer 144 and the second conductive layer 146 intersect. Note that, in the portion where the first conductive layer 144 and the second conductive layer 146 overlap, the boundary between the first conductive layer 144 and the second conductive layer 146 may be clear or unclear.
以上、本実施形態によっても、第2電極140は開口142を有しているため、基板110として樹脂からなる基板を用いても、光素子102のうち第2電極140よりも基板110側の層に水分等が溜まって光素子102が劣化することを抑制できる。
As described above, also in this embodiment, since the second electrode 140 has the opening 142, even if a substrate made of resin is used as the substrate 110, the layer on the substrate 110 side of the second electrode 140 in the optical element 102. It is possible to suppress the deterioration of the optical element 102 due to the accumulation of moisture or the like.
また、第2電極140を、複数のマスクを用いて形成しているため、細かな開口142を容易に形成することができる。また、マスクの一端から他端にかけて線状の開口を複数並ぶように形成することで、マスクの剛性を確保でき、また比較的小さい開口を複数形成することができる。
In addition, since the second electrode 140 is formed using a plurality of masks, a fine opening 142 can be easily formed. Further, by forming a plurality of linear openings from one end to the other end of the mask, the rigidity of the mask can be secured and a plurality of relatively small openings can be formed.
(実施例2)
図7は、実施例2に係る光装置100の構成を示す断面図である。本実施例に係る光装置100は、無機層162,164及び平坦化層190を有している点を除いて、実施形態又は実施例1に係る光装置100と同様の構成である。 (Example 2)
FIG. 7 is a cross-sectional view illustrating the configuration of theoptical device 100 according to the second embodiment. The optical device 100 according to the present example has the same configuration as that of the optical device 100 according to the embodiment or Example 1 except that the optical device 100 includes the inorganic layers 162 and 164 and the planarization layer 190.
図7は、実施例2に係る光装置100の構成を示す断面図である。本実施例に係る光装置100は、無機層162,164及び平坦化層190を有している点を除いて、実施形態又は実施例1に係る光装置100と同様の構成である。 (Example 2)
FIG. 7 is a cross-sectional view illustrating the configuration of the
まず、基板110の一面には、無機層162が形成されている。そして無機層162は、基板110のうち無機層160とは反対側の面に設けられている。無機層162は、酸化シリコン膜、窒化シリコン膜、及び酸窒化シリコン膜の少なくとも一層を有しており、スパッタリング法、CVD法、又はALD法を用いて形成されている。
First, an inorganic layer 162 is formed on one surface of the substrate 110. The inorganic layer 162 is provided on the surface of the substrate 110 opposite to the inorganic layer 160. The inorganic layer 162 includes at least one layer of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film, and is formed using a sputtering method, a CVD method, or an ALD method.
無機層162と第1電極120の間には、平坦化層190及び無機層164がこの順に形成されている。平坦化層190は、例えば基板110の表面(第1電極120側)を平坦にする。平坦化層190は、例えば、基板110の一面に形成された、凹凸を有する無機層164の表面(第1電極120側)を平坦にするために設けられている。平坦化層190は、例えばエポキシやアクリル等の樹脂をスリットコーティングすることによって、形成されている。無機層164は、酸化シリコン膜、窒化シリコン膜、及び酸窒化シリコン膜の少なくとも一層を有しており、スパッタリング法、CVD法、又はALD法を用いて形成されている。
Between the inorganic layer 162 and the first electrode 120, a planarization layer 190 and an inorganic layer 164 are formed in this order. The planarization layer 190 planarizes the surface (first electrode 120 side) of the substrate 110, for example. The planarization layer 190 is provided to planarize the surface (first electrode 120 side) of the uneven inorganic layer 164 formed on one surface of the substrate 110, for example. The planarization layer 190 is formed by slit coating a resin such as epoxy or acrylic. The inorganic layer 164 includes at least one layer of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film, and is formed using a sputtering method, a CVD method, or an ALD method.
本実施例によっても、第2電極140は開口142を有しているため、基板110として樹脂からなる基板を用いても、光素子102のうち第2電極140よりも基板110側の層に水分等が溜まって光素子102が劣化することを抑制できる。また、平坦化層190を設けているため、光素子102の歩留まりを向上させることができる。さらに、無機層162,164を有しているため、光素子102に水分などが浸入することを抑制できる。
Also in this embodiment, since the second electrode 140 has the opening 142, even if a substrate made of resin is used as the substrate 110, moisture in the layer closer to the substrate 110 than the second electrode 140 in the optical element 102 is obtained. It is possible to suppress the deterioration of the optical element 102 due to accumulation of the like. In addition, since the planarization layer 190 is provided, the yield of the optical element 102 can be improved. Furthermore, since the inorganic layers 162 and 164 are provided, it is possible to prevent moisture and the like from entering the optical element 102.
(実施例3)
図8は、実施例3に係る光装置100の構成を示す断面図である。本実施例に係る光装置100は、以下の点を除いて、実施形態又は実施例2に係る光装置100と同様の構成である。本図は、実施例2と同様の場合を示している。 (Example 3)
FIG. 8 is a cross-sectional view illustrating the configuration of theoptical device 100 according to the third embodiment. The optical device 100 according to the present example has the same configuration as the optical device 100 according to the embodiment or Example 2 except for the following points. This figure shows a case similar to the second embodiment.
図8は、実施例3に係る光装置100の構成を示す断面図である。本実施例に係る光装置100は、以下の点を除いて、実施形態又は実施例2に係る光装置100と同様の構成である。本図は、実施例2と同様の場合を示している。 (Example 3)
FIG. 8 is a cross-sectional view illustrating the configuration of the
まず、第1電極120の上には複数の粒子132が位置している。これら複数の粒子132は、開口142の中に位置している。詳細には、粒子132の径は、有機層130、第2電極140又は有機層130及び第2電極140の厚さの和よりも大きく、例えば100nm以上100μm以下である。そして、粒子132は、第2電極140が形成される前に配置されている。このため、粒子132によって、第2電極140に開口142が形成されている。そして、粒子132は、有機層130を構成する材料によって覆われている。ここで、粒子132を覆っている有機層130の材料は、有機層130を構成する一部の層であってもよい。
First, a plurality of particles 132 are positioned on the first electrode 120. The plurality of particles 132 are located in the opening 142. Specifically, the diameter of the particle 132 is larger than the sum of the thicknesses of the organic layer 130, the second electrode 140, or the organic layer 130 and the second electrode 140, and is, for example, 100 nm or more and 100 μm or less. The particles 132 are arranged before the second electrode 140 is formed. Therefore, an opening 142 is formed in the second electrode 140 by the particles 132. The particles 132 are covered with a material constituting the organic layer 130. Here, the material of the organic layer 130 covering the particles 132 may be a part of the layers constituting the organic layer 130.
粒子132は絶縁性の無機材料であるが、吸湿性のある材料(例えばゼオライト、シリカゲル)であるのが好ましい。この場合、開口142の中に乾燥剤が配置されていることになる。なお、粒子132は、酸化カルシウム、酸化マグネシウム、酸化ジルコニウム、酸化イットリウム、酸化アルミニウム、又は酸化シリコンなどの酸化物(例えば金属酸化物)で形成されていてもよい。
Particle 132 is an insulating inorganic material, but is preferably a hygroscopic material (eg, zeolite, silica gel). In this case, a desiccant is disposed in the opening 142. Note that the particles 132 may be formed of an oxide (eg, metal oxide) such as calcium oxide, magnesium oxide, zirconium oxide, yttrium oxide, aluminum oxide, or silicon oxide.
なお、図9に示すように、第2電極140を蒸着法で形成する場合、粒子132の上にも第2電極140が形成される。ただし、粒子132の半径を有機層130の厚さよりも大きくすると、粒子132の表面の下半分(言い換えると有機層130に対向する面)には、第2電極140が付着しない。このため、図9に示すように、第2電極140には、粒子132と重なる領域に開口142が形成される。なお、開口142の中央部は粒子132によって塞がれている。
In addition, as shown in FIG. 9, when forming the 2nd electrode 140 by a vapor deposition method, the 2nd electrode 140 is also formed on the particle | grains 132. FIG. However, if the radius of the particle 132 is larger than the thickness of the organic layer 130, the second electrode 140 does not adhere to the lower half of the surface of the particle 132 (in other words, the surface facing the organic layer 130). For this reason, as shown in FIG. 9, the second electrode 140 has an opening 142 in a region overlapping the particle 132. Note that the central portion of the opening 142 is blocked by the particles 132.
図10は、粒子132の配置方法の第1例を示す図である。本図に示す例において、有機層130のうち少なくとも一部の層(例えば正孔輸送層)は、塗布法を用いて形成される。そして、この塗布液の中に、粒子132が含まれている。このため、有機層130を塗布法で形成する際に、粒子132は第1電極120の上に配置される。
FIG. 10 is a diagram showing a first example of the arrangement method of the particles 132. In the example shown in this drawing, at least a part of the organic layer 130 (for example, a hole transport layer) is formed using a coating method. And the particle | grains 132 are contained in this coating liquid. For this reason, the particles 132 are disposed on the first electrode 120 when the organic layer 130 is formed by a coating method.
図11は、粒子132の配置方法の第2例を示す図である。本図に示す例において、粒子132は、有機層130を形成する前に第1電極120の上に配置される。例えば、粒子132を含む塗布液を第1電極120に塗布することにより、粒子132は配置される。
FIG. 11 is a diagram showing a second example of the arrangement method of the particles 132. In the example shown in this figure, the particles 132 are disposed on the first electrode 120 before the organic layer 130 is formed. For example, the particles 132 are arranged by applying a coating liquid containing the particles 132 to the first electrode 120.
図12は、粒子132の配置方法の第3例を示す図である。本図に示す例において、粒子132は、有機層130を形成した後、第2電極140を形成する前に、有機層130の上に配置される。例えば、粒子132を含む塗布液を有機層130に塗布することにより、粒子132は配置される。
FIG. 12 is a diagram showing a third example of the arrangement method of the particles 132. In the example shown in this drawing, the particles 132 are disposed on the organic layer 130 after forming the organic layer 130 and before forming the second electrode 140. For example, the particles 132 are arranged by applying a coating solution containing the particles 132 to the organic layer 130.
なお、図13に示すように、本実施例において第2電極140は、図4~図6に示した方法(実施例1)と同様の方法によって形成されてもよい。
As shown in FIG. 13, in the present embodiment, the second electrode 140 may be formed by a method similar to the method (embodiment 1) shown in FIGS.
本実施例によっても、基板110として樹脂からなる基板を用いても、光素子102のうち第2電極140よりも基板110側の層に水分等が溜まって光素子102が劣化することを抑制できる。また、粒子132として吸湿性の材料を用いた場合、基板110を透過してきた水分は粒子132でも吸収されるため、光素子102が劣化することをさらに抑制できる。
Even in this embodiment, even when a substrate made of a resin is used as the substrate 110, it is possible to suppress deterioration of the optical element 102 due to accumulation of moisture or the like in the layer on the substrate 110 side of the second electrode 140 in the optical element 102. . In addition, when a hygroscopic material is used as the particles 132, moisture transmitted through the substrate 110 is also absorbed by the particles 132, so that deterioration of the optical element 102 can be further suppressed.
以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
Claims (19)
- 樹脂を有する基板と、
第1電極、第2電極、及び、前記第1電極と前記第2電極の間に位置する有機層を有する光素子と、
前記光素子を封止する封止部材と、
を備え、
前記第1電極は前記基板側に配置され、
前記第2電極は開口を有しており、
前記開口内、又は前記第2電極と前記封止部材の間に配置された乾燥剤を備える光装置。 A substrate having a resin;
An optical element having a first electrode, a second electrode, and an organic layer positioned between the first electrode and the second electrode;
A sealing member for sealing the optical element;
With
The first electrode is disposed on the substrate side,
The second electrode has an opening;
An optical device comprising a desiccant disposed in the opening or between the second electrode and the sealing member. - 請求項1に記載の光装置において、
前記第2電極は前記開口を複数有しており、
前記複数の開口の幅は150μm以下である光装置。 The optical device according to claim 1,
The second electrode has a plurality of the openings,
The optical device wherein the plurality of openings have a width of 150 μm or less. - 請求項2に記載の光装置において、
隣り合う前記開口の間隔は150μm以下である光装置。 The optical device according to claim 2,
An optical device in which an interval between adjacent openings is 150 μm or less. - 請求項3に記載の光装置において、
前記基板の一面側に設けられた無機層を備える光装置。 The optical device according to claim 3.
An optical device comprising an inorganic layer provided on one side of the substrate. - 請求項4に記載の光装置において、
前記封止部材と前記第2電極の間に形成された樹脂層を備え、
前記乾燥剤は、前記封止部材と前記樹脂層の間に設けられている光装置。 The optical device according to claim 4.
A resin layer formed between the sealing member and the second electrode;
The desiccant is an optical device provided between the sealing member and the resin layer. - 請求項5に記載の光装置において、
前記第2電極は、線状又は点状の導電層が交差して形成されている光装置。 The optical device according to claim 5,
The second electrode is an optical device in which linear or dotted conductive layers are formed to intersect. - 請求項6に記載の光装置において、
前記第2電極は、前記線状の導電層が交差して形成された厚膜部を有する光装置。 The optical device according to claim 6.
The second device is an optical device having a thick film portion formed by intersecting the linear conductive layers. - 請求項5に記載の光装置において、
前記開口内に位置する粒子を備える光装置。 The optical device according to claim 5,
An optical device comprising particles located in the opening. - 請求項8に記載の光装置において、
前記粒子は、前記有機層を形成する有機材料で覆われている光装置。 The optical device according to claim 8, wherein
The optical device in which the particles are covered with an organic material forming the organic layer. - 請求項5に記載の光装置において、
前記乾燥剤は、前記開口内に位置する光装置。 The optical device according to claim 5,
The desiccant is an optical device located in the opening. - 請求項10に記載の光装置において、
前記第2電極は、線状の導電層が交差して形成されている光装置。 The optical device according to claim 10.
The second electrode is an optical device in which linear conductive layers are crossed. - 請求項11に記載の光装置において、
前記第2電極は、前記線状の導電層が交差して形成された厚膜部を有する光装置。 The optical device according to claim 11.
The second device is an optical device having a thick film portion formed by intersecting the linear conductive layers. - 請求項10に記載の光装置において、
前記乾燥剤は粒子である光装置。 The optical device according to claim 10.
An optical device wherein the desiccant is a particle. - 請求項13に記載の光装置において、
前記粒子は、前記有機層を構成する有機材料で覆われている光装置。 The optical device according to claim 13,
The optical device in which the particles are covered with an organic material constituting the organic layer. - 請求項1に記載の光装置において、
前記光素子は発光素子である光装置。 The optical device according to claim 1,
The optical device, wherein the optical element is a light emitting element. - 請求項1に記載の光装置において、
前記光素子は光電変換素子である光装置。 The optical device according to claim 1,
The optical device, wherein the optical element is a photoelectric conversion element. - 樹脂を有する基板の上に、第1電極、第2電極、及び、前記第1電極と前記第2電極の間にある有機層を有する光素子を形成する工程と、
前記光素子を封止部材で封止する工程と、
を備え、
前記光素子を形成する工程において、前記第2電極に開口を形成し、
さらに、前記開口内、又は前記第2電極と前記封止部材の間に乾燥剤を配置する工程を備える光装置の製造方法。 Forming a first electrode, a second electrode, and an optical element having an organic layer between the first electrode and the second electrode on a substrate having a resin;
Sealing the optical element with a sealing member;
With
In the step of forming the optical element, an opening is formed in the second electrode,
Furthermore, the manufacturing method of an optical apparatus provided with the process of arrange | positioning a desiccant in the said opening or between the said 2nd electrode and the said sealing member. - 請求項17に記載の光装置の製造方法において、
前記光素子を形成する工程において、第1の方向に延在する複数の線状の第1導電層と、前記第1の方向に交わる第2の方向に延在する複数の線状の第2導電層とを重ねることにより、前記第2電極及び前記開口を形成する光装置の製造方法。 The method of manufacturing an optical device according to claim 17,
In the step of forming the optical element, a plurality of linear first conductive layers extending in a first direction and a plurality of linear second extending in a second direction intersecting the first direction. A method of manufacturing an optical device, wherein the second electrode and the opening are formed by overlapping a conductive layer. - 請求項17に記載の光装置の製造方法において、
前記光素子を形成する工程において、
前記第2電極を形成する前に、前記基板上に粒子を配置する工程を備え、
前記第2電極を形成するときに、前記粒子と重なる部分に前記開口が形成される光装置の製造方法。 The method of manufacturing an optical device according to claim 17,
In the step of forming the optical element,
Arranging the particles on the substrate before forming the second electrode,
A method of manufacturing an optical device, wherein the opening is formed in a portion overlapping with the particles when the second electrode is formed.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/085152 WO2015097877A1 (en) | 2013-12-27 | 2013-12-27 | Optical device and optical device manufacturing method |
JP2015554456A JPWO2015097877A1 (en) | 2013-12-27 | 2013-12-27 | Optical device and optical device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/085152 WO2015097877A1 (en) | 2013-12-27 | 2013-12-27 | Optical device and optical device manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015097877A1 true WO2015097877A1 (en) | 2015-07-02 |
Family
ID=53477807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/085152 WO2015097877A1 (en) | 2013-12-27 | 2013-12-27 | Optical device and optical device manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015097877A1 (en) |
WO (1) | WO2015097877A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017065058A1 (en) * | 2015-10-16 | 2018-08-02 | 住友化学株式会社 | Organic photoelectric conversion element |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003092191A (en) * | 2001-07-11 | 2003-03-28 | Semiconductor Energy Lab Co Ltd | Luminescent device and method for manufacturing the same |
JP2008234921A (en) * | 2007-03-19 | 2008-10-02 | Seiko Epson Corp | Electroluminescent device and electronic apparatus |
JP2009026648A (en) * | 2007-07-20 | 2009-02-05 | Pioneer Electronic Corp | Organic el panel, and manufacturing method thereof |
JP2009037810A (en) * | 2007-07-31 | 2009-02-19 | Sumitomo Chemical Co Ltd | Organic electroluminescent element, and manufacturing method thereof |
JP2011204645A (en) * | 2010-03-26 | 2011-10-13 | Panasonic Electric Works Co Ltd | Light-emitting device |
JP2012028338A (en) * | 2011-09-30 | 2012-02-09 | Sumitomo Chemical Co Ltd | Organic electroluminescent element and method for manufacturing the same |
JP2013157340A (en) * | 2010-11-02 | 2013-08-15 | Oji Holdings Corp | Organic light emitting diode and method for manufacturing the same, image display device and lighting system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070013293A1 (en) * | 2005-07-12 | 2007-01-18 | Eastman Kodak Company | OLED device having spacers |
-
2013
- 2013-12-27 JP JP2015554456A patent/JPWO2015097877A1/en active Pending
- 2013-12-27 WO PCT/JP2013/085152 patent/WO2015097877A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003092191A (en) * | 2001-07-11 | 2003-03-28 | Semiconductor Energy Lab Co Ltd | Luminescent device and method for manufacturing the same |
JP2008234921A (en) * | 2007-03-19 | 2008-10-02 | Seiko Epson Corp | Electroluminescent device and electronic apparatus |
JP2009026648A (en) * | 2007-07-20 | 2009-02-05 | Pioneer Electronic Corp | Organic el panel, and manufacturing method thereof |
JP2009037810A (en) * | 2007-07-31 | 2009-02-19 | Sumitomo Chemical Co Ltd | Organic electroluminescent element, and manufacturing method thereof |
JP2011204645A (en) * | 2010-03-26 | 2011-10-13 | Panasonic Electric Works Co Ltd | Light-emitting device |
JP2013157340A (en) * | 2010-11-02 | 2013-08-15 | Oji Holdings Corp | Organic light emitting diode and method for manufacturing the same, image display device and lighting system |
JP2012028338A (en) * | 2011-09-30 | 2012-02-09 | Sumitomo Chemical Co Ltd | Organic electroluminescent element and method for manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017065058A1 (en) * | 2015-10-16 | 2018-08-02 | 住友化学株式会社 | Organic photoelectric conversion element |
EP3364473A4 (en) * | 2015-10-16 | 2019-06-12 | Sumitomo Chemical Company, Limited | Organic photoelectric conversion element |
JP7166756B2 (en) | 2015-10-16 | 2022-11-08 | 住友化学株式会社 | Organic photoelectric conversion device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015097877A1 (en) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7137670B2 (en) | light emitting device | |
TWI556485B (en) | Optoelectronic device package and array | |
KR101642656B1 (en) | Organic semiconductor device and method for manufacturing organic semiconductor device | |
TWI524515B (en) | Optoelectronic device array | |
CN113141779B (en) | Display substrate, manufacturing method thereof and display device | |
JP2013506958A (en) | Monolithic parallel interconnect structure | |
JP2007179914A (en) | El device and method of manufacturing same | |
WO2015097877A1 (en) | Optical device and optical device manufacturing method | |
WO2015181869A1 (en) | Light emitting device | |
KR20160055142A (en) | Radiation-emitting device and method for producing same | |
US10418419B2 (en) | Radiation-emitting apparatus having an outer optoelectronic device surrounding an inner optoelectronic device and methods for producing the same | |
JP2018077499A (en) | Optical device | |
WO2016046914A1 (en) | Light emitting device | |
JP2014203526A (en) | Junction structure and light-emitting device | |
WO2017154207A1 (en) | Light-emitting device | |
JP2019050433A (en) | Light-emitting device | |
JP2017162765A (en) | Light-emitting device | |
JP2019133959A (en) | Light-emitting device | |
JP2014203527A (en) | Joining structure and light-emitting device | |
WO2014162451A1 (en) | Joined structure and light-emitting device | |
WO2014162449A1 (en) | Joining structure and light-emitting device | |
JP2016134329A (en) | Light-emitting device | |
JP2016085923A (en) | Light emitting device | |
JP2016100314A (en) | Light emitting device | |
JP2016100172A (en) | Light-emitting device and method for manufacturing light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13900117 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015554456 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13900117 Country of ref document: EP Kind code of ref document: A1 |