WO2014162449A1 - Joining structure and light-emitting device - Google Patents

Joining structure and light-emitting device Download PDF

Info

Publication number
WO2014162449A1
WO2014162449A1 PCT/JP2013/059927 JP2013059927W WO2014162449A1 WO 2014162449 A1 WO2014162449 A1 WO 2014162449A1 JP 2013059927 W JP2013059927 W JP 2013059927W WO 2014162449 A1 WO2014162449 A1 WO 2014162449A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
electrode
wiring
conductive
buffer member
Prior art date
Application number
PCT/JP2013/059927
Other languages
French (fr)
Japanese (ja)
Inventor
雄司 齋藤
正宣 赤木
博樹 丹
賢一 奥山
邦彦 白幡
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/059927 priority Critical patent/WO2014162449A1/en
Publication of WO2014162449A1 publication Critical patent/WO2014162449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to a junction structure and a light emitting device.
  • organic EL Organic Electroluminescence
  • An organic EL element is comprised by the transparent electrode, the other electrode arrange
  • Examples of the technology related to the organic EL element include those described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 includes a first conductive film formed by forming a metal wiring in a pattern, and a second conductive film containing a conductive polymer that continuously covers the first conductive film and the transparent substrate. A transparent electrode is described.
  • Patent Document 2 describes a light-emitting element having an electrode composed of a metal line formed in a line shape and a polymer line covering the upper surface and side surfaces of the metal line.
  • connection failure may occur at the joint and its peripheral part. In this case, the connection reliability between the two conductive films joined to each other may be reduced.
  • An example of a problem to be solved by the present invention is to improve connection reliability between two conductive films joined to each other.
  • the first conductive film has a bonding structure that covers a part of the second conductive film and the buffer member.
  • the invention according to claim 9 is: A light-emitting device having the junction structure according to any one of claims 1 to 6, An organic EL element having a first electrode, a second electrode, and an organic layer disposed between the first electrode and the second electrode; A first wiring electrically connected to the first electrode and configured by the first conductive film; A lead wire joined to the first wire and made of the second conductive film; It is a light-emitting device provided with.
  • the invention according to claim 10 is: A light-emitting device having the junction structure according to any one of claims 1 to 6, An organic EL element comprising: a first electrode composed of the first conductive film; a second electrode; and an organic layer disposed between the first electrode and the second electrode; A lead wire bonded to the first electrode and configured by the second conductive film; It is a light-emitting device provided with.
  • FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1.
  • FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1.
  • It is a figure which shows a part of light-emitting device shown in FIG. It is a figure which shows a part of light-emitting device shown in FIG.
  • junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. It is a figure which shows an example of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. It is a figure which shows an example of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. It is a figure which shows the modification of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment.
  • FIG. 12 is a cross-sectional view showing a CC cross section of FIG. 11.
  • FIG. 12 is a cross-sectional view showing a DD cross section of FIG. 11. It is a figure which shows a part of light-emitting device shown in FIG.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment.
  • 2 is a cross-sectional view showing the AA cross section of FIG. 1
  • FIG. 3 is a cross-sectional view showing the BB cross section of FIG. 4 and 5 are views showing a part of the light emitting device 10 shown in FIG.
  • FIG. 4 shows the positional relationship between the first conductive film 110 and the second conductive film 130.
  • FIG. 5 shows the configuration of the insulating layer 120.
  • FIGS. 6 to 9 are views showing an example of the bonding structure 200 constituted by the first conductive film 110 and the second conductive film 130 in the present embodiment.
  • FIG. 10 is a view showing a modified example of the bonding structure 200 constituted by the first conductive film 110 and the second conductive film 130 in the present embodiment.
  • the first conductive film 110 made of a conductive material and the second conductive film 130 made of a metal material, which are provided on the substrate 100, are bonded to each other. Become. In the peripheral region of the second conductive film 130 on the substrate 100, one or more buffer members 202 made of a material different from the conductive material forming the first conductive film 110 are provided. The first conductive film 110 covers a part of the second conductive film 130 and the buffer member 202.
  • the light emitting device 10 has a joint structure 200.
  • the light emitting device 10 includes an organic EL element 20, a first wiring 114, and a lead wiring 134.
  • the organic EL element 20 includes a first electrode 112, a second electrode 152, and an organic layer 140 disposed between the first electrode 112 and the second electrode 152.
  • the first wiring 114 is electrically connected to the first electrode 112 and is configured by the first conductive film 110.
  • the lead wiring 134 is joined to the first wiring 114 and is configured by the second conductive film 130.
  • the bonding structure 200 is a bonding structure in which the first conductive film 110 and the second conductive film 130 are bonded to each other.
  • the bonding between the first conductive film 110 and the second conductive film 130 includes a case where another structure is interposed between the first conductive film 110 and the second conductive film 130.
  • the bonding structure 200 is formed on the substrate 100, for example. In this case, the first conductive film 110 and the second conductive film 130 are formed on the substrate 100.
  • the junction structure 200 constitutes a light emitting device including, for example, an organic EL element.
  • the light emitting device includes, for example, an organic EL element, a first wiring that is electrically connected to an electrode that constitutes the organic EL element, and a lead wiring that is electrically connected to the first wiring.
  • an electrical signal for controlling light emission / non-light emission from the outside is supplied to the electrodes constituting the organic EL element via the lead wiring and the first wiring.
  • the 1st electrically conductive film 110 among the joining structures 200 comprises the 1st wiring connected to the electrode which comprises an organic EL element, for example.
  • the second conductive film 130 of the bonding structure 200 constitutes, for example, a lead wiring. In this case, the junction structure 200 is formed between the first wiring and the lead-out wiring.
  • the first conductive film 110 is configured to substantially include a conductive material.
  • the conductive material constituting the first conductive film 110 include a transparent conductive material or a paste-like conductive material such as silver. Among these, a transparent conductive material is particularly preferable.
  • the first conductive film 110 is made of a transparent conductive material, the first conductive film 110 is a conductive film having transparency.
  • the first conductive film 110 has a shape extending in one direction parallel to the plane of the substrate 100, for example.
  • the transparent conductive material includes, for example, an inorganic material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), or a conductive polymer.
  • the transparent conductive material includes a conductive polymer
  • the first conductive film 110 can be formed using a coating method. In this case, in the step of forming the first conductive film 110, it is possible to suppress a thermal load from being applied to other components such as the substrate 100.
  • the first conductive film 110 is preferably a coating-type conductive film formed by applying a solution in which this inorganic material is dispersed in an organic solvent. . Even in such a case, the first conductive film 110 can be formed by a coating method.
  • the conductive polymer included in the transparent conductive material constituting the first conductive film 110 is a conductive polymer including, for example, a ⁇ -conjugated conductive polymer and a polyanion.
  • the ⁇ -conjugated conductive polymer is not particularly limited.
  • a chain conductive polymer of phenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl compounds can be used. From the viewpoint of conductivity, transparency, stability, etc., polythiophenes or polyanilines are preferable, and polyethylene dioxythiophene is particularly preferable.
  • Polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, or polyacrylic acid can be used.
  • the polyanion used in the present embodiment may be a homopolymer of these or two or more kinds of copolymers.
  • the transparent conductive material may further include a crosslinking agent, a leveling agent, an antifoaming agent, or the like.
  • the second conductive film 130 includes a metal material.
  • a metal material having a lower electrical resistivity than the conductive material constituting the first conductive film 110 is used.
  • the first conductive film 110 and the second conductive film 130 are made of different materials.
  • the metal material constituting the second conductive film 130 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd.
  • the 2nd electrically conductive film 130 is comprised by 1 type, or 2 or more types of these.
  • one or a plurality of buffer members 202 are provided in the peripheral region of the second conductive film 130 on the substrate 100.
  • the buffer member 202 is provided at a position away from the second conductive film 130 so as not to directly contact the second conductive film 130.
  • the buffer member 202 is positioned in the first direction as viewed from the second conductive film 130, for example.
  • the plurality of buffer members 202 are provided on the substrate 100, the plurality of buffer members 202 are arranged in the first direction as viewed from the second conductive film 130, for example.
  • the buffer member 202 is made of a material different from the conductive material constituting the first conductive film 110.
  • the first conductive film 110 is provided so as to cover a part of the second conductive film 130 and the buffer member 202.
  • the second conductive film 130 has a part of the covering portion 220 covered with the first conductive film 110.
  • each buffer member 202 may be entirely covered with the first conductive film 110, or a part thereof may be covered with the first conductive film 110.
  • a part of the first conductive film 110 exists between the second conductive film 130 and the buffer member 202.
  • the plurality of buffer members 202 are provided on the substrate 100, for example, a part of the first conductive film 110 exists between the adjacent buffer members 202.
  • the first conductive film 110 is formed, for example, such that one end of the first conductive film 110 overlaps part of the second conductive film 130. At this time, a portion of the second conductive film 130 that overlaps the one end of the first conductive film 110 is covered with the first conductive film 110 to form the covering portion 220.
  • the first conductive film 110 extends in the first direction when viewed from the second conductive film 130. For this reason, the first conductive film 110 covers the buffer member 202 positioned in the first direction when viewed from the second conductive film 130.
  • the first direction refers to the Y direction in the figure, for example.
  • the present inventor has found that the conductive material constituting the first conductive film 110 receives a tension due to the surface tension acting on the second conductive film 130, whereby the thickness of the first conductive film 110 is partially reduced. I found out. Such a problem becomes particularly apparent when the film thickness of the second conductive film 130 is increased in order to reduce the wiring resistance in the second conductive film 130. This is presumably because the surface tension acting on the second conductive film 130 is increased by increasing the film thickness of the second conductive film 130. In this case, the wiring resistance in the first conductive film 110 increases, which may cause a connection failure between the first conductive film 110 and the second conductive film 130. As a result, the connection reliability between the two conductive films joined to each other decreases.
  • one or a plurality of buffer members 202 made of a material different from the conductive material constituting the first conductive film 110 are provided in the peripheral region of the second conductive film 130 on the substrate 100. ing.
  • the first conductive film 110 is provided so as to cover a part of the second conductive film 130 and the buffer member 202.
  • the buffer member 202 can relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130. Therefore, connection failure between the first conductive film and the second conductive film can be suppressed, and connection reliability between the two conductive films joined to each other can be improved.
  • the buffer member 202 is made of, for example, a metal material or an insulating material.
  • a metal material it is possible to suppress a decrease in wiring resistance in the joint structure 200.
  • the buffer member 202 is made of an insulating material, the buffer member 202 can be easily formed using a lithography method or the like.
  • the metal material constituting the buffer member 202 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd.
  • the insulating material constituting the buffer member 202 examples include those made of organic materials such as polyimide, epoxy, and acrylic, and those made of inorganic oxides and inorganic nitrides such as SiO 2 , SiN, MgO, Al 3 O 2 , and TiO 2. Alternatively, the same material as the insulating film 120 described later can be used.
  • the buffer member 202 is made of a metal material, for example, the buffer member 202 and the second conductive film 130 can be made of the same metal material.
  • the buffer member 202 is provided in the peripheral region of the second conductive film 130.
  • the peripheral region of the second conductive film 130 refers to, for example, a region on the substrate 100 located within a certain length from the second conductive film 130 in the first direction.
  • the film thickness of the second conductive film 130 is D1
  • the length of the region sandwiched between the second conductive film 130 and the buffer member 202 is L1.
  • the length L1 preferably satisfies 0.5 ⁇ D1 ⁇ L1 ⁇ 5 ⁇ D1.
  • the conductive material constituting the first conductive film 110 is separated from the second conductive film 130 in the region located between the second conductive film 130 and the buffer member 202. It can suppress that the film thickness of the 1st electrically conductive film 110 receives a tension
  • the buffer member 202 farthest from the second conductive film 130 has a smaller film thickness than the second conductive film 130.
  • the tension that the conductive material constituting the first conductive film 110 receives from the buffer member 202 having a film thickness smaller than that of the second conductive film 130 is that the conductive material constituting the first conductive film 110 is the second conductive film. Less than the tension received from 130. Therefore, the buffer member 202 can relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130.
  • the film thickness of the buffer member 202 is made smaller than the film thickness of the second conductive film 130.
  • the thickness of all the buffer members 202 be smaller than the thickness of the second conductive film 130.
  • the tension applied to the first conductive film 110 from the second conductive film 130 can be effectively relaxed.
  • the film thickness of only a part of the buffer members 202 including the buffer member 202 located farthest from the second conductive film 130 is set to the film thickness of the second conductive film 130. It may be smaller than the thickness.
  • the film thickness of the second conductive film 130 is D1
  • the film thickness of the buffer member 202 is D2.
  • the film thickness D2 of at least the buffer member 202 farthest from the second conductive film 130 satisfies 0.2 ⁇ D1 ⁇ D2 ⁇ 0.9 ⁇ D1.
  • FIG. 6 to 9 are diagrams illustrating an example of the bonding structure 200.
  • FIG. 6 and 7 exemplify the case where only one buffer member 202 is provided on the substrate 100.
  • 6 is an example of a cross-sectional structure
  • FIG. 7 is an example of a planar structure.
  • the film thickness of the first conductive film 110 has a gradient that decreases from the second conductive film 130 toward the buffer member 202.
  • the upper surface of the first conductive film 110 has an inclined surface that becomes lower at a distance from the second conductive film 130 at least in a region overlapping with the buffer member 202.
  • Such a configuration is realized by relaxing the tension received by the conductive material constituting the first conductive film 110 by the buffer member 202.
  • the second conductive film 130 has a wiring shape extending in the first direction.
  • the width of the buffer member 202 in the second direction can be made smaller than the width of the second conductive film 130 in the second direction.
  • the second direction refers to a direction orthogonal to the first direction in a plane parallel to the plane of the substrate 100.
  • the width of the buffer member 202 in the second direction may be equal to the width of the second conductive film 130 in the second direction, or may be larger than the width of the second conductive film 130 in the second direction.
  • FIG. 8 and 9 exemplify a case where a plurality of buffer members 202 are provided on the substrate 100.
  • FIG. 9 is an example of a planar structure.
  • a plurality of buffer members 202 arranged so that the film thickness decreases as the distance from the second conductive film 130 increases on the substrate 100. That is, the buffer member 202 farthest from the second conductive film 130 among the plurality of buffer members 202 has the smallest film thickness in the plurality of buffer members 202.
  • the plurality of buffer members 202 have different film thicknesses, for example.
  • the tension received by the conductive material constituting the first conductive film 110 gradually decreases as the distance from the second conductive film 130 increases.
  • the tension applied to the conductive material constituting the first conductive film 110 can be more effectively relaxed by the plurality of buffer members 202.
  • the film thickness of the first conductive film 110 has a gradient that decreases from the second conductive film 130 toward the buffer member 202.
  • the upper surface of the first conductive film 110 has an inclined surface that becomes lower as the distance from the second conductive film 130 increases, at least in a portion overlapping the plurality of buffer members 202.
  • Such a configuration is realized by relaxing the tension received by the conductive material constituting the first conductive film 110 by the plurality of buffer members 202.
  • the second conductive film 130 has a wiring shape extending in the first direction.
  • the width of the plurality of buffer members 202 in the second direction can be made smaller than the width of the second conductive film 130 in the second direction.
  • the plurality of buffer members 202 may be arranged so that the width decreases as the distance from the second conductive film 130 increases.
  • the width of the plurality of buffer members 202 in the second direction may be equal to the width of the second conductive film 130 in the second direction, or may be larger than the width of the second conductive film 130 in the second direction.
  • the buffer member 202 has a surface tension smaller than that of the second conductive film 130, for example.
  • the tension that the conductive material constituting the first conductive film 110 receives from the buffer member 202 is smaller than the tension that the conductive material receives from the second conductive film 130. Therefore, the buffer member 202 can relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130.
  • the buffer member 202 is made of a material having a surface tension smaller than that of the second conductive film 130 so that the surface tension acting on the buffer member 202 is smaller than the surface tension acting on the second conductive film 130. be able to. Further, the surface tension acting on the buffer member 202 may be made smaller than the surface tension acting on the second conductive film 130 by performing a surface treatment for reducing the surface tension on the buffer member 202.
  • the film thickness of the buffer member 202 is not particularly limited, and may be equal to the film thickness of the second conductive film 130 or may be smaller or larger than the film thickness of the second conductive film 130.
  • FIG. 10 is a diagram illustrating a modified example of the bonding structure 200.
  • FIG. 10 illustrates a case where only one buffer member 202 is provided on the substrate 100.
  • a plurality of buffer members 202 may be provided on the substrate 100.
  • the buffer member 202 having a surface tension smaller than that of the second conductive film 130 is disposed as the buffer member 202 farthest from the second conductive film 130 among the plurality of buffer members 202.
  • the buffer member 202 other than the buffer member 202 farthest from the second conductive film 130 is also preferably the buffer member 202 having a surface tension smaller than that of the second conductive film 130.
  • the bonding structure 200 in which the first conductive film 110 and the second conductive film 130 are bonded to each other is formed as follows.
  • the second conductive film 130 is formed over the substrate 100.
  • the second conductive film 130 is formed using, for example, a coating method, a sputtering method, or a vapor deposition method.
  • a coating method used in the said process For example, the inkjet method, the screen printing method, the spray coating method, or the dispenser coating method is mentioned.
  • coating method contains binder resin and an organic solvent, for example.
  • the binder resin for example, a cellulose resin, an epoxy resin, or an acrylic resin can be used.
  • the organic solvent for example, a hydrocarbon solvent or an alcohol solvent can be used.
  • the metal particles contained in the coating liquid are, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, or Pd.
  • one or more buffer members 202 are formed in the peripheral region of the second conductive film 130 on the substrate 100.
  • the buffer member 202 is formed using, for example, a coating method.
  • the buffer member 202 is formed, for example, by applying an insulating resin on the substrate 100 and drying it.
  • the buffer member 202 may be formed by applying an insulating resin containing a photosensitive resin over the substrate 100 to form an insulating film, and then patterning the insulating film by a photolithography method.
  • the buffer member 202 is made of a metal material
  • the buffer member 202 is formed using, for example, a coating method.
  • the coating method used in this case is not particularly limited, but for example, an ink jet method or a similar technique can be used.
  • the coating solution contains metal particles made of, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, or Pd.
  • the coating solution may further contain a binder resin and an organic solvent.
  • the second conductive film 130 and the buffer member 202 may be formed at the same time by etching a metal film formed on the substrate 100.
  • the buffer member 202 is further etched in a state where the second conductive film 130 is masked.
  • the film thickness of the buffer member 202 can be made smaller than that of the second conductive film 130.
  • the method may further include a step of etching another buffer member 202 in a state where the second conductive film 130 and a part of the buffer members 202 are masked. Thereby, the film thickness of the buffer member 202 located farthest from the second conductive film 130 among the plurality of buffer members 202 can be minimized.
  • a first conductive film 110 is formed over the substrate 100.
  • the first conductive film 110 is formed, for example, by applying a transparent conductive material-containing coating solution on the substrate 100 and drying it.
  • the first conductive film 110 is formed so as to cover a part of the second conductive film 130 and the buffer member 202, for example.
  • the first conductive film 110 is formed so as to cover a part of the second conductive film 130 and the plurality of buffer members 202.
  • the transparent conductive material-containing coating solution is not particularly limited, but is applied onto the substrate 100 using, for example, an ink jet method, a screen printing method, a relief printing method, a gravure printing method, a die coat, a spin coat, or a spray.
  • the transparent conductive material-containing coating solution used in the step of forming the first conductive film 110 includes, for example, an organic solvent and water in addition to the above-described transparent conductive material.
  • the organic solvent for example, an alcohol solvent can be used.
  • the first conductive film 110 may be formed by applying a paste-like conductive material such as silver on the substrate 100 and drying it. In the present embodiment, the joining structure 200 is formed in this way.
  • the light emitting device 10 may be a lighting device.
  • the light-emitting device 10 is an illumination device
  • the light-emitting device 10 has a configuration in which, for example, a plurality of linear organic layers 140 having different emission colors are arranged repeatedly. Thereby, the illuminating device excellent in color rendering properties is realized.
  • the light-emitting device 10 that is a lighting device may have a planar organic layer 140.
  • the substrate 100 is, for example, a transparent substrate.
  • the substrate 100 can be a glass substrate. Thereby, the light emitting device 10 having excellent heat resistance and the like can be manufactured at low cost.
  • the substrate 100 may be a film-like substrate made of a resin material.
  • a display with particularly high flexibility can be realized.
  • the resin material constituting the film substrate include polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
  • the light emitting device 10 that is a display has a plurality of organic EL elements 20 arranged in an array on the substrate 100, for example.
  • the organic EL element 20 includes a first electrode 112 provided on the substrate 100, an organic layer 140 provided on the first electrode 112, and a second electrode 152 provided on the organic layer 140. ing. At this time, the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
  • a plurality of first electrodes 112 extending in the Y direction in the drawing and a plurality of second electrodes 152 extending in the X direction in the drawing are provided on the substrate.
  • the organic EL element 20 is formed in each portion where the first electrode 112 and the second electrode 152 overlap each other in plan view. As a result, a plurality of organic EL elements 20 arranged in an array are formed on the substrate 100.
  • the first electrode 112 serves as an anode of an organic EL element, for example.
  • the first electrode 112 is, for example, a transparent electrode that is transparent or translucent to the wavelength of light emitted from the light emitting layer 144 of the organic layer 140 described later.
  • the first electrode 112 is provided, for example, on the substrate 100 and in the pixel region 300 so as to extend linearly in the Y direction in the drawing.
  • On the substrate 100 for example, a plurality of first electrodes 112 that are separated from each other are arranged in a direction (X direction in the drawing) perpendicular to the extending direction of the first electrodes 112. At this time, the plurality of first electrodes 112 are separated from each other, for example.
  • the pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 4, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • the first electrode 112 is made of, for example, a transparent conductive material.
  • the transparent conductive material constituting the first electrode 112 for example, the same transparent conductive material as that constituting the first conductive film 110 can be used. For this reason, the 1st electrode 112 can have transparency.
  • the first wiring 114 is provided on the substrate 100.
  • the case where the 1st wiring 114 is electrically connected with the 1st electrode 112 is illustrated.
  • a plurality of first wirings 114 connected to different first electrodes 112 are provided on the substrate 100.
  • the plurality of first electrodes 112 in the present embodiment are connected to the lead-out wiring 134 via the first wiring 114, respectively.
  • the first wiring 114 is constituted by the first conductive film 110 made of a conductive material.
  • the first wiring 114 formed of the first conductive film 110 can have transparency.
  • the first electrode 112 and the first wiring 114 are provided integrally on the substrate 100, for example.
  • the first wiring 114 and the first electrode 112 are constituted by the first conductive film 110, for example.
  • a portion of the first conductive film 110 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the first electrode 112.
  • a portion of the first conductive film 110 located outside the pixel region 300 becomes the first wiring 114.
  • the first electrode 112 is connected to the lead wiring 134 through the first wiring 114.
  • a plurality of first conductive films 110 extending in the Y direction in the drawing are provided on the substrate 100.
  • the plurality of first conductive films 110 are arranged in the X direction in the drawing so as to be separated from each other. A portion of the first conductive film 110 located on the end side connected to the extraction wiring 134 from the pixel region 300 indicated by the alternate long and short dash line is the first wiring 114.
  • a lead wiring 134 is provided on the substrate 100 .
  • the lead wiring 134 is connected to the first wiring 114 .
  • a plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other.
  • Each lead-out wiring 134 is connected to the first wiring 114.
  • the plurality of first wires 114 are connected to the outside via the lead wires 134, respectively.
  • a light emission / non-light emission signal is supplied to the organic EL element 20 via the first wiring 114 and the lead-out wiring 134.
  • the lead-out wiring 134 is comprised by the 2nd electrically conductive film 130 comprised with a metal material. Therefore, when the lead wiring 134 is connected to the first wiring 114, the first wiring 114 configured by the first conductive film 110 and the lead wiring 134 configured by the second conductive film 130 are bonded to each other. Thus, the joint structure 200 is formed. In the example illustrated in FIG. 4, the joint structure 200 is formed in a portion surrounded by a broken line.
  • the buffer member 202 is formed on the substrate 100 in the peripheral region of the lead wiring 134. The first wiring 114 is formed so as to cover a part of the lead wiring 134 and the buffer member 202.
  • the first wiring 114 is connected to the lead wiring 134 at one end. At this time, the first wiring 114 is bonded to, for example, the lead wiring 134 at the one end portion to form the bonding structure 200.
  • the first wiring 114 extends in the first direction when viewed from the lead wiring 134. In the present embodiment, the first direction refers to the Y direction in the figure, for example.
  • An insulating layer 120 is provided on the substrate 100 so as to cover the first electrode 112, for example.
  • the insulating layer 120 is provided so as to cover the first electrode 112 and the first wiring 114 and a part of each of the extraction wiring 164 described later.
  • the insulating layer 120 is a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by exposure and development.
  • the insulating layer 120 may be made of a resin material other than polyimide resin, and may be epoxy resin or acrylic resin.
  • the insulating layer 120 is provided with a plurality of first openings 122, for example.
  • the first openings 122 are formed so as to form a matrix, for example.
  • the plurality of first openings 122 are formed so as to be located on the first electrode 112.
  • the plurality of first openings 122 are provided at positions overlapping the second electrode 152 extending in a direction orthogonal to the first electrode 112 (X direction in the figure), for example. For this reason, the plurality of first openings 122 are arranged to form a matrix.
  • the insulating layer 120 is provided with a plurality of second openings 124, for example. As shown in FIG. 5, the second opening 124 is provided, for example, so as to be located on the lead wiring 164.
  • the plurality of second openings 124 are arranged along one side of the matrix formed by the first openings 122. When viewed in a direction along this one side (for example, Y direction in the figure), the second openings 124 are arranged at the same interval as the first openings 122.
  • a partition wall 170 is provided on the insulating layer 120. As shown in FIG. 1, the partition 170 is provided so as to extend in the X direction in the drawing. That is, the partition 170 is formed along the extending direction of the second electrode 152. A plurality of partition walls 170 are provided so as to be arranged in the Y direction in the drawing.
  • the partition wall 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed.
  • the partition wall 170 may be made of a resin material other than a polyimide resin, or may be an epoxy resin or an acrylic resin.
  • the partition wall 170 has, for example, a trapezoidal cross-sectional shape (reverse trapezoidal shape). That is, the width of the upper surface of the partition wall 170 is larger than the width of the bottom surface of the partition wall 170, for example. In this case, even when the plurality of second electrodes 152 are collectively formed by a sputtering method, a vapor deposition method, or the like, the plurality of second electrodes 152 positioned between the adjacent partition walls 170 can be separated from each other. It becomes. Therefore, the second electrode 152 can be easily formed.
  • the planar shape of the partition wall 170 is not limited to that shown in FIG. Therefore, by changing the planar shape of the partition 170, the planar pattern of the plurality of second electrodes 152 that are separated from each other by the partition 170 can be freely changed.
  • an organic layer 140 is formed in the first opening 122.
  • the organic layer 140 is configured by a stacked body in which, for example, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially stacked.
  • the hole injection layer 142 is in contact with the first electrode 112
  • the electron injection layer 146 is in contact with the second electrode 152.
  • the organic layer 140 is sandwiched between the first electrode 112 and the second electrode 152.
  • a hole transport layer may be formed between the hole injection layer 142 and the light emitting layer 144, or an electron transport layer may be formed between the light emitting layer 144 and the electron injection layer 146.
  • the organic layer 140 may not include the hole injection layer 142.
  • a partition 170 is provided on the insulating layer 120.
  • the organic layers 140 provided in each of a plurality of regions sandwiched between adjacent partition walls 170 are separated from each other in the Y direction in the drawing.
  • a laminated film made of the same material as the organic layer 140 is formed on the partition wall 170, for example.
  • each layer constituting the organic layer 140 is provided so as to be continuous between adjacent first openings 122 in the X direction in the drawing in which the partition 170 extends.
  • a second electrode 152 is provided on the organic layer 140.
  • the 2nd electrode 152 becomes a cathode of an organic EL element, for example.
  • the second electrode 152 is provided, for example, so as to extend linearly in the X direction in the drawing.
  • On the substrate 100 for example, a plurality of second electrodes 152 spaced apart from each other are arranged in a direction (Y direction in the drawing) perpendicular to the extending direction of the second electrodes 152.
  • the second electrode 152 is made of a metal material such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof. One of these materials may be used alone, or two or more arbitrary combinations may be used. Note that in the case where the second electrode 152 is a cathode, the second electrode 152 is preferably made of a conductive material having a work function smaller than that of the first electrode 112 that is an anode.
  • a second wiring 154 is provided on the substrate 100.
  • the second wiring 154 is connected to one of the first electrode 112 and the second electrode 152 that is not connected to the first wiring 114.
  • one of the first electrode 112 and the second electrode 152 that is connected to the second wiring 154 is connected to the outside via the second wiring 154.
  • a case where the second wiring 154 is provided on the organic layer 140 and connected to the second electrode 152 is exemplified.
  • a plurality of second wirings 154 connected to the different second electrodes 152 are provided on the organic layer 140.
  • the plurality of second electrodes 152 in the present embodiment are connected to the outside via the second wirings 154, respectively.
  • part of the second wiring 154 is embedded in the second opening 124, and part of the second wiring 154 is connected to an extraction wiring 164 described later.
  • the second wiring 154 is made of, for example, a metal material.
  • a metal material constituting the second wiring 154 for example, the same material as the second electrode 152 can be used.
  • the second electrode 152 and the second wiring 154 are provided integrally on the organic layer 140, for example, and constitute the conductive film 150.
  • a part of the conductive film 150 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the second electrode 152.
  • a portion of the conductive film 150 located outside the pixel region 300 serves as the second wiring 154.
  • the second electrode 152 is connected to the lead wiring 164 via the second wiring 154, for example.
  • a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • a plurality of conductive films 150 extending in the X direction in the drawing are provided on the organic layer 140.
  • the plurality of conductive films 150 are arranged in the Y direction in the drawing so as to be separated from each other.
  • a portion located on the end side connected to the extraction wiring 164 with respect to the pixel region 300 becomes the second wiring 154.
  • the plurality of conductive films 150 are collectively formed on the organic layer 140 using, for example, a sputtering method or a vapor deposition method. Even in such a case, since the partition 170 is formed on the insulating layer 120 in this embodiment, the conductive film 150 provided in each of a plurality of regions sandwiched between adjacent partitions 170 is illustrated in the drawing. They are separated from each other in the Y direction. As a result, it is possible to form a plurality of conductive films 150 arranged in the Y direction in the drawing and extending in the X direction in the drawing so as to be separated from each other. At this time, a film made of the same material as the conductive film 150 is formed over the partition wall 170.
  • a lead wiring 164 is provided on the substrate 100.
  • the second wiring 154 is connected to the outside through the lead wiring 164. Therefore, the second electrode 152 is connected to the outside via the second wiring 154 and the lead wiring 164, and a signal is supplied.
  • the lead wiring 164 is made of, for example, a metal material.
  • the metal material constituting the lead wiring 164 for example, the same material as the lead wiring 134 can be used. In this case, the lead wiring 164 can be formed simultaneously with the lead wiring 134. For this reason, it can suppress that the manufacturing process number of the light-emitting device 10 increases.
  • the lead wiring 134 is formed on the substrate 100.
  • the lead wiring 134 is formed on the substrate 100 using, for example, a coating method, a sputtering method, or a vapor deposition method.
  • the lead wiring 134 is configured by the second conductive film 130.
  • the lead wiring 134 is formed using, for example, the above-described method for forming the second conductive film 130 and the material forming the second conductive film 130.
  • one or a plurality of buffer members 202 are formed in the peripheral region of the lead wiring 134 constituted by the second conductive film 130 by the method described above.
  • the lead wiring 164 is formed on the substrate 100 simultaneously with the step of forming the lead wiring 134.
  • the lead wiring 164 is formed by the same method and material as the lead wiring 134, for example.
  • the first wiring 114 is formed on the substrate 100.
  • the first wiring 114 is formed by, for example, applying a transparent conductive material-containing coating solution on the substrate 100 and drying it.
  • the first wiring 114 is the first conductive film 110.
  • the first wiring 114 is formed using, for example, the above-described method for forming the first conductive film 110 and the material constituting the first conductive film 110.
  • the first wiring 114 constituted by the first conductive film 110 and the lead wiring 134 constituted by the second conductive film 130 are bonded to each other to form the bonded structure 200.
  • the bonding structure 200 is formed using, for example, the method for forming the bonding structure 200 described above.
  • the first electrode 112 connected to the first wiring 114 is formed together with the first wiring 114.
  • the first electrode 112 is formed by the first conductive film 110 integrally with the first wiring 114, for example.
  • the first wiring 114 is dried.
  • the transparent conductive material includes a conductive polymer
  • the first wiring 114 is dried to increase the cohesive force of the conductive polymer, so that the first wiring 114 can be a strong film.
  • the first wiring 114 is cured by performing a heat treatment on the first wiring 114.
  • the transparent conductive material constituting the first wiring 114 includes a photosensitive material
  • the first wiring 114 may be cured by UV irradiation. The structure obtained at this stage is shown in FIG.
  • the insulating layer 120 is formed on the substrate 100, the first electrode 112, the first wiring 114, and the lead wiring 164.
  • the insulating layer 120 is patterned into a predetermined shape using dry etching or wet etching. As a result, a plurality of first openings 122 and a plurality of second openings 124 are formed in the insulating layer 120. At this time, the plurality of first openings 122 are formed, for example, such that a part of the first electrode 112 is exposed from each first opening 122.
  • a partition wall 170 is formed on the insulating layer 120.
  • the partition wall 170 is obtained by patterning an insulating film provided over the insulating layer 120 into a predetermined shape using dry etching or wet etching.
  • the cross-sectional shape of the partition wall 170 can be changed to an inverted trapezoid by adjusting the conditions during exposure and development. The structure obtained at this stage is shown in FIG.
  • a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially formed in the first opening 122. These are formed using, for example, a coating method or a vapor deposition method. Thereby, the organic layer 140 is formed.
  • the conductive film 150 constituting the second electrode 152 and the second wiring 154 is formed on the organic layer 140.
  • the conductive film 150 is formed so that, for example, a part of the conductive film 150 is located in the second opening 124.
  • the conductive film 150 is formed using, for example, a vapor deposition method or a sputtering method.
  • the organic EL element 20 composed of the first electrode 112, the second electrode 152, and the organic layer 140 sandwiched therebetween is formed on the substrate 100.
  • the light emitting device 10 is formed in this way.
  • one or more buffer members 202 made of a material different from the conductive material constituting the first conductive film 110 are provided in the peripheral region of the second conductive film 130 on the substrate 100. Is provided.
  • the first conductive film 110 is provided so as to cover a part of the second conductive film 130 and the buffer member 202.
  • the buffer member 202 can relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130. Therefore, connection failure between the first conductive film and the second conductive film can be suppressed, and connection reliability between the two conductive films joined to each other can be improved.
  • a light emission including a first wiring 114 connected to the first electrode 112 configuring the organic EL element 20 and configured by the first conductive film 110 and an extraction wiring 134 configured by the second conductive film 130.
  • the device 10 can be realized. Thereby, the connection reliability between the 1st electrode 112 and the extraction wiring 134 can be improved. In addition, the operational reliability of the light emitting device 10 can be improved.
  • FIG. 11 is a plan view showing the light emitting device 12 according to the second embodiment, and corresponds to FIG. 1 according to the first embodiment.
  • 12 is a cross-sectional view taken along the line CC in FIG. 11
  • FIG. 13 is a cross-sectional view taken along the line DD in FIG. 12 and 13, the configuration of the buffer member 202 is omitted.
  • FIG. 14 is a view showing a part of the light emitting device 12 shown in FIG. FIG. 14 particularly shows the positional relationship between the first conductive film 110 and the second conductive film 130.
  • the first conductive film 110 in the bonding structure 200 constitutes an electrode constituting, for example, an organic EL element.
  • the second conductive film 130 forms, for example, a lead wiring that is electrically connected to an electrode that forms the organic EL element.
  • the junction structure 200 is formed between the electrode constituting the organic EL element and the lead wiring.
  • the electrodes constituting the organic EL element are formed so as to cover the buffer member 202 provided in the peripheral region of the lead wiring.
  • the light emitting device 12 has the same configuration as that of the light emitting device 10 according to the first embodiment, except for the configuration of the first electrode 112 and the lead wiring 134.
  • the light emitting device 12 has a joint structure 200.
  • the light emitting device 12 includes the organic EL element 20 and a lead wiring 134.
  • the organic EL element 20 includes a first electrode 112 configured by the first conductive film 110, a second electrode 152, and an organic layer 140 disposed between the first electrode 112 and the second electrode 152. is doing.
  • the lead wiring 134 is joined to the first electrode 112 and is constituted by the second conductive film 130.
  • the first electrodes 112 are arranged on the substrate 100 in the pixel region 300 in a matrix, for example.
  • the plurality of first electrodes 112 arranged in a matrix are separated from each other.
  • the pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 11, the region surrounded by the alternate long and short dash line corresponds to the pixel region 300.
  • the first electrode 112 is composed of a first conductive film 110 composed of a conductive material. When the first conductive film 110 is made of a transparent conductive material, the first electrode 112 made of the first conductive film 110 can have transparency.
  • the first wiring 114 constituting the light emitting device 10 according to the first embodiment is not provided.
  • the lead-out wiring 134 extends in the Y direction in the figure.
  • a plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other.
  • Each lead-out wiring 134 is connected to a plurality of first electrodes 112 arranged in the Y direction. For this reason, the plurality of first electrodes 112 are each connected to the outside via the lead wiring 134.
  • a light emission / non-light emission signal is supplied to the organic EL element 20 through the lead wiring 134.
  • the lead-out wiring 134 is comprised by the 2nd electrically conductive film 130 comprised with a metal material.
  • the first electrode 112 configured by the first conductive film 110 and the lead-out wiring 134 configured by the second conductive film 130 are bonded to each other to form the bonded structure 200.
  • the joint structure 200 is formed in a portion surrounded by a broken line.
  • the buffer member 202 is formed on the substrate 100 in the peripheral region of the lead wiring 134.
  • the first electrode 112 is formed so as to cover a part of the lead wiring 134 and the buffer member 202.
  • the first electrode 112 is connected to the lead wiring 134 at one end. At this time, the first electrode 112 is bonded to, for example, the lead wiring 134 at the one end portion to form the bonded structure 200. As shown in FIG. 13, the portion of the lead-out wiring 134 that is joined to the first electrode 112 is located, for example, in a region where the organic EL element 20 is formed in plan view.
  • the first electrode 112 extends in the second direction when viewed from the lead wiring 134. In the present embodiment, the second direction refers to, for example, the X direction in the figure.
  • the shape of the first electrode 112 is not particularly limited and can be selected as appropriate in accordance with the design of the organic EL element 20. For example, it is rectangular.
  • the insulating layer 120 is formed so as to cover the lead wiring 134, for example.
  • the insulating layer 120 is provided so as to cover a part of each of the lead wiring 134 and the lead wiring 164.
  • a plurality of first openings 122 are formed in the insulating layer 120 so as to form a matrix, for example.
  • the first electrode 112 is formed in the first opening 122.
  • a plurality of first electrodes 112 arranged in a matrix on the substrate 100 are formed.
  • the plurality of first electrodes 112 are separated from each other by the insulating layer 120.
  • the first opening 122 is formed, for example, so as to overlap a part of the lead wiring 134 in a plan view. In this case, a part of the lead wiring 134 that overlaps the first opening 122 in plan view is connected to the first electrode 112 formed in the first opening 122.
  • the insulating layer 120 is made of the same material as that of the first embodiment, for example.
  • the partition 170, the organic layer 140, the second electrode 152, the second wiring 154, and the extraction wiring 164 in the present embodiment have the same configuration as that of the first embodiment, for example.
  • connection reliability between the first conductive film 110 and the second conductive film 130 can be improved as in the first embodiment.
  • the light emitting device 12 including the first electrode 112 configured by the first conductive film 110 and the lead-out wiring 134 configured by the second conductive film 130 can be realized. Thereby, the connection reliability between the 1st electrode 112 and the extraction wiring 134 can be improved. In addition, the operational reliability of the light emitting device can be improved.
  • Example 1 a metal film made of silver was formed on a glass substrate by a sputtering method. Next, this metal film was patterned into a line shape by dry etching to form a second conductive film and two buffer members. At this time, the two buffer members were formed in the peripheral region of the second conductive film on the substrate. Next, wet etching was performed on the two buffer members in a state where the second conductive film was masked with a photoresist. Next, wet etching was performed on the other buffer member in a state where the second conductive film and one buffer member adjacent to the second conductive film among the two buffer members were masked with a photoresist.
  • the transparent conductive material-containing coating solution was applied by an inkjet method so as to cover a part of the second conductive film and the two buffer members, and dried to form a first conductive film.
  • a solution obtained by dispersing poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT-PSS, CLEVIOS PH510 (manufactured by Heraeus)) in a solvent was used. Thereby, the structure which consists of a 1st electrically conductive film, a 2nd electrically conductive film, and two buffer members was produced. The structure thus obtained was applied to the light emitting device according to the first embodiment.
  • Example 1 two buffer members made of silver and having a thickness smaller than that of the second conductive film were provided in the peripheral region of the second conductive film.
  • the two buffer members were arranged so that the film thickness decreased with increasing distance from the second conductive film.
  • the upper surface of the first conductive film had an inclined surface that became lower as the distance from the second conductive film was increased in the region overlapping the buffer member.
  • the connection reliability between the first conductive film and the second conductive film was excellent when a current was passed between the first conductive film and the second conductive film for a long time.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A joining structure obtained by mutually joining a first conductive film (110) and a second conductive film (130) that are provided on a substrate (100). The first conductive film (110) that constitutes the joining structure is constituted of a conductive material. The second conductive film (130) that constitutes the joining structure is constituted of a metallic material. One or more buffer members constituted of a different material than the conductive material that constitutes the first conductive film (110) are provided on the substrate (100) in the peripheral region of the second conductive film (130). The first conductive film (110) is formed so as to cover the buffer member(s) and one part of the second conductive film (130).

Description

接合構造および発光装置Junction structure and light emitting device
 本発明は、接合構造および発光装置に関する。 The present invention relates to a junction structure and a light emitting device.
 照明装置やディスプレイの光源の一つに、有機EL(Organic Electroluminescence)素子がある。有機EL素子は、たとえば透明電極と、これに対向して配置される他の電極と、これらの電極の間に配置される有機層と、により構成される。有機EL素子に関する技術としては、たとえば特許文献1および特許文献2に記載のものが挙げられる。 One of the light sources of lighting devices and displays is an organic EL (Organic Electroluminescence) element. An organic EL element is comprised by the transparent electrode, the other electrode arrange | positioned facing this, for example, and the organic layer arrange | positioned between these electrodes. Examples of the technology related to the organic EL element include those described in Patent Document 1 and Patent Document 2.
 特許文献1には、金属配線をパターン状に形成してなる第一導電膜と、第一導電膜および透明基材上を連続的に被覆する導電性ポリマーを含有する第二導電膜と、を有する透明電極が記載されている。特許文献2には、ライン状に形成された金属ラインと、当該金属ラインの上面および側面を覆うポリマーラインと、からなる電極を有する発光素子が記載されている。 Patent Document 1 includes a first conductive film formed by forming a metal wiring in a pattern, and a second conductive film containing a conductive polymer that continuously covers the first conductive film and the transparent substrate. A transparent electrode is described. Patent Document 2 describes a light-emitting element having an electrode composed of a metal line formed in a line shape and a polymer line covering the upper surface and side surfaces of the metal line.
特開2012-128957号公報JP 2012-128957 A 特開2006-93123号公報JP 2006-93123 A
 二つの導電膜を互いに接合させてなる接合構造では、接合部およびその周辺部において接続不良が生じる場合がある。この場合、互いに接合された二つの導電膜の間における接続信頼性が低下してしまうおそれがあった。 In a joint structure in which two conductive films are joined to each other, connection failure may occur at the joint and its peripheral part. In this case, the connection reliability between the two conductive films joined to each other may be reduced.
 本発明が解決しようとする課題としては、互いに接合された二つの導電膜の間における接続信頼性を向上させることが一例として挙げられる。 An example of a problem to be solved by the present invention is to improve connection reliability between two conductive films joined to each other.
 請求項1に記載の発明は、
 それぞれ基板上に設けられた、導電材料により構成される第1導電膜と、金属材料により構成される第2導電膜と、が互いに接合してなる接合構造であって、
 前記基板上における前記第2導電膜の周辺領域には、前記第1導電膜を構成する前記導電材料と異なる材料により構成された一つまたは複数の緩衝部材が設けられており、
 前記第1導電膜は、前記第2導電膜の一部および前記緩衝部材を覆う接合構造である。
The invention described in claim 1
A first conductive film made of a conductive material and a second conductive film made of a metal material, each provided on a substrate, are joined to each other,
In the peripheral region of the second conductive film on the substrate, one or a plurality of buffer members made of a material different from the conductive material constituting the first conductive film is provided,
The first conductive film has a bonding structure that covers a part of the second conductive film and the buffer member.
 請求項9に記載の発明は、
 請求項1~6いずれか一項に記載の接合構造を有する発光装置であって、
 第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された有機層と、を有する有機EL素子と、
 前記第1電極と電気的に接続し、かつ前記第1導電膜により構成される第1配線と、
 前記第1配線と接合し、かつ前記第2導電膜により構成される引出配線と、
 を備える発光装置である。
The invention according to claim 9 is:
A light-emitting device having the junction structure according to any one of claims 1 to 6,
An organic EL element having a first electrode, a second electrode, and an organic layer disposed between the first electrode and the second electrode;
A first wiring electrically connected to the first electrode and configured by the first conductive film;
A lead wire joined to the first wire and made of the second conductive film;
It is a light-emitting device provided with.
 請求項10に記載の発明は、
 請求項1~6いずれか一項に記載の接合構造を有する発光装置であって、
 前記第1導電膜により構成される第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された有機層と、を有する有機EL素子と、
 前記第1電極に接合し、かつ前記第2導電膜により構成される引出配線と、
 を備える発光装置である。
The invention according to claim 10 is:
A light-emitting device having the junction structure according to any one of claims 1 to 6,
An organic EL element comprising: a first electrode composed of the first conductive film; a second electrode; and an organic layer disposed between the first electrode and the second electrode;
A lead wire bonded to the first electrode and configured by the second conductive film;
It is a light-emitting device provided with.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on 1st Embodiment. 図1のA-A断面を示す断面図である。FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1. 図1のB-B断面を示す断面図である。FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1. 図1に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 図1に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 第1の実施形態における第1導電膜と、第2導電膜と、により構成される接合構造の一例を示す図である。It is a figure which shows an example of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. 第1の実施形態における第1導電膜と、第2導電膜と、により構成される接合構造の一例を示す図である。It is a figure which shows an example of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. 第1の実施形態における第1導電膜と、第2導電膜と、により構成される接合構造の一例を示す図である。It is a figure which shows an example of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. 第1の実施形態における第1導電膜と、第2導電膜と、により構成される接合構造の一例を示す図である。It is a figure which shows an example of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. 第1の実施形態における第1導電膜と、第2導電膜と、により構成される接合構造の変形例を示す図である。It is a figure which shows the modification of the junction structure comprised by the 1st electrically conductive film and 1st electrically conductive film in 1st Embodiment. 第2の実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on 2nd Embodiment. 図11のC-C断面を示す断面図である。FIG. 12 is a cross-sectional view showing a CC cross section of FIG. 11. 図11のD-D断面を示す断面図である。FIG. 12 is a cross-sectional view showing a DD cross section of FIG. 11. 図11に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る発光装置10を示す平面図である。図2は図1のA-A断面を示す断面図であり、図3は図1のB-B断面を示す断面図である。また、図4および図5は、図1に示す発光装置10の一部を示す図である。図4では、とくに第1導電膜110と、第2導電膜130との位置関係が示されている。また、図5では、絶縁層120の構成が示されている。図6~9は、本実施形態における第1導電膜110と、第2導電膜130と、により構成される接合構造200の一例を示す図である。図10は、本実施形態における第1導電膜110と、第2導電膜130と、により構成される接合構造200の変形例を示す図である。
(First embodiment)
FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment. 2 is a cross-sectional view showing the AA cross section of FIG. 1, and FIG. 3 is a cross-sectional view showing the BB cross section of FIG. 4 and 5 are views showing a part of the light emitting device 10 shown in FIG. In FIG. 4, the positional relationship between the first conductive film 110 and the second conductive film 130 is particularly shown. FIG. 5 shows the configuration of the insulating layer 120. FIGS. 6 to 9 are views showing an example of the bonding structure 200 constituted by the first conductive film 110 and the second conductive film 130 in the present embodiment. FIG. 10 is a view showing a modified example of the bonding structure 200 constituted by the first conductive film 110 and the second conductive film 130 in the present embodiment.
 本実施形態に係る接合構造200は、それぞれ基板100上に設けられた、導電材料により構成される第1導電膜110と、金属材料により構成される第2導電膜130と、が互いに接合してなる。基板100上における第2導電膜130の周辺領域には、第1導電膜110を構成する上記導電材料と異なる材料により構成された一つまたは複数の緩衝部材202が設けられている。第1導電膜110は、第2導電膜130の一部および緩衝部材202を覆う。 In the bonding structure 200 according to the present embodiment, the first conductive film 110 made of a conductive material and the second conductive film 130 made of a metal material, which are provided on the substrate 100, are bonded to each other. Become. In the peripheral region of the second conductive film 130 on the substrate 100, one or more buffer members 202 made of a material different from the conductive material forming the first conductive film 110 are provided. The first conductive film 110 covers a part of the second conductive film 130 and the buffer member 202.
 また、本実施形態に係る発光装置10は、接合構造200を有している。
 発光装置10は、有機EL素子20と、第1配線114と、引出配線134と、を備えている。有機EL素子20は、第1電極112と、第2電極152と、第1電極112と第2電極152との間に配置された有機層140と、を有している。第1配線114は、第1電極112と電気的に接続し、かつ第1導電膜110により構成される。引出配線134は、第1配線114と接合し、かつ第2導電膜130により構成される。
In addition, the light emitting device 10 according to the present embodiment has a joint structure 200.
The light emitting device 10 includes an organic EL element 20, a first wiring 114, and a lead wiring 134. The organic EL element 20 includes a first electrode 112, a second electrode 152, and an organic layer 140 disposed between the first electrode 112 and the second electrode 152. The first wiring 114 is electrically connected to the first electrode 112 and is configured by the first conductive film 110. The lead wiring 134 is joined to the first wiring 114 and is configured by the second conductive film 130.
 以下、本実施形態に係る接合構造200の構成の一例、発光装置10の構成の一例、および発光装置10の製造方法の一例につき、詳細に説明する。 Hereinafter, an example of the configuration of the bonding structure 200 according to the present embodiment, an example of the configuration of the light emitting device 10, and an example of a method for manufacturing the light emitting device 10 will be described in detail.
 まず、本実施形態に係る接合構造200の構成の一例について説明する。
 接合構造200は、第1導電膜110と、第2導電膜130と、が互いに接合してなる接合構造である。なお、本明細書において、第1導電膜110と第2導電膜130が接合するとは、第1導電膜110と第2導電膜130との間に他の構成が介在する場合を含む。
 本実施形態において、接合構造200は、たとえば基板100上に形成される。この場合、第1導電膜110および第2導電膜130は、基板100上に形成されることとなる。
First, an example of the configuration of the joint structure 200 according to the present embodiment will be described.
The bonding structure 200 is a bonding structure in which the first conductive film 110 and the second conductive film 130 are bonded to each other. Note that in this specification, the bonding between the first conductive film 110 and the second conductive film 130 includes a case where another structure is interposed between the first conductive film 110 and the second conductive film 130.
In the present embodiment, the bonding structure 200 is formed on the substrate 100, for example. In this case, the first conductive film 110 and the second conductive film 130 are formed on the substrate 100.
 接合構造200は、たとえば有機EL素子を含む発光装置を構成する。発光装置は、たとえば有機EL素子と、有機EL素子を構成する電極に電気的に接続する第1配線と、第1配線と電気的に接続する引出配線と、を備える。このとき、引出配線および第1配線を介して、有機EL素子を構成する電極に外部から発光/非発光を制御するための電気信号が供給される。
 本実施形態において、接合構造200のうち第1導電膜110は、たとえば有機EL素子を構成する電極に接続する第1配線を構成する。また、接合構造200のうち第2導電膜130は、たとえば引出配線を構成する。この場合、第1配線と引出配線との間において、接合構造200が形成されることとなる。
The junction structure 200 constitutes a light emitting device including, for example, an organic EL element. The light emitting device includes, for example, an organic EL element, a first wiring that is electrically connected to an electrode that constitutes the organic EL element, and a lead wiring that is electrically connected to the first wiring. At this time, an electrical signal for controlling light emission / non-light emission from the outside is supplied to the electrodes constituting the organic EL element via the lead wiring and the first wiring.
In this embodiment, the 1st electrically conductive film 110 among the joining structures 200 comprises the 1st wiring connected to the electrode which comprises an organic EL element, for example. In addition, the second conductive film 130 of the bonding structure 200 constitutes, for example, a lead wiring. In this case, the junction structure 200 is formed between the first wiring and the lead-out wiring.
 第1導電膜110は、実質的に導電材料を含んで構成される。第1導電膜110を構成する導電材料としては、たとえば透明導電材料、または銀等のペースト状の導電材料が挙げられる。この中でも、透明導電材料がとくに好ましい。第1導電膜110が透明導電材料により構成される場合、第1導電膜110は、透明性を有する導電膜となる。
 本実施形態において、第1導電膜110は、たとえば基板100平面に平行な一方向に延在する形状を有する。
The first conductive film 110 is configured to substantially include a conductive material. Examples of the conductive material constituting the first conductive film 110 include a transparent conductive material or a paste-like conductive material such as silver. Among these, a transparent conductive material is particularly preferable. In the case where the first conductive film 110 is made of a transparent conductive material, the first conductive film 110 is a conductive film having transparency.
In the present embodiment, the first conductive film 110 has a shape extending in one direction parallel to the plane of the substrate 100, for example.
 透明導電材料は、たとえばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)等の無機材料、または導電性高分子を含んでなる。
 透明導電材料が導電性高分子を含む場合、第1導電膜110は塗布法を用いて形成することができる。この場合、第1導電膜110を形成する工程において、基板100等の他の構成へ熱負荷がかかってしまうことを抑制することが可能となる。
 また、透明導電材料として無機材料を含む場合には、第1導電膜110は、この無機材料を有機溶剤中に分散させた溶液を塗布することにより形成される塗布型導電膜であることが好ましい。このような場合においても、第1導電膜110を、塗布法を用いて形成することができる。
The transparent conductive material includes, for example, an inorganic material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), or a conductive polymer.
When the transparent conductive material includes a conductive polymer, the first conductive film 110 can be formed using a coating method. In this case, in the step of forming the first conductive film 110, it is possible to suppress a thermal load from being applied to other components such as the substrate 100.
When an inorganic material is included as the transparent conductive material, the first conductive film 110 is preferably a coating-type conductive film formed by applying a solution in which this inorganic material is dispersed in an organic solvent. . Even in such a case, the first conductive film 110 can be formed by a coating method.
 本実施形態において、第1導電膜110を構成する透明導電材料に含まれる導電性高分子は、たとえばπ共役系導電性高分子とポリアニオンを含んでなる導電性高分子である。この場合、とくに導電性や耐熱性、フレキシブル性に優れた第1導電膜110を形成することが可能となる。
 π共役系導電性高分子としては、特に限定されないが、たとえばポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、またはポリチアジル類の鎖状導電性ポリマーを用いることができる。導電性、透明性、安定性等の観点からは、ポリチオフェン類またはポリアニリン類であることが好ましく、ポリエチレンジオキシチオフェンであることがとくに好ましい。
 ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、またはポリアクリル酸を用いることができる。本実施形態において用いられるポリアニオンは、これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
In the present embodiment, the conductive polymer included in the transparent conductive material constituting the first conductive film 110 is a conductive polymer including, for example, a π-conjugated conductive polymer and a polyanion. In this case, it is possible to form the first conductive film 110 that is particularly excellent in conductivity, heat resistance, and flexibility.
The π-conjugated conductive polymer is not particularly limited. A chain conductive polymer of phenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl compounds can be used. From the viewpoint of conductivity, transparency, stability, etc., polythiophenes or polyanilines are preferable, and polyethylene dioxythiophene is particularly preferable.
Polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, or polyacrylic acid can be used. The polyanion used in the present embodiment may be a homopolymer of these or two or more kinds of copolymers.
 第1導電膜110を構成する透明導電材料として導電性高分子を含む場合、透明導電材料は、架橋剤、レベリング剤、または消泡剤等をさらに含んでいてもよい。 When the conductive polymer is included as the transparent conductive material constituting the first conductive film 110, the transparent conductive material may further include a crosslinking agent, a leveling agent, an antifoaming agent, or the like.
 第2導電膜130は、金属材料を含んで構成される。ここで、第2導電膜130に含まれる金属材料としては、たとえば第1導電膜110を構成する導電材料よりも電気抵抗率が低い金属材料が使用される。この場合、第1導電膜110と第2導電膜130は、互いに異なる材料により構成されることとなる。第2導電膜130を構成する金属材料は、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、Cu、およびPdが挙げられる。第2導電膜130は、これらのうちの1種または2種以上により構成される。 The second conductive film 130 includes a metal material. Here, as the metal material contained in the second conductive film 130, for example, a metal material having a lower electrical resistivity than the conductive material constituting the first conductive film 110 is used. In this case, the first conductive film 110 and the second conductive film 130 are made of different materials. Examples of the metal material constituting the second conductive film 130 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd. The 2nd electrically conductive film 130 is comprised by 1 type, or 2 or more types of these.
 基板100上における第2導電膜130の周辺領域には、一つまたは複数の緩衝部材202が設けられている。このとき、緩衝部材202は、第2導電膜130から離間する位置に、第2導電膜130と直接接触しないように設けられる。緩衝部材202は、たとえば第2導電膜130からみて第1方向に位置する。複数の緩衝部材202が基板100上に設けられる場合、複数の緩衝部材202は、たとえば第2導電膜130からみて第1方向に配列される。また、緩衝部材202は、第1導電膜110を構成する導電材料と異なる材料により構成されている。 In the peripheral region of the second conductive film 130 on the substrate 100, one or a plurality of buffer members 202 are provided. At this time, the buffer member 202 is provided at a position away from the second conductive film 130 so as not to directly contact the second conductive film 130. The buffer member 202 is positioned in the first direction as viewed from the second conductive film 130, for example. When the plurality of buffer members 202 are provided on the substrate 100, the plurality of buffer members 202 are arranged in the first direction as viewed from the second conductive film 130, for example. The buffer member 202 is made of a material different from the conductive material constituting the first conductive film 110.
 第1導電膜110は、第2導電膜130の一部および緩衝部材202を覆うように設けられている。このとき、第2導電膜130は、第1導電膜110により覆われた被覆部220を一部に有することとなる。また、各緩衝部材202について、全体が第1導電膜110により覆われていてもよく、一部が第1導電膜110により覆われていてもよい。第2導電膜130と緩衝部材202との間には、たとえば第1導電膜110の一部が存在することとなる。複数の緩衝部材202が基板100上に設けられる場合、隣接する緩衝部材202間には、たとえば第1導電膜110の一部が存在することとなる。
 本実施形態において、第1導電膜110は、たとえば第1導電膜110の一端が第2導電膜130の一部上に重なるように形成される。このとき、第2導電膜130のうち第1導電膜110の上記一端と重なる部分が、第1導電膜110により覆われて、被覆部220を構成することとなる。また、第1導電膜110は、第2導電膜130からみて第1方向に延在している。このため、第1導電膜110は、第2導電膜130からみて第1方向に位置する緩衝部材202を覆うこととなる。本実施形態において、第1方向とは、たとえば図中Y方向をさす。
The first conductive film 110 is provided so as to cover a part of the second conductive film 130 and the buffer member 202. At this time, the second conductive film 130 has a part of the covering portion 220 covered with the first conductive film 110. Further, each buffer member 202 may be entirely covered with the first conductive film 110, or a part thereof may be covered with the first conductive film 110. For example, a part of the first conductive film 110 exists between the second conductive film 130 and the buffer member 202. When the plurality of buffer members 202 are provided on the substrate 100, for example, a part of the first conductive film 110 exists between the adjacent buffer members 202.
In the present embodiment, the first conductive film 110 is formed, for example, such that one end of the first conductive film 110 overlaps part of the second conductive film 130. At this time, a portion of the second conductive film 130 that overlaps the one end of the first conductive film 110 is covered with the first conductive film 110 to form the covering portion 220. The first conductive film 110 extends in the first direction when viewed from the second conductive film 130. For this reason, the first conductive film 110 covers the buffer member 202 positioned in the first direction when viewed from the second conductive film 130. In the present embodiment, the first direction refers to the Y direction in the figure, for example.
 本発明者は、第1導電膜110を構成する導電材料が、第2導電膜130に働く表面張力に起因した張力を受けることにより、第1導電膜110の膜厚が一部において薄くなることを知見した。このような問題は、第2導電膜130における配線抵抗を低減するために第2導電膜130の膜厚を大きくする場合において、特に顕在化する。これは、第2導電膜130の膜厚を大きくすることにより、第2導電膜130に働く表面張力が増大してしまうことに起因するものと推測される。
 この場合、第1導電膜110における配線抵抗が増大し、第1導電膜110と第2導電膜130との間における接続不良を引き起こすおそれがある。これにより、互いに接合された二つの導電膜の間における接続信頼性は低下してしまう。
The present inventor has found that the conductive material constituting the first conductive film 110 receives a tension due to the surface tension acting on the second conductive film 130, whereby the thickness of the first conductive film 110 is partially reduced. I found out. Such a problem becomes particularly apparent when the film thickness of the second conductive film 130 is increased in order to reduce the wiring resistance in the second conductive film 130. This is presumably because the surface tension acting on the second conductive film 130 is increased by increasing the film thickness of the second conductive film 130.
In this case, the wiring resistance in the first conductive film 110 increases, which may cause a connection failure between the first conductive film 110 and the second conductive film 130. As a result, the connection reliability between the two conductive films joined to each other decreases.
 本実施形態によれば、基板100上における第2導電膜130の周辺領域には、第1導電膜110を構成する導電材料と異なる材料により構成された一つまたは複数の緩衝部材202が設けられている。また、第1導電膜110は、第2導電膜130の一部および緩衝部材202を覆うように設けられる。この場合、第1導電膜110を構成する導電材料が第2導電膜130から受ける張力を、緩衝部材202によって緩和することが可能となる。したがって、第1導電膜と第2導電膜との間における接続不良を抑制し、互いに接合された二つの導電膜の間における接続信頼性を向上させることが可能となる。 According to the present embodiment, one or a plurality of buffer members 202 made of a material different from the conductive material constituting the first conductive film 110 are provided in the peripheral region of the second conductive film 130 on the substrate 100. ing. The first conductive film 110 is provided so as to cover a part of the second conductive film 130 and the buffer member 202. In this case, the buffer member 202 can relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130. Therefore, connection failure between the first conductive film and the second conductive film can be suppressed, and connection reliability between the two conductive films joined to each other can be improved.
 緩衝部材202は、たとえば金属材料または絶縁材料により構成される。緩衝部材202を金属材料により構成する場合、接合構造200における配線抵抗の低下を抑制することができる。また、緩衝部材202を絶縁材料により構成する場合、リソグラフィ法等を用いて容易に緩衝部材202を形成することが可能となる。緩衝部材202を構成する金属材料としては、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、CuまたはPdが挙げられる。緩衝部材202を構成する絶縁材料としては、たとえばポリイミド、エポキシ、アクリルなどの有機物からなるもの、SiO、SiN、MgO、Al、TiOなどの無機酸化物や無機窒化物からなるもの、または後述する絶縁膜120と同一の材料が挙げられる。
 なお、緩衝部材202を金属材料により構成する場合には、たとえば緩衝部材202と第2導電膜130を互いに同一の金属材料により構成することができる。
The buffer member 202 is made of, for example, a metal material or an insulating material. When the buffer member 202 is made of a metal material, it is possible to suppress a decrease in wiring resistance in the joint structure 200. Further, when the buffer member 202 is made of an insulating material, the buffer member 202 can be easily formed using a lithography method or the like. Examples of the metal material constituting the buffer member 202 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd. Examples of the insulating material constituting the buffer member 202 include those made of organic materials such as polyimide, epoxy, and acrylic, and those made of inorganic oxides and inorganic nitrides such as SiO 2 , SiN, MgO, Al 3 O 2 , and TiO 2. Alternatively, the same material as the insulating film 120 described later can be used.
When the buffer member 202 is made of a metal material, for example, the buffer member 202 and the second conductive film 130 can be made of the same metal material.
 本実施形態において、緩衝部材202は、第2導電膜130の周辺領域に設けられる。ここで、第2導電膜130の周辺領域とは、たとえば第2導電膜130から第1方向において一定の長さ内に位置する、基板100上の領域をさす。
 ここで、第2導電膜130の膜厚をD1とし、第2導電膜130と緩衝部材202とに挟まれる領域の長さをL1とする。この場合、長さL1は、0.5×D1≦L1≦5×D1を満たすことが好ましい。長さL1を0.5×D1以上とすることにより、第1導電膜110を構成する導電材料が第2導電膜130から受ける張力を効果的に緩和することができる。また、長さL1を5×D1以下とすることにより、第2導電膜130と緩衝部材202との間に位置する領域において、第1導電膜110を構成する導電材料が第2導電膜130から張力を受け、第1導電膜110の膜厚が薄くなってしまうことを抑制できる。なお、複数の緩衝部材202が設けられている場合には、第2導電膜130と任意に選択される緩衝部材202との間において、上述した関係を満たすことが好ましい。
In the present embodiment, the buffer member 202 is provided in the peripheral region of the second conductive film 130. Here, the peripheral region of the second conductive film 130 refers to, for example, a region on the substrate 100 located within a certain length from the second conductive film 130 in the first direction.
Here, the film thickness of the second conductive film 130 is D1, and the length of the region sandwiched between the second conductive film 130 and the buffer member 202 is L1. In this case, the length L1 preferably satisfies 0.5 × D1 ≦ L1 ≦ 5 × D1. By setting the length L1 to 0.5 × D1 or more, it is possible to effectively relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130. In addition, by setting the length L1 to 5 × D1 or less, the conductive material constituting the first conductive film 110 is separated from the second conductive film 130 in the region located between the second conductive film 130 and the buffer member 202. It can suppress that the film thickness of the 1st electrically conductive film 110 receives a tension | tensile_strength and becomes thin. In addition, when the several buffer member 202 is provided, it is preferable to satisfy | fill the relationship mentioned above between the 2nd electrically conductive film 130 and the buffer member 202 selected arbitrarily.
 本実施形態に係る接合構造200の一例においては、一つまたは複数の緩衝部材202において、少なくとも第2導電膜130から最も遠くに位置する緩衝部材202が、第2導電膜130よりも小さい膜厚を有する。この場合、第1導電膜110を構成する導電材料が第2導電膜130よりも小さい膜厚を有する当該緩衝部材202から受ける張力は、第1導電膜110を構成する導電材料が第2導電膜130から受ける張力よりも小さい。このため、第1導電膜110を構成する導電材料が第2導電膜130から受ける張力を、緩衝部材202によって緩和することが可能となる。
 本例において、一つの緩衝部材202のみが基板100上に形成される場合には、当該緩衝部材202の膜厚を第2導電膜130の膜厚よりも小さくする。また、複数の緩衝部材202が基板100上に形成される場合には、全ての緩衝部材202の膜厚を、第2導電膜130の膜厚よりも小さくすることが好ましい。これにより、第1導電膜110が第2導電膜130から受ける張力を効果的に緩和できる。なお、複数の緩衝部材202が形成される場合には、第2導電膜130から最も遠くに位置する緩衝部材202を含む一部の緩衝部材202のみの膜厚を、第2導電膜130の膜厚より小さくしてもよい。
In an example of the bonding structure 200 according to this embodiment, in one or more buffer members 202, at least the buffer member 202 farthest from the second conductive film 130 has a smaller film thickness than the second conductive film 130. Have In this case, the tension that the conductive material constituting the first conductive film 110 receives from the buffer member 202 having a film thickness smaller than that of the second conductive film 130 is that the conductive material constituting the first conductive film 110 is the second conductive film. Less than the tension received from 130. Therefore, the buffer member 202 can relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130.
In this example, when only one buffer member 202 is formed on the substrate 100, the film thickness of the buffer member 202 is made smaller than the film thickness of the second conductive film 130. When a plurality of buffer members 202 are formed on the substrate 100, it is preferable that the thickness of all the buffer members 202 be smaller than the thickness of the second conductive film 130. Thereby, the tension applied to the first conductive film 110 from the second conductive film 130 can be effectively relaxed. When a plurality of buffer members 202 are formed, the film thickness of only a part of the buffer members 202 including the buffer member 202 located farthest from the second conductive film 130 is set to the film thickness of the second conductive film 130. It may be smaller than the thickness.
 ここで、第2導電膜130の膜厚をD1とし、緩衝部材202の膜厚をD2とする。この場合、少なくとも第2導電膜130から最も遠くに位置する緩衝部材202の膜厚D2が、0.2×D1≦D2≦0.9×D1を満たすことが好ましい。これにより、第1導電膜110を構成する導電材料が第2導電膜130から受ける張力を、緩衝部材202によって効果的に緩和することができる。
 一つの緩衝部材202のみが基板100上に形成される場合には、当該緩衝部材202の膜厚D2が上記の関係を満たす。また、複数の緩衝部材202が基板100上に形成される場合には、全ての緩衝部材202の膜厚D2が上記の関係を満たすことが好ましい。
Here, the film thickness of the second conductive film 130 is D1, and the film thickness of the buffer member 202 is D2. In this case, it is preferable that the film thickness D2 of at least the buffer member 202 farthest from the second conductive film 130 satisfies 0.2 × D1 ≦ D2 ≦ 0.9 × D1. Thereby, the tension | tensile_strength which the electrically-conductive material which comprises the 1st electrically conductive film 110 receives from the 2nd electrically conductive film 130 can be relieve | moderated effectively by the buffer member 202. FIG.
When only one buffer member 202 is formed on the substrate 100, the film thickness D2 of the buffer member 202 satisfies the above relationship. When a plurality of buffer members 202 are formed on the substrate 100, it is preferable that the film thickness D2 of all the buffer members 202 satisfy the above relationship.
 図6~9は、接合構造200の一例を示す図である。
 図6および図7においては、基板100上に一つの緩衝部材202のみが設けられる場合が例示される。なお、図6は断面構造の一例であり、図7は平面構造の一例である。
 図6に示す例において、第1導電膜110の膜厚は、第2導電膜130から緩衝部材202へ向けて減少する勾配を有している。このとき、第1導電膜110の上面は、少なくとも緩衝部材202と重なる領域において、第2導電膜130から遠ざかるにつれ低くなる傾斜面を有することとなる。このような構成は、第1導電膜110を構成する導電材料が受ける張力を緩衝部材202によって緩和することにより実現される。
6 to 9 are diagrams illustrating an example of the bonding structure 200. FIG.
6 and 7 exemplify the case where only one buffer member 202 is provided on the substrate 100. 6 is an example of a cross-sectional structure, and FIG. 7 is an example of a planar structure.
In the example illustrated in FIG. 6, the film thickness of the first conductive film 110 has a gradient that decreases from the second conductive film 130 toward the buffer member 202. At this time, the upper surface of the first conductive film 110 has an inclined surface that becomes lower at a distance from the second conductive film 130 at least in a region overlapping with the buffer member 202. Such a configuration is realized by relaxing the tension received by the conductive material constituting the first conductive film 110 by the buffer member 202.
 図7に示す例において、第2導電膜130は、第1方向に延在する配線状の形状を有する。この場合、緩衝部材202の第2方向における幅は、第2導電膜130の第2方向における幅よりも小さくすることができる。ここで、第2方向とは、基板100平面と平行な平面内において第1方向に直交する方向をさす。なお、緩衝部材202の第2方向における幅は、第2導電膜130の第2方向における幅と等しくてもよく、第2導電膜130の第2方向における幅よりも大きくてもよい。 In the example shown in FIG. 7, the second conductive film 130 has a wiring shape extending in the first direction. In this case, the width of the buffer member 202 in the second direction can be made smaller than the width of the second conductive film 130 in the second direction. Here, the second direction refers to a direction orthogonal to the first direction in a plane parallel to the plane of the substrate 100. Note that the width of the buffer member 202 in the second direction may be equal to the width of the second conductive film 130 in the second direction, or may be larger than the width of the second conductive film 130 in the second direction.
 図8および図9においては、基板100上に複数の緩衝部材202が設けられる場合が例示される。なお、図8は断面構造の一例であり、図9は平面構造の一例である。
 図8に示す例において、基板100上には、第2導電膜130から遠ざかるにつれて膜厚が小さくなるように配列された複数の緩衝部材202が設けられている。すなわち、複数の緩衝部材202のうち第2導電膜130から最も遠い緩衝部材202が、複数の緩衝部材202において最も小さい膜厚を有することとなる。このとき、複数の緩衝部材202は、たとえば互いに異なる膜厚を有することとなる。この場合、第1導電膜110を構成する導電材料が受ける張力は、第2導電膜130から遠ざかるにつれて徐々に小さくなる。このように、第1導電膜110を構成する導電材料が受ける張力を、複数の緩衝部材202によってより効果的に緩和することが可能となる。
8 and 9 exemplify a case where a plurality of buffer members 202 are provided on the substrate 100. 8 is an example of a cross-sectional structure, and FIG. 9 is an example of a planar structure.
In the example shown in FIG. 8, a plurality of buffer members 202 arranged so that the film thickness decreases as the distance from the second conductive film 130 increases on the substrate 100. That is, the buffer member 202 farthest from the second conductive film 130 among the plurality of buffer members 202 has the smallest film thickness in the plurality of buffer members 202. At this time, the plurality of buffer members 202 have different film thicknesses, for example. In this case, the tension received by the conductive material constituting the first conductive film 110 gradually decreases as the distance from the second conductive film 130 increases. As described above, the tension applied to the conductive material constituting the first conductive film 110 can be more effectively relaxed by the plurality of buffer members 202.
 図8に示す例において、第1導電膜110の膜厚は、第2導電膜130から緩衝部材202へ向けて減少する勾配を有している。このとき、第1導電膜110の上面は、少なくとも複数の緩衝部材202と重なる部分において、第2導電膜130から遠ざかるにつれ低くなる傾斜面を有することとなる。このような構成は、第1導電膜110を構成する導電材料が受ける張力を複数の緩衝部材202によって緩和することにより実現される。 In the example shown in FIG. 8, the film thickness of the first conductive film 110 has a gradient that decreases from the second conductive film 130 toward the buffer member 202. At this time, the upper surface of the first conductive film 110 has an inclined surface that becomes lower as the distance from the second conductive film 130 increases, at least in a portion overlapping the plurality of buffer members 202. Such a configuration is realized by relaxing the tension received by the conductive material constituting the first conductive film 110 by the plurality of buffer members 202.
 図9に示す例において、第2導電膜130は、第1方向に延在する配線状の形状を有する。この場合、複数の緩衝部材202の第2方向における幅を、第2導電膜130の第2方向における幅よりも小さくすることができる。また、複数の緩衝部材202が互いに異なる幅を有する場合、複数の緩衝部材202は、第2導電膜130から遠ざかるにつれて幅が小さくなるように配列されていてもよい。なお、複数の緩衝部材202の第2方向における幅は、第2導電膜130の第2方向における幅と等しくてもよく、第2導電膜130の第2方向における幅よりも大きくてもよい。 In the example shown in FIG. 9, the second conductive film 130 has a wiring shape extending in the first direction. In this case, the width of the plurality of buffer members 202 in the second direction can be made smaller than the width of the second conductive film 130 in the second direction. When the plurality of buffer members 202 have different widths, the plurality of buffer members 202 may be arranged so that the width decreases as the distance from the second conductive film 130 increases. The width of the plurality of buffer members 202 in the second direction may be equal to the width of the second conductive film 130 in the second direction, or may be larger than the width of the second conductive film 130 in the second direction.
 本実施形態に係る接合構造200の変形例において、緩衝部材202は、たとえば第2導電膜130よりも表面張力が小さい。この場合、第1導電膜110を構成する導電材料が緩衝部材202から受ける張力は、当該導電材料が第2導電膜130から受ける張力よりも小さい。このため、第1導電膜110を構成する導電材料が第2導電膜130から受ける張力を、緩衝部材202によって緩和することが可能となる。 In the modification of the bonding structure 200 according to the present embodiment, the buffer member 202 has a surface tension smaller than that of the second conductive film 130, for example. In this case, the tension that the conductive material constituting the first conductive film 110 receives from the buffer member 202 is smaller than the tension that the conductive material receives from the second conductive film 130. Therefore, the buffer member 202 can relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130.
 本変形例においては、たとえば緩衝部材202を第2導電膜130よりも表面張力が小さい材料により構成することにより、緩衝部材202に働く表面張力を第2導電膜130に働く表面張力よりも小さくすることができる。
 また、緩衝部材202に対し表面張力を低下させる表面処理を施すことにより、緩衝部材202に働く表面張力を第2導電膜130に働く表面張力よりも小さくしてもよい。
 なお、緩衝部材202の膜厚は、特に限定されず、第2導電膜130の膜厚と等しくてもよく、第2導電膜130の膜厚よりも小さくまたは大きくてもよい。
In this modification, for example, the buffer member 202 is made of a material having a surface tension smaller than that of the second conductive film 130 so that the surface tension acting on the buffer member 202 is smaller than the surface tension acting on the second conductive film 130. be able to.
Further, the surface tension acting on the buffer member 202 may be made smaller than the surface tension acting on the second conductive film 130 by performing a surface treatment for reducing the surface tension on the buffer member 202.
The film thickness of the buffer member 202 is not particularly limited, and may be equal to the film thickness of the second conductive film 130 or may be smaller or larger than the film thickness of the second conductive film 130.
 図10は、接合構造200の変形例を示す図である。
 図10においては基板100上に一つの緩衝部材202のみが設けられる場合が例示される。なお、基板100上には複数の緩衝部材202が設けられていてもよい。この場合、複数の緩衝部材202のうち少なくとも第2導電膜130から最も遠い緩衝部材202として、第2導電膜130よりも表面張力が小さい緩衝部材202を配置する。このとき、第2導電膜130から最も遠い緩衝部材202以外の緩衝部材202についても、第2導電膜130よりも表面張力が小さい緩衝部材202であることが好ましい。
FIG. 10 is a diagram illustrating a modified example of the bonding structure 200.
FIG. 10 illustrates a case where only one buffer member 202 is provided on the substrate 100. A plurality of buffer members 202 may be provided on the substrate 100. In this case, the buffer member 202 having a surface tension smaller than that of the second conductive film 130 is disposed as the buffer member 202 farthest from the second conductive film 130 among the plurality of buffer members 202. At this time, the buffer member 202 other than the buffer member 202 farthest from the second conductive film 130 is also preferably the buffer member 202 having a surface tension smaller than that of the second conductive film 130.
 本実施形態においては、たとえば次のようにして第1導電膜110および第2導電膜130が互いに接合してなる接合構造200が形成される。
 まず、基板100上に第2導電膜130を形成する。第2導電膜130は、たとえば塗布法、スパッタリング法または蒸着法を用いて形成される。当該工程において使用される塗布法としては、特に限定されないが、たとえばインクジェット法、スクリーン印刷法、スプレー塗布法、またはディスペンサー塗布法が挙げられる。
 塗布法により第2導電膜130を形成する際に用いられる塗布液は、たとえばバインダ樹脂および有機溶剤を含む。バインダ樹脂としては、たとえばセルロース系樹脂、エポキシ系樹脂、またはアクリル系樹脂を用いることができる。有機溶剤としては、たとえば炭化水素系溶剤、またはアルコール系溶剤を用いることができる。また、塗布液中に含有される金属粒子は、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、CuまたはPdである。
In the present embodiment, for example, the bonding structure 200 in which the first conductive film 110 and the second conductive film 130 are bonded to each other is formed as follows.
First, the second conductive film 130 is formed over the substrate 100. The second conductive film 130 is formed using, for example, a coating method, a sputtering method, or a vapor deposition method. Although it does not specifically limit as a coating method used in the said process, For example, the inkjet method, the screen printing method, the spray coating method, or the dispenser coating method is mentioned.
The coating liquid used when forming the 2nd electrically conductive film 130 by the apply | coating method contains binder resin and an organic solvent, for example. As the binder resin, for example, a cellulose resin, an epoxy resin, or an acrylic resin can be used. As the organic solvent, for example, a hydrocarbon solvent or an alcohol solvent can be used. The metal particles contained in the coating liquid are, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, or Pd.
 次に、基板100上における第2導電膜130の周辺領域に、一つまたは複数の緩衝部材202を形成する。
 緩衝部材202が絶縁材料により構成される場合、緩衝部材202は、たとえば塗布法を用いて形成される。この場合、緩衝部材202は、たとえば絶縁性樹脂を基板100上に塗布し、これを乾燥することにより形成される。また、感光性樹脂を含む絶縁性樹脂を基板100上に塗布して絶縁膜を形成した後、当該絶縁膜をフォトリソグラフィ法によってパターニングすることにより、緩衝部材202を形成してもよい。
 緩衝部材202が金属材料により構成される場合、緩衝部材202は、たとえば塗布法を用いて形成される。この場合において用いられる塗布法としては、特に限定されないが、たとえばインクジェット法やこれに類した技術を使用できる。塗布液中には、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、CuまたはPdからなる金属粒子が含有される。塗布液は、さらにバインダ樹脂および有機溶剤を含んでいてもよい。なお、緩衝部材202が第2導電膜130と同じ材料により構成される場合、緩衝部材202は、第2導電膜130と同時に形成されてもよい。
Next, one or more buffer members 202 are formed in the peripheral region of the second conductive film 130 on the substrate 100.
When the buffer member 202 is made of an insulating material, the buffer member 202 is formed using, for example, a coating method. In this case, the buffer member 202 is formed, for example, by applying an insulating resin on the substrate 100 and drying it. Alternatively, the buffer member 202 may be formed by applying an insulating resin containing a photosensitive resin over the substrate 100 to form an insulating film, and then patterning the insulating film by a photolithography method.
When the buffer member 202 is made of a metal material, the buffer member 202 is formed using, for example, a coating method. The coating method used in this case is not particularly limited, but for example, an ink jet method or a similar technique can be used. The coating solution contains metal particles made of, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, or Pd. The coating solution may further contain a binder resin and an organic solvent. When the buffer member 202 is made of the same material as the second conductive film 130, the buffer member 202 may be formed at the same time as the second conductive film 130.
 また、基板100上に形成された金属膜をエッチングすることにより、第2導電膜130と緩衝部材202を同時に形成してもよい。この場合、たとえば金属膜をエッチングによりパターニングして第2導電膜130および緩衝部材202を形成した後、第2導電膜130をマスクした状態において緩衝部材202をエッチングする工程をさらに含む。これにより、緩衝部材202の膜厚を第2導電膜130よりも小さくすることができる。
 複数の緩衝部材202が設けられる場合、第2導電膜130および一部の緩衝部材202をマスクした状態において、他の緩衝部材202をエッチングする工程をさらに含むことができる。これにより、複数の緩衝部材202のうち第2導電膜130から最も遠くに位置する緩衝部材202の膜厚を、最も小さくすることができる。
Alternatively, the second conductive film 130 and the buffer member 202 may be formed at the same time by etching a metal film formed on the substrate 100. In this case, for example, after the second conductive film 130 and the buffer member 202 are formed by patterning a metal film by etching, the buffer member 202 is further etched in a state where the second conductive film 130 is masked. Thereby, the film thickness of the buffer member 202 can be made smaller than that of the second conductive film 130.
When a plurality of buffer members 202 are provided, the method may further include a step of etching another buffer member 202 in a state where the second conductive film 130 and a part of the buffer members 202 are masked. Thereby, the film thickness of the buffer member 202 located farthest from the second conductive film 130 among the plurality of buffer members 202 can be minimized.
 次に、基板100上に、第1導電膜110を形成する。第1導電膜110は、たとえば透明導電材料含有塗布液を基板100上に塗布し、これを乾燥することにより形成される。第1導電膜110は、たとえば第2導電膜130の一部および緩衝部材202を覆うように形成される。また、基板100上に複数の緩衝部材202が形成されている場合には、第1導電膜110は、第2導電膜130の一部および複数の緩衝部材202を覆うように形成されることとなる。
 透明導電材料含有塗布液は、特に限定されないが、たとえばインクジェット法、スクリーン印刷法、凸版印刷法、グラビア印刷法、ダイコート、スピンコート、またはスプレーを用いて基板100上に塗布される。第1導電膜110を形成する当該工程において用いられる透明導電材料含有塗布液は、たとえば上述した透明導電材料に加え、有機溶剤や水等を含む。有機溶剤としては、たとえばアルコール系溶剤を用いることができる。なお、第1導電膜110は、銀等のペースト状の導電材料を基板100上に塗布し、これを乾燥することにより形成されてもよい。
 本実施形態では、このようにして接合構造200が形成される。
Next, a first conductive film 110 is formed over the substrate 100. The first conductive film 110 is formed, for example, by applying a transparent conductive material-containing coating solution on the substrate 100 and drying it. The first conductive film 110 is formed so as to cover a part of the second conductive film 130 and the buffer member 202, for example. When the plurality of buffer members 202 are formed on the substrate 100, the first conductive film 110 is formed so as to cover a part of the second conductive film 130 and the plurality of buffer members 202. Become.
The transparent conductive material-containing coating solution is not particularly limited, but is applied onto the substrate 100 using, for example, an ink jet method, a screen printing method, a relief printing method, a gravure printing method, a die coat, a spin coat, or a spray. The transparent conductive material-containing coating solution used in the step of forming the first conductive film 110 includes, for example, an organic solvent and water in addition to the above-described transparent conductive material. As the organic solvent, for example, an alcohol solvent can be used. The first conductive film 110 may be formed by applying a paste-like conductive material such as silver on the substrate 100 and drying it.
In the present embodiment, the joining structure 200 is formed in this way.
 次に、発光装置10の構成の一例について説明する。
 図1においては、発光装置10がディスプレイである場合が例示される。
 なお、発光装置10は、照明装置であってもよい。発光装置10が照明装置である場合、発光装置10は、たとえば互いに発光色が異なるライン状の有機層140を複数繰り返し並べた構成を有する。これにより、演色性に優れた照明装置が実現される。また、照明装置である発光装置10は、面状の有機層140を有していてもよい。
Next, an example of the configuration of the light emitting device 10 will be described.
In FIG. 1, the case where the light-emitting device 10 is a display is illustrated.
The light emitting device 10 may be a lighting device. When the light-emitting device 10 is an illumination device, the light-emitting device 10 has a configuration in which, for example, a plurality of linear organic layers 140 having different emission colors are arranged repeatedly. Thereby, the illuminating device excellent in color rendering properties is realized. In addition, the light-emitting device 10 that is a lighting device may have a planar organic layer 140.
 基板100は、たとえば透明基板である。本実施形態において、基板100は、ガラス基板とすることができる。これにより、耐熱性等に優れた発光装置10を安価に製造することが可能となる。 The substrate 100 is, for example, a transparent substrate. In the present embodiment, the substrate 100 can be a glass substrate. Thereby, the light emitting device 10 having excellent heat resistance and the like can be manufactured at low cost.
 基板100は、樹脂材料により構成されるフィルム状の基板であってもよい。この場合、特にフレキシブル性の高いディスプレイを実現することが可能となる。フィルム状の基板を構成する樹脂材料としては、たとえばポリエチレンテレフタレート、ポリエチレンナフタレートおよびポリカーボネートが挙げられる。 The substrate 100 may be a film-like substrate made of a resin material. In this case, a display with particularly high flexibility can be realized. Examples of the resin material constituting the film substrate include polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
 ディスプレイである発光装置10は、たとえばアレイ状に配列された複数の有機EL素子20を基板100上に有する。有機EL素子20は、基板100上に設けられた第1電極112と、第1電極112上に設けられた有機層140と、有機層140上に設けられた第2電極152と、を有している。このとき、有機層140は、第1電極112と第2電極152との間に配置されることとなる。 The light emitting device 10 that is a display has a plurality of organic EL elements 20 arranged in an array on the substrate 100, for example. The organic EL element 20 includes a first electrode 112 provided on the substrate 100, an organic layer 140 provided on the first electrode 112, and a second electrode 152 provided on the organic layer 140. ing. At this time, the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
 本実施形態では、たとえば図中Y方向に延びる複数の第1電極112と、図中X方向に延びる複数の第2電極152と、が基板上に設けられる。そして、第1電極112と第2電極152が平面視で互いに重なる各部分において、有機EL素子20が形成される。これにより、基板100上には、アレイ状に配列された複数の有機EL素子20が形成されることとなる。 In the present embodiment, for example, a plurality of first electrodes 112 extending in the Y direction in the drawing and a plurality of second electrodes 152 extending in the X direction in the drawing are provided on the substrate. The organic EL element 20 is formed in each portion where the first electrode 112 and the second electrode 152 overlap each other in plan view. As a result, a plurality of organic EL elements 20 arranged in an array are formed on the substrate 100.
 第1電極112は、たとえば有機EL素子の陽極となる。この場合、第1電極112は、たとえば後述する有機層140のうちの発光層144から発光される光の波長に対して透明または半透明である透明電極となる。また、第1電極112は、たとえば基板100上であって、かつ画素領域300内において、図中Y方向に直線状に延在するように設けられる。また、基板100上には、たとえば互いに離間する複数の第1電極112が、第1電極112の延在方向と垂直な方向(図中X方向)に配列される。このとき、複数の第1電極112は、たとえば互いに離間する。なお、画素領域300は、複数の有機EL素子20を含む領域である。図4に示す例では、一点鎖線により囲まれた領域が画素領域300に該当する。 The first electrode 112 serves as an anode of an organic EL element, for example. In this case, the first electrode 112 is, for example, a transparent electrode that is transparent or translucent to the wavelength of light emitted from the light emitting layer 144 of the organic layer 140 described later. Further, the first electrode 112 is provided, for example, on the substrate 100 and in the pixel region 300 so as to extend linearly in the Y direction in the drawing. On the substrate 100, for example, a plurality of first electrodes 112 that are separated from each other are arranged in a direction (X direction in the drawing) perpendicular to the extending direction of the first electrodes 112. At this time, the plurality of first electrodes 112 are separated from each other, for example. The pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 4, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
 本実施形態において、第1電極112は、たとえば透明導電材料により構成される。第1電極112を構成する透明導電材料としては、たとえば第1導電膜110を構成する透明導電材料と同様のものを用いることができる。このため、第1電極112は透明性を有することができる。 In the present embodiment, the first electrode 112 is made of, for example, a transparent conductive material. As the transparent conductive material constituting the first electrode 112, for example, the same transparent conductive material as that constituting the first conductive film 110 can be used. For this reason, the 1st electrode 112 can have transparency.
 基板100上には、たとえば第1配線114が設けられている。本実施形態では、第1配線114が、第1電極112と電気的に接続する場合が例示される。このとき、基板100上には、それぞれ異なる第1電極112へ接続する複数の第1配線114が設けられる。このため、本実施形態における複数の第1電極112は、それぞれ第1配線114を介して引出配線134へ接続されることとなる。 On the substrate 100, for example, the first wiring 114 is provided. In this embodiment, the case where the 1st wiring 114 is electrically connected with the 1st electrode 112 is illustrated. At this time, a plurality of first wirings 114 connected to different first electrodes 112 are provided on the substrate 100. For this reason, the plurality of first electrodes 112 in the present embodiment are connected to the lead-out wiring 134 via the first wiring 114, respectively.
 本実施形態において、第1配線114は、導電材料により構成される第1導電膜110により構成される。第1導電膜110が透明導電材料により構成される場合、第1導電膜110により構成される第1配線114は透明性を有することができる。 In the present embodiment, the first wiring 114 is constituted by the first conductive film 110 made of a conductive material. In the case where the first conductive film 110 is made of a transparent conductive material, the first wiring 114 formed of the first conductive film 110 can have transparency.
 本実施形態において、第1電極112および第1配線114は、たとえば基板100上に一体として設けられる。この場合、第1配線114および第1電極112は、たとえば第1導電膜110により構成されることとなる。このとき、第1導電膜110のうち、複数の有機EL素子20を含む画素領域300内に位置する部分が、第1電極112となる。また、第1導電膜110のうち、画素領域300外に位置する部分が、第1配線114となる。第1電極112は、第1配線114を介して引出配線134に接続する。
 図4に示す例において、基板100上には、図中Y方向に延在する第1導電膜110が複数設けられている。これら複数の第1導電膜110は、互いに離間するよう図中X方向に配列されている。そして、第1導電膜110のうち、一点鎖線で示される画素領域300よりも引出配線134と接続する端部側に位置する部分が、第1配線114となる。
In the present embodiment, the first electrode 112 and the first wiring 114 are provided integrally on the substrate 100, for example. In this case, the first wiring 114 and the first electrode 112 are constituted by the first conductive film 110, for example. At this time, a portion of the first conductive film 110 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the first electrode 112. Further, a portion of the first conductive film 110 located outside the pixel region 300 becomes the first wiring 114. The first electrode 112 is connected to the lead wiring 134 through the first wiring 114.
In the example shown in FIG. 4, a plurality of first conductive films 110 extending in the Y direction in the drawing are provided on the substrate 100. The plurality of first conductive films 110 are arranged in the X direction in the drawing so as to be separated from each other. A portion of the first conductive film 110 located on the end side connected to the extraction wiring 134 from the pixel region 300 indicated by the alternate long and short dash line is the first wiring 114.
 基板100上には、引出配線134が設けられている。
 本実施形態では、引出配線134が第1配線114に接続する場合が例示される。基板100上には、互いに離間するよう図中X方向に配列された複数の引出配線134が設けられている。各引出配線134は、それぞれ第1配線114に接続される。このため、複数の第1配線114は、それぞれ引出配線134を介して外部へ接続されることとなる。有機EL素子20には、第1配線114および引出配線134を介して発光/非発光の信号が供給される。
On the substrate 100, a lead wiring 134 is provided.
In the present embodiment, a case where the lead wiring 134 is connected to the first wiring 114 is exemplified. A plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other. Each lead-out wiring 134 is connected to the first wiring 114. For this reason, the plurality of first wires 114 are connected to the outside via the lead wires 134, respectively. A light emission / non-light emission signal is supplied to the organic EL element 20 via the first wiring 114 and the lead-out wiring 134.
 本実施形態において、引出配線134は、金属材料により構成される第2導電膜130により構成される。このため、引出配線134が第1配線114に接続される場合、第1導電膜110により構成される第1配線114と、第2導電膜130により構成される引出配線134と、が互いに接合して接合構造200が形成されることとなる。図4に示す例では、破線により囲まれた部分において接合構造200が形成される。
 本実施形態において、基板100上には、引出配線134の周辺領域に緩衝部材202が形成されることとなる。また、第1配線114は、引出配線134の一部および緩衝部材202を覆うように形成されることとなる。
In this embodiment, the lead-out wiring 134 is comprised by the 2nd electrically conductive film 130 comprised with a metal material. Therefore, when the lead wiring 134 is connected to the first wiring 114, the first wiring 114 configured by the first conductive film 110 and the lead wiring 134 configured by the second conductive film 130 are bonded to each other. Thus, the joint structure 200 is formed. In the example illustrated in FIG. 4, the joint structure 200 is formed in a portion surrounded by a broken line.
In the present embodiment, the buffer member 202 is formed on the substrate 100 in the peripheral region of the lead wiring 134. The first wiring 114 is formed so as to cover a part of the lead wiring 134 and the buffer member 202.
 第1配線114は、一の端部において引出配線134と接続している。このとき、第1配線114は、たとえば上記一の端部において引出配線134と接合し、接合構造200を形成することとなる。第1配線114は、引出配線134からみて第1方向に延びている。なお、本実施形態において第1方向とは、たとえば図中Y方向をさす。 The first wiring 114 is connected to the lead wiring 134 at one end. At this time, the first wiring 114 is bonded to, for example, the lead wiring 134 at the one end portion to form the bonding structure 200. The first wiring 114 extends in the first direction when viewed from the lead wiring 134. In the present embodiment, the first direction refers to the Y direction in the figure, for example.
 基板100上には、たとえば第1電極112を覆うように絶縁層120が設けられている。本実施形態においては、たとえば第1電極112と、第1配線114および後述する引出配線164それぞれの一部と、を覆うように絶縁層120が設けられる。
 絶縁層120は、ポリイミド系樹脂等の感光性の樹脂であり、露光および現像されることによって所望のパターンに形成される。絶縁層120は、ポリイミド系樹脂以外の樹脂材料により構成されてもよく、エポキシ系樹脂やアクリル系樹脂であってもよい。
An insulating layer 120 is provided on the substrate 100 so as to cover the first electrode 112, for example. In the present embodiment, for example, the insulating layer 120 is provided so as to cover the first electrode 112 and the first wiring 114 and a part of each of the extraction wiring 164 described later.
The insulating layer 120 is a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by exposure and development. The insulating layer 120 may be made of a resin material other than polyimide resin, and may be epoxy resin or acrylic resin.
 絶縁層120には、たとえば複数の第1開口122が設けられている。図5に示すように、第1開口122は、たとえばマトリクスを構成するように形成される。
 本実施形態においては、複数の第1開口122は、第1電極112上に位置するように形成される。図中Y方向に延在する各第1電極112の上には、たとえば複数の第1開口122が所定の間隔を空けて図中Y方向に配列される。また、これらの複数の第1開口122は、たとえば第1電極112と直交する方向(図中X方向)に延在する第2電極152と重なる位置に設けられる。このため、複数の第1開口122は、マトリクスを構成するように配置されることとなる。
The insulating layer 120 is provided with a plurality of first openings 122, for example. As shown in FIG. 5, the first openings 122 are formed so as to form a matrix, for example.
In the present embodiment, the plurality of first openings 122 are formed so as to be located on the first electrode 112. On each first electrode 112 extending in the Y direction in the figure, for example, a plurality of first openings 122 are arranged in the Y direction in the figure at a predetermined interval. In addition, the plurality of first openings 122 are provided at positions overlapping the second electrode 152 extending in a direction orthogonal to the first electrode 112 (X direction in the figure), for example. For this reason, the plurality of first openings 122 are arranged to form a matrix.
 絶縁層120には、たとえば複数の第2開口124が設けられている。
 図5に示すように、第2開口124は、たとえば引出配線164上に位置するように設けられる。複数の第2開口124は、第1開口122が構成するマトリクスの一辺に沿って配置されている。この一辺に沿う方向(たとえば図中Y方向)でみた場合、第2開口124は、第1開口122と同じ間隔で配置されている。
The insulating layer 120 is provided with a plurality of second openings 124, for example.
As shown in FIG. 5, the second opening 124 is provided, for example, so as to be located on the lead wiring 164. The plurality of second openings 124 are arranged along one side of the matrix formed by the first openings 122. When viewed in a direction along this one side (for example, Y direction in the figure), the second openings 124 are arranged at the same interval as the first openings 122.
 絶縁層120上には、たとえば隔壁170が設けられている。
 図1に示すように、隔壁170は、図中X方向に延在するように設けられる。すなわち、隔壁170は、第2電極152の延在方向に沿って形成されることとなる。また、隔壁170は、図中Y方向に配列されるよう複数設けられる。
 隔壁170は、たとえばポリイミド系樹脂等の感光性の樹脂であり、露光および現像されることによって所望のパターンに形成される。なお、隔壁170は、ポリイミド系樹脂以外の樹脂材料により構成されてもよく、エポキシ系樹脂やアクリル系樹脂であってもよい。
On the insulating layer 120, for example, a partition wall 170 is provided.
As shown in FIG. 1, the partition 170 is provided so as to extend in the X direction in the drawing. That is, the partition 170 is formed along the extending direction of the second electrode 152. A plurality of partition walls 170 are provided so as to be arranged in the Y direction in the drawing.
The partition wall 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed. The partition wall 170 may be made of a resin material other than a polyimide resin, or may be an epoxy resin or an acrylic resin.
 隔壁170は、たとえば断面が台形の上下を逆にした形状(逆台形)を有している。すなわち、隔壁170の上面の幅は、たとえば隔壁170の底面の幅よりも大きい。この場合、複数の第2電極152をスパッタリング法や蒸着法等により一括して形成する場合であっても、隣接する隔壁170間にそれぞれ位置する複数の第2電極152を互いに分断させることが可能となる。したがって、第2電極152を容易に形成することができる。
 なお、隔壁170の平面形状は、図1に示すものに限られない。このため、隔壁170の平面形状を変更することにより、隔壁170により互いに分断される複数の第2電極152の平面パターンを自由に変更することが可能となる。
The partition wall 170 has, for example, a trapezoidal cross-sectional shape (reverse trapezoidal shape). That is, the width of the upper surface of the partition wall 170 is larger than the width of the bottom surface of the partition wall 170, for example. In this case, even when the plurality of second electrodes 152 are collectively formed by a sputtering method, a vapor deposition method, or the like, the plurality of second electrodes 152 positioned between the adjacent partition walls 170 can be separated from each other. It becomes. Therefore, the second electrode 152 can be easily formed.
The planar shape of the partition wall 170 is not limited to that shown in FIG. Therefore, by changing the planar shape of the partition 170, the planar pattern of the plurality of second electrodes 152 that are separated from each other by the partition 170 can be freely changed.
 図2に示すように、第1開口122の中には、たとえば有機層140が形成されている。
 本実施形態において、有機層140は、たとえば正孔注入層142、発光層144および電子注入層146を順に積層した積層体により構成される。このとき、正孔注入層142は第1電極112に接し、電子注入層146は第2電極152に接する。このため、有機層140は、第1電極112と第2電極152との間に狭持されることとなる。
 なお、正孔注入層142と発光層144の間には正孔輸送層が形成されてもよいし、発光層144と電子注入層146の間には電子輸送層が形成されてもよい。また、有機層140は、正孔注入層142を有していなくともよい。
As shown in FIG. 2, for example, an organic layer 140 is formed in the first opening 122.
In the present embodiment, the organic layer 140 is configured by a stacked body in which, for example, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially stacked. At this time, the hole injection layer 142 is in contact with the first electrode 112, and the electron injection layer 146 is in contact with the second electrode 152. For this reason, the organic layer 140 is sandwiched between the first electrode 112 and the second electrode 152.
Note that a hole transport layer may be formed between the hole injection layer 142 and the light emitting layer 144, or an electron transport layer may be formed between the light emitting layer 144 and the electron injection layer 146. Further, the organic layer 140 may not include the hole injection layer 142.
 本実施形態において、絶縁層120上には、たとえば隔壁170が設けられている。この場合、図2に示すように、隣接する隔壁170間に挟まれる複数の領域それぞれに設けられた有機層140は、図中Y方向において互いに分断される。なお、隔壁170上には、たとえば有機層140と同一材料からなる積層膜が形成される。
 一方で、図3に示すように、有機層140を構成する各層は、隔壁170が延在する図中X方向において、隣り合う第1開口122の間において連続するように設けられる。
In the present embodiment, for example, a partition 170 is provided on the insulating layer 120. In this case, as shown in FIG. 2, the organic layers 140 provided in each of a plurality of regions sandwiched between adjacent partition walls 170 are separated from each other in the Y direction in the drawing. A laminated film made of the same material as the organic layer 140 is formed on the partition wall 170, for example.
On the other hand, as shown in FIG. 3, each layer constituting the organic layer 140 is provided so as to be continuous between adjacent first openings 122 in the X direction in the drawing in which the partition 170 extends.
 有機層140上には、第2電極152が設けられている。
 本実施形態において、第2電極152は、たとえば有機EL素子の陰極となる。第2電極152は、たとえば図中X方向に直線状に延在するように設けられる。また、基板100上には、たとえば互いに離間する複数の第2電極152が、第2電極152の延在方向と垂直な方向(図中Y方向)に配列される。
A second electrode 152 is provided on the organic layer 140.
In this embodiment, the 2nd electrode 152 becomes a cathode of an organic EL element, for example. The second electrode 152 is provided, for example, so as to extend linearly in the X direction in the drawing. On the substrate 100, for example, a plurality of second electrodes 152 spaced apart from each other are arranged in a direction (Y direction in the drawing) perpendicular to the extending direction of the second electrodes 152.
 第2電極152は、たとえば錫、マグネシウム、インジウム、カルシウム、アルミニウム、もしくは銀、またはこれらの合金等の金属材料により構成される。これらの材料は、一種を単独で用いてもよく、二種以上の任意の組み合わせを用いてもよい。なお、第2電極152が陰極である場合、第2電極152は、陽極である第1電極112よりも仕事関数が小さい導電性材料により構成されることが好ましい。 The second electrode 152 is made of a metal material such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof. One of these materials may be used alone, or two or more arbitrary combinations may be used. Note that in the case where the second electrode 152 is a cathode, the second electrode 152 is preferably made of a conductive material having a work function smaller than that of the first electrode 112 that is an anode.
 基板100上には、第2配線154が設けられている。
 第2配線154は、第1電極112または第2電極152のうち第1配線114と接続していない一方に接続している。これにより、第1電極112および第2電極152のうち第2配線154と接続されるいずれか一方は、第2配線154を介して外部へ接続されることとなる。
 本実施形態においては、第2配線154が有機層140上に設けられ、第2電極152に接続される場合が例示される。このとき、有機層140上には、それぞれ異なる第2電極152へ接続する複数の第2配線154が設けられる。このため、本実施形態における複数の第2電極152は、それぞれ第2配線154を介して外部へ接続されることとなる。なお、第2配線154は、たとえば一部が第2開口124内に埋め込まれ、当該一部において後述する引出配線164に接続される。
A second wiring 154 is provided on the substrate 100.
The second wiring 154 is connected to one of the first electrode 112 and the second electrode 152 that is not connected to the first wiring 114. As a result, one of the first electrode 112 and the second electrode 152 that is connected to the second wiring 154 is connected to the outside via the second wiring 154.
In the present embodiment, a case where the second wiring 154 is provided on the organic layer 140 and connected to the second electrode 152 is exemplified. At this time, a plurality of second wirings 154 connected to the different second electrodes 152 are provided on the organic layer 140. For this reason, the plurality of second electrodes 152 in the present embodiment are connected to the outside via the second wirings 154, respectively. For example, part of the second wiring 154 is embedded in the second opening 124, and part of the second wiring 154 is connected to an extraction wiring 164 described later.
 第2配線154は、たとえば金属材料により構成される。第2配線154を構成する金属材料としては、たとえば第2電極152と同様のものを用いることができる。 The second wiring 154 is made of, for example, a metal material. As a metal material constituting the second wiring 154, for example, the same material as the second electrode 152 can be used.
 本実施形態において、第2電極152および第2配線154は、たとえば有機層140上に一体として設けられ、導電膜150を構成する。この場合、導電膜150のうち、複数の有機EL素子20を含む画素領域300内に位置する部分が、第2電極152となる。また、導電膜150のうち、画素領域300外に位置する部分が、第2配線154となる。第2電極152は、たとえば第2配線154を介して引出配線164に接続する。なお、図1に示す例では、一点鎖線で囲まれた領域が画素領域300に該当する。
 図1に示す例において、有機層140上には、図中X方向に延在する導電膜150が複数設けられている。また、これらの複数の導電膜150は、互いに離間するよう図中Y方向に配列されている。そして、導電膜150のうち、画素領域300よりも引出配線164と接続する端部側に位置する部分が、第2配線154となる。
In the present embodiment, the second electrode 152 and the second wiring 154 are provided integrally on the organic layer 140, for example, and constitute the conductive film 150. In this case, a part of the conductive film 150 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the second electrode 152. In addition, a portion of the conductive film 150 located outside the pixel region 300 serves as the second wiring 154. The second electrode 152 is connected to the lead wiring 164 via the second wiring 154, for example. In the example illustrated in FIG. 1, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
In the example shown in FIG. 1, a plurality of conductive films 150 extending in the X direction in the drawing are provided on the organic layer 140. The plurality of conductive films 150 are arranged in the Y direction in the drawing so as to be separated from each other. In the conductive film 150, a portion located on the end side connected to the extraction wiring 164 with respect to the pixel region 300 becomes the second wiring 154.
 複数の導電膜150は、たとえばスパッタリング法または蒸着法等を用いて有機層140上に一括で形成される。このような場合であっても、本実施形態においては絶縁層120上に隔壁170が形成されているため、隣接する隔壁170間に挟まれる複数の領域それぞれに設けられた導電膜150は図中Y方向において互いに分断されることとなる。
 これにより、互いに離間するよう図中Y方向に配列され、かつ図中X方向に延在する複数の導電膜150を形成することが可能となる。このとき、隔壁170上には、導電膜150と同一材料からなる膜が形成されることとなる。
The plurality of conductive films 150 are collectively formed on the organic layer 140 using, for example, a sputtering method or a vapor deposition method. Even in such a case, since the partition 170 is formed on the insulating layer 120 in this embodiment, the conductive film 150 provided in each of a plurality of regions sandwiched between adjacent partitions 170 is illustrated in the drawing. They are separated from each other in the Y direction.
As a result, it is possible to form a plurality of conductive films 150 arranged in the Y direction in the drawing and extending in the X direction in the drawing so as to be separated from each other. At this time, a film made of the same material as the conductive film 150 is formed over the partition wall 170.
 基板100上には、たとえば引出配線164が設けられている。第2配線154は、引出配線164を介して外部に接続する。このため、第2電極152は、第2配線154および引出配線164を介して外部に接続され、信号が供給されることとなる。 On the substrate 100, for example, a lead wiring 164 is provided. The second wiring 154 is connected to the outside through the lead wiring 164. Therefore, the second electrode 152 is connected to the outside via the second wiring 154 and the lead wiring 164, and a signal is supplied.
 引出配線164は、たとえば金属材料により構成される。引出配線164を構成する金属材料としては、たとえば引出配線134と同様のものを用いることができる。この場合、引出配線164は、引出配線134と同時に形成することが可能となる。このため、発光装置10の製造工程数が増大することを抑制することができる。 The lead wiring 164 is made of, for example, a metal material. As the metal material constituting the lead wiring 164, for example, the same material as the lead wiring 134 can be used. In this case, the lead wiring 164 can be formed simultaneously with the lead wiring 134. For this reason, it can suppress that the manufacturing process number of the light-emitting device 10 increases.
 次に、発光装置10の製造方法の一例について説明する。
 まず、基板100上に引出配線134を形成する。引出配線134は、たとえば塗布法、スパッタリング法または蒸着法を用いて基板100上に形成される。なお、本実施形態において、引出配線134は、第2導電膜130により構成される。このため、引出配線134は、たとえば上述した第2導電膜130を形成する方法および第2導電膜130を構成する材料を用いて形成される。また、第2導電膜130により構成される引出配線134の周辺領域には、上述した方法により一つまたは複数の緩衝部材202が形成される。
Next, an example of a method for manufacturing the light emitting device 10 will be described.
First, the lead wiring 134 is formed on the substrate 100. The lead wiring 134 is formed on the substrate 100 using, for example, a coating method, a sputtering method, or a vapor deposition method. In the present embodiment, the lead wiring 134 is configured by the second conductive film 130. For this reason, the lead wiring 134 is formed using, for example, the above-described method for forming the second conductive film 130 and the material forming the second conductive film 130. In addition, one or a plurality of buffer members 202 are formed in the peripheral region of the lead wiring 134 constituted by the second conductive film 130 by the method described above.
 また、本実施形態においては、たとえば引出配線134を形成する工程と同時に、基板100上に引出配線164が形成される。この場合、引出配線164は、たとえば引出配線134と同様の方法および材料により形成される。 In this embodiment, for example, the lead wiring 164 is formed on the substrate 100 simultaneously with the step of forming the lead wiring 134. In this case, the lead wiring 164 is formed by the same method and material as the lead wiring 134, for example.
 次に、基板100上に、第1配線114を形成する。第1配線114は、たとえば透明導電材料含有塗布液を基板100上に塗布し、これを乾燥することにより形成される。なお、本実施形態において、第1配線114は、第1導電膜110である。このため、第1配線114は、たとえば上述した第1導電膜110を形成する方法および第1導電膜110を構成する材料を用いて形成される。また、第1導電膜110により構成される第1配線114および第2導電膜130により構成される引出配線134は、互いに接合して接合構造200を形成する。このとき、接合構造200は、たとえば上述した接合構造200を形成する方法を用いて形成される。
 第1配線114を形成する上記工程においては、たとえば第1配線114とともに、第1配線114に接続する第1電極112が形成される。この場合、第1電極112は、たとえば第1配線114と一体として第1導電膜110により形成される。
Next, the first wiring 114 is formed on the substrate 100. The first wiring 114 is formed by, for example, applying a transparent conductive material-containing coating solution on the substrate 100 and drying it. In the present embodiment, the first wiring 114 is the first conductive film 110. For this reason, the first wiring 114 is formed using, for example, the above-described method for forming the first conductive film 110 and the material constituting the first conductive film 110. In addition, the first wiring 114 constituted by the first conductive film 110 and the lead wiring 134 constituted by the second conductive film 130 are bonded to each other to form the bonded structure 200. At this time, the bonding structure 200 is formed using, for example, the method for forming the bonding structure 200 described above.
In the step of forming the first wiring 114, for example, the first electrode 112 connected to the first wiring 114 is formed together with the first wiring 114. In this case, the first electrode 112 is formed by the first conductive film 110 integrally with the first wiring 114, for example.
 次に、第1配線114に対し熱処理を施す。これにより、第1配線114を乾燥させる。透明導電材料が導電性高分子を含む場合には、第1配線114を乾燥させることにより導電性高分子の凝集力が高まり、第1配線114を強固な膜とすることができる。また、第1配線114に対し熱処理を施すことにより、第1配線114の硬化が行われる。また、第1配線114を構成する透明導電材料が感光性材料を含む場合には、UV照射により第1配線114を硬化してもよい。
 この段階において得られる構造が、図4に示されるものである。
Next, heat treatment is performed on the first wiring 114. Thereby, the first wiring 114 is dried. When the transparent conductive material includes a conductive polymer, the first wiring 114 is dried to increase the cohesive force of the conductive polymer, so that the first wiring 114 can be a strong film. Further, the first wiring 114 is cured by performing a heat treatment on the first wiring 114. When the transparent conductive material constituting the first wiring 114 includes a photosensitive material, the first wiring 114 may be cured by UV irradiation.
The structure obtained at this stage is shown in FIG.
 次に、基板100上、第1電極112上、第1配線114上および引出配線164上に絶縁層120を形成する。絶縁層120は、ドライエッチングまたはウェットエッチング等を用いて所定の形状にパターニングされる。これにより、絶縁層120に、複数の第1開口122および複数の第2開口124が形成される。このとき、複数の第1開口122は、たとえば各第1開口122から第1電極112の一部が露出するように形成される。 Next, the insulating layer 120 is formed on the substrate 100, the first electrode 112, the first wiring 114, and the lead wiring 164. The insulating layer 120 is patterned into a predetermined shape using dry etching or wet etching. As a result, a plurality of first openings 122 and a plurality of second openings 124 are formed in the insulating layer 120. At this time, the plurality of first openings 122 are formed, for example, such that a part of the first electrode 112 is exposed from each first opening 122.
 次に、絶縁層120上に隔壁170を形成する。隔壁170は、絶縁層120上に設けられた絶縁膜をドライエッチングまたはウェットエッチング等を用いて所定の形状にパターニングすることにより得られる。隔壁170が感光性樹脂により形成される場合、露光および現像時の条件を調節することにより、隔壁170の断面形状を逆台形にすることができる。この段階において得られる構造が、図5に示されるものである。 Next, a partition wall 170 is formed on the insulating layer 120. The partition wall 170 is obtained by patterning an insulating film provided over the insulating layer 120 into a predetermined shape using dry etching or wet etching. When the partition wall 170 is formed of a photosensitive resin, the cross-sectional shape of the partition wall 170 can be changed to an inverted trapezoid by adjusting the conditions during exposure and development. The structure obtained at this stage is shown in FIG.
 次に、第1開口122内に、正孔注入層142、発光層144および電子注入層146を順に形成する。これらは、たとえば塗布法または蒸着法を用いて形成される。
 これにより、有機層140が形成される。
Next, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially formed in the first opening 122. These are formed using, for example, a coating method or a vapor deposition method.
Thereby, the organic layer 140 is formed.
 次に、有機層140上に、第2電極152および第2配線154を構成する導電膜150を形成する。このとき、たとえば導電膜150の一部が第2開口124内に位置するように、導電膜150が形成される。導電膜150は、たとえば蒸着法またはスパッタリング法を用いて形成される。
 これにより、第1電極112と、第2電極152と、これらに狭持された有機層140と、により構成される有機EL素子20が、基板100上に形成されることとなる。
 本実施形態においては、たとえばこのようにして発光装置10が形成される。
Next, the conductive film 150 constituting the second electrode 152 and the second wiring 154 is formed on the organic layer 140. At this time, the conductive film 150 is formed so that, for example, a part of the conductive film 150 is located in the second opening 124. The conductive film 150 is formed using, for example, a vapor deposition method or a sputtering method.
As a result, the organic EL element 20 composed of the first electrode 112, the second electrode 152, and the organic layer 140 sandwiched therebetween is formed on the substrate 100.
In the present embodiment, for example, the light emitting device 10 is formed in this way.
 以上、本実施形態によれば、基板100上における第2導電膜130の周辺領域には、第1導電膜110を構成する導電材料と異なる材料により構成された一つまたは複数の緩衝部材202が設けられている。また、第1導電膜110は、第2導電膜130の一部および緩衝部材202を覆うように設けられる。この場合、第1導電膜110を構成する導電材料が第2導電膜130から受ける張力を、緩衝部材202によって緩和することが可能となる。したがって、第1導電膜と第2導電膜との間における接続不良を抑制し、互いに接合された二つの導電膜の間における接続信頼性を向上させることが可能となる。
 また、有機EL素子20を構成する第1電極112に接続され、かつ第1導電膜110により構成される第1配線114と、第2導電膜130により構成される引出配線134と、を備える発光装置10を実現することができる。これにより、第1電極112と引出配線134との間における接続信頼性を向上させることができる。また、発光装置10の動作信頼性を向上させることも可能となる。
As described above, according to the present embodiment, in the peripheral region of the second conductive film 130 on the substrate 100, one or more buffer members 202 made of a material different from the conductive material constituting the first conductive film 110 are provided. Is provided. The first conductive film 110 is provided so as to cover a part of the second conductive film 130 and the buffer member 202. In this case, the buffer member 202 can relieve the tension that the conductive material constituting the first conductive film 110 receives from the second conductive film 130. Therefore, connection failure between the first conductive film and the second conductive film can be suppressed, and connection reliability between the two conductive films joined to each other can be improved.
In addition, a light emission including a first wiring 114 connected to the first electrode 112 configuring the organic EL element 20 and configured by the first conductive film 110 and an extraction wiring 134 configured by the second conductive film 130. The device 10 can be realized. Thereby, the connection reliability between the 1st electrode 112 and the extraction wiring 134 can be improved. In addition, the operational reliability of the light emitting device 10 can be improved.
(第2の実施形態)
 図11は、第2の実施形態に係る発光装置12を示す平面図であり、第1の実施形態に係る図1に対応している。図12は、図11のC-C断面を示す断面図であり、図13は図11のD-D断面を示す断面図である。なお、図12および13においては、緩衝部材202の構成は省略されている。図14は、図11に示す発光装置12の一部を示す図である。図14では、とくに第1導電膜110と第2導電膜130との位置関係が示されている。
(Second Embodiment)
FIG. 11 is a plan view showing the light emitting device 12 according to the second embodiment, and corresponds to FIG. 1 according to the first embodiment. 12 is a cross-sectional view taken along the line CC in FIG. 11, and FIG. 13 is a cross-sectional view taken along the line DD in FIG. 12 and 13, the configuration of the buffer member 202 is omitted. FIG. 14 is a view showing a part of the light emitting device 12 shown in FIG. FIG. 14 particularly shows the positional relationship between the first conductive film 110 and the second conductive film 130.
 本実施形態において、接合構造200のうち第1導電膜110は、たとえば有機EL素子を構成する電極を構成する。接合構造200のうち第2導電膜130は、たとえば有機EL素子を構成する電極と電気的に接続する引出配線を構成する。この場合、有機EL素子を構成する電極と、引出配線と、の間において、接合構造200が形成される。このとき、有機EL素子を構成する電極は、引出配線の周辺領域に設けられた緩衝部材202を覆うように形成されることとなる。 In the present embodiment, the first conductive film 110 in the bonding structure 200 constitutes an electrode constituting, for example, an organic EL element. In the bonding structure 200, the second conductive film 130 forms, for example, a lead wiring that is electrically connected to an electrode that forms the organic EL element. In this case, the junction structure 200 is formed between the electrode constituting the organic EL element and the lead wiring. At this time, the electrodes constituting the organic EL element are formed so as to cover the buffer member 202 provided in the peripheral region of the lead wiring.
 本実施形態に係る発光装置12は、第1電極112、および引出配線134の構成を除いて第1の実施形態に係る発光装置10と同様の構成を有する。
 発光装置12は、接合構造200を有している。発光装置12は、有機EL素子20と、引出配線134と、を備えている。有機EL素子20は、第1導電膜110により構成される第1電極112と、第2電極152と、第1電極112と第2電極152との間に配置された有機層140と、を有している。引出配線134は、第1電極112と接合し、かつ第2導電膜130により構成されている。
The light emitting device 12 according to the present embodiment has the same configuration as that of the light emitting device 10 according to the first embodiment, except for the configuration of the first electrode 112 and the lead wiring 134.
The light emitting device 12 has a joint structure 200. The light emitting device 12 includes the organic EL element 20 and a lead wiring 134. The organic EL element 20 includes a first electrode 112 configured by the first conductive film 110, a second electrode 152, and an organic layer 140 disposed between the first electrode 112 and the second electrode 152. is doing. The lead wiring 134 is joined to the first electrode 112 and is constituted by the second conductive film 130.
 以下、発光装置12の構成の一例について説明する。 Hereinafter, an example of the configuration of the light emitting device 12 will be described.
 本実施形態において、第1電極112は、たとえば基板100上であって、画素領域300内にマトリクス状に配置される。マトリクス状に配置された複数の第1電極112は、互いに離間する。なお、画素領域300は、複数の有機EL素子20を含む領域である。図11に示す例では、一点鎖線により囲まれた領域が画素領域300に該当する。
 第1電極112は、導電材料により構成される第1導電膜110により構成される。第1導電膜110が透明導電材料により構成される場合、第1導電膜110により構成される第1電極112は透明性を有することができる。
In the present embodiment, the first electrodes 112 are arranged on the substrate 100 in the pixel region 300 in a matrix, for example. The plurality of first electrodes 112 arranged in a matrix are separated from each other. The pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 11, the region surrounded by the alternate long and short dash line corresponds to the pixel region 300.
The first electrode 112 is composed of a first conductive film 110 composed of a conductive material. When the first conductive film 110 is made of a transparent conductive material, the first electrode 112 made of the first conductive film 110 can have transparency.
 本実施形態に係る発光装置12においては、第1の実施形態に係る発光装置10を構成する第1配線114が設けられていない。 In the light emitting device 12 according to the present embodiment, the first wiring 114 constituting the light emitting device 10 according to the first embodiment is not provided.
 本実施形態では、引出配線134が第1電極112に接続される場合が例示される。引出配線134は、図中Y方向に延在している。また、基板100上には、互いに離間するよう図中X方向に配列された複数の引出配線134が設けられている。各引出配線134は、それぞれY方向に配列された複数の第1電極112に接続される。このため、複数の第1電極112は、それぞれ引出配線134を介して外部へ接続されることとなる。有機EL素子20には、引出配線134を介して発光/非発光の信号が供給される。 In the present embodiment, a case where the lead wiring 134 is connected to the first electrode 112 is exemplified. The lead-out wiring 134 extends in the Y direction in the figure. A plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other. Each lead-out wiring 134 is connected to a plurality of first electrodes 112 arranged in the Y direction. For this reason, the plurality of first electrodes 112 are each connected to the outside via the lead wiring 134. A light emission / non-light emission signal is supplied to the organic EL element 20 through the lead wiring 134.
 本実施形態において、引出配線134は、金属材料により構成される第2導電膜130により構成される。このため、第1導電膜110により構成される第1電極112と、第2導電膜130により構成される引出配線134と、が互いに接合して接合構造200が形成されることとなる。図14に示す例では、破線により囲まれた部分において接合構造200が形成される。
 本実施形態において、基板100上には、引出配線134の周辺領域に緩衝部材202が形成されることとなる。また、第1電極112は、引出配線134の一部および緩衝部材202を覆うように形成されることとなる。
In this embodiment, the lead-out wiring 134 is comprised by the 2nd electrically conductive film 130 comprised with a metal material. For this reason, the first electrode 112 configured by the first conductive film 110 and the lead-out wiring 134 configured by the second conductive film 130 are bonded to each other to form the bonded structure 200. In the example illustrated in FIG. 14, the joint structure 200 is formed in a portion surrounded by a broken line.
In the present embodiment, the buffer member 202 is formed on the substrate 100 in the peripheral region of the lead wiring 134. The first electrode 112 is formed so as to cover a part of the lead wiring 134 and the buffer member 202.
 第1電極112は、一の端部において引出配線134と接続している。このとき、第1電極112は、たとえば上記一の端部において引出配線134と接合し、接合構造200を形成することとなる。図13に示すように、引出配線134のうち第1電極112と接合する部分は、たとえば平面視で有機EL素子20を形成する領域内に位置する。
 第1電極112は、引出配線134からみて第2方向に延びている。なお、本実施形態において第2方向とは、たとえば図中X方向をさす。第1電極112の形状は、特に限定されず有機EL素子20の設計に併せて適宜選択可能であるが、たとえば矩形である。
The first electrode 112 is connected to the lead wiring 134 at one end. At this time, the first electrode 112 is bonded to, for example, the lead wiring 134 at the one end portion to form the bonded structure 200. As shown in FIG. 13, the portion of the lead-out wiring 134 that is joined to the first electrode 112 is located, for example, in a region where the organic EL element 20 is formed in plan view.
The first electrode 112 extends in the second direction when viewed from the lead wiring 134. In the present embodiment, the second direction refers to, for example, the X direction in the figure. The shape of the first electrode 112 is not particularly limited and can be selected as appropriate in accordance with the design of the organic EL element 20. For example, it is rectangular.
 絶縁層120は、たとえば引出配線134を覆うように形成される。本実施形態においては、たとえば引出配線134と引出配線164のそれぞれの一部を覆うように絶縁層120が設けられる。また、図12に示すように、絶縁層120には、複数の第1開口122が、たとえばマトリクスを構成するように形成される。
 本実施形態においては、第1電極112は、第1開口122内に形成される。これにより、基板100上にマトリクス状に配置された複数の第1電極112が形成される。また、図12および13に示すように、複数の第1電極112は、絶縁層120によって互いに離間されることとなる。第1開口122は、たとえば引出配線134の一部と平面視で重なるように形成される。この場合、引出配線134のうちの第1開口122と平面視で重なる一部が、第1開口122に形成された第1電極112と接続することとなる。
 絶縁層120は、たとえば第1の実施形態と同様の材料により構成される。
The insulating layer 120 is formed so as to cover the lead wiring 134, for example. In the present embodiment, for example, the insulating layer 120 is provided so as to cover a part of each of the lead wiring 134 and the lead wiring 164. Also, as shown in FIG. 12, a plurality of first openings 122 are formed in the insulating layer 120 so as to form a matrix, for example.
In the present embodiment, the first electrode 112 is formed in the first opening 122. As a result, a plurality of first electrodes 112 arranged in a matrix on the substrate 100 are formed. In addition, as shown in FIGS. 12 and 13, the plurality of first electrodes 112 are separated from each other by the insulating layer 120. The first opening 122 is formed, for example, so as to overlap a part of the lead wiring 134 in a plan view. In this case, a part of the lead wiring 134 that overlaps the first opening 122 in plan view is connected to the first electrode 112 formed in the first opening 122.
The insulating layer 120 is made of the same material as that of the first embodiment, for example.
 本実施形態における隔壁170、有機層140、第2電極152、第2配線154、および引出配線164は、たとえば第1の実施形態と同様の構成を有する。 The partition 170, the organic layer 140, the second electrode 152, the second wiring 154, and the extraction wiring 164 in the present embodiment have the same configuration as that of the first embodiment, for example.
 以上、本実施形態においても、第1の実施形態と同様に、第1導電膜110と第2導電膜130との間における接続信頼性を向上させることができる。
 また、本実施形態によれば、第1導電膜110により構成される第1電極112と、第2導電膜130により構成される引出配線134と、を備える発光装置12を実現することができる。これにより、第1電極112と引出配線134との間における接続信頼性を向上させることができる。また、発光装置の動作信頼性を向上させることも可能となる。
As described above, also in the present embodiment, the connection reliability between the first conductive film 110 and the second conductive film 130 can be improved as in the first embodiment.
In addition, according to the present embodiment, the light emitting device 12 including the first electrode 112 configured by the first conductive film 110 and the lead-out wiring 134 configured by the second conductive film 130 can be realized. Thereby, the connection reliability between the 1st electrode 112 and the extraction wiring 134 can be improved. In addition, the operational reliability of the light emitting device can be improved.
 以下、実施形態を、実施例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, embodiments will be described in detail with reference to examples. In addition, this embodiment is not limited to description of these Examples at all.
(実施例1)
 まず、ガラス基板上に、銀からなる金属膜を、スパッタリング法を用いて形成した。次いで、この金属膜をドライエッチングによりライン状にパターニングし、第2導電膜および二つの緩衝部材を形成した。このとき、二つの緩衝部材は、基板における第2導電膜の周辺領域に形成した。次いで、第2導電膜をフォトレジストによりマスクした状態で、二つの緩衝部材に対しウェットエッチングを行った。次いで、第2導電膜と、二つの緩衝部材のうち第2導電膜に近接する一の緩衝部材と、をフォトレジストによりマスクした状態で、他の緩衝部材に対しウェットエッチングを行った。次いで、透明導電材料含有塗布液を、第2導電膜の一部および二つの緩衝部材を覆うようにインクジェット法により塗布し、これを乾燥して、第1導電膜を形成した。透明導電材料含有塗布液としては、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT-PSS、CLEVIOS PH510(Heraeus社製))を溶剤中へ分散して得られる溶液を使用した。これにより、第1導電膜と、第2導電膜と、および二つの緩衝部材からなる構造体を作製した。
 このようにして得られた構造体を、第1の実施形態に係る発光装置に適用した。
(Example 1)
First, a metal film made of silver was formed on a glass substrate by a sputtering method. Next, this metal film was patterned into a line shape by dry etching to form a second conductive film and two buffer members. At this time, the two buffer members were formed in the peripheral region of the second conductive film on the substrate. Next, wet etching was performed on the two buffer members in a state where the second conductive film was masked with a photoresist. Next, wet etching was performed on the other buffer member in a state where the second conductive film and one buffer member adjacent to the second conductive film among the two buffer members were masked with a photoresist. Next, the transparent conductive material-containing coating solution was applied by an inkjet method so as to cover a part of the second conductive film and the two buffer members, and dried to form a first conductive film. As the transparent conductive material-containing coating solution, a solution obtained by dispersing poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT-PSS, CLEVIOS PH510 (manufactured by Heraeus)) in a solvent was used. Thereby, the structure which consists of a 1st electrically conductive film, a 2nd electrically conductive film, and two buffer members was produced.
The structure thus obtained was applied to the light emitting device according to the first embodiment.
 実施例1において、第2導電膜の周辺領域には、銀により構成され、かつ第2導電膜よりも膜厚が小さい二つの緩衝部材が設けられていた。二つの緩衝部材は、第2導電膜から遠ざかるにつれて膜厚が小さくなるように配列された。第1導電膜の上面は、緩衝部材と重なる領域において第2導電膜から遠ざかるにつれて低くなる傾斜面を有していた。
 実施例1においては、第1導電膜と第2導電膜との間に長時間電流を流した際における、第1導電膜と第2導電膜との間の接続信頼性に優れていた。
In Example 1, two buffer members made of silver and having a thickness smaller than that of the second conductive film were provided in the peripheral region of the second conductive film. The two buffer members were arranged so that the film thickness decreased with increasing distance from the second conductive film. The upper surface of the first conductive film had an inclined surface that became lower as the distance from the second conductive film was increased in the region overlapping the buffer member.
In Example 1, the connection reliability between the first conductive film and the second conductive film was excellent when a current was passed between the first conductive film and the second conductive film for a long time.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (10)

  1.  それぞれ基板上に設けられた、導電材料により構成される第1導電膜と、金属材料により構成される第2導電膜と、が互いに接合してなる接合構造であって、
     前記基板上における前記第2導電膜の周辺領域には、前記第1導電膜を構成する前記導電材料と異なる材料により構成された一つまたは複数の緩衝部材が設けられており、
     前記第1導電膜は、前記第2導電膜の一部および前記緩衝部材を覆う接合構造。
    A first conductive film made of a conductive material and a second conductive film made of a metal material, each provided on a substrate, are joined to each other,
    In the peripheral region of the second conductive film on the substrate, one or a plurality of buffer members made of a material different from the conductive material constituting the first conductive film is provided,
    The first conductive film has a bonding structure that covers a part of the second conductive film and the buffer member.
  2.  請求項1に記載の接合構造において、
     前記緩衝部材は、金属材料または絶縁材料により構成される接合構造。
    The joint structure according to claim 1,
    The buffer member is a joint structure made of a metal material or an insulating material.
  3.  請求項1または2に記載の接合構造において、
     前記導電材料は、導電性高分子を含む透明導電材料である接合構造。
    In the junction structure according to claim 1 or 2,
    The bonding structure is a transparent conductive material containing a conductive polymer.
  4.  請求項1~3いずれか一項に記載の接合構造において、
     前記一つまたは複数の緩衝部材において、少なくとも前記第2導電膜から最も遠くに位置する前記緩衝部材は、前記第2導電膜よりも膜厚が小さい接合構造。
    In the joining structure according to any one of claims 1 to 3,
    In the one or more buffer members, at least the buffer member located farthest from the second conductive film has a bonding structure having a smaller film thickness than the second conductive film.
  5.  請求項4に記載の接合構造において、
     前記基板上には、前記第2導電膜から遠ざかるにつれて膜厚が小さくなるように配列された複数の前記緩衝部材が設けられている接合構造。
    In the joining structure according to claim 4,
    A bonding structure in which a plurality of the buffer members arranged so that the film thickness decreases as the distance from the second conductive film increases on the substrate.
  6.  請求項4または5に記載の接合構造において、
     前記第1導電膜の上面は、少なくとも前記緩衝部材と重なる領域において、前記第2導電膜から遠ざかるにつれて低くなる傾斜面を有している接合構造。
    In the junction structure according to claim 4 or 5,
    The junction structure, wherein the upper surface of the first conductive film has an inclined surface that becomes lower at a distance from the second conductive film at least in a region overlapping with the buffer member.
  7.  請求項1~6いずれか一項に記載の接合構造において、
     前記第1導電膜は、有機EL素子を構成する電極に接続する第1配線であり、
     前記第2導電膜は、前記第1配線と電気的に接続する引出配線である接合構造。
    In the joint structure according to any one of claims 1 to 6,
    The first conductive film is a first wiring connected to an electrode constituting the organic EL element,
    The junction structure, wherein the second conductive film is a lead wiring electrically connected to the first wiring.
  8.  請求項1~6いずれか一項に記載の接合構造において、
     前記第1導電膜は、有機EL素子を構成する電極であり、
     前記第2導電膜は、前記電極と電気的に接続する配線である接合構造。
    In the joint structure according to any one of claims 1 to 6,
    The first conductive film is an electrode constituting an organic EL element,
    The second conductive film is a junction structure that is a wiring electrically connected to the electrode.
  9.  請求項1~6いずれか一項に記載の接合構造を有する発光装置であって、
     第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された有機層と、を有する有機EL素子と、
     前記第1電極と電気的に接続し、かつ前記第1導電膜により構成される第1配線と、
     前記第1配線と接合し、かつ前記第2導電膜により構成される引出配線と、
     を備える発光装置。
    A light-emitting device having the junction structure according to any one of claims 1 to 6,
    An organic EL element having a first electrode, a second electrode, and an organic layer disposed between the first electrode and the second electrode;
    A first wiring electrically connected to the first electrode and configured by the first conductive film;
    A lead wire joined to the first wire and made of the second conductive film;
    A light emitting device comprising:
  10.  請求項1~6いずれか一項に記載の接合構造を有する発光装置であって、
     前記第1導電膜により構成される第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された有機層と、を有する有機EL素子と、
     前記第1電極に接合し、かつ前記第2導電膜により構成される引出配線と、
     を備える発光装置。
    A light-emitting device having the junction structure according to any one of claims 1 to 6,
    An organic EL element comprising: a first electrode composed of the first conductive film; a second electrode; and an organic layer disposed between the first electrode and the second electrode;
    A lead wire bonded to the first electrode and configured by the second conductive film;
    A light emitting device comprising:
PCT/JP2013/059927 2013-04-01 2013-04-01 Joining structure and light-emitting device WO2014162449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059927 WO2014162449A1 (en) 2013-04-01 2013-04-01 Joining structure and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059927 WO2014162449A1 (en) 2013-04-01 2013-04-01 Joining structure and light-emitting device

Publications (1)

Publication Number Publication Date
WO2014162449A1 true WO2014162449A1 (en) 2014-10-09

Family

ID=51657782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059927 WO2014162449A1 (en) 2013-04-01 2013-04-01 Joining structure and light-emitting device

Country Status (1)

Country Link
WO (1) WO2014162449A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235890A (en) * 1999-02-16 2000-08-29 Idemitsu Kosan Co Ltd Electroluminescence display device
JP2004311230A (en) * 2003-04-08 2004-11-04 Pioneer Electronic Corp Light emitting display panel and its manufacturing method
JP2008071930A (en) * 2006-09-14 2008-03-27 Pioneer Electronic Corp Organic-electroluminescence displaying panel, and manufacturing method thereof
JP2009193754A (en) * 2008-02-13 2009-08-27 Seiko Epson Corp Organic el device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235890A (en) * 1999-02-16 2000-08-29 Idemitsu Kosan Co Ltd Electroluminescence display device
JP2004311230A (en) * 2003-04-08 2004-11-04 Pioneer Electronic Corp Light emitting display panel and its manufacturing method
JP2008071930A (en) * 2006-09-14 2008-03-27 Pioneer Electronic Corp Organic-electroluminescence displaying panel, and manufacturing method thereof
JP2009193754A (en) * 2008-02-13 2009-08-27 Seiko Epson Corp Organic el device

Similar Documents

Publication Publication Date Title
JP2005327674A (en) Organic electroluminescent display element, display device having the same, and manufacturing method thereof
WO2014162453A1 (en) Joint structure and light-emitting device
JP2009231090A (en) El panel and method for manufacturing el panel
WO2014162449A1 (en) Joining structure and light-emitting device
WO2014162448A1 (en) Light-emitting device
JP6484702B2 (en) Light emitting device
JP2019215577A (en) Optical device
US10249840B2 (en) Optical device
JP6283022B2 (en) Optical device
JP2014203525A (en) Joining structure and light-emitting device
WO2014162447A1 (en) Joining structure and light-emitting device
WO2014162454A1 (en) Joint structure and light-emitting device
WO2014162451A1 (en) Joined structure and light-emitting device
WO2014162446A1 (en) Joining structure and light-emitting device
WO2014162450A1 (en) Light-emitting device
WO2017029889A1 (en) Organic el panel, illuminating device, and method for manufacturing organic el panel
JP6555911B2 (en) Light emitting device
JP2014203526A (en) Junction structure and light-emitting device
JP2014203527A (en) Joining structure and light-emitting device
WO2017183118A1 (en) Light-emitting device
WO2016151819A1 (en) Light-emitting device
WO2017122360A1 (en) Light emitting device
JP2019165026A (en) Light-emitting device
WO2014162387A1 (en) Wire connection structure and electrical device
WO2014162385A1 (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP