WO2014162450A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2014162450A1
WO2014162450A1 PCT/JP2013/059928 JP2013059928W WO2014162450A1 WO 2014162450 A1 WO2014162450 A1 WO 2014162450A1 JP 2013059928 W JP2013059928 W JP 2013059928W WO 2014162450 A1 WO2014162450 A1 WO 2014162450A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
emitting device
light emitting
electrode
wiring
Prior art date
Application number
PCT/JP2013/059928
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 奥山
博樹 丹
雄司 齋藤
正宣 赤木
邦彦 白幡
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/059928 priority Critical patent/WO2014162450A1/en
Publication of WO2014162450A1 publication Critical patent/WO2014162450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the present invention relates to a light emitting device.
  • organic EL Organic Electroluminescence
  • An organic EL element is comprised by the transparent electrode, the other electrode arrange
  • Examples of the technology related to the organic EL element include those described in Patent Document 1 and Patent Document 2.
  • Patent Literature 1 In the self-light emitting panel having an insulating film that insulates the electrode and the light emitting layer for each self light emitting element, the technology described in Patent Literature 1 is arranged in a direction in which the substrate and the sealing member are opposed to the outer side of the outermost self light emitting element. A sipe for separating the insulating film is provided.
  • Patent Document 2 describes a light-emitting element having an electrode composed of a metal line formed in a line shape and a polymer line covering the upper surface and side surfaces of the metal line.
  • a deterioration factor of the light emitting element propagates through the polymer material constituting the electrode and enters the light emitting element. In this case, there is a concern that the light emission characteristics and the like of the light emitting element are deteriorated.
  • An example of a problem to be solved by the present invention is to suppress deterioration of characteristics of a light emitting element.
  • FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1.
  • FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1.
  • It is a figure which shows a part of light-emitting device shown in FIG. It is a figure which shows a part of light-emitting device shown in FIG.
  • FIG. 10 is a cross-sectional view showing a CC cross section of FIG. 9.
  • FIG. 10 is a cross-sectional view showing a DD cross section of FIG. 9. It is a figure which shows a part of light-emitting device shown in FIG. It is a figure which shows an example of a structure of the 1st electrically conductive film in 2nd Embodiment.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment.
  • 2 is a cross-sectional view showing the AA cross section of FIG. 1
  • FIG. 3 is a cross-sectional view showing the BB cross section of FIG. 4 and 5 are diagrams showing a part of the display device 10 shown in FIG.
  • FIG. 5 shows the configuration of the insulating layer 120.
  • 6 to 8 are diagrams showing an example of the configuration of the first conductive film 110 in the present embodiment.
  • the light emitting device 10 includes a first conductive film 110, a second conductive film 150, and an organic layer 140.
  • the first conductive film 110 includes a conductive polymer.
  • the second conductive film 150 is at least partially opposed to the first conductive film 110.
  • the organic layer 140 is disposed between the first conductive film 110 and the second conductive film 150.
  • the first conductive film 110 is positioned around the first portion 201 that forms at least a part of a region overlapping the second conductive film 150, and is thicker than the first portion 201. Alternatively, at least one of the widths of the second portion 202 is small.
  • the light emitting device 10 may be a lighting device.
  • the light-emitting device 10 is an illumination device
  • the light-emitting device 10 has a configuration in which, for example, a plurality of linear organic layers 140 having different emission colors are arranged repeatedly. Thereby, the illuminating device excellent in color rendering properties is realized.
  • the light-emitting device 10 that is a lighting device may have a planar organic layer 140.
  • the substrate 100 is, for example, a transparent substrate.
  • the substrate 100 can be a glass substrate. Thereby, the light emitting device 10 having excellent heat resistance and the like can be manufactured at low cost.
  • the substrate 100 may be a film-like substrate made of a resin material.
  • a display with particularly high flexibility can be realized.
  • the resin material constituting the film substrate include polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
  • the light emitting device 10 that is a display has a plurality of organic EL elements 20 arranged in an array on the substrate 100, for example.
  • the organic EL element 20 includes a first electrode 112 provided on the substrate 100, an organic layer 140 provided on the first electrode 112, and a second electrode 152 provided on the organic layer 140. ing. At this time, the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
  • a plurality of first conductive films 110 extending in the Y direction in the drawing and a plurality of second conductive films 150 extending in the X direction in the drawing are provided on the substrate.
  • a portion of the first conductive film 110 that overlaps the second conductive film 150 constitutes the first electrode 112.
  • a portion of the second conductive film 150 that overlaps the first conductive film 110 forms the second electrode 152. Therefore, the organic EL element 20 is formed in each portion where the first conductive film 110 and the second conductive film 150 overlap each other in plan view. As a result, a plurality of organic EL elements 20 arranged in an array are formed on the substrate 100.
  • the 1st electrode 112 becomes an anode of an organic EL element, for example.
  • the first electrode 112 is, for example, a transparent electrode that is transparent or translucent to the wavelength of light emitted from the light emitting layer 144 of the organic layer 140 described later.
  • a portion of the first conductive film 110 located in the pixel region 300 constitutes the first electrode 112.
  • the pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 4, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • a plurality of first conductive films 110 that are separated from each other are arranged on the substrate 100 in a direction perpendicular to the extending direction of the first conductive film 110 (X direction in the drawing).
  • the plurality of first electrodes 112 constituted by the plurality of first conductive films 110 are also arranged in the X direction in the drawing so as to be separated from each other.
  • the first wiring 114 is provided on the substrate 100.
  • the first wiring 114 is electrically connected to the first electrode 112, for example.
  • a plurality of first wirings 114 connected to different first electrodes 112 are provided on the substrate 100. For this reason, the plurality of first electrodes 112 in the present embodiment are each connected to the extraction wiring 134 described later via the first wiring 114.
  • the first wiring 114 is constituted by the first conductive film 110, for example.
  • the first electrode 112 and the first wiring 114 are integrally provided on the substrate 100.
  • a portion of the first conductive film 110 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the first electrode 112.
  • a portion of the first conductive film 110 located outside the pixel region 300 becomes the first wiring 114.
  • a plurality of first conductive films 110 extending in the Y direction in the drawing are provided on the substrate 100.
  • the plurality of first conductive films 110 are arranged in the X direction in the drawing so as to be separated from each other.
  • a portion of the first conductive film 110 located on the end side connected to the extraction wiring 134 from the pixel region 300 indicated by the alternate long and short dash line is the first wiring 114.
  • the first conductive film 110 is made of a conductive material substantially containing a conductive polymer.
  • a transparent conductive material is preferable. In this case, a transparent conductive polymer is used.
  • the first electrode 112 made of the first conductive film 110 is transparent with respect to the wavelength of light emitted from the light emitting layer 144. .
  • the first electrode 112 and the first wiring 114 formed of the first conductive film 110 have transparency.
  • the first conductive film 110 made of a transparent conductive material is formed using, for example, a coating method. In this case, in the step of forming the first conductive film 110, it is possible to suppress a thermal load from being applied to other components such as the substrate 100.
  • the conductive polymer included in the transparent conductive material constituting the first conductive film 110 is a conductive polymer including, for example, a ⁇ -conjugated conductive polymer and a polyanion.
  • the ⁇ -conjugated conductive polymer is not particularly limited.
  • a chain conductive polymer of phenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl compounds can be used. From the viewpoint of conductivity, transparency, stability, etc., polythiophenes or polyanilines are preferable, and polyethylene dioxythiophene is particularly preferable.
  • Polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, or polyacrylic acid can be used.
  • the polyanion used in the present embodiment may be a homopolymer of these or two or more kinds of copolymers.
  • the transparent conductive material constituting the first conductive film 110 may further contain a crosslinking agent, a leveling agent, an antifoaming agent, or the like in addition to the transparent conductive polymer.
  • the first conductive film 110 includes a first portion 201 that forms at least a part of a region overlapping with the second conductive film 150, and is positioned around the first portion 201 and is thicker or wider than the first portion 201. And at least one of the second portions 202 is small. At this time, the first portion 201 that constitutes a region of the first conductive film 110 that overlaps the second conductive film 150 constitutes at least a part of the first electrode 112. Further, the second portion 202 may be provided so that only one of the thickness and the width is smaller than the first portion 201, and is smaller than the first portion 201 in both the thickness and the width. It may be provided. In the present embodiment, the first conductive film 110 extends in the first direction when viewed from the lead wiring 134. At this time, the width in the first conductive film 110 refers to the width in the second direction orthogonal to the first direction, for example, in a plane parallel to the plane of the substrate 100.
  • the first conductive film 110 has the second portion 202 that is located around the first portion 201 and has at least one of a thickness or a width smaller than that of the first portion 201.
  • the progress of the deterioration factor from the outside to the first portion 201 can be suppressed in the second portion 202. That is, it is possible to suppress the progress of the deterioration factor to the first electrode 112 configured by the first portion 201. Thereby, it can suppress that the light emission characteristic of the light-emitting device 10 comprised by the 1st electrode 112 deteriorates by a deterioration factor.
  • the first conductive film 110 constitutes, for example, the first electrode 112 and the first wiring 114.
  • the second portion 202 is provided, for example, in a portion constituting the first wiring 114 in the first conductive film 110.
  • a change in thickness or width existing between the second portion 202 and the first portion 201 can be caused in a portion of the first conductive film 110 other than the first electrode 112.
  • the thickness and the width of the first electrode 112 are made constant, and it is possible to suppress the occurrence of luminance variation and the like in each organic EL element 20.
  • the second portion 202 is not limited to the one having the above-described configuration, and may be provided in a portion of the first conductive film 110 that constitutes the first electrode 112.
  • the second portion 202 is configured by a constricted portion having a constricted shape in at least one of the first conductive film 110 in the thickness direction or the width direction, for example.
  • the second portion 202 is positioned between the first portion 201 having a larger width or thickness than the second portion 202 and the third portion 203 having a larger width or thickness than the second portion 202.
  • the third portion 203 constitutes, for example, a portion of the first conductive film 110 that is located between the extraction wiring 134 and the second portion 202.
  • the thickness direction of the first conductive film 110 coincides with the normal direction of the plane of the substrate 100, for example.
  • the second portion 202 is preferably provided along the bonding interface between the first conductive film 110 and the extraction wiring 134. Thereby, it is possible to more effectively suppress the progress of the deterioration factor from the lead-out wiring 134 to the first conductive film 110.
  • FIG. 6 is a cross-sectional view illustrating an example of the configuration of the first conductive film 110.
  • the case where the 2nd part 202 is provided so that it may have a thickness smaller than the 1st part 201 is illustrated.
  • a third portion 203 having a thickness larger than that of the second portion 202 is provided between the second portion 202 and the lead wiring 134.
  • the first conductive film 110 has, for example, a groove extending in the second direction in the region where the second portion 202 is provided. In this case, the groove provided in the first conductive film 110 is provided along the bonding interface between the first conductive film 110 and the extraction wiring 134.
  • the film thickness of the first portion 201 is D1
  • the film thickness of the second portion 202 is D2.
  • the film thickness D2 of the second portion 202 preferably satisfies 0.1 ⁇ D1 ⁇ D2 ⁇ 0.8 ⁇ D1.
  • the first portion 201 of the first conductive film 110 is provided so that the upper surface is flat.
  • the first portion 201 has an upper surface parallel to the plane of the substrate 100, for example.
  • FIG. 7 is a plan view showing an example of the configuration of the first conductive film 110, and shows an example different from FIG. In FIG. 7, the case where the 2nd part 202 is provided so that it may have a width smaller than the 1st part 201 is illustrated.
  • a third portion 203 having a width larger than that of the second portion 202 is provided between the second portion 202 and the lead wiring 134. That is, the second portion 202 is configured by a constricted portion of the first conductive film 110 that is constricted in the width direction.
  • the second portion 202 may be formed by constricting both ends in the width direction, and the second portion 202 is formed by confining only one end in the width direction. Also good.
  • the first conductive film 110 includes a fourth portion 204 that is located on the opposite side of the second portion 202 as viewed from the first portion 201 and that has at least one of thickness or width smaller than that of the first portion 201. You may go out. In this case, the progress of the deterioration factor from the outside to the first portion 201 can be suppressed in the second portion 202 and the fourth portion 204. That is, it is possible to further effectively suppress the progress of the deterioration factor to the first electrode 112 configured by the first portion 201. In the present embodiment, the fourth portion 204 may not be provided. Even in this case, the progress of the deterioration factor from the outside to the first electrode 112 can be suppressed. In addition, the first conductive film 110 can be easily processed.
  • FIG. 8 is a diagram showing an example of the configuration of the first conductive film 110, and shows an example different from those shown in FIGS.
  • the fourth portion 204 is constituted by a constricted portion having a constricted shape in at least one of the first conductive film 110 in the thickness direction or the width direction, for example.
  • the fourth portion 204 is positioned between the first portion 201 having a larger width or thickness than the fourth portion 204 and the fifth portion 205 having a larger width or thickness than the fourth portion 204.
  • the 4th part 204 has the shape constricted in the thickness direction among the 1st electrically conductive films 110 is illustrated.
  • a lead wiring 134 is provided on the substrate 100.
  • the lead wiring 134 is connected to the first conductive film 110.
  • a case where the lead wiring 134 is connected to the first wiring 114 of the first conductive film 110 is exemplified.
  • a plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other.
  • Each lead-out wiring 134 is connected to the first conductive film 110, respectively.
  • the plurality of first electrodes 112 constituted by the plurality of first conductive films 110 are respectively connected to the outside via the lead wirings 134.
  • a light emission / non-light emission signal is supplied to the organic EL element 20 through, for example, the first wiring 114 and the lead-out wiring 134.
  • the lead-out wiring 134 includes a metal material.
  • the metal material included in the lead-out wiring 134 for example, a metal material having an electrical resistivity lower than that of the conductive material constituting the first conductive film 110 is used.
  • the first conductive film 110 and the lead wiring 134 are made of different materials.
  • the metal material contained in the lead-out wiring 134 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd.
  • the lead wire 134 includes one or more of these metal materials.
  • An insulating layer 120 is provided on the substrate 100 so as to cover the first conductive film 110, for example.
  • the insulating layer 120 is provided so as to cover the first electrode 112 and the first wiring 114 and a part of each of the extraction wiring 164 described later.
  • the insulating layer 120 is a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by exposure and development.
  • the insulating layer 120 may be made of a resin material other than polyimide resin, and may be epoxy resin or acrylic resin.
  • the insulating layer 120 is provided with a plurality of first openings 122, for example. As shown in FIG. 5, the plurality of first openings 122 are formed so as to form a matrix, for example. In the present embodiment, the plurality of first openings 122 are formed so as to be located on the first electrode 112 in the first conductive film 110. On each first electrode 112 extending in the Y direction in the figure, for example, a plurality of first openings 122 are arranged in the Y direction in the figure at a predetermined interval. In addition, the plurality of first openings 122 are provided at positions overlapping the second electrode 152 extending in a direction orthogonal to the first electrode 112 (X direction in the figure), for example. For this reason, the plurality of first openings 122 are arranged to form a matrix.
  • the insulating layer 120 is provided with a plurality of second openings 124, for example. As shown in FIG. 5, the second opening 124 is provided, for example, so as to be positioned on a lead wiring 164 described later.
  • the plurality of second openings 124 are arranged along one side of the matrix formed by the first openings 122. When viewed in a direction along this one side (for example, Y direction in the figure), the second openings 124 are arranged at the same interval as the first openings 122.
  • a partition wall 170 is provided on the insulating layer 120. As shown in FIG. 1, the partition 170 is provided so as to extend in the X direction in the drawing. That is, the partition 170 is formed along the extending direction of the second electrode 152. A plurality of partition walls 170 are provided so as to be arranged in the Y direction in the drawing.
  • the partition wall 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed.
  • the partition wall 170 may be made of a resin material other than a polyimide resin, or may be an epoxy resin or an acrylic resin.
  • the partition wall 170 has, for example, a trapezoidal cross-sectional shape (reverse trapezoidal shape). That is, the width of the upper surface of the partition wall 170 is larger than the width of the bottom surface of the partition wall 170, for example. In this case, even when the plurality of second electrodes 152 are collectively formed by a sputtering method, a vapor deposition method, or the like, the plurality of second electrodes 152 positioned between the adjacent partition walls 170 can be separated from each other. It becomes. Therefore, the second electrode 152 can be easily formed.
  • the planar shape of the partition wall 170 is not limited to that shown in FIG. Therefore, by changing the planar shape of the partition 170, the planar pattern of the plurality of second electrodes 152 that are separated from each other by the partition 170 can be freely changed.
  • an organic layer 140 is formed in the first opening 122.
  • the organic layer 140 is configured by a stacked body in which, for example, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially stacked.
  • the hole injection layer 142 is in contact with the first electrode 112
  • the electron injection layer 146 is in contact with the second electrode 152.
  • the organic layer 140 is sandwiched between the first electrode 112 and the second electrode 152.
  • a hole transport layer may be formed between the hole injection layer 142 and the light emitting layer 144, or an electron transport layer may be formed between the light emitting layer 144 and the electron injection layer 146.
  • the organic layer 140 may not include the hole injection layer 142.
  • a partition 170 is provided on the insulating layer 120.
  • the organic layers 140 provided in each of a plurality of regions sandwiched between adjacent partition walls 170 are separated from each other in the Y direction in the drawing.
  • a laminated film made of the same material as the organic layer 140 is formed on the partition wall 170, for example.
  • each layer constituting the organic layer 140 is provided so as to be continuous between adjacent first openings 122 in the X direction in the drawing in which the partition 170 extends.
  • the second electrode 152 becomes a cathode of an organic EL element, for example.
  • the second electrode 152 is provided on the organic layer 140.
  • a portion of the second conductive film 150 located in the pixel region 300 constitutes the second electrode 152.
  • a plurality of second conductive films 150 that are separated from each other are arranged on the organic layer 140 in a direction (Y direction in the drawing) perpendicular to the extending direction of the second conductive film 150.
  • the plurality of second electrodes 152 constituted by the plurality of second conductive films 150 are also arranged in the Y direction in the drawing so as to be separated from each other.
  • the light emitting device 10 includes a second wiring 154.
  • the second wiring 154 is electrically connected to the second electrode 152, for example.
  • a plurality of second wirings 154 connected to different second electrodes 152 are provided.
  • the plurality of second electrodes 152 in the present embodiment are each connected to the extraction wiring 134 described later via the second wiring 154.
  • part of the second wiring 154 is embedded in the second opening 124, and part of the second wiring 154 is connected to an extraction wiring 164 described later.
  • the second wiring 154 is constituted by the second conductive film 150, for example.
  • the second electrode 152 and the second wiring 154 are provided integrally with each other, for example.
  • a portion of the conductive film 150 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the second electrode 152.
  • a portion of the conductive film 150 located outside the pixel region 300 serves as the second wiring 154.
  • a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • a plurality of conductive films 150 extending in the X direction in the drawing are provided on the organic layer 140.
  • the plurality of conductive films 150 are arranged in the Y direction in the drawing so as to be separated from each other.
  • a portion located on the end side connected to the extraction wiring 164 with respect to the pixel region 300 becomes the second wiring 154.
  • the second conductive film 150 is made of a metal material such as tin, magnesium, indium, calcium, aluminum, copper, silver, or an alloy thereof. One of these materials may be used alone, or two or more arbitrary combinations may be used. Note that when the second electrode 152 is a cathode, the second conductive film 150 included in the second electrode 152 is preferably formed using a conductive material having a work function smaller than that of the first electrode 112 serving as an anode.
  • the plurality of conductive films 150 are collectively formed on the organic layer 140 using, for example, a sputtering method or a vapor deposition method. Even in such a case, since the partition 170 is formed on the insulating layer 120 in this embodiment, the conductive film 150 provided in each of a plurality of regions sandwiched between adjacent partitions 170 is illustrated in the drawing. They are separated from each other in the Y direction. As a result, it is possible to form a plurality of conductive films 150 arranged in the Y direction in the drawing and extending in the X direction in the drawing so as to be separated from each other. At this time, a film made of the same material as the conductive film 150 is formed over the partition wall 170.
  • a lead wiring 164 is provided on the substrate 100.
  • the second wiring 154 is connected to the outside through the lead wiring 164. Therefore, the second electrode 152 is connected to the outside via the second wiring 154 and the lead wiring 164, and a signal is supplied.
  • the lead wiring 164 is made of, for example, a metal material.
  • the metal material constituting the lead wiring 164 for example, the same material as the lead wiring 134 can be used. In this case, the lead wiring 164 can be formed simultaneously with the lead wiring 134. For this reason, it can suppress that the manufacturing process number of the display apparatus 10 increases.
  • the lead wiring 134 is formed on the substrate 100.
  • the lead wiring 134 is formed on the substrate 100 using, for example, a coating method, a sputtering method, or a vapor deposition method.
  • a coating method used in the said process For example, the inkjet method, the screen printing method, the spray coating method, or the dispenser coating method is mentioned.
  • the coating liquid used when forming the lead wiring 134 by a coating method includes, for example, a binder resin and an organic solvent.
  • the binder resin for example, a cellulose resin, an epoxy resin, or an acrylic resin can be used.
  • the organic solvent for example, a hydrocarbon solvent or an alcohol solvent can be used.
  • the metal particles contained in the coating solution are, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd.
  • the coating liquid contains one or more of these metal particles.
  • the lead wiring 164 is formed on the substrate 100 simultaneously with the step of forming the lead wiring 134.
  • the lead wiring 164 is formed by the same method and material as the lead wiring 134, for example.
  • a lyophilic treatment is performed on the surface of the lead-out wiring 134 to improve the wettability with respect to the transparent conductive material-containing coating liquid described later.
  • the lyophilic process include a roughening process, a plasma process, or a coating process that applies a coupling agent to the surface of the lead-out wiring 134.
  • a first conductive film 110 is formed over the substrate 100.
  • the first electrode 112 and the first wiring 114 constituted by the first conductive film 110 are formed.
  • the first conductive film 110 is formed, for example, by applying a transparent conductive material-containing coating solution on the substrate 100 and drying it.
  • the first conductive film 110 is formed so as to cover a part of the lead wiring 134, for example.
  • the transparent conductive material-containing coating solution is not particularly limited, but is applied onto the substrate 100 using, for example, an ink jet method, a screen printing method, a relief printing method, a gravure printing method, a die coat, a spin coat, or a spray.
  • the transparent conductive material-containing coating solution used in the step of forming the first conductive film 110 includes, for example, an organic solvent and water in addition to the above-described transparent conductive material.
  • the organic solvent for example, an alcohol solvent can be used.
  • a transparent conductive material-containing coating solution is applied onto the substrate 100 and dried, a flat first conductive film 110 is formed if it is normal.
  • lyophilic treatment can be performed on the surface of the lead-out wiring 134.
  • the portion of the transparent conductive material-containing coating solution applied on the substrate 100 that is close to the extraction wiring 134 is the extraction wiring 134 that has been subjected to lyophilic treatment. Attracted by the surface.
  • the second portion 202 having a thickness or width smaller than that of the first portion 201 can be formed in a part of the first conductive film 110.
  • the shape of the second portion 202 can be controlled by highly controlling the processing conditions in the lyophilic processing, the film thickness ratio between the first conductive film 110 and the lead wiring 134, and the like.
  • a step of forming the fourth portion 204 in the first conductive film 110 may be further included.
  • the fourth portion 204 is at least part of the structure.
  • the first conductive film 110 is formed so as to cover the film.
  • the portion close to the structure in the transparent conductive material-containing coating liquid applied on the substrate 100 is subjected to lyophilic treatment. Attracted by the surface of As a result, the fourth portion 204 is formed in a part of the first conductive film 110.
  • the shape of the fourth portion 204 can be controlled by highly controlling the processing conditions in the lyophilic treatment for the structure, the shape of the structure, and the like.
  • the second portion 202 is formed in the first conductive film 110 formed on the substrate 100 by performing a lyophobic treatment for improving the lyophobic property with respect to the coating liquid containing the transparent conductive material on a part of the surface of the substrate 100. May be.
  • the second portion 202 having a thickness smaller than that of the first portion 201 is formed by reducing the thickness of the coating liquid held on a part of the substrate 100 that has been subjected to the lyophobic treatment.
  • the lyophobic treatment include a method in which a chemical solution having lyophobic properties with respect to the transparent conductive material-containing coating solution is applied to a part of the substrate 100 using an inkjet method or the like.
  • the lyophobic treatment can be performed on the portion of the surface of the substrate 100 where the fourth portion 204 is formed.
  • the second portion 202 and the fourth portion 204 may be formed by etching a part of the first conductive film 110 after the first conductive film 110 is formed.
  • first conductive film 110 heat treatment is performed on the first conductive film 110.
  • the cohesive force of the conductive polymer is increased, and the first conductive film 110 can be made a strong film.
  • the first conductive film 110 is cured by performing a heat treatment on the first conductive film 110.
  • the transparent conductive material constituting the first conductive film 110 includes a photosensitive material
  • the first conductive film 110 may be cured by UV irradiation. The structure obtained at this stage is shown in FIG.
  • the insulating layer 120 is formed on the substrate 100, the first conductive film 110, and the lead wiring 164.
  • the insulating layer 120 is patterned into a predetermined shape using dry etching or wet etching. As a result, a plurality of first openings 122 and a plurality of second openings 124 are formed in the insulating layer 120. At this time, the plurality of first openings 122 are formed, for example, such that a part of the first conductive film 110 is exposed from each first opening 122.
  • a partition wall 170 is formed on the insulating layer 120.
  • the partition wall 170 is obtained by patterning an insulating film provided over the insulating layer 120 into a predetermined shape using dry etching or wet etching.
  • the cross-sectional shape of the partition wall 170 can be changed to an inverted trapezoid by adjusting the conditions during exposure and development. The structure obtained at this stage is shown in FIG.
  • a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially formed in the first opening 122. These are formed using, for example, a coating method or a vapor deposition method. Thereby, the organic layer 140 is formed.
  • the second conductive film 150 is formed on the organic layer 140. Thereby, the second electrode 152 and the second wiring 154 configured by the second conductive film 150 are formed. At this time, the second conductive film 150 is formed so that, for example, a part of the second conductive film 150 is located in the second opening 124.
  • the second conductive film 150 is formed using, for example, a vapor deposition method or a sputtering method. Thereby, the organic EL element 20 including the first electrode 112, the second electrode 152, and the organic layer 140 disposed therebetween is formed on the substrate 100. In the present embodiment, for example, the light emitting device 10 is formed in this way.
  • the first conductive film 110 has the second portion 202 positioned around the first portion 201 and having a thickness or width smaller than that of the first portion 201.
  • the progress of the deterioration factor from the outside to the first portion 201 can be suppressed in the second portion 202. That is, it is possible to suppress the progress of the deterioration factor to the first electrode 112 configured by the first portion 201. For this reason, it can suppress that the light emission characteristic of the light-emitting device 10 comprised by the 1st electrode 112 deteriorates by a deterioration factor.
  • FIG. 9 is a plan view showing the light emitting device 12 according to the second embodiment, and corresponds to FIG. 1 according to the first embodiment.
  • 10 is a cross-sectional view showing a CC cross section of FIG. 9, and
  • FIG. 11 is a cross-sectional view showing a DD cross section of FIG.
  • FIG. 12 is a diagram showing a part of the light emitting device 12 shown in FIG. FIG. 12 particularly shows the positional relationship between the first conductive film 110 and the second conductive film 130.
  • FIG. 13 is a diagram showing an example of the configuration of the first conductive film 110 in the present embodiment.
  • the light emitting device 12 has the same configuration as the light emitting device 10 according to the first embodiment except for the configuration of the first conductive film 110 and the lead-out wiring 134.
  • the configuration of the light emitting device 12 will be described.
  • the first conductive film 110 is disposed in a matrix in the pixel region 300 on the substrate 100, for example.
  • the plurality of first conductive films 110 arranged in a matrix are separated from each other.
  • the pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 9, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
  • the first conductive film 110 is made of the conductive material shown in the first embodiment. That is, the first conductive film 110 includes a conductive polymer.
  • the first conductive film 110 constitutes the first electrode 112 of the organic EL element.
  • the lead-out wiring 134 extends in the Y direction in the figure.
  • a plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other.
  • Each lead-out wiring 134 is connected to a plurality of first electrodes 112 arranged in the Y direction. For this reason, the plurality of first electrodes 112 are each connected to the outside via the lead wiring 134.
  • a light emission / non-light emission signal is supplied to the organic EL element 20 through the lead wiring 134.
  • the shape of the first conductive film 110 according to the present embodiment is not particularly limited and can be selected as appropriate in accordance with the design of the organic EL element 20, but is, for example, rectangular.
  • the first wiring 114 constituting the light emitting device 10 according to the first embodiment is not provided.
  • the first conductive film 110 includes a first portion 201 that forms at least a part of a region overlapping with the second conductive film 150, and is positioned around the first portion 201 and is thicker or wider than the first portion 201. And at least one of the second portions 202 is small.
  • the first conductive film 110 constitutes the first electrode 112 as a whole, for example.
  • both the first portion 201 and the second portion 202 are provided on the first electrode 112.
  • the 1st part 201 and the 2nd part 202 can have the same shape as 1st Embodiment.
  • the second portion 202 has a smaller thickness than the first portion 201 and is provided so as to surround the first portion 201. Thereby, it is possible to more effectively suppress the progression of the deterioration factor from the outside to the first portion 201 surrounded by the second portion 202.
  • the 2nd part 202 is provided so that the center part which mainly contributes to light emission by the light-emitting device 12 among the 1st electrodes 112 comprised by the 1st electrically conductive film 110 may be enclosed. This makes it possible to achieve stable light emission characteristics for the light emitting device 12.
  • FIG. 13 is a plan view showing an example of the configuration of the first conductive film 110 according to the present embodiment.
  • FIG. 13 illustrates a case where the second portion 202 is thinner than the first portion 201 and is provided so as to surround the first portion 201.
  • the second portion 202 is constituted by a constricted portion having a constricted shape in the thickness direction of the first conductive film 110.
  • the first conductive film 110 is formed with a frame-shaped groove that includes the second portion 202 and surrounds the first portion 201.
  • the planar shape of the groove is, for example, a frame shape in which a region surrounded by the groove has a planar shape such as a rectangle, a circle, or an ellipse.
  • the insulating layer 120 is formed so as to cover the lead wiring 134, for example.
  • the insulating layer 120 is provided on the substrate 100 so as to cover a part of each of the extraction wiring 134 and the extraction wiring 164.
  • the insulating layer 120 is made of the same material as that of the first embodiment, for example.
  • the insulating layer 120 has a first opening 122 that overlaps at least part of the first conductive film 110.
  • the first conductive film 110 is formed in the first opening 122, for example. In this case, the entire first conductive film 110 overlaps the first opening 122.
  • a plurality of first openings 122 are formed so as to form a matrix.
  • a plurality of first conductive films 110 arranged in a matrix on the substrate 100 are formed.
  • the plurality of first conductive films 110 are separated from each other by the insulating layer 120.
  • the first opening 122 is formed, for example, so as to overlap a part of the lead wiring 134 in a plan view. In this case, a part of the lead wiring 134 that overlaps the first opening 122 in plan view is connected to the first conductive film 110 formed in the first opening 122.
  • the second portion 202 is, for example, smaller in thickness than the first portion 201 and is provided inside the first opening 122 in plan view so as to follow the outer edge of the first opening 122.
  • the second portion 202 is provided so as to be positioned between the insulating layer 120 and the first portion 201 in plan view. Accordingly, the second portion 202 can suppress the deterioration factor of the light emitting device 12 from propagating through the insulating layer 120 made of an organic material or the like and entering the first portion 201. Thereby, it becomes possible to suppress that the light emission characteristic etc. of the light-emitting device 12 deteriorate by a deterioration factor.
  • the partition 170, the organic layer 140, the second electrode 152, the second wiring 154, and the extraction wiring 164 in the present embodiment have the same configuration as that of the first embodiment, for example.
  • the first conductive film 110 is formed in each first opening 122.
  • the first conductive film 110 can be formed by the same method as in the first embodiment, and is formed in each first opening 122 by using, for example, an ink jet method or the like. Except for this point, the method for manufacturing the light emitting device 12 according to the present embodiment can be performed in the same manner as the method for manufacturing the light emitting device 10 according to the first embodiment.
  • Example 1 First, a metal film made of silver was formed on a glass substrate by a sputtering method. Next, this metal film was patterned into a line shape by dry etching to form a lead wiring. Next, an insulating film having an opening through which a part of the lead wiring is exposed was formed on the glass substrate. Next, a chemical solution having lyophobic properties with respect to the transparent conductive material-containing coating solution was applied to a part of the glass substrate surface exposed from the opening. Next, a transparent conductive material-containing coating solution was applied into the opening by an ink jet method, and dried to form a first conductive film.
  • the transparent conductive material-containing coating solution a solution obtained by dispersing poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT-PSS, CLEVIOS PH510 (manufactured by Heraeus)) in a solvent was used.
  • a second portion having a shape constricted in the thickness direction was formed in a portion of the first conductive film located on a part of the glass substrate to which the chemical solution was applied.
  • the second portion was formed so as to constitute a frame-like groove surrounding the first portion of the first conductive film.
  • the organic layer and the second conductive film according to the second embodiment were formed in this order on the first conductive film to obtain a light emitting device.
  • the first conductive film includes a first portion that forms part of a region overlapping with the second conductive film, and a second portion that is located around the first portion and has a smaller thickness than the first portion. And had.
  • the second portion is provided inside the opening in plan view so as to follow the outer edge of the opening provided in the insulating film. Further, when the film thickness of the first portion was D1 and the second portion was D2, 0.1 ⁇ D1 ⁇ D2 ⁇ 0.8 ⁇ D1 was satisfied.
  • the light emitting device according to Example 1 exhibited sufficient light emission characteristics after long-time operation.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A light-emitting device (10) is provided with a first conductive film (110) that comprises a conductive polymer, a second conductive film (150), and an organic layer (140) that is arranged between the first conductive film (110) and the second conductive film (150). The first conductive film (110) comprises: a first section that constitutes at least one part of an area that overlaps with the second conductive film (150); and a second section that is positioned around the first section and that is less thick and/or has a smaller width than the first section.

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 照明装置やディスプレイの光源の一つに、有機EL(Organic Electroluminescence)素子がある。有機EL素子は、たとえば透明電極と、これに対向して配置される他の電極と、これらの電極の間に配置される有機層と、により構成される。有機EL素子に関する技術としては、たとえば特許文献1および特許文献2に記載のものが挙げられる。 One of the light sources of lighting devices and displays is an organic EL (Organic Electroluminescence) element. An organic EL element is comprised by the transparent electrode, the other electrode arrange | positioned facing this, for example, and the organic layer arrange | positioned between these electrodes. Examples of the technology related to the organic EL element include those described in Patent Document 1 and Patent Document 2.
 特許文献1に記載の技術は、電極および発光層を自発光素子毎に絶縁する絶縁膜を有する自発光パネルにおいて、最も外側に位置する自発光素子より外側に、基板と封止部材の対向方向に沿って絶縁膜を分離するサイプを設けるというものである。特許文献2には、ライン状に形成された金属ラインと、当該金属ラインの上面および側面を覆うポリマーラインと、からなる電極を有する発光素子が記載されている。 In the self-light emitting panel having an insulating film that insulates the electrode and the light emitting layer for each self light emitting element, the technology described in Patent Literature 1 is arranged in a direction in which the substrate and the sealing member are opposed to the outer side of the outermost self light emitting element. A sipe for separating the insulating film is provided. Patent Document 2 describes a light-emitting element having an electrode composed of a metal line formed in a line shape and a polymer line covering the upper surface and side surfaces of the metal line.
特開2006-244933号公報JP 2006-244933 A 特開2006-93123号公報JP 2006-93123 A
 有機材料、特に高分子材料を利用する電極を用いた発光装置においては、発光素子の劣化因子が、電極を構成する高分子材料を伝播して発光素子内に侵入することが考えられる。この場合、発光素子の発光特性等が劣化してしまうことが懸念される。 In a light emitting device using an electrode using an organic material, particularly a polymer material, it is considered that a deterioration factor of the light emitting element propagates through the polymer material constituting the electrode and enters the light emitting element. In this case, there is a concern that the light emission characteristics and the like of the light emitting element are deteriorated.
 本発明が解決しようとする課題としては、発光素子の特性劣化を抑制することが一例として挙げられる。 An example of a problem to be solved by the present invention is to suppress deterioration of characteristics of a light emitting element.
 請求項1に記載の発明は、
 導電性高分子を含む第1導電膜と、
 少なくとも一部が前記第1導電膜に対向する第2導電膜と、
 前記第1導電膜と前記第2導電膜との間に配置された有機層と、
 を備え、
 前記第1導電膜は、
  前記第2導電膜と重なる領域のうちの少なくとも一部を構成する第1部分と、
  前記第1部分の周囲に位置し、かつ前記第1部分よりも厚みまたは幅の少なくとも一方が小さい第2部分と、
 を有している発光装置である。
The invention described in claim 1
A first conductive film containing a conductive polymer;
A second conductive film at least partially facing the first conductive film;
An organic layer disposed between the first conductive film and the second conductive film;
With
The first conductive film is
A first portion constituting at least a part of a region overlapping with the second conductive film;
A second portion located around the first portion and having a thickness or width smaller than that of the first portion;
A light emitting device having
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on 1st Embodiment. 図1のA-A断面を示す断面図である。FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 1. 図1のB-B断面を示す断面図である。FIG. 2 is a cross-sectional view showing a BB cross section of FIG. 1. 図1に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 図1に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 第1の実施形態における第1導電膜の構成の一例を示す図である。It is a figure which shows an example of a structure of the 1st electrically conductive film in 1st Embodiment. 第1の実施形態における第1導電膜の構成の一例を示す図である。It is a figure which shows an example of a structure of the 1st electrically conductive film in 1st Embodiment. 第1の実施形態における第1導電膜の構成の一例を示す図である。It is a figure which shows an example of a structure of the 1st electrically conductive film in 1st Embodiment. 第2の実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on 2nd Embodiment. 図9のC-C断面を示す断面図である。FIG. 10 is a cross-sectional view showing a CC cross section of FIG. 9. 図9のD-D断面を示す断面図である。FIG. 10 is a cross-sectional view showing a DD cross section of FIG. 9. 図9に示す発光装置の一部を示す図である。It is a figure which shows a part of light-emitting device shown in FIG. 第2の実施形態における第1導電膜の構成の一例を示す図である。It is a figure which shows an example of a structure of the 1st electrically conductive film in 2nd Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る発光装置10を示す平面図である。図2は図1のA-A断面を示す断面図であり、図3は図1のB-B断面を示す断面図である。
 また、図4および図5は、図1に示す表示装置10の一部を示す図である。図4では、とくに第1導電膜110と、第2導電膜130との位置関係が示されている。また、図5では、絶縁層120の構成が示されている。図6~8は、本実施形態における第1導電膜110の構成の一例を示す図である。
(First embodiment)
FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment. 2 is a cross-sectional view showing the AA cross section of FIG. 1, and FIG. 3 is a cross-sectional view showing the BB cross section of FIG.
4 and 5 are diagrams showing a part of the display device 10 shown in FIG. In FIG. 4, the positional relationship between the first conductive film 110 and the second conductive film 130 is particularly shown. FIG. 5 shows the configuration of the insulating layer 120. 6 to 8 are diagrams showing an example of the configuration of the first conductive film 110 in the present embodiment.
 本実施形態に係る発光装置10は、第1導電膜110と、第2導電膜150と、有機層140と、を備えている。第1導電膜110は、導電性高分子を含む。第2導電膜150は、少なくとも一部が第1導電膜110に対向している。有機層140は、第1導電膜110と第2導電膜150との間に配置されている。
 また、第1導電膜110は、第2導電膜150と重なる領域のうちの少なくとも一部を構成する第1部分201と、第1部分201の周囲に位置し、かつ第1部分201よりも厚みまたは幅の少なくとも一方が小さい第2部分202と、を有している。
The light emitting device 10 according to this embodiment includes a first conductive film 110, a second conductive film 150, and an organic layer 140. The first conductive film 110 includes a conductive polymer. The second conductive film 150 is at least partially opposed to the first conductive film 110. The organic layer 140 is disposed between the first conductive film 110 and the second conductive film 150.
In addition, the first conductive film 110 is positioned around the first portion 201 that forms at least a part of a region overlapping the second conductive film 150, and is thicker than the first portion 201. Alternatively, at least one of the widths of the second portion 202 is small.
 以下、本実施形態に係る発光装置10の構成の一例、および発光装置10の製造方法の一例につき、詳細に説明する。 Hereinafter, an example of the configuration of the light emitting device 10 according to the present embodiment and an example of a method for manufacturing the light emitting device 10 will be described in detail.
 まず、表示装置10の構成の一例について説明する。
 本実施形態においては、発光装置10がディスプレイである場合が例示される。
 なお、発光装置10は、照明装置であってもよい。発光装置10が照明装置である場合、発光装置10は、たとえば互いに発光色が異なるライン状の有機層140を複数繰り返し並べた構成を有する。これにより、演色性に優れた照明装置が実現される。また、照明装置である発光装置10は、面状の有機層140を有していてもよい。
First, an example of the configuration of the display device 10 will be described.
In this embodiment, the case where the light-emitting device 10 is a display is illustrated.
The light emitting device 10 may be a lighting device. When the light-emitting device 10 is an illumination device, the light-emitting device 10 has a configuration in which, for example, a plurality of linear organic layers 140 having different emission colors are arranged repeatedly. Thereby, the illuminating device excellent in color rendering properties is realized. In addition, the light-emitting device 10 that is a lighting device may have a planar organic layer 140.
 基板100は、たとえば透明基板である。本実施形態において、基板100は、ガラス基板とすることができる。これにより、耐熱性等に優れた発光装置10を安価に製造することが可能となる。 The substrate 100 is, for example, a transparent substrate. In the present embodiment, the substrate 100 can be a glass substrate. Thereby, the light emitting device 10 having excellent heat resistance and the like can be manufactured at low cost.
 基板100は、樹脂材料により構成されるフィルム状の基板であってもよい。この場合、特にフレキシブル性の高いディスプレイを実現することが可能となる。フィルム状の基板を構成する樹脂材料としては、たとえばポリエチレンテレフタレート、ポリエチレンナフタレートおよびポリカーボネートが挙げられる。 The substrate 100 may be a film-like substrate made of a resin material. In this case, a display with particularly high flexibility can be realized. Examples of the resin material constituting the film substrate include polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
 ディスプレイである発光装置10は、たとえばアレイ状に配列された複数の有機EL素子20を基板100上に有する。有機EL素子20は、基板100上に設けられた第1電極112と、第1電極112上に設けられた有機層140と、有機層140上に設けられた第2電極152と、を有している。このとき、有機層140は、第1電極112と第2電極152との間に配置されることとなる。 The light emitting device 10 that is a display has a plurality of organic EL elements 20 arranged in an array on the substrate 100, for example. The organic EL element 20 includes a first electrode 112 provided on the substrate 100, an organic layer 140 provided on the first electrode 112, and a second electrode 152 provided on the organic layer 140. ing. At this time, the organic layer 140 is disposed between the first electrode 112 and the second electrode 152.
 本実施形態では、たとえば図中Y方向に延びる複数の第1導電膜110と、図中X方向に延びる複数の第2導電膜150と、が基板上に設けられる。第1導電膜110のうち第2導電膜150と重なる部分は、第1電極112を構成する。また、第2導電膜150のうち第1導電膜110と重なる部分は、第2電極152を構成する。このため、第1導電膜110と第2導電膜150が平面視で互いに重なる各部分において、有機EL素子20が形成される。これにより、基板100上には、アレイ状に配列された複数の有機EL素子20が形成されることとなる。 In this embodiment, for example, a plurality of first conductive films 110 extending in the Y direction in the drawing and a plurality of second conductive films 150 extending in the X direction in the drawing are provided on the substrate. A portion of the first conductive film 110 that overlaps the second conductive film 150 constitutes the first electrode 112. A portion of the second conductive film 150 that overlaps the first conductive film 110 forms the second electrode 152. Therefore, the organic EL element 20 is formed in each portion where the first conductive film 110 and the second conductive film 150 overlap each other in plan view. As a result, a plurality of organic EL elements 20 arranged in an array are formed on the substrate 100.
 第1導電膜110のうち少なくとも一部は、第1電極112を構成する。
 第1電極112は、たとえば有機EL素子の陽極となる。この場合、第1電極112は、たとえば後述する有機層140のうちの発光層144から発光される光の波長に対して透明または半透明である透明電極となる。本実施形態においては、第1導電膜110のうち画素領域300内に位置する部分が、第1電極112を構成する。なお、画素領域300は、複数の有機EL素子20を含む領域である。図4に示す例では、一点鎖線により囲まれた領域が画素領域300に該当する。
At least a part of the first conductive film 110 constitutes the first electrode 112.
The 1st electrode 112 becomes an anode of an organic EL element, for example. In this case, the first electrode 112 is, for example, a transparent electrode that is transparent or translucent to the wavelength of light emitted from the light emitting layer 144 of the organic layer 140 described later. In the present embodiment, a portion of the first conductive film 110 located in the pixel region 300 constitutes the first electrode 112. The pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 4, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
 本実施形態において、基板100上には、互いに離間する複数の第1導電膜110が、第1導電膜110の延在方向と垂直な方向(図中X方向)に配列される。この場合、複数の第1導電膜110により構成される複数の第1電極112についても、互いに離間するよう図中X方向に配列されることとなる。 In the present embodiment, a plurality of first conductive films 110 that are separated from each other are arranged on the substrate 100 in a direction perpendicular to the extending direction of the first conductive film 110 (X direction in the drawing). In this case, the plurality of first electrodes 112 constituted by the plurality of first conductive films 110 are also arranged in the X direction in the drawing so as to be separated from each other.
 基板100上には、たとえば第1配線114が設けられている。第1配線114は、たとえば第1電極112と電気的に接続される。本実施形態において、基板100上には、それぞれ異なる第1電極112へ接続する複数の第1配線114が設けられることとなる。このため、本実施形態における複数の第1電極112は、それぞれ第1配線114を介して後述する引出配線134へ接続されることとなる。 On the substrate 100, for example, the first wiring 114 is provided. The first wiring 114 is electrically connected to the first electrode 112, for example. In the present embodiment, a plurality of first wirings 114 connected to different first electrodes 112 are provided on the substrate 100. For this reason, the plurality of first electrodes 112 in the present embodiment are each connected to the extraction wiring 134 described later via the first wiring 114.
 第1配線114は、たとえば第1導電膜110により構成される。この場合、第1電極112および第1配線114は、基板100上に一体として設けられることとなる。本実施形態においては、第1導電膜110のうち、複数の有機EL素子20を含む画素領域300内に位置する部分が、第1電極112となる。また、第1導電膜110のうち、画素領域300外に位置する部分が、第1配線114となる。
 図4に示す例において、基板100上には、図中Y方向に延在する第1導電膜110が複数設けられている。これら複数の第1導電膜110は、互いに離間するよう図中X方向に配列されている。そして、第1導電膜110のうち、一点鎖線で示される画素領域300よりも引出配線134と接続する端部側に位置する部分が、第1配線114となる。
The first wiring 114 is constituted by the first conductive film 110, for example. In this case, the first electrode 112 and the first wiring 114 are integrally provided on the substrate 100. In the present embodiment, a portion of the first conductive film 110 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the first electrode 112. Further, a portion of the first conductive film 110 located outside the pixel region 300 becomes the first wiring 114.
In the example shown in FIG. 4, a plurality of first conductive films 110 extending in the Y direction in the drawing are provided on the substrate 100. The plurality of first conductive films 110 are arranged in the X direction in the drawing so as to be separated from each other. A portion of the first conductive film 110 located on the end side connected to the extraction wiring 134 from the pixel region 300 indicated by the alternate long and short dash line is the first wiring 114.
 第1導電膜110は、実質的に導電性高分子を含む導電材料により構成される。第1導電膜110を構成する導電材料としては、たとえば透明導電材料が好ましく、この場合透明導電性高分子が利用される。第1導電膜110が透明導電材料により構成される場合、第1導電膜110により構成される第1電極112は、発光層144から発光される光の波長に対して透明性を有することとなる。本実施形態においては、第1導電膜110が透明導電材料により構成される場合、第1導電膜110により構成される第1電極112および第1配線114が透明性を有することとなる。
 透明導電材料により構成される第1導電膜110は、たとえば塗布法を用いて形成される。この場合、第1導電膜110を形成する工程において、基板100等の他の構成へ熱負荷がかかってしまうことを抑制することが可能となる。
The first conductive film 110 is made of a conductive material substantially containing a conductive polymer. As the conductive material constituting the first conductive film 110, for example, a transparent conductive material is preferable. In this case, a transparent conductive polymer is used. When the first conductive film 110 is made of a transparent conductive material, the first electrode 112 made of the first conductive film 110 is transparent with respect to the wavelength of light emitted from the light emitting layer 144. . In the present embodiment, when the first conductive film 110 is made of a transparent conductive material, the first electrode 112 and the first wiring 114 formed of the first conductive film 110 have transparency.
The first conductive film 110 made of a transparent conductive material is formed using, for example, a coating method. In this case, in the step of forming the first conductive film 110, it is possible to suppress a thermal load from being applied to other components such as the substrate 100.
 本実施形態において、第1導電膜110を構成する透明導電材料に含まれる導電性高分子は、たとえばπ共役系導電性高分子とポリアニオンを含んでなる導電性高分子である。この場合、とくに導電性や耐熱性、フレキシブル性に優れた第1導電膜110を形成することが可能となる。
 π共役系導電性高分子としては、特に限定されないが、たとえばポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、またはポリチアジル類の鎖状導電性ポリマーを用いることができる。導電性、透明性、安定性等の観点からは、ポリチオフェン類またはポリアニリン類であることが好ましく、ポリエチレンジオキシチオフェンであることがとくに好ましい。
 ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、またはポリアクリル酸を用いることができる。本実施形態において用いられるポリアニオンは、これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
In the present embodiment, the conductive polymer included in the transparent conductive material constituting the first conductive film 110 is a conductive polymer including, for example, a π-conjugated conductive polymer and a polyanion. In this case, it is possible to form the first conductive film 110 that is particularly excellent in conductivity, heat resistance, and flexibility.
The π-conjugated conductive polymer is not particularly limited. A chain conductive polymer of phenylenes, polyparaphenylene sulfides, polyisothianaphthenes, or polythiazyl compounds can be used. From the viewpoint of conductivity, transparency, stability, etc., polythiophenes or polyanilines are preferable, and polyethylene dioxythiophene is particularly preferable.
Polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, or polyacrylic acid can be used. The polyanion used in the present embodiment may be a homopolymer of these or two or more kinds of copolymers.
 第1導電膜110を構成する透明導電材料は、透明導電性高分子に加えて、架橋剤、レベリング剤、または消泡剤等をさらに含んでいてもよい。 The transparent conductive material constituting the first conductive film 110 may further contain a crosslinking agent, a leveling agent, an antifoaming agent, or the like in addition to the transparent conductive polymer.
 第1導電膜110は、第2導電膜150と重なる領域のうちの少なくとも一部を構成する第1部分201と、第1部分201の周囲に位置し、かつ第1部分201よりも厚みまたは幅の少なくとも一方が小さい第2部分202と、を有している。このとき、第1導電膜110のうちの第2導電膜150と重なる領域を構成する第1部分201は、第1電極112の少なくとも一部を構成することとなる。また、第2部分202は、厚みまたは幅のいずれか一方のみが第1部分201よりも小さくなるように設けられていてもよく、厚みおよび幅の双方において第1部分201よりも小さくなるように設けられていてもよい。
 本実施形態において、第1導電膜110は、引出配線134からみて第1方向に延在している。このとき、第1導電膜110における幅とは、たとえば基板100平面に平行な平面内において第1方向に直交する第2方向における幅を指す。
The first conductive film 110 includes a first portion 201 that forms at least a part of a region overlapping with the second conductive film 150, and is positioned around the first portion 201 and is thicker or wider than the first portion 201. And at least one of the second portions 202 is small. At this time, the first portion 201 that constitutes a region of the first conductive film 110 that overlaps the second conductive film 150 constitutes at least a part of the first electrode 112. Further, the second portion 202 may be provided so that only one of the thickness and the width is smaller than the first portion 201, and is smaller than the first portion 201 in both the thickness and the width. It may be provided.
In the present embodiment, the first conductive film 110 extends in the first direction when viewed from the lead wiring 134. At this time, the width in the first conductive film 110 refers to the width in the second direction orthogonal to the first direction, for example, in a plane parallel to the plane of the substrate 100.
 有機材料、特に高分子材料を利用する第1電極112を用いた発光装置10においては、発光装置10の劣化因子が、第1電極112を構成する高分子材料を伝播して発光装置10内に侵入することが考えられる。ここで、発光装置10の劣化因子としては、たとえば水、酸素または有機材料ガスが挙げられる。この場合、発光装置10の発光特性等が劣化してしまうことが懸念される。
 本実施形態によれば、第1導電膜110は、第1部分201の周囲に位置し、かつ第1部分201よりも厚みまたは幅の少なくとも一方が小さい第2部分202を有する。この場合、外部から第1部分201への劣化因子の進行を、第2部分202において抑制することができる。すなわち、第1部分201により構成される第1電極112への劣化因子の進行を抑制することが可能となる。これにより、第1電極112により構成される発光装置10の発光特性等が劣化因子によって劣化してしまうことを抑制することができる。
In the light emitting device 10 using the first electrode 112 using an organic material, particularly a polymer material, a deterioration factor of the light emitting device 10 propagates through the polymer material constituting the first electrode 112 and enters the light emitting device 10. It is possible to invade. Here, examples of the deterioration factor of the light emitting device 10 include water, oxygen, and organic material gas. In this case, there is a concern that the light emission characteristics and the like of the light emitting device 10 may deteriorate.
According to the present embodiment, the first conductive film 110 has the second portion 202 that is located around the first portion 201 and has at least one of a thickness or a width smaller than that of the first portion 201. In this case, the progress of the deterioration factor from the outside to the first portion 201 can be suppressed in the second portion 202. That is, it is possible to suppress the progress of the deterioration factor to the first electrode 112 configured by the first portion 201. Thereby, it can suppress that the light emission characteristic of the light-emitting device 10 comprised by the 1st electrode 112 deteriorates by a deterioration factor.
 本実施形態において、第1導電膜110は、たとえば第1電極112および第1配線114を構成する。このとき、第2部分202は、たとえば第1導電膜110のうちの第1配線114を構成する部分に設けられる。この場合、第2部分202と第1部分201との間に存在する厚みまたは幅の変化を、第1導電膜110のうちの第1電極112以外の部分において生じさせることができる。これにより、第1電極112の厚みおよび幅を一定とし、各有機EL素子20中において輝度ばらつき等が生じることを抑制できる。
 なお、第2部分202は、上記した構成を有するものに限定されず、第1導電膜110のうちの第1電極112を構成する部分に設けられていてもよい。
In the present embodiment, the first conductive film 110 constitutes, for example, the first electrode 112 and the first wiring 114. At this time, the second portion 202 is provided, for example, in a portion constituting the first wiring 114 in the first conductive film 110. In this case, a change in thickness or width existing between the second portion 202 and the first portion 201 can be caused in a portion of the first conductive film 110 other than the first electrode 112. Thereby, the thickness and the width of the first electrode 112 are made constant, and it is possible to suppress the occurrence of luminance variation and the like in each organic EL element 20.
Note that the second portion 202 is not limited to the one having the above-described configuration, and may be provided in a portion of the first conductive film 110 that constitutes the first electrode 112.
 本実施形態において、第2部分202は、たとえば第1導電膜110のうちの厚み方向または幅方向の少なくとも一方において括れた形状を有する括れ部により構成される。この場合、第2部分202は、第2部分202よりも幅または厚みが大きい第1部分201と、第2部分202よりも幅または厚みが大きい第3部分203と、の間に位置することとなる。本実施形態において、第3部分203は、たとえば第1導電膜110のうちの引出配線134と第2部分202との間に位置する部分を構成することとなる。ここで、第1導電膜110における厚み方向は、たとえば基板100平面の法線方向に一致する。 In the present embodiment, the second portion 202 is configured by a constricted portion having a constricted shape in at least one of the first conductive film 110 in the thickness direction or the width direction, for example. In this case, the second portion 202 is positioned between the first portion 201 having a larger width or thickness than the second portion 202 and the third portion 203 having a larger width or thickness than the second portion 202. Become. In the present embodiment, the third portion 203 constitutes, for example, a portion of the first conductive film 110 that is located between the extraction wiring 134 and the second portion 202. Here, the thickness direction of the first conductive film 110 coincides with the normal direction of the plane of the substrate 100, for example.
 第1導電膜110における膜厚または幅の少なくとも一方は、第3部分203と第2部分202との間において、引出配線134から遠ざかるにつれて減少する勾配を有することが好ましい。これにより、第3部分203と第2部分202との間における急激な電気抵抗値の変動を抑制することが可能となる。
 また、本実施形態において、第2部分202は、第1導電膜110と引出配線134との接合界面に沿って設けられることが好ましい。これにより、引出配線134から第1導電膜110への劣化因子の進行を、より効果的に抑制することが可能となる。
It is preferable that at least one of the film thickness and the width of the first conductive film 110 has a slope that decreases between the third portion 203 and the second portion 202 as the distance from the lead wiring 134 increases. As a result, it is possible to suppress sudden fluctuations in the electrical resistance value between the third portion 203 and the second portion 202.
In the present embodiment, the second portion 202 is preferably provided along the bonding interface between the first conductive film 110 and the extraction wiring 134. Thereby, it is possible to more effectively suppress the progress of the deterioration factor from the lead-out wiring 134 to the first conductive film 110.
 図6は、第1導電膜110の構成の一例を示す断面図である。
 図6では、第2部分202が、第1部分201よりも小さい厚みを有するように設けられている場合が例示される。図6に示す例において、第2部分202と引出配線134との間には、第2部分202よりも厚みが大きい第3部分203が設けられている。このとき、第1導電膜110は、第2部分202が設けられた領域において、たとえば第2方向に延在する溝を有する。この場合、第1導電膜110に設けられた当該溝は、第1導電膜110と引出配線134との接合界面に沿って設けられることとなる。
FIG. 6 is a cross-sectional view illustrating an example of the configuration of the first conductive film 110.
In FIG. 6, the case where the 2nd part 202 is provided so that it may have a thickness smaller than the 1st part 201 is illustrated. In the example shown in FIG. 6, a third portion 203 having a thickness larger than that of the second portion 202 is provided between the second portion 202 and the lead wiring 134. At this time, the first conductive film 110 has, for example, a groove extending in the second direction in the region where the second portion 202 is provided. In this case, the groove provided in the first conductive film 110 is provided along the bonding interface between the first conductive film 110 and the extraction wiring 134.
 ここで、第1部分201の膜厚をD1とし、第2部分202の膜厚をD2とする。この場合、第2部分202の膜厚D2は、0.1×D1≦D2≦0.8×D1を満たすことが好ましい。この場合、第1導電膜110内部における導電性を確保しつつ、第1電極112への劣化因子の進行を効果的に抑制することが可能となる。
 また、図6に示す例において、第1導電膜110のうちの第1部分201は、上面が平坦となるように設けられている。このとき、第1部分201は、たとえば基板100平面と平行な上面を有することとなる。
Here, the film thickness of the first portion 201 is D1, and the film thickness of the second portion 202 is D2. In this case, the film thickness D2 of the second portion 202 preferably satisfies 0.1 × D1 ≦ D2 ≦ 0.8 × D1. In this case, it is possible to effectively suppress the progress of the deterioration factor to the first electrode 112 while ensuring the conductivity inside the first conductive film 110.
In the example shown in FIG. 6, the first portion 201 of the first conductive film 110 is provided so that the upper surface is flat. At this time, the first portion 201 has an upper surface parallel to the plane of the substrate 100, for example.
 図7は、第1導電膜110の構成の一例を示す平面図であり、図6とは異なる例を示す。
 図7では、第2部分202が、第1部分201よりも小さい幅を有するように設けられている場合が例示される。図7に示す例において、第2部分202と引出配線134との間には、第2部分202よりも幅が大きい第3部分203が設けられている。すなわち、第2部分202は、第1導電膜110のうち幅方向に括れた括れ部により構成される。このとき、第1導電膜110において、幅方向における両端側が括れることにより第2部分202が形成されてもよく、幅方向における一端側のみが括れることにより第2部分202が形成されていてもよい。
FIG. 7 is a plan view showing an example of the configuration of the first conductive film 110, and shows an example different from FIG.
In FIG. 7, the case where the 2nd part 202 is provided so that it may have a width smaller than the 1st part 201 is illustrated. In the example shown in FIG. 7, a third portion 203 having a width larger than that of the second portion 202 is provided between the second portion 202 and the lead wiring 134. That is, the second portion 202 is configured by a constricted portion of the first conductive film 110 that is constricted in the width direction. At this time, in the first conductive film 110, the second portion 202 may be formed by constricting both ends in the width direction, and the second portion 202 is formed by confining only one end in the width direction. Also good.
 本実施形態において、第1導電膜110は、第1部分201からみて第2部分202と反対側に位置し、かつ第1部分201よりも厚みまたは幅の少なくとも一方が小さい第4部分204を含んでいてもよい。この場合、外部から第1部分201への劣化因子の進行を、第2部分202および第4部分204において抑制することができる。すなわち、第1部分201により構成される第1電極112への劣化因子の進行を、さらに効果的に抑制することが可能となる。
 なお、本実施形態においては、第4部分204が設けられていなくともよい。この場合においても、外部から第1電極112への劣化因子の進行を抑制できる。また、第1導電膜110の加工を容易とすることも可能となる。
In the present embodiment, the first conductive film 110 includes a fourth portion 204 that is located on the opposite side of the second portion 202 as viewed from the first portion 201 and that has at least one of thickness or width smaller than that of the first portion 201. You may go out. In this case, the progress of the deterioration factor from the outside to the first portion 201 can be suppressed in the second portion 202 and the fourth portion 204. That is, it is possible to further effectively suppress the progress of the deterioration factor to the first electrode 112 configured by the first portion 201.
In the present embodiment, the fourth portion 204 may not be provided. Even in this case, the progress of the deterioration factor from the outside to the first electrode 112 can be suppressed. In addition, the first conductive film 110 can be easily processed.
 図8は、第1導電膜110の構成の一例を示す図であり、図6および図7とは異なる例を示す。図8においては、第2部分202および第4部分204のいずれもが、第1部分201よりも小さい厚みを有するように設けられる場合が例示される。
 本実施形態において、第4部分204は、たとえば第1導電膜110のうちの厚み方向または幅方向の少なくとも一方において括れた形状を有する括れ部により構成される。この場合、第4部分204は、第4部分204よりも幅または厚みが大きい第1部分201と、第4部分204よりも幅または厚みが大きい第5部分205と、の間に位置することとなる。図8においては、第4部分204が、第1導電膜110のうちの厚み方向において括れた形状を有する場合が例示されている。
FIG. 8 is a diagram showing an example of the configuration of the first conductive film 110, and shows an example different from those shown in FIGS. In FIG. 8, the case where both the 2nd part 202 and the 4th part 204 are provided so that it may have thickness smaller than the 1st part 201 is illustrated.
In the present embodiment, the fourth portion 204 is constituted by a constricted portion having a constricted shape in at least one of the first conductive film 110 in the thickness direction or the width direction, for example. In this case, the fourth portion 204 is positioned between the first portion 201 having a larger width or thickness than the fourth portion 204 and the fifth portion 205 having a larger width or thickness than the fourth portion 204. Become. In FIG. 8, the case where the 4th part 204 has the shape constricted in the thickness direction among the 1st electrically conductive films 110 is illustrated.
 基板100上には、引出配線134が設けられている。
 引出配線134は、第1導電膜110に接続する。本実施形態においては、引出配線134が、第1導電膜110のうちの第1配線114に接続する場合が例示される。基板100上には、互いに離間するよう図中X方向に配列された複数の引出配線134が設けられている。各引出配線134は、それぞれ第1導電膜110に接続される。このため、複数の第1導電膜110により構成される複数の第1電極112は、それぞれ引出配線134を介して外部へ接続されることとなる。有機EL素子20には、たとえば第1配線114および引出配線134を介して発光/非発光の信号が供給される。
On the substrate 100, a lead wiring 134 is provided.
The lead wiring 134 is connected to the first conductive film 110. In the present embodiment, a case where the lead wiring 134 is connected to the first wiring 114 of the first conductive film 110 is exemplified. A plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other. Each lead-out wiring 134 is connected to the first conductive film 110, respectively. For this reason, the plurality of first electrodes 112 constituted by the plurality of first conductive films 110 are respectively connected to the outside via the lead wirings 134. A light emission / non-light emission signal is supplied to the organic EL element 20 through, for example, the first wiring 114 and the lead-out wiring 134.
 本実施形態において、引出配線134は、金属材料を含んで構成される。ここで、引出配線134に含まれる金属材料としては、たとえば第1導電膜110を構成する導電材料よりも電気抵抗率が低い金属材料が使用される。この場合、第1導電膜110と引出配線134は、互いに異なる材料により構成されることとなる。引出配線134に含まれる金属材料は、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、Cu、およびPdが挙げられる。引出配線134は、これらの金属材料のうちの1種または2種以上を含む。 In the present embodiment, the lead-out wiring 134 includes a metal material. Here, as the metal material included in the lead-out wiring 134, for example, a metal material having an electrical resistivity lower than that of the conductive material constituting the first conductive film 110 is used. In this case, the first conductive film 110 and the lead wiring 134 are made of different materials. Examples of the metal material contained in the lead-out wiring 134 include Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd. The lead wire 134 includes one or more of these metal materials.
 基板100上には、たとえば第1導電膜110を覆うように絶縁層120が設けられている。本実施形態においては、たとえば第1電極112と、第1配線114および後述する引出配線164それぞれの一部と、を覆うように絶縁層120が設けられる。
 絶縁層120は、ポリイミド系樹脂等の感光性の樹脂であり、露光および現像されることによって所望のパターンに形成される。絶縁層120は、ポリイミド系樹脂以外の樹脂材料により構成されてもよく、エポキシ系樹脂やアクリル系樹脂であってもよい。
An insulating layer 120 is provided on the substrate 100 so as to cover the first conductive film 110, for example. In the present embodiment, for example, the insulating layer 120 is provided so as to cover the first electrode 112 and the first wiring 114 and a part of each of the extraction wiring 164 described later.
The insulating layer 120 is a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by exposure and development. The insulating layer 120 may be made of a resin material other than polyimide resin, and may be epoxy resin or acrylic resin.
 絶縁層120には、たとえば複数の第1開口122が設けられている。図5に示すように、複数の第1開口122は、たとえばマトリクスを構成するように形成される。
 本実施形態において、複数の第1開口122は、第1導電膜110のうち第1電極112上に位置するように形成される。図中Y方向に延在する各第1電極112の上には、たとえば複数の第1開口122が所定の間隔を空けて図中Y方向に配列される。また、これらの複数の第1開口122は、たとえば第1電極112と直交する方向(図中X方向)に延在する第2電極152と重なる位置に設けられる。このため、複数の第1開口122は、マトリクスを構成するように配置されることとなる。
The insulating layer 120 is provided with a plurality of first openings 122, for example. As shown in FIG. 5, the plurality of first openings 122 are formed so as to form a matrix, for example.
In the present embodiment, the plurality of first openings 122 are formed so as to be located on the first electrode 112 in the first conductive film 110. On each first electrode 112 extending in the Y direction in the figure, for example, a plurality of first openings 122 are arranged in the Y direction in the figure at a predetermined interval. In addition, the plurality of first openings 122 are provided at positions overlapping the second electrode 152 extending in a direction orthogonal to the first electrode 112 (X direction in the figure), for example. For this reason, the plurality of first openings 122 are arranged to form a matrix.
 絶縁層120には、たとえば複数の第2開口124が設けられている。
 図5に示すように、第2開口124は、たとえば後述する引出配線164上に位置するように設けられる。複数の第2開口124は、第1開口122が構成するマトリクスの一辺に沿って配置されている。この一辺に沿う方向(たとえば図中Y方向)でみた場合、第2開口124は、第1開口122と同じ間隔で配置されている。
The insulating layer 120 is provided with a plurality of second openings 124, for example.
As shown in FIG. 5, the second opening 124 is provided, for example, so as to be positioned on a lead wiring 164 described later. The plurality of second openings 124 are arranged along one side of the matrix formed by the first openings 122. When viewed in a direction along this one side (for example, Y direction in the figure), the second openings 124 are arranged at the same interval as the first openings 122.
 絶縁層120上には、たとえば隔壁170が設けられている。
 図1に示すように、隔壁170は、図中X方向に延在するように設けられる。すなわち、隔壁170は、第2電極152の延在方向に沿って形成されることとなる。また、隔壁170は、図中Y方向に配列されるよう複数設けられる。
 隔壁170は、たとえばポリイミド系樹脂等の感光性の樹脂であり、露光および現像されることによって所望のパターンに形成される。なお、隔壁170は、ポリイミド系樹脂以外の樹脂材料により構成されてもよく、エポキシ系樹脂やアクリル系樹脂であってもよい。
On the insulating layer 120, for example, a partition wall 170 is provided.
As shown in FIG. 1, the partition 170 is provided so as to extend in the X direction in the drawing. That is, the partition 170 is formed along the extending direction of the second electrode 152. A plurality of partition walls 170 are provided so as to be arranged in the Y direction in the drawing.
The partition wall 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed. The partition wall 170 may be made of a resin material other than a polyimide resin, or may be an epoxy resin or an acrylic resin.
 隔壁170は、たとえば断面が台形の上下を逆にした形状(逆台形)を有している。すなわち、隔壁170の上面の幅は、たとえば隔壁170の底面の幅よりも大きい。この場合、複数の第2電極152をスパッタリング法や蒸着法等により一括して形成する場合であっても、隣接する隔壁170間にそれぞれ位置する複数の第2電極152を互いに分断させることが可能となる。したがって、第2電極152を容易に形成することができる。
 なお、隔壁170の平面形状は、図1に示すものに限られない。このため、隔壁170の平面形状を変更することにより、隔壁170により互いに分断される複数の第2電極152の平面パターンを自由に変更することが可能となる。
The partition wall 170 has, for example, a trapezoidal cross-sectional shape (reverse trapezoidal shape). That is, the width of the upper surface of the partition wall 170 is larger than the width of the bottom surface of the partition wall 170, for example. In this case, even when the plurality of second electrodes 152 are collectively formed by a sputtering method, a vapor deposition method, or the like, the plurality of second electrodes 152 positioned between the adjacent partition walls 170 can be separated from each other. It becomes. Therefore, the second electrode 152 can be easily formed.
The planar shape of the partition wall 170 is not limited to that shown in FIG. Therefore, by changing the planar shape of the partition 170, the planar pattern of the plurality of second electrodes 152 that are separated from each other by the partition 170 can be freely changed.
 図2に示すように、第1開口122の中には、たとえば有機層140が形成されている。
 本実施形態において、有機層140は、たとえば正孔注入層142、発光層144および電子注入層146を順に積層した積層体により構成される。このとき、正孔注入層142は第1電極112に接し、電子注入層146は第2電極152に接する。このため、有機層140は、第1電極112と第2電極152との間に狭持されることとなる。
 なお、正孔注入層142と発光層144の間には正孔輸送層が形成されてもよいし、発光層144と電子注入層146の間には電子輸送層が形成されてもよい。また、有機層140は、正孔注入層142を有していなくともよい。
As shown in FIG. 2, for example, an organic layer 140 is formed in the first opening 122.
In the present embodiment, the organic layer 140 is configured by a stacked body in which, for example, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially stacked. At this time, the hole injection layer 142 is in contact with the first electrode 112, and the electron injection layer 146 is in contact with the second electrode 152. For this reason, the organic layer 140 is sandwiched between the first electrode 112 and the second electrode 152.
Note that a hole transport layer may be formed between the hole injection layer 142 and the light emitting layer 144, or an electron transport layer may be formed between the light emitting layer 144 and the electron injection layer 146. Further, the organic layer 140 may not include the hole injection layer 142.
 本実施形態において、絶縁層120上には、たとえば隔壁170が設けられている。この場合、図2に示すように、隣接する隔壁170間に挟まれる複数の領域それぞれに設けられた有機層140は、図中Y方向において互いに分断される。なお、隔壁170上には、たとえば有機層140と同一材料からなる積層膜が形成される。
 一方で、図3に示すように、有機層140を構成する各層は、隔壁170が延在する図中X方向において、隣り合う第1開口122の間において連続するように設けられる。
In the present embodiment, for example, a partition 170 is provided on the insulating layer 120. In this case, as shown in FIG. 2, the organic layers 140 provided in each of a plurality of regions sandwiched between adjacent partition walls 170 are separated from each other in the Y direction in the drawing. A laminated film made of the same material as the organic layer 140 is formed on the partition wall 170, for example.
On the other hand, as shown in FIG. 3, each layer constituting the organic layer 140 is provided so as to be continuous between adjacent first openings 122 in the X direction in the drawing in which the partition 170 extends.
 第2導電膜150のうち少なくとも一部は、第2電極152を構成する。
 第2電極152は、たとえば有機EL素子の陰極となる。また、第2電極152は、有機層140上に設けられている。本実施形態においては、第2導電膜150のうち画素領域300内に位置する部分が第2電極152を構成する。
 本実施形態において、有機層140上には、互いに離間する複数の第2導電膜150が、第2導電膜150の延在方向と垂直な方向(図中Y方向)に配列される。この場合、複数の第2導電膜150により構成される複数の第2電極152についても、互いに離間するよう図中Y方向に配列されることとなる。
At least a part of the second conductive film 150 constitutes the second electrode 152.
The second electrode 152 becomes a cathode of an organic EL element, for example. The second electrode 152 is provided on the organic layer 140. In the present embodiment, a portion of the second conductive film 150 located in the pixel region 300 constitutes the second electrode 152.
In the present embodiment, a plurality of second conductive films 150 that are separated from each other are arranged on the organic layer 140 in a direction (Y direction in the drawing) perpendicular to the extending direction of the second conductive film 150. In this case, the plurality of second electrodes 152 constituted by the plurality of second conductive films 150 are also arranged in the Y direction in the drawing so as to be separated from each other.
 発光装置10は、第2配線154を備えている。第2配線154は、たとえば第2電極152と電気的に接続される。本実施形態においては、それぞれ異なる第2電極152へ接続する複数の第2配線154が設けられる。このため、本実施形態における複数の第2電極152は、それぞれ第2配線154を介して後述する引出配線134へ接続されることとなる。なお、第2配線154は、たとえば一部が第2開口124内に埋め込まれ、当該一部において後述する引出配線164に接続される。 The light emitting device 10 includes a second wiring 154. The second wiring 154 is electrically connected to the second electrode 152, for example. In the present embodiment, a plurality of second wirings 154 connected to different second electrodes 152 are provided. For this reason, the plurality of second electrodes 152 in the present embodiment are each connected to the extraction wiring 134 described later via the second wiring 154. For example, part of the second wiring 154 is embedded in the second opening 124, and part of the second wiring 154 is connected to an extraction wiring 164 described later.
 第2配線154は、たとえば第2導電膜150により構成される。この場合、第2電極152および第2配線154は、たとえば互いに一体として設けられる。本実施形態においては、導電膜150のうち、複数の有機EL素子20を含む画素領域300内に位置する部分が、第2電極152となる。また、導電膜150のうち、画素領域300外に位置する部分が、第2配線154となる。なお、図1に示す例では、一点鎖線で囲まれた領域が画素領域300に該当する。
 図1に示す例において、有機層140上には、図中X方向に延在する導電膜150が複数設けられている。また、これらの複数の導電膜150は、互いに離間するよう図中Y方向に配列されている。そして、導電膜150のうち、画素領域300よりも引出配線164と接続する端部側に位置する部分が、第2配線154となる。
The second wiring 154 is constituted by the second conductive film 150, for example. In this case, the second electrode 152 and the second wiring 154 are provided integrally with each other, for example. In the present embodiment, a portion of the conductive film 150 located in the pixel region 300 including the plurality of organic EL elements 20 becomes the second electrode 152. In addition, a portion of the conductive film 150 located outside the pixel region 300 serves as the second wiring 154. In the example illustrated in FIG. 1, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
In the example shown in FIG. 1, a plurality of conductive films 150 extending in the X direction in the drawing are provided on the organic layer 140. The plurality of conductive films 150 are arranged in the Y direction in the drawing so as to be separated from each other. In the conductive film 150, a portion located on the end side connected to the extraction wiring 164 with respect to the pixel region 300 becomes the second wiring 154.
 第2導電膜150は、たとえば錫、マグネシウム、インジウム、カルシウム、アルミニウム、銅、もしくは銀、またはこれらの合金等の金属材料により構成される。これらの材料は、一種を単独で用いてもよく、二種以上の任意の組み合わせを用いてもよい。なお、第2電極152が陰極である場合、第2電極152を構成する第2導電膜150は、陽極である第1電極112よりも仕事関数が小さい導電性材料により構成されることが好ましい。 The second conductive film 150 is made of a metal material such as tin, magnesium, indium, calcium, aluminum, copper, silver, or an alloy thereof. One of these materials may be used alone, or two or more arbitrary combinations may be used. Note that when the second electrode 152 is a cathode, the second conductive film 150 included in the second electrode 152 is preferably formed using a conductive material having a work function smaller than that of the first electrode 112 serving as an anode.
 複数の導電膜150は、たとえばスパッタリング法または蒸着法等を用いて有機層140上に一括で形成される。このような場合であっても、本実施形態においては絶縁層120上に隔壁170が形成されているため、隣接する隔壁170間に挟まれる複数の領域それぞれに設けられた導電膜150は図中Y方向において互いに分断されることとなる。
 これにより、互いに離間するよう図中Y方向に配列され、かつ図中X方向に延在する複数の導電膜150を形成することが可能となる。このとき、隔壁170上には、導電膜150と同一材料からなる膜が形成されることとなる。
The plurality of conductive films 150 are collectively formed on the organic layer 140 using, for example, a sputtering method or a vapor deposition method. Even in such a case, since the partition 170 is formed on the insulating layer 120 in this embodiment, the conductive film 150 provided in each of a plurality of regions sandwiched between adjacent partitions 170 is illustrated in the drawing. They are separated from each other in the Y direction.
As a result, it is possible to form a plurality of conductive films 150 arranged in the Y direction in the drawing and extending in the X direction in the drawing so as to be separated from each other. At this time, a film made of the same material as the conductive film 150 is formed over the partition wall 170.
 基板100上には、たとえば引出配線164が設けられている。第2配線154は、引出配線164を介して外部に接続する。このため、第2電極152は、第2配線154および引出配線164を介して外部に接続され、信号が供給されることとなる。 On the substrate 100, for example, a lead wiring 164 is provided. The second wiring 154 is connected to the outside through the lead wiring 164. Therefore, the second electrode 152 is connected to the outside via the second wiring 154 and the lead wiring 164, and a signal is supplied.
 引出配線164は、たとえば金属材料により構成される。引出配線164を構成する金属材料としては、たとえば引出配線134と同様のものを用いることができる。この場合、引出配線164は、引出配線134と同時に形成することが可能となる。このため、表示装置10の製造工程数が増大することを抑制することができる。 The lead wiring 164 is made of, for example, a metal material. As the metal material constituting the lead wiring 164, for example, the same material as the lead wiring 134 can be used. In this case, the lead wiring 164 can be formed simultaneously with the lead wiring 134. For this reason, it can suppress that the manufacturing process number of the display apparatus 10 increases.
 次に、表示装置10の製造方法の一例について説明する。
 まず、基板100上に引出配線134を形成する。引出配線134は、たとえば塗布法、スパッタリング法または蒸着法を用いて基板100上に形成される。当該工程において使用される塗布法としては、特に限定されないが、たとえばインクジェット法、スクリーン印刷法、スプレー塗布法、またはディスペンサー塗布法が挙げられる。
 塗布法により引出配線134を形成する際に用いられる塗布液は、たとえばバインダ樹脂および有機溶剤を含む。バインダ樹脂としては、たとえばセルロース系樹脂、エポキシ系樹脂、またはアクリル系樹脂を用いることができる。有機溶剤としては、たとえば炭化水素系溶剤、またはアルコール系溶剤を用いることができる。また、塗布液中に含有される金属粒子は、たとえばAg、Al、Cr、Mo、Ni、Nb、Ti、W、Au、Pt、Cu、およびPdである。当該塗布液中には、これらの金属粒子のうちの1種または2種以上が含まれる。
Next, an example of a method for manufacturing the display device 10 will be described.
First, the lead wiring 134 is formed on the substrate 100. The lead wiring 134 is formed on the substrate 100 using, for example, a coating method, a sputtering method, or a vapor deposition method. Although it does not specifically limit as a coating method used in the said process, For example, the inkjet method, the screen printing method, the spray coating method, or the dispenser coating method is mentioned.
The coating liquid used when forming the lead wiring 134 by a coating method includes, for example, a binder resin and an organic solvent. As the binder resin, for example, a cellulose resin, an epoxy resin, or an acrylic resin can be used. As the organic solvent, for example, a hydrocarbon solvent or an alcohol solvent can be used. The metal particles contained in the coating solution are, for example, Ag, Al, Cr, Mo, Ni, Nb, Ti, W, Au, Pt, Cu, and Pd. The coating liquid contains one or more of these metal particles.
 また、本実施形態においては、たとえば引出配線134を形成する工程と同時に、基板100上に引出配線164が形成される。この場合、引出配線164は、たとえば引出配線134と同様の方法および材料により形成される。 In this embodiment, for example, the lead wiring 164 is formed on the substrate 100 simultaneously with the step of forming the lead wiring 134. In this case, the lead wiring 164 is formed by the same method and material as the lead wiring 134, for example.
 次に、引出配線134の表面に対し、後述する透明導電材料含有塗布液に対する濡れ性を向上させる親液処理を施す。親液処理としては、たとえば粗面化処理、プラズマ処理、または引出配線134表面に対しカップリング剤を塗布する塗布処理が挙げられる。 Next, a lyophilic treatment is performed on the surface of the lead-out wiring 134 to improve the wettability with respect to the transparent conductive material-containing coating liquid described later. Examples of the lyophilic process include a roughening process, a plasma process, or a coating process that applies a coupling agent to the surface of the lead-out wiring 134.
 次に、基板100上に、第1導電膜110を形成する。これにより、第1導電膜110により構成される第1電極112および第1配線114が形成される。
 第1導電膜110は、たとえば透明導電材料含有塗布液を基板100上に塗布し、これを乾燥することにより形成される。第1導電膜110は、たとえば引出配線134の一部を覆うように形成される。透明導電材料含有塗布液は、特に限定されないが、たとえばインクジェット法、スクリーン印刷法、凸版印刷法、グラビア印刷法、ダイコート、スピンコート、またはスプレーを用いて基板100上に塗布される。第1導電膜110を形成する当該工程において用いられる透明導電材料含有塗布液は、たとえば上述した透明導電材料に加え、有機溶剤や水等を含む。有機溶剤としては、たとえばアルコール系溶剤を用いることができる。
Next, a first conductive film 110 is formed over the substrate 100. Thereby, the first electrode 112 and the first wiring 114 constituted by the first conductive film 110 are formed.
The first conductive film 110 is formed, for example, by applying a transparent conductive material-containing coating solution on the substrate 100 and drying it. The first conductive film 110 is formed so as to cover a part of the lead wiring 134, for example. The transparent conductive material-containing coating solution is not particularly limited, but is applied onto the substrate 100 using, for example, an ink jet method, a screen printing method, a relief printing method, a gravure printing method, a die coat, a spin coat, or a spray. The transparent conductive material-containing coating solution used in the step of forming the first conductive film 110 includes, for example, an organic solvent and water in addition to the above-described transparent conductive material. As the organic solvent, for example, an alcohol solvent can be used.
 基板100上に透明導電材料含有塗布液を塗布し、これを乾燥した場合、通常であれば平坦な第1導電膜110が形成される。これに対し、本実施形態においては、引出配線134の表面に対し親液処理を施すことができる。この場合、第1導電膜110を形成する上記工程において、基板100上に塗布された上記透明導電材料含有塗布液のうち引出配線134に近接する部分は、親液処理が施された引出配線134表面により引き寄せられる。これにより、第1導電膜110の一部に、第1部分201よりも厚みまたは幅が小さい第2部分202を形成することができる。なお、親液処理における処理条件や第1導電膜110と引出配線134との膜厚比等をそれぞれ高度に制御することにより、第2部分202の形状を制御することが可能となる。 When a transparent conductive material-containing coating solution is applied onto the substrate 100 and dried, a flat first conductive film 110 is formed if it is normal. On the other hand, in this embodiment, lyophilic treatment can be performed on the surface of the lead-out wiring 134. In this case, in the step of forming the first conductive film 110, the portion of the transparent conductive material-containing coating solution applied on the substrate 100 that is close to the extraction wiring 134 is the extraction wiring 134 that has been subjected to lyophilic treatment. Attracted by the surface. Thereby, the second portion 202 having a thickness or width smaller than that of the first portion 201 can be formed in a part of the first conductive film 110. Note that the shape of the second portion 202 can be controlled by highly controlling the processing conditions in the lyophilic processing, the film thickness ratio between the first conductive film 110 and the lead wiring 134, and the like.
 本実施形態においては、第1導電膜110に第4部分204を形成する工程をさらに含んでいてもよい。第4部分204は、たとえば第1導電膜110を形成する上記工程の前に基板100上に透明導電材料含有塗布液に対する親液性を有する構造物を形成した後、当該構造物の少なくとも一部を覆うように第1導電膜110を形成することにより形成される。この場合、第1導電膜110を形成する上記工程において、基板100上に塗布された上記透明導電材料含有塗布液のうち上記構造物に近接する部分は、親液処理が施された上記構造物の表面により引き寄せられる。これにより、第1導電膜110の一部に第4部分204が形成されることとなる。なお、上記構造物に対する親液処理における処理条件や、上記構造物の形状等をそれぞれ高度に制御することにより、第4部分204の形状を制御することが可能となる。 In the present embodiment, a step of forming the fourth portion 204 in the first conductive film 110 may be further included. For example, after forming a lyophilic structure with respect to the transparent conductive material-containing coating solution on the substrate 100 before the step of forming the first conductive film 110, for example, the fourth portion 204 is at least part of the structure. The first conductive film 110 is formed so as to cover the film. In this case, in the step of forming the first conductive film 110, the portion close to the structure in the transparent conductive material-containing coating liquid applied on the substrate 100 is subjected to lyophilic treatment. Attracted by the surface of As a result, the fourth portion 204 is formed in a part of the first conductive film 110. Note that the shape of the fourth portion 204 can be controlled by highly controlling the processing conditions in the lyophilic treatment for the structure, the shape of the structure, and the like.
 なお、基板100表面の一部に対し透明導電材料含有塗布液に対する疎液性を向上させる疎液処理を施すことにより、基板100上に形成される第1導電膜110に第2部分202を形成してもよい。この場合、疎液処理が施された基板100の一部上に保持される塗布液の厚みが小さくなることにより、第1部分201よりも厚みが小さい第2部分202が形成されることとなる。疎液処理としては、たとえば透明導電材料含有塗布液に対する疎液性を有する薬液を、インクジェット法等を用いて基板100の一部に塗布する方法が挙げられる。なお、第4部分204が形成される場合には、基板100表面のうち第4部分204が形成される部分に対しても疎液処理を施すことができる。 The second portion 202 is formed in the first conductive film 110 formed on the substrate 100 by performing a lyophobic treatment for improving the lyophobic property with respect to the coating liquid containing the transparent conductive material on a part of the surface of the substrate 100. May be. In this case, the second portion 202 having a thickness smaller than that of the first portion 201 is formed by reducing the thickness of the coating liquid held on a part of the substrate 100 that has been subjected to the lyophobic treatment. . Examples of the lyophobic treatment include a method in which a chemical solution having lyophobic properties with respect to the transparent conductive material-containing coating solution is applied to a part of the substrate 100 using an inkjet method or the like. In the case where the fourth portion 204 is formed, the lyophobic treatment can be performed on the portion of the surface of the substrate 100 where the fourth portion 204 is formed.
 また、第1導電膜110を形成した後、第1導電膜110の一部をエッチングすることにより第2部分202および第4部分204が形成されてもよい。 Alternatively, the second portion 202 and the fourth portion 204 may be formed by etching a part of the first conductive film 110 after the first conductive film 110 is formed.
 次に、第1導電膜110に対し熱処理を施す。この熱処理によって第1導電膜110を乾燥させることにより導電性高分子の凝集力が高まり、第1導電膜110を強固な膜とすることができる。また、第1導電膜110に対し熱処理を施すことにより、第1導電膜110の硬化が行われる。また、第1導電膜110を構成する透明導電材料が感光性材料を含む場合には、UV照射により第1導電膜110を硬化してもよい。
 この段階において得られる構造が、図4に示されるものである。
Next, heat treatment is performed on the first conductive film 110. By drying the first conductive film 110 by this heat treatment, the cohesive force of the conductive polymer is increased, and the first conductive film 110 can be made a strong film. Further, the first conductive film 110 is cured by performing a heat treatment on the first conductive film 110. Further, when the transparent conductive material constituting the first conductive film 110 includes a photosensitive material, the first conductive film 110 may be cured by UV irradiation.
The structure obtained at this stage is shown in FIG.
 次に、基板100上、第1導電膜110上および引出配線164上に絶縁層120を形成する。絶縁層120は、ドライエッチングまたはウェットエッチング等を用いて所定の形状にパターニングされる。これにより、絶縁層120に、複数の第1開口122および複数の第2開口124が形成される。このとき、複数の第1開口122は、たとえば各第1開口122から第1導電膜110の一部が露出するように形成される。 Next, the insulating layer 120 is formed on the substrate 100, the first conductive film 110, and the lead wiring 164. The insulating layer 120 is patterned into a predetermined shape using dry etching or wet etching. As a result, a plurality of first openings 122 and a plurality of second openings 124 are formed in the insulating layer 120. At this time, the plurality of first openings 122 are formed, for example, such that a part of the first conductive film 110 is exposed from each first opening 122.
 次に、絶縁層120上に隔壁170を形成する。隔壁170は、絶縁層120上に設けられた絶縁膜をドライエッチングまたはウェットエッチング等を用いて所定の形状にパターニングすることにより得られる。隔壁170が感光性樹脂により形成される場合、露光および現像時の条件を調節することにより、隔壁170の断面形状を逆台形にすることができる。この段階において得られる構造が、図5に示されるものである。 Next, a partition wall 170 is formed on the insulating layer 120. The partition wall 170 is obtained by patterning an insulating film provided over the insulating layer 120 into a predetermined shape using dry etching or wet etching. When the partition wall 170 is formed of a photosensitive resin, the cross-sectional shape of the partition wall 170 can be changed to an inverted trapezoid by adjusting the conditions during exposure and development. The structure obtained at this stage is shown in FIG.
 次に、第1開口122内に、正孔注入層142、発光層144および電子注入層146を順に形成する。これらは、たとえば塗布法または蒸着法を用いて形成される。
 これにより、有機層140が形成される。
Next, a hole injection layer 142, a light emitting layer 144, and an electron injection layer 146 are sequentially formed in the first opening 122. These are formed using, for example, a coating method or a vapor deposition method.
Thereby, the organic layer 140 is formed.
 次に、有機層140上に、第2導電膜150を形成する。これにより、第2導電膜150により構成される第2電極152および第2配線154が形成される。このとき、たとえば第2導電膜150の一部が第2開口124内に位置するように、第2導電膜150が形成される。第2導電膜150は、たとえば蒸着法またはスパッタリング法を用いて形成される。これにより、第1電極112と、第2電極152と、これらに間に配置された有機層140と、により構成される有機EL素子20が、基板100上に形成される。
 本実施形態においては、たとえばこのようにして発光装置10が形成される。
Next, the second conductive film 150 is formed on the organic layer 140. Thereby, the second electrode 152 and the second wiring 154 configured by the second conductive film 150 are formed. At this time, the second conductive film 150 is formed so that, for example, a part of the second conductive film 150 is located in the second opening 124. The second conductive film 150 is formed using, for example, a vapor deposition method or a sputtering method. Thereby, the organic EL element 20 including the first electrode 112, the second electrode 152, and the organic layer 140 disposed therebetween is formed on the substrate 100.
In the present embodiment, for example, the light emitting device 10 is formed in this way.
 以上、本実施形態によれば、第1導電膜110は、第1部分201の周囲に位置し、かつ第1部分201よりも厚みまたは幅の少なくとも一方が小さい第2部分202を有する。この場合、外部から第1部分201への劣化因子の進行を、第2部分202において抑制することができる。すなわち、第1部分201により構成される第1電極112への劣化因子の進行を抑制することが可能となる。このため、第1電極112により構成される発光装置10の発光特性等が劣化因子によって劣化してしまうことを抑制することができる。 As described above, according to the present embodiment, the first conductive film 110 has the second portion 202 positioned around the first portion 201 and having a thickness or width smaller than that of the first portion 201. In this case, the progress of the deterioration factor from the outside to the first portion 201 can be suppressed in the second portion 202. That is, it is possible to suppress the progress of the deterioration factor to the first electrode 112 configured by the first portion 201. For this reason, it can suppress that the light emission characteristic of the light-emitting device 10 comprised by the 1st electrode 112 deteriorates by a deterioration factor.
(第2の実施形態)
 図9は、第2の実施形態に係る発光装置12を示す平面図であり、第1の実施形態に係る図1に対応している。図10は、図9のC-C断面を示す断面図であり、図11は図9のD-D断面を示す断面図である。図12は、図10に示す発光装置12の一部を示す図である。図12では、とくに第1導電膜110と第2導電膜130との位置関係が示されている。また、図13は、本実施形態における第1導電膜110の構成の一例を示す図である。
(Second Embodiment)
FIG. 9 is a plan view showing the light emitting device 12 according to the second embodiment, and corresponds to FIG. 1 according to the first embodiment. 10 is a cross-sectional view showing a CC cross section of FIG. 9, and FIG. 11 is a cross-sectional view showing a DD cross section of FIG. FIG. 12 is a diagram showing a part of the light emitting device 12 shown in FIG. FIG. 12 particularly shows the positional relationship between the first conductive film 110 and the second conductive film 130. FIG. 13 is a diagram showing an example of the configuration of the first conductive film 110 in the present embodiment.
 本実施形態に係る発光装置12は、第1導電膜110および引出配線134の構成を除いて第1の実施形態に係る発光装置10と同様の構成を有する。以下、発光装置12の構成の一例について説明する。 The light emitting device 12 according to the present embodiment has the same configuration as the light emitting device 10 according to the first embodiment except for the configuration of the first conductive film 110 and the lead-out wiring 134. Hereinafter, an example of the configuration of the light emitting device 12 will be described.
 本実施形態において、第1導電膜110は、たとえば基板100上であって、画素領域300内にマトリクス状に配置される。マトリクス状に配置された複数の第1導電膜110は、互いに離間する。なお、画素領域300は、複数の有機EL素子20を含む領域である。図9に示す例では、一点鎖線により囲まれた領域が画素領域300に該当する。
 第1導電膜110は、第1の実施形態において示された導電材料により構成される。すなわち、第1導電膜110は、導電性高分子を含むこととなる。
In the present embodiment, the first conductive film 110 is disposed in a matrix in the pixel region 300 on the substrate 100, for example. The plurality of first conductive films 110 arranged in a matrix are separated from each other. The pixel region 300 is a region including a plurality of organic EL elements 20. In the example illustrated in FIG. 9, a region surrounded by a one-dot chain line corresponds to the pixel region 300.
The first conductive film 110 is made of the conductive material shown in the first embodiment. That is, the first conductive film 110 includes a conductive polymer.
 第1導電膜110は、有機EL素子の第1電極112を構成する。本実施形態では、引出配線134が第1電極112に接続される場合が例示される。引出配線134は、図中Y方向に延在している。また、基板100上には、互いに離間するよう図中X方向に配列された複数の引出配線134が設けられている。各引出配線134は、それぞれY方向に配列された複数の第1電極112に接続される。このため、複数の第1電極112は、それぞれ引出配線134を介して外部へ接続されることとなる。有機EL素子20には、引出配線134を介して発光/非発光の信号が供給される。本実施形態に係る第1導電膜110の形状は、特に限定されず有機EL素子20の設計に併せて適宜選択可能であるが、たとえば矩形である。
 なお、本実施形態に係る発光装置12においては、第1の実施形態に係る発光装置10を構成する第1配線114が設けられていない。
The first conductive film 110 constitutes the first electrode 112 of the organic EL element. In the present embodiment, a case where the lead wiring 134 is connected to the first electrode 112 is exemplified. The lead-out wiring 134 extends in the Y direction in the figure. A plurality of lead wires 134 arranged in the X direction in the figure are provided on the substrate 100 so as to be separated from each other. Each lead-out wiring 134 is connected to a plurality of first electrodes 112 arranged in the Y direction. For this reason, the plurality of first electrodes 112 are each connected to the outside via the lead wiring 134. A light emission / non-light emission signal is supplied to the organic EL element 20 through the lead wiring 134. The shape of the first conductive film 110 according to the present embodiment is not particularly limited and can be selected as appropriate in accordance with the design of the organic EL element 20, but is, for example, rectangular.
In the light emitting device 12 according to the present embodiment, the first wiring 114 constituting the light emitting device 10 according to the first embodiment is not provided.
 第1導電膜110は、第2導電膜150と重なる領域のうちの少なくとも一部を構成する第1部分201と、第1部分201の周囲に位置し、かつ第1部分201よりも厚みまたは幅の少なくとも一方が小さい第2部分202と、を有する。
 本実施形態において、第1導電膜110は、たとえば全体において第1電極112を構成する。この場合、第1部分201および第2部分202は、いずれも第1電極112に設けられることとなる。なお、第1部分201および第2部分202は、第1の実施形態と同様の形状を有することができる。
The first conductive film 110 includes a first portion 201 that forms at least a part of a region overlapping with the second conductive film 150, and is positioned around the first portion 201 and is thicker or wider than the first portion 201. And at least one of the second portions 202 is small.
In the present embodiment, the first conductive film 110 constitutes the first electrode 112 as a whole, for example. In this case, both the first portion 201 and the second portion 202 are provided on the first electrode 112. In addition, the 1st part 201 and the 2nd part 202 can have the same shape as 1st Embodiment.
 本実施形態において、第2部分202は、第1部分201よりも厚みが小さく、かつ第1部分201を囲むように設けられる。これにより、第2部分202により囲まれた第1部分201への外部からの劣化因子の進行を、より効果的に抑制することが可能となる。
 なお、第2部分202は、第1導電膜110により構成される第1電極112のうち、発光装置12による発光に主に寄与する中央部分を囲むように設けられることが好ましい。これにより、発光装置12について安定的な発光特性を実現することが可能となる。本実施形態によれば、とくに絶縁膜120と接する面からの劣化因子の進行を防ぐことができるため、発光装置12の安定的な発光特性が効果的に実現される。
In the present embodiment, the second portion 202 has a smaller thickness than the first portion 201 and is provided so as to surround the first portion 201. Thereby, it is possible to more effectively suppress the progression of the deterioration factor from the outside to the first portion 201 surrounded by the second portion 202.
In addition, it is preferable that the 2nd part 202 is provided so that the center part which mainly contributes to light emission by the light-emitting device 12 among the 1st electrodes 112 comprised by the 1st electrically conductive film 110 may be enclosed. This makes it possible to achieve stable light emission characteristics for the light emitting device 12. According to the present embodiment, it is possible to prevent the progress of deterioration factors particularly from the surface in contact with the insulating film 120, so that stable light emission characteristics of the light emitting device 12 are effectively realized.
 図13は、本実施形態に係る第1導電膜110の構成の一例を示す平面図である。
 図13では、第2部分202が、第1部分201よりも厚みが小さく、かつ第1部分201を囲むように設けられる場合が例示されている。図13に示す例においては、第2部分202は、第1導電膜110のうち厚み方向において括れた形状を有する括れ部により構成されている。この場合、第1導電膜110には、第2部分202により構成され、第1部分201を囲む枠状の溝が形成されることとなる。上記溝の平面形状は、たとえば上記溝により囲まれる領域が矩形、円形または楕円形等の平面形状を有する枠状である。
FIG. 13 is a plan view showing an example of the configuration of the first conductive film 110 according to the present embodiment.
FIG. 13 illustrates a case where the second portion 202 is thinner than the first portion 201 and is provided so as to surround the first portion 201. In the example shown in FIG. 13, the second portion 202 is constituted by a constricted portion having a constricted shape in the thickness direction of the first conductive film 110. In this case, the first conductive film 110 is formed with a frame-shaped groove that includes the second portion 202 and surrounds the first portion 201. The planar shape of the groove is, for example, a frame shape in which a region surrounded by the groove has a planar shape such as a rectangle, a circle, or an ellipse.
 絶縁層120は、たとえば引出配線134を覆うように形成される。本実施形態においては、たとえば引出配線134と引出配線164のそれぞれの一部を覆うよう、基板100上に絶縁層120が設けられる。絶縁層120は、たとえば第1の実施形態と同様の材料により構成される。 The insulating layer 120 is formed so as to cover the lead wiring 134, for example. In the present embodiment, for example, the insulating layer 120 is provided on the substrate 100 so as to cover a part of each of the extraction wiring 134 and the extraction wiring 164. The insulating layer 120 is made of the same material as that of the first embodiment, for example.
 絶縁層120は、第1導電膜110の少なくとも一部と重なる第1開口122を有している。本実施形態において、第1導電膜110は、たとえば第1開口122内に形成される。この場合、第1導電膜110の全体が、第1開口122と重なることとなる。
 図12に示す例においては、複数の第1開口122がマトリクスを構成するように形成される。この場合、基板100上にマトリクス状に配置された複数の第1導電膜110が形成されることとなる。また、図10および11に示すように、複数の第1導電膜110は、絶縁層120によって互いに離間されることとなる。第1開口122は、たとえば引出配線134の一部と平面視で重なるように形成される。この場合、引出配線134のうちの第1開口122と平面視で重なる一部が、第1開口122に形成された第1導電膜110と接続する。
The insulating layer 120 has a first opening 122 that overlaps at least part of the first conductive film 110. In the present embodiment, the first conductive film 110 is formed in the first opening 122, for example. In this case, the entire first conductive film 110 overlaps the first opening 122.
In the example shown in FIG. 12, a plurality of first openings 122 are formed so as to form a matrix. In this case, a plurality of first conductive films 110 arranged in a matrix on the substrate 100 are formed. As shown in FIGS. 10 and 11, the plurality of first conductive films 110 are separated from each other by the insulating layer 120. The first opening 122 is formed, for example, so as to overlap a part of the lead wiring 134 in a plan view. In this case, a part of the lead wiring 134 that overlaps the first opening 122 in plan view is connected to the first conductive film 110 formed in the first opening 122.
 第2部分202は、たとえば第1部分201よりも厚みが小さく、かつ第1開口122の外縁に沿うように平面視で第1開口122の内側に設けられている。この場合、第2部分202は、平面視で絶縁層120と第1部分201との間に位置するように設けられることとなる。これにより、発光装置12の劣化因子が有機材料等により構成される絶縁層120を伝播して第1部分201へ侵入することを、第2部分202によって抑制することができる。これにより、発光装置12の発光特性等が劣化因子によって劣化してしまうことを抑制することが可能となる。 The second portion 202 is, for example, smaller in thickness than the first portion 201 and is provided inside the first opening 122 in plan view so as to follow the outer edge of the first opening 122. In this case, the second portion 202 is provided so as to be positioned between the insulating layer 120 and the first portion 201 in plan view. Accordingly, the second portion 202 can suppress the deterioration factor of the light emitting device 12 from propagating through the insulating layer 120 made of an organic material or the like and entering the first portion 201. Thereby, it becomes possible to suppress that the light emission characteristic etc. of the light-emitting device 12 deteriorate by a deterioration factor.
 本実施形態における隔壁170、有機層140、第2電極152、第2配線154、および引出配線164は、たとえば第1の実施形態と同様の構成を有する。 The partition 170, the organic layer 140, the second electrode 152, the second wiring 154, and the extraction wiring 164 in the present embodiment have the same configuration as that of the first embodiment, for example.
 本実施形態においては、引出配線134の一部を露出させる複数の第1開口122を有する絶縁層120を形成した後、各第1開口122内に第1導電膜110を形成する。第1導電膜110は、第1の実施形態と同様の方法により形成することができ、たとえばインクジェット法等を用いて各第1開口122内に形成される。
 このような点を除き、本実施形態に係る発光装置12の製造方法は、第1の実施形態に係る発光装置10の製造方法と同様に行うことができる。
In the present embodiment, after forming the insulating layer 120 having a plurality of first openings 122 exposing a part of the lead wiring 134, the first conductive film 110 is formed in each first opening 122. The first conductive film 110 can be formed by the same method as in the first embodiment, and is formed in each first opening 122 by using, for example, an ink jet method or the like.
Except for this point, the method for manufacturing the light emitting device 12 according to the present embodiment can be performed in the same manner as the method for manufacturing the light emitting device 10 according to the first embodiment.
 以上、本実施形態においても、第1の実施形態と同様に、発光装置12の特性劣化を抑制することが可能となる。 As described above, also in the present embodiment, it is possible to suppress the deterioration of the characteristics of the light emitting device 12 as in the first embodiment.
 以下、実施形態を、実施例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, embodiments will be described in detail with reference to examples. In addition, this embodiment is not limited to description of these Examples at all.
(実施例1)
 まず、ガラス基板上に、銀からなる金属膜を、スパッタリング法を用いて形成した。次いで、この金属膜をドライエッチングによりライン状にパターニングし、引出配線を形成した。次いで、引出配線の一部が露出する開口部を有する絶縁膜をガラス基板上に形成した。次いで、上記開口部から露出したガラス基板表面の一部に、透明導電材料含有塗布液に対する疎液性を有す薬液を塗布した。次いで、透明導電材料含有塗布液を、上記開口部内にインクジェット法により塗布し、これを乾燥して、第1導電膜を形成した。透明導電材料含有塗布液としては、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT-PSS、CLEVIOS PH510(Heraeus社製))を溶剤中へ分散して得られる溶液を使用した。このとき、第1導電膜のうち、上記薬液が塗布されたガラス基板の一部上に位置する部分において、厚さ方向に括れた形状を有する第2部分が形成された。第2部分は、第1導電膜の第1部分を囲む枠状の溝を構成するように形成した。次いで、第1導電膜上に、第2の実施形態に係る有機層および第2導電膜を順に形成し、発光装置を得た。
(Example 1)
First, a metal film made of silver was formed on a glass substrate by a sputtering method. Next, this metal film was patterned into a line shape by dry etching to form a lead wiring. Next, an insulating film having an opening through which a part of the lead wiring is exposed was formed on the glass substrate. Next, a chemical solution having lyophobic properties with respect to the transparent conductive material-containing coating solution was applied to a part of the glass substrate surface exposed from the opening. Next, a transparent conductive material-containing coating solution was applied into the opening by an ink jet method, and dried to form a first conductive film. As the transparent conductive material-containing coating solution, a solution obtained by dispersing poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT-PSS, CLEVIOS PH510 (manufactured by Heraeus)) in a solvent was used. At this time, a second portion having a shape constricted in the thickness direction was formed in a portion of the first conductive film located on a part of the glass substrate to which the chemical solution was applied. The second portion was formed so as to constitute a frame-like groove surrounding the first portion of the first conductive film. Next, the organic layer and the second conductive film according to the second embodiment were formed in this order on the first conductive film to obtain a light emitting device.
 実施例1において、第1導電膜は、第2導電膜と重なる領域の一部を構成する第1部分と、第1部分の周囲に位置し、かつ第1部分よりも厚みが小さい第2部分と、を有していた。また、第2部分は、絶縁膜に設けられた開口部の外縁に沿うように平面視で開口部の内側に設けられていた。また、第1部分の膜厚をD1とし、第2部分をD2とした場合において、0.1×D1≦D2≦0.8×D1を満たしていた。
 実施例1に係る発光装置は、長時間動作後において十分な発光特性を示した。
In Example 1, the first conductive film includes a first portion that forms part of a region overlapping with the second conductive film, and a second portion that is located around the first portion and has a smaller thickness than the first portion. And had. The second portion is provided inside the opening in plan view so as to follow the outer edge of the opening provided in the insulating film. Further, when the film thickness of the first portion was D1 and the second portion was D2, 0.1 × D1 ≦ D2 ≦ 0.8 × D1 was satisfied.
The light emitting device according to Example 1 exhibited sufficient light emission characteristics after long-time operation.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (5)

  1.  導電性高分子を含む第1導電膜と、
     少なくとも一部が前記第1導電膜に対向する第2導電膜と、
     前記第1導電膜と前記第2導電膜との間に配置された有機層と、
     を備え、
     前記第1導電膜は、
      前記第2導電膜と重なる領域のうちの少なくとも一部を構成する第1部分と、
      前記第1部分の周囲に位置し、かつ前記第1部分よりも厚みまたは幅の少なくとも一方が小さい第2部分と、
     を有している発光装置。
    A first conductive film containing a conductive polymer;
    A second conductive film at least partially facing the first conductive film;
    An organic layer disposed between the first conductive film and the second conductive film;
    With
    The first conductive film is
    A first portion constituting at least a part of a region overlapping with the second conductive film;
    A second portion located around the first portion and having a thickness or width smaller than that of the first portion;
    A light emitting device.
  2.  請求項1に記載の発光装置において、
     前記第2部分は、前記1導電膜のうちの厚み方向または幅方向の少なくとも一方において括れた形状を有する括れ部により構成されている発光装置。
    The light-emitting device according to claim 1.
    The second portion is a light emitting device configured by a constricted portion having a constricted shape in at least one of a thickness direction and a width direction of the one conductive film.
  3.  請求項1または2に記載の発光装置において、
     前記有機層の一部と重なる開口を有する絶縁膜を備えており、
     前記第2部分は、前記第1部分よりも厚みが小さく、かつ前記開口の外縁に沿うように平面視で前記開口の内側に設けられている発光装置。
    The light emitting device according to claim 1 or 2,
    An insulating film having an opening overlapping with a part of the organic layer;
    The light emitting device, wherein the second portion has a thickness smaller than that of the first portion and is provided inside the opening in plan view so as to be along an outer edge of the opening.
  4.  請求項1~3いずれか一項に記載の発光装置において、
     前記第2部分は、前記第1部分よりも厚みが小さく、かつ前記第1部分を囲むように設けられている発光装置。
    The light emitting device according to any one of claims 1 to 3,
    The light emitting device, wherein the second portion has a smaller thickness than the first portion and is provided so as to surround the first portion.
  5.  請求項1~4いずれか一項に記載の発光装置において、
     前記第1部分の膜厚をD1とし、前記第2部分の膜厚をD2とした場合において、0.1×D1≦D2≦0.8×D1である発光装置。
    The light emitting device according to any one of claims 1 to 4,
    A light-emitting device that satisfies 0.1 × D1 ≦ D2 ≦ 0.8 × D1, where D1 is the thickness of the first portion and D2 is the thickness of the second portion.
PCT/JP2013/059928 2013-04-01 2013-04-01 Light-emitting device WO2014162450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059928 WO2014162450A1 (en) 2013-04-01 2013-04-01 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059928 WO2014162450A1 (en) 2013-04-01 2013-04-01 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2014162450A1 true WO2014162450A1 (en) 2014-10-09

Family

ID=51657783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059928 WO2014162450A1 (en) 2013-04-01 2013-04-01 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2014162450A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332388A (en) * 2000-03-13 2001-11-30 Seiko Epson Corp Electroluminescent organic element and its manufacturing method
JP2005056864A (en) * 2004-11-26 2005-03-03 Idemitsu Kosan Co Ltd Organic electroluminescent device
JP2005285523A (en) * 2004-03-30 2005-10-13 Nippon Seiki Co Ltd Organic electroluminescent panel
JP2006252866A (en) * 2005-03-09 2006-09-21 Toyota Industries Corp Electroluminescent element
JP2009048808A (en) * 2007-08-15 2009-03-05 Panasonic Electric Works Co Ltd Light-emitting device
JP2011029539A (en) * 2009-07-29 2011-02-10 Sumitomo Chemical Co Ltd Light emitting device
JP2013012303A (en) * 2011-06-28 2013-01-17 Nippon Seiki Co Ltd Organic el lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332388A (en) * 2000-03-13 2001-11-30 Seiko Epson Corp Electroluminescent organic element and its manufacturing method
JP2005285523A (en) * 2004-03-30 2005-10-13 Nippon Seiki Co Ltd Organic electroluminescent panel
JP2005056864A (en) * 2004-11-26 2005-03-03 Idemitsu Kosan Co Ltd Organic electroluminescent device
JP2006252866A (en) * 2005-03-09 2006-09-21 Toyota Industries Corp Electroluminescent element
JP2009048808A (en) * 2007-08-15 2009-03-05 Panasonic Electric Works Co Ltd Light-emitting device
JP2011029539A (en) * 2009-07-29 2011-02-10 Sumitomo Chemical Co Ltd Light emitting device
JP2013012303A (en) * 2011-06-28 2013-01-17 Nippon Seiki Co Ltd Organic el lighting device

Similar Documents

Publication Publication Date Title
KR102453921B1 (en) Organic light emitting display and manufacturing method thereof
CN109671751B (en) Display device, display panel and manufacturing method thereof
JP2010267428A (en) Method and device for forming functional film
CN114420859B (en) Display substrate, display device and preparation method of display substrate
WO2014162453A1 (en) Joint structure and light-emitting device
JP6484702B2 (en) Light emitting device
WO2014162450A1 (en) Light-emitting device
WO2014162448A1 (en) Light-emitting device
JP2019215577A (en) Optical device
JP6283022B2 (en) Optical device
JP6266599B2 (en) Optical device
JP6555911B2 (en) Light emitting device
WO2017029889A1 (en) Organic el panel, illuminating device, and method for manufacturing organic el panel
JP2014203525A (en) Joining structure and light-emitting device
WO2014162454A1 (en) Joint structure and light-emitting device
WO2014162449A1 (en) Joining structure and light-emitting device
WO2014162451A1 (en) Joined structure and light-emitting device
KR102361967B1 (en) Organic light emitting diode display device
WO2014162447A1 (en) Joining structure and light-emitting device
JP7288536B2 (en) light emitting device
WO2014162446A1 (en) Joining structure and light-emitting device
JP6725732B2 (en) Light emitting device
JP2014203526A (en) Junction structure and light-emitting device
WO2015114763A1 (en) Light emitting device
JP2019071305A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP