WO2017154207A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2017154207A1
WO2017154207A1 PCT/JP2016/057804 JP2016057804W WO2017154207A1 WO 2017154207 A1 WO2017154207 A1 WO 2017154207A1 JP 2016057804 W JP2016057804 W JP 2016057804W WO 2017154207 A1 WO2017154207 A1 WO 2017154207A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive
terminal
conductive portion
emitting device
Prior art date
Application number
PCT/JP2016/057804
Other languages
French (fr)
Japanese (ja)
Inventor
千寛 原田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2016/057804 priority Critical patent/WO2017154207A1/en
Publication of WO2017154207A1 publication Critical patent/WO2017154207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals

Definitions

  • the present invention relates to a light emitting device.
  • An organic EL element is one of the light sources of a light emitting device.
  • the organic EL element has a configuration in which an organic layer is disposed between a first electrode serving as an anode and a second electrode serving as a cathode.
  • the anode and the cathode are respectively connected to different terminals. Power is supplied to these terminals via connection members such as lead frames and bonding wires.
  • Patent Document 1 describes that irregularities are formed on the surface of a terminal by dry etching or wet etching in order to improve the adhesion between the connecting member and the terminal.
  • one method for improving the adhesion between the connection member and the terminal is to form irregularities on the surface of the terminal.
  • An example of a problem to be solved by the present invention is to improve the adhesion between the connection member and the terminal without increasing the number of manufacturing steps of the light emitting device.
  • the invention according to claim 1 is a first electrode; A second electrode; An organic layer located between the first electrode and the second electrode; A first conductive portion overlapping the first electrode and electrically connected to the first electrode; A terminal portion electrically connected to the first electrode; A connecting member that is connected to the terminal portion and supplies power to the terminal portion; With The terminal portion is A first region having a second conductive part comprising the same material as the first conductive part; A second region not having the second conductive portion; It is a light-emitting device provided with.
  • FIG. 3 is a diagram in which a second electrode is removed from FIG. 2. It is the figure which removed the insulating layer and the organic layer from FIG. It is the figure which removed the 1st electroconductive part and the electroconductive part from FIG.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2.
  • FIG. 11 is a plan view showing a configuration of a light emitting device according to Modification 3. It is a top view which shows the structure of the light-emitting device which concerns on the modification of FIG. It is a top view which shows the structure of the light-emitting device which concerns on the modification 4. It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4.
  • FIG. 1 is a plan view showing a configuration of a light emitting device 10 according to the embodiment.
  • FIG. 2 is a view in which the sealing member 180 and the connecting members 200 and 202 are removed from FIG.
  • FIG. 3 is a diagram in which the second electrode 130 is removed from FIG. 2.
  • 4 is a diagram in which the insulating layer 150 and the organic layer 120 are removed from FIG.
  • FIG. 5 is a view in which the first conductive portion 114 and the conductive portions 160 and 170 are removed from FIG. 4.
  • the light emitting device 10 includes a first electrode 110, an organic layer 120, a second electrode 130, a first conductive portion 114, a first terminal 112 (terminal portion), and a connection member 200.
  • the organic layer 120 is located between the first electrode 110 and the second electrode 130.
  • the first conductive portion 114 overlaps the first electrode 110 and is electrically connected to the first electrode 110.
  • the connection member 200 is connected to the first terminal 112 and supplies power to the first terminal 112.
  • the first terminal 112 includes a first region having the second conductive part 164 and a second region not having the second conductive part 164.
  • the second conductive part 164 includes the same material as the first conductive part 114.
  • the light emitting device 10 is a lighting device.
  • the light emitting device 10 may be a display.
  • the light emitting device 10 may be a bottom emission type light emitting device or a top emission type light emitting device.
  • the light emitting device 10 is formed using a substrate 100.
  • the substrate 100 is formed of a light transmissive material such as glass or a light transmissive resin.
  • the substrate 100 may be formed of the above-described translucent material or may be formed of a material that does not have translucency.
  • the substrate 100 is, for example, a polygon such as a rectangle.
  • the substrate 100 may have flexibility.
  • the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
  • the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Resin can be used. Further, when the substrate 100 includes a resin material, an inorganic barrier film such as SiN x or SiON is formed on at least a light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from reaching the organic layer from the substrate 100. Is preferably formed.
  • a light emitting unit 140 is formed on the substrate 100.
  • the light emitting unit 140 is an organic EL element, and includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the organic layer 120 is located between the first electrode 110 and the second electrode 130.
  • At least one of the first electrode 110 and the second electrode 130 is a transparent electrode having optical transparency.
  • the first electrode 110 is a transparent electrode.
  • the second electrode 130 is a transparent electrode. Note that both the first electrode 110 and the second electrode 130 may be transparent electrodes.
  • the transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), and the like. is there.
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method (for example, a vacuum vapor deposition method).
  • the first electrode 110 may be a carbon nanotube, a conductive organic material such as PEDOT / PSS, or a thin metal electrode.
  • the non-transparent electrode is selected from, for example, a first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In. Or a metal layer made of an alloy of metals selected from this first group.
  • This electrode is formed by using, for example, a sputtering method or a vapor deposition method (for example, a vacuum vapor deposition method).
  • the first electrode 110 may have a structure in which a metal layer and a transparent conductive layer are laminated in this order.
  • the organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked in this order.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the organic layer 120 may be formed by a vapor deposition method (for example, a vacuum vapor deposition method).
  • at least one of the organic layers 120 for example, a layer in contact with the first electrode is formed by a coating method such as an ink jet method, a printing method, or a spray method, and the remaining layers of the organic layer 120 are formed by a vapor deposition method. May be formed.
  • all the layers of the organic layer 120 may be formed using the apply
  • a first conductive portion 114 is formed on the first electrode 110.
  • the first conductive portion 114 is formed using a material having a sheet resistance lower than that of the first electrode 110, such as a metal or an alloy, and functions as an auxiliary electrode of the first electrode 110.
  • the first conductive portion 114 may be formed using a single metal film, or may be formed using a stacked film in which a plurality of metal films are stacked.
  • the first conductive portion 114 may be, for example, a laminated film in which a Mo alloy, an Al alloy, and a Mo alloy are laminated in this order. Note that a conductive portion 160 and a conductive portion 170 described later also have the same cross-sectional structure as the first conductive portion 114.
  • the first conductive portion 114 is formed using, for example, a sputtering method, photolithography, and etching.
  • a plurality of first conductive portions 114 are formed on the first electrode 110.
  • the plurality of first conductive portions 114 are parallel to each other.
  • the width of the first conductive portion 114 is, for example, not less than 5 ⁇ m and not more than 100 ⁇ m. However, the width of the first conductive portion 114 may be out of this range.
  • the arrangement interval of the first conductive portions 114 is not limited.
  • the arrangement form of the first conductive portions 114 is not limited to the stripe shape, and may be a lattice shape, for example. Further, the first conductive portion 114 may be located below the first electrode 110.
  • the first conductive portion 114 may be formed using a coating method such as an inkjet method.
  • the first conductive portion 114 is formed using a conductive ink including, for example, conductive particles (for example, nanoscale metal particles, silver nanoparticles, etc.).
  • the first conductive portion 114 has a structure in which a plurality of conductive particles are bonded to each other (for example, sintered).
  • the light emitting device 10 has a plurality of light emitting units 140.
  • the first electrode 110 and the second electrode 130 are uniformly formed in accordance with the light emitting unit 140.
  • the insulating layer 150 is formed so as to cover the first conductive portion 114.
  • the insulating layer 150 is useful for preventing a short circuit between the first conductive portion 114 and the second electrode 130, but may be omitted.
  • the light emission pattern of the light emission part 140 becomes a stripe form or a grid
  • the insulating layer 150 covers a region other than the light emitting unit 140 in the first electrode 110.
  • a plurality of rectangular openings 152 are formed in the insulating layer 150. These openings 152 are provided to bring the organic layer 120 into contact with the first electrode 110 and are parallel to each other.
  • a portion of the insulating layer 150 located between the openings 152 overlaps the first conductive portion 114. In other words, the first conductive portion 114 is covered with the insulating layer 150.
  • the insulating layer 150 is made of a resin material such as polyimide.
  • a photosensitive material is used as the material of the insulating layer 150, it can be exposed and developed after the photosensitive material is applied. This step is performed, for example, after forming the first electrode 110 and the first conductive portion 114 and before forming the organic layer 120.
  • the light emitting device 10 has a first terminal 112 and a second terminal 132.
  • the first terminal 112 is electrically connected to the first electrode 110
  • the second terminal 132 is electrically connected to the second electrode 130.
  • the first terminal 112 and the second terminal 132 include a layer formed of the same material as that of the first electrode 110.
  • a lead wiring may be provided between the first terminal 112 and the first electrode 110.
  • a lead wiring may be provided between the second terminal 132 and the second electrode 130.
  • the substrate 100 is rectangular.
  • the first terminal 112 is provided along each of two opposite sides of the four sides of the substrate 100, and the second terminal 132 is provided along each of the remaining two sides of the substrate 100. ing.
  • the layer formed of the same material as the first electrode 110 in the first terminal 112 is integrated with the first electrode 110.
  • the layer formed of the same material as the first electrode 110 in the second terminal 132 is separated from the first electrode 110.
  • positioning) of the 1st terminal 112 and the 2nd terminal 132 (extraction electrode) is not restricted to this embodiment.
  • the first terminal 112 has a conductive portion 160.
  • Each of the conductive portions 160 has a comb shape, and extends along different sides of the substrate 100.
  • the conductive part 160 is formed of a layer containing the same material as the first conductive part 114.
  • the first region of the first terminal 112 is a region where the conductive part 160 is formed.
  • the second region of the first terminal 112 has only the same layer as the first electrode 110. For this reason, when the surface (first surface) on which the light emitting unit 140 is formed in the substrate 100 is used as a reference, the first region of the first terminal 112 is located above the second region. In other words, the first terminal 112 has irregularities due to the presence or absence of the conductive portion 160.
  • This concave and convex concave portion that is, a region without the conductive portion 160
  • the conductive part 160 includes a third conductive part 162 and a plurality of second conductive parts 164.
  • the plurality of second conductive portions 164 correspond to comb teeth, and are repeatedly arranged in the direction in which the first terminal 112 extends (the first direction, that is, the direction along the side of the substrate 100).
  • the third conductive portion 162 extends in the same direction (first direction) as the first terminal 112, and connects one end of the plurality of second conductive portions 164 to each other.
  • the third conductive portion 162 is connected to the end of the second conductive portion 164 on the first electrode 110 side.
  • the third conductive portion 162 may be connected to the end of the second conductive portion 164 on the edge side of the substrate 100.
  • the end of the first conductive portion 114 is also connected to the third conductive portion 162.
  • the third conductive portion 162, the second conductive portion 164, and the first conductive portion 114 are formed in the same process and are integrated with each other.
  • the planar shape of the second conductive portion 164 is linear.
  • the direction in which the second conductive portion 164 extends is a direction that intersects the first direction (for example, a direction that intersects perpendicularly), that is, a direction that intersects the third conductive portion 162.
  • the width of the second conductive portion 164 is larger than the interval between the adjacent second conductive portions 164.
  • the width of the second conductive portion 164 is 100 ⁇ m or more.
  • interval of the adjacent 2nd electroconductive part 164 is 50 micrometers or more and 1000 micrometers or less, for example.
  • the width and interval of the second conductive portion 164 need not be the same over the entire area.
  • the width of the second conductive portion 164 is wider than the interval between the second conductive portions 164 (extracted portion: width of the non-formed portion) in the total region (crimped portion) where the connection member 200 is crimped.
  • the number of second conductive portions 164 included in one first terminal 112 is not particularly limited. Further, the length of the second conductive portion 164 is not particularly limited.
  • the conductive portion 170 has the same shape as the conductive portion 160, and in this embodiment, extends in a direction intersecting with the conductive portion 160 (for example, an orthogonal direction).
  • the conductive part 170 has a third conductive part 172 and a second conductive part 174.
  • the third conductive part 172 corresponds to the third conductive part 162 of the conductive part 160.
  • the second conductive portion 174 corresponds to the second conductive portion 164 of the conductive portion 160 and also corresponds to comb teeth.
  • the width of the second conductive portion 174 is larger than the interval between the adjacent second conductive portions 174. For example, the width of the second conductive portion 174 is 100 ⁇ m or more.
  • interval of the adjacent 2nd electroconductive part 174 is 50 micrometers or more and 1000 micrometers or less, for example.
  • the number of second conductive parts 174 included in one second terminal 132 is not particularly limited. Further, the length of the second conductive portion 174 is not particularly limited.
  • the conductive part 170 is formed in the same process as the conductive part 160.
  • connection member 200 is connected to the first terminal 112, and the connection member 202 is connected to the second terminal 132.
  • the connection members 200 and 202 are, for example, REIT wiring or tab wiring.
  • a portion of the connecting member 200 that is connected to the first terminal 112 extends in the same direction (first direction) as the first terminal 112, and the first is connected via the conductive adhesive layer 210.
  • the terminal 112 is fixed and electrically connected.
  • a portion of the connecting member 202 connected to the second terminal 132 extends in the same direction as the second terminal 132 (a direction intersecting the first direction, for example, a direction orthogonal to the first direction).
  • the second terminal 132 is fixed and electrically connected through the conductive adhesive layer 210.
  • the conductive adhesive layer 210 includes a plurality of particles having conductivity at least on the surface (hereinafter referred to as conductive particles).
  • the connection member 200 is electrically connected to the first terminal 112 through conductive particles in the conductive adhesive layer 210, and the connection member 202 is also connected to the second terminal 132 through conductive particles in the conductive adhesive layer 210. Electrically connected.
  • the width of the third conductive portion 162, the width of the second conductive portion 164, the width of the third conductive portion 172, and the width of the second conductive portion 174 are larger than the width of the conductive particles (in the case of a sphere, the diameter). large.
  • connection resistance (or contact resistance) of the 1st terminal 112 and the connection member 200 will become low, Further, the connection resistance (or contact resistance) between the second terminal 132 and the connection member 202 is also reduced.
  • the second conductive portion 164 is repeatedly provided in the direction intersecting with the connection member 200. Therefore, irregularities are formed on the surface of the first terminal 112.
  • the height of the unevenness is substantially equal to the height of the conductive part 160 or the first conductive part 114, and is, for example, 100 nm or more and 1000 nm or less. The unevenness increases the bonding strength between the first terminal 112 and the conductive adhesive layer 210.
  • the second conductive portion 174 is also repeatedly provided in the direction intersecting with the connection member 202. Therefore, irregularities are formed on the surface of the second terminal 132.
  • the height of the unevenness is substantially equal to the height of the conductive portion 170 or the first conductive portion 114. The unevenness increases the bonding strength between the second terminal 132 and the conductive adhesive layer 210.
  • the light emitting device 10 has a sealing member 180.
  • the sealing member 180 is formed using glass, metal such as aluminum, or resin, and has a shape in which a recess is provided in the center.
  • the sealing member 180 is fixed to the substrate 100 in a direction in which the concave portion faces the substrate 100.
  • the first electrode 110, the organic layer 120, and the second electrode 130 are disposed in the space between the recess of the sealing member 180 and the substrate 100.
  • a desiccant 186 is disposed in the recess of the sealing member 180.
  • An adhesive layer (or adhesive layer) 184 (shown in FIG. 6 described later) is provided on the entire periphery of the edge of the sealing member 180.
  • the sealing member 180 is fixed to the substrate 100 by the adhesive layer 184. Note that the first terminal 112, the second terminal 132, and the connecting members 200 and 202 are located outside the sealing member 180.
  • the light emitting unit 140 may be sealed with a sealing film.
  • the sealing film may be formed using, for example, an ALD (Atomic Layer Deposition) method.
  • the sealing film may have a multilayer structure in which a plurality of layers are stacked. In this case, it may have a structure in which a first sealing layer made of a first material (for example, aluminum oxide) and a second sealing layer made of a second material (for example, titanium oxide) are repeatedly stacked.
  • the sealing film may be formed using another film forming method, for example, a CVD method or a sputtering method.
  • the sealing film can be formed of an insulating film such as SiO 2 or SiN.
  • the sealing film may have a stacked film in which a plurality of film forming methods are combined.
  • the film thickness of the sealing film is, for example, 10 nm or more and 1000 nm or less.
  • the light emitting unit 140 may be sealed with a sealing plate.
  • a sealing plate for example, a metal plate such as Al or stainless steel can be used.
  • the sealing plate is laminated via an adhesive.
  • a desiccant may be provided between the sealing plate and the adhesive, or the adhesive itself may have a drying function.
  • FIG. 6 is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 3 and FIG. 3, the organic layer 120 and the second electrode 130 are also uniformly formed on the portion of the insulating layer 150 that covers the first conductive portion 114.
  • the plurality of second conductive portions 164 are repeatedly arranged along the direction in which the first terminals 112 extend.
  • the width w 1 of the second conductive part 164 is larger than the interval w 2 between the adjacent second conductive parts 164.
  • the sum of the widths w 1 of all the second conductive portions 164 formed on the first terminal 112 is larger than the sum of the intervals w 2 of all the adjacent second conductive portions 164 formed on the first terminal 112.
  • the corner of the second conductive portion 164 is not rounded or the radius of curvature is small even when rounded.
  • the conductive portion 160 having such a shape can be formed by uniformly forming a film by sputtering or the like and then patterning using photolithography.
  • FIG. 8 is a cross-sectional view showing a modification of FIG.
  • the corners of the second conductive portion 164 are rounded and the radius of curvature is large.
  • the conductive portion 160 having such a shape can be formed by using a coating method such as an inkjet method and controlling the coating and drying conditions.
  • the first electrode 110 is formed on the substrate 100.
  • the same layer as the first electrode 110 is also formed among the first terminal 112 and the second terminal 132.
  • the first conductive part 114 and the conductive part 160 are formed in the same process.
  • the insulating layer 150, the organic layer 120, and the second electrode 130 are formed in this order.
  • the sealing member 180 is prepared. At this stage, a desiccant 186 is fixed to the surface of the sealing member 180 facing the substrate 100. Next, the sealing member 180 is fixed to the substrate 100 using the adhesive layer 184. Thereby, the light emitting unit 140 is sealed by the sealing member 180. Next, the connection member 200 is connected to the first terminal 112, and the connection member 202 is connected to the second terminal 132.
  • the second conductive portion 164 of the first terminal 112 is repeatedly provided in the direction intersecting with the connection member 200. Therefore, irregularities are formed on the surface of the first terminal 112. For this reason, the surface area of the area
  • the sum of the widths w 1 of all the second conductive portions 164 formed on the first terminal 112 is larger than the sum of the intervals w 2 of all the adjacent second conductive portions 164 formed on the first terminal 112. . Accordingly, the connection resistance between the first terminal 112 and the connection member 200 is lower than when the width w 1 of the second conductive portion 164 is equal to or smaller than the interval w 2 between the adjacent second conductive portions 164. With such a configuration, it is possible to secure a contact area between the first terminal 112 and the connection member 200 and to prevent a decrease in contact resistance while improving adhesion.
  • FIG. 9 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to Modification Example 1, and corresponds to FIG. 7 in the embodiment.
  • the light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except that the first conductive portion 114, the conductive portion 160, and the conductive portion 170 are formed before the first electrode 110. It is the same composition.
  • the first conductive part 114 is located between the substrate 100 and the first electrode 110.
  • the first terminal 112 has a configuration in which the conductive layer 160 and the same layer as the first electrode 110 are stacked in this order on the substrate 100.
  • the second terminal 132 has a configuration in which the conductive layer 170 and the same layer as the first electrode 110 are stacked on the substrate 100 in this order.
  • the upper surface of the same layer as the first electrode 110 in the first terminal 112 has unevenness due to the presence or absence of the conductive portion 160.
  • the upper surface of the same layer as the first electrode 110 in the second terminal 132 has unevenness due to the presence or absence of the conductive portion 170. Therefore, also in this modification, as in the embodiment, the adhesion between the first terminal 112 and the connection member 200, and the second terminal 132 and the connection member 202 is improved.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification Example 2, and corresponds to FIG. 6 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as the light emitting device 10 according to the embodiment except that the insulating layer 150 is not provided. Note that the light emitting device 10 according to the first modification may not include the insulating layer 150.
  • the adhesion between the first terminal 112 and the connection member 200 and the second terminal 132 and the connection member 202 is increased.
  • FIG. 11 is a plan view illustrating a configuration of the light emitting device 10 according to the third modification.
  • the light emitting device 10 according to the present modification has the same configuration as that of the light emitting device 10 according to the embodiment or any one of the first and second modifications, except for the pattern of the conductive portion 160 and the pattern of the conductive portion 170.
  • the conductive portion 160 has a configuration in which an opening 166 is provided in a conductor layer formed on almost the entire surface of the first terminal 112. Then, by providing the opening 166, a plurality of second conductive portions 164 are formed in the conductive portion 160.
  • the opening 166 extends in a meander shape along the direction in which the first terminal 112 extends.
  • the shape of the opening 166 is not limited to the example shown in FIG.
  • a plurality of conductive portions 160 may be arranged in a staggered manner in the conductive portion 160.
  • the shape of the opening 166 is, for example, a rectangle, but may be another shape.
  • the conductive portion 170 also has an opening 176, similar to the conductive portion 160. Then, by providing the opening 176, a plurality of second conductive portions 174 are formed in the conductive portion 170.
  • the adhesion between the first terminal 112 and the connection member 200 and the second terminal 132 and the connection member 202 is increased.
  • FIG. 13 is a plan view showing a configuration of the light emitting device 10 according to the fourth modification, and corresponds to FIG. 11 in the third modification.
  • FIG. 14 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the present modification, and corresponds to FIG. 6 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as the light emitting device 10 according to modification 3 except for the following points.
  • the conductive portion 160 has a lattice shape. And the part located in a lattice point among the electroconductive parts 160 is thicker than another part.
  • the plurality of third conductive portions 162 are formed in parallel with each other by, for example, an ink jet method, and then the plurality of second conductive portions 164 are formed in a direction intersecting the third conductive portions 162 (for example, orthogonal directions).
  • the conductive portion 160 is formed. Since the portion where the third conductive portion 162 and the second conductive portion 164 overlap is overcoated, the convex portion is thicker than the other portions of the second conductive portion 164 and the third conductive portion 162.
  • the thickness of the convex portion is, for example, 1.3 times or more and 2.2 times or less the thickness of the second conductive portion 164.
  • this convex part may be located in parts other than the intersection with the 3rd electroconductive part 162 among the 2nd electroconductive parts 164.
  • the coating material may be applied a plurality of times to the region of the second conductive portion 164 that will be the convex portion.
  • the adhesion between the first terminal 112 and the connection member 200 and the second terminal 132 and the connection member 202 is increased.
  • the conductive portion 160 is partially thick, and the conductive portion 170 is also partially thick. For this reason, the surface area of the 1st terminal 112 and the surface area of the 2nd terminal 132 become still larger. Accordingly, the adhesion between the first terminal 112 and the connection member 200 and between the second terminal 132 and the connection member 202 is further enhanced.

Abstract

An organic layer (120) is positioned between a first electrode (110) and a second electrode (130). A first conductive part (114) overlaps the first electrode (110), and is electrically connected to the first electrode (110). A connecting member (200) is connected to a first terminal (112), and supplies power to the first terminal (112). The first terminal (112) is provided with a first region which has a second conductive part (164), and a second region which does not have the second conductive part (164). The second conductive part (164) contains the same material as the first conductive part (114).

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 発光装置の光源の一つに、有機EL素子がある。有機EL素子は、陽極となる第1電極と陰極となる第2電極の間に有機層を配置した構成を有している。陽極及び陰極は、それぞれ互いに異なる端子に接続されている。これらの端子には、リードフレームやボンディングワイヤなどの接続部材を介して電力が供給される。 An organic EL element is one of the light sources of a light emitting device. The organic EL element has a configuration in which an organic layer is disposed between a first electrode serving as an anode and a second electrode serving as a cathode. The anode and the cathode are respectively connected to different terminals. Power is supplied to these terminals via connection members such as lead frames and bonding wires.
 発光装置の消費電力を増大させる要因の一つに、接続部材と端子の間の密着性がある。密着性が悪い場合には、各種の保存・経年によって接続部材と端子の間の接触抵抗が増大し、消費電力の増大を引き起こす。特許文献1には、接続部材と端子の間の密着性を改善するために、ドライエッチングまたはウェットエッチングにより端子の表面に凹凸を形成することが記載されている。 One of the factors that increase the power consumption of the light emitting device is the adhesion between the connecting member and the terminal. When the adhesion is poor, the contact resistance between the connection member and the terminal increases due to various storage and aging, which causes an increase in power consumption. Patent Document 1 describes that irregularities are formed on the surface of a terminal by dry etching or wet etching in order to improve the adhesion between the connecting member and the terminal.
特開2003-347046号公報JP 2003-347046 A
 特許文献1に記載されているように、接続部材と端子の間の密着性を改善する方法の一つは、端子の表面に凹凸を形成することである。しかし、特許文献1に記載の方法ではこの凹凸を形成するために、追加のエッチング工程を行う必要があった。このため、発光装置の製造工程数が増加していた。 As described in Patent Document 1, one method for improving the adhesion between the connection member and the terminal is to form irregularities on the surface of the terminal. However, in the method described in Patent Document 1, it is necessary to perform an additional etching step in order to form the unevenness. For this reason, the number of manufacturing steps of the light emitting device has increased.
 本発明が解決しようとする課題としては、発光装置の製造工程数を増加させることなく、接続部材と端子の間の密着性を改善することが一例として挙げられる。 An example of a problem to be solved by the present invention is to improve the adhesion between the connection member and the terminal without increasing the number of manufacturing steps of the light emitting device.
 請求項1に記載の発明は、第1電極と、
 第2電極と、
 前記第1電極と前記第2電極の間に位置している有機層と、
 前記第1電極と重なり、前記第1電極に電気的に接続している第1導電部と、
 前記第1電極に電気的に接続している端子部と、
 前記端子部に接続しているとともに前記端子部に電力を供給する接続部材と、
を備え、
 前記端子部は、
  前記第1導電部と同一の材料を含んでいる第2導電部を有している第1領域と、
  前記第2導電部を有していない第2領域と、
を備える発光装置である。
The invention according to claim 1 is a first electrode;
A second electrode;
An organic layer located between the first electrode and the second electrode;
A first conductive portion overlapping the first electrode and electrically connected to the first electrode;
A terminal portion electrically connected to the first electrode;
A connecting member that is connected to the terminal portion and supplies power to the terminal portion;
With
The terminal portion is
A first region having a second conductive part comprising the same material as the first conductive part;
A second region not having the second conductive portion;
It is a light-emitting device provided with.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置の構成を示す平面図である。It is a top view which shows the structure of the light-emitting device which concerns on embodiment. 図1から封止部材及び接続部材を取り除いた図である。It is the figure which removed the sealing member and the connection member from FIG. 図2から第2電極を取り除いた図である。FIG. 3 is a diagram in which a second electrode is removed from FIG. 2. 図3から絶縁層及び有機層を取り除いた図である。It is the figure which removed the insulating layer and the organic layer from FIG. 図4から第1導電部及び導電部を取り除いた図である。It is the figure which removed the 1st electroconductive part and the electroconductive part from FIG. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図1のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 図7の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. 変形例1に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1. FIG. 変形例2に係る発光装置の構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2. 変形例3に係る発光装置の構成を示す平面図である。FIG. 11 is a plan view showing a configuration of a light emitting device according to Modification 3. 図11の変形例に係る発光装置の構成を示す平面図である。It is a top view which shows the structure of the light-emitting device which concerns on the modification of FIG. 変形例4に係る発光装置の構成を示す平面図である。It is a top view which shows the structure of the light-emitting device which concerns on the modification 4. 変形例4に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(実施形態)
 図1は、実施形態に係る発光装置10の構成を示す平面図である。図2は、図1から封止部材180及び接続部材200,202を取り除いた図である。図3は、図2から第2電極130を取り除いた図である。図4は、図3から絶縁層150及び有機層120を取り除いた図である。図5は、図4から第1導電部114及び導電部160,170を取り除いた図である。
(Embodiment)
FIG. 1 is a plan view showing a configuration of a light emitting device 10 according to the embodiment. FIG. 2 is a view in which the sealing member 180 and the connecting members 200 and 202 are removed from FIG. FIG. 3 is a diagram in which the second electrode 130 is removed from FIG. 2. 4 is a diagram in which the insulating layer 150 and the organic layer 120 are removed from FIG. FIG. 5 is a view in which the first conductive portion 114 and the conductive portions 160 and 170 are removed from FIG. 4.
 実施形態に係る発光装置10は、第1電極110、有機層120、第2電極130、第1導電部114、第1端子112(端子部)、及び接続部材200を備えている。有機層120は第1電極110と第2電極130の間に位置している。第1導電部114は第1電極110と重なっており、かつ第1電極110に電気的に接続している。接続部材200は第1端子112に接続するとともに第1端子112に電力を供給する。第1端子112は、第2導電部164を有している第1領域と、第2導電部164を有していない第2領域とを備えている。第2導電部164は、第1導電部114と同一の材料を含んでいる。以下、発光装置10について詳細に説明する。 The light emitting device 10 according to the embodiment includes a first electrode 110, an organic layer 120, a second electrode 130, a first conductive portion 114, a first terminal 112 (terminal portion), and a connection member 200. The organic layer 120 is located between the first electrode 110 and the second electrode 130. The first conductive portion 114 overlaps the first electrode 110 and is electrically connected to the first electrode 110. The connection member 200 is connected to the first terminal 112 and supplies power to the first terminal 112. The first terminal 112 includes a first region having the second conductive part 164 and a second region not having the second conductive part 164. The second conductive part 164 includes the same material as the first conductive part 114. Hereinafter, the light emitting device 10 will be described in detail.
 図1~図5に示す例において、発光装置10は照明装置である。ただし、発光装置10はディスプレイであってもよい。発光装置10はボトムエミッション型の発光装置であってもよいし、トップエミッション型の発光装置であってもよい。発光装置10は、基板100を用いて形成されている。 In the example shown in FIGS. 1 to 5, the light emitting device 10 is a lighting device. However, the light emitting device 10 may be a display. The light emitting device 10 may be a bottom emission type light emitting device or a top emission type light emitting device. The light emitting device 10 is formed using a substrate 100.
 発光装置10がボトムエミッション型である場合、基板100は、例えばガラスや透光性の樹脂などの透光性の材料で形成されている。一方、発光装置10がトップエミッション型である場合、基板100は上述した透光性の材料で形成されていてもよいし、透光性を有さない材料で形成されていてもよい。基板100は、例えば矩形などの多角形である。また、基板100は可撓性を有していてもよい。基板100が可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。特に基板100にガラス材料を用いて可撓性を持たせる場合、基板100の厚さは、例えば200μm以下である。樹脂材料を用いて基板100を可撓性を持たせる場合は、基板100の材料として、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを含有する樹脂を用いることができる。また、基板100が樹脂材料を含む場合、水分が基板100から有機層へ到達することを抑制するために、基板100の少なくとも発光面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されていることが好ましい。 When the light emitting device 10 is a bottom emission type, the substrate 100 is formed of a light transmissive material such as glass or a light transmissive resin. On the other hand, when the light emitting device 10 is a top emission type, the substrate 100 may be formed of the above-described translucent material or may be formed of a material that does not have translucency. The substrate 100 is, for example, a polygon such as a rectangle. Further, the substrate 100 may have flexibility. In the case where the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. In particular, when the substrate 100 is made flexible by using a glass material, the thickness of the substrate 100 is, for example, 200 μm or less. When the substrate 100 is made flexible by using a resin material, the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Resin can be used. Further, when the substrate 100 includes a resin material, an inorganic barrier film such as SiN x or SiON is formed on at least a light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from reaching the organic layer from the substrate 100. Is preferably formed.
 基板100には発光部140が形成されている。発光部140は有機EL素子であり、第1電極110、有機層120、及び第2電極130を有している。有機層120は第1電極110と第2電極130の間に位置している。 A light emitting unit 140 is formed on the substrate 100. The light emitting unit 140 is an organic EL element, and includes a first electrode 110, an organic layer 120, and a second electrode 130. The organic layer 120 is located between the first electrode 110 and the second electrode 130.
 第1電極110及び第2電極130の少なくとも一方は、光透過性を有する透明電極である。例えば発光装置10がボトムエミッション型の発光装置である場合、少なくとも第1電極110は透明電極である。一方、発光装置10がトップエミッション型の発光装置である場合、少なくとも第2電極130は透明電極である。なお、第1電極110及び第2電極130の双方が透明電極であってもよい。 At least one of the first electrode 110 and the second electrode 130 is a transparent electrode having optical transparency. For example, when the light emitting device 10 is a bottom emission type light emitting device, at least the first electrode 110 is a transparent electrode. On the other hand, when the light emitting device 10 is a top emission type light emitting device, at least the second electrode 130 is a transparent electrode. Note that both the first electrode 110 and the second electrode 130 may be transparent electrodes.
 透明電極を構成する透明導電材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110の厚さは、例えば10nm以上500nm以下である。第1電極110は、例えばスパッタリング法又は蒸着法(例えば真空蒸着法)を用いて形成される。なお、第1電極110は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよいし、薄い金属電極であってもよい。 The transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), and the like. is there. The thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm. The first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method (for example, a vacuum vapor deposition method). The first electrode 110 may be a carbon nanotube, a conductive organic material such as PEDOT / PSS, or a thin metal electrode.
 第1電極110及び第2電極130のうち透光性を有していない電極は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この電極は、例えばスパッタリング法又は蒸着法(例えば真空蒸着法)を用いて形成される。 Of the first electrode 110 and the second electrode 130, the non-transparent electrode is selected from, for example, a first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In. Or a metal layer made of an alloy of metals selected from this first group. This electrode is formed by using, for example, a sputtering method or a vapor deposition method (for example, a vacuum vapor deposition method).
 なお、発光装置10がトップエミッション型の発光装置である場合、第1電極110は、金属層と透明導電層をこの順に積層した構造であってもよい。 When the light emitting device 10 is a top emission type light emitting device, the first electrode 110 may have a structure in which a metal layer and a transparent conductive layer are laminated in this order.
 有機層120は、例えば、正孔注入層、発光層、及び電子注入層をこの順に積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。有機層120は蒸着法(例えば真空蒸着法)で形成されてもよい。また、有機層120のうち少なくとも一つの層、例えば第1電極と接触する層が、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成され、有機層120の残りの層が、蒸着法によって形成されてもよい。また、有機層120のすべての層が、塗布法を用いて形成されていてもよい。 The organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked in this order. A hole transport layer may be formed between the hole injection layer and the light emitting layer. In addition, an electron transport layer may be formed between the light emitting layer and the electron injection layer. The organic layer 120 may be formed by a vapor deposition method (for example, a vacuum vapor deposition method). In addition, at least one of the organic layers 120, for example, a layer in contact with the first electrode is formed by a coating method such as an ink jet method, a printing method, or a spray method, and the remaining layers of the organic layer 120 are formed by a vapor deposition method. May be formed. Moreover, all the layers of the organic layer 120 may be formed using the apply | coating method.
 第1電極110の上には、第1導電部114が形成されている。第1導電部114は、第1電極110よりもシート抵抗が低い材料、例えば金属や合金を用いて形成されており、第1電極110の補助電極として機能する。第1導電部114は、一つの金属膜を用いて形成されていてもよいし、複数の金属膜を積層した積層膜を用いて形成されていてもよい。第1導電部114は、例えば、Mo合金、Al合金、及びMo合金をこの順に積層した積層膜であってもよい。なお、後述する導電部160及び導電部170も、第1導電部114と同様の断面構造を有している。第1導電部114は、例えばスパッタリング法とフォトリソグラフィ及びエッチングを用いて形成されている。 A first conductive portion 114 is formed on the first electrode 110. The first conductive portion 114 is formed using a material having a sheet resistance lower than that of the first electrode 110, such as a metal or an alloy, and functions as an auxiliary electrode of the first electrode 110. The first conductive portion 114 may be formed using a single metal film, or may be formed using a stacked film in which a plurality of metal films are stacked. The first conductive portion 114 may be, for example, a laminated film in which a Mo alloy, an Al alloy, and a Mo alloy are laminated in this order. Note that a conductive portion 160 and a conductive portion 170 described later also have the same cross-sectional structure as the first conductive portion 114. The first conductive portion 114 is formed using, for example, a sputtering method, photolithography, and etching.
 本図に示す例において、第1電極110の上には複数の第1導電部114が形成されている。複数の第1導電部114は互いに並行している。第1導電部114の幅は、例えば5μm以上100μm以下である。ただし、第1導電部114の幅はこの範囲から外れていてもよい。また、第1導電部114の配置間隔は限定されない。また、第1導電部114の配置形態についてもストライプ状に限定されず、例えば格子状でもよい。さらに、第1導電部114は、第1電極110の下層に位置していてもよい。 In the example shown in the figure, a plurality of first conductive portions 114 are formed on the first electrode 110. The plurality of first conductive portions 114 are parallel to each other. The width of the first conductive portion 114 is, for example, not less than 5 μm and not more than 100 μm. However, the width of the first conductive portion 114 may be out of this range. Further, the arrangement interval of the first conductive portions 114 is not limited. Further, the arrangement form of the first conductive portions 114 is not limited to the stripe shape, and may be a lattice shape, for example. Further, the first conductive portion 114 may be located below the first electrode 110.
 第1導電部114は、インクジェット法などの塗布法を用いて形成されていてもよい。この場合、第1導電部114は、例えば導電性の粒子(例えばナノスケールの金属粒子、銀ナノ粒子など)を含む導電性インクを用いて形成される。このため、第1導電部114は、複数の導電粒子が互いに結合した(例えば焼結した)構造を有している。 The first conductive portion 114 may be formed using a coating method such as an inkjet method. In this case, the first conductive portion 114 is formed using a conductive ink including, for example, conductive particles (for example, nanoscale metal particles, silver nanoparticles, etc.). For this reason, the first conductive portion 114 has a structure in which a plurality of conductive particles are bonded to each other (for example, sintered).
 図1~図5に示す例において、発光装置10は複数の発光部140を有している。第1電極110及び第2電極130は、発光部140に合わせて一様に形成されている。本実施形態では、第1導電部114を覆うように、絶縁層150が形成されている。この絶縁層150は第1導電部114と第2電極130の短絡を防止するのに有用であるが、なくても構わない。なお、第1導電部114及び絶縁層150が形成された部分は非発光となるため、発光部140の発光パターンはそれらの形状に合わせて、ストライプ状や格子状となる。 1 to 5, the light emitting device 10 has a plurality of light emitting units 140. The first electrode 110 and the second electrode 130 are uniformly formed in accordance with the light emitting unit 140. In the present embodiment, the insulating layer 150 is formed so as to cover the first conductive portion 114. The insulating layer 150 is useful for preventing a short circuit between the first conductive portion 114 and the second electrode 130, but may be omitted. In addition, since the part in which the 1st electroconductive part 114 and the insulating layer 150 were formed does not light-emit, the light emission pattern of the light emission part 140 becomes a stripe form or a grid | lattice form according to those shapes.
 絶縁層150は、第1電極110のうち発光部140以外の領域を覆っている。言い換えると、絶縁層150には長方形状の開口152が複数形成されている。これら開口152は、有機層120を第1電極110に接触させるために設けられており、また、互いに並行している。絶縁層150のうち開口152の間に位置する部分は、第1導電部114と重なっている。言い換えると、第1導電部114は絶縁層150によって覆われている。 The insulating layer 150 covers a region other than the light emitting unit 140 in the first electrode 110. In other words, a plurality of rectangular openings 152 are formed in the insulating layer 150. These openings 152 are provided to bring the organic layer 120 into contact with the first electrode 110 and are parallel to each other. A portion of the insulating layer 150 located between the openings 152 overlaps the first conductive portion 114. In other words, the first conductive portion 114 is covered with the insulating layer 150.
 絶縁層150は、例えばポリイミドなどの樹脂材料によって形成されている。絶縁層150の材料として感光性材料を用いる場合には、感光性材料を塗布した後、露光及び現像することができる。この工程は、例えば第1電極110及び第1導電部114を形成した後、有機層120を形成する前に行われる。 The insulating layer 150 is made of a resin material such as polyimide. When a photosensitive material is used as the material of the insulating layer 150, it can be exposed and developed after the photosensitive material is applied. This step is performed, for example, after forming the first electrode 110 and the first conductive portion 114 and before forming the organic layer 120.
 発光装置10は、第1端子112及び第2端子132を有している。第1端子112は第1電極110に電気的に接続しており、第2端子132は第2電極130に電気的に接続している。第1端子112及び第2端子132は、例えば、第1電極110と同一の材料で形成された層を有している。なお、第1端子112と第1電極110の間には引出配線が設けられていてもよい。また、第2端子132と第2電極130の間にも引出配線が設けられていてもよい。 The light emitting device 10 has a first terminal 112 and a second terminal 132. The first terminal 112 is electrically connected to the first electrode 110, and the second terminal 132 is electrically connected to the second electrode 130. For example, the first terminal 112 and the second terminal 132 include a layer formed of the same material as that of the first electrode 110. A lead wiring may be provided between the first terminal 112 and the first electrode 110. In addition, a lead wiring may be provided between the second terminal 132 and the second electrode 130.
 図1~図5に示す例では基板100は矩形である。そして、第1端子112は、基板100の4辺のうち互いに対向する2辺のそれぞれに沿って設けられており、第2端子132は、基板100の残りの2辺のそれぞれに沿って設けられている。第1端子112のうち第1電極110と同一の材料で形成された層は、第1電極110と一体になっている。一方、第2端子132のうち第1電極110と同一の材料で形成された層は、第1電極110から分離している。なお、第1端子112及び第2端子132(取出電極)の形態(数、配置)は、本実施形態に限られるものではない。 In the example shown in FIGS. 1 to 5, the substrate 100 is rectangular. The first terminal 112 is provided along each of two opposite sides of the four sides of the substrate 100, and the second terminal 132 is provided along each of the remaining two sides of the substrate 100. ing. The layer formed of the same material as the first electrode 110 in the first terminal 112 is integrated with the first electrode 110. On the other hand, the layer formed of the same material as the first electrode 110 in the second terminal 132 is separated from the first electrode 110. In addition, the form (number, arrangement | positioning) of the 1st terminal 112 and the 2nd terminal 132 (extraction electrode) is not restricted to this embodiment.
 そして、第1端子112は導電部160を有している。導電部160は、いずれも櫛歯形状を有しており、また、基板100の互いに異なる辺に沿って延在している。導電部160は、第1導電部114と同一の材料を含む層によって形成されている。同様に、第2端子132にも導電部170を形成することが好ましい。そして、第1端子112の第1領域は、導電部160が形成されている領域である。また、第1端子112の第2領域は、第1電極110と同一の層のみを有している。このため、基板100のうち発光部140が形成されている面(第1面)を基準にしたとき、第1端子112の第1領域は、第2領域よりも上に位置している。言い換えると、第1端子112は、導電部160の有無に起因した凹凸を有している。この凹凸の凹部(すなわち導電部160がない領域)は、基板100の上面とほぼ平行になっている。 The first terminal 112 has a conductive portion 160. Each of the conductive portions 160 has a comb shape, and extends along different sides of the substrate 100. The conductive part 160 is formed of a layer containing the same material as the first conductive part 114. Similarly, it is preferable to form the conductive portion 170 also on the second terminal 132. The first region of the first terminal 112 is a region where the conductive part 160 is formed. In addition, the second region of the first terminal 112 has only the same layer as the first electrode 110. For this reason, when the surface (first surface) on which the light emitting unit 140 is formed in the substrate 100 is used as a reference, the first region of the first terminal 112 is located above the second region. In other words, the first terminal 112 has irregularities due to the presence or absence of the conductive portion 160. This concave and convex concave portion (that is, a region without the conductive portion 160) is substantially parallel to the upper surface of the substrate 100.
 詳細には、導電部160は、第3導電部162及び複数の第2導電部164を有している。複数の第2導電部164は櫛の歯に相当しており、第1端子112が延在する方向(第1の方向、すなわち基板100の辺に沿う方向)に繰り返し配置されている。第3導電部162は、第1端子112と同じ方向(第1の方向)に延在しており、複数の第2導電部164の一端を互いに繋いでいる。本図に示す例において、第3導電部162は、第2導電部164のうち第1電極110側の端に接続している。ただし、第3導電部162は、第2導電部164のうち基板100の縁側の端に接続していてもよい。また、第3導電部162には第1導電部114の端も接続している。言い換えると、第3導電部162、第2導電部164、及び第1導電部114は同一の工程で形成されており、また互いに一体になっている。 Specifically, the conductive part 160 includes a third conductive part 162 and a plurality of second conductive parts 164. The plurality of second conductive portions 164 correspond to comb teeth, and are repeatedly arranged in the direction in which the first terminal 112 extends (the first direction, that is, the direction along the side of the substrate 100). The third conductive portion 162 extends in the same direction (first direction) as the first terminal 112, and connects one end of the plurality of second conductive portions 164 to each other. In the example shown in the drawing, the third conductive portion 162 is connected to the end of the second conductive portion 164 on the first electrode 110 side. However, the third conductive portion 162 may be connected to the end of the second conductive portion 164 on the edge side of the substrate 100. The end of the first conductive portion 114 is also connected to the third conductive portion 162. In other words, the third conductive portion 162, the second conductive portion 164, and the first conductive portion 114 are formed in the same process and are integrated with each other.
 第2導電部164の平面形状は線状である。第2導電部164が延在する方向は、第1の方向に交わる方向(例えば直交する方向)、すなわち第3導電部162に交わる方向である。そして、第2導電部164の幅は、隣り合う第2導電部164の間隔よりも大きい。例えば第2導電部164の幅は、100μm以上である。そして、隣り合う第2導電部164の間隔は、例えば50μm以上1000μm以下である。ただし、第2導電部164の幅及び間隔は、全エリアにわたって同一である必要はない。接続部材200が圧着される領域(圧着部)トータルで、第2導電部164の幅が第2導電部164の間隔(抜き部:非形成部の幅)よりも広いことが好ましい。一つの第1端子112が有する第2導電部164の数は、特に限定されない。また、第2導電部164の長さも特に限定されない。 The planar shape of the second conductive portion 164 is linear. The direction in which the second conductive portion 164 extends is a direction that intersects the first direction (for example, a direction that intersects perpendicularly), that is, a direction that intersects the third conductive portion 162. The width of the second conductive portion 164 is larger than the interval between the adjacent second conductive portions 164. For example, the width of the second conductive portion 164 is 100 μm or more. And the space | interval of the adjacent 2nd electroconductive part 164 is 50 micrometers or more and 1000 micrometers or less, for example. However, the width and interval of the second conductive portion 164 need not be the same over the entire area. It is preferable that the width of the second conductive portion 164 is wider than the interval between the second conductive portions 164 (extracted portion: width of the non-formed portion) in the total region (crimped portion) where the connection member 200 is crimped. The number of second conductive portions 164 included in one first terminal 112 is not particularly limited. Further, the length of the second conductive portion 164 is not particularly limited.
 また、導電部170も導電部160と同様の形状を有しており、本実施形態では、導電部160に交わる方向(例えば直交する方向)に延在している。具体的には、導電部170は第3導電部172及び第2導電部174を有している。第3導電部172は導電部160の第3導電部162に相当している。第2導電部174は導電部160の第2導電部164に相当しており、また、櫛の歯に相当している。第2導電部174の幅は、隣り合う第2導電部174の間隔よりも大きい。例えば第2導電部174の幅は、100μm以上である。そして、隣り合う第2導電部174の間隔は、例えば50μm以上1000μm以下である。一つの第2端子132が有する第2導電部174の数は、特に限定されない。また、第2導電部174の長さも特に限定されない。導電部170は、導電部160と同一の工程で形成されている。 Also, the conductive portion 170 has the same shape as the conductive portion 160, and in this embodiment, extends in a direction intersecting with the conductive portion 160 (for example, an orthogonal direction). Specifically, the conductive part 170 has a third conductive part 172 and a second conductive part 174. The third conductive part 172 corresponds to the third conductive part 162 of the conductive part 160. The second conductive portion 174 corresponds to the second conductive portion 164 of the conductive portion 160 and also corresponds to comb teeth. The width of the second conductive portion 174 is larger than the interval between the adjacent second conductive portions 174. For example, the width of the second conductive portion 174 is 100 μm or more. And the space | interval of the adjacent 2nd electroconductive part 174 is 50 micrometers or more and 1000 micrometers or less, for example. The number of second conductive parts 174 included in one second terminal 132 is not particularly limited. Further, the length of the second conductive portion 174 is not particularly limited. The conductive part 170 is formed in the same process as the conductive part 160.
 第1端子112には接続部材200が接続されており、第2端子132には接続部材202が接続されている。接続部材200,202は、例えばリート配線又はタブ配線である。接続部材200のうち第1端子112に接続している部分は、第1端子112と同一の方向(第1の方向)に延在しており、また、導電性接着層210を介して第1端子112に固定かつ電気的に接続している。接続部材202のうち第2端子132に接続している部分は、第2端子132と同一の方向(第1の方向に交わる方向、例えば第1の方向に直交する方向)に延在しており、また、導電性接着層210を介して第2端子132に固定かつ電気的に接続している。導電性接着層210は、少なくとも表面が導電性を有する粒子(以下、導電粒子)を複数含んでいる。接続部材200は導電性接着層210内の導電粒子を介して第1端子112に電気的に接続しており、接続部材202も導電性接着層210内の導電粒子を介して第2端子132に電気的に接続している。上記した第3導電部162の幅、第2導電部164の幅、第3導電部172の幅、及び第2導電部174の幅は、この導電粒子の幅(球形の場合は直径)よりも大きい。このようにすると、導電部160,170が導電性接着層210に含まれる導電粒子と接触しやすくなり、その結果、第1端子112と接続部材200の接続抵抗(又は接触抵抗)は低くなり、また、第2端子132と接続部材202の接続抵抗(又は接触抵抗)も低くなる。 The connection member 200 is connected to the first terminal 112, and the connection member 202 is connected to the second terminal 132. The connection members 200 and 202 are, for example, REIT wiring or tab wiring. A portion of the connecting member 200 that is connected to the first terminal 112 extends in the same direction (first direction) as the first terminal 112, and the first is connected via the conductive adhesive layer 210. The terminal 112 is fixed and electrically connected. A portion of the connecting member 202 connected to the second terminal 132 extends in the same direction as the second terminal 132 (a direction intersecting the first direction, for example, a direction orthogonal to the first direction). In addition, the second terminal 132 is fixed and electrically connected through the conductive adhesive layer 210. The conductive adhesive layer 210 includes a plurality of particles having conductivity at least on the surface (hereinafter referred to as conductive particles). The connection member 200 is electrically connected to the first terminal 112 through conductive particles in the conductive adhesive layer 210, and the connection member 202 is also connected to the second terminal 132 through conductive particles in the conductive adhesive layer 210. Electrically connected. The width of the third conductive portion 162, the width of the second conductive portion 164, the width of the third conductive portion 172, and the width of the second conductive portion 174 are larger than the width of the conductive particles (in the case of a sphere, the diameter). large. If it does in this way, it will become easy for the electroconductive parts 160 and 170 to contact the electroconductive particle contained in the electroconductive adhesive layer 210, As a result, the connection resistance (or contact resistance) of the 1st terminal 112 and the connection member 200 will become low, Further, the connection resistance (or contact resistance) between the second terminal 132 and the connection member 202 is also reduced.
 第2導電部164は接続部材200と交わる方向に繰り返し設けられている。このため、第1端子112の表面には凹凸が形成される。この凹凸の高さは、導電部160または第1導電部114の高さにほぼ等しく、例えば100nm以上1000nm以下である。この凹凸により、第1端子112と導電性接着層210の接着強度は高まる。 The second conductive portion 164 is repeatedly provided in the direction intersecting with the connection member 200. Therefore, irregularities are formed on the surface of the first terminal 112. The height of the unevenness is substantially equal to the height of the conductive part 160 or the first conductive part 114, and is, for example, 100 nm or more and 1000 nm or less. The unevenness increases the bonding strength between the first terminal 112 and the conductive adhesive layer 210.
 また、第2導電部174も接続部材202と交わる方向に繰り返し設けられている。このため、第2端子132の表面には凹凸が形成される。この凹凸の高さは、導電部170または第1導電部114の高さにほぼ等しい。この凹凸により、第2端子132と導電性接着層210の接着強度は高まる。 Further, the second conductive portion 174 is also repeatedly provided in the direction intersecting with the connection member 202. Therefore, irregularities are formed on the surface of the second terminal 132. The height of the unevenness is substantially equal to the height of the conductive portion 170 or the first conductive portion 114. The unevenness increases the bonding strength between the second terminal 132 and the conductive adhesive layer 210.
 発光装置10は封止部材180を有している。封止部材180は、ガラス、アルミニウムなどの金属、又は樹脂を用いて形成されており、中央に凹部を設けた形状を有している。封止部材180は、凹部が基板100に対向する方向に、基板100に固定されている。そして封止部材180の凹部と基板100の間の空間に、第1電極110、有機層120、及び第2電極130が配置されている。また、封止部材180の凹部には、乾燥剤186が配置されている。そして封止部材180の縁の全周に粘着層(又は接着層)184(後述する図6に図示)が設けられている。この粘着層184により、封止部材180は基板100に固定されている。なお、第1端子112、第2端子132、及び接続部材200,202は封止部材180の外に位置している。 The light emitting device 10 has a sealing member 180. The sealing member 180 is formed using glass, metal such as aluminum, or resin, and has a shape in which a recess is provided in the center. The sealing member 180 is fixed to the substrate 100 in a direction in which the concave portion faces the substrate 100. The first electrode 110, the organic layer 120, and the second electrode 130 are disposed in the space between the recess of the sealing member 180 and the substrate 100. A desiccant 186 is disposed in the recess of the sealing member 180. An adhesive layer (or adhesive layer) 184 (shown in FIG. 6 described later) is provided on the entire periphery of the edge of the sealing member 180. The sealing member 180 is fixed to the substrate 100 by the adhesive layer 184. Note that the first terminal 112, the second terminal 132, and the connecting members 200 and 202 are located outside the sealing member 180.
 なお、発光部140は封止膜によって封止されていてもよい。この場合、封止膜は、例えばALD(Atomic Layer Deposition)法を用いて形成されていてもよいる。この場合、封止膜は、複数の層を積層した多層構造を有していてもよい。この場合、第1の材料(例えば酸化アルミニウム)からなる第1封止層と、第2の材料(例えば酸化チタン)からなる第2封止層とを繰り返し積層した構造を有していてもよい。ただし、封止膜は、他の成膜法、例えばCVD法やスパッタリング法を用いて形成されていてもよい。この場合、封止膜は、例えば、SiO又はSiNなどの絶縁膜によって形成することができる。また、封止膜は、複数の成膜法を組み合わせた積層膜を有していても良い。封止膜の膜厚は、例えば10nm以上1000nm以下である。 The light emitting unit 140 may be sealed with a sealing film. In this case, the sealing film may be formed using, for example, an ALD (Atomic Layer Deposition) method. In this case, the sealing film may have a multilayer structure in which a plurality of layers are stacked. In this case, it may have a structure in which a first sealing layer made of a first material (for example, aluminum oxide) and a second sealing layer made of a second material (for example, titanium oxide) are repeatedly stacked. . However, the sealing film may be formed using another film forming method, for example, a CVD method or a sputtering method. In this case, the sealing film can be formed of an insulating film such as SiO 2 or SiN. Further, the sealing film may have a stacked film in which a plurality of film forming methods are combined. The film thickness of the sealing film is, for example, 10 nm or more and 1000 nm or less.
 また、発光部140は、封止板によって封止されていてもよい。封止板としては、例えばAlやステンレスなどの金属板を用いることができる。封止板は、接着剤を介してラミネートされる。封止板と接着剤の間には乾燥剤を有していても良いし、接着剤自体が乾燥機能を有していても良い。 Further, the light emitting unit 140 may be sealed with a sealing plate. As the sealing plate, for example, a metal plate such as Al or stainless steel can be used. The sealing plate is laminated via an adhesive. A desiccant may be provided between the sealing plate and the adhesive, or the adhesive itself may have a drying function.
 図6は、図1のA-A断面図である。本図及び図3に示すように、有機層120及び第2電極130は、絶縁層150のうち第1導電部114を覆っている部分の上にも一様に形成されている。 FIG. 6 is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 3 and FIG. 3, the organic layer 120 and the second electrode 130 are also uniformly formed on the portion of the insulating layer 150 that covers the first conductive portion 114.
 図7は、図1のB-B断面図である。上記したように、複数の第2導電部164は、第1端子112が延在する方向に沿って繰り返し配置されている。そして、第2導電部164の幅wは、隣り合う第2導電部164の間隔wよりも大きい。あるいは、第1端子112に形成されるすべての第2導電部164の幅wの和は、第1端子112に形成されるすべての隣り合う第2導電部164の間隔wの和より大きい。また、本図に示す例において、第2導電部164の角は丸まっていないか、又は丸まっていてもその曲率半径は小さい。例えば、スパッタ法などで一様に成膜したあと、フォトリソグラフィを用いてパターニングすることで、このような形状の導電部160を形成することが可能である。 7 is a cross-sectional view taken along the line BB in FIG. As described above, the plurality of second conductive portions 164 are repeatedly arranged along the direction in which the first terminals 112 extend. The width w 1 of the second conductive part 164 is larger than the interval w 2 between the adjacent second conductive parts 164. Alternatively, the sum of the widths w 1 of all the second conductive portions 164 formed on the first terminal 112 is larger than the sum of the intervals w 2 of all the adjacent second conductive portions 164 formed on the first terminal 112. . Further, in the example shown in the figure, the corner of the second conductive portion 164 is not rounded or the radius of curvature is small even when rounded. For example, the conductive portion 160 having such a shape can be formed by uniformly forming a film by sputtering or the like and then patterning using photolithography.
 図8は、図7の変形例を示す断面図である。本図に示す例において、第2導電部164の角は丸まっており、またその曲率半径は大きい。例えば、インクジェット法などの塗布法を用い、塗布・乾燥条件を制御することで、このような形状の導電部160を形成することが可能である。 FIG. 8 is a cross-sectional view showing a modification of FIG. In the example shown in the figure, the corners of the second conductive portion 164 are rounded and the radius of curvature is large. For example, the conductive portion 160 having such a shape can be formed by using a coating method such as an inkjet method and controlling the coating and drying conditions.
 次に、発光装置10の製造方法について説明する。まず、基板100上に第1電極110を形成する。この工程において、第1端子112及び第2端子132のうち第1電極110と同一の層も形成される。次いで、第1導電部114及び導電部160を互いに同一の工程で形成する。このとき、第2端子132上にも導電部170を形成しておくことが好ましい。次いで、絶縁層150、有機層120、及び第2電極130をこの順に形成する。 Next, a method for manufacturing the light emitting device 10 will be described. First, the first electrode 110 is formed on the substrate 100. In this step, the same layer as the first electrode 110 is also formed among the first terminal 112 and the second terminal 132. Next, the first conductive part 114 and the conductive part 160 are formed in the same process. At this time, it is preferable to form the conductive portion 170 also on the second terminal 132. Next, the insulating layer 150, the organic layer 120, and the second electrode 130 are formed in this order.
 次いで、封止部材180を準備する。この段階で、封止部材180のうち基板100に対向する面には、乾燥剤186が固定されている。次いで、粘着層184を用いて封止部材180を基板100に固定する。これにより、発光部140は封止部材180により封止される。次いで、第1端子112に接続部材200を接続し、第2端子132に接続部材202を接続する。 Next, the sealing member 180 is prepared. At this stage, a desiccant 186 is fixed to the surface of the sealing member 180 facing the substrate 100. Next, the sealing member 180 is fixed to the substrate 100 using the adhesive layer 184. Thereby, the light emitting unit 140 is sealed by the sealing member 180. Next, the connection member 200 is connected to the first terminal 112, and the connection member 202 is connected to the second terminal 132.
 以上、本実施形態によれば、第1端子112の第2導電部164は、接続部材200と交わる方向に繰り返し設けられている。このため、第1端子112の表面には凹凸が形成される。このため、第1端子112のうち接続部材200に対向する領域の表面積は大きくなり、その結果、第1端子112と接続部材200の密着性が高くなる。また、第1端子112が延在する方向において、第2導電部164の幅wは、隣り合う第2導電部164の間隔wよりも大きい。あるいは、第1端子112に形成されるすべての第2導電部164の幅wの和は、第1端子112に形成されるすべての隣り合う第2導電部164の間隔wの和より大きい。従って、第2導電部164の幅wが隣り合う第2導電部164の間隔w以下の場合と比較して、第1端子112と接続部材200の接続抵抗は低くなる。このような形態により、密着性を改善しつつも、第1端子112と接続部材200との接触面積を担保し、接触抵抗の低下を防止することができる。 As described above, according to the present embodiment, the second conductive portion 164 of the first terminal 112 is repeatedly provided in the direction intersecting with the connection member 200. Therefore, irregularities are formed on the surface of the first terminal 112. For this reason, the surface area of the area | region which opposes the connection member 200 among the 1st terminals 112 becomes large, As a result, the adhesiveness of the 1st terminal 112 and the connection member 200 becomes high. In the direction in which the first terminal 112 extends, the width w 1 of the second conductive portion 164 is larger than the interval w 2 between the adjacent second conductive portions 164. Alternatively, the sum of the widths w 1 of all the second conductive portions 164 formed on the first terminal 112 is larger than the sum of the intervals w 2 of all the adjacent second conductive portions 164 formed on the first terminal 112. . Accordingly, the connection resistance between the first terminal 112 and the connection member 200 is lower than when the width w 1 of the second conductive portion 164 is equal to or smaller than the interval w 2 between the adjacent second conductive portions 164. With such a configuration, it is possible to secure a contact area between the first terminal 112 and the connection member 200 and to prevent a decrease in contact resistance while improving adhesion.
(変形例1)
 図9は、変形例1に係る発光装置10の構成を示す断面図であり、実施形態における図7に対応している。本変形例に係る発光装置10は、第1導電部114、導電部160、及び導電部170が第1電極110よりも前に形成されている点を除いて、実施形態に係る発光装置10と同様の構成である。そして、第1導電部114は基板100と第1電極110の間に位置している。第1端子112は、基板100の上に、導電部160、及び第1電極110と同一の層をこの順に積層した構成を有している。また、第2端子132は、基板100の上に、導電部170、及び第1電極110と同一の層をこの順に積層した構成を有している。
(Modification 1)
FIG. 9 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to Modification Example 1, and corresponds to FIG. 7 in the embodiment. The light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except that the first conductive portion 114, the conductive portion 160, and the conductive portion 170 are formed before the first electrode 110. It is the same composition. The first conductive part 114 is located between the substrate 100 and the first electrode 110. The first terminal 112 has a configuration in which the conductive layer 160 and the same layer as the first electrode 110 are stacked in this order on the substrate 100. The second terminal 132 has a configuration in which the conductive layer 170 and the same layer as the first electrode 110 are stacked on the substrate 100 in this order.
 本変形例において、第1端子112のうち第1電極110と同一の層の上面は、導電部160の有無に起因した凹凸を有している。同様に、第2端子132のうち第1電極110と同一の層の上面は、導電部170の有無に起因した凹凸を有している。従って、本変形例によっても、実施形態と同様に、第1端子112と接続部材200及び第2端子132と接続部材202の密着性は高くなる。 In this modification, the upper surface of the same layer as the first electrode 110 in the first terminal 112 has unevenness due to the presence or absence of the conductive portion 160. Similarly, the upper surface of the same layer as the first electrode 110 in the second terminal 132 has unevenness due to the presence or absence of the conductive portion 170. Therefore, also in this modification, as in the embodiment, the adhesion between the first terminal 112 and the connection member 200, and the second terminal 132 and the connection member 202 is improved.
(変形例2)
 図10は、変形例2に係る発光装置10の構成を示す断面図であり、実施形態における図6に対応している。本変形例に係る発光装置10は、絶縁層150を有していない点を除いて、実施形態に係る発光装置10と同様の構成である。なお、変形例1に係る発光装置10も、絶縁層150を有していなくてもよい。
(Modification 2)
FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification Example 2, and corresponds to FIG. 6 in the embodiment. The light emitting device 10 according to this modification has the same configuration as the light emitting device 10 according to the embodiment except that the insulating layer 150 is not provided. Note that the light emitting device 10 according to the first modification may not include the insulating layer 150.
 本変形例によっても、実施形態と同様に、第1端子112と接続部材200及び第2端子132と接続部材202の密着性は高くなる。 Also in the present modification, as in the embodiment, the adhesion between the first terminal 112 and the connection member 200 and the second terminal 132 and the connection member 202 is increased.
(変形例3)
 図11は、変形例3に係る発光装置10の構成を示す平面図である。本変形例に係る発光装置10は、導電部160のパターン及び導電部170のパターンを除いて、実施形態又は変形例1,2のいずれかに係る発光装置10と同様の構成である。
(Modification 3)
FIG. 11 is a plan view illustrating a configuration of the light emitting device 10 according to the third modification. The light emitting device 10 according to the present modification has the same configuration as that of the light emitting device 10 according to the embodiment or any one of the first and second modifications, except for the pattern of the conductive portion 160 and the pattern of the conductive portion 170.
 本変形例において、導電部160は、第1端子112のほぼ全面に形成された導体層に、開口166を設けた構成を有している。そして、開口166が設けられることにより、導電部160に複数の第2導電部164が形成されている。 In this modification, the conductive portion 160 has a configuration in which an opening 166 is provided in a conductor layer formed on almost the entire surface of the first terminal 112. Then, by providing the opening 166, a plurality of second conductive portions 164 are formed in the conductive portion 160.
 図11に示す例において、開口166は、第1端子112が延在する方向に沿って、ミアンダ状に延在している。ただし、開口166の形状は、図11に示す例に限定されない。例えば図12に示すように、導電部160には複数の導電部160が千鳥状に配置されていてもよい。この場合、開口166の形状は、例えば長方形であるが、他の形状であってもよい。 In the example shown in FIG. 11, the opening 166 extends in a meander shape along the direction in which the first terminal 112 extends. However, the shape of the opening 166 is not limited to the example shown in FIG. For example, as shown in FIG. 12, a plurality of conductive portions 160 may be arranged in a staggered manner in the conductive portion 160. In this case, the shape of the opening 166 is, for example, a rectangle, but may be another shape.
 なお、導電部170も、導電部160と同様に、開口176を有している。そして、開口176が設けられることにより、導電部170に複数の第2導電部174が形成されている。 Note that the conductive portion 170 also has an opening 176, similar to the conductive portion 160. Then, by providing the opening 176, a plurality of second conductive portions 174 are formed in the conductive portion 170.
 本変形例によっても、実施形態と同様に、第1端子112と接続部材200及び第2端子132と接続部材202の密着性は高くなる。 Also in the present modification, as in the embodiment, the adhesion between the first terminal 112 and the connection member 200 and the second terminal 132 and the connection member 202 is increased.
(変形例4)
 図13は、変形例4に係る発光装置10の構成を示す平面図であり、変形例3における図11に対応している。図14は、本変形例に係る発光装置10の構成を示す断面図であり、実施形態における図6に対応している。本変形例に係る発光装置10は、以下の点を除いて、変形例3に係る発光装置10と同様の構成である。
(Modification 4)
FIG. 13 is a plan view showing a configuration of the light emitting device 10 according to the fourth modification, and corresponds to FIG. 11 in the third modification. FIG. 14 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the present modification, and corresponds to FIG. 6 in the embodiment. The light emitting device 10 according to this modification has the same configuration as the light emitting device 10 according to modification 3 except for the following points.
 まず、導電部160は、格子形状を有している。そして、導電部160のうち格子点に位置する部分は、他の部分より厚くなっている。具体的には、例えばインクジェット法により、複数の第3導電部162を互いに平行に形成した後、複数の第2導電部164を第3導電部162に交わる方向(例えば直交する方向)に形成することにより、導電部160は形成されている。そして、第3導電部162と第2導電部164が重なる部分は、重ね塗りされているため、第2導電部164及び第3導電部162の他の部分よりも厚い凸部になっている。具体的には、この凸部の厚さは、例えば、第2導電部164の厚さの1.3倍以上2.2倍以下になっている。なお、この凸部は第2導電部164のうち第3導電部162との交点以外の部分に位置していてもよい。このようにするためには、例えば第2導電部164のうち凸部となる領域に塗布材料を複数回塗布すればよい。 First, the conductive portion 160 has a lattice shape. And the part located in a lattice point among the electroconductive parts 160 is thicker than another part. Specifically, for example, the plurality of third conductive portions 162 are formed in parallel with each other by, for example, an ink jet method, and then the plurality of second conductive portions 164 are formed in a direction intersecting the third conductive portions 162 (for example, orthogonal directions). Thus, the conductive portion 160 is formed. Since the portion where the third conductive portion 162 and the second conductive portion 164 overlap is overcoated, the convex portion is thicker than the other portions of the second conductive portion 164 and the third conductive portion 162. Specifically, the thickness of the convex portion is, for example, 1.3 times or more and 2.2 times or less the thickness of the second conductive portion 164. In addition, this convex part may be located in parts other than the intersection with the 3rd electroconductive part 162 among the 2nd electroconductive parts 164. FIG. In order to do this, for example, the coating material may be applied a plurality of times to the region of the second conductive portion 164 that will be the convex portion.
 本変形例によっても、実施形態と同様に、第1端子112と接続部材200及び第2端子132と接続部材202の密着性は高くなる。また、導電部160は部分的に厚くなっており、また、導電部170も部分的に厚くなっている。このため、第1端子112の表面積及び第2端子132の表面積はさらに大きくなる。従って第1端子112と接続部材200及び第2端子132と接続部材202の密着性はさらに高くなる。 Also in the present modification, as in the embodiment, the adhesion between the first terminal 112 and the connection member 200 and the second terminal 132 and the connection member 202 is increased. Further, the conductive portion 160 is partially thick, and the conductive portion 170 is also partially thick. For this reason, the surface area of the 1st terminal 112 and the surface area of the 2nd terminal 132 become still larger. Accordingly, the adhesion between the first terminal 112 and the connection member 200 and between the second terminal 132 and the connection member 202 is further enhanced.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (4)

  1.  第1電極と、
     第2電極と、
     前記第1電極と前記第2電極の間に位置している有機層と、
     前記第1電極と重なり、前記第1電極に電気的に接続している第1導電部と、
     前記第1電極に電気的に接続している端子部と、
     前記端子部に接続しているとともに前記端子部に電力を供給する接続部材と、
    を備え、
     前記端子部は、
      前記第1導電部と同一の材料を含んでいる第2導電部を有している第1領域と、
      前記第2導電部を有していない第2領域と、
    を備える発光装置。
    A first electrode;
    A second electrode;
    An organic layer located between the first electrode and the second electrode;
    A first conductive portion overlapping the first electrode and electrically connected to the first electrode;
    A terminal portion electrically connected to the first electrode;
    A connecting member that is connected to the terminal portion and supplies power to the terminal portion;
    With
    The terminal portion is
    A first region having a second conductive part comprising the same material as the first conductive part;
    A second region not having the second conductive portion;
    A light emitting device comprising:
  2.  請求項1に記載の発光装置において、
     前記第1電極、前記第2電極、及び前記有機層は基板の第1面に形成されており、
     前記基板の前記第1面を基準としたとき、前記第1領域の上面は前記第2領域の上面よりも上に位置している発光装置。
    The light-emitting device according to claim 1.
    The first electrode, the second electrode, and the organic layer are formed on a first surface of a substrate;
    The light emitting device, wherein the upper surface of the first region is located above the upper surface of the second region when the first surface of the substrate is used as a reference.
  3.  請求項1又は2に記載の発光装置において、
     前記第2導電部の一部は、当該第2導電部の他の部分よりも厚い凸部となっており、
     前記凸部の厚さは、前記他の部分の厚さの130%以上である発光装置。
    The light-emitting device according to claim 1 or 2,
    A part of the second conductive part is a convex part thicker than the other part of the second conductive part,
    The thickness of the said convex part is a light-emitting device which is 130% or more of the thickness of the said other part.
  4.  請求項3に記載の発光装置において、
     前記第2領域は、前記第2導電部に接続していて前記第1導電部と同一の材料を含んでいる第3導電部を備え、
     前記凸部は前記第2導電部のうち前記第3導電部と交わる部分に位置している発光装置。
    The light emitting device according to claim 3.
    The second region includes a third conductive part that is connected to the second conductive part and includes the same material as the first conductive part,
    The convex portion is a light-emitting device located at a portion of the second conductive portion that intersects the third conductive portion.
PCT/JP2016/057804 2016-03-11 2016-03-11 Light-emitting device WO2017154207A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057804 WO2017154207A1 (en) 2016-03-11 2016-03-11 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057804 WO2017154207A1 (en) 2016-03-11 2016-03-11 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2017154207A1 true WO2017154207A1 (en) 2017-09-14

Family

ID=59790133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057804 WO2017154207A1 (en) 2016-03-11 2016-03-11 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2017154207A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141959A (en) * 2010-01-05 2011-07-21 Nec Lighting Ltd Organic electroluminescent element and lighting fixture using this
JP2014203525A (en) * 2013-04-01 2014-10-27 パイオニア株式会社 Joining structure and light-emitting device
JP2015053182A (en) * 2013-09-06 2015-03-19 パイオニア株式会社 Light-emitting device
JP2015106453A (en) * 2013-11-28 2015-06-08 パイオニア株式会社 Light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141959A (en) * 2010-01-05 2011-07-21 Nec Lighting Ltd Organic electroluminescent element and lighting fixture using this
JP2014203525A (en) * 2013-04-01 2014-10-27 パイオニア株式会社 Joining structure and light-emitting device
JP2015053182A (en) * 2013-09-06 2015-03-19 パイオニア株式会社 Light-emitting device
JP2015106453A (en) * 2013-11-28 2015-06-08 パイオニア株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
JP6595066B2 (en) Light emitting device manufacturing method and light emitting device
JP6404361B2 (en) Light emitting device
WO2017154207A1 (en) Light-emitting device
JP6378769B2 (en) Optical device
WO2017163331A1 (en) Light emitting device, electronic device, and manufacturing method for light emitting device
JP2017162765A (en) Light-emitting device
WO2017119068A1 (en) Light emitting device
JP7390508B2 (en) Light-emitting device and method for manufacturing the light-emitting device
WO2014162446A1 (en) Joining structure and light-emitting device
JP6700013B2 (en) Light emitting device
JP2024023850A (en) light emitting device
JP2017123238A (en) Light-emitting device
JP2014203526A (en) Junction structure and light-emitting device
JP6499876B2 (en) Light emitting device
WO2017183118A1 (en) Light-emitting device
JP2023171394A (en) Light emission device
JP2020013797A (en) Light-emitting device manufacturing method
JP2023093727A (en) Light-emitting device
JP2015230883A (en) Light-emitting device
JP2022164806A (en) Light-emitting device
WO2017006392A1 (en) Light emitting device
JP2019192662A (en) Light-emitting device
JP2016100314A (en) Light emitting device
WO2017094086A1 (en) Light emitting device
JP2019201004A (en) Light-emitting device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893534

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP