WO2015097734A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015097734A1
WO2015097734A1 PCT/JP2013/084398 JP2013084398W WO2015097734A1 WO 2015097734 A1 WO2015097734 A1 WO 2015097734A1 JP 2013084398 W JP2013084398 W JP 2013084398W WO 2015097734 A1 WO2015097734 A1 WO 2015097734A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power conversion
voltage
current
out determination
Prior art date
Application number
PCT/JP2013/084398
Other languages
English (en)
French (fr)
Inventor
祐介 荒尾
卓也 杉本
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201380079078.0A priority Critical patent/CN105814790B/zh
Priority to PCT/JP2013/084398 priority patent/WO2015097734A1/ja
Priority to EP13900138.2A priority patent/EP3089354B1/en
Priority to JP2015554317A priority patent/JP6286450B2/ja
Publication of WO2015097734A1 publication Critical patent/WO2015097734A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage

Definitions

  • the present invention relates to a step-out detection function in a power converter.
  • Patent Document 1 Japanese Patent No. 4167863
  • the control circuit calculates coordinate excitation means from the motor current detected by the current detection means, excitation current command generation means, A voltage command generator that determines the output voltage of the inverter circuit using the motor constant set value, the excitation current command and the excitation current, and a corrected power generation constant so that the excitation current command matches the excitation current
  • a power generation constant correction calculating unit that determines an induced voltage generated during motor rotation, and the corrected power generation constant It is described as the synchronous motor control device.
  • An object of this invention is to provide the power converter device which detects a step-out stably also in the low-speed area
  • the present application includes a plurality of means for solving the above-mentioned problems.
  • a DC voltage unit that smoothes a DC voltage
  • a power converter that converts a DC voltage into an AC voltage
  • the power converter .
  • a current acquisition unit that acquires a current flowing through the power acquisition unit
  • an output calculation unit that calculates an output voltage of the power conversion unit from the current acquired in the current acquisition unit
  • a step-out determination unit, and the step-out determination unit is based on a phase difference between a current phase in the current acquired by the current acquisition unit and a voltage phase in the output voltage calculated by the output calculation unit.
  • the step-out of the synchronous motor is determined.
  • the step-out is determined from the command voltage phase and the detected current phase generated thereby, the step-out can be detected stably without being influenced by the induced voltage that becomes smaller in the low-speed range.
  • FIG. 3 is an example of a configuration diagram of a power conversion device in Examples 1 to 3. It is an example of the flowchart which showed the determination operation
  • FIG. It is an example of the figure which showed the electric current and voltage phase of the step-out determination state in Example 1.
  • 6 is an example of a flowchart showing determination of step-out in Examples 1 to 3. It is an example of the flowchart which showed the determination operation
  • FIG. It is an example of the figure which showed the electric current phase of the step-out determination state in Example 2. It is an example of the flowchart which showed the determination operation
  • 6 is an example of a flowchart showing an operation after being determined to be out of step in the first to third embodiments.
  • FIG. 1 is an example of a configuration diagram of the power conversion device and the synchronous motor 105 of the present embodiment.
  • the three-phase AC power source 101, the DC converter 102, the smoothing capacitor 103, the power converter 104, the synchronous motor 105, the current detector 106, the current acquisition unit 107, the output calculation unit 108, the step-out determination unit 109, A display operation unit 110 and a storage unit 111 are provided.
  • the three-phase AC power source 101 is, for example, a three-phase AC voltage supplied from an electric power company or an AC voltage supplied from a generator, and outputs it to the DC converter 102.
  • the direct current conversion unit 102 is composed of, for example, a direct current conversion circuit composed of a diode or a direct current conversion circuit using an IGBT and a flywheel diode, converts the alternating voltage input from the three-phase alternating current power supply 101 into a direct current voltage, Output to the smoothing capacitor 103.
  • FIG. 1 shows a direct current conversion unit formed of a diode.
  • the smoothing capacitor 103 smoothes the DC voltage input from the DC converter 102 and outputs the DC voltage to the power converter 104.
  • the smoothing capacitor 103 may be input with a DC voltage directly from the generator without passing through the DC converter 102.
  • the power conversion unit 104 is configured by an AC conversion circuit using, for example, an IGBT and a flywheel diode, and receives the DC voltage of the smoothing capacitor 103 and the output command of the output calculation unit 108 as input, converts the DC voltage into an AC voltage, Output to the synchronous motor 105.
  • the current detector 106 is composed of, for example, a Hall CT or a shunt resistor, and is arranged at the output unit of the power conversion device to detect a current flowing through the synchronous motor 105 and outputs it to the current acquisition unit 107 as a current detection value.
  • the current detector 106 may be disposed anywhere as long as it is disposed at a position where the three-phase output current can be estimated or directly detected.
  • FIG. 1 shows an example in which the current flowing through the synchronous motor 105 is detected.
  • the current acquisition unit 107 converts the current detection value input from the current detector 106 into, for example, current data Id and Iq in a biaxial coordinate system in which the magnet axis is the d axis and the axis orthogonal thereto is the q axis.
  • the result is output to the calculation unit 108 and the step-out determination unit 109.
  • the data output from the current detection unit 107 may be a three-phase current or a DC current-converted data as long as the current phase can be calculated.
  • the output calculation unit 108 receives the current data output from the current acquisition unit 107, the post-step-out determination state operation output from the step-out determination unit 109, and the operation command from the display / operation unit 110, for example, the torque of the synchronous motor
  • the output voltage is calculated so that the characteristics can be optimally controlled, for example, converted into output voltage data Vd *, Vq * of a biaxial coordinate system in which the magnet axis is the d axis and the axis orthogonal thereto is the q axis, and the power conversion unit 104 And output to the step-out determination unit 109.
  • the step-out determination unit 109 receives the current data acquired by the current acquisition unit 107, for example, Id and Iq, and the output voltage data calculated by the output calculation unit 108, for example, Vd * and Vq *, and uses, for example, the magnet axis as a reference phase. As described above, the phase ⁇ I of the acquired current and the ⁇ V of the output voltage are calculated to determine the step-out determination state. A method for determining the step-out determination state will be described in detail later.
  • the step-out determination unit 109 acquires the operation after the step-out from the storage unit 111, determines the step-out, and then outputs the operation after the step-out to the output calculation unit 108.
  • the display operation unit 110 is configured by a user interface such as an operator connected to the operation panel of the operation panel or the power conversion device, for example, and outputs the operation after the step-out selected by the operator to the storage unit 111. Further, the display operation unit 110 displays a warning indicating that the step-out determination state input from the step-out determination unit 109 is the current step-out determination state, for example.
  • the storage unit 111 includes, for example, an EEPROM or a RAM, stores post-step-out operation data input from the display operation unit 110 as input, and outputs post-step-out operation data to the step-out determination unit 109.
  • Equation 1 holds in the permanent magnet synchronous motor model in the steady state.
  • R resistance value of the synchronous motor
  • Ld d-axis inductance value of the synchronous motor
  • Lq q-axis inductance value of the synchronous motor
  • rotational speed
  • Id d-axis current
  • Iq q-axis current
  • Ke The induced voltage coefficient of the synchronous motor
  • Vd d-axis voltage
  • Vq q-axis voltage
  • the output calculation unit 108 calculates the voltage based on (Equation 1) as shown in (Equation 2), for example.
  • ⁇ * rotational speed command
  • Id * d-axis current command
  • Iq * q-axis current command
  • Vd * d-axis voltage command
  • Vq * q-axis voltage command
  • Equation 1 When the synchronous motor 105 steps out, no induced voltage is generated when the rotation stops. (Equation 1) can be approximated as (Equation 3) assuming that the rotational speed is almost zero. However, since the synchronous motor 105 has an output from the power converter, the left side and the right side of (Equation 3) do not completely match.
  • Equation 3 The state of (Equation 3) indicates that the ratio between the current and the voltage is substantially the same.
  • Equation 4 When there is an output from the power converter, the relationship between the detected current and the output voltage is ( The state shown in Equation 4) is obtained.
  • the current phase ⁇ I is calculated according to (Equation 5) with the d axis as the reference axis.
  • the voltage phase ⁇ V is calculated according to (Equation 6) with the d axis as the reference axis.
  • step-out is detected using this state.
  • FIG. 2 is a flowchart until the step-out determination unit 109 according to the first embodiment determines step-out. The determination of the flowchart is always performed after the power converter is activated.
  • FIG. 3 is a phase relationship diagram in the first embodiment.
  • the step-out determination unit 109 acquires, for example, Id and Iq from the current acquisition unit 107, and Vd * and Vq * from the output calculation unit 108, respectively (S201).
  • the step-out determination unit 109 obtains the respective phases ⁇ I and ⁇ V using (Equation 5) and (Equation 6), and calculates the phase difference ⁇ from ⁇ I and ⁇ V using (Equation 8) (S202).
  • FIG. 4 shows the operation of the step-out determination unit 109 when the step-out determination is performed.
  • the step-out determination unit 109 determines whether or not it is in a step-out determination state (S301). If it is in the step-out determination state, a timer is added (S302). The process returns to the determination state determination (S303). The step-out determination unit 109 determines whether or not the timer has reached a predetermined determination time or more (S304). For example, when the timer has reached five seconds or more, the step-out determination unit 109 determines that step out has occurred and sets the step-out step set in advance from the storage unit 111. The set value for the post-operation is read (S305). The step-out determination unit 109 again monitors the step-out determination state if the timer is within a predetermined number of seconds.
  • step-out determination state is erroneously detected.
  • the set value of the operation may be read out.
  • the step-out determination unit 109 commands the operation after the step-out to the output calculation unit 108 (S306).
  • FIG. 9 is a flowchart showing the operation of the output calculation unit 108 after receiving a command from the step-out determination unit 109.
  • the output calculation unit 108 acquires the post-step-out operation setting from the storage unit 111 (S901), determines whether the set value performs output blocking or restarting (S902), and performs output blocking. Then, an output cutoff command is output to the power conversion unit 104 (S903), and if restart is performed, a restart command is output to the power conversion unit 104.
  • the present invention can perform step-out detection stably even in a low speed region (for example, a speed of 10% or less of the base frequency) from the start to the sensorless vector control. It is valid.
  • the step-out detection in the speed region where the sensor vector control is performed may be performed by another method by switching the control. Further, the out-of-step detection method of the present invention may be applied continuously even in the speed region where the sensorless vector control is performed.
  • the configuration of the present embodiment is the same as that of FIG. 1 described in the first embodiment, and includes a three-phase AC power supply 101, a DC converter 102, a smoothing capacitor 103, a power converter 104, a synchronous motor 105, a current detector 106, It has a current acquisition unit 107, an output calculation unit 108, a step-out determination unit 109, a display operation unit 110, and a storage unit 111.
  • FIG. 6 is a diagram showing the phase relationship of the step-out determination state of the present embodiment.
  • the torque characteristic defined by the synchronous motor is 200% of the rated current of the synchronous motor, for example, current data Id in a biaxial coordinate system with the magnet axis as the d axis and the axis orthogonal thereto as the q axis
  • Iq current data Id in a biaxial coordinate system with the magnet axis as the d axis and the axis orthogonal thereto as the q axis
  • Iq a state where the current Iq that contributes to the torque is 200% or more as the power running torque or ⁇ 200% or less as the regenerative torque is out of the control range, and can be determined to be abnormal.
  • the maximum current value IqL of Iq * in (Equation 2) is 200% and the maximum command value IdL of Id * is 10%
  • the maximum phase ⁇ IL is approximately 87 °
  • the current phase ⁇ I is, for example, 87 ° to 180 ° If it falls within the range, it is determined that the step-out determination state.
  • any range may be set as long as there is a phase range that can be determined to be out of step.
  • FIG. 5 is a flowchart until the step-out determination unit 109 according to the second embodiment determines step-out.
  • the step-out determination unit 109 acquires, for example, Id and Iq from the current acquisition unit 107 (S501).
  • the step-out determination unit 109 obtains the phase ⁇ I using (Equation 5) (S502).
  • the step-out determination unit 109 sets, for example, the phase C in FIG. 5 to 87 ° and the phase D to 180 °, determines whether the phase ⁇ I is in the range of the phase C and the phase D (S503), and enters the range. If it is, the state of step-out determination (2) is set (S504), and if it is not within the range, the monitoring of the current phase is continued.
  • the step-out determination unit 109 determines that the step-out has occurred, the step-out determination state is determined according to the flowchart of FIG. 4 as in the first embodiment. Further, as in the first embodiment, the output calculation unit 108 determines the operation after the step-out is determined according to the flowchart of FIG. 9.
  • the configuration of the present embodiment is the same as that of FIG. 1 described in the first embodiment, and includes a three-phase AC power supply 101, a DC converter 102, a smoothing capacitor 103, a power converter 104, a synchronous motor 105, a current detector 106, It has a current acquisition unit 107, an output calculation unit 108, a step-out determination unit 109, a display operation unit 110, and a storage unit 111.
  • the step-out determination state is detected by using the results of the step-out determination (1) and the step-out determination (2) of the first embodiment together.
  • the state of (Equation 7) may occur even in a normal case in the control calculation using (Equation 2), and therefore it may be necessary to set the out-of-step detection time in FIG. 4 longer.
  • the torque current when the torque current is at a high level, the torque current may be flowing in a normal state, and the out-of-step detection time in FIG. 4 may need to be set longer.
  • the step-out determination state can be ensured and step-out can be detected in a short time.
  • FIG. 7 is a flowchart of determination of the step-out determination state in the third embodiment.
  • the step-out determination unit 109 performs step-out determination using the flowcharts of FIGS. 2 and 5 and acquires each step-out determination state (S701).
  • the step-out determination unit 109 determines whether or not the step-out determination state (1) and the step-out determination state (2) are established (S702), and the step-out determination state (1) and the step-out determination state (2). If so, the step-out determination state (3) is set. If one of the step-out determination states is invalid, the step-out determination unit 109 continues monitoring the step-out determination state again.
  • the step out determination unit 109 determines the step out determination state according to the flowchart of FIG. Further, as in the first embodiment, the output calculation unit 108 determines the operation after the step-out is determined according to the flowchart of FIG. 9.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • DESCRIPTION OF SYMBOLS 101 Three-phase alternating current voltage, 102 ... DC conversion part, 103 ... Smoothing capacitor, 104 ... Power conversion part, 105 ... Synchronous motor, 106 ... Current detector, 107 ... Current acquisition unit, 108 ... output calculation unit, 109 ... step out determination unit, 110 ... display operation unit, 111 ... storage unit,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 指令電圧位相とそれによって発生する電流位相から脱調を判断するため、低速域で小さくなる誘起電圧の影響を受けず、また負荷による電流変動の影響も受けないため、安定的に脱調を検出することができる 直流電圧を平滑化する直流電圧部と、直流電圧を交流電圧に変換する電力変換部と、前記電力変換部に流れる電流を取得する電流取得部と、前記電流取得部において取得した電流から前記電力変換部の出力電圧を演算する出力演算部と、前記電力変換部に接続された同期電動機の脱調を判定する脱調判定部と、を備え、前記脱調判定部は、前記電流取得部の取得した電流における電流位相と、および前記出力演算部が演算した出力電圧における電圧位相との位相差に基づいて前記同期電動機の脱調を判定する。

Description

電力変換装置
 本発明は、電力変換装置における脱調検出機能に関する。
 本技術分野の背景技術として、特許4167863号公報(特許文献1)がある。この公報には、「直流電圧を3相交流電圧に変換して同期モータを駆動するインバータ回路と、同期モータに流れる電流を検出する電流検出手段と、指令速度に従って制御処理を行う制御回路と、前記インバータ回路を駆動するドライバとを具備した同期モータの制御装置において、前記制御回路が、前記電流検出手段により検出したモータ電流から励磁電流を演算する座標変換手段と、励磁電流指令発生手段と、インバータ回路の出力電圧を、モータ定数設定値と、励磁電流指令と前記励磁電流とを用いて決定する電圧指令発生手段と、励磁電流指令と前記励磁電流が一致するように補正後発電定数を作成する発電定数補正演算部とを備え、前記発電定数は、モータ回転時に発生する誘起電圧を決定する定数であって、前記補正後発電定数と予め設定した所定値とを比較して前記同期モータの脱調を検出することを特徴とする同期モータの制御装置。」と記載されている。
特許第4167863号公報
 同期モータの脱調の検出を行う方法として、特許文献1の開示内容では、同期電動機の誘起電圧を用いて行うため、始動時や速度が低い場合、磁石の回転によって発生する誘起電圧が小さい状態では、検出が困難となる可能性がある。本発明は、特に誘起電圧の小さい低速域でも安定的に脱調を検出する電力変換装置を提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、直流電圧を平滑化する直流電圧部と、直流電圧を交流電圧に変換する電力変換部と、前記電力変換部に流れる電流を取得する電流取得部と、前記電流取得部において取得した電流から前記電力変換部の出力電圧を演算する出力演算部と、前記電力変換部に接続された同期電動機の脱調を判定する脱調判定部と、を備え、前記脱調判定部は、前記電流取得部の取得した電流における電流位相と、および前記出力演算部が演算した出力電圧における電圧位相との位相差に基づいて前記同期電動機の脱調を判定することを特徴とする。
 本発明によれば、指令電圧位相とそれによって発生する検出電流位相から脱調を判断するため、低速域で小さくなる誘起電圧の影響を受けず、安定的に脱調を検出することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1~3における電力変換装置の構成図の例である。 実施例1における脱調判定部の判定動作を示したフローチャートの例である。 実施例1における脱調判定状態の電流および電圧位相を示した図の例である。 実施例1~3における脱調を判断することを示したフローチャートの例である。 実施例2における脱調判定部の判定動作を示したフローチャートの例である。 実施例2における脱調判定状態の電流位相を示した図の例である。 実施例3における脱調判定部の判定動作を示したフローチャートの例である。 実施例3における脱調判定状態の電流および電圧位相を示した図の例である。 実施例1~3における脱調と判断された後の動作を示したフローチャートの例である。
 以下、実施例を図面を用いて説明する。
 本実施例では、同期電動機の脱調に関する検出例および検出後の動作例を説明する。図1は、本実施例の電力変換装置と同期電動機105の構成図の例である。本実施例では、三相交流電源101、直流変換部102、平滑コンデンサ103、電力変換部104、同期電動機105、電流検出器106、電流取得部107、出力演算部108、脱調判定部109、表示操作部110、記憶部111を有する。
 三相交流電源101は、例えば電力会社から供給される三相交流電圧や発電機から供給される交流電圧であり、直流変換部102に出力する。
 直流変換部102は、例えばダイオードで構成された直流変換回路やIGBTとフライホイールダイオードを用いた直流変換回路で構成され、三相交流電源101から入力された交流電圧を、直流電圧に変換し、平滑コンデンサ103に出力する。図1では、ダイオードで構成された直流変換部を示している。
 平滑コンデンサ103は、直流変換部102から入力された直流電圧を平滑化し、電力変換部104に直流電圧を出力する。例えば発電機の出力が直流電圧の場合、平滑コンデンサ103は、直流変換部102を介さず、直接発電機から直流電圧を入力されても構わない。
 電力変換部104は、例えばIGBTとフライホイールダイオードを用いた交流変換回路で構成され、平滑コンデンサ103の直流電圧と、出力演算部108の出力指令を入力とし、直流電圧を交流電圧に変換し、同期電動機105に出力する。
 電流検出器106は、例えばホールCTやシャント抵抗で構成され、電力変換装置の出力部に配置されることにより同期電動機105に流れる電流を検出し、電流取得部107に電流検出値として出力する。電流検出器106は、三相の出力電流を推定、又は直接検出できる箇所に配置されているならば、どこに配置されていてもよい。図1では、同期電動機105に流れる電流を検出する例が示されている。
 電流取得部107は、電流検出器106から入力された電流検出値を、例えば磁石軸をd軸、それと直交する軸をq軸とした二軸座標系の電流データId、Iqに変換し、出力演算部108、脱調判定部109に出力する。電流検出部107が出力するデータは、三相電流であっても、直流電流換算されたものであっても、電流の位相が演算できればよい。
 出力演算部108は、電流取得部107が出力した電流データ、脱調判定部109が出力した脱調判定状態後動作と、表示・操作部110からの運転指令を入力とし、例えば同期電動機のトルク特性を最適に制御できるよう出力電圧を演算し、例えば磁石軸をd軸、それと直交する軸をq軸とした二軸座標系の出力電圧データVd*、Vq*に変換し、電力変換部104および脱調判定部109に出力する。
 脱調判定部109は、電流取得部107が取得した電流データ、例えばIdおよびIqと、出力演算部108が演算した出力電圧データ、例えばVd*およびVq*を入力とし、例えば磁石軸を基準位相として、取得電流の位相δIと出力電圧のδVを演算し、脱調判定状態を判定する。脱調判定状態の判定方法については、後で詳しく説明する。脱調判定部109は、脱調後の動作を記憶部111から取得し、脱調と判断した後、出力演算部108に脱調後の動作を出力する。
 表示操作部110は、例えば操作盤の操作パネルまたは電力変換装置に接続されたオペレータのようなユーザーインターフェースで構成され、操作者に選択された脱調後の動作を記憶部111に出力する。また、表示操作部110は、例えば脱調判定部109から入力した脱調判定状態を現在脱調判定状態であることを警告表示する。
 記憶部111は、例えばEEPROMやRAM等で構成され、表示操作部110から入力される脱調後動作データを入力とし記憶しておき、脱調判定部109に脱調後動作データを出力する。
 次に本実施例の脱調検出原理を説明する。
 定常状態における永久磁石同期電動機のモデルでは以下の(数1)が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 ここで、R:同期電動機の抵抗値、Ld:同期電動機のd軸インダクタンス値,Lq:同期電動機のq軸インダクタンス値、ω:回転速度、Id:d軸電流、Iq:q軸電流、Ke:同期電動機の誘起電圧係数、Vd:d軸電圧、Vq:q軸電圧である。
 例えば、出力演算部108は、出力すべき電圧を演算する際に(数1)を元にして、例えば(数2)のように電圧を計算する。
Figure JPOXMLDOC01-appb-M000002
 ここで、ω*:回転速度指令、Id*:d軸電流指令、Iq*:q軸電流指令、Vd*:d軸電圧指令、Vq*:q軸電圧指令である。
 同期電動機105は、脱調した場合、回転が止まってしまうと誘起電圧が発生しない。(数1)は、回転速度がほぼ0だと考え、(数3)のように近似できる。ただし、同期電動機105には、電力変換装置から出力があるため、(数3)の左辺と右辺は完全には一致しない。
Figure JPOXMLDOC01-appb-M000003
 (数3)の状態は、電流と電圧の比率がほぼ同じ割合となることを示しており、電力変換装置の出力があった場合には、出力電圧に従い、検出電流と出力電圧の関係は(数4)に示す状態となる。
Figure JPOXMLDOC01-appb-M000004
 電流位相δIは、d軸を基準軸として、(数5)に従って計算される。
Figure JPOXMLDOC01-appb-M000005
 電圧位相δVは、d軸を基準軸として、(数6)に従って計算される。
Figure JPOXMLDOC01-appb-M000006
 すなわち、電流位相および電圧位相の関係は、(数7)となる。
Figure JPOXMLDOC01-appb-M000007
 本実施例は、この状態を用いて脱調を検出する。
 図2は、実施例1における脱調判定部109が脱調を判定するまでのフローチャートである。電力変換装置の起動後は常時当該フローチャートの判定を行っている。図3は、実施例1における位相の関係図である。
 脱調判定部109は、例えば、電流取得部107からId、Iqを、出力演算部108からVd*、Vq*をそれぞれ取得する(S201)。脱調判定部109は、(数5)(数6)を用いて、各位相δIとδVを求め、位相差ΔをδIとδVから(数8)を用いて計算する(S202)。
Figure JPOXMLDOC01-appb-M000008
 脱調判定部109は、位相差Δが所定の範囲、例えば±30°(位相A=-30°、位相B=30°)の範囲に入ったかどうかを判定し(S203)、範囲内に入った場合には脱調判定状態(1)だと判定し(S204)、範囲外の場合には継続して監視を続ける。
 図4は、脱調判定が行われた場合の脱調判定部109の動作を示している。
 脱調判定部109は、脱調判定状態かどうかを判定し(S301)、脱調判定状態であればタイマを加算していく(S302)、脱調判定状態でないならばタイマをクリアし脱調判定状態判定に戻る(S303)。脱調判定部109は、タイマが所定の判定時間以上になったかどうかを判定し(S304)、例えば5秒以上になった場合、脱調と判断し、記憶部111から予め設定された脱調後動作の設定値を読み出す(S305)。脱調判定部109は、タイマが所定の秒数以内であれば、再び脱調判定状態を監視する。これは、脱調判定状態が誤検出された場合に、電力変換装置が誤動作することを回避するものであり、脱調判定状態と判断された直後に記憶部111から予め設定された脱調後動作の設定値を読み出してもよい。脱調判定部109は、脱調後の動作を出力演算部108に指令する(S306)。
 図9は、脱調判定部109からの指令を受けた後の、出力演算部108の動作を示したフローチャートである。
 出力演算部108は、脱調後動作設定を記憶部111から取得し(S901)、設定値が出力遮断を行うか、再始動を行うかを判定し(S902)、出力遮断を行うのであれば、電力変換部104に出力遮断指令を出力し(S903)、再始動を行うのであれば、電力変換部104に再始動指令を出力する。
 尚、本発明は、特に、始動してからセンサレスベクトル制御に至るまでの速度の低い領域(例えば、基底周波数の10%以下の速度)においても安定的に脱調検出を行うことができる点が有効である。センサベクトル制御を行う速度の領域における脱調検出は、制御を切り替えて他の方式で行ってもよい。また、センサレスベクトル制御を行う速度の領域においても引き続き本発明の脱調検出方式を適用してもよい。
 本実施例では実施例1と、共通する部分については同様の符号を用いて説明し、異なる部分について詳細に説明するものとする。本実施例の構成は、実施例1にて説明した図1と同様であり、三相交流電源101、直流変換部102、平滑コンデンサ103、電力変換部104、同期電動機105、電流検出器106、電流取得部107、出力演算部108、脱調判定部109、表示操作部110、記憶部111を有する。
 次に本実施例の脱調検出原理を説明する。
図6は、本実施例の脱調判定状態の位相関係を示した図である。例えば、同期電動機の規定するトルク特性が、同期電動機の定格電流の200%であるとした場合、例えば磁石軸をd軸、それと直交する軸をq軸とした二軸座標系の電流データId、Iqにおいて、トルクに寄与する電流Iqが力行トルクで200%以上あるいは回生トルクで-200%以下となる状態は制御範囲外となるため、異常と判断できる。例えば(数2)におけるIq*の最大電流値IqLを200%、Id*の最大指令値IdLを10%とすると、位相の最大δILはおよそ87°となり、電流位相δIが例えば87°から180°の範囲に入った場合、脱調判定状態と判断する。
 上記の決め方の例は、一例であって、脱調と判断できる位相範囲があれば、どの範囲に設定してもかまわない。
 本実施例は、この状態を用いて脱調を検出する。図5は、実施例2における脱調判定部109が脱調を判定するまでのフローチャートである。
 脱調判定部109は、例えば、電流取得部107からId、Iqを取得する(S501)。脱調判定部109は、(数5)を用いて、位相δIを求める(S502)。脱調判定部109は、例えば、図5の位相Cを87°、位相Dを180°に設定し、位相δIが位相Cおよび位相Dの範囲に入ったかどうか判定し(S503)、範囲に入っていれば脱調判定(2)の状態とし(S504)、範囲に入っていなければ電流位相の監視を継続する。
 脱調判定部109は、脱調と判断した場合、実施例1同様、図4のフローチャートに従い、脱調判定状態を判定する。さらに出力演算部108は、実施例1同様、図9のフローチャートに従い、脱調と判定された後の動作を決定する。
 本実施例では実施例1と、共通する部分については同様の符号を用いて説明し、異なる部分について詳細に説明するものとする。本実施例の構成は、実施例1にて説明した図1と同様であり、三相交流電源101、直流変換部102、平滑コンデンサ103、電力変換部104、同期電動機105、電流検出器106、電流取得部107、出力演算部108、脱調判定部109、表示操作部110、記憶部111を有する。
 次に本実施例の脱調検出原理を説明する。本実施例では、実施例1の脱調判定(1)および脱調判定(2)の結果を併用して、脱調判定状態を検出する。実施例1の方法では、(数2)を用いた制御演算上、正常な場合でも(数7)の状態が起こり得るため、図4における脱調検出時間を長めに設定する必要がある可能性がある。一方で実施例2の方法では、トルク電流が高いレベルにある場合に、正常な状態でトルク電流が流れている場合もあり、図4における脱調検出時間を長めに設定する必要がある可能性がある。本実施例では、実施例1および実施例2を併用することで、脱調判定状態を確実なものにし、短時間で脱調を検出することができる。
 図7は、実施例3における脱調判定状態の判定のフローチャートである。
脱調判定部109は、図2および図5のフローチャートを用いて、脱調判定を行い、各々の脱調判定状態を取得する(S701)。脱調判定部109は、脱調判定状態(1)かつ脱調判定状態(2)となっているかどうかを判断し(S702)、脱調判定状態(1)かつ脱調判定状態(2)となっていたら脱調判定状態(3)とする。脱調判定部109は、どちらか一方の脱調判定状態が無効となっていれば、再び脱調判定状態の監視を継続する。
 脱調判定部109は、脱調と判断された場合、実施例1同様、図4のフローチャートに従い、脱調判定状態を判定する。さらに出力演算部108は、実施例1同様、図9のフローチャートに従い、脱調と判定された後の動作を決定する。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
101・・・三相交流電圧、102・・・直流変換部、103・・・平滑コンデンサ、104・・・電力変換部、105・・・同期電動機、106・・・電流検出器、107・・・電流取得部、108・・・出力演算部、109・・・脱調判定部、110・・・表示操作部、111・・・記憶部、

Claims (10)

  1.  直流電圧を平滑化する直流電圧部と、
     直流電圧を交流電圧に変換する電力変換部と、
     前記電力変換部に流れる電流を取得する電流取得部と、
     前記電流取得部において取得した電流から前記電力変換部の出力電圧を演算する出力演算部と、
     前記電力変換部に接続された同期電動機の脱調を判定する脱調判定部と、
    を備え、
     前記脱調判定部は、前記電流取得部の取得した電流における電流位相と、前記出力演算部が演算した出力電圧における電圧位相との位相差に基づいて前記同期電動機の脱調を判定することを特徴とする電力変換装置。
  2.  前記脱調判定部は、前記位相差が所定の範囲内に入った状態が所定時間以上経過した場合に脱調の判定を行うことを特徴とする請求項1に記載の電力変換装置。
  3.  前記脱調判定部は、前記電流位相と前記電圧位相との位相差が所定の範囲内であり、かつ、前記電流位相が所定の範囲内である場合に脱調の判定を行うことを特徴とする請求項1に記載の電力変換装置。
  4.  前記脱調判定部は、前記同期電動機の脱調を判定した場合は、前記出力演算部に遮断指令を与え、前記電力変換部の出力を遮断することを特徴とする請求項1に記載の電力変換装置。
  5.  前記脱調判定部は、前記同期電動機の脱調を判定した場合、前記出力演算部に再始動指令を与え、前記電力変換部を自動的に再始動させることを特徴とする請求項1に記載の電力変換装置。
  6.  所定のデータを記憶する記憶部と、
     データを表示し、ユーザが操作を受付ける表示操作部と、
    を備え、
     前記脱調判定部は、前記同期電動機の脱調が判定された場合に、前記電力変換部の出力の遮断を行うか、前記電力変換部の再始動を行うかを、前記表示操作部の操作に応じて選択的に前記記憶部に記憶させ、前記同期電動機の脱調が判定された場合に、前記記憶部からデータを読み出し、前記出力演算部の動作を決定することを特徴とする請求項1に記載の電力変換装置。
  7.  直流電圧を平滑化する直流電圧部と、
     直流電圧を交流電圧に変換する電力変換部と、
     前記電力変換部に流れる電流を取得する電流取得部と、
     前記電流取得部において取得した電流から前記電力変換部の出力電圧を演算する出力演算部と、
     前記電力変換部に接続された同期電動機の脱調を判定する脱調判定部と、
    を備え、
     前記脱調判定部は、前記電流取得部の取得した電流における電流位相が所定の範囲内に入った場合に脱調の判定をすることを特徴とする電力変換装置。
  8.  前記脱調判定部は、前記同期電動機の脱調を判定した場合は、前記出力演算部に遮断指令を与え、前記電力変換部の出力を遮断することを特徴とする請求項7に記載の電力変換装置。
  9.  前記脱調判定部は、前記同期電動機の脱調を判定した場合、前記出力演算部に再始動指令を与え、前記電力変換部を自動的に再始動させることを特徴とする請求項7に記載の電力変換装置。
  10.  所定のデータを記憶する記憶部と、
     データを表示し、ユーザが操作を受付ける表示操作部と、
    を備え、
     前記脱調判定部は、前記同期電動機の脱調が判定された場合に、前記電力変換部の出力の遮断を行うか、前記電力変換部の再始動を行うかを、前記表示操作部の操作に応じて選択的に前記記憶部に記憶させ、前記同期電動機の脱調が判定された場合に、前記記憶部からデータを読み出し、前記出力演算部の動作を決定することを特徴とする請求項7に記載の電力変換装置。
PCT/JP2013/084398 2013-12-24 2013-12-24 電力変換装置 WO2015097734A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380079078.0A CN105814790B (zh) 2013-12-24 2013-12-24 电力转换装置
PCT/JP2013/084398 WO2015097734A1 (ja) 2013-12-24 2013-12-24 電力変換装置
EP13900138.2A EP3089354B1 (en) 2013-12-24 2013-12-24 Power conversion device
JP2015554317A JP6286450B2 (ja) 2013-12-24 2013-12-24 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084398 WO2015097734A1 (ja) 2013-12-24 2013-12-24 電力変換装置

Publications (1)

Publication Number Publication Date
WO2015097734A1 true WO2015097734A1 (ja) 2015-07-02

Family

ID=53477678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084398 WO2015097734A1 (ja) 2013-12-24 2013-12-24 電力変換装置

Country Status (4)

Country Link
EP (1) EP3089354B1 (ja)
JP (1) JP6286450B2 (ja)
CN (1) CN105814790B (ja)
WO (1) WO2015097734A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179269A1 (ja) * 2016-04-13 2017-10-19 株式会社日立産機システム 電動機システム
WO2018123524A1 (ja) * 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 動力発生装置
WO2024043245A1 (ja) * 2022-08-22 2024-02-29 株式会社アドヴィックス モータ制御装置
WO2024043244A1 (ja) * 2022-08-22 2024-02-29 株式会社アドヴィックス モータ制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540985A (en) * 1978-09-18 1980-03-22 Mitsubishi Electric Corp Detector for out of synchronism for synchronous motor
JPH09294390A (ja) * 1996-04-25 1997-11-11 Yaskawa Electric Corp センサレス同期モータにおける脱調検出装置
JP2000278985A (ja) * 1999-03-25 2000-10-06 Mitsubishi Electric Corp 直流ブラシレスモータの駆動装置
JP2001025282A (ja) * 1999-07-05 2001-01-26 Toshiba Corp センサレスブラシレスモータの脱調検出装置
JP2008092787A (ja) * 2006-09-05 2008-04-17 Mitsubishi Electric Corp 電動機の駆動装置
JP4167863B2 (ja) 2002-07-30 2008-10-22 株式会社日立製作所 同期モータの制御装置とこれを用いた機器
JP2009065764A (ja) * 2007-09-05 2009-03-26 Toshiba Corp 回転機制御装置および洗濯機
JP2009174416A (ja) * 2008-01-24 2009-08-06 Max Co Ltd エアコンプレッサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226253B2 (ja) * 1995-09-11 2001-11-05 株式会社東芝 永久磁石同期電動機の制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540985A (en) * 1978-09-18 1980-03-22 Mitsubishi Electric Corp Detector for out of synchronism for synchronous motor
JPH09294390A (ja) * 1996-04-25 1997-11-11 Yaskawa Electric Corp センサレス同期モータにおける脱調検出装置
JP2000278985A (ja) * 1999-03-25 2000-10-06 Mitsubishi Electric Corp 直流ブラシレスモータの駆動装置
JP2001025282A (ja) * 1999-07-05 2001-01-26 Toshiba Corp センサレスブラシレスモータの脱調検出装置
JP4167863B2 (ja) 2002-07-30 2008-10-22 株式会社日立製作所 同期モータの制御装置とこれを用いた機器
JP2008092787A (ja) * 2006-09-05 2008-04-17 Mitsubishi Electric Corp 電動機の駆動装置
JP2009065764A (ja) * 2007-09-05 2009-03-26 Toshiba Corp 回転機制御装置および洗濯機
JP2009174416A (ja) * 2008-01-24 2009-08-06 Max Co Ltd エアコンプレッサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089354A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179269A1 (ja) * 2016-04-13 2017-10-19 株式会社日立産機システム 電動機システム
JPWO2017179269A1 (ja) * 2016-04-13 2018-11-22 株式会社日立産機システム 電動機システム
TWI650929B (zh) * 2016-04-13 2019-02-11 日商日立產機系統股份有限公司 電動機系統
US10644638B2 (en) 2016-04-13 2020-05-05 Hitachi Industrial Equipment Systems Co., Ltd. Electric motor system
WO2018123524A1 (ja) * 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 動力発生装置
JPWO2018123524A1 (ja) * 2016-12-26 2019-10-31 パナソニックIpマネジメント株式会社 動力発生装置
JP7108834B2 (ja) 2016-12-26 2022-07-29 パナソニックIpマネジメント株式会社 動力発生装置
WO2024043245A1 (ja) * 2022-08-22 2024-02-29 株式会社アドヴィックス モータ制御装置
WO2024043244A1 (ja) * 2022-08-22 2024-02-29 株式会社アドヴィックス モータ制御装置

Also Published As

Publication number Publication date
EP3089354A1 (en) 2016-11-02
EP3089354B1 (en) 2021-09-22
CN105814790A (zh) 2016-07-27
JPWO2015097734A1 (ja) 2017-03-23
CN105814790B (zh) 2018-10-02
EP3089354A4 (en) 2017-09-13
JP6286450B2 (ja) 2018-02-28

Similar Documents

Publication Publication Date Title
KR102108911B1 (ko) 드라이브 시스템 및 인버터 장치
JP4406552B2 (ja) 電動機の制御装置
JP6277288B2 (ja) 監視装置と監視方法およびそれらを備える制御装置と制御方法
JP6077139B2 (ja) 電力変換装置
JP2008295220A (ja) 永久磁石同期電動機のセンサレス制御装置
JP2003079200A (ja) 電動機駆動システム
JP6286450B2 (ja) 電力変換装置
KR20170030260A (ko) 유도 전동기의 재기동 방법
JP2008206290A (ja) 並列に接続された複数のブラシレスモータの駆動装置及び並列に接続された複数のブラシレスモータの始動方法並びに並列に接続された複数のブラシレスモータのロータ停止位置検出方法
EP3133732B1 (en) Power conversion device and power conversion method
US9641120B2 (en) Motor control apparatus and method for controlling motor
KR102246044B1 (ko) 모터 감자 에러 감지 장치 및 방법
JP4667741B2 (ja) 誘導電動機の制御装置
JP6108109B2 (ja) 永久磁石形同期電動機の制御装置
JP2006217754A (ja) 同期機駆動制御装置
EP3229367B1 (en) Power converter and control method of power converter
JP5055835B2 (ja) 同期モータの駆動装置
JP7206679B2 (ja) 電気モータの駆動装置および電動ポンプ装置
JP5686628B2 (ja) 電力変換装置
JP5862691B2 (ja) 電動機駆動装置の制御装置および電動機駆動システム
JP2010268663A (ja) ロータ角度推定装置
JP2006087154A (ja) インバータ駆動ブロワ制御装置
WO2017085820A1 (ja) 電力変換装置
JP2023144354A (ja) 電動機の制御装置
JP2006340525A (ja) 同期モータのセンサレス制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554317

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013900138

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900138

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE