JPWO2017179269A1 - 電動機システム - Google Patents

電動機システム Download PDF

Info

Publication number
JPWO2017179269A1
JPWO2017179269A1 JP2018511892A JP2018511892A JPWO2017179269A1 JP WO2017179269 A1 JPWO2017179269 A1 JP WO2017179269A1 JP 2018511892 A JP2018511892 A JP 2018511892A JP 2018511892 A JP2018511892 A JP 2018511892A JP WO2017179269 A1 JPWO2017179269 A1 JP WO2017179269A1
Authority
JP
Japan
Prior art keywords
load
voltage
stored
synchronous motor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018511892A
Other languages
English (en)
Other versions
JP6545900B2 (ja
Inventor
大久保 智文
智文 大久保
敏夫 富田
敏夫 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Publication of JPWO2017179269A1 publication Critical patent/JPWO2017179269A1/ja
Application granted granted Critical
Publication of JP6545900B2 publication Critical patent/JP6545900B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • H02P1/029Restarting, e.g. after power failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/36Protection against faults, e.g. against overheating or step-out; Indicating faults

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

磁極位置センサなしのインバータ駆動による同期電動機において容易に脱調を検出する電動機システムを提供することを目的とする。
上記目的を達成するために、本発明は、同期電動機と、同期電動機を駆動する電力変換装置を有するインバータと、同期電動機に接続される負荷とを備える電動機システムであって、電力変換装置内の直流電圧に基づいて、同期電動機の脱調を判定する構成とする。

Description

本発明はPM(Permanent Magnet)モータを含む同期電動機を制御するインバータの制御方法および電動機システムに関する。
従来、機械装置の駆動源として誘導電動機が主に使われていたが、現在では省エネ、高効率の観点から、永久磁石を用いた同期電動機が採用されるようになっている。同期電動機の中でも磁極位置センサを備えていない電動機は、磁極位置センサの故障の恐れがなく、またコストも安価に抑えられるメリットがある。
一方で、磁極位置センサなしの同期電動機(以降、電動機と省略する)の場合、電動機を制御するインバータが認識している回転数と、実際の電動機シャフトの回転数が一致しない脱調と呼ばれる現象が発生し、電動機シャフトが回転せず、仕事をしない状態となる恐れがある。
例えば、特開2012−60781号公報(特許文献1)によれば、電動機の軸誤差の推定演算より、電動機の回転状態の異常検知が可能であるとしている。
特開2012−60781号公報
しかしながら、脱調している状態においても電動機には誘起電圧分の電流が流れ、その電流値は正常回転状態での電流値と区別がつかない場合もある。そのため特許文献1に記載の、電圧指令値と電流検出値から軸誤差を推定する方法では、必ずしも正確に脱調を検出することができない場合もある。
そこで、本発明では用途負荷の特性を利用することにより、脱調の検出を容易にし、必要に応じて電動機を再起動することで、負荷を安定駆動することを目的とする。
上記の課題を解決するために、本発明は、その一例を挙げるならば、同期電動機と、同期電動機を駆動する電力変換装置を有するインバータと、同期電動機に接続される負荷とを備える電動機システムであって、電力変換装置内の直流電圧に基づいて、同期電動機の脱調を判定する構成とする。
本発明によれば、脱調の検出を容易に行うことができる電動機システムを提供できる。
実施例1における電動機システムの全体構成図である。 実施例1におけるインバータの内部の構成図である。 実施例1における記憶部に記憶する揮発性メモリの内容と不揮発性メモリの内容である。 実施例1に係るポンプの一定速度運転における制御フローである。 実施例1における回転数変化に対する直流電圧変化の説明図である。 実施例1における脱調判定機能の選択確認処理の制御フローである。 実施例1における異常時処理の制御フローである。 実施例2に係るポンプの一定速度運転における制御フローである。 実施例2における回転数変化に対する直流電圧変化の説明図である。 実施例3に係るポンプの一定速度運転における制御フローである。 実施例3における回転数変化に対する直流電圧変化の説明図である。 実施例4に係るポンプの一定速度運転における制御フローの前半部分である。 実施例4に係るポンプの一定速度運転における制御フローの後半部分である。 実施例4における回転数変化に対する負荷電流変化の説明図である。 実施例4、5に係る2乗低減負荷における負荷電流と脱調時の電流の関係の説明図である。 実施例5に係る定トルク負荷における負荷電流と脱調時の電流の関係の説明図である。 実施例5に係る定出力負荷における負荷電流と脱調時の電流の関係の説明図である。 実施例5における正常時の負荷電流と脱調時の電流の差を利用した脱調検出の制御フローである。 実施例6におけるシステムの全体構成図である。 実施例6における正常時の電圧と脱調時の電圧の関係の説明図である。 実施例6における脱調検出の制御フローである。
以下、本発明を適用した実施例を図面を用いて説明する。
本実施例は、負荷を駆動中の同期電動機において、電動機の回転数を下げた際に電力変換装置内の直流電圧の変化により脱調を検出するものである。回転数の変化が所定値以上である場合に電力変換装置内の直流電圧の変化を確認し、その変化量が所定値を超えない場合には脱調していると判断し、電動機を再起動することで再び正常な運転を開始する。
まず、本実施例における装置構成について説明する。図1は、本実施例における、負荷を回転駆動する電動機と、電動機を制御するインバータを有する電動機システムの全体構成図である。図1において、符号10はポンプを示し、符号20で示す電動機で駆動されている。さらに電動機20には符号30で示すインバータが接続されていて、インバータ30が出力電流を変化させることで、電動機20の回転数を変化させ駆動する。自動給水装置で給水圧力一定となるよう自動運転する場合においては、ポンプ10の二次側配管に符号11で示す圧力検出手段を設け、ポンプ吐出側圧力を検出する。
図2は、本実施例におけるインバータ30の内部構成図である。図2において、インバータに供給される電源を受ける受電部に符号31で示す交流−直流変換部が接続され、受電した交流電源は直流電圧に変換される。この直流電圧を符号32で示す直流−交流変換部で、符号34で示す演算処理部で指示された周波数の交流電源に再変換する。ここで、交流−直流変換部31と直流−交流変換部32を合わせて電力変換装置と呼称する。負荷の回転数を変更する場合には符号33で示す信号入力部に信号を入力する。入力した信号に応じて演算処理部34で出力する周波数を決定し、直流−交流変換部32にその周波数の交流電源を生成するよう指示を出す。演算処理部34で行なう演算に必要な制御パラメータを符号35で示す記憶部に予め記憶しておき、演算処理部34は必要に応じて記憶部35の記憶内容の読み出し、書き込みを行なう。
次に、記憶部35の記憶内容について説明する。図3は、本実施例における記憶部35に記憶する揮発性メモリの内容と不揮発性メモリの内容である。尚、インバータ内部に記憶部を持たず、インバータ外部に記憶装置を取り付けて代用しても差し支えない。
図3(A)において、揮発性メモリの1000番地には脱調判定を開始する際の回転数(電動機への指令回転数)HzNを記録する。1001番地には脱調判定を開始する際の電力変換装置の内部の直流電圧VNを記録する。1002番地、1003番地の制御パラメータは本実施例では使用しない。1004番地には脱調の発生頻度を確認するためのタイマの残り時間TN2を記憶する。1005番地には脱調判定を行なった結果、異常と判断された回数CNを記憶する。1006番地には、脱調判定で正常/異常を判定する、直流電圧の変化量の基準値VDGを記憶する。脱調判定処理を行ない直流電圧の変化がVDG以上となった場合は正常と判断し、変化量がVDG未満の場合は脱調と判断する。直流電圧は検出部(図示せず)にて検出する。
図3(B)において、不揮発性メモリの2000番地には、回転数を下げる場合に脱調判定処理を行なうか否かを判定する回転数減算判断基準値HzDGを予め記憶しておく。詳細は後に記述するが、回転数の減少量が小さい場合には電力変換装置内の直流電圧の増加量が大きくなく、脱調の検出が困難であるため、指示された回転数の減少量がHzDGより小さい場合には脱調判定処理を行なわず、回転数の減少量がHzDG以上の場合には脱調判定処理を行なうものとする。
2001番地には、脱調判定基準値を自動設定する場合の回転数の減少量HDQを予め記憶しておく。2002番地には、脱調判定時に回転数を下げる際の、その下げる速さHDSを予め記憶しておく。この速さが速いほど電力変換装置内の直流電圧の変化が大きくなる。2003番地から2008番地の制御パラメータは本実施例では使用しないので説明を割愛する。2009番地には脱調の発生頻度を確認するためのタイマの設定時間TM2を予め記憶しておく。
2010番地には脱調判定機能の実行有無を選択するパラメータSLDを予め記憶しておく。ユーザがSLDを0に設定した場合には脱調判定処理を行なわず、ユーザがSLDを1に設定した場合には条件が成立した時点で脱調判定処理を実行する。2011番地には脱調判定の際の判定基準値の設定方法DGSを予め記憶しておく。ユーザがDGSを1に設定した場合は、3001番地に予め記憶されているMTTを判定基準値VDGとする。ユーザがDGSを2に設定した場合は、4001番地から4003番地の設定値をもとに、5001番地から500N番地のデータテーブルから脱調判定基準値を算出し、判定基準値VDGとする。ユーザがDGSを3に設定した場合は、6000番地に予め記憶されている脱調判定基準値を自動算出(オートチューニング)した結果のATTを判定基準値VDGとする。
7001番地には、脱調判定処理にて異常と判断された回数CNが、予め7002番地に記憶された回数ALEに達した場合に故障信号を出力するか否かを選択するパラメータSLAを予め記憶しておく。8001番地には、脱調判定処理にて異常と判断された場合に電動機の再始動を許可するか否かを選択するパラメータSLRを予め記憶しておく。8002番地には自動再始動の許可上限回数RSEを予め記憶しておき、脱調判定処理にて異常と判断された回数CNがRSEを超える場合には電動機の再始動を許可せず、電動機を停止させたままとする。
9001番地には自動給水装置で給水圧力一定となるよう自動運転する場合において、目標とする給水圧力値HSを予め記憶しておき、ポンプ10の二次側配管に設けた圧力検出手段11の検出値がHSと一致するよう回転数を自動制御する。
次に、本実施例における制御フローについて説明する。図4は、ポンプを一定の速度(回転数、周波数)で運転する場合の本実施例における制御フローである。
図4において、101ステップで運転を開始した後、102ステップで脱調判定機能の選択確認処理を行なう。104ステップで指定したHzNの回転数に到達した後、120ステップで減速の指示が行なわれると信号入力部33で信号を処理する。
この時、121ステップにおいて、減速幅、すなわち現在運転中の回転数に対する減速時の回転数HDLとの差を、不揮発性メモリ2000番地に予め記憶しておいたHzDGと比較し、減速幅がHzDGより小さい場合、または102ステップの脱調判定機能の選択確認処理の中で脱調判定機能の実行が選択されていない場合には、155ステップ以下の脱調検出処理を行なわず、122ステップで演算処理部34において出力周波数を変更するための指示を直流−交流変換部32に対して行ない、104ステップに戻る。
減速幅がHzDG以上の場合には、155ステップで電力変換装置内の交流−直流変換部31と直流−交流変換部32の間の直流電圧VNを揮発性メモリ1001番地にVNとして記憶する。その後、156ステップで演算処理部34において出力周波数を変更するための指示を直流−交流変換部32に対して行ない、157ステップで減速した直後の直流電圧を確認する。
図5に回転数変化に対する直流電圧変化の説明図を示す。図5に示す通り、減速前の回転数HzNで運転している時刻T1から減速を終える時刻T2までの間に直流電圧がVNから上昇する。図4の155ステップが時刻T1、156ステップが時刻T1から時刻T2の時間にあたり、157ステップが時刻T2に該当する。ここで、特にファン用途などの慣性モーメントが大きい負荷の場合は、その上昇量が大きい。上昇量は負荷の慣性モーメントと減速量、減速の速さによって変化する。
図4の158ステップにおいて、減速した直後の直流電圧からVNを減算した結果が、揮発性メモリ1006番地に予め記憶しておいたVDGより大きい場合には、回生エネルギーによる直流電圧の上昇が見られるので160ステップで正常と判断して、104ステップに戻る。
158ステップにおいて、減速した直後の直流電圧からVNを減算した結果が、VDG以下の場合には脱調により回生エネルギーを得られていないと判断し、170ステップの異常時処理を行ない、再始動処理が行なわれた後に、180ステップでポンプを再始動させ、104ステップに戻る。
次に、図4の102ステップの脱調判定機能の選択確認処理について説明する。図6は、102ステップの脱調判定機能の選択確認処理の詳細である。図6において、201ステップで不揮発性メモリ2010番地に予め記憶しておいた脱調判定機能の実行有無を選択するパラメータSLDを確認し、SLDが0に設定されている場合には202ステップで選択なしとして脱調判定処理を行なわず、図4の104ステップに進む。SLDが1に設定されている場合には203ステップで選択ありとして、次に204ステップで判定基準値の設定方法を確認する。
204ステップで不揮発性メモリ2011番地に予め記憶しておいた判定基準値の設定方法DGSを確認し、DGSが1に設定されている場合には205ステップで判定基準値を手動設定として、3001番地に予め記憶しておいた手動設定値MTTを読み出し、揮発性メモリ1006番地のVDGに判定基準値として記憶し、図4の104ステップに進む。
204ステップで、DGSが2に設定されている場合には210ステップで負荷種別を選択する。210ステップでは、不揮発性メモリ4001番地に予め記憶しておいた負荷種別RDMを確認し、1が設定されている場合には、211ステップで5001番地に予め記憶しておいた負荷種別1に対応する判定定数RD1を定数RDとする。RDMが2に設定されている場合には、212ステップで5002番地に予め記憶しておいた負荷種別2に対応する判定定数RD2を定数RDとする。同様にRDMがNに設定されている場合には、21Nステップで500N番地に予め記憶しておいた負荷種別Nに対応する判定定数RDNを定数RDとする。ここで、RDは慣性モーメントや定格回転数などの負荷用途特有の特性を含む定数とする。さらに220ステップで不揮発性メモリ4004番地に予め記憶しておいた電動機の定格電流値KWA、221ステップで4003番地に予め記憶しておいた電動機の定格出力電圧VLTを確認する。222ステップで定数RD、容量KW、電圧VLTより判定基準値VDGを下記式1により、
VDG=F(RD、KWA、VLT) ・・・式1
負荷用途ごとの特性に合わせて作成した換算式によって求め、揮発性メモリ1006番地のVDGに判定基準値として記憶し、図4の104ステップに進む。
204ステップで、DGSが3に設定されている場合には、231ステップで指定した速度に到達した後、232ステップで電力変換装置内の交流−直流変換部31と直流−交流変換部32の間の直流電圧VNを揮発性メモリ1001番地にVNとして記憶する。233ステップで演算処理部34において出力周波数をHDQ下げるための指示を直流−交流変換部32に対して行ない、234ステップで減速した直後の直流電圧を確認する。この時の直流電圧変化の半分を235ステップで、自動設定による判定基準値ATTとして不揮発性メモリ6000番地に記憶し、236ステップでATTを揮発性メモリ1006番地のVDGに判定基準値として記憶し、指定速度を判定開始前の速度に戻し、104ステップに進む。
ステップ231から235ステップについては、脱調判定機能の選択確認処理の度に確認をしなくとも、不揮発性メモリ6000番地に既に自動設定値ATTとして0以外の値が記憶されている場合には、236ステップでATTを揮発性メモリ1006番地のVDGに判定基準値として記憶し、104ステップに進むだけでも良い。
前述の通り、直流電圧の上昇量は負荷の慣性モーメント以外にも減速量、減速の速さによって変化するため、判定基準値にも減速量、減速の速さを考慮し、下記式2のように、
VDG’=VDG×(減速量)×(減速の速さ) ・・・式2
として判定基準値VDG’としても良いが、本実施例では脱調判定を行なう条件として、運転中に一定の減速量以上であることを設けており、さらに脱調時には直流電圧の上昇がないため、減速量や減速の速さを考慮していない判定基準値VDGであっても、運転中に判定に必要な減速量があったとき、十分に脱調判定を行なうことができる。
次に、図4の107ステップの異常時処理について説明する。図7は、170ステップの異常時処理の詳細である。図7において、300ステップで異常(脱調)と判断した後、301ステップで現在の脱調検出回数を更新し、揮発性メモリ1005番地の記憶値に1を加え、302ステップでポンプを停止させる。303ステップで不揮発性メモリ7001番地に予め記憶しておいた故障信号の出力有無を選択するパラメータSLAを確認し、SLAが0に設定されている場合には306ステップで故障信号の出力なしとして307ステップに進む。SLAが1に設定されている場合には、304ステップで不揮発性メモリ7002番地に予め記憶しておいた故障信号を出力開始する脱調検出回数ALEと、揮発性メモリ1005番地に記憶されている現在の脱調検出回数CNを比較し、ALEがCN以上である場合には305ステップで故障信号を出力する。ALEがCN未満である場合には306ステップで故障信号の出力なしとして307ステップに進む。
307ステップで再始動の許可を確認する。再始動許可の条件は脱調の回数や頻度、或いは機器の特性や使用用途によって変えるのが望ましい。不揮発性メモリ8001番地に予め記憶しておいた自動再始動の許可を選択するパラメータSLRを確認し、再始動を許可する場合は308ステップに進み、許可しない場合には309ステップに進む。308ステップで不揮発性メモリ8002番地に予め記憶しておいた自動再始動の許可上限回数RSEと、揮発性メモリ1005番地に記憶されている現在の脱調検出回数CNを比較し、RSEがCN以下である場合には図4の180ステップに進み、RSEがCNを超過する場合には309ステップに進む。309ステップで手動操作にてリセット指示が入力されるのを待ち、リセット指示が入力されるまでは再起動させない。リセット指示が入力された後に、図4の180ステップに進み、運転を開始する。
再始動許可の条件に頻度を加える場合には、脱調を検出した時点で不揮発性メモリ2009番地に予め記憶しておいた脱調頻度の確認用タイマTM2の設定値を、揮発性メモリ1004番地のタイマ2残り時間TN2に記憶し、TN2をカウントダウンする。TN2が0になる前に、再び脱調を検出した場合には再起動を許可しないという条件を加えれば良い。
以上は、一定速度運転する場合の制御フローについて説明したが、自動給水装置で給水圧力一定となるよう自動運転する場合にも適用できる。すなわち、吐出側圧力の低下を検出すると図4の101ステップにおいて運転を開始し、102,103のステップの処理後、104ステップで、指定したHzNの回転数に到達した後、圧力検出手段11が検出した吐出側圧力が不揮発性メモリ9001番地に予め記憶しておいた目標圧力HSより低いか判断し、吐出側圧力が目標圧力HSより低い場合には、加速の指示を行ない、信号入力部33において信号を処理し、演算処理部34において出力周波数を変更するための指示を直流−交流変換部32に対して行ない、104ステップに戻るように制御する。また、逆に吐出側圧力が目標圧力HSより高い場合には、図4の120ステップで減速の指示を行なうように処理し、以下、図4の121ステップ以降の処理ステップを行えば良い。
以上のように、本実施例は、負荷を回転駆動する同期電動機を制御するインバータであって、同期電動機の回転数を決定する演算処理部と、演算処理部で行なう演算に必要な制御パラメータを記憶する記憶部と、同期電動機の電機子に駆動電流を供給する電力変換装置とを有し、演算処理部において、同期電動機の運転中に回転数を変化させ、電力変換装置内の直流電圧の変化量が所定値以下のとき脱調と判定するように構成する。
また、負荷を回転駆動する同期電動機と、同期電動機を制御するインバータを有する同期電動機システムであって、インバータは上記構成とする。
また、同期電動機の回転数の変化量が所定値以上である場合に脱調の判定を行なう。
これにより、脱調が発生し、負荷が回転駆動せず仕事をしない状態となった場合に、その状態を検出して速やかに電動機を再起動することで、負荷を駆動させ仕事を継続することができる。
本実施例は、負荷を駆動中の同期電動機において、一定の周期で意図的に回転数を変化させ、電動機の回転数を下げた際の電力変換装置内の直流電圧の変化により脱調を検出するものである。電力変換装置内の直流電圧の変化量が所定値を超えない場合には脱調していると判断し、電動機を再起動することで再び正常な運転を開始する。
本実施例における装置構成は、実施例1の図1、図2と同様である。
また、記憶部35の記憶内容は、図3(A)において、揮発性メモリの1003番地には脱調判定処理を行なう周期を設定するタイマの残りカウント時間TN1を記憶する。不揮発性メモリの2001番地には脱調判定基準値を自動設定する場合や、脱調判定時に回転数を減少させる減少量HDQを予め記憶しておく。2002番地には脱調判定時に回転数を下げる、その下げる速さHDSを予め記憶しておく。2003番地には脱調判定時に回転数を増加させる増加量HAQを予め記憶しておく。2004番地には脱調判定時に回転数を上げる、その上げる速さHASを予め記憶しておく。2008番地には脱調判定処理を行なう周期TM1を予め記憶しておく。その他の使用する揮発性メモリ、不揮発性メモリの内容は実施例1と同様であるため、説明を割愛する。
次に、本実施例における制御フローについて説明する。図8は、ポンプを一定の速度(一定の回転数、一定周波数)で運転する場合の本実施例における制御フローである。
図8において、101ステップにおいて運転を開始した後、102ステップで脱調判定機能の選択確認処理を行なう。脱調判定機能の選択確認処理は、実施例1と同様で、図6において説明済みであるため、その説明は割愛する。脱調判定機能の選択確認処理の後に103ステップで不揮発性メモリ2008番地に予め記憶しておいた脱調判定の周期用タイマTM1の設定値を、揮発性メモリ1003番地のタイマ1残り時間TN1に記憶し、TN1のカウントダウンを開始する。104ステップで指定したHzNの回転数に到達した後、130ステップで脱調判定機能が選択されていない場合またはタイマTN1のカウントが終了していない場合はタイマTN1のカウント終了を待ち、脱調判定機能が選択されていてタイマTN1のカウントが終了している場合は、140ステップで電力変換装置内の交流−直流変換部31と直流−交流変換部32の間の直流電圧VNを揮発性メモリ1001番地にVNとして記憶する。その後、141ステップで演算処理部34において出力周波数を、揮発性メモリ1000番地に記憶されている回転数HzNに判定時の回転数加算量HAQを加えた値に変更するための指示を直流−交流変換部32に対して行ない、判定時の回転数加算速度HASの速度で指令回転数を変更する。142ステップで演算処理部34において出力周波数をHzNに戻すための指示を直流−交流変換部32に対して行ない、判定時の回転数減算速度HDSの速度で指令回転数を変更する。144ステップで減速した直後の直流電圧を確認する。
図9に、本実施例における回転数変化に対する直流電圧変化の説明図を示す。図9に示す通り、減速前のHzNにHAQを加えた回転数で運転している時刻T3から減速を終える時刻T4までの間に直流電圧がVNから上昇する。図8の140ステップが時刻T1、141ステップが時刻T1から時刻T2の時間、142ステップが時刻T3から時刻T4の時間にあたり、144ステップが時刻T4に該当する。
図8の145ステップで、減速した直後の直流電圧からVNを減算した結果が、揮発性メモリ1006番地に予め記憶しておいたVDGより大きい場合には、回生エネルギーによる直流電圧の上昇が見られるので160ステップで正常と判断して、181ステップでタイマのカウントを再開して、104ステップに戻る。
145ステップで、減速した直後の直流電圧からVNを減算した結果が、VDG以下の場合には、脱調により回生エネルギーを得られていないと判断し、170ステップの異常時処理を行ない、再始動処理が行なわれた後に、180ステップでポンプを再始動させ、181ステップでタイマのカウントを再開して、104ステップに戻る。170ステップの異常時処理は、実施例1と同様で、図7において説明済みであるため、その説明は割愛する。
本実施例は、実施例1と同様に、負荷の慣性モーメントにより直流電圧の上昇値が異なるため、直流電圧判定基準値VDG、加算量HAQ、減算量HDQや減算速度HDSは負荷によって変えることが望ましい。
本実施例では、一切回転速度が変わらない負荷であっても、タイマ設定による一定の周期で脱調検出が可能である点で優れている。
また、本実施例においては、ポンプ用途の2乗低減トルク特性を持つ負荷(以降、2乗低減負荷と省略する)を例に説明しているが、必ずしもこの負荷に限られるものではない。
以上は、一定速度運転する場合の制御フローについて説明したが、自動給水装置で給水圧力一定となるよう自動運転する場合にも適用できる。すなわち、吐出側圧力の低下を検出すると図8の101ステップにおいて運転を開始し、102,103、104のステップの処理後、130ステップで脱調判定機能が選択されていない場合またはタイマTN1のカウントが終了していない場合は、従来の圧力一定制御を行う。すなわち、圧力検出手段11が検出した吐出側圧力が不揮発性メモリ9001番地に予め記憶しておいた目標圧力HSより低いか判断する。吐出側圧力が目標圧力HSより低い場合には加速の指示を行なう。加速の指示が行なわれると信号入力部33で信号を処理し、演算処理部34において出力周波数を変更するための指示を直流−交流変換部32に対して行ない、104ステップに戻るように制御する。また。逆に吐出側圧力が目標圧力HSより高い場合には減速の指示を行なう。減速の指示が行なわれると信号入力部33で信号を処理し、演算処理部34において出力周波数を変更するための指示を直流−交流変換部32に対して行ない、104ステップに戻るように制御する。以下、図8の140ステップ以降のポンプ一定速度運転の場合と同様の処理ステップを行えば良い。
以上のように、本実施例は、同期電動機の回転数を上げた後、下げることによって脱調の判定を行なう。
実施例2では、タイマのカウント終了後、まず回転数を上げてから、回転数を戻すことで直流電圧の上昇から脱調の有無を判断した。これに対し、本実施例では、タイマのカウント終了後、先に回転数を下げ、脱調の有無を判断してから、正常な場合は回転数を元に戻すものである。
図10は、ポンプを一定の速度(一定の回転数、一定周波数)で運転する場合の本実施例における制御フローである。
図10において、図8と異なるステップは、ステップ141,142に代えてステップ143を設けた点、また、ステップ161を設けた点であり、他は図8と同じステップであり、同じ符号を付し、その説明は省略する。
図10において、140ステップで電力変換装置内の交流−直流変換部31と直流−交流変換部32の間の直流電圧VNを揮発性メモリ1001番地にVNとして記憶する。その後、143ステップで回転数を下げ、144ステップで減速した直後の直流電圧を確認する。160ステップで正常と判断された場合には、161ステップで演算処理部34において出力周波数をHzNに戻すための指示を直流−交流変換部32に対して行ない、判定時の回転数加算速度HASの速度で指令回転数を変更する。
図11に、本実施例における回転数変化に対する直流電圧変化の説明図を示す。図11において、図10の140ステップが時刻T1、図10の143ステップが時刻T1から時刻T2の時間にあたり、図10の144ステップが時刻T2に該当する。
実施例2の特徴は、常に一定以上の圧力や流量をかける必要がある機器において、必要な仕事量を確保しつつ脱調を検出することが出来る点である。一時的に必要以上の出力を行なうことになるが、その量は微々たるものであり、出力過剰となる心配はない。それに対し、本実施例の特徴は、圧力や流量が一定値を超えてはいけない機器において、制限を超えることなく脱調を検出できる点である。これにより、過剰な圧力などによって2次側設備に負担をかける恐れがない。
以上は、一定速度運転する場合の制御フローについて説明したが、自動給水装置で給水圧力一定となるよう自動運転する場合にも適用できる。すなわち、吐出側圧力の低下を検出すると図10の101ステップにおいて運転を開始し、102,103、104のステップの処理後、130ステップで脱調判定機能が選択されていない場合またはタイマTN1のカウントが終了していない場合は、従来の圧力一定制御を行う。すなわち、圧力検出手段11が検出した吐出側圧力が不揮発性メモリ9001番地に予め記憶しておいた目標圧力HSより低いか判断する。吐出側圧力が目標圧力HSより低い場合には加速の指示を行なう。加速の指示が行なわれると信号入力部33で信号を処理し、演算処理部34において出力周波数を変更するための指示を直流−交流変換部32に対して行ない、104ステップに戻るように制御する。また。逆に吐出側圧力が目標圧力HSより高い場合には減速の指示を行なう。減速の指示が行なわれると信号入力部33で信号を処理し、演算処理部34において出力周波数を変更するための指示を直流−交流変換部32に対して行ない、104ステップに戻るように制御する。以下、図10の140ステップ以降のポンプ一定速度運転の場合と同様の処理ステップを行えば良い。
以上のように、本実施例は、同期電動機の回転数を下げた後、上げることによって脱調の判定を行なう。
本実施例は、負荷を駆動中の同期電動機において、一定の周期で意図的に回転数を変化させ、電動機の回転数を変化させる前後の負荷電流値を予め記憶しておいた負荷電流値と比較することで脱調を検出するものである。負荷電流値の実測値と記憶値の差が所定値を超えた場合には脱調していると判断し、電動機を再起動することで再び正常な運転を開始する。
本実施例における装置構成は、実施例1の図1、図2と同様である。また、記憶部35の記憶内容は、既に説明した内容は割愛し、新規事項についてのみ説明する。
図3(A)において、揮発性メモリの1002番地には脱調判定を開始する際の負荷電流値ANを記録する。また図3(B)において、不揮発性メモリの2005番地には脱調判定時に負荷電流値の実測値と記憶値の誤差として許容する範囲ADQを予め記憶しておく。2006番地には1つめの判定条件(回転数)における負荷電流値ADG1を予め記憶しておく。2007番地には2つめの判定条件(回転数)における負荷電流値ADG2を予め記憶しておく。
次に、本実施例における制御フローについて説明する。図12は、ポンプを一定の速度(一定の回転数、一定周波数)で運転する場合の本実施例における制御フローである。なお、図12は紙面の都合上、図12Aと図12Bに分割しているが、符号A、Bで連続している。以下の説明は、図12Aと図12Bをまとめて図12として説明する。
図12において、101ステップにおいて運転を開始した後、102ステップで脱調判定機能の選択確認処理を行なう。105ステップで指定した速度に到達した後、106ステップで現在の電力変換装置内の直流−交流変換部32の出力側の電流値である二次側の負荷電流値を不揮発性メモリ2006番地に判定基準値ADG1として記憶する。その後、107ステップで演算処理部34において出力周波数をHDQ下げるための指示を直流−交流変換部32に対して行ない、109ステップで電力変換装置内の直流−交流変換部32の二次側の負荷電流値を不揮発性メモリ2007番地に判定基準値ADG2として記憶し、110ステップで指定速度を判定開始前の速度に戻す。
ステップ106から110ステップについては、運転開始の度に確認をしなくとも、不揮発性メモリ2006番地、2007番地に既に判定基準値ADG1,ADG2として0以外の値が記憶されている場合には省略し、111ステップに進むだけでも良い。
111ステップで不揮発性メモリ2008番地に予め記憶しておいた脱調判定の周期用タイマTM1の設定値を、揮発性メモリ1003番地のタイマ1残り時間TN1に記憶し、TN1のカウントダウンを開始する。112ステップで指定した速度に到達した後、130ステップで脱調判定機能が選択されていない場合またはタイマTN1のカウントが終了していない場合はタイマTN1のカウント終了を待ち、脱調判定機能が選択されていてタイマTN1のカウントが終了している場合は、146ステップで現在の電力変換装置内の直流−交流変換部32の二次側の負荷電流値を揮発性メモリ1002番地に負荷電流値ANとして記憶する。
147ステップでANとADG1の値を比較し、その差が不揮発性メモリ2005番地に予め記憶しておいた脱調判定時に負荷電流値の実測値と記憶値の誤差として許容する範囲ADQ以内である場合には148ステップに進み、ADQを超えている場合には170ステップの異常時処理を行ない、再始動処理が行なわれた後に、180ステップでポンプを再始動させ、181ステップでタイマのカウントを再開して、112ステップに戻る。
図13に、本実施例における回転数変化に対する負荷電流変化の説明図を示す。図13において、図12の147ステップが時刻T1に該当する。
図12の148ステップで演算処理部34において出力周波数をHDQ下げるための指示を直流−交流変換部32に対して行ない、150ステップで指定した速度に到達した後、151ステップで電力変換装置内の直流−交流変換部32の二次側の負荷電流値を揮発性メモリ1002番地に負荷電流値ANとして記憶する。
図12の152ステップでANとADG2の値を比較し、その差が不揮発性メモリ2005番地に予め記憶しておいた脱調判定時に負荷電流値の実測値と記憶値の誤差として許容する範囲ADQ以内である場合には160ステップで正常と判断して、162ステップで指定速度を判定開始前の速度に戻す。181ステップでタイマのカウントを再開して、112ステップに戻る。ADQを超えている場合には170ステップの異常時処理を行ない、再始動処理が行なわれた後に、180ステップでポンプを再始動させ、181ステップでタイマのカウントを再開して、112ステップに戻る。152ステップが図13の時刻T3に該当する。
なお、102ステップ脱調判定機能の選択確認処理、及び、170ステップの異常時処理は、実施例1と同様で図6及び図7で説明済みであるため、その説明は割愛する。
図14は2乗低減負荷の場合の正常電流と脱調時の負荷電流の関係の一例である。図14に示すように、脱調している状態においても電動機には誘起電圧分の電流が流れ、その電流値は正常回転状態での電流値と同等である場合もある。従って、事前に予測し、設定をすることは難しいが、本実施例を用いることで正常回転状態の電流値と脱調状態での電流値の差を明確にし、簡易的に脱調を検出することができる。
本実施例は、予め電動機の脱調時において誘起電圧のみによって流れる電流と用途の正常負荷時に流れる電流の関係が判っている場合は、負荷の特性を利用して脱調を判断することができる例について説明する。
図14は2乗低減負荷の場合の正常電流と脱調時の負荷電流の関係であるが、回転数N1においては正常時の負荷電流より脱調時の電流の方が大きくなり、回転数N2においては正常時の負荷電流より脱調時の電流の方が小さくなる。また、回転数N3においては正常時の負荷電流と脱調時の負荷電流は同一となる。ここで、正常時の負荷電流は、例えば、この2乗低減負荷がポンプ用途であった場合は、ポンプの種類・容量やバルブの開度等の設置現場の状況によって負荷電流の特性曲線は異なる。また、脱調時の電流については永久磁石同期電動機の誘起電圧や巻線抵抗等によってその特性が異なる。従って、ポンプ等の用途機器の種類、設置現場の負荷状況、同期電動機の種類が異なる場合、図14のN1、N2、N3は変化する。
図15は定トルク負荷の場合の正常電流と脱調時の負荷電流の関係である。回転数N4においては正常時の負荷電流より脱調時の電流の方が小さくなり、回転数N5においては正常時の負荷電流より脱調時の電流の方が大きくなる。また、回転数N6においては正常時の負荷電流と脱調時の負荷電流は同一となる。用途機器の種類、設置現場の負荷状況、同期電動機の種類が異なる場合、図15のN4、N5、N6は変化する。
図16は定出力負荷の場合の正常電流と脱調時の負荷電流の関係である。回転数N7においては正常時の負荷電流より脱調時の電流の方が小さくなり、回転数N8においては正常時の負荷電流より脱調時の電流の方が大きくなる。また、回転数N9においては正常時の負荷電流と脱調時の負荷電流は同一となる。用途機器の種類、設置現場の負荷状況、同期電動機の種類が異なる場合、図16のN7、N8、N9は変化する。
図14、図15、図16特性を利用することで、図17のフローチャートに従って脱調を検出することができる。
図17は、正常時の負荷電流と脱調時の電流の差を利用した脱調検出の制御フローである。図17において、101ステップで運転開始後に、102ステップで脱調判定機能の選択確認を行い、201ステップで予め設定した負荷特性の選択判別で2乗低減負荷、定トルク負荷、定出力負荷の判定を行う。次に202、203、204ステップにおいて、判定した負荷特性に応じて脱調時の電流と正常時の負荷電流が等しくなる速度(回転数、周波数)HzCの判定を行う。
202ステップの2乗低減負荷の場合において、例えばポンプ等ではバルブの開度等が確定した後であればHzCは一定値とすることもできる。または、運転開始後の加速中に回転数と電流の実測からHzCを測定して保存してもよい。
203ステップの定トルク負荷の場合、例えば圧縮機等であれば圧力によってHzCが決まるため、予め定格圧力などの特定の圧力におけるHzCの一定値を保持しておき、その圧力のときのみ判定することで脱調が検出できる。または、圧力を入力変数としたHzCの算出式を使用することもできる。この場合は、現在の圧力におけるHzCによって常時脱調の検出ができる。
204ステップの定出力負荷の場合、例えば糸巻機等であれば糸種によりHzCを一定値とすることもできる。または、運転開始後の加速中に回転数と電流の実測からHzCを測定して保存してもよい。その後、251、252ステップで脱調の判定を行う。
2乗低減負荷の251ステップの場合、現在の回転数HzNが正常時の負荷電流と脱調時の負荷電流は同一となるHzCよりも大きく、かつ、現在の負荷電流値ANが図14における脱調時の電流値よりも大きい場合は正常と判断し、小さい場合は脱調と判断する。実際の判定にあたっては、検出誤差等を考慮し判定値に一定程度の幅を持たせる。
定トルク負荷と低出力負荷の252ステップの場合、現在の回転数HzNが正常時の負荷電流と脱調時の負荷電流は同一となるHzCよりも大きく、かつ、現在の負荷電流値ANがそれぞれ図15、図16における脱調時の電流値よりも小さい場合は正常と判断し、大きい場合は脱調と判断する。異常と判断された場合は170ステップの異常時処理を行う。
本実施例では、実施例5と同様に、予め電動機の脱調時において誘起電圧のみによって発生する電圧と正常運転時に発生する電圧との関係が分かっている場合において、脱調を判断することができる例について説明する。
図18に、システム構成の具体例として圧縮機に適用した例を示す。電動機20は負荷側の圧縮機本体40と機械的に接続され、圧縮機本体40は電動機20から動力を得て空気を圧縮する。インバータ30は制御部50からの指令を受けて電動機20を制御する。制御部50は、I/F60を介してインバータ30からの情報や圧縮機本体からの情報を受けとり、それぞれに必要な指令を出力する。動作の一例としては、制御部50は圧縮機本体40から出力している空気圧の値を受け取り、ユーザの所望する空気圧と比較し、インバータ30に対して電動機20を制御するための周波数の値を指令として出力する。
なお、図18ではI/F60がネットワーク70を介して制御部50と接続されている例を示すが、両者がネットワークを介さずに接続されていても良い。また、制御部50がI/F60を介さずに直接、圧縮機本体40やインバータ30と接続されていても良い。
図19は負荷電圧(出力電圧)の正常時電圧と脱調時電圧の関係である。正常時は負荷の状態により高負荷時には低負荷時よりも一般に電圧値は大きくなり、正常時電圧は負荷の状態により一定の幅をもって回転数に比例して分布する。また。脱調時はトルク電流や無負荷電流が正常に検出できなくなり出力電圧が正常時より低くなる。
図2において、検出部(図示せず)が出力電流を検出し、演算処理部34へ検出した出力電流値を送る。演算処理部34は出力電流値をもとに出力電圧値を計算する。この出力電圧値と図19に例示した特性を利用し、正常時の電圧分布と脱調時の電圧の間に回転数に比例した閾値電圧を設定することで脱調の判定を行うことができる。
図20は脱調検出を実施する際の処理の流れを示す。インバータが電動機の運転を開始(S101)した後、301ステップでは演算処理部がその回転数における出力電圧を算出する。次に302ステップでは、演算処理部において、出力電圧値が閾値以上か下回っているかを判断し、出力電圧値が閾値を下回っていれば脱調状態と判定して異常時処理を行い、閾値以上であれば正常と判断して運転を継続する。
異常時処理の例としては、インバータ30から制御部へ脱調していることを示す信号を送信することが考えられる。あるいは、脱調を示す信号を送信した後、制御部から脱調から回復する指令を受け取り、当該指令に基づいて電動機の運転を停止する或いは停止後に再始動する制御を実施しても良い。また、制御部は脱調を示す信号を受け取った後、外部のディスプレイに脱調していることを示すアイコンを表示してユーザに注意喚起しても良い。
正常時の出力電圧分布は電動機定数や用途の負荷の幅によって異なるため、その用途において正常時の高負荷時の出力電圧と低負荷時の出力電圧を実測して、回転数に比例した脱調判定を行う閾値を決めることが望ましい。
尚、上記実施例では、直流電圧による脱調検出方法、正常負荷電流と脱調電流の差による脱調検出方法および正常負荷電圧と脱調電圧の差による脱調検出方法について説明したが、これらは併用して使用することもできる。
以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
10:ポンプ、20:電動機、30:インバータ、11:圧力検出手段、31:交流−直流変換部、32:直流−交流変換部、33信号入力部、34:演算処理部、35:記憶部、40:圧縮機本体、50:制御部、60:I/F、70:ネットワーク
次に、図4の170ステップの異常時処理について説明する。図7は、170ステップの異常時処理の詳細である。図7において、300ステップで異常(脱調)と判断した後、301ステップで現在の脱調検出回数を更新し、揮発性メモリ1005番地の記憶値に1を加え、302ステップでポンプを停止させる。303ステップで不揮発性メモリ7001番地に予め記憶しておいた故障信号の出力有無を選択するパラメータSLAを確認し、SLAが0に設定されている場合には306ステップで故障信号の出力なしとして307ステップに進む。SLAが1に設定されている場合には、304ステップで不揮発性メモリ7002番地に予め記憶しておいた故障信号を出力開始する脱調検出回数ALEと、揮発性メモリ1005番地に記憶されている現在の脱調検出回数CNを比較し、ALEがCN以上である場合には305ステップで故障信号を出力する。ALEがCN未満である場合には306ステップで故障信号の出力なしとして307ステップに進む。

Claims (9)

  1. 同期電動機と、
    前記同期電動機を駆動する電力変換装置を有するインバータと、
    前記同期電動機に接続される負荷とを備える電動機システムであって、
    前記電力変換装置内の直流電圧に基づいて、前記同期電動機の脱調を判定する電動機システム。
  2. 請求項1に記載の電動機システムであって、
    前記インバータが前記同期電動機の運転中に回転数を変化させ、前記直流電圧の変化量が所定の値以下のときに脱調と判定するものである電動機システム。
  3. 請求項2に記載の電動機システムであって、
    前記インバータが変化させる回転数の変化量が所定値以上であるものである電動機システム。
  4. 同期電動機と、
    前記同期電動機を駆動する電力変換装置を有するインバータと、
    前記同期電動機に接続される負荷とを備える電動機システムであって、
    前記電力変換装置と前記同期電動機との間の出力電流に基づいて、前記同期電動機の脱調を判定する電動機システム。
  5. 請求項4に記載の電動機システムであって、
    前記インバータが、前記同期電動機の運転中に回転数を変化させ、前記出力電流の変化量が所定の値を超えたときに脱調と判定するものである電動機システム。
  6. 請求項5に記載の電動機システムであって、
    前記インバータが変化させる回転数の変化量が所定値以上であるものである電動機システム。
  7. 同期電動機と、
    前記同期電動機を駆動する電力変換装置を有するインバータと、
    前記同期電動機に接続される負荷とを備える電動機システムであって、
    前記電力変換装置と前記同期電動機との間の出力電圧に基づいて、前記同期電動機の脱調を判定する電動機システム。
  8. 請求項7に記載の電動機システムであって、
    前記出力電圧が閾値よりも低い場合に脱調と判定する電動機システム。
  9. 請求項7に記載の電動機システムであって、
    前記インバータが脱調と判定した場合、前記同期電動機を停止させるものである電動機システム。
JP2018511892A 2016-04-13 2017-01-31 電動機システム Active JP6545900B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016080215 2016-04-13
JP2016080215 2016-04-13
PCT/JP2017/003432 WO2017179269A1 (ja) 2016-04-13 2017-01-31 電動機システム

Publications (2)

Publication Number Publication Date
JPWO2017179269A1 true JPWO2017179269A1 (ja) 2018-11-22
JP6545900B2 JP6545900B2 (ja) 2019-07-17

Family

ID=60041651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018511892A Active JP6545900B2 (ja) 2016-04-13 2017-01-31 電動機システム

Country Status (6)

Country Link
US (1) US10644638B2 (ja)
EP (1) EP3444942B1 (ja)
JP (1) JP6545900B2 (ja)
CN (1) CN108575115B (ja)
TW (1) TWI650929B (ja)
WO (1) WO2017179269A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220780A1 (ja) * 2020-04-30 2021-11-04 株式会社島津製作所 分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087154A (ja) * 2004-09-14 2006-03-30 Toshiba Corp インバータ駆動ブロワ制御装置
CN103133320A (zh) * 2013-02-25 2013-06-05 长春工业大学 基于转矩角控制的空压机变转速调节方法
CN103475296A (zh) * 2013-09-11 2013-12-25 四川长虹电器股份有限公司 永磁同步直流无刷电机低频控制方法
WO2015097734A1 (ja) * 2013-12-24 2015-07-02 株式会社日立産機システム 電力変換装置
JP2015133792A (ja) * 2014-01-10 2015-07-23 ダイキン工業株式会社 電動機の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364004A (en) * 1980-01-29 1982-12-14 Bourbeau Frank J Self-controlled polyphase synchronous motor drive system
JPH0417598A (ja) 1990-05-11 1992-01-22 Asmo Co Ltd ステッピングモータの駆動方法
JP3590541B2 (ja) 1999-03-25 2004-11-17 三菱電機株式会社 直流ブラシレスモータの駆動装置
JP2005204431A (ja) * 2004-01-16 2005-07-28 Matsushita Electric Ind Co Ltd モータ駆動装置
JP4771998B2 (ja) 2006-09-05 2011-09-14 三菱電機株式会社 電動機の駆動装置
US7893638B2 (en) * 2006-11-30 2011-02-22 Denso Corporation Apparatus and method for driving rotary machine
JP2010541517A (ja) * 2007-12-10 2010-12-24 パナソニック株式会社 インバータ制御装置とそれを用いたモータ駆動装置、電動圧縮機および家庭用電気機器
JP5130031B2 (ja) 2007-12-10 2013-01-30 株式会社日立製作所 永久磁石モータの位置センサレス制御装置
US8508165B2 (en) * 2008-08-01 2013-08-13 Mitsubishi Electric Corporation AC-DC converter, method of controlling the same, motor driver, compressor driver, air-conditioner, and heat pump type water heater
JP2010259184A (ja) 2009-04-23 2010-11-11 Panasonic Corp インバータ制御装置と電動圧縮機および家庭用電気機器
JP5422527B2 (ja) 2010-09-09 2014-02-19 株式会社日立カーエンジニアリング ブラシレスモータ制御装置及びブラシレスモータシステム
JP6357649B2 (ja) 2014-08-21 2018-07-18 パナソニックIpマネジメント株式会社 直流電動機駆動装置とそれを搭載した天井埋込型換気装置
JP6357648B2 (ja) * 2014-08-21 2018-07-18 パナソニックIpマネジメント株式会社 直流電動機駆動装置とそれを搭載した天井埋込型換気装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087154A (ja) * 2004-09-14 2006-03-30 Toshiba Corp インバータ駆動ブロワ制御装置
CN103133320A (zh) * 2013-02-25 2013-06-05 长春工业大学 基于转矩角控制的空压机变转速调节方法
CN103475296A (zh) * 2013-09-11 2013-12-25 四川长虹电器股份有限公司 永磁同步直流无刷电机低频控制方法
WO2015097734A1 (ja) * 2013-12-24 2015-07-02 株式会社日立産機システム 電力変換装置
JP2015133792A (ja) * 2014-01-10 2015-07-23 ダイキン工業株式会社 電動機の制御装置

Also Published As

Publication number Publication date
TWI650929B (zh) 2019-02-11
EP3444942A1 (en) 2019-02-20
JP6545900B2 (ja) 2019-07-17
TW201737612A (zh) 2017-10-16
CN108575115A (zh) 2018-09-25
EP3444942B1 (en) 2021-03-10
US20190109557A1 (en) 2019-04-11
US10644638B2 (en) 2020-05-05
CN108575115B (zh) 2022-04-05
EP3444942A4 (en) 2019-12-11
WO2017179269A1 (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6134800B2 (ja) ポンプシステム
JP5984524B2 (ja) モータ制御装置
JP5836859B2 (ja) モータ制御装置、及びこれを用いたモータ駆動装置、圧縮機、冷凍装置、空気調和機、並びにモータ制御方法
JP2006141198A (ja) ブラシレス電気モータの転流角の自動調整方法及び調整装置
WO2017179269A1 (ja) 電動機システム
JPWO2009142264A1 (ja) 電動ポンプ装置
JP2020080647A (ja) ブラシレスdcモータ電圧制御装置およびそれを搭載した送風装置
AU2018226492B2 (en) Power-loss ridethrough system and method
JP2008070075A (ja) 空気調和機
JP4436651B2 (ja) 冷凍サイクル装置
US10333451B2 (en) Controller and method for detecting a blocked state of an electrical machine
JP6079353B2 (ja) Dcブラシレスモータの制御装置
JP5618899B2 (ja) モータ制御装置および空気調和機
JP2016046874A (ja) 直流電動機駆動装置とそれを搭載した天井埋込型換気装置
CN113740727B (zh) 电机极对数检测方法、检测装置以及电机控制器
KR101201512B1 (ko) 인버터 압축기의 운전 제어 방법
JP3222337U (ja) モータ制御装置
WO2021214878A1 (ja) 電動機制御装置およびこれを備えた空気調和装置
JP4904864B2 (ja) 交流電動機駆動システム
JP6319337B2 (ja) モータ駆動制御装置及び空気調和機の室内機
JP5510406B2 (ja) ブラシレスdcモータの制御装置およびそれを用いた送風装置
CN115864936A (zh) 电机调速控制方法、装置、系统及计算机可读存储介质
WO2016194393A1 (ja) 電力変換装置および電力変換装置の制御方法
JP2020078096A (ja) 電力変換装置
JP2011012927A (ja) 流体送出装置の制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R150 Certificate of patent or registration of utility model

Ref document number: 6545900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150