WO2015096539A1 - 空调系统及空调系统的控制方法 - Google Patents

空调系统及空调系统的控制方法 Download PDF

Info

Publication number
WO2015096539A1
WO2015096539A1 PCT/CN2014/088670 CN2014088670W WO2015096539A1 WO 2015096539 A1 WO2015096539 A1 WO 2015096539A1 CN 2014088670 W CN2014088670 W CN 2014088670W WO 2015096539 A1 WO2015096539 A1 WO 2015096539A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
conditioning system
air conditioning
solenoid valve
suction port
Prior art date
Application number
PCT/CN2014/088670
Other languages
English (en)
French (fr)
Inventor
李绍斌
苏玉海
刘群波
宋培刚
黄春
刘合心
陈泽彬
傅英胜
倪毅
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to ES14875380T priority Critical patent/ES2717515T3/es
Priority to JP2016542927A priority patent/JP6498677B2/ja
Priority to EP14875380.9A priority patent/EP3091311B1/en
Publication of WO2015096539A1 publication Critical patent/WO2015096539A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/074Details of compressors or related parts with multiple cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to the field of air conditioning, and in particular to an air conditioning system and a control method for an air conditioning system.
  • FIG. 1 An existing air conditioning system is shown in FIG. 1 , and includes a condenser 10 , an evaporator 20 , a variable-capacity inverter compressor 30 , a throttle device 40 , a four-way valve 60 , a solenoid valve 70 , and a check valve 50 .
  • the compressor 30 is switched by the operation of the check valve 50 and the solenoid valve 70.
  • the solenoid valve 70 When the solenoid valve 70 is opened, the high-pressure refrigerant on the exhaust side flows to the suction port of the lower cylinder of the compressor, so that the suction end of the lower cylinder forms a high pressure, and the variable-capacity inverter compressor 30 realizes single-cylinder operation; when the solenoid valve 70 is closed, The low-pressure refrigerant of the gas-liquid separator flows to the suction port of the lower cylinder, so that the suction port of the lower cylinder forms a low pressure, and the variable-capacity inverter compressor is switched to the double-cylinder operation.
  • the invention aims to provide an air conditioning system and a control method of the air conditioning system, so as to solve the problem that the prior art air conditioning system is prone to switching failure during the conversion process of the compressor single cylinder operation and the twin cylinder operation.
  • an air conditioning system including a two-cylinder variable capacity compressor having an upper cylinder intake port, a lower cylinder intake port and an exhaust port;
  • the air conditioning system further includes a first electromagnetic valve, one end of which is connected to the exhaust port of the two-cylinder variable-capacity compressor, and the other end is connected to the lower cylinder suction port of the one-way valve and the two-cylinder variable-capacity compressor respectively; the one-way valve One end is connected to the first electromagnetic valve, and the other end is connected to the inner cavity of the gas-liquid separator;
  • the air conditioning system further includes a second electromagnetic valve disposed at the lower cylinder suction port of the two-cylinder variable capacity compressor to the gas-liquid separator In the pipeline of the import.
  • a capillary tube is disposed in series with the second electromagnetic valve.
  • a temperature sensor is further disposed in the pipeline of the lower cylinder suction port.
  • a high pressure sensor is disposed in the pipeline of the exhaust port.
  • a control method for an air conditioning system which is applied to the above air conditioning system, comprising: step 10, when a two-cylinder variable-capacity compressor is in a single-cylinder operating state and there is a demand to switch to a two-cylinder operation In the state, connect the lower cylinder suction port of the two-cylinder variable capacity compressor to the pipeline at the inlet of the gas-liquid separator.
  • step 10 the second solenoid valve opens the pipeline connecting the lower cylinder suction port of the two-cylinder variable-capacity compressor to the inlet of the gas-liquid separator, and then closes the first solenoid valve after the time ts.
  • the method further includes, in step 20, when the two-cylinder variable-capacity compressor is in the single-cylinder operating state for more than the time t1, comparing the temperature of the lower cylinder suction port T of the two-cylinder variable-capacity compressor and the two-cylinder change after each time t2 displacement compressor exhaust port temperature high T, if T ⁇ T under high duration of the second solenoid valve opens after the time t3 off.
  • step 10 further includes the second solenoid valve being closed after the first solenoid valve is closed for t4.
  • a drain bypass line connection with a solenoid valve is added between the cylinder suction port and the inlet of the gas-liquid separator under the double cylinder variable capacity compressor, and the lower cylinder is sucked by the liquid discharge bypass
  • the high-pressure refrigerant on the gas side is released to the gas-liquid separator to optimize the stability of the system when the single-cylinder operation is switched to the two-cylinder operation.
  • Figure 1 shows a prior art variable displacement inverter compressor air conditioning system
  • Figure 2 shows an air conditioning system of the present invention
  • Fig. 3 is a flow chart showing a control method of the air conditioning system of the present invention.
  • a double-drain bypass line connection is added to the inlet of the cylinder to the inlet of the gas-liquid separator under the two-cylinder variable-capacity compressor, and the drain bypass pipe is connected.
  • the road mainly includes a capillary tube, a second electromagnetic valve 72, and a high pressure sensor 100 is added on the exhaust side of the two-cylinder variable-capacity compressor to detect a high condensation temperature T, and a temperature sensor 90 is added at the lower cylinder suction port as a detecting tool to detect the lower cylinder suction. air inlet temperature T below.
  • the second solenoid valve 72 of the drain bypass line is opened to perform the action of releasing pressure and draining.
  • the liquid refrigerant of the connection pipe between the lower cylinder of the two-cylinder variable-capacity compressor 30 and the first electromagnetic valve 71 can be discharged to the gas-liquid separator by automatic detection.
  • the single-cylinder operation is switched to the two-cylinder operation, the high-pressure refrigerant on the suction side of the lower cylinder is discharged to the gas-liquid separator through the liquid discharge bypass, so that the single-cylinder operation is successfully switched to the two-cylinder operation, and the system of the switching operation is improved. stability.
  • the air conditioning system of the present invention comprises a two-cylinder variable-capacity compressor 30 and a gas-liquid separator.
  • the two-cylinder variable-capacity compressor 30 leads three ways: an upper cylinder suction port, a lower cylinder suction port and an exhaust port. .
  • the two-cylinder variable-capacity compressor 30, the first heat exchanger 10, the throttle assembly 40, and the second heat exchanger 20 are connected in a loop.
  • the air conditioning system further includes a four-way valve 60, a first solenoid valve 71, and a one-way valve 50.
  • the first heat exchanger 10 and the second heat exchanger 20 are selectively connected to the two-cylinder variable-capacity compressor 30 through a four-way valve 60, one end of which is connected to the exhaust port of the two-cylinder variable-capacity compressor 30, and the other end
  • the one-way valve 50 and the lower cylinder suction port are respectively connected; one end of the one-way valve 50 is connected to the pipeline of the first electromagnetic valve 71 to the suction port of the lower cylinder, and the other end is connected to the inner cavity of the gas-liquid separator, one-way
  • the allowable flow direction of the valve 50 is from the gas-liquid separator to the lower cylinder suction port.
  • the invention adds a second electromagnetic valve 72 and a branch pipe connected in series with the capillary tube, and is connected between the pipeline of the lower cylinder suction port of the compressor and the pipeline of the gas-liquid separator inlet of the gas-liquid separator.
  • the role of the capillary in the drain bypass circuit is to control the flow of the drain.
  • the capillary flow rate that is too thick and too short will be too large, causing the lower cylinder pressure to drop. If the pressure is insufficient, the single cylinder operation will not last, and the operation will be switched to the two cylinder operation; the capillary flow rate which is too thin and too long will be too small, resulting in the discharge speed being too slow.
  • the draining operation cannot be completed within the set time; therefore, the drain bypass circuit requires a moderate capillary.
  • control method of the air conditioning system of the present invention includes:
  • the second solenoid valve 72 is opened for a period of ts and then the first solenoid valve 71 is closed, and the first solenoid valve 71 is closed. After the time, the second solenoid valve 72 is closed to achieve a pressure relief effect.
  • the ts time in step (2) is related to the outdoor ambient temperature, for example as follows: (A and B are preset temperature constants, which can be determined experimentally.)
  • the invention utilizes a two-cylinder or two-cylinder inverter compressor with a gas-liquid separator combined with a variable-capacity technology to expand the adjustment range of the system cooling/heating capacity.
  • the second solenoid valve and the bypass branch of the capillary tube mainly serve to: when the first solenoid valve needs to be closed, the second solenoid valve opens to lower the pressure of the pipeline between the lower cylinder suction port and the first solenoid valve to and The low pressure is consistent to ensure that the compressor is quickly switched to a double cylinder after the first solenoid valve is closed.
  • the temperature detected by the pipeline temperature sensor of the suction port under the compressor and the high-pressure temperature detected by the high-pressure sensor can determine whether the suction port is effluent, and when the effusion is judged, it is opened.
  • the second solenoid valve can prevent the liquid hammer from occurring when the twin cylinder is switched after long-term operation of the compressor single cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统,包括双缸变容压缩机(30),双缸变容压缩机(30)具有上气缸吸气口、下气缸吸气口和排气口。该空调系统还包括第一电磁阀(71),第一电磁阀(71)一端连接双缸变容压缩机(30)的排气口,另一端分别连接单向阀(50)和双缸变容压缩机的下气缸吸气口;单向阀(50)的一端连接第一电磁阀(71),另一端接入气液分离器的内腔。空调系统还包括第二电磁阀(72),第二电磁阀(72)设置在连接双缸变容压缩机的下气缸吸气口至气液分离器进口的管路中。下气缸吸气口至气液分离器进口之间增加的具有电磁阀的排液旁通管路可将下气缸吸气侧的高压冷媒泄压至气液分离器,从而优化单缸向双缸运行切换时系统的稳定性。还公开了一种空调系统的控制方法。

Description

空调系统及空调系统的控制方法 技术领域
本发明涉及空调领域,具体而言,涉及一种空调系统及空调系统的控制方法。
背景技术
现有一种空调系统如图1所示,包括冷凝器10、蒸发器20、变容变频压缩机30、节流器件40、四通阀60、电磁阀70、单向阀50,其中变容变频压缩机30是通过单向阀50与电磁阀70的动作进行切换的。当电磁阀70打开时,排气侧的高压冷媒流通至压缩机下气缸吸气口,使下气缸吸气端形成高压,变容变频压缩机30实现单缸运行;当电磁阀70关闭时,气液分离器的低压冷媒流通至下气缸吸气口,使下气缸吸气口形成低压,变容变频压缩机切换至双缸运行。
上述现有技术存在的不足之处:
(1)、当单缸运行切换至双缸或多缸运行时,电磁阀关闭,但是由于下气缸吸气口至电磁阀的连接管处仍然处于高压状态,由于存在压力差,单向阀处于截止状态,汽分的低压冷媒无法流通至下气缸,容易以致单缸运行切换至双缸运行时系统不稳定。
(2)、单缸运行时,压缩机下气缸至电磁阀间的连接管为高压侧,但是由于冷媒处于静止状态,随着环境温度换热而降温,时间较长时,冷媒容易冷凝成液态,此时若切换至双缸运行时,液态冷媒就会流向下气缸,使下气缸引起液击,给压缩机带来损害。
(3)、为了解决前述(1)中的问题,若在下气缸吸气口与电磁阀的连接管处增加一根毛细管连接至汽分进口,单缸运行切换至双缸运行时,下气缸吸气口的高压冷媒通过毛细管泄压至汽分进口,使下气缸吸气口为低压冷媒,切换得以容易成功,但是由于毛细管为长期流通,循环冷媒会因此减少,以致换热量有损失。
发明内容
本发明旨在提供一种空调系统及空调系统的控制方法,以解决现有技术中的空调系统进行压缩机单缸运行与双缸运行的转换过程中容易出现切换失败的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种空调系统,包括双缸变容压缩机,双缸变容压缩机具有上气缸吸气口,下气缸吸气口和排气口;空调系统还包括第一电磁阀,第一电磁阀一端连接双缸变容压缩机的排气口,另一端分别连接单向阀和双缸变容压缩机的下气缸吸气口;单向阀的一端连接第一电磁阀,另一端接入气液分离器的内腔;空调系统还包括,第二电磁阀,设置在连接双缸变容压缩机的下气缸吸气口至气液分离器进口的管路中。
进一步地,还包括,毛细管,与第二电磁阀串联设置。
进一步地,还包括,温度传感器,设置在下气缸吸气口的管路中。
进一步地,还包括,高压传感器,设置在排气口的管路中。
根据本发明的另一方面,提供了一种空调系统的控制方法,,应用于上述空调系统,包括:步骤10,当双缸变容压缩机处于单缸运行状态且有需求切换至双缸运行状态时,连通双缸变容压缩机的下气缸吸气口至气液分离器进口的管路。
进一步地,步骤10中,由第二电磁阀打开连通双缸变容压缩机的下气缸吸气口至气液分离器进口的管路,经时间ts后再关闭第一电磁阀。
进一步地,还包括,步骤20,当双缸变容压缩机处于单缸运行状态超过时间t1后,每经过t2时间比较双缸变容压缩机的下气缸吸气口温度T和双缸变容压缩机的排气口的温度T,如果T≤T则第二电磁阀打开持续t3时间后关闭。
进一步地,步骤10中的时间ts与室外环境温度TW相关,当TW≥A℃时,ts=t5;当B℃≤TW<A℃时,ts=t6;当TW<B℃时,ts=t7;其中t5、t6、t7为预设时间常数,A、B为预设温度常数。
进一步地,步骤10还包括:第一电磁阀关闭t4时间后第二电磁阀关闭。
应用本发明的技术方案,在双缸变容压缩机下气缸吸气口至气液分离器进口之间增加一路具有电磁阀的排液旁通管路连接,通过排液旁通把下气缸吸气侧的高压冷媒泄压至气液分离器,优化单缸运行向双缸运行切换时系统的稳定性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了现有技术中的变容变频压缩机空调系统;
图2示出了本发明的空调系统;以及
图3示出了本发明的空调系统的控制方法的流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
参见图2所示,本发明在现有技术的基础上,在双缸变容压缩机下气缸吸气口至气液分离器进口增加一路排液旁通管路连接,该排液旁通管路主要包括毛细管、第二电磁阀72,并且在双缸变容压缩机排气侧增加高压传感器100以检测冷凝温度T、下气缸吸气口处增加温度传感器90作为检测工具检测下气缸吸气口温度T。在特定情况下打开排液旁通管路的第二电磁阀72,以进行泄压与排液的动作。当下气缸吸气口处于积液状态时,通过自动检测,可以把双缸变容压缩机30下气缸至第一电磁阀71间的连接管的液态冷媒排至气液分离器。在单缸运行切换至双缸运行时,通过排液旁通把下气缸吸气侧的高压冷媒泄压至气液分离器,使单缸运行成功切换至双缸运行,提高切换运行时系统的稳定性。
参见图2所示,本发明空调系统包括双缸变容压缩机30及气液分离器,双缸变容压缩机30引出三路:上气缸吸气口,下气缸吸气口和排气口。双缸变容压缩机30、第一热交换器10、节流组件40和第二热交换器20连接成回路。空调系统还包括四通阀60、第一电磁阀71、单向阀50。第一换热器10和第二换热器20通过四通阀60选择性连通双缸变容压缩机30,第一电磁阀71一端连接双缸变容压缩机30的排气口,另一端分别连接单向阀50和下气缸吸气口;单向阀50的一端连接到第一电磁阀71通往下气缸吸气口的管路,另一端接入气液分离器内腔,单向阀50的允许流向为从气液分离器到下气缸吸气口。本发明增加了一路第二电磁阀72以及与之串联的毛细管组成的支路,连接在压缩机下气缸吸气口的管路及气液分离器的气液分离器进口的管路之间。
排液旁通回路中毛细管的作用是控制排液的流量。过粗过短的毛细管流量会过大,引起下气缸压力下降,压力不足会使单缸运行不能持续,而转换至双缸运行;过细过长的毛细管流量会过小,导致排液速度过慢,在制定时间内不能完成排液动作;所以排液旁通回路需要一根适中的毛细管。
参见图3所示,本发明的空调系统的控制方法包括:
(1)当双缸变容压缩机30处于单缸运行时,且双缸变容压缩机30单缸运行时间超过t1时间后,每经过t2时间比较T和T,如果T≤T则判断机组下吸气口管路积液,则第二电磁阀72打开持续t3时间后关闭,以达到间隔排液作用。
(2)当双缸变容压缩机30处于单缸运行,且有需求切换至双缸运行时,第二电磁阀72打开ts时间后再关闭第一电磁阀71,第一电磁阀71关闭t4时间后第二电磁阀72关闭,以达到泄压作用。
(3)由于不同室外环境温度TW的积液情况不一样,步骤(2)中的ts时间与室外环境温度相关,举例如下:(A、B为预设温度常数,可经过实验确定。)
a)当TW≥A℃时,ts=t5;
b)当B℃≤TW<A℃时,ts=t6;
c)当TW<B℃时,ts=t7。(以上t1、t2、t3、t4、t5、t6、t7为预设时间,可经过实验确定。)
本发明是利用带有气液分离器的双缸或双缸以上的变频压缩机结合变容技术来扩大系统制冷/制热量的调节范围。第二电磁阀以及毛细管组成的旁通支路作用主要是:当第一电磁阀需要关闭时,第二电磁阀打开将下气缸吸气口以及第一电磁阀之间管路的压力降到和低压一致,以保证压缩机在第一电磁阀关闭后迅速切换成双缸。当机组处于单缸运行的时候,通过压缩机下吸气口的管道感温器检测的温度以及高压传感器检测的高压温度可以判断下吸气口是否积液,当判断到积液的时候就开第二电磁阀一段时间,可起到防止压缩机单缸长期运行后切换双缸时发生液击的作用。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种空调系统,包括双缸变容压缩机(30),所述双缸变容压缩机(30)具有上气缸吸气口,下气缸吸气口和排气口;所述空调系统还包括第一电磁阀(71),所述第一电磁阀(71)一端连接所述双缸变容压缩机(30)的排气口,另一端分别连接单向阀(50)和所述双缸变容压缩机(30)的下气缸吸气口;所述单向阀(50)的一端连接所述第一电磁阀(71),另一端接入气液分离器的内腔;
    其特征在于,所述空调系统还包括,第二电磁阀(72),设置在连接所述双缸变容压缩机(30)的下气缸吸气口至气液分离器进口的管路中。
  2. 根据权利要求1所述的空调系统,其特征在于,还包括,毛细管,与所述第二电磁阀(72)串联设置。
  3. 根据权利要求1所述的空调系统,其特征在于,还包括,温度传感器(90),设置在所述下气缸吸气口的管路中。
  4. 根据权利要求1所述的空调系统,其特征在于,还包括,高压传感器(100),设置在所述排气口的管路中。
  5. 一种空调系统的控制方法,其特征在于,应用于权利要求1至4中任意一项所述空调系统,包括:步骤10,当双缸变容压缩机(30)处于单缸运行状态且有需求切换至双缸运行状态时,连通所述双缸变容压缩机(30)的下气缸吸气口至气液分离器进口的管路。
  6. 根据权利要求5所述的空调系统的控制方法,其特征在于,所述步骤10中,由第二电磁阀(72)打开连通所述双缸变容压缩机(30)的下气缸吸气口至所述气液分离器进口的管路,经时间ts后再关闭第一电磁阀(71)。
  7. 根据权利要求6所述的空调系统的控制方法,其特征在于,还包括,步骤20,当所述双缸变容压缩机(30)处于单缸运行状态超过时间t1后,每经过t2时间比较所述双缸变容压缩机(30)的下气缸吸气口温度T和所述双缸变容压缩机(30)的排气口的温度T,如果T≤T则所述第二电磁阀(72)打开持续t3时间后关闭。
  8. 根据权利要求6所述的空调系统的控制方法,其特征在于,所述步骤10中的时间ts与室外环境温度TW相关,当TW≥A℃时,ts=t5;当B℃≤TW<A℃时, ts=t6;当TW<B℃时,ts=t7;其中t5、t6、t7为预设时间常数,A、B为预设温度常数。
  9. 根据权利要求6所述的空调系统的控制方法,其特征在于,所述步骤10还包括:所述第一电磁阀(71)关闭t4时间后所述第二电磁阀(72)关闭。
PCT/CN2014/088670 2013-12-24 2014-10-15 空调系统及空调系统的控制方法 WO2015096539A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES14875380T ES2717515T3 (es) 2013-12-24 2014-10-15 Sistema de acondicionamiento de aire y método para controlar un sistema de acondicionamiento de aire
JP2016542927A JP6498677B2 (ja) 2013-12-24 2014-10-15 エアコンシステム及びエアコンシステムの制御方法
EP14875380.9A EP3091311B1 (en) 2013-12-24 2014-10-15 Air-conditioning system and method for controlling air-conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310728551.5A CN104729130B (zh) 2013-12-24 2013-12-24 空调系统及空调系统的控制方法
CN201310728551.5 2013-12-24

Publications (1)

Publication Number Publication Date
WO2015096539A1 true WO2015096539A1 (zh) 2015-07-02

Family

ID=53453275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088670 WO2015096539A1 (zh) 2013-12-24 2014-10-15 空调系统及空调系统的控制方法

Country Status (6)

Country Link
EP (1) EP3091311B1 (zh)
JP (1) JP6498677B2 (zh)
CN (1) CN104729130B (zh)
ES (1) ES2717515T3 (zh)
TR (1) TR201905512T4 (zh)
WO (1) WO2015096539A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105485991A (zh) * 2016-01-04 2016-04-13 珠海格力电器股份有限公司 一种变容压缩机系统及控制方法、空调
CN105650925A (zh) * 2016-01-14 2016-06-08 安徽美芝精密制造有限公司 制冷系统及其控制方法
CN105698456A (zh) * 2016-03-21 2016-06-22 珠海格力电器股份有限公司 变容压缩机系统控制方法
CN106152342A (zh) * 2016-07-04 2016-11-23 珠海格力电器股份有限公司 一种变排量比双级压缩空调系统及其控制方法
CN110319008A (zh) * 2019-08-08 2019-10-11 珠海格力电器股份有限公司 具有两级排气功能的压缩机及空调系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20160682A1 (it) * 2016-03-01 2017-09-01 Evolving Living Innovation Center Elic S R L Apparecchiatura a pompa di calore per il ricambio dell’aria in locali domestici e suo metodo di funzionamento
CN105627615B (zh) * 2016-03-03 2018-11-27 广东美的制冷设备有限公司 空调系统和空调系统的控制方法
CN106595138A (zh) * 2016-10-17 2017-04-26 珠海格力电器股份有限公司 一种空调系统及降低气液分离器存液的方法
CN106403373A (zh) * 2016-10-19 2017-02-15 珠海格力电器股份有限公司 热泵系统、控制方法及制冷机组
CN106440443B (zh) * 2016-11-25 2022-04-12 广州华凌制冷设备有限公司 一种适用高温制冷的空调系统及控制方法
WO2018179014A1 (en) * 2017-03-28 2018-10-04 Evolving Living Innovation Center E.L.I.C. S.r.l. Heat pump apparatus for changing air within domestic spaces and respective mode of operation
CN107014038B (zh) * 2017-04-13 2020-12-29 青岛海尔空调器有限总公司 一种空调器及控制方法
WO2019000869A1 (zh) * 2017-06-30 2019-01-03 广东美的制冷设备有限公司 空调系统和空调系统的控制方法
WO2019000868A1 (zh) * 2017-06-30 2019-01-03 广东美的制冷设备有限公司 空调系统和空调系统的控制方法
CN107388650B (zh) * 2017-07-26 2019-07-26 珠海格力电器股份有限公司 空调系统及气液分离器积液控制方法
CN108317787A (zh) * 2017-12-25 2018-07-24 珠海格力电器股份有限公司 压缩机的空调系统及其控制方法、存储介质和处理器
CN108131859B (zh) * 2017-12-25 2023-08-29 珠海格力电器股份有限公司 变容压缩机的空调系统及其控制方法、存储介质和处理器
CN108981233A (zh) * 2018-07-25 2018-12-11 珠海格力电器股份有限公司 变容压缩组件及变容空调系统
CN111594443B (zh) * 2020-05-12 2024-05-14 珠海凌达压缩机有限公司 一种压缩机组件及包括其的空调系统及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590769A (zh) * 2003-09-02 2005-03-09 东芝开利株式会社 空调机
CN1719034A (zh) * 2004-07-08 2006-01-11 三洋电机株式会社 压缩系统、多汽缸旋转压缩机以及使用它的冷冻装置
CN1816697A (zh) * 2003-06-20 2006-08-09 东芝开利株式会社 旋转密封压缩机和制冷循环系统
JP2008057395A (ja) * 2006-08-30 2008-03-13 Toshiba Kyaria Kk 密閉型回転式圧縮機及び冷凍サイクル装置
CN101248278A (zh) * 2005-08-25 2008-08-20 东芝开利株式会社 密闭型压缩机及制冷循环装置
JP2013076377A (ja) * 2011-09-30 2013-04-25 Toshiba Corp 密閉型圧縮機の制御装置
CN203687474U (zh) * 2013-12-24 2014-07-02 珠海格力电器股份有限公司 空调系统
CN104061723A (zh) * 2014-06-09 2014-09-24 珠海格力电器股份有限公司 空调系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103856B2 (ja) * 1986-09-30 1995-11-08 三菱電機株式会社 多気筒回転式圧縮機
JP2005344683A (ja) * 2004-06-07 2005-12-15 Toshiba Kyaria Kk 密閉型圧縮機
KR20070074300A (ko) * 2006-01-09 2007-07-12 삼성전자주식회사 회전압축기
KR101409876B1 (ko) * 2008-08-22 2014-06-20 엘지전자 주식회사 용량가변형 로터리 압축기 및 이를 적용한 냉동기기 및 그 운전 방법
CN201772685U (zh) * 2010-05-24 2011-03-23 上海日立电器有限公司 两级转子式压缩机及带变容量除霜的热泵循环系统
CN202303713U (zh) * 2011-09-15 2012-07-04 宁波奥克斯空调有限公司 一种双缸变排量热泵空调系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816697A (zh) * 2003-06-20 2006-08-09 东芝开利株式会社 旋转密封压缩机和制冷循环系统
CN1590769A (zh) * 2003-09-02 2005-03-09 东芝开利株式会社 空调机
CN1719034A (zh) * 2004-07-08 2006-01-11 三洋电机株式会社 压缩系统、多汽缸旋转压缩机以及使用它的冷冻装置
CN101248278A (zh) * 2005-08-25 2008-08-20 东芝开利株式会社 密闭型压缩机及制冷循环装置
JP2008057395A (ja) * 2006-08-30 2008-03-13 Toshiba Kyaria Kk 密閉型回転式圧縮機及び冷凍サイクル装置
JP2013076377A (ja) * 2011-09-30 2013-04-25 Toshiba Corp 密閉型圧縮機の制御装置
CN203687474U (zh) * 2013-12-24 2014-07-02 珠海格力电器股份有限公司 空调系统
CN104061723A (zh) * 2014-06-09 2014-09-24 珠海格力电器股份有限公司 空调系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105485991A (zh) * 2016-01-04 2016-04-13 珠海格力电器股份有限公司 一种变容压缩机系统及控制方法、空调
CN105650925A (zh) * 2016-01-14 2016-06-08 安徽美芝精密制造有限公司 制冷系统及其控制方法
CN105698456A (zh) * 2016-03-21 2016-06-22 珠海格力电器股份有限公司 变容压缩机系统控制方法
CN106152342A (zh) * 2016-07-04 2016-11-23 珠海格力电器股份有限公司 一种变排量比双级压缩空调系统及其控制方法
CN106152342B (zh) * 2016-07-04 2020-12-04 珠海格力电器股份有限公司 一种变排量比双级压缩空调系统及其控制方法
CN110319008A (zh) * 2019-08-08 2019-10-11 珠海格力电器股份有限公司 具有两级排气功能的压缩机及空调系统

Also Published As

Publication number Publication date
EP3091311A4 (en) 2017-09-20
JP6498677B2 (ja) 2019-04-10
EP3091311A1 (en) 2016-11-09
CN104729130B (zh) 2017-05-10
ES2717515T3 (es) 2019-06-21
TR201905512T4 (tr) 2019-05-21
EP3091311B1 (en) 2019-02-27
JP2017502247A (ja) 2017-01-19
CN104729130A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2015096539A1 (zh) 空调系统及空调系统的控制方法
CN106871486B (zh) 电子膨胀阀控制方法及空气源热泵系统
WO2020103516A1 (zh) 蒸发冷却式冷水机组换热系统及其控制方法
WO2015161743A1 (zh) 带除霜功能的空调系统
WO2007115494A1 (fr) Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé
EP3441697A1 (en) Heat recovery variable-frequency multi-split heat pump system and control method thereof
CN104949210B (zh) 空调系统、空调器和空调系统的控制方法
CN104613665A (zh) 热泵空调系统
CN109631383B (zh) 一种空调系统及其控制方法
CN103542606B (zh) 热泵空调系统及其控制方法
WO2019128356A1 (zh) 一种空调及除霜控制方法
US9909792B2 (en) Refrigeration cycle apparatus
CN105240962A (zh) 一种风温范围宽泛的水冷调温除湿机
WO2021135277A1 (zh) 热泵系统及空调
CN103398520A (zh) 空调系统及其气液分离器的液位检测方法
CN105066538A (zh) 一种空调补气增焓方法、系统及空调
CN114992889B (zh) 复叠式热泵系统及其控制方法
JP2006250440A (ja) 空気調和装置
CN209893554U (zh) 一种带热气旁通的调温除湿机
CN109405366B (zh) 空调循环系统、空调循环系统的控制方法及空调
CN209877403U (zh) 一种超低温水汽捕集泵加装旁路阀提高制冷效率的装置
CN210980419U (zh) 一种带热水和地暖的多联机
JP2015048969A (ja) ヒートポンプ装置
CN110671834A (zh) 一种热泵系统及其除霜方法
CN110567184A (zh) 一种带热水和地暖的多联机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014875380

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875380

Country of ref document: EP