WO2015096539A1 - 空调系统及空调系统的控制方法 - Google Patents
空调系统及空调系统的控制方法 Download PDFInfo
- Publication number
- WO2015096539A1 WO2015096539A1 PCT/CN2014/088670 CN2014088670W WO2015096539A1 WO 2015096539 A1 WO2015096539 A1 WO 2015096539A1 CN 2014088670 W CN2014088670 W CN 2014088670W WO 2015096539 A1 WO2015096539 A1 WO 2015096539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- conditioning system
- air conditioning
- solenoid valve
- suction port
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/24—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/02—Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/074—Details of compressors or related parts with multiple cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/026—Compressor control by controlling unloaders
- F25B2600/0261—Compressor control by controlling unloaders external to the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2519—On-off valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
Definitions
- the present invention relates to the field of air conditioning, and in particular to an air conditioning system and a control method for an air conditioning system.
- FIG. 1 An existing air conditioning system is shown in FIG. 1 , and includes a condenser 10 , an evaporator 20 , a variable-capacity inverter compressor 30 , a throttle device 40 , a four-way valve 60 , a solenoid valve 70 , and a check valve 50 .
- the compressor 30 is switched by the operation of the check valve 50 and the solenoid valve 70.
- the solenoid valve 70 When the solenoid valve 70 is opened, the high-pressure refrigerant on the exhaust side flows to the suction port of the lower cylinder of the compressor, so that the suction end of the lower cylinder forms a high pressure, and the variable-capacity inverter compressor 30 realizes single-cylinder operation; when the solenoid valve 70 is closed, The low-pressure refrigerant of the gas-liquid separator flows to the suction port of the lower cylinder, so that the suction port of the lower cylinder forms a low pressure, and the variable-capacity inverter compressor is switched to the double-cylinder operation.
- the invention aims to provide an air conditioning system and a control method of the air conditioning system, so as to solve the problem that the prior art air conditioning system is prone to switching failure during the conversion process of the compressor single cylinder operation and the twin cylinder operation.
- an air conditioning system including a two-cylinder variable capacity compressor having an upper cylinder intake port, a lower cylinder intake port and an exhaust port;
- the air conditioning system further includes a first electromagnetic valve, one end of which is connected to the exhaust port of the two-cylinder variable-capacity compressor, and the other end is connected to the lower cylinder suction port of the one-way valve and the two-cylinder variable-capacity compressor respectively; the one-way valve One end is connected to the first electromagnetic valve, and the other end is connected to the inner cavity of the gas-liquid separator;
- the air conditioning system further includes a second electromagnetic valve disposed at the lower cylinder suction port of the two-cylinder variable capacity compressor to the gas-liquid separator In the pipeline of the import.
- a capillary tube is disposed in series with the second electromagnetic valve.
- a temperature sensor is further disposed in the pipeline of the lower cylinder suction port.
- a high pressure sensor is disposed in the pipeline of the exhaust port.
- a control method for an air conditioning system which is applied to the above air conditioning system, comprising: step 10, when a two-cylinder variable-capacity compressor is in a single-cylinder operating state and there is a demand to switch to a two-cylinder operation In the state, connect the lower cylinder suction port of the two-cylinder variable capacity compressor to the pipeline at the inlet of the gas-liquid separator.
- step 10 the second solenoid valve opens the pipeline connecting the lower cylinder suction port of the two-cylinder variable-capacity compressor to the inlet of the gas-liquid separator, and then closes the first solenoid valve after the time ts.
- the method further includes, in step 20, when the two-cylinder variable-capacity compressor is in the single-cylinder operating state for more than the time t1, comparing the temperature of the lower cylinder suction port T of the two-cylinder variable-capacity compressor and the two-cylinder change after each time t2 displacement compressor exhaust port temperature high T, if T ⁇ T under high duration of the second solenoid valve opens after the time t3 off.
- step 10 further includes the second solenoid valve being closed after the first solenoid valve is closed for t4.
- a drain bypass line connection with a solenoid valve is added between the cylinder suction port and the inlet of the gas-liquid separator under the double cylinder variable capacity compressor, and the lower cylinder is sucked by the liquid discharge bypass
- the high-pressure refrigerant on the gas side is released to the gas-liquid separator to optimize the stability of the system when the single-cylinder operation is switched to the two-cylinder operation.
- Figure 1 shows a prior art variable displacement inverter compressor air conditioning system
- Figure 2 shows an air conditioning system of the present invention
- Fig. 3 is a flow chart showing a control method of the air conditioning system of the present invention.
- a double-drain bypass line connection is added to the inlet of the cylinder to the inlet of the gas-liquid separator under the two-cylinder variable-capacity compressor, and the drain bypass pipe is connected.
- the road mainly includes a capillary tube, a second electromagnetic valve 72, and a high pressure sensor 100 is added on the exhaust side of the two-cylinder variable-capacity compressor to detect a high condensation temperature T, and a temperature sensor 90 is added at the lower cylinder suction port as a detecting tool to detect the lower cylinder suction. air inlet temperature T below.
- the second solenoid valve 72 of the drain bypass line is opened to perform the action of releasing pressure and draining.
- the liquid refrigerant of the connection pipe between the lower cylinder of the two-cylinder variable-capacity compressor 30 and the first electromagnetic valve 71 can be discharged to the gas-liquid separator by automatic detection.
- the single-cylinder operation is switched to the two-cylinder operation, the high-pressure refrigerant on the suction side of the lower cylinder is discharged to the gas-liquid separator through the liquid discharge bypass, so that the single-cylinder operation is successfully switched to the two-cylinder operation, and the system of the switching operation is improved. stability.
- the air conditioning system of the present invention comprises a two-cylinder variable-capacity compressor 30 and a gas-liquid separator.
- the two-cylinder variable-capacity compressor 30 leads three ways: an upper cylinder suction port, a lower cylinder suction port and an exhaust port. .
- the two-cylinder variable-capacity compressor 30, the first heat exchanger 10, the throttle assembly 40, and the second heat exchanger 20 are connected in a loop.
- the air conditioning system further includes a four-way valve 60, a first solenoid valve 71, and a one-way valve 50.
- the first heat exchanger 10 and the second heat exchanger 20 are selectively connected to the two-cylinder variable-capacity compressor 30 through a four-way valve 60, one end of which is connected to the exhaust port of the two-cylinder variable-capacity compressor 30, and the other end
- the one-way valve 50 and the lower cylinder suction port are respectively connected; one end of the one-way valve 50 is connected to the pipeline of the first electromagnetic valve 71 to the suction port of the lower cylinder, and the other end is connected to the inner cavity of the gas-liquid separator, one-way
- the allowable flow direction of the valve 50 is from the gas-liquid separator to the lower cylinder suction port.
- the invention adds a second electromagnetic valve 72 and a branch pipe connected in series with the capillary tube, and is connected between the pipeline of the lower cylinder suction port of the compressor and the pipeline of the gas-liquid separator inlet of the gas-liquid separator.
- the role of the capillary in the drain bypass circuit is to control the flow of the drain.
- the capillary flow rate that is too thick and too short will be too large, causing the lower cylinder pressure to drop. If the pressure is insufficient, the single cylinder operation will not last, and the operation will be switched to the two cylinder operation; the capillary flow rate which is too thin and too long will be too small, resulting in the discharge speed being too slow.
- the draining operation cannot be completed within the set time; therefore, the drain bypass circuit requires a moderate capillary.
- control method of the air conditioning system of the present invention includes:
- the second solenoid valve 72 is opened for a period of ts and then the first solenoid valve 71 is closed, and the first solenoid valve 71 is closed. After the time, the second solenoid valve 72 is closed to achieve a pressure relief effect.
- the ts time in step (2) is related to the outdoor ambient temperature, for example as follows: (A and B are preset temperature constants, which can be determined experimentally.)
- the invention utilizes a two-cylinder or two-cylinder inverter compressor with a gas-liquid separator combined with a variable-capacity technology to expand the adjustment range of the system cooling/heating capacity.
- the second solenoid valve and the bypass branch of the capillary tube mainly serve to: when the first solenoid valve needs to be closed, the second solenoid valve opens to lower the pressure of the pipeline between the lower cylinder suction port and the first solenoid valve to and The low pressure is consistent to ensure that the compressor is quickly switched to a double cylinder after the first solenoid valve is closed.
- the temperature detected by the pipeline temperature sensor of the suction port under the compressor and the high-pressure temperature detected by the high-pressure sensor can determine whether the suction port is effluent, and when the effusion is judged, it is opened.
- the second solenoid valve can prevent the liquid hammer from occurring when the twin cylinder is switched after long-term operation of the compressor single cylinder.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
Claims (9)
- 一种空调系统,包括双缸变容压缩机(30),所述双缸变容压缩机(30)具有上气缸吸气口,下气缸吸气口和排气口;所述空调系统还包括第一电磁阀(71),所述第一电磁阀(71)一端连接所述双缸变容压缩机(30)的排气口,另一端分别连接单向阀(50)和所述双缸变容压缩机(30)的下气缸吸气口;所述单向阀(50)的一端连接所述第一电磁阀(71),另一端接入气液分离器的内腔;其特征在于,所述空调系统还包括,第二电磁阀(72),设置在连接所述双缸变容压缩机(30)的下气缸吸气口至气液分离器进口的管路中。
- 根据权利要求1所述的空调系统,其特征在于,还包括,毛细管,与所述第二电磁阀(72)串联设置。
- 根据权利要求1所述的空调系统,其特征在于,还包括,温度传感器(90),设置在所述下气缸吸气口的管路中。
- 根据权利要求1所述的空调系统,其特征在于,还包括,高压传感器(100),设置在所述排气口的管路中。
- 一种空调系统的控制方法,其特征在于,应用于权利要求1至4中任意一项所述空调系统,包括:步骤10,当双缸变容压缩机(30)处于单缸运行状态且有需求切换至双缸运行状态时,连通所述双缸变容压缩机(30)的下气缸吸气口至气液分离器进口的管路。
- 根据权利要求5所述的空调系统的控制方法,其特征在于,所述步骤10中,由第二电磁阀(72)打开连通所述双缸变容压缩机(30)的下气缸吸气口至所述气液分离器进口的管路,经时间ts后再关闭第一电磁阀(71)。
- 根据权利要求6所述的空调系统的控制方法,其特征在于,还包括,步骤20,当所述双缸变容压缩机(30)处于单缸运行状态超过时间t1后,每经过t2时间比较所述双缸变容压缩机(30)的下气缸吸气口温度T下和所述双缸变容压缩机(30)的排气口的温度T高,如果T下≤T高则所述第二电磁阀(72)打开持续t3时间后关闭。
- 根据权利要求6所述的空调系统的控制方法,其特征在于,所述步骤10中的时间ts与室外环境温度TW相关,当TW≥A℃时,ts=t5;当B℃≤TW<A℃时, ts=t6;当TW<B℃时,ts=t7;其中t5、t6、t7为预设时间常数,A、B为预设温度常数。
- 根据权利要求6所述的空调系统的控制方法,其特征在于,所述步骤10还包括:所述第一电磁阀(71)关闭t4时间后所述第二电磁阀(72)关闭。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES14875380T ES2717515T3 (es) | 2013-12-24 | 2014-10-15 | Sistema de acondicionamiento de aire y método para controlar un sistema de acondicionamiento de aire |
JP2016542927A JP6498677B2 (ja) | 2013-12-24 | 2014-10-15 | エアコンシステム及びエアコンシステムの制御方法 |
EP14875380.9A EP3091311B1 (en) | 2013-12-24 | 2014-10-15 | Air-conditioning system and method for controlling air-conditioning system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310728551.5A CN104729130B (zh) | 2013-12-24 | 2013-12-24 | 空调系统及空调系统的控制方法 |
CN201310728551.5 | 2013-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015096539A1 true WO2015096539A1 (zh) | 2015-07-02 |
Family
ID=53453275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/088670 WO2015096539A1 (zh) | 2013-12-24 | 2014-10-15 | 空调系统及空调系统的控制方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3091311B1 (zh) |
JP (1) | JP6498677B2 (zh) |
CN (1) | CN104729130B (zh) |
ES (1) | ES2717515T3 (zh) |
TR (1) | TR201905512T4 (zh) |
WO (1) | WO2015096539A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105485991A (zh) * | 2016-01-04 | 2016-04-13 | 珠海格力电器股份有限公司 | 一种变容压缩机系统及控制方法、空调 |
CN105650925A (zh) * | 2016-01-14 | 2016-06-08 | 安徽美芝精密制造有限公司 | 制冷系统及其控制方法 |
CN105698456A (zh) * | 2016-03-21 | 2016-06-22 | 珠海格力电器股份有限公司 | 变容压缩机系统控制方法 |
CN106152342A (zh) * | 2016-07-04 | 2016-11-23 | 珠海格力电器股份有限公司 | 一种变排量比双级压缩空调系统及其控制方法 |
CN110319008A (zh) * | 2019-08-08 | 2019-10-11 | 珠海格力电器股份有限公司 | 具有两级排气功能的压缩机及空调系统 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITUB20160682A1 (it) * | 2016-03-01 | 2017-09-01 | Evolving Living Innovation Center Elic S R L | Apparecchiatura a pompa di calore per il ricambio dell’aria in locali domestici e suo metodo di funzionamento |
CN105627615B (zh) * | 2016-03-03 | 2018-11-27 | 广东美的制冷设备有限公司 | 空调系统和空调系统的控制方法 |
CN106595138A (zh) * | 2016-10-17 | 2017-04-26 | 珠海格力电器股份有限公司 | 一种空调系统及降低气液分离器存液的方法 |
CN106403373A (zh) * | 2016-10-19 | 2017-02-15 | 珠海格力电器股份有限公司 | 热泵系统、控制方法及制冷机组 |
CN106440443B (zh) * | 2016-11-25 | 2022-04-12 | 广州华凌制冷设备有限公司 | 一种适用高温制冷的空调系统及控制方法 |
WO2018179014A1 (en) * | 2017-03-28 | 2018-10-04 | Evolving Living Innovation Center E.L.I.C. S.r.l. | Heat pump apparatus for changing air within domestic spaces and respective mode of operation |
CN107014038B (zh) * | 2017-04-13 | 2020-12-29 | 青岛海尔空调器有限总公司 | 一种空调器及控制方法 |
WO2019000869A1 (zh) * | 2017-06-30 | 2019-01-03 | 广东美的制冷设备有限公司 | 空调系统和空调系统的控制方法 |
WO2019000868A1 (zh) * | 2017-06-30 | 2019-01-03 | 广东美的制冷设备有限公司 | 空调系统和空调系统的控制方法 |
CN107388650B (zh) * | 2017-07-26 | 2019-07-26 | 珠海格力电器股份有限公司 | 空调系统及气液分离器积液控制方法 |
CN108317787A (zh) * | 2017-12-25 | 2018-07-24 | 珠海格力电器股份有限公司 | 压缩机的空调系统及其控制方法、存储介质和处理器 |
CN108131859B (zh) * | 2017-12-25 | 2023-08-29 | 珠海格力电器股份有限公司 | 变容压缩机的空调系统及其控制方法、存储介质和处理器 |
CN108981233A (zh) * | 2018-07-25 | 2018-12-11 | 珠海格力电器股份有限公司 | 变容压缩组件及变容空调系统 |
CN111594443B (zh) * | 2020-05-12 | 2024-05-14 | 珠海凌达压缩机有限公司 | 一种压缩机组件及包括其的空调系统及控制方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1590769A (zh) * | 2003-09-02 | 2005-03-09 | 东芝开利株式会社 | 空调机 |
CN1719034A (zh) * | 2004-07-08 | 2006-01-11 | 三洋电机株式会社 | 压缩系统、多汽缸旋转压缩机以及使用它的冷冻装置 |
CN1816697A (zh) * | 2003-06-20 | 2006-08-09 | 东芝开利株式会社 | 旋转密封压缩机和制冷循环系统 |
JP2008057395A (ja) * | 2006-08-30 | 2008-03-13 | Toshiba Kyaria Kk | 密閉型回転式圧縮機及び冷凍サイクル装置 |
CN101248278A (zh) * | 2005-08-25 | 2008-08-20 | 东芝开利株式会社 | 密闭型压缩机及制冷循环装置 |
JP2013076377A (ja) * | 2011-09-30 | 2013-04-25 | Toshiba Corp | 密閉型圧縮機の制御装置 |
CN203687474U (zh) * | 2013-12-24 | 2014-07-02 | 珠海格力电器股份有限公司 | 空调系统 |
CN104061723A (zh) * | 2014-06-09 | 2014-09-24 | 珠海格力电器股份有限公司 | 空调系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07103856B2 (ja) * | 1986-09-30 | 1995-11-08 | 三菱電機株式会社 | 多気筒回転式圧縮機 |
JP2005344683A (ja) * | 2004-06-07 | 2005-12-15 | Toshiba Kyaria Kk | 密閉型圧縮機 |
KR20070074300A (ko) * | 2006-01-09 | 2007-07-12 | 삼성전자주식회사 | 회전압축기 |
KR101409876B1 (ko) * | 2008-08-22 | 2014-06-20 | 엘지전자 주식회사 | 용량가변형 로터리 압축기 및 이를 적용한 냉동기기 및 그 운전 방법 |
CN201772685U (zh) * | 2010-05-24 | 2011-03-23 | 上海日立电器有限公司 | 两级转子式压缩机及带变容量除霜的热泵循环系统 |
CN202303713U (zh) * | 2011-09-15 | 2012-07-04 | 宁波奥克斯空调有限公司 | 一种双缸变排量热泵空调系统 |
-
2013
- 2013-12-24 CN CN201310728551.5A patent/CN104729130B/zh active Active
-
2014
- 2014-10-15 ES ES14875380T patent/ES2717515T3/es active Active
- 2014-10-15 EP EP14875380.9A patent/EP3091311B1/en active Active
- 2014-10-15 WO PCT/CN2014/088670 patent/WO2015096539A1/zh active Application Filing
- 2014-10-15 JP JP2016542927A patent/JP6498677B2/ja active Active
- 2014-10-15 TR TR2019/05512T patent/TR201905512T4/tr unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1816697A (zh) * | 2003-06-20 | 2006-08-09 | 东芝开利株式会社 | 旋转密封压缩机和制冷循环系统 |
CN1590769A (zh) * | 2003-09-02 | 2005-03-09 | 东芝开利株式会社 | 空调机 |
CN1719034A (zh) * | 2004-07-08 | 2006-01-11 | 三洋电机株式会社 | 压缩系统、多汽缸旋转压缩机以及使用它的冷冻装置 |
CN101248278A (zh) * | 2005-08-25 | 2008-08-20 | 东芝开利株式会社 | 密闭型压缩机及制冷循环装置 |
JP2008057395A (ja) * | 2006-08-30 | 2008-03-13 | Toshiba Kyaria Kk | 密閉型回転式圧縮機及び冷凍サイクル装置 |
JP2013076377A (ja) * | 2011-09-30 | 2013-04-25 | Toshiba Corp | 密閉型圧縮機の制御装置 |
CN203687474U (zh) * | 2013-12-24 | 2014-07-02 | 珠海格力电器股份有限公司 | 空调系统 |
CN104061723A (zh) * | 2014-06-09 | 2014-09-24 | 珠海格力电器股份有限公司 | 空调系统 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105485991A (zh) * | 2016-01-04 | 2016-04-13 | 珠海格力电器股份有限公司 | 一种变容压缩机系统及控制方法、空调 |
CN105650925A (zh) * | 2016-01-14 | 2016-06-08 | 安徽美芝精密制造有限公司 | 制冷系统及其控制方法 |
CN105698456A (zh) * | 2016-03-21 | 2016-06-22 | 珠海格力电器股份有限公司 | 变容压缩机系统控制方法 |
CN106152342A (zh) * | 2016-07-04 | 2016-11-23 | 珠海格力电器股份有限公司 | 一种变排量比双级压缩空调系统及其控制方法 |
CN106152342B (zh) * | 2016-07-04 | 2020-12-04 | 珠海格力电器股份有限公司 | 一种变排量比双级压缩空调系统及其控制方法 |
CN110319008A (zh) * | 2019-08-08 | 2019-10-11 | 珠海格力电器股份有限公司 | 具有两级排气功能的压缩机及空调系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3091311A4 (en) | 2017-09-20 |
JP6498677B2 (ja) | 2019-04-10 |
EP3091311A1 (en) | 2016-11-09 |
CN104729130B (zh) | 2017-05-10 |
ES2717515T3 (es) | 2019-06-21 |
TR201905512T4 (tr) | 2019-05-21 |
EP3091311B1 (en) | 2019-02-27 |
JP2017502247A (ja) | 2017-01-19 |
CN104729130A (zh) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015096539A1 (zh) | 空调系统及空调系统的控制方法 | |
CN106871486B (zh) | 电子膨胀阀控制方法及空气源热泵系统 | |
WO2020103516A1 (zh) | 蒸发冷却式冷水机组换热系统及其控制方法 | |
WO2015161743A1 (zh) | 带除霜功能的空调系统 | |
WO2007115494A1 (fr) | Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé | |
EP3441697A1 (en) | Heat recovery variable-frequency multi-split heat pump system and control method thereof | |
CN104949210B (zh) | 空调系统、空调器和空调系统的控制方法 | |
CN104613665A (zh) | 热泵空调系统 | |
CN109631383B (zh) | 一种空调系统及其控制方法 | |
CN103542606B (zh) | 热泵空调系统及其控制方法 | |
WO2019128356A1 (zh) | 一种空调及除霜控制方法 | |
US9909792B2 (en) | Refrigeration cycle apparatus | |
CN105240962A (zh) | 一种风温范围宽泛的水冷调温除湿机 | |
WO2021135277A1 (zh) | 热泵系统及空调 | |
CN103398520A (zh) | 空调系统及其气液分离器的液位检测方法 | |
CN105066538A (zh) | 一种空调补气增焓方法、系统及空调 | |
CN114992889B (zh) | 复叠式热泵系统及其控制方法 | |
JP2006250440A (ja) | 空気調和装置 | |
CN209893554U (zh) | 一种带热气旁通的调温除湿机 | |
CN109405366B (zh) | 空调循环系统、空调循环系统的控制方法及空调 | |
CN209877403U (zh) | 一种超低温水汽捕集泵加装旁路阀提高制冷效率的装置 | |
CN210980419U (zh) | 一种带热水和地暖的多联机 | |
JP2015048969A (ja) | ヒートポンプ装置 | |
CN110671834A (zh) | 一种热泵系统及其除霜方法 | |
CN110567184A (zh) | 一种带热水和地暖的多联机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14875380 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016542927 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014875380 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014875380 Country of ref document: EP |