WO2007115494A1 - Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé - Google Patents

Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé Download PDF

Info

Publication number
WO2007115494A1
WO2007115494A1 PCT/CN2007/001125 CN2007001125W WO2007115494A1 WO 2007115494 A1 WO2007115494 A1 WO 2007115494A1 CN 2007001125 W CN2007001125 W CN 2007001125W WO 2007115494 A1 WO2007115494 A1 WO 2007115494A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
pressure
heat pump
temperature
sensor
Prior art date
Application number
PCT/CN2007/001125
Other languages
English (en)
Chinese (zh)
Inventor
Yuhai Su
Guiping Liu
Changquan Sun
Original Assignee
Gree Electric Appliances Inc. Of Zhuhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gree Electric Appliances Inc. Of Zhuhai filed Critical Gree Electric Appliances Inc. Of Zhuhai
Priority to ES07720698T priority Critical patent/ES2705478T3/es
Priority to PL07720698T priority patent/PL2009369T3/pl
Priority to EP07720698.5A priority patent/EP2009369B1/fr
Publication of WO2007115494A1 publication Critical patent/WO2007115494A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0272Compressor control by controlling pressure the suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the invention relates to the field of air source heat pump air conditioners, in particular to a heat pump air conditioning system and a control method which have good heating effect under outdoor ultra-low temperature working conditions. Background technique
  • the present invention overcomes the shortcomings of the prior art, and an aspect of the present invention provides a heat pump air conditioning system capable of having a good heating effect under outdoor ultra-low temperature conditions, and another aspect of the present invention provides a compression system for a heat pump air conditioning system. Machine steam injection system and its control method.
  • a heat pump air conditioning system comprising a four-way valve connected in series, an indoor unit heat exchanger, an indoor throttle device, an outdoor throttling device and an outdoor unit heat exchanger, wherein the heat pump air conditioning system further comprises a compressor steam An injection system, the compressor vapor injection system including a compressor having a first intake port, a second intake port, and an air outlet, the first intake port being connected to the air through a gas-liquid separator a four-way valve, the second suction port is connected between the indoor throttle device and the outdoor throttle device through a bypass pipe provided with an electronic expansion valve, and the air outlet port is connected to the four-way valve .
  • the compressor vapor injection system further includes a first sensor at the first intake port, a second sensor at the second intake port, and a third pass at the air outlet. Confirmation Sensor.
  • the indoor throttle device and the outdoor throttle device are connected in series by a reservoir, and the bypass pipe is connected between the indoor throttle device and the accumulator.
  • a coil is provided on the bypass pipe.
  • the coil is placed in the reservoir.
  • a pair of cooling coils are connected between the accumulator and the outdoor heat exchanger.
  • the sensor is a pressure sensor or a temperature sensor.
  • the present invention also provides a compressor vapor injection system for a heat pump air conditioning system, the heat pump air conditioning system comprising a four-way valve connected in series, an indoor heat exchanger, an indoor throttle device, an outdoor throttle device, and The outdoor unit heat exchanger, the compressor steam injection system includes a compressor, the compressor has a first intake port, a second intake port, and an air outlet, and the first intake port passes through the gas-liquid separator Connecting to the four-way valve, the second suction port is connected between the indoor throttle device and the outdoor throttle device through a bypass pipe provided with an electronic expansion valve, and the air outlet is connected to the outlet Said four-way valve.
  • the compressor vapor injection system further includes a first sensor at the first intake port, a second sensor at the second intake port, and a third sensor at the air outlet.
  • the senor is a pressure sensor or a temperature sensor.
  • a compressor vapor injection control method comprising the steps of:
  • step S1 further includes: detecting a pressure of the first intake port, the second intake port, and the gas outlet of the compressor, corresponding to P 3 ⁇ 4 , P n , according to the relationship between pressure and temperature, The temperature T spray corresponding to P L ;
  • Step S3 further includes:
  • step S1 further includes: detecting a temperature of the first intake port, the second intake port, and the gas outlet of the compressor; corresponding to T FFI , ⁇ , , ⁇ ⁇ , according to the relationship between pressure and temperature, The pressures corresponding to low and ⁇ 7 ⁇ are respectively low and low;
  • Step S3 further includes:
  • the actual opening degree of the second air inlet is the sum of the original opening degree and the opening degree change amount N.
  • the present invention uses a steam injection system to inject an intermediate pressure refrigerant vapor to the compressor, and through the pressure control of the injection port (the second suction port of the compressor), the refrigerant injection amount to the compressor is maximized. Good value.
  • the steam injection system in the unit functions, and the saturated refrigerant gas is injected into the compressor at the intermediate pressure.
  • Two-stage compression is realized inside the compressor to improve the heating capacity and energy efficiency ratio of the unit under outdoor low temperature conditions, so that the number and time of defrosting of the unit are greatly reduced.
  • FIG. 1 is a schematic diagram of the principle of the first embodiment of the heat pump air conditioning system
  • Figure 2 is a pressure diagram of the heating operation of the heat pump air conditioning system
  • FIG. 3 is a schematic diagram of the principle of the third embodiment of the heat pump air conditioning system. detailed description
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a schematic diagram of the first embodiment of the heat pump air conditioning system.
  • the solid line with an arrow in the figure indicates the flow direction of the refrigerant during heating of the heat pump air conditioning system.
  • a heat pump air conditioning system includes an indoor throttle device 20, an indoor unit heat exchanger 19, a four-way valve 13, an outdoor unit heat exchanger 14, an outdoor throttle device 15, a sub-cooling coil 16 and a reservoir 17, These components are connected in series by a copper tube into a one-piece cold heating cycle.
  • the outdoor throttle device 15 is composed of a check valve and an electronic expansion valve in parallel.
  • the heat pump air conditioning system further includes a compressor steam injection system, the compressor steam injection system includes a compressor 11, and the compressor 11 includes an air outlet 113 and a first air inlet 111 and a second air inlet 112.
  • the gas port 113 is connected to the four-way valve 13
  • the first air inlet 111 is connected to the four-way valve B through a gas-liquid separator
  • the second air inlet 112 is connected to the indoor throttle device 15 through a bypass passage provided with the electronic expansion valve 21. It is connected to the accumulator 17, that is to say to the outflow end of the indoor throttling device 15.
  • An absorption coil 18 is attached to the bypass tube, and an absorption coil 18 is placed in the reservoir 17.
  • the compressor 11 may be a jet-enhanced digital scroll compressor, and the indoor throttle device 20 may be an electronic expansion valve.
  • the heat pump air conditioning system further includes a steam injection control device including three sensors and the above-described electronic expansion valve 21.
  • the three sensors are a low pressure sensor 201, a high pressure sensor 202, and an injection pressure sensor 203, respectively.
  • the high pressure sensor 202 is placed in the air outlet 113 of the compressor 11, the low pressure sensor 201 is placed in the first air inlet 111 of the compressor 11, and the injection pressure sensor 203 is placed in the second air inlet 112 of the compressor 11, the electronic expansion valve 21 Provided on the bypass pipe.
  • the refrigerant flowing out of the indoor unit heat exchanger 19 is divided into two paths, a part of which passes through the electronic expansion valve 21 on the bypass pipe and the disk placed in the liquid storage device 17.
  • the tube 18 is then sucked in by the second suction port 112 of the compressor 11; another portion of the refrigeration
  • the agent directly enters the accumulator, and enters the outdoor unit heat exchanger 14 through the outdoor unit sub-cooling coil 16 and the auxiliary throttle device 15.
  • the working principle of the steam injection control device is: detecting the pressure of the compressor gas entering and exiting through the pressure sensor provided at the suction port and the air outlet of the compressor, and controlling the opening degree of the second suction port according to the change of the gas pressure of the compressor. Thereby the amount of steam injected is controlled. Specifically includes the following process:
  • the pressure sensor detects the pressures of the first suction port, the second suction port and the gas outlet of the compressor, respectively, corresponding to P low, P3 ⁇ 4, P high;
  • the actual opening degree of the second suction port is the sum of the original opening degree and the opening degree change amount ⁇ of the second suction port.
  • the opening degree of the second intake port is controlled by the change in the opening degree of the electronic expansion valve 21.
  • the compressor 11 compresses the low temperature and low pressure refrigerant gas (state point 1) evaporated from the outdoor unit heat exchanger 14 to the intermediate pressure state point 2, in compression
  • the gas in the scroll of the machine 11 is mixed with the intermediate pressure gas (state point 9) sucked from the second suction port 112 of the compressor to the state point 10, and then continues to be compressed by the compressor 11 into a high temperature and high pressure gas (state point 3)
  • the high temperature and high pressure refrigerant gas is cooled and condensed into the high temperature and high pressure refrigerant liquid (state point 4) in the indoor unit heat exchanger 19, and the high pressure liquid is throttled to the gas by the indoor throttle device 20, for example, the electronic expansion valve.
  • Liquid mixture (state point 5); at this time, the refrigerant is divided into two paths, and a part of the refrigerant is throttled by the electronic expansion valve 21 into an intermediate pressure refrigerant gas-liquid mixture (state point 8) into the absorption coil 18 in the accumulator 17, Evaporate after absorbing heat
  • the intermediate pressure saturated vapor (state point 9) is drawn in by the second suction port 112 of the compressor 11, and the other portion of the refrigerant directly enters the container between the outer casing of the accumulator 17 and the absorption coil 18, and the absorption coil.
  • the refrigerant in 18 undergoes heat exchange to release heat and is condensed into supercooled liquid through the outdoor unit sub-cooling coil 16 (state point 6); the supercooled liquid is throttled to the state point 7 by the outdoor throttling device 15 such as an electronic expansion valve Then, the outdoor unit heat exchanger 14 is evaporated to the state point 1 and sucked by the compressor suction port 111 to complete a heating cycle.
  • the working principle of the whole heat pump air conditioning system is: under normal working conditions, the same as the ordinary heat pump air conditioning unit for cooling and heating operation; when the outdoor ambient temperature is lowered and the heating capacity is attenuated, the steam injection control device in the unit plays a role, compressing
  • the machine injects the intermediate pressure of the saturated refrigerant gas to achieve two-stage compression in the compressor and the unit to improve the heat generation and energy efficiency ratio of the unit under outdoor low temperature conditions.
  • the compression ratio of the compressor in the system and the exhaust temperature of the unit are within a reasonable range.
  • the reliability of the unit operation is verified and verified by a large number of experiments.
  • the unit adopts the intelligent frost mode, and the unit is controlled by the high pressure to enter the defrosting. Running, you can achieve the goal of "with frost and no frost.” Example two.
  • the sensor used in the steam injection control device in the embodiment is a temperature sensor
  • the working principle of the steam injection control device using the temperature sensor is: by setting the suction port of the compressor,
  • the temperature sensor of the port detects the temperature of the compressor gas in and out, and controls the opening degree of the second intake port according to the change in the temperature of the inlet and outlet compressor gas, thereby controlling the amount of steam injection.
  • the opening degree of the second suction port is controlled by the change in the opening degree of the electronic expansion valve 21, specifically including the following process:
  • the temperature sensor detects the temperature of the first suction port, the second suction port and the gas outlet of the compressor, respectively, corresponding to T low, ⁇ 3 ⁇ 4 , ⁇ , 3 ⁇ 4 ;
  • the actual opening degree of the second suction port is the sum of the original opening degree of the second suction port and the amount of change N of the opening degree.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the difference between this embodiment and the first embodiment is that the sub-cooling coil 16 and the accumulator 17 are not provided in the heat pump system of the present embodiment, and the coil 18 is not provided on the bypass pipe.
  • the bypass pipe can be directly taken out from the outlet of the indoor unit heat exchanger.
  • the throttling device electronic expansion valve can be replaced by a common capillary tube, and the indoor unit can be just one; in addition, the bypass pipe can be directly taken out from the outlet of the indoor unit heat exchanger. Therefore, any modifications or sub-commitations of the present invention are intended to be included within the scope of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

L'invention concerne un système de conditionnement d'air à pompe thermique, un système frigorifique à éjection de vapeur et un procédé de commande associé. Le conditionneur d'air à pompe thermique comprend une soupape à quatre voies (13), un échangeur thermique intérieur (19), un régulateur intérieur (20), un régulateur extérieur (15) et un échangeur thermique extérieur (14) montés en série au moyen de conduites. Le système de conditionnement d'air à pompe thermique comprend également un système à éjection de vapeur à compresseur, dans lequel un compresseur (11) comprend un premier orifice d'admission (111), un second orifice d'admission (112) et un orifice de sortie (113). Le premier orifice d'admission (111) est relié à la soupape à quatre voies (13) par un séparateur gaz-liquide (12). Le second orifice d'admission (112) est relié à la position située entre le régulateur intérieur (20) et le régulateur extérieur (15) par une conduite de dérivation munie d'un détendeur électrique (21). L'orifice de sortie (113) est relié à la soupape à quatre voies (13). Des capteurs (201, 201, 203) destinés à détecter l'état du gaz sont montés au niveau des deux orifices d'admission (201,202) et de l'orifice de sortie (203) du compresseur (11) respectivement. La pression du second orifice d'admission (112) est régulée conformément aux résultats de détection.
PCT/CN2007/001125 2006-04-11 2007-04-06 Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé WO2007115494A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES07720698T ES2705478T3 (es) 2006-04-11 2007-04-06 Un sistema de acondicionamiento de aire con bomba de calor, y el sistema de chorro de vapor y el método de control del mismo
PL07720698T PL2009369T3 (pl) 2006-04-11 2007-04-06 Układ klimatyzacji pompy ciepła, oraz układ strumienia pary oraz sposób ich sterowania
EP07720698.5A EP2009369B1 (fr) 2006-04-11 2007-04-06 Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610034943.1 2006-04-11
CNB2006100349431A CN100386580C (zh) 2006-04-11 2006-04-11 一种热泵空调系统及其蒸气喷射控制装置和控制方法

Publications (1)

Publication Number Publication Date
WO2007115494A1 true WO2007115494A1 (fr) 2007-10-18

Family

ID=36946693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001125 WO2007115494A1 (fr) 2006-04-11 2007-04-06 Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé

Country Status (7)

Country Link
EP (1) EP2009369B1 (fr)
CN (1) CN100386580C (fr)
ES (1) ES2705478T3 (fr)
PL (1) PL2009369T3 (fr)
RU (1) RU2426956C2 (fr)
TR (1) TR201820044T4 (fr)
WO (1) WO2007115494A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110701819A (zh) * 2019-10-16 2020-01-17 天津商业大学 一种三工况系统
CN110953755A (zh) * 2019-10-31 2020-04-03 清华大学 可调温除湿的空调系统及其控制方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769659B (zh) * 2009-01-05 2011-08-31 珠海格力电器股份有限公司 热泵型空调系统
CN102466368B (zh) * 2010-11-03 2014-04-30 海尔集团公司 空调热水器及其控制方法
CN103090579B (zh) * 2011-10-31 2015-10-28 中国科学院理化技术研究所 电动汽车的空调热泵系统
JP5447705B2 (ja) * 2012-03-14 2014-03-19 ダイキン工業株式会社 調湿装置
CN103307805B (zh) * 2013-06-14 2015-03-25 上海海立睿能环境技术有限公司 一种三联供热泵系统
CN103574842A (zh) * 2013-10-26 2014-02-12 宁波奥克斯空调有限公司 变频空调系统的控制方法
JP6242321B2 (ja) * 2014-10-03 2017-12-06 三菱電機株式会社 空気調和機
CN106482379A (zh) * 2016-10-25 2017-03-08 重庆美的通用制冷设备有限公司 空调及其制冷系统
CN106839095A (zh) * 2017-01-05 2017-06-13 宁波奥克斯电气股份有限公司 太阳能电热互补式空调热泵机组及控制方法
CN107062463A (zh) * 2017-01-05 2017-08-18 宁波奥克斯电气股份有限公司 太阳能喷射制冷辅助空调机组及控制方法
DE102017214941A1 (de) 2017-08-25 2019-02-28 Dometic Sweden Ab Freizeitfahrzeug, Kühlvorrichtung, Steuerungssystem und Verfahren zur Steuerung der Kühlvorrichtung
US10941955B2 (en) 2017-10-27 2021-03-09 Dometic Sweden Ab Systems, methods, and apparatuses for providing communications between climate control devices in a recreational vehicle
WO2021112810A1 (fr) * 2019-12-05 2021-06-10 Валэрий Пэтрович ОСНАЧ Système de chauffage et de refroidissement de bâtiments
CN113587480A (zh) * 2020-06-28 2021-11-02 李华玉 第二类单工质联合循环
CN113587479A (zh) * 2020-06-28 2021-11-02 李华玉 第二类单工质联合循环
CN113638783A (zh) * 2020-07-10 2021-11-12 李华玉 第二类单工质联合循环
CN114151934B (zh) * 2021-12-07 2023-04-14 青岛海信日立空调系统有限公司 空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056329A (en) * 1990-06-25 1991-10-15 Battelle Memorial Institute Heat pump systems
US5241833A (en) * 1991-06-28 1993-09-07 Kabushiki Kaisha Toshiba Air conditioning apparatus
JP2001116373A (ja) * 1999-10-21 2001-04-27 Hitachi Ltd 空気調和機
JP2001317820A (ja) * 2000-05-08 2001-11-16 Hitachi Ltd 冷凍サイクル装置
CN1374482A (zh) * 2001-03-14 2002-10-16 清华同方股份有限公司 一种适用于寒冷地区的热泵空调机组
CN1409077A (zh) * 2001-09-28 2003-04-09 松下电器产业株式会社 冷冻循环的控制装置、控制方法以及使用该控制装置和控制方法的温度调节器
CN2615599Y (zh) * 2003-02-14 2004-05-12 清华同方人工环境有限公司 一种低温风冷热泵机组
CN1657846A (zh) * 2005-04-11 2005-08-24 北京工业大学 一种带喷射器和贮液过冷器的热泵(制冷)系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080558B2 (ja) * 1995-02-03 2000-08-28 株式会社日立製作所 寒冷地向けヒートポンプ空調機
JPH0989389A (ja) * 1995-09-21 1997-04-04 Denso Corp 冷凍サイクル装置
JPH1089781A (ja) * 1996-09-20 1998-04-10 Hitachi Ltd 冷凍装置ユニット及び冷凍装置並びに冷凍装置の運転方法
JPH11237126A (ja) * 1998-02-20 1999-08-31 Hitachi Ltd Hfc系冷媒対応冷凍装置
JP3719364B2 (ja) * 1999-12-15 2005-11-24 三菱電機株式会社 冷凍サイクル
JP4069733B2 (ja) * 2002-11-29 2008-04-02 三菱電機株式会社 空気調和機
US7299649B2 (en) * 2003-12-09 2007-11-27 Emerson Climate Technologies, Inc. Vapor injection system
CN2896146Y (zh) * 2006-04-11 2007-05-02 珠海格力电器股份有限公司 一种热泵空调系统及其蒸气喷射控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056329A (en) * 1990-06-25 1991-10-15 Battelle Memorial Institute Heat pump systems
US5241833A (en) * 1991-06-28 1993-09-07 Kabushiki Kaisha Toshiba Air conditioning apparatus
JP2001116373A (ja) * 1999-10-21 2001-04-27 Hitachi Ltd 空気調和機
JP2001317820A (ja) * 2000-05-08 2001-11-16 Hitachi Ltd 冷凍サイクル装置
CN1374482A (zh) * 2001-03-14 2002-10-16 清华同方股份有限公司 一种适用于寒冷地区的热泵空调机组
CN1409077A (zh) * 2001-09-28 2003-04-09 松下电器产业株式会社 冷冻循环的控制装置、控制方法以及使用该控制装置和控制方法的温度调节器
CN2615599Y (zh) * 2003-02-14 2004-05-12 清华同方人工环境有限公司 一种低温风冷热泵机组
CN1657846A (zh) * 2005-04-11 2005-08-24 北京工业大学 一种带喷射器和贮液过冷器的热泵(制冷)系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110701819A (zh) * 2019-10-16 2020-01-17 天津商业大学 一种三工况系统
CN110953755A (zh) * 2019-10-31 2020-04-03 清华大学 可调温除湿的空调系统及其控制方法
CN110953755B (zh) * 2019-10-31 2024-05-31 清华大学 可调温除湿的空调系统及其控制方法

Also Published As

Publication number Publication date
ES2705478T3 (es) 2019-03-25
TR201820044T4 (tr) 2019-02-21
RU2008143066A (ru) 2010-05-10
EP2009369A1 (fr) 2008-12-31
RU2426956C2 (ru) 2011-08-20
CN100386580C (zh) 2008-05-07
CN1828186A (zh) 2006-09-06
PL2009369T3 (pl) 2019-05-31
EP2009369A4 (fr) 2016-11-23
EP2009369B1 (fr) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2007115494A1 (fr) Système de conditionnement d'air à pompe thermique, système frigorifique à éjection de vapeur et procédé de commande associé
CN103542606B (zh) 热泵空调系统及其控制方法
WO2019200951A1 (fr) Système de pompe à chaleur de climatisation et procédé de commande
WO2018054052A1 (fr) Climatiseur et son système de dégivrage
CN102216700B (zh) 热泵系统及操作方法
CN100535548C (zh) 一种超低温热泵空调系统
WO2015096539A1 (fr) Système de climatisation et son procédé de commande
CN102419025B (zh) 一种双级增焓空调系统
CN104613665A (zh) 热泵空调系统
WO2007059709A1 (fr) Systeme de pompe a chaleur pour conditionnement d'air a basse temperature et procede d'utilisation de ce systeme
AU2016337938B2 (en) Heat pump unit control system
CN103196262A (zh) 一种空气源热泵热水器热气旁通除霜装置
CN100439809C (zh) 一种压缩机补气系统及补气控制方法
CN101493269B (zh) 低温热泵空调系统
CN107101405B (zh) 一种压缩循环系统
CN2896146Y (zh) 一种热泵空调系统及其蒸气喷射控制装置
CN201463395U (zh) 带补气的两级压缩空气源热泵系统
CN202660807U (zh) 一种双级增焓空调系统
CN208075218U (zh) 空调热泵系统
CN101625176B (zh) 准三级压缩空气源热泵系统
CN110671834A (zh) 一种热泵系统及其除霜方法
KR20100062405A (ko) 공기조화기 및 그 제어방법
CN114353383B (zh) 空气源热泵机组控制方法及空气源热泵机组
CN210463646U (zh) 一种热泵系统
CN106288048A (zh) 除湿机及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720698

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008143066

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007720698

Country of ref document: EP