WO2015096225A1 - 彩色滤色片膜厚测量方法及装置 - Google Patents

彩色滤色片膜厚测量方法及装置 Download PDF

Info

Publication number
WO2015096225A1
WO2015096225A1 PCT/CN2014/070482 CN2014070482W WO2015096225A1 WO 2015096225 A1 WO2015096225 A1 WO 2015096225A1 CN 2014070482 W CN2014070482 W CN 2014070482W WO 2015096225 A1 WO2015096225 A1 WO 2015096225A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
film thickness
color filter
region
background
Prior art date
Application number
PCT/CN2014/070482
Other languages
English (en)
French (fr)
Inventor
黄文德
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2015096225A1 publication Critical patent/WO2015096225A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry

Definitions

  • the present invention relates to a liquid crystal display manufacturing technique, and more particularly to a color filter film thickness measuring method and apparatus.
  • RGB (Red, Green, Blue) process is the key to color formation of TFT-LCD panels, in color filters (Color In the production of Filter), the color quality is ensured by controlling the film thickness of the RGB photoresist film.
  • the existing optical 3D measurement method displays the image of the color filter with a gray scale image, and then identifies three pixel regions R, G, and B according to the gray scale image, and performs measurement of each pixel region. . Since the R pixel and the B pixel are very close in the gray scale image, on the one hand, the detecting personnel can easily confuse the two pixel regions, and on the other hand, the device software is also easily mismatched during the automatic identification measurement, resulting in detection errors. Even if the recognition angle is set at the edge position of the pixel region, different pixel regions cannot be accurately recognized because of the size of the recognition angle and the accuracy limit of the exposure device; in addition, different detection positions set by different detectors may result in different detection regions. There are differences in the results of the measurements.
  • the object of the present invention is to provide an accurate resolution of the color type of the detected pixel region and the defects of different detection results obtained by different inspectors during the detection process of the existing color filter. And measuring color filter film thickness measuring method and device.
  • the color filter film thickness measuring method provided by the present invention to solve the above problems includes the following steps:
  • step S3 further comprises: setting a detection frame with a directional star, moving the detection frame to the color region, so that the directional star is in a central region of the color region.
  • an identification circle having a diameter of 20 micrometers to 40 micrometers is disposed on a crosshair of the detection frame, and the alignment star is determined when the identification circle is in a color region to be detected. In the center of the color area.
  • a background detecting frame for detecting a background region is provided outside the detecting frame, and the background detecting frame is used to determine the position of the background region where the film thickness needs to be detected.
  • the step S3 further comprises: measuring the film thickness of the corresponding color filter in the identification circle and the corresponding color filter color in the background detection frame using white light interferometry The film thickness of the sheet.
  • the invention also provides a color filter film thickness measuring device, comprising:
  • a color camera for taking a color filter to obtain a color image of a color filter
  • a color gradation recognition component connected to the color camera for performing gradation matching on the collected color image, and identifying each color region and a background region having different colors in the color image;
  • a positioning recognition component connected to the color gradation recognition component for locating the center of each color region
  • a film thickness measuring component connected to the positioning and identifying component for measuring a film thickness of a central color of a color region and a background region, and recording the height of the color region relative to the background region at the center point of the color region The film thickness of the color area.
  • the positioning measuring component includes a detecting frame with a sighting beam, and the positioning measuring component moves the detecting frame to the color region such that the sighting star is in a central region of the color region.
  • the detection star of the detection frame is provided with an identification circle having a diameter of 20 micrometers to 40 micrometers, and when the identification circle is in a color region to be detected, the crosshair is determined. In the center of the color area.
  • a detection frame for detecting a background area is provided outside the detection frame, and the background detection frame is used for determining a position of a background area where a film thickness needs to be detected.
  • the color filter film thickness measuring device of the present invention wherein the film thickness measuring component is a white light interferometer, and the white light interferometer measures a film thickness of the corresponding color filter in the identification circle and a background detection frame.
  • the film thickness of the corresponding color filter is a white light interferometer
  • the method and device for measuring the color filter film thickness of the present invention can accurately distinguish the regions of different colors of R, G, and B on the color filter, and at the same time, by measuring the center position of the color region, the measurement personnel are avoided.
  • the difference in measurement results caused by the difference in the selected measurement area can also eliminate the measurement error caused by the unevenness of the detected color filter.
  • Figure 1 is a cross-sectional view showing a color filter for measurement according to the present invention
  • FIG. 3 is a flow chart of a color filter film thickness measuring method according to a preferred embodiment of the present invention.
  • Figure 4 is an image of a color filter obtained in accordance with the present invention.
  • Figure 5 is a schematic view showing a selected detection position of the color image of Figure 4.
  • Figure 6 is a cross-sectional view of the detecting pixel of Figure 5 in the longitudinal direction;
  • Figure 7 is a functional block diagram of a color filter film thickness measuring device of the present invention.
  • FIG. 8 is a schematic structural view of a color filter film thickness measuring device according to a preferred embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a color filter film thickness measuring device according to another embodiment of the present invention.
  • FIG. 1 shows the color filter used in the TFT-LCD (Color Schematic diagram of the transverse section structure of the Filter).
  • the color filter comprises a glass substrate 100 on the bottom layer, and a opaque black matrix 400 is formed on the glass substrate 100 by various methods such as deposition and coating.
  • Matrix, BM) pixel units of different colors are disposed between the black matrices 400, for example, including red pixels 201 (R pixels) and blue pixels 202 (B) arranged in order in FIG. Pixel) and green pixel 203 (G Pixel).
  • a layer of indium tin oxide 300 (ITO) is overlaid on the pixel cells and the black matrix 400.
  • the TFT circuit corresponding to each pixel unit controls whether or not it transmits light.
  • the thickness of each pixel unit greatly affects the quality of the display color
  • the thickness of the black matrix 400 affects the degree of mutual interference of colors between adjacent pixel units.
  • the color filter is measured by a gray scale image measuring method, and in the image shown in FIG. 2 obtained by this method, the gray scale image of the red pixel 201 and the blue pixel 202 is very close. It is easy to identify errors. Even if the recognition angle is set at the edge of the pixel unit, as shown in FIG. 2, the edge of the blue pixel 202 is a non-flat curve. However, for the aperture ratio, the recognition angle should not be set too large, and the RGB exposure process is more accurate. Low exposure equipment, the actual recognition angle is usually not obvious, and the difference in RGB is not helpful.
  • the present invention provides a color filter film thickness measuring method as shown in FIG.
  • a color camera is used to take a color image from the front side of the color filter to obtain a color image of the color filter.
  • the structure of the color image is as shown in FIG.
  • three or more color pixels are taken, for example, three adjacent color pixels are included in FIG.
  • step S2 gradation matching is performed on the color images acquired in the previous step to identify different color regions and background regions in the color image.
  • three different color pixels are: red pixel 201, blue pixel 202, and green pixel 203, and the background is black matrix 400.
  • the tester can accurately determine the position of the pixel to be measured, and will not be confused with other pixels, thereby avoiding the difficulty of distinguishing the pixel defects of the red and blue colors by the existing grayscale image measurement method.
  • step S3 the center of each color region is measured and positioned, and the film thickness of the center film of each color region and the film thickness of the background region are measured.
  • a schematic diagram of detecting green pixels 203 is shown in FIG.
  • the detection frame 503 with the crosshair is moved above the green pixel 203 in the color image, and the detection frame 503 is slightly larger than the size of the green pixel 203, so that the entire green pixel falls inside the detection frame 503, and a cross is placed on the crosshair.
  • the identification circle 504 has a diameter of 20 to 40 micrometers.
  • the detection frame 503 it is possible to ensure that the position at which the thickness of the green pixel 203 is detected falls in the vicinity of the center point, and since the thickness fluctuation near the center point of the pixel is the smallest, the thickness value of the green pixel 203 can be most accurately reflected.
  • FIG. 6 is a cross-sectional view of the green pixel 203 of FIG. 5 in the longitudinal direction.
  • connection line of the detection points of the two black matrices 400 is taken as a horizontal line.
  • the reference position needs to be set to calculate the film thickness, and the background detection frame (501) will be at the center point of the green pixel 203.
  • the height of the background area of 502) is recorded as the film thickness of the green pixel 203. Since the product contains various film layers, in actual production, it is often necessary to calculate the relative film thickness based on different positions. For example, the thickness of the green pixel 203 with respect to the black matrix 203 or the thickness of the glass substrate 100 or the like is detected.
  • the background detection frames (501, 502) in this embodiment are located on the upper and lower sides of the detection frame 503, and the inclination in the vertical direction of the green pixel 203 can be measured.
  • the background detection frames (501, 502) may also be disposed on the left and right sides of the green pixel 203 in order to eliminate measurement errors caused by tilting in the lateral direction.
  • a plurality of existing methods of detecting the film thickness can be employed to measure the film thickness of each color pixel and the region of the black matrix.
  • a commonly used detection method is to use a white light interferometry method to construct a surface 3D topography of a color filter using white light interferometry, and then measure the film thickness at the measurement position.
  • the color filter film thickness measuring device provided by the present invention includes a color camera for photographing a color filter, the color camera After acquiring the color image of the color filter, the color image is sent to the color gradation recognition component connected to the color camera.
  • the color gradation recognition component determines different color pixels on the color image through color gradation analysis; when determining different color pixels on the color image, the measurement personnel can accurately determine which color pixel thickness needs to be measured.
  • the positioning measurement component positions the measured position to the middle portion of the color pixel, and then the film thickness of the intermediate portion is measured by the film thickness measuring component, and the thickness of the intermediate portion of the color pixel is minimized to obtain the most accurate Thickness measurement data.
  • the present invention provides a color filter film thickness measuring device as shown in FIG.
  • a color image acquisition system for collecting a front color pattern of the color filter and a film thickness measurement system are disposed directly above the color filter to be detected.
  • an interference objective 540 having a transflective property, a beam splitting assembly 530, and an imaging assembly 510 are sequentially disposed from bottom to top along the optical path.
  • a beam splitter 550 is disposed in the beam splitting assembly 530.
  • the light splitting hole 550 is disposed on the side wall of the beam splitting assembly 530 at the same height as the beam splitter 550, and a white light source is disposed in the opening position of the light passing hole. 520, the white light emitted by the white light source 520 can be irradiated on the beam splitter 550.
  • the interference objective 540 is not installed, and the color image of the color filter is acquired by the imaging unit 510, that is, the imaging unit 510 is used as a color camera.
  • the acquired color image is sent to an image processing system (not labeled in the figure) for analysis processing, which includes a color gradation recognition component and a position recognition component.
  • the image processing system first performs color gamut recognition on the acquired color image to identify the specific positions of the red pixel 201, the blue pixel 202, and the green pixel 203 on the black matrix 400.
  • the image processing system uses a detection frame 503 as shown in FIG. 5 to circle the pixels that need to be monitored for film thickness to determine the detected position.
  • the interference objective 540 is mounted at the bottom of the spectroscopy assembly 530 to measure the film thickness of the selected region.
  • the white light emitted from the white light source 520 is reflected by the beam splitter 550 and irradiated onto the interference objective lens 540.
  • Half of the white light is irradiated onto the color filter to be detected through the interference objective lens 540, and the other half is reflected and transmitted through the beam splitter.
  • 550 is irradiated on the imaging assembly 510; and after the interference objective lens 540 is irradiated onto the color filter, it is reflected back onto the imaging assembly 510, causing a phenomenon of white light interference.
  • the white light has the same coherence and is less prone to interference.
  • the light wave with similar frequency and amplitude can form a low-coherence white light interference wave, and the surface fluctuation of the color filter will affect the height of the interference wave, and follow this height change.
  • the overall surface contour of the color filter to be tested can be obtained, and then the height of the object to be tested at the pixel point is determined.
  • the imaging assembly 510 commonly used in white light interferometers is a CCD
  • its imaging performance is generally assisted without the aid of a lens.
  • the present invention is improved on the measuring device shown in FIG. 8 and is provided as shown in FIG. Another embodiment of a measuring device.
  • the original interference lens 540 having a transflective characteristic is mounted on a rotatable converter 570, which is also mounted with a color camera 560 for acquiring color pictures.
  • the color camera 560 on the converter 570 is first rotated to the optical axis position of the beam splitting assembly 530, and the color image of the color filter is captured by the color camera 560.
  • the collected color image is sent to an image processing system (not marked in the figure) connected to the color camera 560 for analysis processing, and the image processing system first performs color gradation recognition on the collected color image to identify the red pixel 201 and the blue color.
  • the specific locations of the color pixels 202 and the green pixels 203 on the black matrix 400 uses a detection frame 503 as shown in FIG. 5 to circle the pixels that need to be monitored for film thickness to determine the detected position.
  • the converter 570 After determining the detected position, the converter 570 is rotated to convert the interference lens 540 to the optical axis position of the beam splitting assembly 530, and then the identification circle 504 and the two background detection frames in FIG. 5 are identified by white light interferometry (501, 502) The film thickness of the corresponding region.
  • the film thickness detection of the above three monitoring areas the measurement error due to the tilt of the color filter can be eliminated, and accurate film thickness data can be obtained.
  • the film thickness measurement scheme of the color filter based on the white light interferometer of the present invention is provided, and those skilled in the art may also adopt other film thickness measurement methods to implement the present invention. As long as it is measured by gradation recognition and positioning to the center position of the recognized color pixel, it falls within the protection scope of the present invention.

Abstract

一种彩色滤色片膜厚测量方法及测量装置。该方法包括以下步骤:Sl、使用彩色摄像机拍摄彩色滤色片,获取彩色滤色片的彩色图像;S2、对于采集到的彩色图像进行色阶匹配,识别出彩色图像中的不同颜色区域以及背景区域;S3、定位测量到每一种颜色区域的中心,测量每一种颜色区域的中心膜厚和背景区域的膜厚。实施所述彩色滤色片膜厚测量方法及装置,能够准确分辨出彩色滤色片上的R、G、B的不同颜色的区域,同时通过测量颜色区域的正中位置,避免了因测量人员的选定区域的不同而导致的测量结果差异,还能消除因检测的彩色滤色片的摆放不平整而引起的测量误差。

Description

彩色滤色片膜厚测量方法及装置 技术领域
本发明涉及液晶显示器制造技术,更具体地说,涉及一种彩色滤色片膜厚测量方法及装置。
背景技术
RGB (Red,Green,Blue)制程是TFT-LCD面板色彩形成的关键所在,在彩色滤色片(Color Filter)的生产中,通过管控RGB光阻成膜的膜厚来保证色彩品质。RGB膜厚量测主要有3种方式:接触式探针量测、光学式3D建模、光学式折射换算。其中光学式3D建模,以其量测种类多、量测灵活度高、稳定性可靠性佳、量测速度快等优点,在TFT-LCD行业中得到越来越多的应用,且更适用于集成化的量测一体机,可有效降低设备成本。
现有的光学式3D测量方式是将彩色滤色片的图像用灰阶图进行显示,然后依据该灰阶图识别出R、G、B三种像素区域,在进行每一种像素区域的测量。由于R像素和B像素在灰阶图中十分接近,一方面检测人员很容易会将两种像素区域混淆,另一方面设备软件在自动识别量测时也很容易误匹配,导致出现检测错误,即使在像素区域的边缘位置设置识别角,也会因为识别角的大小与曝光设备的精度限制而无法准确识别出不同的像素区域;此外,不同的检测人员设定的检测位置不同,也会导致测量的结果存在差异。
发明内容
本发明的目的在于,针对现有的彩色滤色片在检测过程中无法准确分辨出检测的像素区域的颜色类型以及不同的检测人员会得出不同的检测结果的缺陷,提供一种能够准确分辨及测量的彩色滤色片膜厚测量方法及装置。
本发明解决上述问题所提供的彩色滤色片膜厚测量方法包括以下步骤:
S1 、使用彩色摄像机拍摄彩色滤色片,获取彩色滤色片的彩色图像;
S2 、对于采集到的彩色图像进行色阶匹配,识别出彩色图像中的各个具有不同颜色的颜色区域以及背景区域;
S3 、分别测量每个颜色区域以及背景区域的膜厚;其中,每个颜色区域的膜厚测量方法为:首先确定每个颜色区域的中心点的位置,然后测量该颜色区域的中心点处的膜厚,并将在该颜色区域的中心点处相对于背景区域的高度记录为该颜色区域的膜厚。
本发明的彩色滤色片膜厚测量方法,其中步骤S3还包括:设置带有准星的检测框,移动所述检测框至所述颜色区域上,使准星处于颜色区域的中心区域内。
本发明的彩色滤色片膜厚测量方法,在所述检测框的准星上设置直径为20微米至40微米的识别圈,当所述识别圈处于待检测的颜色区域内时,确定所述准星处于颜色区域的中心区域内。
本发明的彩色滤色片膜厚测量方法,在所述检测框的外侧设置用于检测背景区域的背景检测框,使用该背景检测框确定需要检测膜厚的背景区域位置。
本发明的彩色滤色片膜厚测量方法,所述步骤S3还包括,使用白光干涉法测量所述识别圈之内对应的彩色滤色片的膜厚和背景检测框之内对应的彩色滤色片的膜厚。
本发明还提供一种彩色滤色片膜厚测量装置,包括:
彩色摄像机,用于拍摄彩色滤色片,获取彩色滤色片的彩色图像;
与彩色摄像机相连的色阶识别组件,用于对采集到的彩色图像进行色阶匹配,识别出彩色图像中的各个具有不同颜色的颜色区域以及背景区域;
与色阶识别组件相连的定位识别组件,用于定位测量到每一种颜色区域的中心;
与定位识别组件相连的膜厚测量组件,用于对一种颜色区域的中心膜厚和背景区域的膜厚进行测量,并将在该颜色区域的中心点处相对于背景区域的高度记录为该颜色区域的膜厚。
本发明的彩色滤色片膜厚测量装置,所述定位测量组件包括带有准星的检测框,定位测量组件移动所述检测框至所述颜色区域上,使准星处于颜色区域的中心区域内。
本发明的彩色滤色片膜厚测量装置,所述检测框的准星上设置有直径为20微米至40微米的识别圈,当所述识别圈处于待检测的颜色区域内时,确定所述准星处于颜色区域的中心区域内。
本发明的彩色滤色片膜厚测量装置,所述检测框的外侧设有用于检测背景区域的背景检测框,所述背景检测框用于确定需要检测膜厚的背景区域位置。
本发明的彩色滤色片膜厚测量装置,所述膜厚测量组件为白光干涉仪,所述白光干涉仪测量所述识别圈之内对应的彩色滤色片的膜厚和背景检测框之内对应的彩色滤色片的膜厚。
实施本发明的彩色滤色片膜厚测量方法及装置,能够准确分辨出彩色滤色片上的R、G、B的不同颜色的区域,同时通过测量颜色区域的正中位置,避免了因测量人员的选定测量区域的不同而导致的测量结果差异,还能消除因检测的彩色滤色片的摆放不平整而引起的测量误差。
附图说明
以下结合附图对本发明进行说明,其中:
图1为本发明进行测量的彩色滤色片的剖面图;
图2为采用现有技术对彩色滤色片进行灰阶摄像获得的图像;
图3为本发明一则优选实施例所提供的彩色滤色片膜厚测量方法的流程图;
图4为依据本发明获得的彩色滤色片的图像;
图5为对图4的彩色图像进行选定检测位置的示意图;
图6为图5的检测像素沿纵向的剖视图;
图7为本发明彩色滤色片膜厚测量装置的功能框图;
图8为本发明一则优选实施例所提供的彩色滤色片膜厚测量装置的结构示意图;
图9为本发明另一实施例所提供的彩色滤色片膜厚测量装置的结构示意图。
具体实施方式
以下通过附图和具体实施例对本发明进行说明。
如图1所示为TFT-LCD中所使用到的彩色滤色片(Color Filter)的横向剖面结构示意图。该彩色滤色片包括位于底层的玻璃基板100,在玻璃基板100上通过沉积、镀膜等多种方式形成一层不透光的黑色矩阵400(black matrix, BM),在黑色矩阵400之间设置有不同颜色的像素单元,例如在图1中包括按次序重复排列的红色像素201(R pixel)、蓝色像素202(B pixel)和绿色像素203(G pixel)。在这些像素单元和黑色矩阵400的上方覆盖有一层氧化铟锡300(ITO)。当需要显示不同的颜色的时候,由每一个像素单元对应的TFT电路控制其是否透光。显然,每个像素单元的厚度会极大的影响显示颜色的质量,而黑色矩阵400的厚度则影响相邻的像素单元之间的颜色的相互干扰程度。
现有技术中,对彩色滤色片采用灰阶图像测量方法进行测量,而采用这种方法获得的如图2所示的图像中,红色像素201、蓝色像素202的灰阶图像是十分接近的,很容易出现识别错误。即使在像素单元的边缘设置辨识角,如图2中蓝色像素202的边缘为非平整的曲线,但出于开口率的考量,辨识角不宜设置过大,再加上RGB曝光制程使用精度较低的曝光设备,实做的辨识角通常不明显,对RGB的区分帮助不大。
为了克服现有的灰阶图像测量法中难以识别以及测量结果会随测量人员的不同而出现测量结果不相同的问题,本发明提供了如图3所示的彩色滤色片膜厚测量方法。首先在步骤S1中,使用彩色摄像机从彩色滤色片的正面进行拍摄,获得彩色滤色片的彩色图像,该彩色图像的结构如图4所示。为了保证需要测量的颜色区域能够在拍摄得到的图像中出现,通常拍摄3个或以上的颜色像素,例如在图4中的包括3个紧邻的颜色像素。
在步骤S2中,对于前一步骤中采集得到的彩色图像进行色阶匹配,以便识别出彩色图像中的不同颜色区域以及背景区域。例如在图4中3个不同的颜色像素分别为:红色像素201、蓝色像素202和绿色像素203,背景则为黑色矩阵400。通过色阶识别,测试人员能够准确地判断出需要测量的像素的位置,不会与其他的像素混淆,从而避免了现有的灰阶图像测量法难以区分红蓝两种颜色的像素缺陷。
区分出需要检测的颜色后,需要确定好具体检测像素的哪一个位置作为厚度测量,由于在人工测量中,不同的检测人员选取的检测位置不一样,会导致检测的结果有偏差。为了克服这一问题,在本实施例中通过自动检测颜色像素的中心位置来克服这一问题。在步骤S3中,定位测量到每一种颜色区域的中心,测量每一种颜色区域的中心膜厚和背景区域的膜厚。如图5所示为检测绿色像素203的一个示意图。将带有十字准星的检测框503移动到彩色图像中绿色像素203的上方,检测框503略大于绿色像素203的大小,使整个绿色像素落在检测框503的内部,同时在十字准星上设置一个圆形的识别圈504,在本实施例中,识别圈504的直径为20至40微米,在调节检测框503的时候,需要保证识别圈504始终位于绿色像素203的内部,当识别圈504不超出绿色像素203的内部空间时,能够确定此时的准星落在绿色像素203的中间区域。通过这样设置的检测框503,能够保重检测绿色像素203厚度的位置落在中心点的附近,由于像素中心点附近的厚度起伏最小,因而能够最准确的反映出该绿色像素203的厚度数值。
为了克服待检测的彩色滤色片在放置的时候出现倾斜的问题而导致厚度测量出准确,在检测框503的上下两侧设置用于检测黑色矩阵的背景检测框(501、502)。通过检测两个背景检测框(501、502)的黑色矩阵的厚度,能够消除因为放置倾斜所带来的检测误差。其原理如图6所示。图6为图5中的绿色像素203沿纵向的剖视图。当彩色滤色片未能实现完全的平放时,对于绿色像素203的厚度检测必然存在误差,而通过检测两个背景检测框(501、502)所对应的黑色矩阵400的厚度,然后通过软件的处理,将两个黑色矩阵400的检测点的连线作为水平线,水平定义完成后,需要设定基准位置来计算膜厚,将在该绿色像素203的中心点处相对于背景检测框(501、502)的背景区域的高度记录为该绿色像素203的膜厚。因产品包含各种膜层混叠,在实际生产中,也经常需要以不同位置为基准,从而计算相对膜厚。例如检测绿色像素203相对于黑色矩阵203的厚度,或者是相对于玻璃基板100的厚度等。
在本实施例中的背景检测框(501、502)位于检测框503的上下两侧,能够测量出沿绿色像素203竖直方向的倾斜情况。本领域的技术人员应当理解,背景检测框(501、502)也可以设置在绿色像素203的左右两侧,以便消除在横向方向上的倾斜所带来的测量误差。
在本实施例中,可以采用多种现有的检测膜厚的方法来对各个颜色像素、以及黑色矩阵的区域进行膜厚测量。例如一种常用的检测方式是使用白光干涉法,利用白光干涉法构建彩色滤色片的表面3D形貌,再测算出测量位置的膜厚。
如图7为本发明所提供的彩色滤色片膜厚测量装置的功能框图,本发明所提供的彩色滤色片膜厚测量装置包括一个用于拍摄彩色滤色片的彩色摄像机,该彩色摄像机获取彩色滤色片的彩色图像之后,将彩色图像发送到与彩色摄像机相连接的色阶识别组件上。该色阶识别组件通过色阶分析,确定出彩色图像上的不同颜色像素;当确定好彩色图像上的不同颜色像素时,测量人员就能够准确的确定需要测量哪一个颜色像素的厚度。当确定好颜色后,定位测量组件将测量的位置定位到颜色像素的中间区域,然后由膜厚测量组件测量该中间区域的膜厚,由于颜色像素的中间区域的厚度起伏最小,能够得到最为准确的厚度测量数据。
具体的本发明提供了如图8所示的彩色滤色片膜厚测量装置。在待检测的彩色滤色片的正上方设置用于采集彩色滤色片的正面彩色图样的彩色图像采集系统以及膜厚测量系统。在一个可实现的实施例中,自下而上沿光路依次设置具有半反半透特性的干涉物镜540、分光组件530和成像组件510。分光组件530内安装有一块45°倾斜放置的分光镜550,在分光组件530的侧壁上,与分光镜550同一高度的位置开设有通光孔,在通光孔的开口位置安放有白光光源520,使得白光光源520发出的白光能够照射在分光镜550上。
在测量的时候,先不安装干涉物镜540,通过成像组件510采集彩色滤色片的彩色图像,即,将成像组件510作为彩色摄像机来使用。将采集到的彩色图像发送到与成像组件510相连的图像处理系统(未在图中标志)进行分析处理,该图像处理系统包括色阶识别组件和定位识别组件。图像处理系统首先对采集到的彩色图像进行色阶识别,以便识别出红色像素201、蓝色像素202和绿色像素203在黑色矩阵400上的具体位置。然后图像处理系统采用如图5所示的检测框503,将需要监测膜厚的像素圈定好,从而确定检测的位置。
完成上述的色阶识别以及检测位置的确定后,将干涉物镜540安装在分光组件530的底部,进行选定区域的膜厚测量。从白光光源520发出的白光经过分光镜550的反射,照射在干涉物镜540上,该白光的一半透过干涉物镜540照射在待检测的彩色滤色片上,另一半被反射,并透过分光镜550照射在成像组件510上;而透过干涉物镜540在照射到彩色滤色片之后,沿反射回成像组件510上,产生白光干涉的现象。利用白光同调性短,不易产生干涉的特性,透过频率与振幅相近的光波,可以形成低同调性白光干涉波,而彩色滤色片表面起伏将影响干涉波的发生高度,依循此高度变化,求取干涉零光程差位置,即可求出待测彩色滤色片的整体表面轮廓,进而确定出该像素点的待测物体高度。
考虑到在白光干涉仪中常用的成像组件510为CCD,在没有透镜的辅助下,其成像性能一般,为此,本发明在图8所示的测量装置上进行改进,提供如图9所示的另一则测量装置的实施例。在本实施例中,将原先的具有半透半反特性的干涉透镜540安装在一个可以转动的转换器570上,转换器570上还安装有一个用于采集彩色图片的彩色摄像机560。
在使用本实施例的测量装置进行膜厚测量的时候,先将转换器570上的彩色摄像机560旋转到分光组件530的光轴位置上,利用彩色摄像机560采集彩色滤色片的彩色图像,将采集到的彩色图像发送到与彩色摄像机560相连的图像处理系统(未在图中标志)进行分析处理,图像处理系统首先对采集到的彩色图像进行色阶识别,以便识别出红色像素201、蓝色像素202和绿色像素203在黑色矩阵400上的具体位置。然后图像处理系统采用如图5所示的检测框503,将需要监测膜厚的像素圈定好,从而确定检测的位置。
当确定好检测的位置之后,转动转换器570,将干涉透镜540转换至分光组件530的光轴位置上,然后利用白光干涉法识别图5中的识别圈504和两个背景检测框(501、502)所对应区域的膜厚。通过上述的三个监测区域的膜厚检测,能够消除由于彩色滤色片的倾斜所带来的测量误差,得到准确的膜厚数据。
在图8、图9的两个实施例中提供了本发明基于白光干涉仪的彩色滤色片的膜厚测量方案,本领域的技术人员也可以采用其他的膜厚测量方式来实现本发明,只要其通过色阶识别和定位到识别出来的颜色像素的中心位置进行测量,均落入到本发明的保护范围之内。
以上仅为本发明具体实施方式,不能以此来限定本发明的范围,本技术领域内的一般技术人员根据本创作所作的均等变化,以及本领域内技术人员熟知的改变,都应仍属本发明涵盖的范围。

Claims (10)

  1. 一种彩色滤色片膜厚测量方法,包括以下步骤:
    S1 、使用彩色摄像机拍摄彩色滤色片,获取彩色滤色片的彩色图像;
    S2 、对采集到的彩色图像进行色阶匹配,识别出彩色图像中的各个具有不同颜色的颜色区域以及背景区域;
    S3 、分别测量每个颜色区域以及背景区域的膜厚;其中,每个颜色区域的膜厚测量方法为:首先确定每个颜色区域的中心点的位置,然后测量该颜色区域的中心点处的膜厚,并将在该颜色区域的中心点处相对于背景区域的高度记录为该颜色区域的膜厚。
  2. 根据权利要求1所述的彩色滤色片膜厚测量方法,其中,所述步骤S3还包括:设置带有准星的检测框,移动所述检测框至所述颜色区域上,使准星处于颜色区域的中心区域内。
  3. 根据权利要求2所述的彩色滤色片膜厚测量方法,其中,所述步骤S3还包括:在所述检测框的准星上设置直径为20微米至40微米的识别圈,当所述识别圈处于待检测的颜色区域内时,确定所述准星处于颜色区域的中心区域内。
  4. 根据权利要求3所述的彩色滤色片膜厚测量方法,其中,所述步骤S3还包括:在所述检测框的外侧设置用于检测背景区域的背景检测框,使用该背景检测框确定需要检测膜厚的背景区域位置。
  5. 根据权利要求4所述的彩色滤色片膜厚测量方法,其中,所述步骤S3还包括,使用白光干涉法测量所述识别圈之内对应的彩色滤色片的膜厚和背景检测框之内对应的彩色滤色片的膜厚。
  6. 一种彩色滤色片膜厚测量装置,包括:
    彩色摄像机,用于拍摄彩色滤色片,获取彩色滤色片的彩色图像;
    与彩色摄像机相连的色阶识别组件,用于对采集到的彩色图像进行色阶匹配,识别出彩色图像中的各个具有不同颜色的颜色区域以及背景区域;
    与色阶识别组件相连的定位识别组件,用于定位测量到每一种颜色区域的中心;
    与定位识别组件相连的膜厚测量组件,用于对一种颜色区域的中心膜厚和背景区域的膜厚进行测量,并将在该颜色区域的中心点处相对于背景区域的高度记录为该颜色区域的膜厚。
  7. 根据权利要求6所述的彩色滤色片膜厚测量装置,其中,所述定位测量组件包括带有准星的检测框,定位测量组件移动所述检测框至所述颜色区域上,使准星处于颜色区域的中心区域内。
  8. 根据权利要求7所述的彩色滤色片膜厚测量装置,其中,所述检测框的准星上设置直径为20微米至40微米的识别圈,当所述识别圈处于待检测的颜色区域内时,确定所述准星处于颜色区域的中心区域内。
  9. 根据权利要求8所述的彩色滤色片膜厚测量装置,其中,所述检测框的外侧设有用于检测背景区域的背景检测框,所述背景检测框用于确定需要检测膜厚的背景区域位置。
  10. 根据权利要求9所述的彩色滤色片膜厚测量装置,其中,所述膜厚测量组件为白光干涉仪,所述白光干涉仪测量所述识别圈之内对应的彩色滤色片的膜厚和背景检测框之内对应的彩色滤色片的膜厚。
PCT/CN2014/070482 2013-12-27 2014-01-10 彩色滤色片膜厚测量方法及装置 WO2015096225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310740245.3A CN103727888B (zh) 2013-12-27 2013-12-27 彩色滤色片膜厚测量方法及装置
CN201310740245.3 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015096225A1 true WO2015096225A1 (zh) 2015-07-02

Family

ID=50452069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070482 WO2015096225A1 (zh) 2013-12-27 2014-01-10 彩色滤色片膜厚测量方法及装置

Country Status (2)

Country Link
CN (1) CN103727888B (zh)
WO (1) WO2015096225A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707392A (zh) * 2016-12-07 2017-05-24 友达光电(昆山)有限公司 彩色滤光片及其膜层厚度测量方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977738B (zh) * 2015-07-13 2018-05-29 武汉华星光电技术有限公司 用于检测彩膜基板的画素的方法
CN105758318A (zh) * 2016-02-25 2016-07-13 深圳市众诚达应用材料科技有限公司 基于机器视觉色差法在线检测CdS薄膜厚度的系统及方法
CN105806205B (zh) * 2016-03-16 2018-11-23 武汉华星光电技术有限公司 测量光阻膜厚的方法
CN106370117A (zh) * 2016-10-14 2017-02-01 武汉华星光电技术有限公司 光阻膜厚测量方法及光阻膜厚测量装置
CN109751961A (zh) * 2019-01-07 2019-05-14 成都中电熊猫显示科技有限公司 一种膜厚测量仪的点位自动调整方法及膜层厚度测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184060A (ja) * 2004-12-27 2006-07-13 Toppan Printing Co Ltd 膜厚測定装置及び膜厚測定方法
JP2008020332A (ja) * 2006-07-13 2008-01-31 Toppan Printing Co Ltd 薄膜測定方法及び薄膜測定装置
CN101482404A (zh) * 2009-01-22 2009-07-15 吴锐光 瓷砖色彩及规格区分装置及区分方法
CN103136542A (zh) * 2011-11-29 2013-06-05 原相科技股份有限公司 一种游戏玩偶辨识系统、辨识方法及其游戏系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986072B2 (ja) * 1995-06-16 1999-12-06 インターナショナル・ビジネス・マシーンズ・コーポレイション 膜厚の検査方法
JP2004219108A (ja) * 2003-01-09 2004-08-05 Dainippon Printing Co Ltd 着色膜の膜厚ムラ検査方法及び装置
JP4248364B2 (ja) * 2003-10-17 2009-04-02 大日本印刷株式会社 三原色着色層についての膜厚検査装置
JP4484531B2 (ja) * 2004-01-21 2010-06-16 大日本印刷株式会社 膜厚良否検査方法及び装置
JP2005221401A (ja) * 2004-02-06 2005-08-18 Dainippon Printing Co Ltd 膜厚測定方法および装置
JP4312706B2 (ja) * 2004-12-27 2009-08-12 シャープ株式会社 膜厚差検出装置、膜厚差検出方法、カラーフィルタ検査装置、カラーフィルタ検査方法
JP2007205873A (ja) * 2006-02-01 2007-08-16 Dainippon Printing Co Ltd 塗膜形成ムラ検査装置
JP4777310B2 (ja) * 2007-07-31 2011-09-21 シャープ株式会社 検査装置、検査方法、検査システム、カラーフィルタの製造方法、検査装置制御プログラム、及び該プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2010139923A (ja) * 2008-12-15 2010-06-24 Toppan Printing Co Ltd カラーフィルタの検査方法および検査装置ならびにカラーフィルタ
JP2011257262A (ja) * 2010-06-09 2011-12-22 Toppan Printing Co Ltd カラーフィルタ基板のムラ検査装置
JP2012189544A (ja) * 2011-03-14 2012-10-04 Toray Eng Co Ltd 膜厚むら検査装置及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184060A (ja) * 2004-12-27 2006-07-13 Toppan Printing Co Ltd 膜厚測定装置及び膜厚測定方法
JP2008020332A (ja) * 2006-07-13 2008-01-31 Toppan Printing Co Ltd 薄膜測定方法及び薄膜測定装置
CN101482404A (zh) * 2009-01-22 2009-07-15 吴锐光 瓷砖色彩及规格区分装置及区分方法
CN103136542A (zh) * 2011-11-29 2013-06-05 原相科技股份有限公司 一种游戏玩偶辨识系统、辨识方法及其游戏系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707392A (zh) * 2016-12-07 2017-05-24 友达光电(昆山)有限公司 彩色滤光片及其膜层厚度测量方法

Also Published As

Publication number Publication date
CN103727888B (zh) 2016-06-15
CN103727888A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2015096225A1 (zh) 彩色滤色片膜厚测量方法及装置
KR101735403B1 (ko) 검사 방법, 템플릿 기판 및 포커스 오프셋 방법
US10277790B2 (en) Full-range image detecting system and method thereof
TWI715121B (zh) 一種感測裝置及感測方法
US11499814B2 (en) Inspection of bonding quality of transparent materials using optical coherence tomography
US10921111B2 (en) Detecting device, detecting method, liquid crystal dropping apparatus, and liquid crystal dropping method
US20200357704A1 (en) Laser triangulation sensor system and method for wafer inspection
JP6522344B2 (ja) 高さ検出装置、塗布装置および高さ検出方法
CN109358068A (zh) 一种基于线扫描和环带拼接的大口径平面镜的瑕疵检测装置和方法
KR20080098852A (ko) 얼룩 결함 검사 장치와 방법, 및 평판 디스플레이 패널의제조 방법
TWI568989B (zh) 全域式影像檢測系統及其檢測方法
EP2577265B1 (en) Apparatus and method for locating the centre of a beam profile
CN110514110B (zh) 一种平台调平控制方法
TWI585550B (zh) Pre-alignment measuring devices and methods
JP2000002514A (ja) 膜厚測定装置及びアライメントセンサ並びにアライメント装置
JP5200813B2 (ja) 測定用マークと基板エッジの距離測定方法
JPH06147987A (ja) 偏光解析装置及び位置ずれ補正方法
CN114152413A (zh) 一种激光显示中动态散斑的测试方法及其测试装置
US8755054B2 (en) Method of measuring surface structure of display device
KR101817667B1 (ko) 광학간섭계의 광축 정렬방법
JP2013152148A (ja) 非球面形状計測方法、形状計測プログラム及び形状計測装置
TWI672493B (zh) 用於檢測面板斑紋的光學檢測系統及其方法
JP3811728B2 (ja) 膜厚取得方法
US20130278925A1 (en) Detecting device and method for substrate
JP2012225824A (ja) 立体欠陥検査方法および検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875588

Country of ref document: EP

Kind code of ref document: A1