WO2015093596A1 - 加工性に優れた溶融Zn-Al-Mg系めっき鋼板及びその製造方法 - Google Patents
加工性に優れた溶融Zn-Al-Mg系めっき鋼板及びその製造方法 Download PDFInfo
- Publication number
- WO2015093596A1 WO2015093596A1 PCT/JP2014/083712 JP2014083712W WO2015093596A1 WO 2015093596 A1 WO2015093596 A1 WO 2015093596A1 JP 2014083712 W JP2014083712 W JP 2014083712W WO 2015093596 A1 WO2015093596 A1 WO 2015093596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- phase
- hot
- strength
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 77
- 239000010959 steel Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910018134 Al-Mg Inorganic materials 0.000 claims abstract description 32
- 229910018467 Al—Mg Inorganic materials 0.000 claims abstract description 32
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 229910001567 cementite Inorganic materials 0.000 claims abstract description 13
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000013078 crystal Substances 0.000 claims abstract description 5
- 230000008569 process Effects 0.000 claims abstract description 5
- 238000007747 plating Methods 0.000 claims description 42
- 238000007598 dipping method Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 238000005554 pickling Methods 0.000 claims description 3
- 229910007570 Zn-Al Inorganic materials 0.000 claims 2
- 230000007797 corrosion Effects 0.000 abstract description 9
- 238000005260 corrosion Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 18
- 238000003466 welding Methods 0.000 description 17
- 230000007423 decrease Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000011324 bead Substances 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/012—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/043—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
- Y10T428/12757—Fe
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
- Y10T428/12979—Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
Definitions
- the present invention is excellent in ductility and hole expansibility with a tensile strength of 400 MPa or more, which is suitable for use as a material for a member to be used after being subjected to some processing such as press processing and stretch flange processing, in applications where high corrosion resistance is required. Further, the present invention relates to a molten Zn—Al—Mg-based steel sheet and a method for producing the same.
- Patent Document 1 discloses a hot-dip galvanized steel sheet having improved strength and hole expansibility. However, since the strength is secured by using a bainite structure that is a hard phase, the hole expandability is high, but the ductility is low.
- Patent Document 2 proposes a ferrite single-phase steel sheet as a material having improved ductility and hole expandability. However, since it contains Mo, there is a problem that causes a significant cost increase.
- Patent Documents 3 and 4 propose a duplex steel sheet in which the hardness difference between ferrite and martensite is reduced as a material with improved ductility and hole expandability. However, since the hardness of martensite is lowered, there is a concern that the strength is lowered when the volume fraction of ferrite is increased.
- Patent Document 5 proposes a hot-dip Zn—Al—Mg-based plated steel sheet that is excellent in hole expansibility and corrosion resistance. However, it has been found that it is not always easy to stably obtain a high hole expandability even according to the method of this document.
- the steel sheets described in Patent Documents 1 to 5 cannot be said to satisfy all of the strength, ductility, hole expansibility, and corrosion resistance.
- the present invention provides a hot-dip Zn—Al—Mg-based plated steel sheet having strength, ductility and hole expansibility suitable for processing such as press working and stretch flange processing, and high corrosion resistance, and a method for producing the same. The purpose is to provide.
- the material steel plate is in mass%, C: 0.005 to 0.08%, Si: 0.8% or less, Mn: 0.1 to 1.8%, P: 0.05. %: S: 0.02% or less, N: 0.001 to 0.005%, Ti: 0.02 to 0.2%, B: 0.0005 to 0.01%, Al: 0.1% Containing the following, the balance is Fe and inevitable impurities, the main phase is a bainitic ferrite single phase or a phase including a bainitic ferrite phase and a ferrite phase, and the area ratio of the hard second phase and cementite is 3% The ratio of small-angle grain boundaries having a crystal orientation difference of 2 to 15 ° is 30 to 75%, and carbide containing Ti having an average particle diameter of 20 nm or less is dispersed and precipitated. The tensile strength is 400 MPa. Using high-strength hot-dip Zn-Al-Mg plated steel sheets with excellent workability To.
- Ti / C equivalent ratio (Ti / 48) / (C / 12) (1)
- the content (mass%) of the element in the material steel plate is substituted for the element symbol in the formula (1).
- the steel sheet may further contain one or more of Nb: 0.1% or less and V: 0.1% or less in mass%.
- the above plating composition is, for example, mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, B: 0 to 0 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.0%, the balance Zn and inevitable impurities.
- hot-dip Zn—Al—Mg-plated steel sheet As a manufacturing method of the above-mentioned hot-dip Zn—Al—Mg-plated steel sheet, hot rolling, pickling, annealing in a continuous hot-dip plating line, and hot-dip Zn—Al—Mg-based plating are sequentially applied to the raw steel sheet having the above composition.
- the process to perform is performed, the coiling temperature in hot rolling is 500 to 650 degreeC, and the annealing temperature in a continuous hot dipping line is 550 to 720 degreeC.
- a hot-dip Zn—Al—Mg-based plated steel sheet having strength, ductility and hole expansibility suitable for processing such as press working and stretch flange processing, and high corrosion resistance, and a method for producing the same. Can do.
- % In the steel composition and plating composition means “mass%” unless otherwise specified.
- C forms an carbide containing Ti, finely precipitates in bainitic ferrite or ferrite structure, and is an element effective for increasing the strength.
- the range of C content is preferably 0.01 to 0.08%.
- Si is an element effective for solid solution strengthening.
- the upper limit of the addition amount is set to 0.8%.
- Mn is an element effective for increasing the strength. If it is less than 0.1%, it is difficult to obtain a strength of 400 MPa or more. If it is added in excess of 1.8%, segregation is likely to occur, and the hole expandability decreases.
- the range of Mn content is preferably 0.5 to 1.8%.
- P is an element effective for solid solution strengthening, but if added over 0.05%, segregation is likely to occur, and the burring property is lowered.
- the range of P content is preferably 0.025% or less. The P content does not include 0.
- S forms sulfides with Ti and Mn, and the hole expandability decreases. For this reason, S is an element which should be reduced as much as possible.
- the range of S content is preferably 0.005% or less, and more preferably 0.003% or less.
- S is an inevitable impurity, and its content does not include zero.
- N 0.001 to 0.005%>
- BN is generated, leading to a decrease in the amount of B effective for resistance to molten metal embrittlement cracking.
- the N content is limited to 0.005% or less, but normally there is no problem even if N of about 0.001% is present.
- the range of N content is preferably 0.001 to 0.004%.
- Ti combines with C and precipitates as fine Ti carbides, and is an element effective for increasing the strength. Further, Ti has a high affinity with N and fixes N in the steel as TiN. Therefore, the addition of Ti is extremely effective in securing an amount of B that increases the resistance to molten metal embrittlement cracking. In order to obtain these effects sufficiently, addition of 0.02% or more is necessary, and if added over 0.2%, workability is reduced.
- the range of Ti content is preferably 0.03 to 0.2%.
- B is an element that segregates at the grain boundaries to increase the interatomic bonding force and is effective in suppressing molten metal embrittlement cracking. Further, it is an element that suppresses the austenite-ferrite transformation of steel, and by suppressing the austenite-ferrite transformation, it lowers the precipitation temperature of the Ti-based carbide and contributes to the refinement of the Ti-based carbide. If it is less than 0.0005%, the effect is not obtained. If it is added in excess of 0.01%, a boride is formed and the workability is deteriorated.
- the range of the B content is preferably 0.001 to 0.005%.
- Al 0.1% or less> Al is added as a deoxidizer during steelmaking. If it exceeds 0.1%, ductility is reduced.
- the range of Al content is preferably 0.05% or less. The Al content does not include 0.
- V 1.0% or less
- Nb 0.1% or less> Nb and V prevent the coarsening of ⁇ grains during heating and hot rolling, and are effective in making ferrite grains fine.
- a composite carbide containing C is formed, which contributes to an increase in strength. For this reason, it can contain 1 or more types of these elements as needed.
- Ti / C equivalent ratio is an important value for improving hole expandability and ductility.
- the Ti / C equivalent ratio is defined by the formula (1).
- Ti / C equivalent ratio (Ti / 48) / (C / 12) (1) However, the content (mass%) of the element in the material steel plate is substituted for the element symbol in the formula (1).
- the Ti / C equivalent ratio When the Ti / C equivalent ratio is less than 0.4, the amount of hard second phase and cementite increases, and the proportion of small-angle grain boundaries becomes 30% or less, so that the hole expandability decreases. On the other hand, when the Ti / C equivalent ratio exceeds 1.5, the ratio of the small-angle grain boundaries exceeds 75%, so that the ductility decreases.
- the tensile strength of the plated steel sheet of the present invention is specified to be 400 MPa or more. If the tensile strength is lower than this, sufficient workability cannot be secured.
- the tensile strength is preferably 500 MPa or more, more preferably 590 MPa or more.
- the microstructure of the high-strength molten Zn—Al—Mg-based steel sheet according to the present invention is mainly composed of a bainitic ferrite single phase or a bainitic ferrite phase and a ferrite phase, and includes a hard second phase and cementite.
- the ratio of small-angle grain boundaries with a crystal orientation difference of 2 to 15 ° is 30% or more and 75% or less, and the average grain size of the carbide containing Ti is 20 nm. It is as follows. Hereinafter, these will be described.
- the main phase is the structure of bainitic ferrite single phase or both bainitic ferrite and ferrite, and the area ratio of hard second phase (bainite, pearlite) and cementite is 3% or less.
- hard second phase bainite, pearlite
- the area ratio was 3% or less.
- the “main phase” means the remaining phase excluding the hard second phase and cementite in the metal structure of the steel sheet of the present invention.
- the reason why the ratio of the small-angle grain boundaries is 30% or more and 75% or less is that when the small-angle grain boundaries are less than 30%, the hole expansibility decreases, and when the small-angle grain boundaries exceed 75%, the ductility decreases.
- the proportion of the small angle grain boundary is preferably 40 to 75%.
- the reason why the average particle size of the carbide containing Ti is 20 nm or less is that the carbide containing Ti is precipitated during hot rolling, and the strength is increased by the precipitation strengthening action. In addition, fine precipitation is effective for improving the hole expandability. As a result of various studies, it is extremely effective that the average particle diameter of the carbide dispersed in the bainitic ferrite or the ferrite phase is 20 nm or less. The average particle diameter of the carbide is preferably 15 nm or less.
- the carbide containing Ti includes carbides such as Nb and V.
- the high-strength hot-dip Zn-Al-Mg-based plated steel sheet with excellent workability is, for example, hot-rolled, pickled, and annealed in a continuous hot-dip plating line on steel materials (such as continuous cast slabs) with adjusted components. And it can manufacture by the process of performing hot-dip Zn-Al-Mg system plating sequentially.
- the manufacturing conditions in that case will be exemplified.
- a steel slab satisfying the above composition is heated at a heating temperature of 1150 to 1300 ° C., hot-rolled at a finishing temperature of 850 to 950 ° C., and then cooled to a coiling temperature at an average cooling rate of 20 ° C. ⁇ sec or more. Thereafter, a hot-rolled steel strip is obtained at the following winding temperature. Furthermore, after this steel strip is pickled, it is subjected to a plating process in a continuous hot dipping line under the following conditions.
- the coiling temperature in hot rolling is 500 ° C. to 650 ° C.>
- the coiling temperature is less than 500 ° C.
- the amount of precipitation of carbide containing Ti becomes insufficient and the strength is lowered.
- the proportion of small-angle grain boundaries increases and ductility decreases.
- the coiling temperature exceeds 650 ° C., the carbide containing Ti is coarsened, and the strength and hole expandability are deteriorated.
- ⁇ Annealing temperature in continuous hot dipping line 550-720 ° C> If the annealing temperature is less than 550 ° C., the surface of the steel sheet is not sufficiently reduced and the plateability is lowered. On the other hand, when the annealing temperature exceeds 720 ° C., the carbides become coarse, leading to a decrease in strength and a decrease in hole expansibility. In addition, the proportion of small-angle grain boundaries is reduced, and the hole expandability is lowered.
- a known hot-dip Zn—Al—Mg-based plating method can be applied.
- Al in a plating layer has the effect
- the Al content of hot-dip plating needs to be 3.0% or more, and more preferably 4.0% or more.
- the Al content is preferably 15.0% or less, and more preferably 10.0% or less.
- Mg in the plating layer exhibits an effect of significantly increasing the corrosion resistance of the plated steel sheet by generating a uniform corrosion product on the surface of the plating layer.
- the Mg content of the hot-dip plating needs to be 0.05% or more, and it is desirable to ensure 2.0% or more.
- the Mg content exceeds 10.0%, an adverse effect that Mg oxide-based dross is likely to occur increases.
- the Mg content is preferably 5.0% or less, and more preferably 4.0% or less.
- Si in the plating layer is effective in preventing the black change of the plating layer and maintaining the gloss of the surface.
- it is effective to set the Si content of the hot dipping to 0.005% or more.
- Si is added excessively, the amount of dross in the hot dipping bath increases, so when Si is contained in the plating bath, the content range is 2.0% or less.
- Fe is mixed into the hot dipping bath from the raw steel plate and pot components.
- Fe in the plating bath is allowed to be contained up to about 2.0%.
- the plating bath as other elements, for example, one or more of Ca, Sr, Na, rare earth elements, Ni, Co, Sn, Cu, Cr, Mn may be mixed, but their total content Is desirably 1% by mass or less.
- the hot dip bath composition is almost directly reflected in the hot dip plated steel plate composition.
- Each steel having the composition shown in Table 1 was melted, and the slab was heated to 1250 ° C. and then hot-rolled at a finish rolling temperature of 880 ° C. and a winding temperature of 520 to 680 ° C. A steel strip was obtained.
- the coiling temperature of each hot-rolled steel strip is shown in Table 2, respectively.
- the hot-rolled steel strip After pickling the hot-rolled steel strip, it is annealed in a hydrogen-nitrogen mixed gas at 570 to 730 ° C in a continuous hot dipping line, and cooled to about 420 ° C at an average cooling rate of 5 ° C / sec. After that, the steel plate surface is immersed in a molten Zn-Al-Mg plating bath having the following plating bath composition with the surface of the steel plate not exposed to the air, and then pulled up, and the amount of plating adhered per side is measured by gas wiping. A hot-dip Zn—Al—Mg based steel sheet adjusted to about 90 g / m 2 was obtained. The plating bath temperature was about 410 ° C. The annealing temperature of each steel is also shown in Table 2.
- a thin film prepared from the collected molten Zn—Al—Mg-based plated steel sheet sample is observed with a transmission electron microscope (TEM), and the particle diameter (major axis) of the carbide in a certain region containing 30 or more Ti-containing carbides. The average value was taken as the average particle size of the Ti-containing carbide.
- TEM transmission electron microscope
- a 90 ⁇ 90 mm sample was taken from the molten Zn—Al—Mg-based plated steel sheet and used as a base plate (blank material) for the hole expansibility test.
- a punched hole was made in the center of the base plate using a punch and a die.
- the diameter D 0 of the initial hole was 10.0 mm, and the die was selected so that the clearance was 12% of the plate thickness.
- a punch having an apex angle of 60 ° was pushed into the punched hole from the opposite side of the burr to enlarge the initial hole. At that time, the moving speed of the punch was set to 10 mm / min.
- a boss (projection) 1 made of a steel bar (SS400 material defined in JIS) having a diameter of 20 mm and a length of 25 mm is vertically set at the center of the plate surface of the test piece 3, and this boss 1 is arc welded to the test piece 3. It joined with.
- the welding wire is YGW12, and the welding bead 6 goes around the boss once from the welding start point, and after passing the welding start point, the welding is further advanced to make the weld bead overlap portion 8 past the welding start point. At that point, welding was finished.
- the welding conditions were 190 A, 23 V, welding speed 0.3 m / min, shielding gas: Ar-20 vol.% CO 2 , and shielding gas flow rate: 20 L / min.
- a test piece 3 previously joined with a restraint plate 4 was used.
- a constrained plate 4 (SS400 material stipulated in JIS) 120 mm ⁇ 95 mm ⁇ 4 mm thick is prepared, and the test piece 3 is placed at the center of the plate surface. It is welded to the restraint plate 4.
- the boss weld material is manufactured by fixing the joined body (the test piece 3 and the restraint plate 4) on the horizontal test bench 5 with the clamp 2, and performing boss welding in this state.
- the boss 1 / test piece 3 / restraint plate 4 joined body is cut at a cut surface 9 passing through the central axis of the boss 1 and passing through the overlapping portion 8 of the beads. Observation was performed, the maximum depth of cracks observed in the test piece 3 was measured, and this was taken as the maximum base material crack depth. This crack corresponds to a molten metal embrittlement crack.
- the maximum base metal cracking depth was evaluated to be 0.1 mm or less as a pass, and those exceeding 0.1 mm as a reject.
- Nos. 1 to 18 have a tensile strength TS of 400 MPa or more and TS ⁇ T. It is a high-strength molten Zn-Al-Mg-based plated steel sheet with an El balance of 13000 MPa ⁇ % or more and a TS ⁇ ⁇ balance of 40000 MPa ⁇ % or more, which is excellent in so-called strength-ductility balance and strength-hole expansibility balance. .
- No. 19 has a large amount of C and a low Ti / C equivalent ratio, so the hard second phase + cementite area ratio is high and the TS ⁇ ⁇ balance is low.
- No. 20 has a low Ti content and a low Ti / C equivalent ratio, so the hard second phase + cementite area ratio is high and the TS ⁇ ⁇ balance is low.
- No. 21 has a high Ti / C equivalent ratio, and thus has a high small-angle grain interfacial area ratio. The El balance is low.
- No. Since 22 has a large amount of Mn, the TS ⁇ ⁇ balance is low.
- B has a low B, sufficient tensile strength is not obtained, and the LMEC resistance is inferior.
- the TS ⁇ ⁇ balance is low.
- No. No. 25 has a low C content, a sufficient tensile strength has not been obtained, and since the Ti / C equivalent ratio is high, the small-angle grain interfacial area ratio is high, and TS ⁇ T.
- the El balance is low.
- No. 26 has a low Mn content, sufficient tensile strength is not obtained.
- No. 27 has a large Ti content and a high Ti / C equivalent ratio, and therefore has a high small-angle grain interfacial area ratio.
- the El balance is low.
- No. No. 28 has a high coiling temperature in hot rolling. Since No. 29 has a high annealing temperature in a continuous hot dipping line, all of them have a large Ti carbide particle size and a low TS ⁇ ⁇ balance.
- FIG. 3 shows TS ⁇ T.
- FIG. 4 shows the relationship between the El balance and the Ti / C equivalent ratio
- FIG. 4 shows the relationship between the TS ⁇ ⁇ balance and the Ti / C equivalent ratio. It can be seen that when the Ti / C equivalent ratio satisfies 0.4 to 1.5, a high-strength molten Zn—Al—Mg-based plated steel sheet having excellent ductility and hole expandability can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
特許文献2には、延性と穴広げ性を高めた材料として、フェライト単相鋼板が提案されている。しかしながら、Moを含有しているため、著しいコスト増加を招く問題がある。
特許文献3及び4には、延性と穴広げ性を高めた材料として、フェライトとマルテンサイトとの硬度差を軽減した複相鋼板が提案されている。しかしながら、マルテンサイトの硬度を低下させているため、フェライトの体積率を高めると、強度の低下が懸念される。また、穴広げ性は、必ずしも高いものではない。
特許文献5には、穴広げ性および耐食性に優れた溶融Zn-Al-Mg系めっき鋼板が提案されている。しかし、この文献の手法に従っても、安定して高い穴広げ性を得ることは必ずしも容易でないことがわかった。
本発明は、上記問題に鑑み、プレス加工、伸びフランジ加工など加工に適した強度、延性及び穴広げ性を有し、かつ高い耐食性を有する溶融Zn-Al-Mg系めっき鋼板およびその製造方法を提供することを目的とする。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
Cは、Tiを含む炭化物を形成し、ベイニティックフェライトまたはフェライト組織中に微細析出し、高強度化に有効な元素である。C含有量が0.005%未満では400MPa以上の強度を得るのが困難であり、0.08%を越えて添加すると析出物の粗大化や硬質第2相およびセメンタイトの形成により、穴広げ性が低下する。C含有量の範囲は、好ましくは、0.01~0.08%である。
Siは、固溶強化に有効な元素である。しかし、過剰に添加すると、溶融めっきラインでの加熱時に鋼板表面に酸化物を形成し、めっき性を阻害するので、添加量の上限を0.8%とする。
Mnは、高強度化に有効な元素である。0.1%未満では400MPa以上の強度を得るのが難しく、1.8%を超えて添加すると、偏析が生じやすくなり、穴広げ性が低下する。Mn含有量の範囲は、好ましくは、0.5~1.8%である。
Pは固溶強化に有効な元素であるが、0.05%を超えて添加すると、偏析が生じやすくなり、バーリング性が低下する。P含有量の範囲は、好ましくは、0.025%以下である。なお、Pの含有量は0を含まない。
SはTiやMnと硫化物を形成し、穴広げ性が低下する。このため、Sは極力低減すべき元素である。S含有量の範囲は、好ましくは、0.005%以下、さらに好ましくは、0.003%以下である。なお、Sは不可避的不純物であり、その含有量は0を含まない。
Nは、鋼中に固溶Nとして残存するとBNを生成し、耐溶融金属脆化割れ性に有効なB量の減少につながる。検討の結果、N含有量は0.005%以下に制限されるが、通常は0.001%程度のNが存在していても問題ない。N含有量の範囲は、好ましくは、0.001~0.004%である。
TiはCと結合して、微細なTiの炭化物として析出し、高強度化に有効な元素である。また、TiはNとの親和性が高く、鋼中のNをTiNとして固定するため、Tiを添加することは耐溶融金属脆化割れ性を高めるB量を確保する上で極めて有効である。これらの作用を十分得るためには0.02%以上の添加が必要であり、0.2%を超えて添加すると加工性の低下を招く。Ti含有量の範囲は、好ましくは、0.03~0.2%である。
Bは結晶粒界に偏析して原子間結合力を高め、溶融金属脆化割れの抑制に有効な元素である。また、鋼のオーステナイト-フェライト変態を抑制させる元素であり、オーステナイト-フェライト変態を抑制させることで、Ti系炭化物の析出温度を低温化し、Ti系炭化物の微細化に寄与する。0.0005%未満ではその効果が無く、0.01%を超えて添加するとホウ化物を生成し加工性の劣化を招く。B含有量の範囲は、好ましくは、0.001~0.005%である。
Alは、製鋼時に脱酸材として添加される。0.1%を超えて添加すると延性の低下を招く。Al含有量の範囲は、好ましくは、0.05%以下である。なお、Alの含有量は0を含まない。
Nb、Vは加熱および熱延中のγ粒の粗大化を防止し、フェライト粒の微細化に有効である。また、Tiと同様にCを含む複合炭化物を形成し、強度上昇にも寄与する。このため必要に応じてこれらの元素の1種以上を含有することができる。
Ti/C当量比は、穴広げ性や延性を向上させるのに重要な値である。Ti/C当量比は、(1)式によって定義される。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
本発明に関わる高強度溶融Zn-Al-Mg系めっき鋼板のミクロ組織は、ベイニティックフェライト単相またはベイニティックフェライト相とフェライト相の双方の組織を主相とし、硬質第2相とセメンタイトの面積率が3%以下であり、かつ、結晶方位の相違が2~15°の小角粒界の割合が30%以上、75%以下であり、かつ、Tiを含む炭化物の平均粒径を20nm以下にしている。以下、これらについて説明する。
なお、「主相」とは、本発明の鋼板の金属組織において、硬質第2相とセメンタイトを除いた残りの相を意味する。
上記加工性に優れた高強度溶融Zn-Al-Mg系めっき鋼板は、例えば成分調整された鋼材(連続鋳造スラブなど)に、熱間圧延、酸洗、連続溶融めっきラインでの焼鈍および溶融Zn-Al-Mg系めっきを順次行う工程により製造することができる。以下、その場合の製造条件を例示する。
巻取温度が500℃未満では、Tiを含む炭化物の析出量が不十分となり強度が低下する。また、小角粒界の割合が増加し、延性が低下する。一方、巻取温度が650℃を超えるとTiを含む炭化物の粗大化が起こり、強度低下および穴広げ性が低下する。
焼鈍温度が550℃未満では鋼板表面が十分に還元せずめっき性が低下する。一方、焼鈍温度が720℃を超えると炭化物の粗大化が起こり、強度低下および穴広げ性低下を招く。また、小角粒界の割合が減少し、穴広げ性が低下する。
本発明では、公知の溶融Zn-Al-Mg系めっきの手法を適用することができる。
めっき層中のAlは、めっき鋼板の耐食性を向上させる作用を有する。また、めっき浴中にAlを含有させることでMg酸化物系ドロス発生を抑制する作用もある。これらの作用を十分に得るには溶融めっきのAl含有量を3.0%以上とする必要があり、4.0%以上とすることがより好ましい。一方、Al含有量が22.0%を超えると、めっき層と素材鋼板との界面でFe-Al合金層の成長が著しくなり、めっき密着性が悪くなる。優れためっき密着性を確保するには15.0%以下のAl含有量とすることが好ましく、10.0%以下とすることがより好ましい。
Al:6.0%、Mg:3.0%、Ti:0.002%、B:0.0005%、Si:0.01%、Fe:0.1%、Zn:残部
採取した溶融Zn-Al-Mg系めっき鋼板サンプルから作製した薄膜を透過型電子顕微鏡(TEM)により観察し、Ti含有炭化物が30個以上含まれる一定の領域内の当該炭化物の粒子径(長径)を測定し、その平均値をTi含有炭化物の平均粒子径とした。
採取した溶融Zn-Al-Mg系めっき鋼板サンプルから切出した試料を圧延方向断面に研磨し、次いで、電解研磨して表面を調整した。その後、電子後方散乱回折像法(EBSP)を用いて、結晶粒界の方位差を測定した。結晶粒界の方位差が2~15°の小角粒界の結晶粒界の全長の、同じく測定した結晶粒界の方位差が2~180°の結晶粒界の全長に対する割合を表2に併記する。
なお、今回の測定には以下の装置・条件を用いた。
・観察装置:電界放出型走査電子顕微鏡 日本電子社製 JSM-6500F
・EBSPシステム:EDAX-TSL社製 OIM Data Collection 5.21
・測定範囲/測定間隔:100×100μm/ 0.3μm×1視野
採取した溶融Zn-Al-Mg系めっき鋼板サンプルから切出した試料を圧延方向断面に研磨し、ピクラール試薬にてエッチングし、観察された組織から画像解析によって算出した硬質第2相およびセメンタイトの面積率を表2に併記する。
試験片の長手方向が素材鋼板の圧延方向に対し直角になるように採取したJIS5号試験片を用い、JISZ2241に準拠して引張強さTS、全伸びT.Elを求めた。
TS×T.Elバランスが13000以上を合格と判定した。
溶融Zn-Al-Mg系めっき鋼板から90×90mmのサンプルを採取し、これを穴広げ性試験のための素板(ブランク材)とした。この素板の中央にポンチとダイスを用いて打抜き穴を開けた。初期穴の直径D0は10.0mm、ダイスはクリアランスが板厚の12%となるものを選んだ。打ち抜きままの穴に、バリの反対側から頂角60°のポンチを押し込み、初期穴を拡大した。その際、ポンチの移動速度は10mm/minとした。鋼板の穴が拡大して板厚方向に割れが貫通した時点でポンチを止め、穴の内径Dbを測定した。そして、(Db-D0)/D0×100(%)で定義される穴広げ率λを求めた。
TS×λバランスが40000以上を合格と判定した。
溶融金属脆化特性は、次の手順により溶接試験を行って評価した。
溶融Zn-Al-Mg系めっき鋼板から100mm×75mmのサンプルを切り出し、これを溶融金属脆化に起因する最大割れ深さを評価するための試験片とした。溶接試験は、図1に示す外観のボス溶接材を作成する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。すなわち、試験片3の板面中央部に直径20mm×長さ25mmの棒鋼(JISに規定されるSS400材)からなるボス(突起)1を垂直に立て、このボス1を試験片3にアーク溶接にて接合した。溶接ワイヤーはYGW12を用い、溶接開始点から溶接ビード6がボスの周囲を1周し、溶接始点を過ぎた後もさらに少し溶接を進めて溶接開始点を過ぎて溶接ビードの重なり部分8ができたところで溶接を終了とした。溶接条件は、190A,23V,溶接速度0.3m/min、シールドガス:Ar-20vol.%CO2、シールドガス流量:20L/minとした。
2 クランプ
3 試験片
4 拘束板
5 実験台
6 溶接ビード
7 試験片全周溶接部の溶接ビード
8 溶接ビードの重なり部分
9 切断面
Claims (6)
- 素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板において、素材鋼板が、質量%で、C:0.005~0.08%、Si:0.8%以下、Mn:0.1~1.8%、P:0.05%以下、S:0.02%以下、N:0.001~0.005%、Ti:0.02~0.2%、B:0.0005~0.01%、Al:0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、下記(1)式で表されるTi/C当量比が0.4~1.5であり、ベイニティックフェライト単相またはベイニティックフェライト相とフェライト相を含む相を主相とし、硬質第2相およびセメンタイトの面積率が3%以下であり、かつ、結晶方位の相違が2~15°の小角粒界の割合が30%~75%であり、平均粒子径20nm以下のTiを含む炭化物が分散析出している、引張強度が400MPa以上の加工性に優れた高強度溶融Zn-Al-Mg系めっき鋼板。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。 - 素材鋼板が、さらに、質量%で、Nb:0.1%以下、V:0.1%以下の1種以上を含有する組成を有する請求項1に記載の、引張強度が400MPa以上の加工性に優れた高強度溶融Zn-Al-Mg系めっき鋼板。
- 前記溶融Zn-Al-Mg系めっき鋼板のめっき組成は、質量%で、Al:3.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.0%、残部Znおよび不可避的不純物からなる、請求項1または2に記載の高強度溶融Zn-Al-Mg系めっき鋼板。
- 素材鋼板が、質量%で、C:0.005~0.08%、Si:0.8%以下、Mn:0.1~1.8%、P:0.05%以下、S:0.02%以下、N:0.001~0.005%、Ti:0.02~0.2%、B:0.0005~0.01%、Al:0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、かつ、下記(1)式で表されるTi/C当量比が0.4から1.5である鋼材に、熱間圧延、酸洗、連続溶融めっきラインでの焼鈍および溶融Zn-Al-Mg系めっきを順次行う工程において、熱間圧延での巻取温度を500℃から650℃、連続溶融めっきラインでの焼鈍温度を550℃から720℃とすることを特徴とする高強度溶融Zn-Al-Mg系めっき鋼板の製造方法。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。 - 素材鋼板が、さらに質量%で、Nb:0.1%以下、V:0.1%以下の1種以上を含有することを特徴とする、請求項4に記載の高強度溶融Zn-Al-Mg系めっき鋼板の製造方法。
- 前記溶融Zn-Al-Mg系めっき鋼板のめっき組成は、質量%で、Al:3.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.0%、残部Znおよび不可避的不純物からなる、請求項4または5に記載の高強度溶融Zn-Al-Mg系めっき鋼板の製造方法。
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201604578TA SG11201604578TA (en) | 2013-12-19 | 2014-12-19 | Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same |
AU2014367679A AU2014367679B2 (en) | 2013-12-19 | 2014-12-19 | Steel sheet hot-dip-coated with Zn-Al-Mg-based system having excellent workability and method for manufacturing same |
KR1020167016817A KR102284770B1 (ko) | 2013-12-19 | 2014-12-19 | 가공성이 뛰어난 용융 Zn-Al-Mg계 도금 강판 및 그 제조 방법 |
BR112016013855A BR112016013855A2 (pt) | 2013-12-19 | 2014-12-19 | Chapa de aço de alta resistência, e, método para fabricar uma chapa de aço de alta resistência |
ES14873019T ES2791757T3 (es) | 2013-12-19 | 2014-12-19 | Lámina de acero recubierta por inmersión en caliente con un sistema a base de Zn-Al-Mg que tiene una excelente trabajabilidad y método para fabricar la misma |
CN201480070046.9A CN105940131A (zh) | 2013-12-19 | 2014-12-19 | 加工性优异的热浸Zn-Al-Mg系镀层钢板及其制造方法 |
MX2016007942A MX2016007942A (es) | 2013-12-19 | 2014-12-19 | Hojas de acero resvestida por sumersion en caliente con un sistema de base en zn-ai-mg con excelente maleabilidad y metodo para fabricar la misma. |
CA2932854A CA2932854C (en) | 2013-12-19 | 2014-12-19 | Steel sheet hot-dip coated with zn-al-mg-based system having excellent workability and method for manufacturing same |
US15/105,791 US10266910B2 (en) | 2013-12-19 | 2014-12-19 | Steel sheet hot-dip-coated with Zn—Al—Mg-based system having excellent workability and method for manufacturing same |
PL14873019T PL3085805T3 (pl) | 2013-12-19 | 2014-12-19 | Blacha stalowa powlekana ogniowo układem na bazie zn-al-mg, o doskonałej podatności na obróbkę i sposób jej produkcji |
JP2015553621A JP6238474B2 (ja) | 2013-12-19 | 2014-12-19 | 加工性に優れた溶融Zn−Al−Mg系めっき鋼板及びその製造方法 |
RU2016122482A RU2695690C1 (ru) | 2013-12-19 | 2014-12-19 | СТАЛЬНОЙ ЛИСТ С ПОКРЫТИЕМ ИЗ СИСТЕМЫ НА ОСНОВЕ Zn-Al-Mg, ПОЛУЧЕННЫМ ПОГРУЖЕНИЕМ В РАСПЛАВ, ИМЕЮЩИЙ ПРЕВОСХОДНУЮ СПОСОБНОСТЬ К ОБРАБАТЫВАЕМОСТИ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ |
EP14873019.5A EP3085805B1 (en) | 2013-12-19 | 2014-12-19 | Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-262271 | 2013-12-19 | ||
JP2013262271 | 2013-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093596A1 true WO2015093596A1 (ja) | 2015-06-25 |
Family
ID=53402935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083712 WO2015093596A1 (ja) | 2013-12-19 | 2014-12-19 | 加工性に優れた溶融Zn-Al-Mg系めっき鋼板及びその製造方法 |
Country Status (16)
Country | Link |
---|---|
US (1) | US10266910B2 (ja) |
EP (1) | EP3085805B1 (ja) |
JP (1) | JP6238474B2 (ja) |
KR (1) | KR102284770B1 (ja) |
CN (1) | CN105940131A (ja) |
AU (1) | AU2014367679B2 (ja) |
BR (1) | BR112016013855A2 (ja) |
CA (1) | CA2932854C (ja) |
ES (1) | ES2791757T3 (ja) |
HU (1) | HUE051559T2 (ja) |
MX (1) | MX2016007942A (ja) |
MY (1) | MY174534A (ja) |
PL (1) | PL3085805T3 (ja) |
RU (1) | RU2695690C1 (ja) |
SG (1) | SG11201604578TA (ja) |
WO (1) | WO2015093596A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017145441A (ja) * | 2016-02-16 | 2017-08-24 | 日新製鋼株式会社 | 黒色表面被覆高強度鋼板およびその製造方法 |
JP2018119207A (ja) * | 2017-01-25 | 2018-08-02 | 日新製鋼株式会社 | バーリング性に優れる溶融Zn−Al−Mg系めっき鋼板および製造方法 |
JP2018131668A (ja) * | 2017-02-17 | 2018-08-23 | 日新製鋼株式会社 | 曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法 |
JP2018131669A (ja) * | 2017-02-17 | 2018-08-23 | 日新製鋼株式会社 | 曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法 |
JP2019173138A (ja) * | 2018-03-29 | 2019-10-10 | 日鉄日新製鋼株式会社 | 溶融Zn−Al−Mg合金めっき鋼板およびその製造方法 |
WO2020026594A1 (ja) | 2018-07-31 | 2020-02-06 | Jfeスチール株式会社 | 高強度熱延めっき鋼板 |
JP2021055135A (ja) * | 2019-09-27 | 2021-04-08 | 日本製鉄株式会社 | 溶融Zn−Al−Mg系めっき鋼板およびその製造方法 |
WO2023084926A1 (ja) * | 2021-11-12 | 2023-05-19 | 日本製鉄株式会社 | 熱延鋼板、溶融めっき鋼板、及び、熱延鋼板の製造方法 |
WO2024105999A1 (ja) * | 2022-11-16 | 2024-05-23 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
WO2024135365A1 (ja) * | 2022-12-23 | 2024-06-27 | 日本製鉄株式会社 | 熱間圧延鋼板 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106521385A (zh) * | 2016-11-22 | 2017-03-22 | 常州大学 | 一种结构钢两步法热镀SuperDyma合金的工艺 |
MX2019010724A (es) | 2017-03-10 | 2019-11-05 | Jfe Steel Corp | Lamina de acero recubierta laminada en caliente de alta resistencia. |
CN108796363B (zh) * | 2017-04-27 | 2020-10-27 | 宝山钢铁股份有限公司 | 适应大变形及冲压加工的高表面质量覆铝基板用钢及其生产方法 |
KR102031465B1 (ko) | 2017-12-26 | 2019-10-11 | 주식회사 포스코 | 가공 후 내식성 우수한 아연합금도금강재 및 그 제조방법 |
JP7288184B2 (ja) * | 2019-03-22 | 2023-06-07 | 日本製鉄株式会社 | 溶融Zn-Al-Mg系めっき鋼板の製造方法 |
CN110273121B (zh) * | 2019-06-12 | 2021-09-21 | 河钢股份有限公司 | 锌铝镁镀层钢带及其制备方法 |
JP2021042419A (ja) * | 2019-09-10 | 2021-03-18 | 日本電産株式会社 | 亜鉛合金及びその製造方法 |
EP4261309A1 (de) * | 2022-04-13 | 2023-10-18 | ThyssenKrupp Steel Europe AG | Kaltgewalztes stahlflachprodukt und verfahren zur herstellung eines kaltgewalzten stahlflachprodukts |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05179356A (ja) | 1991-12-26 | 1993-07-20 | Nkk Corp | 伸びフランジ性に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法 |
JP2001303187A (ja) | 2000-04-21 | 2001-10-31 | Nippon Steel Corp | バーリング加工性に優れる複合組織鋼板およびその製造方法 |
JP2001303186A (ja) | 2000-04-21 | 2001-10-31 | Nippon Steel Corp | バーリング加工性に優れる複合組織鋼板およびその製造方法 |
JP3591502B2 (ja) | 2001-02-20 | 2004-11-24 | Jfeスチール株式会社 | 加工性に優れた高張力鋼板ならびにその製造方法および加工方法 |
JP2007302992A (ja) * | 2006-04-11 | 2007-11-22 | Nippon Steel Corp | 伸びフランジ成形性に優れた高強度熱延鋼板及び亜鉛めっき鋼板並びにそれらの製造方法 |
JP2011144429A (ja) * | 2010-01-15 | 2011-07-28 | Nippon Steel Corp | 高耐食性溶融亜鉛めっき鋼板 |
JP2011153361A (ja) * | 2010-01-28 | 2011-08-11 | Nisshin Steel Co Ltd | 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板 |
JP2012193452A (ja) | 2011-02-28 | 2012-10-11 | Nisshin Steel Co Ltd | 溶融Zn−Al−Mg系めっき鋼板および製造方法 |
JP2013133485A (ja) * | 2011-12-26 | 2013-07-08 | Jfe Steel Corp | 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法 |
JP2013133497A (ja) * | 2011-12-27 | 2013-07-08 | Jfe Steel Corp | 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1498507B1 (en) * | 2000-05-26 | 2006-06-28 | JFE Steel Corporation | Cold-rolled steel sheet and galvanized steel sheet having excellent strain age hardenability and method of producing the same |
JP3715220B2 (ja) * | 2001-06-22 | 2005-11-09 | 日新製鋼株式会社 | 耐食性に優れたZn−Al−Mg系溶融めっき鋼材 |
CA2571521C (en) * | 2004-06-29 | 2010-05-04 | Corus Staal B.V. | Steel sheet with hot dip galvanized zinc alloy coating and process to produce it |
JP4721221B2 (ja) * | 2004-09-01 | 2011-07-13 | 日新製鋼株式会社 | 耐溶融金属脆化割れ性に優れたZn−Al−Mg合金めっき鋼板 |
RU2518870C2 (ru) | 2009-03-10 | 2014-06-10 | Ниссин Стил Ко., Лтд. | Покрытый сплавом на основе цинка стальной материал с превосходной стойкостью к растрескиванию из-за охрупчивания расплавленным металлом |
JP5541263B2 (ja) * | 2011-11-04 | 2014-07-09 | Jfeスチール株式会社 | 加工性に優れた高強度熱延鋼板およびその製造方法 |
WO2013160566A1 (fr) | 2012-04-25 | 2013-10-31 | Arcelormittal Investigacion Y Desarrollo, S.L. | Procédé de réalisation d'une tôle à revêtements znalmg huilés et tôle correspondante. |
-
2014
- 2014-12-19 HU HUE14873019A patent/HUE051559T2/hu unknown
- 2014-12-19 RU RU2016122482A patent/RU2695690C1/ru active
- 2014-12-19 KR KR1020167016817A patent/KR102284770B1/ko active IP Right Grant
- 2014-12-19 SG SG11201604578TA patent/SG11201604578TA/en unknown
- 2014-12-19 EP EP14873019.5A patent/EP3085805B1/en active Active
- 2014-12-19 WO PCT/JP2014/083712 patent/WO2015093596A1/ja active Application Filing
- 2014-12-19 BR BR112016013855A patent/BR112016013855A2/pt active Search and Examination
- 2014-12-19 MX MX2016007942A patent/MX2016007942A/es unknown
- 2014-12-19 CA CA2932854A patent/CA2932854C/en active Active
- 2014-12-19 MY MYPI2016702221A patent/MY174534A/en unknown
- 2014-12-19 CN CN201480070046.9A patent/CN105940131A/zh active Pending
- 2014-12-19 PL PL14873019T patent/PL3085805T3/pl unknown
- 2014-12-19 AU AU2014367679A patent/AU2014367679B2/en active Active
- 2014-12-19 JP JP2015553621A patent/JP6238474B2/ja active Active
- 2014-12-19 ES ES14873019T patent/ES2791757T3/es active Active
- 2014-12-19 US US15/105,791 patent/US10266910B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05179356A (ja) | 1991-12-26 | 1993-07-20 | Nkk Corp | 伸びフランジ性に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法 |
JP2001303187A (ja) | 2000-04-21 | 2001-10-31 | Nippon Steel Corp | バーリング加工性に優れる複合組織鋼板およびその製造方法 |
JP2001303186A (ja) | 2000-04-21 | 2001-10-31 | Nippon Steel Corp | バーリング加工性に優れる複合組織鋼板およびその製造方法 |
JP3591502B2 (ja) | 2001-02-20 | 2004-11-24 | Jfeスチール株式会社 | 加工性に優れた高張力鋼板ならびにその製造方法および加工方法 |
JP2007302992A (ja) * | 2006-04-11 | 2007-11-22 | Nippon Steel Corp | 伸びフランジ成形性に優れた高強度熱延鋼板及び亜鉛めっき鋼板並びにそれらの製造方法 |
JP2011144429A (ja) * | 2010-01-15 | 2011-07-28 | Nippon Steel Corp | 高耐食性溶融亜鉛めっき鋼板 |
JP2011153361A (ja) * | 2010-01-28 | 2011-08-11 | Nisshin Steel Co Ltd | 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板 |
JP2012193452A (ja) | 2011-02-28 | 2012-10-11 | Nisshin Steel Co Ltd | 溶融Zn−Al−Mg系めっき鋼板および製造方法 |
JP2013133485A (ja) * | 2011-12-26 | 2013-07-08 | Jfe Steel Corp | 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法 |
JP2013133497A (ja) * | 2011-12-27 | 2013-07-08 | Jfe Steel Corp | 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017145441A (ja) * | 2016-02-16 | 2017-08-24 | 日新製鋼株式会社 | 黒色表面被覆高強度鋼板およびその製造方法 |
JP2018119207A (ja) * | 2017-01-25 | 2018-08-02 | 日新製鋼株式会社 | バーリング性に優れる溶融Zn−Al−Mg系めっき鋼板および製造方法 |
JP2018131668A (ja) * | 2017-02-17 | 2018-08-23 | 日新製鋼株式会社 | 曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法 |
JP2018131669A (ja) * | 2017-02-17 | 2018-08-23 | 日新製鋼株式会社 | 曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法 |
JP2019173138A (ja) * | 2018-03-29 | 2019-10-10 | 日鉄日新製鋼株式会社 | 溶融Zn−Al−Mg合金めっき鋼板およびその製造方法 |
KR20210025086A (ko) | 2018-07-31 | 2021-03-08 | 제이에프이 스틸 가부시키가이샤 | 고강도 열연 도금 강판 |
WO2020026594A1 (ja) | 2018-07-31 | 2020-02-06 | Jfeスチール株式会社 | 高強度熱延めっき鋼板 |
US11732340B2 (en) | 2018-07-31 | 2023-08-22 | Jfe Steel Corporation | High-strength hot-rolled coated steel sheet |
JP2021055135A (ja) * | 2019-09-27 | 2021-04-08 | 日本製鉄株式会社 | 溶融Zn−Al−Mg系めっき鋼板およびその製造方法 |
WO2023084926A1 (ja) * | 2021-11-12 | 2023-05-19 | 日本製鉄株式会社 | 熱延鋼板、溶融めっき鋼板、及び、熱延鋼板の製造方法 |
JP7541272B2 (ja) | 2021-11-12 | 2024-08-28 | 日本製鉄株式会社 | 熱延鋼板、溶融めっき鋼板、及び、熱延鋼板の製造方法 |
WO2024105999A1 (ja) * | 2022-11-16 | 2024-05-23 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
JP7569029B2 (ja) | 2022-11-16 | 2024-10-17 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
WO2024135365A1 (ja) * | 2022-12-23 | 2024-06-27 | 日本製鉄株式会社 | 熱間圧延鋼板 |
Also Published As
Publication number | Publication date |
---|---|
MX2016007942A (es) | 2016-09-19 |
MY174534A (en) | 2020-04-24 |
AU2014367679A1 (en) | 2016-06-16 |
SG11201604578TA (en) | 2016-07-28 |
KR102284770B1 (ko) | 2021-07-30 |
CA2932854C (en) | 2017-12-12 |
PL3085805T3 (pl) | 2021-07-05 |
JPWO2015093596A1 (ja) | 2017-03-23 |
EP3085805A4 (en) | 2017-06-28 |
US10266910B2 (en) | 2019-04-23 |
CA2932854A1 (en) | 2015-06-25 |
AU2014367679B2 (en) | 2019-02-14 |
BR112016013855A2 (pt) | 2017-08-08 |
RU2016122482A (ru) | 2018-01-24 |
EP3085805B1 (en) | 2020-02-19 |
JP6238474B2 (ja) | 2017-11-29 |
RU2695690C1 (ru) | 2019-07-25 |
EP3085805A1 (en) | 2016-10-26 |
CN105940131A (zh) | 2016-09-14 |
ES2791757T3 (es) | 2020-11-05 |
US20160319386A1 (en) | 2016-11-03 |
HUE051559T2 (hu) | 2021-03-29 |
KR20160105402A (ko) | 2016-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6238474B2 (ja) | 加工性に優れた溶融Zn−Al−Mg系めっき鋼板及びその製造方法 | |
JP5936390B2 (ja) | 溶融Zn−Al−Mg系めっき鋼板および製造方法 | |
JP5565534B2 (ja) | 高強度熱延鋼板及びその製造方法 | |
JP5068688B2 (ja) | 穴広げ性に優れた熱延鋼板 | |
JPWO2019116531A1 (ja) | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 | |
JP5447741B1 (ja) | 鋼板、めっき鋼板、及びそれらの製造方法 | |
WO2019106895A1 (ja) | 高強度亜鉛めっき鋼板およびその製造方法 | |
CN109154045B (zh) | 镀覆钢板及其制造方法 | |
JP5610003B2 (ja) | バーリング加工性に優れた高強度熱延鋼板およびその製造方法 | |
JPWO2009125874A1 (ja) | 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法 | |
JP2015117404A (ja) | 高強度鋼板およびその製造方法 | |
JP5637225B2 (ja) | バーリング加工性に優れた高強度熱延鋼板およびその製造方法 | |
JP2009215616A (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP6224704B2 (ja) | 高強度熱延鋼板の製造方法 | |
JP5978614B2 (ja) | 打ち抜き性に優れた高強度熱延鋼板およびその製造方法 | |
JP5821864B2 (ja) | バーリング加工性に優れた高強度熱延鋼板およびその製造方法 | |
JP6801496B2 (ja) | 曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法 | |
JP2018145500A (ja) | 曲げ加工性に優れた自動車部品用高強度溶融Zn−Al−Mg系めっき鋼板及びそれを用いた自動車部品 | |
JP2021055135A (ja) | 溶融Zn−Al−Mg系めっき鋼板およびその製造方法 | |
JP5861434B2 (ja) | 打ち抜き性に優れた高強度熱延鋼板およびその製造方法 | |
JP6958459B2 (ja) | 溶融Zn−Al−Mg合金めっき鋼板およびその製造方法 | |
JP2018145504A (ja) | 曲げ加工性に優れた建築部材用高強度溶融Zn−Al−Mg系めっき鋼板及びそれを用いた建築部材 | |
JP2013127098A (ja) | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14873019 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015553621 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2932854 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2014873019 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014873019 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014367679 Country of ref document: AU Date of ref document: 20141219 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/007942 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15105791 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167016817 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016013855 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016122482 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016013855 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160615 |