JP7288184B2 - 溶融Zn-Al-Mg系めっき鋼板の製造方法 - Google Patents

溶融Zn-Al-Mg系めっき鋼板の製造方法 Download PDF

Info

Publication number
JP7288184B2
JP7288184B2 JP2019055044A JP2019055044A JP7288184B2 JP 7288184 B2 JP7288184 B2 JP 7288184B2 JP 2019055044 A JP2019055044 A JP 2019055044A JP 2019055044 A JP2019055044 A JP 2019055044A JP 7288184 B2 JP7288184 B2 JP 7288184B2
Authority
JP
Japan
Prior art keywords
hot
less
dip
steel sheet
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019055044A
Other languages
English (en)
Other versions
JP2020152993A (ja
Inventor
真也 植杉
健太郎 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2019055044A priority Critical patent/JP7288184B2/ja
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to MX2021010939A priority patent/MX2021010939A/es
Priority to KR1020217032242A priority patent/KR20210135577A/ko
Priority to CN202080020996.6A priority patent/CN113631736A/zh
Priority to PCT/JP2020/011959 priority patent/WO2020196149A1/ja
Priority to US17/438,440 priority patent/US20220154320A1/en
Priority to TW109109208A priority patent/TW202102696A/zh
Publication of JP2020152993A publication Critical patent/JP2020152993A/ja
Application granted granted Critical
Publication of JP7288184B2 publication Critical patent/JP7288184B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Description

本発明は、溶融Zn-Al-Mg系めっき鋼板およびその製造方法に関する。
近年、自動車や建材の分野では軽量化および省資源化を目的とした高強度高防錆鋼板のニーズが高まっている。その高強度高防錆鋼板は、プレス加工や曲げ加工をはじめ様々な加工が施されるため、高強度および高耐食性であることに加え、加工性に優れることも重要である。しかしながら、材料の加工性は強度が上昇するのに伴って劣化するため、例えば、自動車の構造用部材および補強用部材において要求される最大引張強度780MPa以上のような高強度と、加工性とを両立させることができる技術の確立が望まれる。
例えば、特許文献1には、鋼板にSi、NbおよびTiを添加することにより、マルテンサイトおよびベイナイト組織等の硬質相と、フェライト相との硬度差を小さくすることで、780MPa以上の高い引張強度と、加工性とを両立させる技術が開示されている。
また、耐食性の観点からは、防錆効果の高い表面処理鋼板として溶融Zn-Al-Mg系めっき鋼板が知られている。近年、意匠性などの観点から黒色の外観を有する鋼板のニーズが高まってきていることから、めっき層自体が黒色化されている溶融Zn-Al-Mg系めっき鋼板の需要はますます増大している。特許文献2には、引張強度780MPa以上の高強度を有し、曲げ加工性に優れる溶融Zn-Al-Mg系めっき鋼板が開示されている。
特開2006-283156号公報 特開2014-189812号公報
しかしながら、鋼板へ多量にTiを添加すると再結晶温度の上昇を招くため、めっき工程での還元加熱温度を高くする必要がある。還元加熱温度の高温化はめっき不良の原因となるため、特許文献1に記載されている技術はめっき鋼板に好適とはいえない。また、特許文献2に記載の製造方法によれば、熱間圧延条件によってはめっき後のマルテンサイト量が減少する恐れがあることから、780MPa以上の強度が安定して得られない場合があった。
本発明の一態様は、780MPa以上の引張強度と、高い加工性とを安定して両立した溶融Zn-Al-Mg系めっき鋼板を実現することを目的とする。
上記の課題を解決するために、本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板は、鋼基材の表面に溶融Zn-Al-Mg系めっき層を有する溶融Zn-Al-Mg系めっき鋼板において、前記鋼基材は、質量%で、C:0.050~0.180%、Si:0.001~0.50%、Mn:1.00~2.80%、Ti:0.01~0.10%、およびB:0.0005~0.0100%を含み、残部がFeおよび不可避的不純物を含み、熱間圧延工程での巻取り後におけるセメンタイトの平均粒径が2μm以下であり、連続溶融亜鉛めっき工程後の金属組織は、フェライト相と、面積率15%以上45%未満の第二相を有し、前記第二相は、マルテンサイトまたは、マルテンサイトおよびベイナイトにより構成され、平均結晶粒径が8μm以下である。
本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板は、質量%で、P:0.005~0.050%、S:0.001~0.020%、およびAl:0.005~0.100%の1種以上をさらに含んでいてもよい。
本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板は、質量%で、Nb:0~0.10%、V:0~0.10%、Cr:0~1.00%、およびMo:0~1.00%の1種以上をさらに含んでいてもよい。
本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板は、前記溶融Zn-Al-Mg系めっき層の表層は、Znの黒色酸化物が存在し、表面の明度Lが60以下であってもよい。
上記の課題を解決するために、本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板の製造方法は、熱間圧延工程と、冷間圧延工程と、焼鈍および溶融Zn-Al-Mg系めっきをこの順で行う連続溶融亜鉛めっき工程と、をこの順で含む、鋼基材の表面に溶融Zn-Al-Mg系めっき層を有する溶融Zn-Al-Mg系めっき鋼板の製造方法であって、前記熱間圧延工程は、熱間圧延後の平均冷却速度が20℃/秒以上80℃/秒未満であり、巻取り温度が400℃以上600℃未満である。
本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板の製造方法は、前記鋼基材は、質量%で、C:0.050~0.180%、Si:0.001~0.50%、Mn:1.00~2.80%、Ti:0.01~0.10%、およびB:0.0005~0.0100%を含み、残部がFeおよび不可避的不純物を含み、前記熱間圧延工程での巻取り後におけるセメンタイトの平均粒径が2μm以下であり、前記連続溶融亜鉛めっき工程後の金属組織は、フェライト相と、面積率15%以上45%未満の第二相を有し、前記第二相は、マルテンサイトまたは、マルテンサイトおよびベイナイトにより構成され、平均結晶粒径が8μm以下であってもよい。
本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板の製造方法は、前記鋼基材は、質量%で、P:0.005~0.050%、S:0.001~0.020%、およびAl:0.005~0.100%の1種以上をさらに含んでいてもよい。
本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板の製造方法は、前記鋼基材は、質量%で、Nb:0~0.10%、V:0~0.10%、Cr:0~1.00%、およびMo:0~1.00%の1種以上をさらに含んでいてもよい。
本発明の一態様に係る溶融Zn-Al-Mg系めっき鋼板の製造方法は、前記溶融Zn-Al-Mg系めっき層の表層は、Znの黒色酸化物が存在し、表面の明度Lが60以下であってもよい。
本発明の一態様によれば、780MPa以上の引張強度と、高い加工性とを安定して両立した溶融Zn-Al-Mg系めっき鋼板を実現できる。
本発明の一実施例における各鋼の成分を示す図である。 本発明の一実施例における各鋼の製造条件および特性を示す図である。
以下、本発明の一実施形態について詳細に説明する。なお、以下の記載は発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意味する。
〔基材鋼板の化学組成〕
めっき原板に相当する基材鋼板の成分元素について説明する。本明細書において、基材鋼板の化学組成に関する「%」は特に断らない限り「質量%」を意味する。
(C)
C(炭素)は、鋼の高強度化に必要な元素である。引張強さ780MPa以上の強度レベルを得るためには0.050%以上のC含有量を必要とする。ただし、C含有量が過剰になると組織の不均一性が顕著となり、加工性が低下する。そのため、C含有量は0.180%以下に制限され、0.160%以下に管理してもよい。
(Si)
Si(ケイ素)は、高強度化に有効である他、セメンタイトの析出を抑制する作用を有し、パーライト等の生成を抑制するうえで有効である。これらの作用を十分に発揮させるために0.001%以上のSi含有量を確保する。ただし、多量にSiを含有すると、鋼板表面にSi濃化層が生じ、めっき性の低下を招く要因となる。そのため、Si含有量は0.50%以下に制限され、0.25%以下とすることがより好ましい。
(Mn)
Mn(マンガン)は、高強度化に有効である。引張強さ780MPa以上の強度レベルを安定して得るために1.00%以上のMn含有量を確保する。ただし、Mn含有量が過大になると偏析が生じやすくなり加工性が低下する。そのため、Mn含有量は2.80%以下とする。
(Ti)
鋼板は、0.01質量%以上0.1質量%以下のTi(チタン)を含む。TiはCと反応することにより、Tiを含む炭化物が微細な粒子として析出し、鋼板の高強度化に有効な元素である。また、Tiは鋼中のS(硫黄)およびN(窒素)との親和性も高いため、Cと反応し析出物を生成するだけでなく、SおよびNとも反応し析出物を生成する。オーステナイト-フェライト変態を抑制するのに必要なBはNと結合しやすいことから、Tiの添加は、固溶したBの含有量の確保に有効である。Tiの含有量が0.01質量%以上であることにより、オーステナイト-フェライト変態を抑制するのに必要な固溶したBの含有量が確保され、析出物を微細析出させる効果が顕著に表れる。また、Tiの含有量が0.1質量%以下であることにより、基材鋼板におけるTiの含有量が過剰とならず、基材鋼板の製造コストを抑制できる。
(B)
B(ホウ素)は、鋼のオーステナイト-フェライト変態を抑制し、変態組織強化に寄与する。オーステナイト-フェライト変態の抑制によりTi系炭化物等の析出開始温度を低下させ、それらの炭化物を微細化させる効果を有する。上記効果を十分に得るために、0.0005%以上のB含有量を確保する。0.0010%以上とすることがより効果的である。ただし、多量のB含有は硼化物の生成による加工性低下を招く要因となる。Bを添加する場合は0.0100%以下の範囲で行う必要があり、0.0050%以下に管理してもよい。
(P)
P(リン)は、固溶強化に有効であるため、0.005%以上のP含有量を確保することが好ましい。0.010%以上に管理してもよい。ただし、P含有量が過大になると偏析が生じやすくなり加工性が低下する。P含有量は0.050%以下に制限される。
(S)
S(硫黄)は加工性を低下させる要因となる。Sの含有量は0.020%まで許容される。ただし、過剰な低S化は製鋼負荷の増大を招くので、通常、S含有量は0.001%以上であってよい。
(Al)
Al(アルミニウム)は、脱酸作用を有する。その作用を十分に発揮させるために、鋼中のAl含有量が0.005%以上となるようにAlを添加することが望ましい。ただし、過剰のAl含有は加工性の低下を招く。そのため、Al含有量は0.100%以下に制限され、0.050%以下に管理してもよい。
(Nb、V)
Nb(ニオブ)およびV(バナジウム)は、Tiと同様に、組織の微細化によって組織の均一性を向上させるとともに、炭化物の粒子分散強化により、曲げ性等の加工性を劣化させることなく強度向上に寄与する。したがって、必要に応じてNb、Vの1種または2種を含有させてもよい。上記効果を十分に得るためには、Nbについては0.01%以上、Vについては0.03%以上の含有量を確保することがより効果的である。ただし、これらの元素を多量に含有すると加工性の低下を招く。そのため、これらの1種または2種を添加する場合、Nb含有量は0.10%以下、V含有量も0.10%以下の範囲とする。
(Mo、Cr)
Mo(モリブデン)およびCr(クロム)は、いずれも固溶強化によって強度を向上させる作用を有するので、必要に応じてMo、Crの1種または2種を含有させてもよい。上記作用を十分に発揮させるためには、Moについては0.01%以上、Crについても0.01%以上の含有量を確保することがより効果的である。ただし、これらの元素を多量に含有すると延性の低下を招く。そのため、これらの1種または2種を添加する場合、Mo含有量は1.00%以下、Cr含有量も1.00%以下の範囲とする。
本実施形態に係る鋼板は、C、Si、Mn、Ti、およびBを含み、さらにその他の成分として上述した各成分を含み得る。好適な態様としては、P、S、およびAlの1種以上をさらに含むものである。より好適な態様では、これらをすべて含んでいる。さらに別の態様では、C、Si、Mn、Ti、およびBに加えて、P、S、およびAlの1種以上を含み、好ましくは全てを含んでいる態様において、Nb、V、Cr、およびMoの1種以上をさらに含むものが挙げられる。なお、残部はFeおよび不可避的不純物を含む。
〔鋼基材の金属組織〕
本発明では、主相フェライトに第二相としてマルテンサイトまたは、マルテンサイトとベイナイトとが分散した複合組織を持つDP(デュアルフェイズ)鋼板を鋼基材の適用対象としている。溶融亜鉛めっき後の金属組織において、主相フェライトに分散するマルテンサイトまたは、マルテンサイトとベイナイトとにより構成された第二相は、面積率で合計15%以上45%未満とする。第二相の面積率が15%に満たないと780MPa以上の引張強さを安定して得ることが困難となる。逆に45%以上になると硬くなりすぎて加工性が低下する。
第二相はマルテンサイトのみであることが最も好ましいが、部分的にベイナイトが分散していてもよい。例えば、マルテンサイトとベイナイトとの合計体積に占めるベイナイトの体積の割合は、0~5%の範囲であることがより好ましい。後述する実施例における本発明例はいずれもこの条件を満たしている。
本発明では、組織を微細化することにより加工性を向上させている。板厚0.8~2.0mm程度のめっき鋼板を使用して自動車の構造用部材および補強用部材を製造する場合を考慮すると、第二相の平均結晶粒径が8μm以下に微細化されているとき、十分な加工性が確保され、設計自由度の拡大に有用となることがわかった。主相であるフェライトも微細化されていることが好ましいが、加工性に関しては特に第二相の平均結晶粒径が重要である。
第二相の平均結晶粒径が8μm以下となる後述の製造条件を採用すれば、フェライト相も十分に微細化される。例えば、フェライト相の平均結晶粒径は10μm以下となる。後述する実施例において第二相の平均結晶粒径が8μm以下であるものは、いずれもフェライト相の平均結晶粒径は10μm以下である。
〔製造方法〕
上述の溶融Zn-Al-Mg系めっき鋼板は、鋼スラブに熱間圧延、酸洗、冷間圧延、焼鈍、溶融亜鉛めっきの各工程をこの順に施す、一般的な溶融亜鉛系めっき鋼板の製造ラインを利用して製造することができる。鋼材の強度および加工性を両立させるためには、鋼基材の化学組成をコントロールすることに加え、結晶粒径が十分に微細化するよう、製造条件を工夫する必要がある。具体的には、熱間圧延工程において、平均冷却速度を20℃/秒以上80℃/秒未満とし、巻取り温度を400℃以上600℃未満とする。
なお、熱間圧延工程において830~940℃の仕上圧延温度により熱間圧延を施し、冷間圧延工程において冷間圧延率を40~70%とし、焼鈍工程において740~880℃により焼鈍を施した後、めっき浴に浸漬するまでの冷却過程で少なくとも450℃までの平均冷却速度を5℃/秒以上とすることが、より好ましい。
(熱間圧延工程)
上記の熱間圧延工程では、熱間圧延における仕上圧延温度を830~940℃とすることが好ましい。仕上圧延温度が830℃以上であることにより、鋼板の変形抵抗が高くならず、熱間圧延による鋼板の製造性の低下を防止することができる。また、仕上圧延温度が940℃以下であることにより、コイル表面におけるスケール疵の発生を防ぎ、表面品質の低下を抑制することができる。
仕上圧延後の鋼板(熱延鋼板)は、20℃/秒以上80℃/秒未満の平均冷却速度で、400℃以上600℃未満の巻取り温度まで冷却される。平均冷却速度が20℃/秒以下の場合、または巻取り温度が600℃以上の場合、熱延鋼板組織のセメンタイトが粗大化し、溶融亜鉛めっき工程での還元加熱において粗大なセメンタイトの一部が未溶解炭化物として残存する。その結果、溶融亜鉛めっき後のマルテンサイト量が減少し、780MPa以上の引張強度が得られない。また、平均冷却速度が80℃/秒以上の場合、または巻取り温度が400℃未満の場合、転位密度が高くなることで熱延鋼板の硬さが増大し、冷間圧延工程での負荷が増大するだけでなく、溶融亜鉛めっき工程後の加工性の低下を招く。
20℃/秒以上80℃/秒未満の平均冷却速度および400℃以上600℃未満の巻取り温度であれば、熱間圧延での巻取り後におけるセメンタイト粒径は2μm以下となる。これにより、溶融亜鉛めっき工程での還元加熱において、未溶解炭化物の残存を抑制することができるため、溶融亜鉛めっき後のマルテンサイト量が増加する。したがって、780MPa以上の、強度および加工性を高いレベルで両立しためっき鋼板を安定して製造することができる。
(冷間圧延工程)
上記の冷間圧延工程では、冷間圧延率を40~70%とすることが好ましい。40%未満の冷間圧延率では焼鈍後の組織が粗大となり曲げ性が低下する。一方、70%を超える冷間圧延率では、冷間圧延による組織微細化効果が飽和する。また、過度に高い冷間圧延率を付与することは冷間圧延工程の負荷を増大させ好ましくない。この冷間圧延工程での冷間圧延率が上記の範囲となるように、最終的な目標板厚に応じて熱間圧延後の板厚を調整しておく。場合によっては、熱間圧延後、この冷間圧延工程の前に、中間冷間圧延+中間焼鈍の工程を挿入してもよい。
(連続溶融亜鉛めっき工程)
連続溶融亜鉛めっき工程では、焼鈍および溶融Zn-Al-Mg系めっきを順次行う。
溶融亜鉛めっき浴に浸漬する直前に行う焼鈍では、還元性雰囲気下において、材料温度(最高到達温度)が740~880℃となるように加熱してもよい。材料温度が740℃に達しないと再結晶化が不十分となって未再結晶組織が残存しやすいため、良好な加工性を安定して得ることが難しい。880℃を超えるとオーステナイト母相の結晶粒が粗大化し、良好な加工性を付与するために必要な第二相の微細化が不十分となる。材料温度が740~880℃の範囲に保持する時間は、例えば60秒以下の範囲で設定すればよい。
焼鈍後の冷却過程では、少なくとも450℃までの平均冷却速度が5℃/秒以上となるようにすることが好ましい。この温度域での冷却速度がこれより遅いと、部分的にパーライトが生成しやすくなり、780MPa以上の高強度を安定して得ることが困難となる。また、フェライト粒径および第二相粒径の微細化の点からも、冷却速度は5℃/秒以上とすることが有効である。本発明で対象とする鋼は上記のように所定のTiおよび必要に応じてNbを含有しているので、加熱後の冷却速度をこのように選定することでフェライトの平均結晶粒径が10μm以下、かつ第二相の平均結晶粒径が8μm以下である微細な組織を得ることができる。
この焼鈍は、焼鈍および溶融Zn-Al-Mg系めっきを1回のライン通板で行うことが可能な連続めっきラインで行うことが望ましい。焼鈍後の上記冷却において、溶融亜鉛めっき浴に浸漬する際の適正材温まで冷却した後、鋼板を直接溶融亜鉛めっき浴に浸漬する。焼鈍雰囲気は還元性雰囲気とし、めっき浴中に浸漬されるまで鋼板が大気に触れないように管理される。
溶融Zn-Al-Mg系めっきは、従来から実施されている方法を採用すればよい。めっき浴組成は、例えば、質量%で、Al:3.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.0%、残部がZnおよび不可避的不純物である組成が好適である。得られるめっき鋼板のめっき層組成は、めっき浴組成をほぼ反映したものとなる。
得られためっき鋼板は、密閉容器中で水蒸気に接触させて、めっき層を黒色化する。この工程により、めっき層表面の明度(L値)を60以下(好ましくは40以下、さらに好ましくは35以下)にまで低下させることができる。これにより、溶融Zn-Al-Mg系めっき層の表層に、Znの黒色酸化物が存在し、表面の明度Lが60以下である鋼板が得られる。めっき鋼板の表層がこのような明度であれば、黒色の、意匠性に優れためっき鋼板が得られる。なお、必要とする明度Lに応じて、水蒸気への接触時間等が適宜設定される。めっき層表面の明度(L値)は、分光型色差計を用いて測定される。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明の一実施例について以下に説明する。
〔試験方法〕
図1に示す化学組成を有するスラブを加熱温度1250℃、仕上げ圧延温度880℃、仕上圧延から巻取りまでの平均冷却速度を15~70℃/秒、巻取り温度420~630℃で熱間圧延して、板厚1.8~2.8mmの熱延鋼板を得た。熱延鋼板を酸洗後、45~65%の圧延率で冷間圧延して板厚1.0mmのめっき原板(鋼基材)とし、これを連続溶融めっきラインに通板して、水素-窒素混合ガス雰囲気中750~850℃の種々の温度で焼鈍し、8~12℃/秒の冷却速度により約420℃まで冷却した。
その後、鋼板表面が大気に触れない状態のまま下記の浴組成の溶融Zn-Al-Mg系めっき浴中に浸漬した後引き上げ、ガスワイピング法にて、めっき付着量を片面あたり約90g/mに調整することにより溶融Zn-Al-Mg系めっき鋼板を製造し、これを供試材とした。めっき浴温は約410℃であった。
めっき浴組成は以下の通りである;
質量%で、Al:6%、Mg:3%、Ti:0.002%、B:0.0005%、Si:0.01%、Fe:0.1%、残部:Zn。
各鋼(本発明例:鋼A~G、比較例:鋼a)の製造条件を図2に示した。このうち、「CT」は巻取り温度を示し、「冷却速度」は、熱間圧延における仕上圧延から巻取りまでの平均冷却速度を示し、「焼鈍温度」は連続溶融亜鉛めっきラインでの還元加熱温度を示す。
〔試験項目〕
得られた供試材のめっき鋼板について、以下の試験を行った。
(引張特性)
試験片の長手方向がめっき原板(鋼基材)の圧延方向に対し直角となるように採取したJIS5号試験片を用い、JIS Z2241に従い引張強さTS、全伸びT.Elを求めた。
(曲げ試験)
試験片の長手方向がめっき原板(鋼基材)の圧延方向に対し直角となるように採取した曲げ試験片を用いて、JIS Z2248に従い曲げ角度45度のVブロック曲げ試験を実施した。試験後に、曲げ部を曲げの外側から目視にて観察し、割れが認められない最小の曲げ先端内側半径を限界曲げ半径Rとして算出し、限界曲げ半径Rを板厚tにより除した値を、曲げ性の指標R/tとして求めた。
(金属組織)
熱延材およびめっき材の金属組織は、圧延方向と平行な断面(L断面)を走査型電子顕微鏡にて観察した。熱延材については、ピクラール試薬によってエッチングした後、10視野の画像解析を行ってセメンタイトの平均粒径を求めた。
また、めっき材については、いずれもフェライトを主相とし、第二相としてマルテンサイトまたはマルテンサイトとベイナイトが存在する金属組織を呈していた。10視野の画像解析を行い、第二相の面積率および平均結晶粒径(円相当径)を求めた。
〔試験結果〕
以上の試験項目についての試験結果を図2にまとめて示す。なお、図2中の下線を付した項目は、本発明規定範囲外または特性不十分であることを示す。
本発明例のものは、いずれも熱延材のセメンタイト粒径が2μm以下であり、めっき材のマルテンサイトまたはマルテンサイトおよびベイナイトにより構成される第二相の面積率が15%以上45%未満、当該第二相の平均結晶粒径が8μm以下、引張強さTSが780MPa以上、引張強さTS×全伸びT.Elが14000MPa・%以上、かつ曲げ性の指標R/tが1.5以下であった。すなわち、本発明例では、強度と加工性とを高いレベルで両立しためっき鋼板が安定して得られた。
一方、鋼板の化学組成、巻取り温度(CT)、または仕上圧延から巻取りまでの平均冷却速度のいずれかの一つ以上の条件において、本発明規定範囲外の条件により製造された供試材(比較例)はいずれも、上記第二相の面積率が15%未満となり、引張強さTSが780MPa以下となった。すなわち、本発明において求められる強度を満たすめっき鋼板は得られなかった。

Claims (3)

  1. 熱間圧延工程と、冷間圧延工程と、焼鈍および溶融Zn-Al-Mg系めっきを順次行う連続溶融亜鉛めっき工程と、をこの順で含む、鋼基材の表面に溶融Zn-Al-Mg系めっき層を有する溶融Zn-Al-Mg系めっき鋼板の製造方法であって、
    前記鋼基材は、質量%で、C:0.050~0.180%、Si:0.001~0.50%、Mn:1.00~2.80%、Ti:0.01~0.10%、B:0.0005~0.0100%、P:0.005~0.050%、S:0.001~0.020%、およびAl:0.005~0.100%を含み、残部がFeおよび不可避的不純物からなり、
    前記連続溶融亜鉛めっき工程後の金属組織は、フェライト相と、面積率15%以上45%未満の第二相を有し、
    前記第二相は、マルテンサイトまたは、マルテンサイトおよびベイナイトにより構成され、平均結晶粒径が8μm以下であり、
    前記熱間圧延工程は、
    熱間圧延後の平均冷却速度が20℃/秒以上80℃/秒未満であり、
    巻取り温度が400℃以上600℃未満であり、
    前記巻取り後におけるセメンタイトの平均粒径が2μm以下である、溶融Zn-Al-Mg系めっき鋼板の製造方法。
  2. 前記鋼基材は、質量%で、Nb:0~0.10%、V:0~0.10%、Cr:0~1.00%、およびMo:0~1.00%の1種以上をさらに含む、請求項に記載の溶融Zn-Al-Mg系めっき鋼板の製造方法。
  3. 前記溶融Zn-Al-Mg系めっき層の表層は、
    Znの黒色酸化物が存在し、表面の明度Lが60以下である、請求項1または2に記載の溶融Zn-Al-Mg系めっき鋼板の製造方法。
JP2019055044A 2019-03-22 2019-03-22 溶融Zn-Al-Mg系めっき鋼板の製造方法 Active JP7288184B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019055044A JP7288184B2 (ja) 2019-03-22 2019-03-22 溶融Zn-Al-Mg系めっき鋼板の製造方法
KR1020217032242A KR20210135577A (ko) 2019-03-22 2020-03-18 용융 Zn-Al-Mg계 도금 강판 및 그 제조 방법
CN202080020996.6A CN113631736A (zh) 2019-03-22 2020-03-18 热浸镀Zn-Al-Mg系钢板及其制造方法
PCT/JP2020/011959 WO2020196149A1 (ja) 2019-03-22 2020-03-18 溶融Zn-Al-Mg系めっき鋼板およびその製造方法
MX2021010939A MX2021010939A (es) 2019-03-22 2020-03-18 Lamina de acero enchapada con zn-al-mg fundida y metodo para producir la misma.
US17/438,440 US20220154320A1 (en) 2019-03-22 2020-03-18 MOLTEN Zn-Al-Mg-PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME
TW109109208A TW202102696A (zh) 2019-03-22 2020-03-19 熔融Zn-Al-Mg系鍍覆鋼板及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055044A JP7288184B2 (ja) 2019-03-22 2019-03-22 溶融Zn-Al-Mg系めっき鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2020152993A JP2020152993A (ja) 2020-09-24
JP7288184B2 true JP7288184B2 (ja) 2023-06-07

Family

ID=72557979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055044A Active JP7288184B2 (ja) 2019-03-22 2019-03-22 溶融Zn-Al-Mg系めっき鋼板の製造方法

Country Status (7)

Country Link
US (1) US20220154320A1 (ja)
JP (1) JP7288184B2 (ja)
KR (1) KR20210135577A (ja)
CN (1) CN113631736A (ja)
MX (1) MX2021010939A (ja)
TW (1) TW202102696A (ja)
WO (1) WO2020196149A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153361A (ja) 2010-01-28 2011-08-11 Nisshin Steel Co Ltd 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板
JP2014189812A (ja) 2013-03-26 2014-10-06 Nisshin Steel Co Ltd 溶接構造部材用高強度めっき鋼板およびその製造法
CN104419867A (zh) 2013-09-05 2015-03-18 鞍钢股份有限公司 1250MPa级超高强锌铝镁镀层钢板及其生产方法
JP2017145441A (ja) 2016-02-16 2017-08-24 日新製鋼株式会社 黒色表面被覆高強度鋼板およびその製造方法
WO2017169561A1 (ja) 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP2019031728A (ja) 2017-08-10 2019-02-28 日新製鋼株式会社 建築部材用高強度Zn−Al−Mg系表面被覆鋼板およびそれを用いた建築部材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500197B2 (ja) 2005-04-01 2010-07-14 新日本製鐵株式会社 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
CA2787575C (en) * 2010-01-26 2015-03-31 Kohichi Sano High-strength cold-rolled steel sheet and method of manufacturing thereof
JP5867444B2 (ja) * 2013-04-15 2016-02-24 Jfeスチール株式会社 靭性に優れた高強度熱延鋼板およびその製造方法
CN103556048B (zh) * 2013-10-24 2015-04-29 钢铁研究总院 一种低屈强比、高强度汽车用双相钢板的生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153361A (ja) 2010-01-28 2011-08-11 Nisshin Steel Co Ltd 曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板
JP2014189812A (ja) 2013-03-26 2014-10-06 Nisshin Steel Co Ltd 溶接構造部材用高強度めっき鋼板およびその製造法
CN104419867A (zh) 2013-09-05 2015-03-18 鞍钢股份有限公司 1250MPa级超高强锌铝镁镀层钢板及其生产方法
JP2017145441A (ja) 2016-02-16 2017-08-24 日新製鋼株式会社 黒色表面被覆高強度鋼板およびその製造方法
WO2017169561A1 (ja) 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP2019031728A (ja) 2017-08-10 2019-02-28 日新製鋼株式会社 建築部材用高強度Zn−Al−Mg系表面被覆鋼板およびそれを用いた建築部材

Also Published As

Publication number Publication date
MX2021010939A (es) 2021-10-13
CN113631736A (zh) 2021-11-09
WO2020196149A1 (ja) 2020-10-01
US20220154320A1 (en) 2022-05-19
KR20210135577A (ko) 2021-11-15
TW202102696A (zh) 2021-01-16
JP2020152993A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
JP6599902B2 (ja) 高強度多相鋼、製造方法および使用
JP6237900B2 (ja) 高強度冷延薄鋼板およびその製造方法
JP7150022B2 (ja) 加工性に優れた高強度鋼板及びその製造方法
JP4635525B2 (ja) 深絞り性に優れた高強度鋼板およびその製造方法
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
JP5332355B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2019106895A1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
US10889873B2 (en) Complex-phase steel sheet having excellent formability and method of manufacturing the same
WO2016113789A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013046476A1 (ja) 高強度鋼板およびその製造方法
KR20110105404A (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
WO2018088421A1 (ja) 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法
WO2016152135A1 (ja) 高強度鋼板およびその製造方法
JP4211520B2 (ja) 耐時効性に優れた高強度高延性亜鉛めっき鋼板およびその製造方法
JP2013049901A (ja) 加工性と材質安定性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
JP4500197B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP5659604B2 (ja) 高強度鋼板およびその製造方法
JP5703632B2 (ja) 温間プレス成形用素材及びパネル用部材の製造方法
JP3882679B2 (ja) めっき外観の良好な深絞り性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板の製造方法
JP2000265244A (ja) 強度と延性に優れる溶融亜鉛めっき鋼板およびその製造方法
JP2013227635A (ja) 高強度冷延鋼板、高強度亜鉛めっき鋼板、高強度冷延鋼板の製造方法、及び高強度亜鉛めっき鋼板の製造方法
JP7288184B2 (ja) 溶融Zn-Al-Mg系めっき鋼板の製造方法
WO2021153746A1 (ja) 熱延鋼板およびその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R151 Written notification of patent or utility model registration

Ref document number: 7288184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151