WO2015093215A1 - インホイールモータ駆動装置 - Google Patents

インホイールモータ駆動装置 Download PDF

Info

Publication number
WO2015093215A1
WO2015093215A1 PCT/JP2014/080489 JP2014080489W WO2015093215A1 WO 2015093215 A1 WO2015093215 A1 WO 2015093215A1 JP 2014080489 W JP2014080489 W JP 2014080489W WO 2015093215 A1 WO2015093215 A1 WO 2015093215A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
drive device
wheel
rotor
motor drive
Prior art date
Application number
PCT/JP2014/080489
Other languages
English (en)
French (fr)
Inventor
優 黒田
朋久 魚住
鈴木 健一
Original Assignee
Ntn株式会社
優 黒田
朋久 魚住
鈴木 健一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 優 黒田, 朋久 魚住, 鈴木 健一 filed Critical Ntn株式会社
Priority to EP14872248.1A priority Critical patent/EP3086449B1/en
Priority to CN201480068424.XA priority patent/CN105830317B/zh
Priority to US15/102,334 priority patent/US10279675B2/en
Publication of WO2015093215A1 publication Critical patent/WO2015093215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/03Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an in-wheel motor drive device.
  • a conventional in-wheel motor drive device is described in, for example, Japanese Patent Application Laid-Open No. 2012-148725 (Patent Document 1).
  • the in-wheel motor drive device described in the publication is disposed between a motor unit that generates a driving force, a wheel bearing unit that is connected to a wheel, and the motor unit and the wheel bearing unit. And a speed reducer that decelerates the rotation and transmits it to the wheel bearing.
  • the above-mentioned in-wheel motor drive device employs a low-torque, high-rotation type motor for the motor unit from the viewpoint of making the device compact.
  • a cycloid reduction gear that is compact and provides a high reduction ratio is employed.
  • the motor unit includes a stator fixed to the casing, a rotor disposed at a position facing the inner side of the stator with a radial gap, and a motor rotating shaft connected and fixed to the inner side of the rotor and integrally rotated with the rotor. It is a radial gap motor.
  • the motor rotating shaft having a hollow structure is supported by a casing so that both ends in the axial direction are rotatable by a pair of rolling bearings.
  • the speed reducer to which the cycloid speed reducer is applied is a speed reducer input shaft having a pair of eccentric parts, a pair of curved plates arranged in the eccentric parts, and an outer peripheral surface of the curved plate to rotate on the curved plates.
  • a plurality of outer peripheral engagement members to be generated and a plurality of inner pins that transmit the rotation of the curved plate to the reduction gear output shaft are mainly configured.
  • the motor rotation shaft described above is connected to the reduction gear input shaft by a spline.
  • the in-wheel motor drive device since the in-wheel motor drive device is housed in the wheel housing and becomes an unsprung load, a reduction in size and weight is essential.
  • the output torque of the motor is proportional to the physique of the motor, an attempt to generate the torque necessary for driving the vehicle with the motor alone requires a large motor, which increases the weight. Therefore, the reduction of the motor can be achieved by combining the reduction gear with the motor.
  • Increasing the reduction ratio to make a small motor inevitably requires high rotation. For example, when a reduction gear with a reduction ratio of 11 is used, high rotation of about 15000 min ⁇ 1 is required. .
  • the in-wheel motor drive device is mounted under the spring of the vehicle, and the vibration of the in-wheel motor drive device greatly affects the riding comfort of the vehicle.
  • vibration in the audible range and in-vehicle noise may be caused, which may cause discomfort to the occupant. Therefore, suppressing the rotational primary forced vibration component that is the source of all vibrations can greatly contribute to the quietness of the vehicle.
  • the present invention has been proposed in view of the above-described problems, and an object thereof is to provide an in-wheel motor drive device that is small and lightweight, excellent in quietness, and improved in durability.
  • the present invention is based on the following findings found by examining a motor rotation shaft equipped with a rotor of an in-wheel motor drive device from various viewpoints.
  • the unbalance adjustment method includes a method of adjusting by adding a weight and a method of adjusting by removing a part of the spindle.
  • the addition of the weight to the high-speed rotating body may cause the weight to scatter during rotation. Therefore, a method of adjusting by shaving is generally selected.
  • the work of shaving is performed after the heat treatment.
  • the hardness of the surface to be adjusted for unbalance is high, it is difficult to cut and difficult to machine. Difficult machinability increases the cycle time of the machining process, which increases costs.
  • the hardness of the surface where the unbalance is adjusted is low and the hardness is close to that of the raw material, it is easy to cut and the processing is good. Good workability can reduce the cycle time of the machining process and reduce the cost.
  • low carbon steel is desirable as a steel type having good workability with raw materials.
  • the high-speed spindle is subjected to heat treatment to increase the wear resistance of the fitting portion to increase the surface hardness. Therefore, it has been found that it is desirable to satisfy the conflicting requirements between good workability and good heat treatment.
  • a motor rotating shaft equipped with a rotor is composed of a motor rotating shaft supported at both ends by a rolling bearing and a rotor made of a magnet and a silicon steel plate.
  • the fit between the motor rotating shaft and the rotor is centrifugal force.
  • the tightening allowance is selected in consideration of the expansion and thermal expansion due to the above, and an interference fit or shrink fit is preferable.
  • the outer diameter portion of the motor rotation shaft and the inner diameter portion of the rotor are press-fitted while being assembled during assembly, so the outer diameter portion of the motor rotation shaft is high for the purpose of improving the wear resistance of the contact portion. Surface hardness is required.
  • the rolling bearing that supports the motor rotation shaft has a tight fit between the bearing inner ring and the motor rotation shaft so that the bearing does not damage the fitting portion with the motor rotation shaft during assembly.
  • high surface hardness is required for the fitting portion of the motor rotation shaft.
  • the in-wheel motor drive device achieves compactness by combining the motor part and the speed reduction part, and the spline fitting part, which is the torque transmission part, requires wear resistance and strength, and has a surface treatment.
  • heat treatment is essential. Therefore, it was found that it is preferable that the heat treatment is easier.
  • the motor rotating shaft is required to have toughness that can withstand deformation during high-speed rotation.
  • materials that can obtain high surface hardness and toughness at the center include case hardening steel that performs carburizing and quenching, and medium carbon steel that performs induction hardening. From the viewpoint of surface hardness, high carbon chrome bearing steel is selected, but in case of continuous quenching, the shape of a large diameter part such as a motor rotating shaft, the temperature of the center part and the surface part in the quenching process after quenching. It was found that there was a possibility of burning cracks from the gradient.
  • case-hardened steel is desirable in terms of its properties and ease of heat treatment.
  • the present invention includes a motor unit, a speed reduction unit, a wheel bearing unit, and a casing, and the motor unit is fixed to the casing;
  • the rotation speed of the speed reducer input shaft is reduced and transmitted to the speed reducer output shaft.
  • a hook part that contacts one end of the rotor is formed on the motor rotating shaft, a holding member that contacts the other end of the rotor is provided, and the rotor is held between the hook part and the holding member and is attached to the motor rotating shaft. It is desirable to form a low hardness portion for adjusting the unbalance in the collar portion. In this case, since the surface for correcting unbalance can be formed on the outer diameter side, the cutting amount for unbalance adjustment can be reduced, unbalance adjustment can be easily performed, and cost reduction can be achieved.
  • the low hardness part can be formed by a carbon-proof treatment. Thereby, it is possible to flexibly cope with a small change in the shape of the motor rotation shaft, and it is easy to distinguish between a heat treatment part and a part not to be heat treated, which is advantageous in terms of cost.
  • the allowable residual ratio imbalance after adjusting the imbalance of the motor rotating shaft equipped with the rotor is 0.5 to 5. As a result, vibrations in the vehicle can be suppressed, quietness is excellent, and occupant discomfort can be prevented.
  • the above-mentioned clamping member can be formed of a material different from that of the rotating member. Thereby, it is possible to select a non-magnetic material and a high specific gravity so that chips by cutting for unbalance adjustment are not attracted to the rotor.
  • the clamping member is made of austenitic stainless steel. This is a non-magnetic material and has a high specific gravity, which is advantageous in terms of cost.
  • the in-wheel motor drive device of the present invention it is possible to realize an in-wheel motor drive device that is small and light, excellent in quietness, and improved in durability.
  • FIG. 2 is a cross-sectional view taken along the line OO in FIG. It is explanatory drawing which shows the load which acts on the curve board of FIG. It is a cross-sectional view of the rotary pump of FIG. It is the longitudinal cross-sectional view which expanded the motor rotating shaft with which the rotor of FIG. 1 was mounted
  • FIG. 7 is a rear sectional view of the electric vehicle of FIG. 6.
  • FIG. 6 is a schematic plan view of the electric vehicle 11 equipped with the in-wheel motor drive device 21 according to the embodiment of the present invention
  • FIG. 7 is a schematic cross-sectional view of the electric vehicle as viewed from the rear.
  • the electric vehicle 11 includes an in-wheel motor drive device that transmits driving force to the chassis 12, front wheels 13 as steering wheels, rear wheels 14 as drive wheels, and left and right rear wheels 14. 21.
  • the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower part of the chassis 12 via a suspension device (suspension) 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms. It is desirable that the suspension device 12b be an independent suspension type in which left and right wheels can be moved up and down independently in order to improve followability to road surface unevenness and efficiently transmit the driving force of the driving wheels to the road surface. .
  • the in-wheel motor drive device 21 for driving the left and right rear wheels 14 inside the wheel housing 12a, it is not necessary to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, it has the advantages that a large cabin space can be secured and the rotation of the left and right drive wheels can be controlled respectively.
  • in-wheel motor drive device 21 In order to improve the running stability and NVH characteristics of the electric vehicle 11, it is necessary to suppress the unsprung weight. In addition, in-wheel motor drive device 21 is required to be downsized in order to secure a wider cabin space. Therefore, as shown in FIG. 1, an in-wheel motor drive device 21 according to the present embodiment is employed.
  • FIGS. 1 is a schematic longitudinal sectional view of an in-wheel motor drive device 21, FIG. 2 is a transverse sectional view taken along line OO in FIG. 1, FIG. 3 is an explanatory view showing a load acting on a curved plate, and FIG. FIG. 5 is an enlarged vertical cross-sectional view of a motor rotating shaft equipped with a rotor.
  • FIGS. 1 is a schematic longitudinal sectional view of an in-wheel motor drive device 21
  • FIG. 2 is a transverse sectional view taken along line OO in FIG. 1
  • FIG. 3 is an explanatory view showing a load acting on a curved plate
  • FIG. FIG. 5 is an enlarged vertical cross-sectional view of a motor rotating shaft equipped with a rotor.
  • the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and an output from the deceleration unit B as driving wheels.
  • the motor bearing part A and the speed reduction part B are housed in the casing 22 and are mounted in the wheel housing 12 a of the electric vehicle 11 as shown in FIG. 7.
  • the casing 22 has a structure that can be divided into the motor part A and the speed reduction part B, and is fastened with bolts.
  • the casing 22 refers to both a casing part in which the motor part A is accommodated and a casing part in which the speed reduction part B is accommodated.
  • the motor part A includes a stator 23a fixed to the casing 22, a rotor 23b disposed at a position facing the inner side of the stator 23a with a radial gap, and an inner side of the rotor 23b that is connected and fixed to be integrated with the rotor 23b.
  • a radial gap motor including a rotating motor rotating shaft 24.
  • the motor rotating shaft 24 having a hollow structure is fitted and fixed to the inner diameter surface of the rotor 23b and integrally rotates, and one end in the axial direction (right side in FIG. 1) in the motor portion A is axially moved to the rolling bearing 36a.
  • the other end (left side in FIG. 1) is rotatably supported by a rolling bearing 36b.
  • the reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) at the rolling bearing 37a and an end portion on the other side in the axial direction (left side in FIG. 1) at the rolling bearing 37b. Is supported so as to be freely rotatable.
  • the speed reducer input shaft 25 has eccentric portions 25 a and 25 b in the speed reduction portion B.
  • the two eccentric portions 25a and 25b are provided with a 180 ° phase change in order to cancel the centrifugal force due to the eccentric motion.
  • the motor rotating shaft 24 and the speed reducer input shaft 25 are coupled by spline fitting (including serrations, the same applies hereinafter), and the driving force of the motor part A is transmitted to the speed reducing part B.
  • the spline fitting portion is configured to suppress the influence on the motor rotating shaft 24 even if the speed reducer input shaft 25 is inclined to some extent.
  • the deceleration part B includes curved plates 26a and 26b as revolving members that are rotatably held by the eccentric parts 25a and 25b, and a plurality of outer pins as outer peripheral engaging members that engage with the outer peripheral parts of the curved plates 26a and 26b. 27, a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the reducer output shaft 28, and a counterweight 29 at a position adjacent to the eccentric portions 25a, 25b.
  • the reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b. On the end face of the flange portion 28a, holes for fixing the inner pins 31 at equal intervals are formed on the circumference centered on the rotational axis of the reduction gear output shaft 28.
  • the shaft portion 28 b is connected to a hub wheel 32 as an inner member of the wheel bearing portion C by spline fitting, and transmits the output of the speed reduction portion B to the wheel 14.
  • the curved plate 26 a has a plurality of corrugations formed of a trochoidal curve such as epitrochoid on the outer peripheral portion, and a plurality of through holes 30 a penetrating from one end face to the other end face, It has a through hole 30b.
  • a plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 26a, and receive inner pins 31 described later.
  • the through hole 30b is provided at the center of the curved plate 26a and is fitted to the eccentric portion 25a.
  • the curved plate 26a is rotatably supported by the rolling bearing 41 with respect to the eccentric portion 25a.
  • the rolling bearing 41 is fitted to the outer diameter surface of the eccentric portion 25a, and the inner ring 42 having the inner raceway surface 42a on the outer diameter surface and the inner diameter surface of the through hole 30b of the curved plate 26a.
  • Cylindrical roller bearing comprising a directly formed outer raceway surface 43, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42a and the outer raceway surface 43, and a cage (not shown) for holding the cylindrical rollers 44.
  • wheel 42 has a collar part which protrudes to a radial direction outer side from the axial direction both ends of the inner side track surface 42a.
  • the outer pins 27 are provided at equal intervals on the circumference centering on the rotational axis of the speed reducer input shaft 25.
  • the curved plates 26a and 26b revolve, the curved waveform and the outer pin 27 engage with each other to cause the curved plates 26a and 26b to rotate.
  • the outer pin 27 is rotatably supported by the outer pin housing 60 by a needle roller bearing 27a (see FIG. 1). Thereby, the contact resistance between the curved plates 26a and 26b can be reduced.
  • the counterweight 29 (see FIG. 1) is substantially fan-shaped and has a through-hole that fits with the speed reducer input shaft 25, and each counterweight 29 (see FIG. 1) has a through hole that is caused by the rotation of the curved plates 26a and 26b. It is arranged at a position adjacent to the eccentric parts 25a, 25b with a phase difference of 180 ° from that of the eccentric parts 25a, 25b.
  • the motion conversion mechanism is composed of a plurality of inner pins 31 held by the reduction gear output shaft 28 and through holes 30a provided in the curved plates 26a and 26b.
  • the inner pins 31 are provided at equal intervals on the circumference centering on the rotational axis of the speed reducer output shaft 28 (see FIG. 2), and one axial end thereof is fixed to the speed reducer output shaft 28.
  • a needle roller bearing 31a is provided at a position where the curved plates 26a, 26b come into contact with the inner wall surface of the through hole 30a.
  • the stabilizer 31b is provided in the axial direction other side edge part of the inner pin 31. As shown in FIG.
  • the stabilizer 31b includes an annular ring portion 31c and a cylindrical portion 31d extending in the axial direction from the inner diameter surface of the annular portion 31c.
  • the ends on the other axial side of the plurality of inner pins 31 are fixed to the annular portion 31c. Since the load applied to some of the inner pins 31 from the curved plates 26a and 26b is supported by all the inner pins 31 via the stabilizer 31b, the stress acting on the inner pins 31 is reduced and the durability is improved. be able to.
  • the through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30a indicates the outer diameter dimension of the inner pin 31 ("maximum outer diameter including needle roller bearing 31a"). The same applies hereinafter.) Is set larger than a predetermined dimension.
  • Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25.
  • the outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a.
  • the outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated recesses 34 that are depressed in the radial direction at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that engage with the recesses 34 are arranged in the circumferential direction with the axis O as the center.
  • the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2.
  • An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through-hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner pin 31 extracts the rotational motion of the curved plate 26a.
  • the reduction gear output shaft 28 is rotated.
  • the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. .
  • a resultant force Fs of the plurality of loads Fi and Fj is applied to the reduction gear input shaft 25.
  • the direction of the resultant force Fs changes depending on geometrical conditions such as the waveform shape of the curved plate 26a, the number of the concave portions 34, and centrifugal force.
  • the angle ⁇ between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. fluctuate.
  • the load directions and magnitudes of the plurality of loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25. As a result, the resultant force Fs acting on the speed reducer input shaft 25 is also reduced. Direction and size vary. Then, when the speed reducer input shaft 25 makes one rotation, the corrugated concave portion 34 of the curved plate 26a is decelerated and rotated clockwise by one pitch, resulting in the state shown in FIG.
  • the wheel bearing 33 of the wheel bearing portion C includes an inner raceway surface 33f formed directly on the outer diameter surface of the hub wheel 32 and an inner ring 33a fitted to a small diameter step portion of the outer diameter surface. And an outer ring 33b fitted and fixed to the inner surface of the casing 22, and a plurality of balls 33c as rolling elements disposed between the inner raceway surface 33f, the inner ring 33a and the outer ring 33b, and adjacent to each other.
  • This is a double-row angular contact ball bearing provided with a retainer 33d for holding the gap between the balls 33c to be sealed and a seal member 33e for sealing both axial ends of the wheel bearing 33.
  • This lubrication mechanism supplies lubricating oil for cooling the motor part A and also supplies lubricating oil to the speed reducing part B.
  • 1 mainly includes the lubricating oil passages 24a and 25c, the lubricating oil supply ports 24b, 25d, 25e, and 25f, the lubricating oil discharge port 22b, the lubricating oil reservoir 22d, the lubricating oil passage 22e, the rotary pump 51, and the circulating oil passage 45.
  • the configuration is as follows.
  • the white arrow given in the lubrication mechanism indicates the direction in which the lubricating oil flows.
  • the lubricating oil passage 25c connected to the lubricating oil passage 24a of the motor rotating shaft 24 extends along the axial direction inside the reduction gear input shaft 25.
  • the lubricating oil supply ports 25d and 25e extend from the lubricating oil passage 25c toward the outer diameter surface of the speed reducer input shaft 25, and the lubricating oil supply port 25f extends from the shaft end of the speed reducer input shaft 25 in the direction of the rotational axis. It extends toward the shaft end face.
  • At least one location of the casing 22 at the position of the speed reduction part B is provided with a lubricating oil discharge port 22b for discharging the lubricating oil inside the speed reduction part B, and a lubricating oil storage part 22d for temporarily storing the discharged lubricating oil. Is provided.
  • the circulating oil passage 45 is connected to an axial oil passage 45 a extending in the axial direction inside the casing 22 and one axial end portion (right side in FIG. 1) of the axial oil passage 45 a.
  • a radial oil passage 45c extending in the direction and a radial oil passage 45b extending in the radial direction connected to the other axial end portion (left side in FIG. 1) of the axial oil passage 45a.
  • a rotary pump 51 is provided between the lubricating oil passage 22e connected to the lubricating oil reservoir 22d and the circulating oil passage 45.
  • the radial oil passage 45b supplies the lubricating oil pumped from the rotary pump 51 to the axial oil passage 45a, and supplies the lubricating oil from the axial oil passage 45a to the lubricating oil passages 24a and 25c via the radial oil passage 45c. .
  • the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the reduction gear output shaft 28, an outer rotor 53 that rotates following the rotation of the inner rotor 52, and a pump chamber 54.
  • the cycloid pump includes a suction port 55 communicating with the lubricating oil passage 22e and a discharge port 56 communicating with the radial oil passage 45b of the circulating oil passage 45.
  • the inner rotor 52 rotates around a rotation center c 1
  • the outer rotor 53 rotates around a rotation center c 2. Since the inner rotor 52 and the outer rotor 53 rotate about different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 45b.
  • the lubricating oil in the lubricating oil path 25c flows out from the lubricating oil supply ports 25d and 25e to the speed reducing part B due to the centrifugal force and pressure accompanying the rotation of the speed reducer input shaft 25.
  • the lubricating oil that has flowed out of the lubricating oil supply port 25d is a cylindrical roller bearing 41 that supports the curved plates 26a and 26b. Further, due to centrifugal force, the contact portion between the curved plates 26a and 26b and the inner pin 31 and the curved plate 26a, 26b and the outer pin 27 are moved radially outward while lubricating the abutting portion and the like.
  • the lubricating oil that has flowed out of the lubricating oil supply ports 25e and 25f is supplied to deep groove ball bearings 37a and 37b that support the reduction gear input shaft 25, as well as internal bearings and contact portions.
  • the lubricating oil that has reached the inner wall surface of the casing 22 is discharged from the lubricating oil discharge port 22b and stored in the lubricating oil reservoir 22d. Since the lubricating oil reservoir 22d is provided between the lubricating oil discharge port 22b and the rotary pump 51, even if lubricating oil that cannot be discharged by the rotary pump 51 is temporarily generated, the lubricating oil reservoir 22d Can be stored. As a result, an increase in torque loss of the deceleration unit B can be prevented.
  • the rotary pump 51 can return the lubricating oil stored in the lubricating oil storage portion 22d to the lubricating oil paths 24a and 25c.
  • Lubricating oil moves by gravity in addition to centrifugal force. Therefore, it is desirable to attach to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
  • the overall configuration of the in-wheel motor drive device 21 according to the present embodiment is as described above, and the characteristic configuration will be described below.
  • a stator 23a is fixed to a casing 22, and a rotor 23b is disposed at a position facing the inner side of the stator 23a with a radial gap.
  • the rotor 23 b is fitted and fixed to the outside of the motor rotation shaft 24 and rotates integrally with the motor rotation shaft 24.
  • the motor rotating shaft 24 has an axial end on the one side (right side in FIG. 1) as a deep groove ball bearing 36a as a rolling bearing, and an axial end on the other side (left side in FIG. 1) as a rolling bearing.
  • the deep groove ball bearing 36b is rotatably supported.
  • the motor rotating shaft 24 rotates at a high speed in about 15000 min ⁇ 1 .
  • the fit between the inner rings 36a1 and 36b1 of the deep groove ball bearings 36a and 36b and the motor rotating shaft 24 is an intermediate fit or a tight fit, and the outer rings 36a2 and 36b2 of the deep groove ball bearings 36a and 36b and the casing.
  • the fit with 22 is a clearance fit.
  • the deep groove ball bearings 36a and 36b are preloaded in the axial direction.
  • Fig. 5 shows an enlarged longitudinal section of the motor rotation shaft and rotor.
  • the motor rotating shaft 24 is made of case-hardened steel such as SCM415 and SCM420, and is carburized and quenched and tempered.
  • the heat-treated cured layer H is shown by cross hatching.
  • the surface of the motor rotating shaft 24 subjected to carburizing, quenching and tempering has a high hardness of HRC 62 to 66.5.
  • the hardness of the central portion is about HRC 29-38.
  • the large-diameter outer diameter portion 61 of the motor rotating shaft 24 is a portion where the rotor 23b is fitted, and a flange portion 62 that restrains the rotor 23b in the axial direction is formed at one end portion.
  • the outer surface 62a of the flange 62 is subjected to a carbon-proof treatment, and the hardness of this portion is about HRC29 to 38.
  • the fitting between the large-diameter outer diameter portion 61 of the motor rotating shaft 24 and the inner diameter portion of the rotor 23b is selected by a tightening allowance in consideration of expansion due to centrifugal force and thermal expansion, and is an interference fit or shrink fit.
  • the large-diameter outer diameter portion 61 of the motor rotating shaft 24 and the inner diameter portion of the rotor 23b are press-fitted while in contact with each other, but the large-diameter outer diameter portion 61 is formed with high surface hardness. The wear of the part can be prevented.
  • a separate clamping member 63 is fastened and fixed to the other end portion of the rotor 23b with a contact bolt 64.
  • the rotor 23b is mounted on the motor rotating shaft 24.
  • a material that is nonmagnetic and has a high specific gravity is selected for the pinching member 63 so that chips generated by cutting for unbalance adjustment described later are not attracted to the rotor 23b.
  • austenitic stainless steel is desirable.
  • aluminum is not preferable because of its low specific gravity. Moreover, although specific gravity is high and a nonmagnetic material and tungsten and copper may be sufficient, it becomes expensive.
  • the heat treatment hardened layer is also formed on the bearing mounting surfaces 65 and 66 at both ends in the axial direction of the motor rotating shaft 24.
  • the inner rings 36a1 and 36b1 of the deep groove ball bearings 36a and 36b are fitted to the bearing mounting surfaces 65 and 66 of the motor rotating shaft 24 by intermediate fitting or tight fitting. Since the layers are formed, the inner rings 36a1 and 36b1 do not damage the bearing mounting surfaces 65 and 66 during assembly.
  • the motor rotating shaft 24 has toughness at the center, it can withstand deformation during high-speed rotation. For this reason, it is suitable as an in-wheel motor drive device that combines a low-torque, high-rotation type motor and a cycloid reducer that provides a high reduction ratio.
  • the outer surface 62a of the flange portion 62 of the large-diameter outer diameter portion 61 and the outer surface of the clamping member 63 are balance correcting surfaces. The reason is that it is preferable to form the outer diameter side as much as possible in order to reduce the cutting amount for unbalance adjustment, and the outer side surface 62a of the flange 62 and the outer side surface of the clamping member 63 are used as balance correction surfaces.
  • the present invention is not limited to this, and any one of the outer side surface 62a of the flange 62 and the outer side surface of the clamping member 63 may be used as a balance correcting surface. Since the outer surface 62a of the collar portion 62 is subjected to a carbon-proof treatment and has low hardness, the cutting process for unbalance adjustment is good, the cycle time of the machining process is reduced, and unbalance adjustment is easy. And cost reduction can be aimed at. Since the holding member 63 has a large specific gravity, the amount of processing is small, the cycle time of the processing step is reduced, unbalance adjustment is easy, and cost can be reduced.
  • the carburizing treatment of the collar portion 62 may be performed by an appropriate method such as a method of applying a carburizing inhibitor to the outer surface 62a or a method of performing a carburizing treatment by bringing a jig in surface contact with the outer surface 62a into contact. it can.
  • Carburizing and quenching is flexible in terms of small changes in shape and is easy in terms of cost because the motor rotating shaft 24 can be easily separated from the heat-treated portion and the portion not heat-treated.
  • the allowable residual ratio unbalance after adjusting the unbalance of the motor rotating shaft 24 to which the rotor 23b is mounted is in the range of 0.5 to 5.
  • the allowable residual ratio imbalance is based on JIS B 0905 and means an amount obtained by dividing the allowable residual imbalance, which is the maximum allowable residual imbalance, by the rotor mass.
  • the allowable residual ratio unbalance in the range of 0.5 to 5 corresponds to G1 to G6.3 as the grade of good balance in the above JIS standard, and the G1 class is the level required for the spindle of the grinding wheel.
  • G2.5 is a class required for machine tool main shafts, gas turbines, and jet turbine drive pumps, and G6.3 is a class required for general industrial machinery pumps, fans, and wind hydraulic machines in general.
  • the allowable residual ratio imbalance is set in the range of 0.5 to 5
  • vibrations in the vehicle can be suppressed, excellent quietness can be prevented, and occupant discomfort can be prevented.
  • the other end in the axial direction of the motor rotating shaft 24 (left side in FIG. 1) is connected to the speed reducer input shaft 25 by spline fitting, and the operation of the speed reducing part B affects this spline fitting part.
  • the outer pin housing 60 that holds the outer pin 27 of the speed reduction portion B shown in FIG. 1 is supported in a floating state by a rotation preventing means (not shown) having an elastic support function in the casing 22. This absorbs a large radial load or moment load generated by turning or sudden acceleration / deceleration of the vehicle, and the eccentric swing motion of the curved plates 26a, 26b, the outer pin 27 and the curved plates 26a, 26b is reduced. It is intended to prevent damage to various parts such as a motion conversion mechanism that converts the rotational motion of the motor.
  • the reduction gear input shaft 25 is subjected to a radial load or a moment load whose load direction or magnitude varies from the curved plates 26a and 26b. For this reason, the torque is transmitted to the motor rotating shaft 24 and the speed reducer input shaft 25 at the spline fitting portion within a certain degree of inclination and misalignment. Since the motor rotating shaft 24 is made of case-hardened steel and is carburized, quenched, and tempered as a heat treatment, it has sufficient wear resistance and can improve durability.
  • the in-wheel motor drive device 21 according to the present embodiment is excellent in workability and wear resistance of the fitting portion, has necessary surface hardness and toughness, is easy to adjust unbalance, and is advantageous in terms of cost.
  • the shaft 24 is provided, is small and lightweight, has excellent quietness, and can improve durability.
  • the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23 a, and the rotor 23 b made of a permanent magnet or a magnetic body rotates. .
  • the reduction gear input shaft 25 connected to the motor rotation shaft 24 rotates
  • the curved plates 26 a and 26 b revolve around the rotation axis of the reduction gear input shaft 25.
  • the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
  • the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
  • the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, but only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
  • the reduction ratio of the speed reduction unit B having the above-described configuration is calculated as (Z A ⁇ Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b.
  • a very large reduction ratio of 1/11 can be obtained.
  • the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained. Further, by providing the needle roller bearings 27a and 31a on the outer pin 27 and the inner pin 31, the frictional resistance between the curved plates 26a and 26b is reduced, so that the transmission efficiency of the speed reduction portion B is improved.
  • the in-wheel motor drive device 21 By mounting the in-wheel motor drive device 21 according to this embodiment on the electric vehicle 11, the unsprung weight can be suppressed. As a result, the electric vehicle 11 having excellent running stability and NVH characteristics can be obtained.
  • the lubricating oil supply port 24b is provided in the motor rotating shaft 24, the lubricating oil supply port 25e is provided near the rolling bearing 37a, and the lubricating oil supply port 25d is provided in the eccentric portions 25a and 25b.
  • the opening 25f is provided at the shaft end of the reduction gear input shaft 25 is shown, the present invention is not limited to this, and the opening 25f can be provided at any position of the motor rotation shaft 24 or the reduction gear input shaft 25.
  • a cycloid pump has been shown as the rotary pump 51, the present invention is not limited to this, and any rotary pump that is driven using the rotation of the speed reducer output shaft 28 can be adopted. Furthermore, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
  • the number of the curved plates can be arbitrarily set. For example, when three curved plates are provided, , 120 ° phase may be changed.
  • the reduction part It is possible to adopt an arbitrary configuration that can transmit the rotation of B to the hub wheel 32.
  • it may be a motion conversion mechanism composed of an inner pin fixed to a curved plate and a hole formed in a reduction gear output shaft.
  • the case where power is supplied to the motor unit A to drive the motor unit and the power from the motor unit A is transmitted to the drive wheels 14 is shown, but conversely, the vehicle decelerates or goes down the hill.
  • the power from the drive wheel 14 side may be converted into high-rotation low-torque rotation by the speed reduction unit B and transmitted to the motor unit A, and the motor unit A may generate power.
  • the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
  • Brake can be added to the configuration of this embodiment.
  • the casing 22 is extended in the axial direction to form a space on the right side of the rotor 23 b in the drawing, a rotating member that rotates integrally with the rotor 23 b, and the casing 22 is not rotatable and axially
  • a parking brake which arrange
  • a disc brake that sandwiches a flange formed on a part of a rotating member that rotates integrally with the rotor 23b and a friction plate installed on the casing 22 side with a cylinder installed on the casing 22 side.
  • a drum brake can be used in which a drum is formed on a part of the rotating member, a brake shoe is fixed to the casing 22 side, and the rotating member is locked by friction engagement and self-engagement.
  • a radial gap motor is adopted as the motor unit A
  • the present invention is not limited to this, and a motor having an arbitrary configuration can be applied.
  • it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator.
  • the electric vehicle 11 shown in FIG. 6 showed the example which used the rear wheel 14 as the driving wheel, it is not restricted to this,
  • the front wheel 13 may be used as a driving wheel and may be a four-wheel driving vehicle.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 モータ部Aと、減速部Bと、車輪用軸受部Cと、ケーシング22とを備え、モータ部Aが、ケーシング22に固定されたステータ23aと、複数の転がり軸受36a、36bを介してケーシング22に回転自在に支持されるモータ回転軸24と、このモータ回転軸24に装着されたロータ23bとからなり、モータ部Aのモータ回転軸24が減速部Bの減速機入力軸25を回転駆動し、この減速機入力軸25の回転を減速して減速機出力軸28に伝達し、車輪用軸受部Cが減速機出力軸28に連結されたインホイールモータ駆動装置21において、モータ回転軸24が肌焼き鋼で形成され、熱処理として浸炭焼入れ焼戻しが施されていることを特徴とする。

Description

インホイールモータ駆動装置
 本発明は、インホイールモータ駆動装置に関する。
 従来のインホイールモータ駆動装置は、例えば、特開2012-148725号公報(特許文献1)に記載されている。同公報に記載されているインホイールモータ駆動装置は、駆動力を発生させるモータ部と、車輪に接続する車輪用軸受部と、モータ部と車輪用軸受部との間に配置され、モータ部の回転を減速して車輪用軸受部に伝達する減速部とを備えている。
 上記のインホイールモータ駆動装置は、装置のコンパクト化の観点からモータ部には低トルクで高回転型のモータが採用されている。一方、車輪用軸受部には、車輪を駆動するために大きなトルクが必要となるため、コンパクトで高い減速比が得られるサイクロイド減速機が採用されている。
 モータ部は、ケーシングに固定されたステータと、ステータの内側に径方向の隙間をもって対向する位置に配置されるロータと、ロータの内側に連結固定されてロータと一体回転するモータ回転軸とを備えるラジアルギャップモータである。中空構造のモータ回転軸は、軸方向両端部を一対の転がり軸受によって回転自在にケーシングに支持されている。
 サイクロイド減速機を適用した減速部は、一対の偏心部を有する減速機入力軸と、偏心部に配置される一対の曲線板と、曲線板の外周面に係合して曲線板に自転運動を生じさせる複数の外周係合部材と、曲線板の自転運動を減速機出力軸に伝達する複数の内ピンを主な構成とする。前述したモータ回転軸は、減速機入力軸にスプラインで連結されている。
特開2012-148725号公報
 ところで、インホイールモータ駆動装置は、ホイールハウジングの内部に収められ、ばね下荷重となるため、小型軽量化が必須である。ところが、モータの出力トルクは、モータの体格に比例するため、モータ単体で車両の駆動に必要なトルクを発生させようとすると、大型のモータが必要になり、重量増となる。そこで、減速機をモータと組み合わせることでモータの小型化を図ることができる。小型のモータとするために減速比を大きくしていくと、必然的に高回転が必要になり、例えば、減速比11の減速機を用いた場合、15000min-1程度の高回転が要求される。
 インホイールモータ駆動装置は、車両のばね下に搭載され、インホイールモータ駆動装置の振動は、車両の乗り心地に大きく影響する。また、0速から高速域まで変化するため、懸架装置周辺の共振と強制振動成分が交差するポイントでは、可聴域の振動および車内騒音を引き起こし、乗員に不快感を及ぼす可能性がある。したがって、すべての振動の由来となる回転1次強制振動成分を抑制することが、車両の静粛性に大きく貢献できる。
 上記の問題について、特許文献1に記載されたインホイールモータ駆動装置は、改善の余地が残っている。
 本発明は、上記の問題に鑑みて提案されたものであって、小型・軽量で、静粛性に優れ、耐久性を向上させたインホイールモータ駆動装置を提供することを目的とする。
 本発明は、上記の目的を達成するために、インホイールモータ駆動装置のロータを装着したモータ回転軸を種々の観点から検討し、見出された以下の知見に基づいている。
 (1)加工性
 高速スピンドルであるロータを装着したモータ回転軸の不釣合い量の調整は、振動抑制対策として必須であり、自動車用量産装置として調整のし易さはコストに影響する。具体的には、不釣合い調整方法は、錘を追加して調整する方法と、スピンドルのある一部分を削って調整する方法がある。高速回転体への錘の追加は、回転時に錘が飛散する恐れがあるので、一般的には削って調整する方法が選択される。
 不釣合いの調整は、ロータを装着したモータ回転軸として組立が完了した時点で行われるので、熱処理後に削る作業が行われる。不釣合いの調整を行う面の硬度が高い場合は、削りにくく難加工となる。難加工性は加工工程のサイクルタイムが長くなるので、コストアップとなる。これに対して、不釣合いの調整を行う面の硬度が低く、生材に近い硬度であれば削りやすく加工が良好である。良好な加工性は加工工程のサイクルタイムが低減され、低コスト化が可能となる。また、生材で良好な加工性を有する鋼種としては低炭素鋼が望ましい。
 一方で、高速スピンドルには嵌合部の耐摩耗性を高めるため熱処理を行い、表面硬度を高くすることが行われる。したがって、加工性の良さと熱処理性の良さとの相反する要求を両立させることが望ましいことが判明した。
 (2)耐摩耗性
 ロータを装着したモータ回転軸は、転がり軸受で両端支持されるモータ回転軸と、磁石と珪素鋼板からなるロータとからなり、モータ回転軸とロータの嵌め合いは、遠心力による膨張および熱膨張が考慮された締め代が選定され、しまり嵌めや焼嵌めが好ましい。しまり嵌めの場合、組立時、モータ回転軸の外径部とロータの内径部が接触しながら圧入されるため、モータ回転軸の外径部には接触部分の耐摩耗性の向上を目的として高い表面硬度が必要となる。
 また、モータ回転軸を支持する転がり軸受は、振動対策の観点から、軸受内輪とモータ回転軸との間は、しまり嵌めが望ましく、組立時に軸受がモータ回転軸との嵌め合い部分を傷つけないように、モータ回転軸の嵌め合い部分には高い表面硬度が必要となる。
 さらに、インホイールモータ駆動装置は、モータ部と減速部が結合することによりコンパクト化を実現しており、そのトルク伝達部であるスプライン嵌合部は、耐摩耗性および強度が要求され、表面処理もしくは熱処理が必須である。したがって、熱処理しやすい方が好ましいことが分かった。
 (3)強度
 モータ回転軸には、高速回転時の変形にも耐えうる靱性も要求される。高い表面硬度と中心部の靱性が得られる材料としては、浸炭焼入れを行う肌焼き鋼および高周波焼入れを行う中炭素鋼が挙げられる。表面硬度の観点から、高炭素クロム軸受鋼の選定対象となるが、ずぶ焼入れの場合、モータ回転軸のような大径部を有する形状では焼入れ後の急冷工程において、中心部と表面部の温度勾配から焼き割れが生じる可能性があることが判明した。
 (4)コスト
 材料は入手性が良く、廉価であることが好ましい。高強度な材料として高炭素クロム軸受鋼が挙げられるが、コスト高である。その他、中炭素鋼の高周波焼入れがあるが、この場合、専用の加熱コイルを製作する必要があり形状の小変更への対応の柔軟性に欠ける。これに対して、肌焼き鋼の浸炭焼入れは、形状の小変更に対する柔軟性を有し、かつ、モータ回転軸の熱処理部位と熱処理をしない部位の区分が簡便であり、さらに、生材の加工性や熱処理のしやすさの点で、肌焼き鋼が望ましいことが判明した。
 前述した目的を達成するための技術的手段として、本発明は、モータ部と、減速部と、車輪用軸受部と、ケーシングとを備え、前記モータ部が、前記ケーシングに固定されたステータと、複数の転がり軸受を介して前記ケーシングに回転自在に支持されるモータ回転軸と、このモータ回転軸に装着されたロータとからなり、前記モータ部のモータ回転軸が前記減速部の減速機入力軸を回転駆動し、この減速機入力軸の回転を減速して減速機出力軸に伝達し、前記車輪用軸受部が前記減速機出力軸に連結されたインホイールモータ駆動装置において、前記モータ回転軸が肌焼き鋼で形成され、熱処理として浸炭焼入れ焼戻しが施されていることを特徴とする。
 上記の構成により、加工性や嵌め合い部の耐摩耗性に優れ、必要な表面硬度と靱性を有し、不釣合い調整が容易で、コスト面で有利なモータ回転軸を備え、小型・軽量で、静粛性に優れ、耐久性を向上させたインホイールモータ駆動装置を実現できる。
 上記のモータ回転軸にロータの一端部が当接する鍔部を形成し、ロータの他端部に当接する挟持部材を設け、ロータを鍔部と挟持部材とにより挟持してモータ回転軸に装着し、鍔部に不釣合い調整用の低硬度部を形成することが望ましい。この場合は、不釣合い修正用の面を外径側に形成できるので、不釣合い調整のための切削量を少なくでき、不釣合い調整が容易で、かつコスト低減を図ることができる。
 上記の低硬度部を防炭処理により形成することができる。これにより、モータ回転軸の形状の小変更に柔軟に対応でき、かつ、熱処理部位と熱処理しない部位の区別が簡便であり、コスト面で有利となる。
 上記のロータを装着したモータ回転軸の不釣合い調整後の許容残留比不釣合いを0.5~5とすることが好ましい。これにより、車内の振動を抑制し、静粛性に優れ、乗員の不快感等の発生を防止することができる。
 上記の挟持部材を回転部材と別の材料で形成することができる。これにより、不釣合い調整のための切削加工による切粉がロータに吸着しないように、非磁性材料で、かつ比重が高い材料を選定することができる。
 上記の挟持部材をオーステナイト系ステンレスとすることが好ましい。これにより、非磁性材料で、かつ比重が高く、コスト面で有利となる。
 本発明のインホイールモータ駆動装置によれば、小型・軽量で、静粛性に優れ、耐久性を向上させたインホイールモータ駆動装置を実現できる。
本発明の一実施形態に係るインホイールモータ駆動装置を示す図である。 図1のO-Oにおける横断面図である。 図1の曲線板に作用する荷重を示す説明図である。 図1の回転ポンプの横断面図である。 図1のロータを装着したモータ回転軸を拡大した縦断面図である。 図1のインホイールモータ駆動装置を搭載した電気自動車の平面図である。 図6の電気自動車の後方断面図である。
 本発明の一実施形態に係るインホイールモータ駆動装置を図1~図7に基づいて説明する。
 図6は、本発明の実施形態に係るインホイールモータ駆動装置21を搭載した電気自動車11の概略平面図であって、図7は、電気自動車を後方から見た概略断面図である。図6に示すように、電気自動車11は、シャーシ12と、操舵輪としての前輪13と、駆動輪としての後輪14と、左右の後輪14それぞれに駆動力を伝達するインホイールモータ駆動装置21とを備える。図7に示すように、後輪14は、シャーシ12のホイールハウジング12aの内部に収容され、懸架装置(サスペンション)12bを介してシャーシ12の下部に固定されている。
 懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が地面から受ける振動を吸収してシャーシ12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時等の車体の傾きを抑制するスタビライザが設けられる。懸架装置12bは、路面の凹凸に対する追従性を向上し、駆動輪の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式とするのが望ましい。
 この電気自動車11は、ホイールハウジング12a内部に、左右の後輪14それぞれを駆動するインホイールモータ駆動装置21を設けることによって、シャーシ12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構等を設ける必要がなくなるので、客室スペースを広く確保でき、かつ、左右の駆動輪の回転をそれぞれ制御することができるという利点を備えている。
 電気自動車11の走行安定性およびNVH特性を向上するために、ばね下重量を抑える必要がある。また、さらに広い客室スペースを確保するために、インホイールモータ駆動装置21の小型化が求められる。そこで、図1に示すように、本実施形態に係るインホイールモータ駆動装置21を採用する。
 本発明の一実施形態に係るインホイールモータ駆動装置21を図1~図5に基づいて説明する。図1はインホイールモータ駆動装置21の概略縦断面図、図2は図1のO-Oにおける横断面図、図3は曲線板に作用する荷重を示す説明図、図4は回転ポンプの横断面図、図5はロータを装着したモータ回転軸を拡大した縦断面図である。本実施形態に係るインホイールモータ駆動装置の特徴的な構成を説明する前に全体構成を説明する。
 図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を駆動輪14に伝達する車輪用軸受部Cとを備え、モータ部Aと減速部Bはケーシング22に収納されて、図7に示すように電気自動車11のホイールハウジング12a内に取り付けられる。本実施形態では、ケーシング22は、モータ部Aと減速部Bとで分割可能な構造とし、ボルトで締結されている。本明細書および特許請求の範囲において、ケーシング22とは、モータ部Aが収容されたケーシング部分と減速部Bが収容されたケーシング部分の両方を指すものとする。
 モータ部Aは、ケーシング22に固定されているステータ23aと、ステータ23aの内側に径方向の隙間をもって対向する位置に配置されるロータ23bと、ロータ23bの内側に連結固定されてロータ23bと一体回転するモータ回転軸24とを備えるラジアルギャップモータである。
 中空構造のモータ回転軸24は、ロータ23bの内径面に嵌合固定されて一体回転すると共に、モータ部A内で軸方向一方側端部(図1の右側)を転がり軸受36aに、軸方向他方側端部(図1の左側)を転がり軸受36bによって回転自在に支持されている。
 減速機入力軸25は、その軸方向一方側略中央部(図1の右側)が転がり軸受37aに、軸方向他方側端部(図1の左側)を転がり軸受37bによって、減速機出力軸28に対して回転自在に支持されている。減速機入力軸25は、減速部B内に偏心部25a、25bを有する。2つの偏心部25a、25bは、偏心運動による遠心力を互いに打ち消し合うために、180°位相を変えて設けられている。
 モータ回転軸24と減速機入力軸25とは、スプライン(セレーションを含む。以下同じ。)嵌合によって連結され、モータ部Aの駆動力が減速部Bに伝達される。このスプライン嵌合部は、減速機入力軸25がある程度傾いても、モータ回転軸24への影響を抑制するように構成されている。
 減速部Bは、偏心部25a、25bに回転自在に保持される公転部材としての曲線板26a、26bと、曲線板26a、26bの外周部に係合する外周係合部材としての複数の外ピン27と、曲線板26a、26bの自転運動を減速機出力軸28に伝達する運動変換機構と、偏心部25a、25bに隣接する位置にカウンタウェイト29とを備える。
 減速機出力軸28は、フランジ部28aと軸部28bとを有する。フランジ部28aの端面には、減速機出力軸28の回転軸心を中心とする円周上に等間隔に内ピン31を固定する孔が形成されている。また、軸部28bは、車輪用軸受部Cの内方部材としてのハブ輪32にスプライン嵌合によって連結され、減速部Bの出力を車輪14に伝達する。
 図2に示すように、曲線板26aは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する複数の貫通孔30aと、貫通孔30bを有する。貫通孔30aは、曲線板26aの自転軸心を中心とする円周上に等間隔に複数個設けられており、後述する内ピン31を受け入れる。また、貫通孔30bは、曲線板26aの中心に設けられており、偏心部25aに嵌合する。
 曲線板26aは、転がり軸受41によって偏心部25aに対して回転自在に支持されている。図2に示すように、転がり軸受41は、偏心部25aの外径面に嵌合し、その外径面に内側軌道面42aを有する内輪42と、曲線板26aの貫通孔30bの内径面に直接形成された外側軌道面43と、内側軌道面42aと外側軌道面43の間に配置される複数の円筒ころ44と、円筒ころ44を保持する保持器(図示省略)とを備える円筒ころ軸受である。また、内輪42は、内側軌道面42aの軸方向両端部から径方向外側に突出する鍔部を有する。
 図2に示すように、外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔に設けられている。曲線板26a、26bが公転運動すると、曲線形状の波形と外ピン27とが係合して、曲線板26a、26bに自転運動を生じさせる。外ピン27は、針状ころ軸受27a(図1参照)によって外ピンハウジング60に回転自在に支持されている。これにより、曲線板26a、26bとの間の接触抵抗を低減することができる。
 カウンタウェイト29(図1参照)は、略扇形状で、減速機入力軸25と嵌合する貫通孔を有し、曲線板26a、26bの回転によって生じる不釣合い慣性偶力を打ち消すために、各偏心部25a、25bに隣接する位置に偏心部25a、25bと180°位相を変えて配置される。
 図1に示すように、運動変換機構は、減速機出力軸28に保持された複数の内ピン31と、曲線板26a、26bに設けられた貫通孔30aとで構成される。内ピン31は、減速機出力軸28の回転軸心を中心とする円周上に等間隔に設けられており(図2参照)、その軸方向一方側端部が減速機出力軸28に固定されている。また、曲線板26a、26bとの摩擦抵抗を低減するために、曲線板26a、26bの貫通孔30aの内壁面に当接する位置に針状ころ軸受31aが設けられている。
 内ピン31の軸方向他方側端部には、スタビライザ31bが設けられている。スタビライザ31bは、円環形状の円環部31cと、円環部31cの内径面から軸方向に延びる円筒部31dとを含む。複数の内ピン31の軸方向他方側端部は、円環部31cに固定されている。曲線板26a、26bから一部の内ピン31に負荷される荷重はスタビライザ31bを介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ、耐久性を向上させることができる。
 貫通孔30aは、複数の内ピン31のそれぞれに対応する位置に設けられ、貫通孔30aの内径寸法は、内ピン31の外径寸法(「針状ころ軸受31aを含む最大外径」を指す。以下同じ。)より所定寸法大きく設定されている。
 曲線板26a、26bに作用する荷重の状態を図3に基づいて説明する。偏心部25aの軸心Oは減速機入力軸25の軸心Oから偏心量eだけ偏心している。偏心部25aの外周には、曲線板26aが取り付けられ、偏心部25aは曲線板26aを回転自在に支持するので、軸心Oは曲線板26aの軸心でもある。曲線板26aの外周は波形曲線で形成され、径方向に窪んだ波形の凹部34を周方向等間隔に有する。曲線板26aの周囲には、凹部34と係合する外ピン27が、軸心Oを中心として周方向に複数配設されている。
 図3において、減速機入力軸25と共に偏心部25aが紙面上で反時計周りに回転すると、偏心部25aは軸心Oを中心とする公転運動を行うので、曲線板26aの凹部34が、外ピン27と周方向に順次当接する。この結果、矢印で示すように、曲線板26aは、複数の外ピン27から荷重Fiを受けて、時計回りに自転する。
 また、曲線板26aには貫通孔30aが軸心Oを中心として周方向に複数配設されている。各貫通孔30aには、軸心Oと同軸に配置された減速機出力軸28と結合する内ピン31が挿通する。貫通孔30aの内径は、内ピン31の外径よりも所定寸法大きいため、内ピン31は曲線板26aの公転運動の障害とはならず、内ピン31は曲線板26aの自転運動を取り出して減速機出力軸28を回転させる。このとき、減速機出力軸28は、減速機入力軸25よりも高トルクかつ低回転数になり、図3に矢印で示すように、曲線板26aは、複数の内ピン31から荷重Fjを受ける。これらの複数の荷重Fi、Fjの合力Fsが減速機入力軸25にかかる。
 合力Fsの方向は、曲線板26aの波形形状、凹部34の数などの幾何学的条件や遠心力の影響により変化する。具体的には、自転軸心Oと軸心Oとを結ぶ直線Yと直角であって軸心Oを通過する基準線Xと、合力Fsとの角度αは概ね30°~60°で変動する。
 上記の複数の荷重Fi、Fjは、減速機入力軸25が1回転(360°)する間に荷重の方向や大きさが変り、その結果、減速機入力軸25に作用する合力Fsも荷重の方向や大きさが変動する。そして、減速機入力軸25が1回転すると、曲線板26aの波形の凹部34が減速されて1ピッチ時計回りに回転し、図3の状態になり、これを繰り返す。
 図1に示すように、車輪用軸受部Cの車輪用軸受33は、ハブ輪32の外径面に直接形成した内側軌道面33fと外径面の小径段部に嵌合された内輪33aとで内方部材を形成し、ケーシング22の内径面に嵌合固定された外輪33bと、内側軌道面33f、内輪33aおよび外輪33bの間に配置された転動体としての複数の玉33cと、隣接する玉33cの間隔を保持する保持器33dと、車輪用軸受33の軸方向両端部を密封するシール部材33eとを備えた複列アンギュラ玉軸受である。
 次に、潤滑機構を説明する。この潤滑機構は、モータ部Aの冷却のために潤滑油を供給すると共に減速部Bに潤滑油を供給するものである。図1に示す潤滑油路24a、25c、潤滑油供給口24b、25d、25e、25f、潤滑油排出口22b、潤滑油貯留部22d、潤滑油路22e、回転ポンプ51および循環油路45を主な構成とする。潤滑機構内に付した白抜き矢印は潤滑油の流れる方向を示す。
 モータ回転軸24の潤滑油路24aに接続された潤滑油路25cは、減速機入力軸25の内部を軸線方向に沿って延びている。潤滑油供給口25d、25eは、潤滑油路25cから減速機入力軸25の外径面に向って延び、潤滑油供給口25fは、減速機入力軸25の軸端部から回転軸心方向に軸端面に向って延びている。
 減速部Bの位置におけるケーシング22の少なくとも1箇所には、減速部B内部の潤滑油を排出する潤滑油排出口22bが設けられ、吐出された潤滑油を一時的に貯留する潤滑油貯留部22dが設けられている。
 図1に示すように、循環油路45は、ケーシング22の内部を軸方向に延びる軸方向油路45aと、軸方向油路45aの軸方向一端部(図1の右側)に接続されて径方向に延びる径方向油路45cと、軸方向油路45aの軸方向他端部(図1の左側)に接続されて径方向に延びる径方向油路45bとで構成される。
 潤滑油を強制的に循環させるために、潤滑油貯留部22dに接続する潤滑油路22eと循環油路45との間に回転ポンプ51が設けられている。径方向油路45bは回転ポンプ51から圧送された潤滑油を軸方向油路45aに供給し、軸方向油路45aから径方向油路45cを経て潤滑油を潤滑油路24a、25cに供給する。
 図4に示すように、回転ポンプ51は、減速機出力軸28の回転を利用して回転するインナーロータ52と、インナーロータ52の回転に伴って従動回転するアウターロータ53と、ポンプ室54と、潤滑油路22eに連通する吸入口55と、循環油路45の径方向油路45bに連通する吐出口56とを備えるサイクロイドポンプである。回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21全体としての大型化を防止することができる。
 インナーロータ52は、回転中心cを中心として回転し、一方、アウターロータ53は、回転中心cを中心として回転する。インナーロータ52およびアウターロータ53はそれぞれ異なる回転中心c、cを中心として回転するので、ポンプ室54の容積は連続的に変化する。これにより、吸入口55から流入した潤滑油が吐出口56から径方向油路45bに圧送される。
 モータ部Aの冷却として、図1に示すように、循環油路45から潤滑油路24aに還流された潤滑油の一部が、遠心力によって潤滑油供給口24bからロータ23bを冷却し、その後、潤滑油が飛散してステータ23aを冷却する。
 減速部Bの潤滑として、潤滑油路25cの潤滑油は、減速機入力軸25の回転に伴う遠心力および圧力によって潤滑油供給口25d、25eから減速部Bに流出する。潤滑油供給口25dから流出した潤滑油は、曲線板26a、26bを支持する円筒ころ軸受41、さらに、遠心力により、曲線板26a、26bと内ピン31との当接部分および曲線板26a、26bと外ピン27との当接部分等を潤滑しながら径方向外側に移動する。潤滑油供給口25e、25fから流出した潤滑油は、減速機入力軸25を支持する深溝玉軸受37a、37b、さらに、内部の軸受や当接部分に供給される。
 ケーシング22の内壁面に到達した潤滑油は、潤滑油排出口22bから排出されて潤滑油貯留部22dに貯留される。潤滑油吐出口22bと回転ポンプ51との間に潤滑油貯留部22dが設けられているので、回転ポンプ51によって排出しきれない潤滑油が一時的に発生しても、潤滑油貯留部22dに貯留しておくことができる。その結果、減速部Bのトルク損失の増加を防止することができる。一方、潤滑油排出口22bに到達する潤滑油量が少なくなっても、回転ポンプ51は、潤滑油貯留部22dに貯留されている潤滑油を潤滑油路24a、25cに還流することができる。潤滑油は、遠心力に加えて重力によって移動する。したがって、潤滑油貯留部22dがインホイールモータ駆動装置21の下部に位置するように、電気自動車11に取り付けるのが望ましい。
 本実施形態に係るインホイールモータ駆動装置21の全体構成は、前述したとおりであるが、その特徴的な構成を以下に説明する。
 図1に示すように、モータ部Aは、ケーシング22にステータ23aが固定され、ステータ23aの内側で径方向の隙間をもって対向する位置にロータ23bが配置されている。ロータ23bは、モータ回転軸24の外側に嵌合固定され、モータ回転軸24と一体に回転する。
 モータ回転軸24は、ケーシング22内で軸方向一方側端部(図1の右側)を転がり軸受としての深溝玉軸受36aに、軸方向他方側端部(図1の左側)を転がり軸受としての深溝玉軸受36bによって回転自在に支持されている。
 モータ回転軸24は、前述したように、15000min-1程度で高速回転する。振動対策の観点から、深溝玉軸受36a、36bの内輪36a1、36b1とモータ回転軸24との間の嵌め合いは、中間嵌めもしくはしまり嵌めとし、深溝玉軸受36a、36bの外輪36a2、36b2とケーシング22との間の嵌め合いは、すきま嵌めとしている。深溝玉軸受36a、36bには軸方向に予圧が付与されている。
 図5にモータ回転軸およびロータを拡大した縦断面を示す。モータ回転軸24は、SCM415、SCM420等の肌焼き鋼からなり、浸炭焼入れ焼戻しが施されている。熱処理硬化層Hをクロスハッチングで示す。モータ回転軸24の浸炭焼入れ焼戻しを施した表面はHRC62~66.5の高硬度となっている。一方、中心部の硬度はHRC29~38程度である。
 モータ回転軸24の大径外径部61は、ロータ23bが嵌合する部分で、一方の端部にロータ23bを軸方向に拘束する鍔部62が形成されている。鍔部62の外側面62aは、防炭処理が施され、この部分の硬度はHRC29~38程度である。モータ回転軸24の大径外径部61とロータ23bの内径部との嵌め合いは、遠心力による膨張と熱膨張が考慮された締め代が選定され、しまり嵌めや焼嵌めとしている。しまり嵌めの場合、モータ回転軸24の大径外径部61とロータ23bの内径部は接触しながら圧入されるが、大径外径部61は、高い表面硬度で形成されているので、接触部分の摩耗を防止することができる。
 ロータ23bを大径外径部61の鍔部62に当接するまで圧入した後、ロータ23bの他方の端部に別体の挟持部材63を当てボルト64で締め付け固定する。このようにして、ロータ23bはモータ回転軸24に装着される。挟持部材63には、後述する不釣合い調整のための切削加工による切粉がロータ23bに吸着しないように非磁性材料で、かつ比重が高い材料を選定する。挟持部材63の材料として、オーステナイト系ステンレス鋼が望ましい。挟持部材63の材料として、アルミニウムは比重が低く好ましくない。また、比重が高く、かつ非磁性材料とタングステンや銅でもよいが、コスト高となる。
 モータ回転軸24の軸方向の両端部の軸受装着面65、66も熱処理硬化層が形成されている。深溝玉軸受36a、36bの内輪36a1、36b1は、モータ回転軸24の軸受装着面65、66との間の嵌め合いは、中間嵌めもしくはしまり嵌めであるが、軸受装着面65、66に熱処理硬化層が形成されているので、組立時、内輪36a1、36b1が軸受装着面65、66を傷つけない。
 また、モータ回転軸24は、中心部が靱性を有するので、高速回転時の変形にも耐えることができる。このため、低トルクで高回転型のモータと高い減速比が得られるサイクロイド減速機を組合わせたインホイールモータ駆動装置として好適である。
 モータ回転軸24にロータ23bの組立が完了した後、回転1次強制振動成分の抑制を目的として、不釣合い調整が行われる。大径外径部61の鍔部62の外側面62aおよび挟持部材63の外側面がバランス修正用の面である。その理由は、不釣合い調整のための切削量を少なくするため、なるべく外径側に形成することが好ましく、鍔部62の外側面62aおよび挟持部材63の外側面をバランス修正用面とした。ただし、これに限られるものではなく、鍔部62の外側面62aと挟持部材63の外側面のいすれか一方をバランス修正用面としてもよい。鍔部62の外側面62aは、防炭処理が施されて低硬度であるので、不釣合い調整のための切削加工が良好で、加工工程のサイクルタイムが低減され、不釣合い調整が容易で、かつコスト低減を図ることができる。挟持部材63は、比重が大きいので加工量が少なくて済み、加工工程のサイクルタイムが低減され、不釣合い調整が容易で、かつコスト低減を図ることができる。
 鍔部62の防炭処理は、外側面62aに浸炭防止剤を塗布する方法や外側面62aに面接触する治具を当接させて浸炭処理を行う方法等、適宜の方法で実施することができる。浸炭焼入れは、形状の小変更に対する柔軟性を有し、かつ、モータ回転軸24の熱処理部位と熱処理をしない部位の区分が簡便であり、コスト面で有利である。
 ロータ23bを装着したモータ回転軸24の不釣り合い調整後の許容残留比不釣合いは0.5~5の範囲にあることが好ましい。許容残留比不釣合いとは、JIS B 0905に基づくもので、許容できる最大の残留不釣合いの大きさである許容残留不釣合いをロータの質量で割った量を意味する。
 許容残留比不釣合いが0.5~5の範囲は、上記JIS規格にある釣合い良さの等級として、G1~G6.3に相当し、G1クラスは研削砥石の主軸に要求される程度であり、G2.5は、工作機主軸やガスタービン、ジェットタービン駆動ポンプに要求されるクラスであり、G6.3は、一般産業機械のポンプやファン、風水力機械全般に要求されるクラスである。本実施形態では、許容残留比不釣合いを0.5~5の範囲に設定したので、車内の振動を抑制し、静粛性に優れ、乗員の不快感等の発生を防止することができる。
 モータ回転軸24の軸方向他方側端部(図1の左側)は、減速機入力軸25とスプライン嵌合で連結されているが、このスプライン嵌合部に減速部Bの作動が影響する。図1に示す減速部Bの外ピン27を保持する外ピンハウジング60は、ケーシング22に弾性支持機能を有する回り止め手段(図示省略)によって、フローティング状態に支持されている。これは、車両の旋回や急加減速等によって生じる大きなラジアル荷重やモーメント荷重を吸収して、曲線板26a、26b、外ピン27および曲線板26a、26bの偏心揺動運動を減速機出力軸28の回転運動に変換する運動変換機構等の各種の部品の破損を防止するようにしている。
 上記のフローティング構造の状態で、前述したように、減速機入力軸25は、曲線板26a、26bから荷重の方向や大きさが変動するラジアル荷重やモーメント荷重が作用している。このため、ある程度の傾きや芯ずれ状態の中で、モータ回転軸24と減速機入力軸25がスプライン嵌合部においてトルクが伝達される。モータ回転軸24が、肌焼き鋼で形成され、熱処理として浸炭焼入れ焼戻しが施されているので、十分な耐摩耗性を有し、耐久性を向上することができる。
 本実施形態に係るインホイールモータ駆動装置21は、加工性や嵌め合い部の耐摩耗性に優れ、必要な表面硬度と靱性を有し、不釣合い調整が容易で、コスト面で有利なモータ回転軸24を備え、小型・軽量で、静粛性に優れ、耐久性を向上させることができる。
 上記構成のインホイールモータ駆動装置21の全体的な作動原理を説明する。
 図1および図2を参照して、モータ部Aは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これにより、モータ回転軸24に連結された減速機入力軸25が回転すると、曲線板26a、26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27が、曲線板26a、26bの曲線形状の波形と係合して、曲線板26a、26bを減速機入力軸25の回転とは逆向きに自転回転させる。
 貫通孔30aに挿通する内ピン31は、曲線板26a、26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a、26bの公転運動が内ピン31に伝わらず、曲線板26a、26bの自転運動のみが減速機出力軸28を介して車輪用軸受部Cに伝達される。
 このとき、減速機入力軸25の回転が減速部Bによって減速されて減速機出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪14に必要なトルクを伝達することが可能となる。
 上記構成の減速部Bの減速比は、外ピン27の数をZ、曲線板26a、26bの波形の数をZとすると、(Z-Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。
 このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31に針状ころ軸受27a、31aを設けたことにより、曲線板26a、26bとの間の摩擦抵抗が低減されるので、減速部Bの伝達効率が向上する。
 本実施形態に係るインホイールモータ駆動装置21を電気自動車11に搭載することにより、ばね下重量を抑えることができる。その結果、走行安定性およびNVH特性に優れた電気自動車11を得ることができる。
 本実施形態においては、潤滑油供給口24bをモータ回転軸24に設け、潤滑油供給口25eを転がり軸受37aの近くに設け、潤滑油供給口25dを偏心部25a、25bに設け、潤滑油供給口25fを減速機入力軸25の軸端に設けた例を示したが、これに限ることなく、モータ回転軸24や減速機入力軸25の任意の位置に設けることができる。
 回転ポンプ51としてサイクロイドポンプの例を示したが、これに限ることなく、減速機出力軸28の回転を利用して駆動するあらゆる回転型ポンプを採用することができる。さらには、回転ポンプ51を省略して、遠心力のみによって潤滑油を循環させるようにしてもよい。
 減速部Bの曲線板26a、26bを180°位相を変えて2枚設けた例を示したが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相を変えて設けるとよい。
 運動変換機構は、減速機出力軸28に固定された内ピン31と、曲線板26a、26bに設けられた貫通孔30aとで構成された例を示したが、これに限ることなく、減速部Bの回転をハブ輪32に伝達可能な任意の構成とすることができる。例えば、曲線板に固定された内ピンと減速機出力軸に形成された穴とで構成される運動変換機構であってもよい。
 本実施形態における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから駆動輪14に伝達される。したがって、上述のように減速された動力は高トルクに変換されたものとなっている。
 また、モータ部Aに電力を供給してモータ部を駆動させ、モータ部Aからの動力を駆動輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、駆動輪14側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電してもよい。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させたり、車両に備えられた他の電動機器等の作動に用いてもよい。
 本実施形態の構成にブレーキを加えることもできる。例えば、図1の構成において、ケーシング22を軸方向に延長してロータ23bの図中右側に空間を形成し、ロータ23bと一体的に回転する回転部材と、ケーシング22に回転不能にかつ軸方向に移動可能なピストンとこのピストンを作動させるシリンダとを配置して、車両停止時にピストンと回転部材とによってロータ23bをロックするパーキングブレーキとしてもよい。
 また、ロータ23bと一体的に回転する回転部材の一部に形成されたフランジおよびケーシング22側に設置された摩擦板をケーシング22側に設置されたシリンダで挟むディスクブレーキであってもよい。さらに、この回転部材の一部にドラムを形成すると共に、ケーシング22側にブレーキシューを固定し、摩擦係合およびセルフエンゲージ作用で回転部材をロックするドラムブレーキを用いることができる。
 本実施形態においては、モータ部Aにラジアルギャップモータを採用した例を示したが、これに限ることなく、任意の構成のモータを適用可能である。例えば、ケーシングに固定されるステータと、ステータの内側の軸方向の隙間を開けて対向する位置に配置されるロータとを備えるアキシャルギャップモータであってもよい。
 さらに、図6に示した電気自動車11は、後輪14を駆動輪とした例を示したが、これに限ることなく、前輪13を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等をも含むものとして理解すべきである。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
11  電気自動車、12  シャーシ、12a  ホイールハウジング、12b  懸架装置、13  前輪、14  後輪、21  インホイールモータ駆動装置、22  ケーシング、22b  潤滑油排出口、22d  潤滑油貯留部、22e  潤滑油路、23a  ステータ、23b  ロータ、24  モータ回転軸、25  減速機入力軸、25a  偏心部、25b  偏心部、25c  潤滑油路、25d  潤滑油供給口、25e  潤滑油供給口、26a  曲線板、26b  曲線板、27  外ピン、27a  針状ころ軸受、28  減速機出力軸、29  カウンタウェイト、30b  貫通孔、31  内ピン、31a  針状ころ軸受、31b  スタビライザ、31c  円環部、31d  円筒部、32  ハブ輪、33  車輪用軸受、33a  内輪、33b  外輪、33c  玉、33d  保持器、33e  シール部材、33f  内側軌道面、36a  転がり軸受、36b  転がり軸受、37a  転がり軸受、37b  転がり軸受、41  転がり軸受、42  内輪、43  外側軌道面、44  円筒ころ、45 循環油路、45a  軸方向油路、45b  径方向油路、45c  径方向油路、51  回転ポンプ、52  インナーロータ、53  アウターロータ、54  ポンプ室、55  吸入口、56  吐出口、60  外ピンハウジング、61  大径外径部、62  鍔部、62a  外側面、63  挟持部材、65  軸受装着面、66  軸受装着面、H  熱処理硬化層

Claims (6)

  1.  モータ部と、減速部と、車輪用軸受部と、ケーシングとを備え、前記モータ部が、前記ケーシングに固定されたステータと、複数の転がり軸受を介して前記ケーシングに回転自在に支持されるモータ回転軸と、このモータ回転軸に装着されたロータとからなり、前記モータ部のモータ回転軸が前記減速部の減速機入力軸を回転駆動し、この減速機入力軸の回転を減速して減速機出力軸に伝達し、前記車輪用軸受部が前記減速機出力軸に連結されたインホイールモータ駆動装置において、
     前記モータ回転軸が肌焼き鋼で形成され、熱処理として浸炭焼入れ焼戻しが施されていることを特徴とするインホイールモータ駆動装置。
  2.  前記モータ回転軸に前記ロータの一端部を軸方向に拘束する鍔部を形成し、前記ロータの他端部に当接する挟持部材を設け、前記ロータを前記鍔部と前記挟持部材とにより挟持して前記モータ回転軸に装着し、前記鍔部に不釣合い調整用の低硬度部を形成したことを特徴とする請求項1に記載のインホイールモータ駆動装置。
  3.  前記低硬度部は防炭処理されていることを特徴とする請求項2に記載のインホイールモータ駆動装置。
  4.  前記ロータを装着したモータ回転軸の不釣合い調整後の許容残留比不釣合いを0.5~5としたことを特徴とする請求項2に記載のインホイールモータ駆動装置。
  5.  前記挟持部材が回転部材と別の材料で形成されていることを特徴とする請求項2に記載のインホイールモータ駆動装置。
  6.  前記挟持部材がオーステナイト系ステンレスであることを特徴とする請求項5に記載のインホイールモータ駆動装置。
PCT/JP2014/080489 2013-12-17 2014-11-18 インホイールモータ駆動装置 WO2015093215A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14872248.1A EP3086449B1 (en) 2013-12-17 2014-11-18 In-wheel motor drive device
CN201480068424.XA CN105830317B (zh) 2013-12-17 2014-11-18 轮内电动机驱动装置
US15/102,334 US10279675B2 (en) 2013-12-17 2014-11-18 In-wheel motor drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013260181A JP6301125B2 (ja) 2013-12-17 2013-12-17 インホイールモータ駆動装置
JP2013-260181 2013-12-17

Publications (1)

Publication Number Publication Date
WO2015093215A1 true WO2015093215A1 (ja) 2015-06-25

Family

ID=53402570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080489 WO2015093215A1 (ja) 2013-12-17 2014-11-18 インホイールモータ駆動装置

Country Status (5)

Country Link
US (1) US10279675B2 (ja)
EP (1) EP3086449B1 (ja)
JP (1) JP6301125B2 (ja)
CN (1) CN105830317B (ja)
WO (1) WO2015093215A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170001513A1 (en) * 2014-01-08 2017-01-05 Ntn Corporation In-wheel motor drive device
CN107289115A (zh) * 2016-04-01 2017-10-24 舍弗勒技术股份两合公司 轮内驱动总成
CN108237895A (zh) * 2016-12-27 2018-07-03 纳博特斯克有限公司 搬运台车用减速装置和搬运台车用驱动装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709147B (zh) * 2015-06-19 2020-03-06 罗伯特·博世有限公司 电动车辆以及用于电动车辆的驱动系统
JP6914635B2 (ja) * 2016-10-17 2021-08-04 Ntn株式会社 インホイールモータ駆動装置
JP6736222B2 (ja) * 2017-01-16 2020-08-05 住友重機械工業株式会社 減速装置及び回転体の熱処理方法
JP2019043177A (ja) * 2017-08-29 2019-03-22 トヨタ自動車株式会社 車両用インホイールモータ駆動装置
JP6887404B2 (ja) * 2018-07-13 2021-06-16 ミネベアミツミ株式会社 モータ
US20220149685A1 (en) * 2019-04-10 2022-05-12 Pierburg Pump Technology Gmbh Automotive auxiliary unit with an electric motor
DE102019118958A1 (de) 2019-07-12 2021-01-14 Bpw Bergische Achsen Kommanditgesellschaft Elektrische Antriebseinheit für ein Kraftfahrzeug
CN116995861B (zh) * 2023-09-26 2024-01-09 之江实验室 机器人摆线轮减速电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054658A (ja) * 2000-08-08 2002-02-20 Ntn Corp クラッチユニット
JP2002276680A (ja) * 2001-03-21 2002-09-25 Nsk Ltd 転がり支持装置
JP2012148725A (ja) 2011-01-21 2012-08-09 Ntn Corp インホイールモータ駆動装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290554A (ja) 1997-04-14 1998-10-27 Daikin Ind Ltd 回転機械のロータ及びそのバランシング方法
JP3740818B2 (ja) * 1997-12-24 2006-02-01 日本精工株式会社 トロイダル型無段変速機及びその製造方法
JP4200594B2 (ja) 1999-06-25 2008-12-24 株式会社ジェイテクト 筒軸加工方法ならびに筒軸
JP2001276955A (ja) * 2000-03-30 2001-10-09 Aida Eng Ltd 軸付き歯形部品及びその成形方法
WO2002012746A1 (en) 2000-08-08 2002-02-14 Ntn Corporation Clutch unit
JP4797560B2 (ja) 2005-10-18 2011-10-19 日本精工株式会社 ボールねじ装置
JP2007232140A (ja) * 2006-03-02 2007-09-13 Ntn Corp 流体軸受装置
JP5175055B2 (ja) * 2007-02-23 2013-04-03 Ntn株式会社 車輪用軸受装置
JP2008286315A (ja) * 2007-05-18 2008-11-27 Ntn Corp 動力伝達シャフト
JP4605481B2 (ja) * 2008-07-07 2011-01-05 本田技研工業株式会社 永久磁石式回転子
JP2011122679A (ja) 2009-12-11 2011-06-23 Jtekt Corp 電磁クラッチ
JP2012039765A (ja) 2010-08-06 2012-02-23 Ntn Corp 電動アクチュエータ
JP5719132B2 (ja) 2010-09-21 2015-05-13 Ntn株式会社 インホイールモータ駆動装置
CN202004551U (zh) * 2011-02-25 2011-10-05 德昌电机(深圳)有限公司 电机转子及使用该电机转子的燃油泵
JP5668592B2 (ja) * 2011-04-22 2015-02-12 アイシン・エィ・ダブリュ株式会社 複合鋼部品の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054658A (ja) * 2000-08-08 2002-02-20 Ntn Corp クラッチユニット
JP2002276680A (ja) * 2001-03-21 2002-09-25 Nsk Ltd 転がり支持装置
JP2012148725A (ja) 2011-01-21 2012-08-09 Ntn Corp インホイールモータ駆動装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170001513A1 (en) * 2014-01-08 2017-01-05 Ntn Corporation In-wheel motor drive device
US9914349B2 (en) * 2014-01-08 2018-03-13 Ntn Corporation In-wheel motor drive device
CN107289115A (zh) * 2016-04-01 2017-10-24 舍弗勒技术股份两合公司 轮内驱动总成
CN107289115B (zh) * 2016-04-01 2021-08-17 舍弗勒技术股份两合公司 轮内驱动总成
CN108237895A (zh) * 2016-12-27 2018-07-03 纳博特斯克有限公司 搬运台车用减速装置和搬运台车用驱动装置
CN108237895B (zh) * 2016-12-27 2023-01-06 纳博特斯克有限公司 搬运台车用减速装置和搬运台车用驱动装置

Also Published As

Publication number Publication date
EP3086449B1 (en) 2020-09-30
EP3086449A1 (en) 2016-10-26
US10279675B2 (en) 2019-05-07
JP2015116876A (ja) 2015-06-25
JP6301125B2 (ja) 2018-03-28
CN105830317B (zh) 2019-01-01
CN105830317A (zh) 2016-08-03
US20160355083A1 (en) 2016-12-08
EP3086449A4 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6301125B2 (ja) インホイールモータ駆動装置
WO2015104980A1 (ja) インホイールモータ駆動装置
WO2015008606A1 (ja) インホイールモータ駆動装置
WO2016002571A1 (ja) インホイールモータ駆動装置
JP2016166639A (ja) サイクロイド減速機およびこれを備えたモータ駆動装置
JP6328429B2 (ja) インホイールモータ駆動装置
JP6324761B2 (ja) インホイールモータ駆動装置
WO2015046087A1 (ja) インホイールモータ駆動装置
WO2015133278A1 (ja) インホイールモータ駆動装置
WO2016017351A1 (ja) サイクロイド減速機およびこれを備えたインホイールモータ駆動装置
JP6400297B2 (ja) インホイールモータ駆動装置
JP2018002149A (ja) インホイールモータ駆動装置
WO2015137073A1 (ja) インホイールモータ駆動装置
JP6333579B2 (ja) インホイールモータ駆動装置
WO2016132792A1 (ja) 車両用モータ駆動装置
WO2016043012A1 (ja) インホイールモータ駆動装置
WO2016043011A1 (ja) インホイールモータ駆動装置
JP2018173173A (ja) インホイールモータ駆動装置
WO2015137085A1 (ja) インホイールモータ駆動装置
JP2016023706A (ja) インホイールモータ駆動装置
WO2015098487A1 (ja) インホイールモータ駆動装置
JP2016176517A (ja) サイクロイド減速機およびこれを備えたモータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15102334

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014872248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014872248

Country of ref document: EP