WO2016043012A1 - インホイールモータ駆動装置 - Google Patents
インホイールモータ駆動装置 Download PDFInfo
- Publication number
- WO2016043012A1 WO2016043012A1 PCT/JP2015/074255 JP2015074255W WO2016043012A1 WO 2016043012 A1 WO2016043012 A1 WO 2016043012A1 JP 2015074255 W JP2015074255 W JP 2015074255W WO 2016043012 A1 WO2016043012 A1 WO 2016043012A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor drive
- drive device
- wheel
- wheel motor
- lubricating oil
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/34—Rollers; Needles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to an in-wheel motor drive device.
- an in-wheel motor drive device is housed inside the wheel or disposed near the wheel, so that the weight and size of the in-wheel motor drive device are the unsprung weight (running performance) of the vehicle and the cabin space. Affects the size of For this reason, the in-wheel motor drive device needs to be as light and compact as possible. On the other hand, the in-wheel motor drive device requires a large torque to drive the wheels.
- Patent Document 1 a high-rotation type motor that rotates at a rotational speed of, for example, about 15000 min ⁇ 1 is adopted as the motor unit that generates the driving force, and the motor unit
- An in-wheel motor drive device has been proposed that employs a cycloid reduction gear that is compact and provides a high reduction ratio in a speed reduction portion that decelerates the rotation of the (motor) and transmits it to the wheel bearing portion.
- the speed reduction part to which the cycloid reduction gear is applied mainly has an eccentric part, and is held rotatably on the outer periphery of the eccentric part via a reduction gear input shaft that rotates by receiving the driving force of the motor part and a rolling bearing.
- the output of the reducer connected to the wheel bearing section is the curved plate that performs the revolving motion centered on the rotation axis as the reducer input shaft rotates, and the rotational motion that occurred on the curved plate during the revolving motion.
- a motion conversion mechanism that converts the rotational motion of the shaft.
- the speed reducer input shaft rotates at a high speed as described above, and a large load (mainly radial load) via a curved plate or the like. Is repeatedly loaded on the rolling bearing.
- the cylindrical roller bearing which can respond to high-speed rotation and was excellent in load carrying capacity is used suitably.
- the inventors of the present application examined the miniaturization of the components of the speed reducer in the course of studying the technical means for realizing the light weight and compactness of the in-wheel motor drive device, and in particular, rolling that supports the curved plate rotatably.
- bearings cylindrical roller bearings
- a large load is repeatedly applied from the curved plate to the cylindrical roller bearing that rotatably supports the curved plate as the speed reducer input shaft rotates. For this reason, considering the required load capacity, it is difficult to reduce the diameter of the cylindrical roller bearing (particularly, the cylindrical roller as a rolling element), and it is rather necessary to use a relatively large diameter cylindrical roller.
- an axial direction outer side of the cylindrical roller is subjected to an induced thrust load generated due to the eccentric load on the cylindrical roller, and an annular shape is used to hold the roller position on the rolling surface.
- a buttocks is provided. Since the radial dimension of the flange is mainly set according to the radial dimension of the cylindrical roller, if it is necessary to use a relatively large diameter cylindrical roller as described above, the radial dimension of the flange is also There is a need to increase it. However, since the peripheral speed of the outer diameter portion of the cylindrical roller increases as the diameter of the cylindrical roller increases, it has been found that noise and vibration that cannot be ignored are caused by the sliding contact between the cylindrical roller and the flange portion. Such abnormal noise / vibration contributes to a decrease in NVH characteristics of a vehicle equipped with an in-wheel motor drive device.
- an object of the present invention is to prevent the generation of abnormal noise and vibration as much as possible in a speed reduction unit to which a cycloid reduction gear is applied, and through this, an in-wheel motor drive device that is quiet and excellent in durability. Is to realize.
- the present invention provides a reduction gear that is provided with a motor portion, a reduction portion, and a wheel bearing portion that are held in a casing, the reduction portion has an eccentric portion, and is rotated by the motor portion.
- An input shaft a curved plate that is rotatably held on the outer periphery of the eccentric part via a rolling bearing, and performs a revolving motion around the rotation shaft center as the speed reducer input shaft rotates, and a curve during the revolving motion
- a cylindrical roller interposed between the inner raceway surface and the outer raceway surface, and between the raceway surfaces, and a motion conversion mechanism that converts the rotational motion of the curved plate generated in the plate into the rotational motion of the reducer output shaft.
- an in-wheel motor drive device having an annular flange disposed adjacent to the outside in the axial direction of the cylindrical roller, the surface roughness of at least one of the opposed two surfaces of the cylindrical roller and the flange is Ra 0.25 ⁇ m or less. Characterized byThe “surface roughness” as used in the present invention means the arithmetic average roughness specified in JIS B0031.
- the surface roughness of one of the opposing two surfaces is Ra 0.25 ⁇ m or less.
- the surface roughness of both of the opposing two surfaces is Ra 0.25 ⁇ m or less, deceleration is achieved. It is possible to more effectively prevent the generation of abnormal noise and vibration in the part.
- the outer raceway surface is formed on the inner diameter surface of the curved plate, the outer ring of the rolling bearing is substantially omitted, so that the speed reduction portion can be reduced in weight and size.
- the flange portion is provided integrally with the inner ring having the inner raceway surface.
- the eccentric part (and the curved plate rotatably held by the eccentric part via the rolling bearing) can be provided at a plurality of positions in the axial direction.
- the eccentric portions are provided with phases different from each other so as to cancel the centrifugal force generated with the rotation of the speed reducer input shaft.
- the present invention it is possible to prevent noise and vibration from being generated as much as possible in the speed reduction unit to which the cycloid reduction gear is applied. Thereby, the in-wheel motor drive device which was quiet and excellent in durability is realizable.
- FIG. 2 is a cross-sectional view taken along line ZZ in FIG. 1. It is explanatory drawing which shows the load which acts on a curve board. It is a cross-sectional view of a rotary pump. It is a schematic plan view of an electric vehicle. It is the schematic sectional drawing which looked at the electric vehicle of Drawing 6 from back.
- the electric vehicle 11 is configured to drive an chassis 12, a pair of front wheels 13 that function as steering wheels, a pair of rear wheels 14 that function as drive wheels, and a left and right rear wheel 14.
- a wheel motor drive device 21 As shown in FIG. 7, the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
- the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the road surface by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms.
- the suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface. desirable.
- an in-wheel motor drive device 21 that rotates each of the left and right rear wheels 14 is incorporated in the left and right wheel housings 12 a, so that a motor, a drive shaft, a differential gear mechanism, and the like are mounted on the chassis 12. There is no need to provide it. Therefore, the electric vehicle 11 has an advantage that a large cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
- an in-wheel motor drive device 21 according to an embodiment of the present invention is employed.
- the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and outputs from the deceleration unit B to the rear wheels. 14 (see FIGS. 6 and 7), and a wheel bearing portion C that is transmitted to 14 (see FIGS. 6 and 7).
- the in-wheel motor drive device 21 has a lubrication mechanism that supplies lubricating oil to the motor part A and the speed reduction part B.
- the motor part A and the speed reduction part B are mounted in the wheel housing 12a (see FIG.
- the casing 22 of this embodiment is comprised by fastening the part which accommodated the motor part A, and the part which accommodated the deceleration part B with the volt
- the motor part A includes a stator 23a fixed to the casing 22, a rotor 23b disposed opposite to the inside of the stator 23a via a radial gap, and a hollow rotating shaft (motor) mounted with a rotor 23b on the outer periphery.
- the rotary shaft 24 is capable of rotating at a rotational speed of about 15000 min ⁇ 1 .
- the motor rotating shaft 24 has ends on one side in the axial direction (right side in FIG. 1, hereinafter also referred to as “inboard side”) and the other side (left side in FIG. 1 and hereinafter also referred to as “outboard side”).
- the bearings are rotatably supported with respect to the casing 22 by rolling bearings (in the example shown, deep groove ball bearings) 36 and 36 disposed in the respective portions.
- the wheel bearing portion C includes a hub ring 32 having a hollow structure and a wheel bearing 33 that rotatably supports the hub ring 32 with respect to the casing 22.
- the hub wheel 32 extends radially outward from the cylindrical hollow portion 32a connected to the shaft portion 28b of the reduction gear output shaft 28 constituting the speed reduction portion B, and the end portion on the outboard side of the hollow portion 32a.
- the flange portion 32b is integrally provided.
- the rear wheel 14 (see FIGS. 6 and 7) is connected and fixed to the flange portion 32b by a bolt 32c. Accordingly, when the hub wheel 32 rotates, the rear wheel 14 rotates integrally with the hub wheel 32.
- the wheel bearing 33 has an inner member having an inner raceway surface 33 f formed directly on the outer diameter surface of the hub wheel 32 and an inner ring 33 a fitted to a small diameter step portion of the outer diameter surface, and an inner diameter surface of the casing 22.
- the outer ring 33b fitted and fixed, a plurality of balls 33c disposed between the inner member and the outer ring 33b, a retainer 33d that holds the balls 33c in a circumferentially separated state, and a shaft of the wheel bearing 33 It is a double row angular contact ball bearing provided with the sealing member 33e which seals a direction both ends.
- the speed reducer B includes a speed reducer input shaft 25 that is rotationally driven by the motor portion A, a speed reducer output shaft 28 that is arranged coaxially with the speed reducer input shaft 25, and a speed reducer. And a speed reduction mechanism that transmits the speed to the speed reducer output shaft 28 after decelerating the rotation of the speed input shaft 25.
- the reduction gear output shaft 28 transmits the rotation of the reduction gear input shaft 25 decelerated by the reduction mechanism to the hub wheel 32 of the wheel bearing portion C.
- the speed reducer input shaft 25 is fitted with a spline 25g (including serrations; the same applies hereinafter) formed on the outer periphery of the end portion on the inboard side to a spline formed on the inner periphery of the end portion on the outboard side of the motor rotation shaft 24.
- the motor rotating shaft 24 is connected by so-called spline fitting.
- Eccentric portions 25a and 25b whose shaft centers are eccentric with respect to the rotational axis of the speed reducer input shaft 25 are provided at two locations in the axial direction of the speed reducer input shaft 25. In the present embodiment, these two eccentric portions are provided. 25 a and 25 b are provided integrally with the reduction gear input shaft 25. The two eccentric portions 25a and 25b are provided with a phase difference of 180 ° in order to cancel the centrifugal force due to the eccentric motion.
- the speed reducer input shaft 25 is rotatably supported with respect to the speed reducer output shaft 28 by rolling bearings 37a and 37b that are spaced apart from each other in two axial directions.
- One rolling bearing 37a supports a substantially central portion of the reduction gear input shaft 25 in the axial direction
- the other rolling bearing 37b supports an end portion of the reduction gear input shaft 25 on the outboard side.
- the reduction gear output shaft 28 has a shaft portion 28b and a flange portion 28a.
- the flange portion 28a has a hole portion (through hole in the illustrated example) in which an end portion on the outboard side of the inner pin 31 described later is fitted and fixed.
- the hole portion serves as a rotational axis of the speed reducer output shaft 28.
- a plurality are formed at equal intervals on the circumference of the center.
- the shaft portion 28b is connected to the hub wheel 32 constituting the wheel bearing portion C by spline fitting.
- the reduction gear output shaft 28 is rotatably supported by the outer pin housing 60 via rolling bearings 48 and 48 that are spaced apart from each other in two axial directions.
- the speed reduction mechanism (cycloid speed reducer) is rotatably held on the outer periphery of the eccentric portions 25a and 25b via the rolling bearings 40 and 40, and revolves around the rotation axis as the speed reducer input shaft 25 rotates.
- the curved plates 26a and 26b that perform the movement and the outer pin housing 60 are held at fixed positions, and engage with the outer peripheral portions of the curved plates 26a and 26b (during the revolving motion) to cause the curved plates 26a and 26b to rotate.
- the curved plate 26a has a plurality of waveforms composed of trochoidal curves such as epitrochoid on the outer periphery thereof.
- the curved plate 26a has axial through-holes 30a and 30b that open at both end faces thereof.
- a plurality of through-holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 26a, and receive one inner pin 31 to be described later.
- the through hole 30b is provided at the center of the curved plate 26a, and is fitted to the outer periphery of the eccentric portion 25a (rolling bearing 40) of the speed reducer input shaft 25.
- the rolling bearing 40 has an inner race 41 having an inner raceway surface 42 on the outer diameter surface and fitted to the outer diameter surface of the eccentric portion 25a, and a curved plate 26a.
- An outer raceway surface 43 formed directly on the inner diameter surface (inner wall surface defining the through-hole 30b), a plurality of cylindrical rollers 44 interposed between the inner raceway surface 42 and the outer raceway surface 43, and the cylindrical rollers 44.
- a cylindrical roller bearing provided with a retainer 45 (not shown in FIG. 3) to be held, and annular flanges 46 and 46 provided integrally with the inner ring 41 and disposed adjacent to the outside in the axial direction of the cylindrical roller 44. .
- the curved plate 26a is integrally provided with a portion constituting the outer ring of the rolling bearing 40, the outer raceway surface 43 is directly formed on the inner diameter surface of the curved plate 26a, and the eccentric portion 25a is defined.
- the inner raceway surface 42 is formed on the inner ring 41 provided separately, for example, the inner raceway 41 may be omitted by directly forming the inner raceway surface 42 on the outer diameter surface of the eccentric portion 25a. If it does in this way, the rolling bearing 40 and by extension, the deceleration part B can be reduced in weight and size.
- the curved plate 26b has the structure similar to the curved plate 26a, and it is eccentric part 25b via the rolling bearing 40 similar to the rolling bearing 40 which supports the curved plate 26a. Is supported so as to be freely rotatable.
- the counterweight 29 is substantially fan-shaped and is fitted and fixed to the outer periphery of the speed reducer input shaft 25. Each counterweight 29 is arranged with a 180 ° phase shift from the eccentric portion 25a (or 25b) adjacent in the axial direction in order to cancel out the unbalanced inertia couple generated by the rotation of the curved plates 26a, 26b.
- each outer pin 27 has a pair of rolling bearings (needle roller bearings) 61, 61 arranged at both ends in the axial direction and a pair of needle roller bearings 61, 61 on the inner periphery. It is rotatably supported on the casing 22 via the held outer pin housing 60. With this configuration, the contact resistance between the outer pin 27 and the curved plates 26a and 26b is reduced.
- the outer pin housing 60 is supported in a floating state with respect to the casing 22 by a detent means (not shown) having an elastic support function.
- This is a component of the motion conversion mechanism that absorbs a large radial load or moment load generated by turning or sudden acceleration / deceleration of the vehicle, and converts the rotational motion of the curved plates 26a and 26b into the rotational motion of the reducer output shaft 28. This is to prevent damage.
- the motion conversion mechanism of the present embodiment includes a plurality of inner pins 31 and a plurality of through holes 30a provided in the curved plates 26a and 26b.
- the through hole 30 a is provided at a position corresponding to each of the plurality of inner pins 31.
- the inner pins 31 are arranged at equal intervals on the circumference centering on the rotational axis of the reduction gear output shaft 28, and the end portion on the outboard side is provided on the flange portion 28 a of the reduction gear output shaft 28. It is fixed to the hole.
- the speed reducer output shaft 28 is arranged coaxially with the speed reducer input shaft 25, the rotational motion of the curved plates 26 a and 26 b is converted into a rotational motion around the rotational axis of the speed reducer input shaft 25. It is transmitted to the reduction gear output shaft 28 above.
- a needle roller bearing 31a is provided on the outer periphery of the inner pin 31 inserted into the through hole 30a of the curved plates 26a, 26b. .
- the inner diameter dimension of the through hole 30a is set larger than the outer diameter dimension of the inner pin 31 (referred to as “maximum outer diameter including the needle roller bearing 31a”; the same applies hereinafter).
- the deceleration unit B further includes a stabilizer 31 b.
- the stabilizer 31b integrally includes a ring-shaped annular portion 31c and a cylindrical portion 31d extending from the inner diameter surface of the annular portion 31c toward the inboard side, and the end portions on the inboard side of the inner pins 31 are circular. It is fixed to the ring portion 31c.
- the axis O 2 of the eccentric portion 25 a provided on the speed reducer input shaft 25 is eccentric from the axis (rotational axis) O of the speed reducer input shaft 25 by the amount of eccentricity e.
- the outer periphery of the eccentric portion 25a is held curved plate 26a via a rolling bearing 40, since the eccentric portion 25a (roller bearing 40) rotatably supports the curve plate 26a, the axial center O 2 is the curved plates 26a Axis It is also a heart.
- the outer peripheral portion of the curved plate 26a is formed by a waveform curve, and has concave portions 34 that are recessed in the radial direction at equal intervals in the circumferential direction.
- a plurality of outer pins 27 that engage with the recesses 34 are arranged in the circumferential direction with the axis O as the center.
- An inner pin 31 that is fixedly provided to the reduction gear output shaft 28 is inserted. Since the inner diameter of the through hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner diameter of the through hole 30a of the rotating curved plate 26a is not reduced.
- the rotational movement of the curved plate 26a is taken out by sliding contact with the wall surface, and the reduction gear output shaft 28 is rotated (converted into the rotational movement of the reduction gear output shaft 28).
- the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives a load Fj as indicated by arrows in the figure from the plurality of inner pins 31.
- a resultant force Fs of the plurality of loads Fi and Fj is applied to the reduction gear input shaft 25.
- the direction of the resultant force Fs changes due to the influence of centrifugal force in addition to geometric conditions such as the shape of the outer peripheral portion of the curved plate 26a and the number of concave portions 34.
- the angle ⁇ between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the rotation axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. It fluctuates with.
- the plurality of loads Fi and Fj change in the direction and magnitude of the load while the speed reducer input shaft 25 rotates once.
- the resultant force Fs acting on the speed reducer input shaft 25 is also in the direction and magnitude of the load. Fluctuates.
- the concave portion 34 of the curved plate 26a is decelerated and rotated clockwise by one pitch, resulting in the state of FIG. 4, and this is repeated.
- the lubricating mechanism supplies lubricating oil to various parts of the motor part A and the speed reducing part B. As shown in FIGS. 1 and 2, the lubricating oil paths 24a and 24b provided on the motor rotating shaft 24, and the speed reducing part are provided.
- the white arrow shown in FIG. 1 indicates the direction in which the lubricating oil flows.
- the lubricating oil passage 24a extends along the axial direction inside the motor rotating shaft 24, and the lubricating oil passage 24a includes a lubricating oil passage 25c extending along the axial direction inside the reduction gear input shaft 25. It is connected.
- the lubricating oil passage 25d extends in the radial direction from the lubricating oil passage 25c toward the outer diameter surface of the speed reducer input shaft 25, and the outer diameter end portion of the lubricating oil passage 25d in the illustrated example is outside the eccentric portions 25a and 25b. Open to the radial surface.
- the lubricating oil passage 25e extends in the axial direction from the end portion on the outboard side of the lubricating oil passage 25c, and opens to the outer end surface of the reduction gear input shaft 25 on the outboard side.
- the formation position of the lubricating oil passage 25d extending in the radial direction is not limited to this, and can be provided at any position in the axial direction of the reduction gear input shaft 25.
- the lubricating oil discharge port 22b provided in the casing 22 discharges the lubricating oil in the speed reduction part B, and is provided in at least one location of the casing 22 at the position of the speed reduction part B.
- the lubricating oil discharge port 22b and the lubricating oil path 24a of the motor rotating shaft 24 are connected via a lubricating oil reservoir 22d, a lubricating oil path 22e, and a lubricating oil path 49. Therefore, the lubricating oil discharged from the lubricating oil discharge port 22b returns to the lubricating oil path 24a of the motor rotating shaft 24 via the lubricating oil path 22e, the circulating oil path 49, and the like.
- the lubricating oil reservoir 22d has a function of temporarily storing the lubricating oil.
- the circulating oil passage 49 provided in the casing 22 includes an axial oil passage 49a extending in the axial direction inside the casing 22, and end portions on the outboard side and the inboard side of the axial oil passage 49a. Are formed by radial oil passages 49b and 49c extending in the radial direction.
- the rotary pump 51 is provided between the lubricating oil passage 22e connected to the lubricating oil reservoir 22d and the circulating oil passage 49. By disposing the rotary pump 51 in the casing 22, it is possible to prevent the in-wheel motor drive device 21 from being enlarged as a whole.
- the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the reducer output shaft 28, an outer rotor 53 that rotates following the rotation of the inner rotor 52, both rotors 52, 53 is a cycloid pump comprising a plurality of pump chambers 54 provided in a space between 53, a suction port 55 communicating with the lubricating oil passage 22e, and a discharge port 56 communicating with the radial oil passage 49b of the circulating oil passage 49. .
- the inner rotor 52 rotates around the rotation center c 1
- the outer rotor 53 rotates around a rotation center c 2 different from the rotation center c 1 of the inner rotor 52. Therefore, the volume of the pump chamber 54 changes continuously.
- the lubricating oil flowing into the pump chamber 54 from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 49 b of the circulation oil passage 49.
- the lubrication mechanism mainly has the above configuration, and lubricates and cools each part of the motor part A and the reduction part B as follows.
- the lubricating oil is supplied to the rotor 23 b and the stator 23 a mainly through the circulating oil passage 49 of the casing 22 and the lubricating oil passage 24 a of the motor rotating shaft 24.
- a part of the lubricating oil supplied to the cylinder is discharged from the opening on the outer diameter side of the lubricating oil passage 24 b under the influence of the centrifugal force generated by the rotation of the motor rotating shaft 24 and the pressure of the rotary pump 51.
- the lubricating oil discharged from the outer diameter side opening of the lubricating oil passage 24b is supplied to the rotor 23b and then supplied to the stator 23a.
- the rolling bearing 36 that supports the end portion of the motor rotating shaft 24 on the inboard side mainly oozes out part of the lubricating oil flowing through the circulating oil passage 45 from between the casing 22 and the motor rotating shaft 24. It is lubricated by. Further, the rolling bearing 36 that supports the end portion on the outboard side of the motor rotating shaft 24 is mainly discharged from the lubricating oil passage 24b, and the inner portion on the outboard side of the portion of the casing 22 in which the motor portion A is accommodated. It is lubricated by the lubricating oil that has fallen along the wall.
- the lubricating oil that has flowed into the lubricating oil passage 25c of the reduction gear input shaft 25 via the lubricating oil passage 24a of the motor rotation shaft 24 is subjected to centrifugal force and pressure of the rotary pump 51 accompanying the rotation of the reduction gear input shaft 25.
- the oil is discharged from the openings of the lubricating oil passages 25d and 25e toward the inside of the deceleration unit B.
- the discharged lubricating oil is supplied to various locations in the speed reduction portion B mainly by centrifugal force, and lubricates and cools the various locations in the speed reduction portion B. Then, as shown in FIG.
- the lubricating oil that has reached the inner wall surface of the casing 22 is discharged from the lubricating oil discharge port 22b and stored in the lubricating oil storage portion 22d.
- the lubricating oil reservoir 22d is provided between the lubricating oil discharge port 22b and the lubricating oil passage 22e connected to the rotary pump 51, it can be completely discharged by the rotary pump 51 especially during high-speed rotation. Even if no lubricating oil is temporarily generated, the lubricating oil can be stored in the lubricating oil storage unit 22d. As a result, it is possible to prevent an increase in heat generation and torque loss at various portions of the deceleration portion B.
- the amount of lubricating oil reaching the lubricating oil discharge port 22b decreases particularly during low-speed rotation. Even in such a case, the lubricating oil stored in the lubricating oil reservoir 22d is used as the lubricating oil. Since it can recirculate
- the in-wheel motor drive device 21 is attached to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
- the overall structure of the in-wheel motor drive device 21 is as described above, and the in-wheel motor drive device 21 of the present embodiment has a characteristic configuration as described below.
- the end surfaces 44 a and the flange portions 46 of the cylindrical rollers 44 facing each other in the axial direction.
- the surface roughness of at least one of the end surfaces 46a is set to Ra 0.25 ⁇ m or less, more preferably Ra 0.13 ⁇ m or less.
- the surface roughness of both the opposing two surfaces 44a and 46a is Ra0. It is set to 25 ⁇ m or less. It should be noted that the surface roughness of the end faces 44a and 46a can be sufficiently achieved by turning under specific machining conditions.
- the speed reduction part B that is quiet and excellent in durability, and thus the in-wheel motor drive device 21, can be realized, so that a passenger of the vehicle equipped with the in-wheel motor drive device 21 can feel abnormal noise, vibration, and the like. Sex is reduced.
- the cylindrical roller 44 is preferably made of bearing steel, carbonitrided, and the amount of retained austenite in the surface layer portion is preferably 20 to 35%.
- the inner ring 41 is preferably made of bearing steel, subjected to carbonitriding treatment, the surface layer has a retained austenite amount of 25 to 50%, and the core portion preferably has a retained austenite amount of 15 to 20%. In this way, the rolling fatigue life can be improved and the occurrence of cracks due to retained austenite and the progress thereof can be suppressed, so that the durability of the rolling bearing 40 and thus the in-wheel motor drive device 21 can be improved ( (Long life) can be achieved.
- the in-wheel motor drive device 21 can be reduced in size and weight through, for example, downsizing the rolling bearing 40 in the radial direction.
- the curved board 26a, 26b is formed with case hardening steel, such as SCM415, SCM420, and SCr420, and the hardening layer formed by performing carburizing quenching tempering as heat processing on this It is preferable to have a (surface hardened layer).
- the outer peripheral portions of the curved plates 26a and 26b are deformed by a load applied from the outer pin 27, or
- the inner wall surface of the through hole 30a provided in the curved plates 26a and 26b is deformed by a load applied from the inner pin 31, or the inner pin 31 is worn. It is possible to effectively prevent wear due to sliding with the needle roller bearing 31a. Accordingly, it is possible to increase the durability life of the curved plates 26a and 26b, and consequently the speed reducing portion B.
- curved board 26a, 26b has toughness. .
- the case-hardened steel is relatively soft and rich in workability before the heat treatment (carburizing quenching and tempering), so that the curved plates 26a and 26b having complicated shapes can be produced efficiently.
- the carburizing and quenching tempering selected as the heat treatment method has flexibility in changing the shape, the cost required for newly producing and changing the design of the curved plates 26a and 26b can be reduced.
- the rotor 23b made of a permanent magnet or a magnetic material rotates by receiving an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a. Accordingly, when the speed reducer input shaft 25 connected to the motor rotating shaft 24 rotates, the curved plates 26 a and 26 b revolve around the rotational axis of the speed reducer input shaft 25. At this time, the outer pin 27 engages with the curved waveform provided on the outer periphery of the curved plates 26a and 26b in the circumferential direction, and the curved plates 26a and 26b are opposite to the rotation direction of the speed reducer input shaft 25. To rotate around.
- the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
- the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
- the speed reducer input shaft 25 is decelerated by the speed reducing portion B and then transmitted to the speed reducer output shaft 28, even when the low torque, high speed type motor portion A is employed, the drive wheels ( The required torque can be transmitted to the (rear wheel) 14.
- the speed reduction ratio of the speed reduction portion B having the above-described configuration is (Z A ⁇ Z B ), where Z A is the number of outer pins 27 and Z B is the number of waveforms (concave portions 34) provided on the outer peripheral portions of the curved plates 26a and 26b. ) / is calculated by Z B.
- the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained. Further, by providing rolling bearings (needle roller bearings) 61 and 31a that rotatably support the outer pin 27 and the inner pin 31, friction between the curved plates 26a and 26b and the outer pin 27 and the inner pin 31 is achieved. Since the resistance is reduced, the power transmission efficiency in the speed reduction portion B is also improved from this point.
- the in-wheel motor drive device 21 of the present embodiment is lightweight and compact as a whole device. Therefore, if the in-wheel motor drive device 21 is mounted on the electric vehicle 11, the unsprung weight can be suppressed, so that the electric vehicle 11 excellent in running stability and NVH characteristics can be realized.
- the in-wheel motor driving device 21 As described above, the in-wheel motor driving device 21 according to the embodiment of the present invention has been described. However, the in-wheel motor driving device 21 can be variously modified without departing from the gist of the present invention. is there.
- the annular flange 46 to be provided in the rolling bearing (cylindrical roller bearing) 40 that rotatably holds the curved plates 26a and 26b is provided integrally with the inner ring 41. It may be provided integrally with the outer ring of the rolling bearing 40.
- the cycloid pump is adopted as the rotary pump 51 constituting the lubrication mechanism.
- the present invention is not limited to this, and any rotary pump driven using the rotation of the reduction gear output shaft 28 can be adopted.
- the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
- the eccentric portions 25a and 25b are provided at two locations in the axial direction of the speed reducer input shaft 25.
- the number of installed eccentric portions can be arbitrarily set.
- the eccentric portions can be provided at three positions in the axial direction of the speed reducer input shaft 25.
- each eccentric portion is 120 ° so as to cancel out the centrifugal force generated by the rotation of the speed reducer input shaft 25. It is preferable to change the phase.
- the motion conversion mechanism is configured, the motion conversion mechanism is not limited to this, and any configuration that can transmit the rotational motion of the curved plates 26a and 26b to the hub wheel 32 of the wheel bearing portion C can be used.
- the vehicle decelerates or slopes are reversed. When it falls, the power from the rear wheel 14 side can be converted into high-rotation and low-torque rotation by the speed reduction part B and transmitted to the motor part A, and the motor part A can generate power. .
- the electric power generated here can be stored in a battery and used as electric power for driving the motor unit A and electric power for operating other electric devices provided in the vehicle.
- the present invention is applied to a configuration in which a radial gap motor is used for the motor part A.
- the present invention is an axial gap motor in which the stator and the rotor are opposed to the motor part A via an axial gap. It is preferably applicable also when adopting.
- the in-wheel motor drive device 21 is not limited to the rear wheel drive type electric vehicle 11 having the rear wheel 14 as the drive wheel, but also the front wheel drive type electric vehicle having the front wheel 13 as the drive wheel, The present invention can also be applied to a four-wheel drive type electric vehicle having 13 and rear wheels 14 as drive wheels.
- the “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and includes, for example, a hybrid vehicle, a fuel cell vehicle, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Retarders (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Abstract
減速部(B)が、偏心部(25a,25b)を有し、モータ部(A)により回転駆動される減速機入力軸(25)と、転がり軸受(40)を介して偏心部(25a,25b)の外周に回転自在に保持された曲線板(26a,26b)と、公転運動中の曲線板(26a,26b)に生じた自転運動を減速機出力軸(28)の回転運動に変換する運動変換機構とを備え、転がり軸受(40)が、円筒ころ(44)と、円筒ころ(44)の軸方向外側に隣接配置された円環状の鍔部(46,46)とを有するインホイールモータ駆動装置(21)において、軸方向で対向する円筒ころ(44)の端面(44a)と鍔部(46)の端面(46a)の少なくとも一方の表面粗さをRa0.25μm以下に設定する。
Description
本発明は、インホイールモータ駆動装置に関する。
周知のように、インホイールモータ駆動装置は、装置全体がホイールの内部に収容され、あるいはホイール近傍に配置される関係上、その重量や大きさが車両のばね下重量(走行性能)や客室スペースの広さに影響を及ぼす。このため、インホイールモータ駆動装置は、できるだけ軽量・コンパクト化する必要がある。その一方、インホイールモータ駆動装置は、車輪を駆動するために大きなトルクを必要とする。これらの要請を同時に満足すべく、例えば下記の特許文献1には、駆動力を発生させるモータ部に、例えば15000min-1程度の回転速度で回転する高回転型のモータを採用すると共に、モータ部(モータ)の回転を減速して車輪用軸受部に伝達する減速部に、コンパクトで高い減速比が得られるサイクロイド減速機を採用したインホイールモータ駆動装置が提案されている。
サイクロイド減速機を適用した減速部は、主に、偏心部を有し、モータ部の駆動力を受けて回転する減速機入力軸と、転がり軸受を介して偏心部の外周に回転自在に保持され、減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、公転運動中の曲線板に生じた自転運動を、車輪用軸受部に連結された減速機出力軸の回転運動に変換する運動変換機構とを備える。このような構成を有する減速部では、モータ部が駆動されると、減速機入力軸が上記のような回転速度で高速回転し、また、曲線板等を介して大きな荷重(主にラジアル荷重)が上記の転がり軸受に繰り返し負荷される。このため、上記の転がり軸受としては、高速回転に対応することができ、かつ荷重負荷能力に優れた円筒ころ軸受が好適に使用される。
本願発明者らは、インホイールモータ駆動装置の軽量・コンパクト化を実現するための技術手段の検討過程で、減速部の構成部品の小型化を検討し、特に曲線板を回転自在に支持する転がり軸受(円筒ころ軸受)に着目した。すなわち、減速機入力軸の高速回転に伴う軸受内部での発熱量を抑え、焼付き等の発生を可及的に防止するには、円筒ころ軸受は小径化するのが好ましいからである。しかしながら、前述したように、曲線板を回転自在に支持する円筒ころ軸受には、減速機入力軸の回転に伴って、曲線板から大きな荷重が繰り返し負荷される。そのため、必要とされる荷重負荷能力を考慮すると、円筒ころ軸受(特に、転動体としての円筒ころ)を小径化することは難しく、むしろ比較的大径の円筒ころを使用する必要がある。
ところで、上記の円筒ころ軸受において、円筒ころの軸方向外側には、円筒ころへの偏荷重が原因で発生する誘起スラスト荷重を受け、ころ位置を転走面上に保持するために円環状の鍔部が設けられる。鍔部の径方向寸法は主に円筒ころの径方向寸法に応じて設定されるため、上記のように比較的大径の円筒ころを用いる必要がある場合には、鍔部の径方向寸法も大きくする必要が生じる。しかしながら、円筒ころが大径化するほど円筒ころの外径部における周速度が速まるため、円筒ころと鍔部の摺動接触に伴って無視できないような異音・振動が生じることが判明した。このような異音・振動は、インホイールモータ駆動装置を搭載した車両のNVH特性を低下させる一因となる。
上記の実情に鑑み、本発明の課題は、サイクロイド減速機を適用した減速部における異音・振動の発生を可及的に防止し、これを通じて、静粛で耐久性に優れたインホイールモータ駆動装置を実現することにある。
上記の課題を解決するために創案された本発明は、モータ部、減速部および車輪用軸受部がケーシングに保持され、減速部が、偏心部を有し、モータ部により回転駆動される減速機入力軸と、転がり軸受を介して偏心部の外周に回転自在に保持され、減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、公転運動中の曲線板に生じた曲線板の自転運動を減速機出力軸の回転運動に変換する運動変換機構とを備え、上記転がり軸受が、内側軌道面および外側軌道面と、両軌道面間に介在する円筒ころと、円筒ころの軸方向外側に隣接配置された円環状の鍔部とを有するインホイールモータ駆動装置において、円筒ころと鍔部の対向二面の少なくとも一方の表面粗さをRa0.25μm以下にしたことを特徴とする。なお、本発明でいう「表面粗さ」とは、JIS B0031に規定の算術平均粗さを意味する。
このような構成によれば、減速機入力軸の回転に伴って、軸方向で対向する円筒ころの端面と鍔部の端面とが摺動接触した場合でも、両者間の接触抵抗を効果的に減じることができるため、減速部における異音・振動の発生を効果的に防止することができる。これにより、静粛で耐久性に優れたインホイールモータ駆動装置を実現することができる。
コスト面を考慮すると、上記対向二面の何れか一方の表面粗さをRa0.25μm以下とするのが好ましいが、上記対向二面の双方の表面粗さをRa0.25μm以下とすれば、減速部における異音・振動の発生を一層効果的に防止することができる。
上記構成において、曲線板の内径面に外側軌道面を形成すれば、転がり軸受の外輪が実質的に省略されるので、減速部の軽量・コンパクト化を図ることができる。
上記転がり軸受の組み付け性(円筒ころの組込み性)を考慮すると、鍔部は、内側軌道面を有する内輪に一体的に設けるのが好ましい。
偏心部(および転がり軸受を介して偏心部に回転自在に保持される曲線板)は、軸方向の複数箇所に設けることができる。この場合、各偏心部は、減速機入力軸の回転に伴って生じる遠心力を打ち消し合うように位相を相互に異ならせて設けるのが好ましい。
以上より、本発明によれば、サイクロイド減速機を適用した減速部における異音・振動の発生を可及的に防止することができる。これにより、静粛で耐久性に優れたインホイールモータ駆動装置を実現することができる。
図6および図7に基づいてインホイールモータ駆動装置を搭載した電気自動車11の概要を説明する。図6に示すように、電気自動車11は、シャシー12と、操舵輪として機能する一対の前輪13と、駆動輪として機能する一対の後輪14と、左右の後輪14のそれぞれを駆動するインホイールモータ駆動装置21とを備える。図7に示すように、後輪14は、シャシー12のホイールハウジング12aの内部に収容され、懸架装置(サスペンション)12bを介してシャシー12の下部に固定されている。
懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が路面から受ける振動を吸収してシャシー12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時等の車体の傾きを抑制するスタビライザが設けられる。懸架装置12bは、路面の凹凸に対する追従性を向上し、後輪14の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式とするのが望ましい。
この電気自動車11では、左右のホイールハウジング12aの内部に、左右の後輪14それぞれを回転駆動させるインホイールモータ駆動装置21が組み込まれるので、シャシー12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構等を設ける必要がなくなる。そのため、この電気自動車11は、客室スペースを広く確保でき、しかも、左右の後輪14の回転をそれぞれ制御することができるという利点を備えている。
電気自動車11の走行安定性およびNVH特性を向上するためには、ばね下重量を抑える必要がある。また、電気自動車11の客室スペースを拡大するためには、インホイールモータ駆動装置21を小型化する必要がある。そこで、図1に示すように、本発明の一実施形態に係るインホイールモータ駆動装置21を採用する。
本発明の実施形態に係るインホイールモータ駆動装置21を図1~図5に基づいて説明する。図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を後輪14(図6,7参照)に伝達する車輪用軸受部Cとを備え、これらはケーシング22に保持されている。詳細は後述するが、このインホイールモータ駆動装置21は、モータ部Aおよび減速部Bの各所に潤滑油を供給する潤滑機構を有する。モータ部Aと減速部Bはケーシング22に収納された状態で電気自動車11のホイールハウジング12a(図7参照)内に取り付けられる。なお、本実施形態のケーシング22は、モータ部Aを収容した部分と、減速部Bを収容した部分とをボルトで締結して構成されている。
モータ部Aは、ケーシング22に固定されているステータ23aと、ステータ23aの内側に径方向の隙間を介して対向配置されたロータ23bと、外周にロータ23bを装着した中空構造の回転軸(モータ回転軸)24とを備えるラジアルギャップモータであり、モータ回転軸24は15000min-1程度の回転速度で回転可能とされている。
モータ回転軸24は、その軸方向一方側(図1の右側であり、以下「インボード側」ともいう)および他方側(図1の左側であり、以下「アウトボード側」ともいう)の端部にそれぞれ配置された転がり軸受(図示例は、深溝玉軸受)36,36によってケーシング22に対して回転自在に支持されている。
車輪用軸受部Cは、中空構造のハブ輪32と、ハブ輪32をケーシング22に対して回転自在に支持する車輪用軸受33とを備える。ハブ輪32は、減速部Bを構成する減速機出力軸28の軸部28bに連結された円筒状の中空部32aと、中空部32aのアウトボード側の端部から径方向外向きに延びたフランジ部32bとを一体に有する。フランジ部32bにはボルト32cによって後輪14(図6,7参照)が連結固定される。従って、ハブ輪32の回転時には後輪14がハブ輪32と一体回転する。
車輪用軸受33は、ハブ輪32の外径面に直接形成された内側軌道面33fおよび外径面の小径段部に嵌合された内輪33aを有する内方部材と、ケーシング22の内径面に嵌合固定された外輪33bと、内方部材と外輪33bの間に配置された複数のボール33cと、ボール33cを周方向に離間した状態で保持する保持器33dと、車輪用軸受33の軸方向両端部を密封するシール部材33eとを備えた複列アンギュラ玉軸受である。
減速部Bは、図2にも拡大して示すように、モータ部Aにより回転駆動される減速機入力軸25と、減速機入力軸25と同軸に配置された減速機出力軸28と、減速機入力軸25の回転を減速した上で減速機出力軸28に伝達する減速機構とを備える。減速機出力軸28は、減速機構により減速された減速機入力軸25の回転を車輪用軸受部Cのハブ輪32に伝達する。
減速機入力軸25は、そのインボード側の端部外周に形成したスプライン25g(セレーションを含む。以下同じ。)を、モータ回転軸24のアウトボード側の端部内周に形成したスプラインに嵌合する、いわゆるスプライン嵌合によってモータ回転軸24と連結されている。
減速機入力軸25の軸方向二箇所には、軸心が減速機入力軸25の回転軸心に対して偏心した偏心部25a,25bが設けられており、本実施形態ではこれら2つの偏心部25a,25bが減速機入力軸25と一体に設けられている。2つの偏心部25a,25bは、偏心運動による遠心力を互いに打ち消し合うために、位相を180°異ならせて設けられている。
減速機入力軸25は、軸方向の二箇所に離間して配置された転がり軸受37a,37bによって減速機出力軸28に対して回転自在に支持されている。一方の転がり軸受37aは、減速機入力軸25の軸方向略中央部を支持し、他方の転がり軸受37bは、減速機入力軸25のアウトボード側の端部を支持している。
減速機出力軸28は、軸部28bとフランジ部28aとを有する。フランジ部28aは、後述する内ピン31のアウトボード側の端部が嵌合固定された孔部(図示例は貫通孔)を有し、孔部は、減速機出力軸28の回転軸心を中心とする円周上に等間隔で複数形成されている。軸部28bは、車輪用軸受部Cを構成するハブ輪32にスプライン嵌合によって連結されている。減速機出力軸28は、軸方向の二箇所に離間して配置された転がり軸受48,48を介して外ピンハウジング60に回転自在に支持されている。
減速機構(サイクロイド減速機)は、転がり軸受40,40を介して偏心部25a,25bの外周に回転自在に保持され、減速機入力軸25の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板26a,26bと、外ピンハウジング60の固定位置に保持され、(公転運動中の)曲線板26a,26bの外周部と係合して曲線板26a,26bに自転運動を生じさせる複数の外ピン27と、曲線板26a,26bの自転運動を減速機出力軸28の回転運動に変換する運動変換機構と、偏心部25a,25bの軸方向外側に隣接配置されたカウンタウェイト29,29とを備える。
図3に示すように、曲線板26aは、その外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有する。また、曲線板26aは、その両端面に開口する軸方向の貫通孔30a,30bを有する。貫通孔30aは、曲線板26aの自転軸心を中心とする円周上に等間隔で複数設けられており、後述する内ピン31を1本ずつ受け入れる。貫通孔30bは、曲線板26aの中心に設けられており、減速機入力軸25の偏心部25a(転がり軸受40)の外周に嵌合される。
転がり軸受40は、図2中の拡大図および図3にも示すように、外径面に内側軌道面42を有し、偏心部25aの外径面に嵌合した内輪41と、曲線板26aの内径面(貫通孔30bを画成する内壁面)に直接形成された外側軌道面43と、内側軌道面42と外側軌道面43の間に介在する複数の円筒ころ44と、円筒ころ44を保持する保持器45(図3では省略)と、内輪41に一体的に設けられ、円筒ころ44の軸方向外側に隣接配置された円環状の鍔部46,46とを備える円筒ころ軸受である。
本実施形態の転がり軸受40では、曲線板26aに転がり軸受40の外輪を構成する部分を一体的に設け、曲線板26aの内径面に外側軌道面43を直接形成すると共に、偏心部25aとは別体に設けた内輪41に内側軌道面42を形成しているが、例えば、偏心部25aの外径面に内側軌道面42を直接形成することで内輪41を省略してもよい。このようにすれば、転がり軸受40、ひいては減速部Bを軽量・コンパクト化することができる。なお、詳細な説明は省略するが、曲線板26bは、曲線板26aと同様の構造を有しており、かつ曲線板26aを支持する転がり軸受40と同様の転がり軸受40を介して偏心部25bに対して回転自在に支持されている。
カウンタウェイト29は略扇形状で、減速機入力軸25の外周に嵌合固定されている。各カウンタウェイト29は、曲線板26a,26bの回転によって生じる不釣合い慣性偶力を打ち消すために、軸方向に隣接する偏心部25a(又は25b)と180°位相を変えて配置される。
図3に示すように、外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔で複数設けられている。減速機入力軸25が回転するのに伴って曲線板26a,26bが公転運動すると、曲線板26a,26bの外周部と外ピン27とが係合し、曲線板26a,26bに自転運動を生じさせる。各外ピン27は、図1に示すように、その軸方向両端部に配された一対の転がり軸受(針状ころ軸受)61,61、および一対の針状ころ軸受61,61を内周に保持した外ピンハウジング60を介してケーシング22に回転自在に支持されている。かかる構成により、外ピン27と曲線板26a,26bとの間の接触抵抗が低減される。
詳細な図示は省略しているが、外ピンハウジング60は、弾性支持機能を有する回り止め手段(図示せず)によってケーシング22に対してフローティング状態に支持されている。これは、車両の旋回や急加減速等によって生じる大きなラジアル荷重やモーメント荷重を吸収し、曲線板26a,26bの自転運動を減速機出力軸28の回転運動に変換する運動変換機構の構成部品の損傷を防止するためである。
図2および図3に示すように、本実施形態の運動変換機構は、複数の内ピン31と、曲線板26a,26bに設けられた複数の貫通孔30aとで構成される。貫通孔30aは、複数の内ピン31それぞれに対応する位置に設けられている。内ピン31は、減速機出力軸28の回転軸心を中心とする円周上に等間隔に配置されており、そのアウトボード側の端部が減速機出力軸28のフランジ部28aに設けた孔部に固定されている。減速機出力軸28は減速機入力軸25と同軸上に配置されているので、曲線板26a,26bの自転運動は、減速機入力軸25の回転軸心を中心とする回転運動に変換された上で減速機出力軸28に伝達される。また、内ピン31と曲線板26a,26bとの摩擦抵抗を低減するため、曲線板26a,26bの貫通孔30aに挿入された内ピン31の外周には針状ころ軸受31aが設けられている。貫通孔30aの内径寸法は、内ピン31の外径寸法(「針状ころ軸受31aを含む最大外径」を指す。以下同じ。)よりも所定寸法大きく設定されている。
図2に示すように、減速部Bは、スタビライザ31bをさらに有する。スタビライザ31bは、円環形状の円環部31cと、円環部31cの内径面からインボード側に延びる円筒部31dとを一体に有し、各内ピン31のインボード側の端部は円環部31cに固定されている。これにより、モータ部Aの駆動時(減速機入力軸25の回転時)に曲線板26a,26bから一部の内ピン31に負荷される荷重はフランジ部28aおよびスタビライザ31bを介して全ての内ピン31によって支持される。
ここで、モータ部Aの駆動時に、曲線板26a、さらには減速機入力軸25に作用する荷重の状態を図4に基づいて説明する。なお、モータ部Aの駆動時には、曲線板26bにも以下に説明するのと同様にして荷重が作用する。
減速機入力軸25に設けられた偏心部25aの軸心O2は、減速機入力軸25の軸心(回転軸心)Oから偏心量eだけ偏心している。偏心部25aの外周には転がり軸受40を介して曲線板26aが保持され、偏心部25a(転がり軸受40)は曲線板26aを回転自在に支持するので、軸心O2は曲線板26aの軸心でもある。曲線板26aの外周部は波形曲線で形成され、径方向に窪んだ凹部34を周方向等間隔に有する。曲線板26aの周囲には、凹部34と係合する外ピン27が、軸心Oを中心として周方向に複数配設されている。
図4において、モータ部Aが駆動されて減速機入力軸25が紙面上で反時計周りに回転すると、偏心部25aおよびその外周に保持された曲線板26aは軸心Oを中心とする公転運動を行うので、曲線板26aの外周部に形成された凹部34が外ピン27と周方向に順次当接する。この結果、曲線板26aは、複数の外ピン27から図中矢印で示すような荷重Fiを受けて時計回りに自転する。
また、曲線板26aには貫通孔30aが軸心O2を中心として周方向に複数配設されており、各貫通孔30aには、軸心O(減速機入力軸25)と同軸配置された減速機出力軸28に対して固定的に設けられた内ピン31が挿通されている。貫通孔30aの内径は内ピン31の外径よりも所定寸法大きいため、内ピン31は、曲線板26aの公転運動の障害とはならず、自転している曲線板26aの貫通孔30aの内壁面と摺動接触することによって曲線板26aの自転運動を取り出し、減速機出力軸28を回転させる(減速機出力軸28の回転運動に変換する)。このとき、減速機出力軸28は、減速機入力軸25よりも高トルクかつ低回転数になり、曲線板26aは、複数の内ピン31から図中矢印で示すような荷重Fjを受ける。これらの複数の荷重Fi、Fjの合力Fsが減速機入力軸25にかかる。
合力Fsの方向は、曲線板26aの外周部の形状や凹部34の数などの幾何学的条件の他、遠心力の影響により変化する。具体的には、自転軸心O2と軸心Oとを結ぶ直線Yと直角であって自転軸心O2を通過する基準線Xと、合力Fsとの角度αは概ね30°~60°で変動する。上記の複数の荷重Fi、Fjは、減速機入力軸25が1回転する間に荷重の方向や大きさが変化し、その結果、減速機入力軸25に作用する合力Fsも荷重の方向や大きさが変動する。そして、減速機入力軸25が1回転すると、曲線板26aの凹部34が減速されて1ピッチ時計回りに回転し、図4の状態になり、これを繰り返す。
次に潤滑機構を説明する。潤滑機構は、モータ部Aおよび減速部Bの各所に潤滑油を供給するものであって、図1および図2に示すように、モータ回転軸24に設けた潤滑油路24a,24bと、減速機入力軸25に設けた潤滑油路25c,25d,25eと、スタビライザ31bに設けた潤滑油路(図示せず)と、内ピン31に設けた潤滑油路(図示せず)と、ケーシング22に設けた潤滑油排出口22b、潤滑油貯留部22d、潤滑油路22eおよび潤滑油路49と、ケーシング22内に配置され、潤滑油をケーシング22の循環油路49に圧送する回転ポンプ51とを主な構成とする。図1中に示した白抜き矢印は潤滑油の流れる方向を示している。
潤滑油路24aは、モータ回転軸24の内部を軸方向に沿って延びており、この潤滑油路24aには、減速機入力軸25の内部を軸方向に沿って延びた潤滑油路25cが接続されている。潤滑油路25dは、潤滑油路25cから減速機入力軸25の外径面に向かって径方向に延びており、図示例の潤滑油路25dの外径端部は偏心部25a,25bの外径面に開口している。潤滑油路25eは、潤滑油路25cのアウトボード側の端部から軸方向に延び、減速機入力軸25のアウトボード側の外端面に開口している。なお、径方向に延びる潤滑油路25dの形成位置はこれに限らず、減速機入力軸25の軸方向の任意の位置に設けることができる。
ケーシング22に設けられた潤滑油排出口22bは、減速部B内部の潤滑油を排出するものであって、減速部Bの位置におけるケーシング22の少なくとも1箇所に設けられている。潤滑油排出口22bとモータ回転軸24の潤滑油路24aとは、潤滑油貯留部22d、潤滑油路22eおよび潤滑油路49を介して接続されている。そのため、潤滑油排出口22bから排出された潤滑油は、潤滑油路22eや循環油路49等を経由してモータ回転軸24の潤滑油路24aに還流する。なお、潤滑油貯留部22dは、潤滑油を一時的に貯留する機能を有する。
図1に示すように、ケーシング22に設けた循環油路49は、ケーシング22の内部を軸方向に延びる軸方向油路49aと、軸方向油路49aのアウトボード側およびインボード側の端部にそれぞれ接続されて径方向に延びる径方向油路49b,49cとで構成される。
回転ポンプ51は、潤滑油貯留部22dに接続された潤滑油路22eと循環油路49との間に設けられている。回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21が全体として大型化するのを防止することができる。
図5に示すように、回転ポンプ51は、減速機出力軸28の回転を利用して回転するインナーロータ52と、インナーロータ52の回転に伴って従動回転するアウターロータ53と、両ロータ52,53間の空間に設けられた複数のポンプ室54と、潤滑油路22eに連通する吸入口55と、循環油路49の径方向油路49bに連通する吐出口56とを備えるサイクロイドポンプである。インナーロータ52は、回転中心c1を中心として回転し、アウターロータ53は、インナーロータ52の回転中心c1とは異なる回転中心c2を中心として回転する。そのため、ポンプ室54の容積は連続的に変化する。これにより、吸入口55からポンプ室54に流入した潤滑油は吐出口56から循環油路49の径方向油路49bに圧送される。
潤滑機構は、主に以上の構成を有しており、以下のようにしてモータ部Aおよび減速部Bの各所を潤滑・冷却する。
まず、図1に示すように、モータ部Aのうち、ロータ23bおよびステータ23aへの潤滑油の供給は、主に、ケーシング22の循環油路49を介してモータ回転軸24の潤滑油路24aに供給された潤滑油の一部が、モータ回転軸24の回転に伴って生じる遠心力および回転ポンプ51の圧力の影響を受けて潤滑油路24bの外径側開口部から吐出されることにより行われる。すなわち、潤滑油路24bの外径側開口部から吐出された潤滑油はロータ23bに供給され、その後、ステータ23aに供給される。また、モータ回転軸24のインボード側の端部を支持する転がり軸受36は、主に、循環油路45を流れる潤滑油の一部がケーシング22とモータ回転軸24との間から滲み出ることにより潤滑される。さらに、モータ回転軸24のアウトボード側の端部を支持する転がり軸受36は、主に、潤滑油路24bから吐出され、ケーシング22のうち、モータ部Aを収容した部分のアウトボード側の内壁面を伝い落ちてきた潤滑油により潤滑される。
次に、モータ回転軸24の潤滑油路24aを経由して減速機入力軸25の潤滑油路25cに流入した潤滑油は、減速機入力軸25の回転に伴う遠心力および回転ポンプ51の圧力の影響を受けて潤滑油路25d,25eの開口部から減速部Bの内部に向けて吐出される。吐出された潤滑油は、主に遠心力により減速部B内の各所に供給されて減速部B内の各所を潤滑・冷却する。そして、ケーシング22の内壁面に到達した潤滑油は、図1に示すように、潤滑油排出口22bから排出されて潤滑油貯留部22dに貯留される。このように、潤滑油排出口22bと回転ポンプ51に接続された潤滑油路22eとの間に潤滑油貯留部22dが設けられているので、特に高速回転時などに回転ポンプ51によって排出しきれない潤滑油が一時的に発生しても、その潤滑油を潤滑油貯留部22dに貯留しておくことができる。その結果、減速部Bの各所における発熱やトルク損失の増加を防止することができる。一方、特に低速回転時などには、潤滑油排出口22bに到達する潤滑油量が少なくなるが、このような場合であっても、潤滑油貯留部22dに貯留されている潤滑油を潤滑油路24a,25cに還流することができるので、モータ部Aおよび減速部Bに安定して潤滑油を供給することができる。
なお、減速部B内部の潤滑油は、遠心力に加え、重力によっても外側に移動する。したがって、このインホイールモータ駆動装置21は、潤滑油貯留部22dがインホイールモータ駆動装置21の下部に位置するように、電気自動車11に取り付けるのが望ましい。
インホイールモータ駆動装置21の全体構造は前述したとおりであり、本実施形態のインホイールモータ駆動装置21は、以下に示すような特徴的な構成を有する。
図2に示すように、減速部Bにおいて曲線板26a,26bを回転自在に保持した転がり軸受(円筒ころ軸受)40のうち、軸方向で互いに対向する円筒ころ44の端面44aと鍔部46の端面46aの少なくとも一方の表面粗さはRa0.25μm以下、より好ましくはRa0.13μm以下に設定されており、本実施形態では上記の対向二面44a,46aの双方の表面粗さが、Ra0.25μm以下に設定されている。なお、上記端面44a,46aの表面粗さをRa0.25μm以下にすることは、特定の加工条件によって旋削することにより十分達成可能である。
このように、対向二面44a,46aの双方の表面粗さをRa0.25μm以下に設定すれば、上述したように、転がり軸受40が高速回転する減速機入力軸25(の偏心部25a,25b)の外周に嵌合された状態で使用されること、減速機入力軸25の回転に伴って転がり軸受40に曲線板26a,26bから大きな荷重が繰り返し負荷されること、などに鑑みて、転がり軸受40として比較的大径の円筒ころ44を転動体とした円筒ころ軸受を用いざるを得ないような場合でも、円筒ころ44と鍔部46の摺動接触に伴う異音・振動の発生を可及的に防止することができる。これにより、静粛で耐久性に優れた減速部B、ひいてはインホイールモータ駆動装置21を実現することができるので、インホイールモータ駆動装置21を搭載した車両の乗員が異音・振動等を感じる可能性が減じられる。
なお、円筒ころ44は、軸受鋼からなり、浸炭窒化処理が施され、かつ表層部の残留オーステナイト量が20~35%であることが好ましい。内輪41は、軸受鋼からなり、浸炭窒化処理が施され、表層の残留オーステナイト量が25~50%であり、且つ、芯部の残留オーステナイト量が15~20%であることが好ましい。このようにすれば、転動疲労寿命を向上させることができると共に残留オーステナイトによるクラックの発生およびその進展を抑制することができるので、転がり軸受40、ひいてはインホイールモータ駆動装置21の耐久性向上(長寿命化)を図ることができる。また、同程度の寿命を確保する上では、上記構成を具備しない軌道輪(内輪および外輪)を採用する場合に比べ、軌道輪の薄肉化を実現することができる。従って、転がり軸受40の径方向への小型化等を通じて、インホイールモータ駆動装置21を小型・軽量化することができる。
また、詳細な図示は省略するが、曲線板26a,26bは、SCM415、SCM420、SCr420等の肌焼き鋼で形成し、これに熱処理としての浸炭焼入れ焼戻しが施されることにより形成された硬化層(表面硬化層)を有するものとするのが好ましい。
このようにすれば、転がり軸受40を構成する外輪を曲線板26aに一体的に設け、曲線板26aの内径面に転がり軸受40の外側軌道面43を直接形成した本実施形態においても、円筒ころ44が外側軌道面43上を転送することによる摩耗や損傷を可及的に防止することができる。また、曲線板26a,26bの表層部に浸炭焼入れ焼戻しに伴う硬化層が形成されていれば、曲線板26a,26bの外周部が、外ピン27から負荷される荷重によって変形したり、外ピン27との摺動に伴って摩耗したりするのを、また、曲線板26a,26bに設けられた貫通孔30aの内壁面が、内ピン31から負荷される荷重によって変形したり、内ピン31(針状ころ軸受31a)との摺動に伴って摩耗したりするのを効果的に防止することができる。従って、曲線板26a,26b、ひいては減速部Bの耐久寿命を高めることができる。
その一方、曲線板26a,26bとして上述のものを採用すれば、曲線板26a,26bの芯部には硬化層が形成されていないことになり、この場合、曲線板26a,26bは靱性を有する。これにより、例えば車両の運転走行時に車輪用軸受部Cを介して減速部Bに瞬間的な衝撃荷重が入力された場合でも、この衝撃荷重により曲線板26a,26bが変形・破損等する可能性を効果的に減じることができる。また、肌焼き鋼は、熱処理(浸炭焼入れ焼戻し)前の段階では比較的軟質で加工性に富むので、複雑形状の曲線板26a,26bを効率良く作製することができる。しかも、熱処理方法として選択した浸炭焼入れ焼戻しは、形状変更に対する柔軟性を有するので、曲線板26a,26bの新規作製および設計変更の際に必要となるコストは少なくて済む。
以上の構成を有するインホイールモータ駆動装置21の全体的な作動原理を、図1および図3を参照しながら説明する。
モータ部Aでは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これに伴って、モータ回転軸24に連結された減速機入力軸25が回転すると、曲線板26a、26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27は、曲線板26a,26bの外周部に設けられた曲線形状の波形と周方向で係合し、曲線板26a、26bを減速機入力軸25の回転方向とは逆向きに自転回転させる。
貫通孔30aに挿通された内ピン31は、曲線板26a,26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが減速機出力軸28を介して車輪用軸受部Cに伝達される。このとき、減速機入力軸25の回転が減速部Bによって減速された上で減速機出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪(後輪)14に必要なトルクを伝達することが可能となる。
上記構成の減速部Bの減速比は、外ピン27の数をZA、曲線板26a,26bの外周部に設けた波形(凹部34)の数をZBとすると、(ZA-ZB)/ZBで算出される。図3に示す実施形態では、ZA=12、ZB=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。
このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31を回転自在に支持する転がり軸受(針状ころ軸受)61,31aを設けたことにより、曲線板26a,26bと外ピン27および内ピン31との間の摩擦抵抗が低減されるので、この点からも減速部Bにおける動力伝達効率が向上する。
上述したように、本実施形態のインホイールモータ駆動装置21は、装置全体として軽量・コンパクト化が図られている。そのため、このインホイールモータ駆動装置21を電気自動車11に搭載すれば、ばね下重量を抑えることができるので、走行安定性およびNVH特性に優れた電気自動車11を実現することができる。
以上、本発明の一実施形態に係るインホイールモータ駆動装置21について説明を行ったが、インホイールモータ駆動装置21には、本発明の要旨を逸脱しない範囲で種々の変更を施すことが可能である。
例えば、以上では、曲線板26a,26bを回転自在に保持する転がり軸受(円筒ころ軸受)40に設けるべき円環状の鍔部46を内輪41に一体的に設けているが、鍔部46は、転がり軸受40の外輪に一体的に設けても良い。
また、以上では、潤滑機構を構成する回転ポンプ51としてサイクロイドポンプを採用したが、これに限ることなく、減速機出力軸28の回転を利用して駆動するあらゆる回転ポンプを採用することができる。さらには、回転ポンプ51を省略して、遠心力のみによって潤滑油を循環させるようにしてもよい。
また、以上では、減速機入力軸25の軸方向二箇所に偏心部25a,25bを設けたが、偏心部の設置個数は任意に設定することができる。例えば、偏心部は、減速機入力軸25の軸方向三箇所に設けることができ、この場合、各偏心部は、減速機入力軸25の回転に伴って生じる遠心力を打ち消し合うように120°位相を変えて設けるのが好ましい。
また、以上では、主に、曲線板26a,26bに設けた貫通孔30aと、貫通孔30aの内壁面と摺動可能に減速機出力軸28のフランジ部28aに固定された内ピン31とで運動変換機構を構成したが、運動変換機構は、これに限らず、曲線板26a,26bの自転運動を車輪用軸受部Cのハブ輪32に伝達可能な任意の構成とすることができる。
本実施形態における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから後輪14に伝達される。したがって、上述のように減速された動力は高トルクに変換されたものとなっている。
また、モータ部Aに電力を供給してモータ部Aを駆動させ、モータ部Aからの動力を後輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、後輪14側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電するように構成することもできる。さらに、ここで発電した電力は、バッテリーに蓄電しておき、モータ部Aの駆動用電力や、車両に備えられた他の電動機器の作動用電力として活用することもできる。
また、以上では、モータ部Aにラジアルギャップモータを採用した構成に本発明を適用したが、本発明は、モータ部Aに、ステータとロータとを軸方向の隙間を介して対向させるアキシャルギャップモータを採用した場合にも好ましく適用できる。
さらに、本発明に係るインホイールモータ駆動装置21は、後輪14を駆動輪とした後輪駆動タイプの電気自動車11のみならず、前輪13を駆動輪とした前輪駆動タイプの電気自動車や、前輪13および後輪14を駆動輪とした4輪駆動タイプの電気自動車に適用することもできる。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー、燃料電池車等をも含む。
本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
11 電気自動車
21 インホイールモータ駆動装置
22 ケーシング
25 減速機入力軸
25a,25b 偏心部
26a,26b 曲線板
27 外ピン
28 減速機出力軸
40 転がり軸受
41 内輪
42 内側軌道面
43 外側軌道面
44 円筒ころ
44a 端面
46 鍔部
46a 端面
A モータ部
B 減速部
C 車輪用軸受部
21 インホイールモータ駆動装置
22 ケーシング
25 減速機入力軸
25a,25b 偏心部
26a,26b 曲線板
27 外ピン
28 減速機出力軸
40 転がり軸受
41 内輪
42 内側軌道面
43 外側軌道面
44 円筒ころ
44a 端面
46 鍔部
46a 端面
A モータ部
B 減速部
C 車輪用軸受部
Claims (5)
- モータ部、減速部および車輪用軸受部がケーシングに保持され、
前記減速部が、偏心部を有し、前記モータ部により回転駆動される減速機入力軸と、転がり軸受を介して前記偏心部の外周に回転自在に保持され、前記減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、公転運動中の前記曲線板に生じた自転運動を減速機出力軸の回転運動に変換する運動変換機構とを備え、前記転がり軸受が、内側軌道面および外側軌道面と、両軌道面間に介在する円筒ころと、該円筒ころの軸方向外側に隣接配置された円環状の鍔部とを有するインホイールモータ駆動装置において、
前記円筒ころと前記鍔部の対向二面の少なくとも一方の表面粗さをRa0.25μm以下に設定したことを特徴とするインホイールモータ駆動装置。 - 前記円筒ころと前記鍔部の対向二面の双方の表面粗さをRa0.25μm以下に設定した請求項1に記載のインホイールモータ駆動装置。
- 前記曲線板の内径面に前記外側軌道面が形成された請求項1又は2に記載のインホイールモータ駆動装置。
- 前記鍔部を、前記内側軌道面を有する内輪に一体的に設けた請求項1~3の何れか一項に記載のインホイールモータ駆動装置。
- 前記偏心部が軸方向の複数箇所に設けられ、各偏心部は、前記減速機入力軸の回転に伴って生じる遠心力を打ち消し合うように位相を相互に異ならせて設けられている請求項1~4の何れか一項に記載のインホイールモータ駆動装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014190024A JP2016061375A (ja) | 2014-09-18 | 2014-09-18 | インホイールモータ駆動装置 |
JP2014-190024 | 2014-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016043012A1 true WO2016043012A1 (ja) | 2016-03-24 |
Family
ID=55533053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074255 WO2016043012A1 (ja) | 2014-09-18 | 2015-08-27 | インホイールモータ駆動装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016061375A (ja) |
WO (1) | WO2016043012A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106499778A (zh) * | 2016-12-22 | 2017-03-15 | 宁波引钲信息咨询有限公司 | 减速机构 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005083467A (ja) * | 2003-09-08 | 2005-03-31 | Nsk Ltd | 円筒ころ軸受 |
JP2012148725A (ja) * | 2011-01-21 | 2012-08-09 | Ntn Corp | インホイールモータ駆動装置 |
-
2014
- 2014-09-18 JP JP2014190024A patent/JP2016061375A/ja active Pending
-
2015
- 2015-08-27 WO PCT/JP2015/074255 patent/WO2016043012A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005083467A (ja) * | 2003-09-08 | 2005-03-31 | Nsk Ltd | 円筒ころ軸受 |
JP2012148725A (ja) * | 2011-01-21 | 2012-08-09 | Ntn Corp | インホイールモータ駆動装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106499778A (zh) * | 2016-12-22 | 2017-03-15 | 宁波引钲信息咨询有限公司 | 减速机构 |
Also Published As
Publication number | Publication date |
---|---|
JP2016061375A (ja) | 2016-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6301125B2 (ja) | インホイールモータ駆動装置 | |
WO2015008606A1 (ja) | インホイールモータ駆動装置 | |
JP2016166639A (ja) | サイクロイド減速機およびこれを備えたモータ駆動装置 | |
WO2015141387A1 (ja) | インホイールモータ駆動装置 | |
JP2016161117A (ja) | サイクロイド減速機およびこれを備えたモータ駆動装置 | |
JP6324761B2 (ja) | インホイールモータ駆動装置 | |
WO2015046087A1 (ja) | インホイールモータ駆動装置 | |
WO2016017351A1 (ja) | サイクロイド減速機およびこれを備えたインホイールモータ駆動装置 | |
WO2015133278A1 (ja) | インホイールモータ駆動装置 | |
JP6328429B2 (ja) | インホイールモータ駆動装置 | |
JP6400297B2 (ja) | インホイールモータ駆動装置 | |
WO2015046086A1 (ja) | インホイールモータ駆動装置 | |
WO2016043012A1 (ja) | インホイールモータ駆動装置 | |
JP6333579B2 (ja) | インホイールモータ駆動装置 | |
WO2015137073A1 (ja) | インホイールモータ駆動装置 | |
JP2015080996A (ja) | インホイールモータ駆動装置 | |
WO2015137088A1 (ja) | インホイールモータ駆動装置 | |
WO2016043011A1 (ja) | インホイールモータ駆動装置 | |
JP2018173173A (ja) | インホイールモータ駆動装置 | |
JP2016191447A (ja) | サイクロイド減速機およびこれを備えたモータ駆動装置 | |
JP2018002149A (ja) | インホイールモータ駆動装置 | |
WO2015098490A1 (ja) | インホイールモータ駆動装置 | |
WO2015141389A1 (ja) | インホイールモータ駆動装置 | |
WO2015137085A1 (ja) | インホイールモータ駆動装置 | |
JP2016151339A (ja) | 車両用モータ駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15841796 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15841796 Country of ref document: EP Kind code of ref document: A1 |