WO2015093202A1 - 計測装置及び計測方法 - Google Patents

計測装置及び計測方法 Download PDF

Info

Publication number
WO2015093202A1
WO2015093202A1 PCT/JP2014/080239 JP2014080239W WO2015093202A1 WO 2015093202 A1 WO2015093202 A1 WO 2015093202A1 JP 2014080239 W JP2014080239 W JP 2014080239W WO 2015093202 A1 WO2015093202 A1 WO 2015093202A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
subject
light
eyelid
optical axis
Prior art date
Application number
PCT/JP2014/080239
Other languages
English (en)
French (fr)
Inventor
克宜 松井
一隆 鈴木
豊田 晴義
宅見 宗則
直俊 袴田
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201480068600.XA priority Critical patent/CN105828701B/zh
Priority to US15/105,088 priority patent/US10478063B2/en
Publication of WO2015093202A1 publication Critical patent/WO2015093202A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Definitions

  • the present invention relates to a measuring apparatus and a measuring method for measuring a subject's eyelid position.
  • the apparatus described in Patent Document 2 below acquires a moving image of a subject with a camera, extracts edge lines that are candidates for a combination of upper eyelid and lower eyelid based on the contrast of the moving image,
  • a one-dimensional image showing a change in shading is extracted from the eye image of a subject based on the luminance distribution, and a boundary point between the eyelid and the eyeball is detected based on the one-dimensional image.
  • the apparatus described in Patent Document 4 below generates a signal indicating whether the eyelid is open or closed by detecting the intensity of reflected light and scattered light applied to the subject's eyes with a sensor. To do.
  • an object of the present invention is to provide a measuring apparatus and a measuring method capable of more accurately measuring a subject's eyelid position.
  • a measurement device is a measurement device that measures a subject's eyelid position, and an illumination unit that irradiates light extending from the subject's upper eyelid to the lower eyelid;
  • An imaging device having an optical axis on a surface obtained by rotating a surface including the optical axis of light by a predetermined angle around an axis along the light irradiated to the subject, and an optical image in an image captured by the imaging device
  • a calculation unit that acquires height information based on the position of the eye and measures the eyelid position based on the height information.
  • the measuring method which concerns on the other form of this invention is a measuring method which measures a test subject's eyelid position, Comprising: The illumination step which irradiates the light extended from a test subject's upper eyelid to a lower eyelid, and the optical axis of light An imaging optical axis is set on a plane obtained by rotating a plane including the axis by a predetermined angle around an axis along the light irradiated to the subject, and acquired in the imaging step. A calculation step of obtaining height information based on the position of the optical image in the obtained image and measuring the eyelid position based on the height information.
  • the image of the subject is obtained with the imaging optical axis rotated by a predetermined angle with respect to the light irradiated from the upper eyelid to the lower eyelid by the illumination unit.
  • the height information is acquired based on the position of the optical image in the image, and the eyelid position is measured based on the height information.
  • the subject's eyelid position can be measured more accurately.
  • FIG. 6 is a horizontal cross-sectional view showing how an optical image is seen in a eyelid and a white eye in an area E, depending on the arrangement position of the image measurement device 2 with respect to the illumination device 1. It is a figure which shows the image image in the area
  • FIG. It is a schematic block diagram which shows the detailed structure of the image measuring device 2 of FIG.
  • FIG. 1 is a plan view showing a schematic configuration of a blink measurement system 10 which is a measurement apparatus according to a preferred embodiment of the present invention.
  • the blink measurement system 10 is a measurement system that is arranged so as to face the region E including the eyes of the subject, measures the subject's eyelid position in time series, and acquires parameters related to the subject's blink, and emits light.
  • the illuminating device 1 is a light source that is arranged so as to face the subject's region E and that emits light extending from the upper eyelid to the lower eyelid of the subject. For example, the illuminating device 1 irradiates a band-shaped line light from the upper eyelid to the lower eyelid of the subject.
  • FIG. 2 is a front view showing an illumination state by the illumination device 1 in the region E of the subject.
  • the illuminating device 1 targets an area E including an eye having an upper eyelid E u , a lower eyelid E d , a pupil E p , a sclera (white eye) E s , and an iris E i ,
  • a light L having a width Lw that linearly crosses in the range of a length Lh including the upper eyelid Eu to the lower eyelid Ed is irradiated. That is, the illuminating device 1 has an irradiation optical axis La on a plane including the light emission center of the illuminating device 1 and the region E of the subject, and emits light L irradiated from the upper eye E u to the lower eye E d of the subject.
  • the illuminating device 1 has an irradiation optical axis La on a plane including the light emission center of the illuminating device 1 and the region E of the subject, and emits light L irradiated from the upper eye E u to the lower eye E
  • the lighting device 1 is adjusted so that the values of the length Lh and the width Lw are optimum values for measurement, respectively.
  • the value of the width Lw in the irradiated light L is human eyelashes. It is adjusted to be 0.1 mm or more, which is the average thickness of.
  • the illuminating device 1 is arrange
  • This distance WD is set so as to coincide with the working distance defined in advance with respect to the illumination device 1 so that the width Lw in the light L irradiated to the region E becomes the narrowest.
  • the illuminating device 1 may be arranged by moving the distance WD so as to increase or decrease the working distance within an arbitrary range.
  • Such an illuminating device 1 includes, for example, a light source such as an LD (Laser Diode) or SLD (Super Luminescent Diode) and a lens including a cylindrical lens and a collimating lens. You may be comprised by LED (Light (Emitting) Diode) and a slit plate.
  • the light emission wavelength of the illumination device 1 is a wavelength in the near-infrared region or the infrared region, which is an invisible wavelength region, in order to suppress the influence on the blink operation due to glare or anxiety caused by the subject directly feeling light. For example, it is set to a wavelength region of 750 nm or more.
  • the light emission intensity of the illumination device 1 is set to a sufficiently small value from the viewpoint of protecting the eyes of the subject.
  • the filter 3 is arranged to pass the light bundle generated by the lighting device 1, and adjusts the intensity of the light L irradiated to the subject for the purpose of protecting the subject's eyes.
  • An ND (NeutralutDensity) filter (a neutral density filter).
  • the filter 3 may be a single filter or a combination of a plurality of filters.
  • the imaging optical axis Ia is irradiated onto the eye region E, a vertical plane including the irradiation optical axis La (the plane along the light beam) It is configured so as to be on a surface rotated by a predetermined angle ⁇ . That is, the image measuring apparatus 2 sets the imaging optical axis Ia on a plane including an axis obtained by rotating the irradiation optical axis La by an angle ⁇ , and images the region E from a direction oblique to the normal direction. .
  • FIG. 3 according to the arrangement position of the image measuring device 2 for the illumination device 1 is a horizontal sectional view showing the appearance of the optical image at the lid E u and pewter E s in the area E, 4 for the lighting device 1 6 is a diagram illustrating an image image in a region E depending on the arrangement position of the image measurement device 2.
  • FIG. 3 is a diagram illustrating an image image in a region E depending on the arrangement position of the image measurement device 2.
  • the imaging optical axis Ia is rotated by an angle ⁇ with respect to the irradiation optical axis La.
  • the line of sight V2 viewing the irradiation position of the light L in the region E from the position of the image measuring device 2 is also rotated by the angle ⁇ with respect to the line of sight V1 viewing the irradiation position of the light L in the region E from the position of the illumination device 1.
  • the projection positions of the optical images on the image plane GS by the scattered light components from the two positions PO 1 and PO 2 are both GP. Matches 0 .
  • the image measuring device 2 when the image measuring device 2 is installed to be rotated by an angle ⁇ with respect to the lighting device 1, the image measuring device 2 sees the irradiated portion of the light L from the line of sight V2.
  • the projection position of the optical image on the image plane GS due to the scattered light component from the position PO 1 is GP 1 and is geometrically calculated from the angle ⁇ formed by the imaging optical axis Ia and the irradiation optical axis La.
  • the projection position of the optical image on the image plane GS by the scattered light component from the position PO 2 is GP 2 , and a straight line calculated geometrically from the angle ⁇ formed by the imaging optical axis Ia and the irradiation optical axis La. distance [Delta] L 2 from the center position in the image plane GS is shifted leftward.
  • the amount of deviation of the projection position on the image plane GS in the optical image captured by the image measurement device 2 installed at a position rotated by the angle ⁇ in the horizontal direction from the illumination device 1 is ⁇ E u in the region E and the white eye It would represent the difference in height between the E s.
  • the image in an image acquired when the imaging optical axis Ia is coaxial with the irradiation optical axis La, the image is present in a portion illuminated with the light L in the region E.
  • the light images of the scattered light components from the portions of ⁇ E u and E d and the white eye E s all exist on the same straight line.
  • the image acquired when the imaging optical axis Ia is rotated by the angle ⁇ in the horizontal direction with respect to the irradiation optical axis La as in the present embodiment shown in FIG.
  • the shift amount is proportional to the height difference between the eyelid E u, E d and pewter E s. Therefore, the height information in the region E can be obtained with high accuracy by obtaining this shift amount in units of subpixels of one pixel or less of the image data.
  • the image measurement device 2 includes an imaging lens 5, an image sensor (imaging device) 6, an image calculation unit 7, and a control communication unit 8.
  • the imaging lens 5 has an angle of view that covers a region E that includes the upper eye E u to the lower eye E d of the subject, and collects reflected light and scattered light components of the light L emitted by the illumination device 1.
  • the image is formed on the image sensor 6.
  • the image sensor 6 photoelectrically converts the reflected light component and the scattered light component collected by the imaging lens 5 for each pixel, thereby representing an image signal (electric signal) representing a two-dimensional distribution of the luminance of the optical image on the image plane. Are generated in time series.
  • the image sensor 6 transfers the generated image signal to the image calculation unit 7.
  • the image calculation unit 7 performs signal processing on the image signal generated by the image sensor 6, acquires height information along the horizontal direction (irradiation direction of the light L) in the region E of the subject, and further increases the height.
  • the subject's heel position is measured based on the information.
  • the image calculation unit 7 performs a smoothing process, a one-dimensional centroid calculation process, an adjacent pixel difference process, and the like on the image signal, and obtains height information and luminance information at the irradiation position of the light L. Acquire and detect the eyelid position based on the information.
  • the control communication unit 8 controls the operations of the image sensor 6 and the image calculation unit 7 and transmits the calculation result by the image calculation unit 7 to the outside.
  • an intelligent vision system manufactured by Hamamatsu Photonics Co., Ltd., which includes a high-speed two-dimensional CMOS sensor and a high-speed parallel image processing mechanism can be cited.
  • the imaging lens 5 may be equipped with a band-pass filter 4 that allows only the emission wavelength in the illumination device 1 to pass and blocks other wavelength bands in order to suppress the influence of disturbance light on measurement.
  • the band pass filter 4 may be a single filter or a combination of a plurality of filters.
  • FIG. 6 shows an example of image data captured by the image measuring device 2 when the subject is opened
  • FIG. 7 shows a cross-sectional view of the subject's region E viewed from the lateral direction.
  • the strip-shaped light L is irradiated across the upper eyelid E u , the lower eyelid E d , and the white and black eye portions of the eyeball.
  • the image data, the scattering light P1 of the upper eyelid E u and lower eyelid E d, P2, scattered light S1 in the white of the eye E s, S2 appears.
  • the image data Position in the scattered light S1, and S2 the image data, depending on the height difference of the upper eyelid E u and lower eyelid E d and pewter E s, is shifted to the left with respect to the scattered light P1, P2. Since the intensity of the scattered light component in the black eye portion is relatively weaker than that in the white eye portion, the scattered light I in the black eye portion does not appear on the image data shown in FIG.
  • FIG. 8 shows an example of image data captured by the image measuring device 2 when the subject is closed
  • FIG. 9 shows a cross-sectional view of the region E of the subject viewed from the lateral direction.
  • the light L is irradiated in a state where the upper eyelid E u overlaps the extended by eyelid closure lower eyelid E d.
  • scattered light P1 and P2 in the upper eye E u and the lower eye E d appear in the image data.
  • the lid is closed, the upper rod E u partially overlaps the lower rod E d , so that there is a difference in height between the scattered lights P1 and P2. Therefore, the position of the scattered light P2 on the image data is shifted leftward by an amount of movement corresponding to the height difference from the scattered light P1.
  • the image calculation unit 7 of the image measuring device 2 obtains the positional deviation of the optical image of the light L in the direction perpendicular to the direction in which the light L extends, that is, in the horizontal direction.
  • the height difference information between the eyeball part and the eyelid part can be obtained both when the eyelid is closed and when the eyelid is closed.
  • the image calculation unit 7 estimates the eyelid position from the height change point between the eyeball and the upper and lower eyelids at the time of opening based on the obtained height difference information between the eyeball portion and the eyelid portion, and closes the eyelid. At times, the heel position is estimated from the height change point between the upper and lower ridges.
  • the region E is irradiated with the light L in a state where the subject's region E faces the illumination device 1.
  • the image measuring device 2 captures the region E, acquires image data in time series, and generates time series image data.
  • the eyelid position estimation process is executed on the time-series image data by the image calculation unit 7 of the image measurement device 2.
  • the image calculation unit 7 obtains an accurate horizontal position of the light image of the light L by performing a one-dimensional centroid calculation in the horizontal direction (horizontal direction) on the image data.
  • the image calculating part 7 acquires the shift amount in the horizontal direction of the optical image, ie, elevation difference information, from the horizontal position of the optical image of the light L obtained by the one-dimensional centroid calculation. Furthermore, the image calculation part 7 calculates
  • FIG. 10 shows an example of time-series image data processed by the image calculation unit 7.
  • An optical image of the light L on the image data obtained by the apparatus 2 is shown.
  • the vertical direction of the optical image shift of the light L appearing at the boundary between the upper eyelid and the white eye It can be seen that the change point in (vertical direction) Y is moving downward.
  • the image calculation unit 7 measures the upper eyelid position by obtaining the change point of the shift of the light L, and analyzes the blink operation from the time change of the upper eyelid position.
  • FIG. 11 shows the result of one-dimensional centroid calculation performed by the image calculation unit 7 on the time-series image data captured by the image measurement device 2.
  • the difference in height is indicated by the brightness of the color. The closer to white, the higher the height, and the closer to black, the lower the height.
  • the horizontal direction (t) is a time axis, and measurement is performed for about 4 seconds, and the opening and closing of the ridge is measured about 4 times. From the results of the figure, at the time of eyelid (portion indicated as "open” in the figure), the upper eyelid portion E u and pupil portions E i, the E p and whites portion E s is the height difference of each portion There is a clear difference between light and dark colors.
  • the image calculation unit 7 calculates a difference between adjacent pixels in the vertical direction (Y) from the result, and acquires a position where the change in the difference value greatly changes in the vertical direction as an upper eyelid position. Further, even at the time (point indicated as "closed” in the drawing) eyelid closure, because there is a difference in the color contrast of the upper eyelid portion E u and lower eyelid portion E d, in the vertical direction between adjacent pixels The difference is taken, and the position where the difference value greatly changes is acquired as the boundary position between the upper eyelid and the lower eyelid.
  • FIG. 12 shows an example of the temporal change in the upper eyelid boundary position acquired by the image calculation unit 7 as described above.
  • Parameters such as the eye opening speed, eye closing speed, and eye closing time in the blink of the subject can be acquired from the data thus obtained.
  • the illumination device 1 is inclined by an angle ⁇ with respect to the irradiation optical axis La of the light L irradiated from the upper eyelid to the lower eyelid of the subject.
  • An image of the subject is acquired with the imaging optical axis Ia set, height difference information is acquired based on the position of the light image of the scattered light of the light L in this image, and the eyelid position is determined based on the height difference information. It is measured.
  • the image calculation unit 7 of the image measuring device 2 determines the height information of the region E along the irradiation direction of the light L based on the position of the light image in the direction perpendicular to the direction in which the light image of the light L extends. Therefore, the relative height from the upper eyelid to the lower eyelid of the subject is accurately detected, and as a result, the subject's eyelid position can be measured more accurately.
  • the illumination device 1 is arranged along the irradiation optical axis La so as to face the subject
  • the image measurement device 2 is arranged along the imaging optical axis Ia rotated by an angle ⁇ from the irradiation optical axis La. According to such an arrangement configuration, the relative height from the upper eyelid to the lower eyelid of the subject can be detected with high accuracy.
  • the present invention is not limited to the embodiment described above.
  • the shape of the light L emitted from the illumination device 1 is not particularly limited as long as it extends from the upper eyelid to the lower eyelid of the subject.
  • the shape may be rectangular or trapezoidal. There may be.
  • band-shaped line light since it is easy to acquire height information based on the position of the optical image acquired by the image measuring device 2, the measurement accuracy is improved.
  • the arrangement relationship between the lighting device 1 and the image measuring device 2 can be variously changed.
  • FIG. 13 is a schematic configuration diagram showing an arrangement relationship of the blink measurement system 10A according to the modification of the present invention.
  • the image measurement device 2 is arranged along the imaging optical axis Ia so as to face the region E of the subject, and the image measurement device 2 is irradiated with the irradiation optical axis La in the illumination device 1.
  • Is arranged along the imaging optical axis Ia rotated by an angle ⁇ .
  • FIG. 14 is a schematic configuration diagram showing an arrangement relationship of the blink measurement system 10B according to another modification of the present invention.
  • the lighting apparatus 1 is installed along an illumination optical axis La which is rotated by an angle theta La with respect to the center line C in the subject area E.
  • the image measuring device 2 is installed along the imaging optical axis Ia rotated by an angle ⁇ Ia with respect to the center line C in the subject area E.
  • FIG. 15 is a front view when the light L is irradiated obliquely with respect to the region E of the subject.
  • FIG. 16 is a front view in the case where a plurality of lights L are irradiated to the region E of the subject.
  • the light L may be irradiated by rotating it by a predetermined angle ⁇ clockwise or counterclockwise with respect to the area E.
  • a plurality of beams may be irradiated with an arbitrary interval. Further, the two methods shown in FIGS. 15 and 16 may be combined.
  • the measurement can be performed with high accuracy.
  • the light emitted from the illumination device 1 only needs to extend from the upper eyelid E u to the lower eyelid E d , and includes all of the pupil E p , sclera (white eye) E s , and iris E i. There is no need to extend as such.
  • the calculation unit obtains height information based on the position of the optical image in a direction perpendicular to the direction in which the optical image extends. In this way, the relative height from the upper eyelid to the lower eyelid of the subject is detected with high accuracy, and as a result, the position of the eyelid can be measured more accurately.
  • the illumination unit may be disposed so as to face the subject, and the imaging device may have an optical axis on a surface obtained by rotating a surface along the optical axis of the light by a predetermined angle from the facing direction of the subject. .
  • the imaging device may be arranged so as to face the subject, and the illumination unit may be configured such that the surface including the optical axis is a surface obtained by rotating the surface including the facing direction of the subject by a predetermined angle.
  • the imaging device and the illumination unit may be arranged so as to face obliquely with respect to the subject. In any case, the relative height from the upper eyelid to the lower eyelid of the subject can be detected with high accuracy.
  • the present invention uses a measuring device and a measuring method for measuring a subject's eyelid position, and enables the subject's eyelid position to be measured more accurately.
  • SYMBOLS 1 Illuminating device (illuminating part), 2 ... Image measuring device, 6 ... Image sensor (imaging device), 7 ... Image calculating part (calculating part) 10, 10A, 10B ... Blink measuring system, E ... Area

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

 瞬目計測システム10は、被験者の瞼位置を計測する計測装置であって、被験者の目領域Eの上瞼から下瞼に亘って延びる光を照射する照明装置1と、光の照射光軸Laを含む面を被験者に照射される光に沿った軸Aを中心に所定の角度θだけ回転させた面上に光軸Iaを有し、撮像された画像における光の光像の位置に基づいて高さ情報を取得し、高さ情報に基づいて瞼位置を計測する画像計測装置2とを備える。

Description

計測装置及び計測方法
 本発明は、本発明は、被験者の瞼位置を計測する計測装置及び計測方法に関する。
 従来から、被験者の眼球動作を計測することで様々な疾患の診断等を目的とした計測方法の開発が進められている。例えば、下記特許文献1に記載された装置では、カメラによって取得された被験者の眼画像を対象にして、上下方向に濃度値の変化を観測し、瞼と眼球との間で濃度値が変化することを利用して瞼位置を計測する。また、下記特許文献2に記載の装置では、カメラで被験者の動画像を取得し、その動画像の明暗を基に上瞼と下瞼との組み合わせの候補となるエッジラインを抽出し、下記特許文献3に記載の装置では、被験者の目画像から輝度分布に基づいて濃淡変化を示す一次元画像を抽出し、その一次元画像を基に瞼と眼球との境界点を検出する。また、下記特許文献4に記載の装置では、被験者の目に当てた光の反射光及び散乱光の強度をセンサで検出することにより、瞼が開いた状態か閉じた状態かを示す信号を生成する。
特開2000-102510号公報 特開2008-226047号公報 特開平7-313459号公報 特表2007-531579号公報
 しかしながら、上述した特許文献1~3に記載の装置における計測方法では、輝度値の変化で瞼の位置を計測する場合、外乱光による影響、又は睫毛による影響により、正確な瞼位置の計測が困難になる傾向にあった。特許文献4に記載の装置では、肌の状態や化粧等の影響により反射光及び散乱光の強度が様々に変化するため、正確に瞼位置を計測することは困難である。また、この装置では、計測時において睫毛による散乱光成分の影響が含まれるため正確性が低下する。
 そこで、本発明は、かかる課題に鑑みて為されたものであり、被験者の瞼位置をより正確に計測することが可能な計測装置及び計測方法を提供することを目的とする。
 上記課題を解決するため、本発明の一形態に係る計測装置は、被験者の瞼位置を計測する計測装置であって、被験者の上瞼から下瞼に亘って延びる光を照射する照明部と、光の光軸を含む面を、被験者に照射される光に沿った軸を中心に所定の角度だけ回転させた面上に光軸を有する撮像装置と、撮像装置によって撮像された画像における光像の位置に基づいて高さ情報を取得し、高さ情報に基づいて瞼位置を計測する演算部と、を備える。
 或いは、本発明の他の形態に係る計測方法は、被験者の瞼位置を計測する計測方法であって、被験者の上瞼から下瞼に亘って延びる光を照射する照明ステップと、光の光軸を含む面を、被験者に照射される光に沿った軸を中心に所定の角度だけ回転させた面上に撮像光軸を設定して、被験者の画像を取得する撮像ステップと、撮像ステップにおいて取得された画像における光像の位置に基づいて高さ情報を取得し、高さ情報に基づいて瞼位置を計測する演算ステップと、を備える。
 このような計測装置、或いは計測方法によれば、照明部によって上瞼から下瞼にかけて照射される光に対して、所定の角度だけ回転させた撮像光軸が設定された状態で被験者の画像が取得され、この画像における光像の位置を基に高さ情報が取得され、その高さ情報に基づいて瞼位置が計測される。その結果、外乱光による影響や睫毛の影響、又は、肌の状態や化粧等による反射光および散乱光の強度変化の影響を受けにくく、より正確な瞼位置の計測が可能になる。
 本発明によれば、被験者の瞼位置をより正確に計測することができる。
本発明の好適な一実施形態に係る計測装置である瞬目計測システムの概略構成を示す平面図である。 被験者の領域Eにおける図1の照明装置1による照明状態を示す正面図である。 照明装置1に対する画像計測装置2の配置位置による、領域E内の瞼と白目における光像の見え方を示す水平断面図である。 照明装置1に対する画像計測装置2の配置位置による、領域Eにおける画像イメージを示す図である。 図1の画像計測装置2の詳細構成を示す概略構成図である。 図1の画像計測装置2によって被験者の開瞼時に撮像された画像データの一例を示す図である。 被験者の開瞼時の領域Eの横方向から見た断面図である。 図1の画像計測装置2によって被験者の閉瞼時に撮像された画像データの一例を示す図である。 被験者の閉瞼時の領域Eの横方向から見た断面図である。 図5の画像演算部7によって処理される時系列の画像データの一例を示す図である。 図5の画像計測装置2により撮像された時系列の画像データに対し、画像演算部7により1次元重心演算を行った結果を示すグラフである。 図5の画像演算部7が取得した上瞼の境界位置の時間変化の例を示すグラフである。 本発明の変形例に係る瞬目計測システム10Aの配置関係を示す概略構成図である。 本発明の別の変形例に係る瞬目計測システム10Bの配置関係を示す概略構成図である。 本発明の変形例において、被験者の領域Eに対し斜めに光Lが照射される場合の正面図である。 本発明の変形例において、被験者の領域Eに対し複数本の光Lが照射される場合の正面図である。
 以下、添付図面を参照しながら本発明による計測装置及び計測方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明の対象部位を特に強調するように描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。
 図1は、本発明の好適な一実施形態に係る計測装置である瞬目計測システム10の概略構成を示す平面図である。同図においては、瞬目計測システム10の各構成要素の被験者の頭上から見た位置関係を示している。この瞬目計測システム10は、被験者の眼を含む領域Eに向かい合うように配置され、被験者の瞼位置を時系列に計測して被験者の瞬きに関するパラメータを取得する計測システムであり、光を照射する照明装置(照明部)1と、照明装置1と被験者の領域Eとの間に配置されたフィルタ3と、領域Eの光像を撮像することによって取得した画像データを処理する画像計測装置2とを備えて構成されている。
 照明装置1は、被験者の領域Eに正対するように配置され、被験者の上瞼から下瞼に亘って延びる光を照射する光源である。例えば、照明装置1は被験者の上瞼から下瞼に亘って帯状のライン光を照射する。図2は、被験者の領域Eにおける照明装置1による照明状態を示す正面図である。同図に示すように、照明装置1は、上瞼E、下瞼E、瞳孔E、強膜(白目)E、及び虹彩Eを有する眼を含む領域Eを対象にして、上瞼Euから下瞼Edを含む、長さLhの範囲で直線状に上下に横切るような幅Lwの光Lを照射する。すなわち、照明装置1は、照明装置1の発光中心と被験者の領域Eとを含む平面上に照射光軸Laを有し、被験者の上瞼Eから下瞼Eにかけて照射される光Lを生成する。ここで、照明装置1は、長さLh及び幅Lwの値が、それぞれ計測に最適な値となるように調整されており、特に、照射される光Lにおける幅Lwの値は、人間の睫毛の平均的な太さである0.1 mm以上となるように調整されている。また、照明装置1は、その発光中心が被験者の領域Eから距離WDだけ離れるように配置されている。この距離WDは、領域Eに照射される光Lにおける幅Lwが最も細くなるように、照明装置1に関して予め規定された作動距離に一致するように設定される。その一方で、領域Eに照射される光Lの幅Lwを調整するために、照明装置1が、その距離WDを作動距離から任意の範囲で増減させるように移動させて配置されてもよい。
 このような照明装置1としては、例えば、LD(Laser Diode)、SLD(Super Luminescent Diode)等の光源と、シリンドリカルレンズ及びコリメートレンズ等を含むレンズとで構成されるが、上記条件を満足すればLED(Light Emitting Diode)とスリットプレートとで構成されてもよい。また、照明装置1の発光波長は、被験者が光を直接感じることによるまぶしさ又は不安感による瞬目動作への影響を抑えるために、不可視波長領域である近赤外領域もしくは赤外領域の波長であることが好ましく、例えば、750nm以上の波長領域に設定される。さらに、照明装置1の発光強度は、被験者の目の保護の観点から十分に小さい値に設定されている。
 図1に戻って、フィルタ3は、照明装置1によって生成される光線束を通過させるように配置され、被験者に照射される光Lの強度を被験者の目を保護する目的で調整を行うためのND(Neutral Density)フィルタ(減光フィルタ)である。フィルタ3は、単一のフィルタであってもよいし、複数枚のフィルタの組み合わせであってもよい。
 画像計測装置2は、その撮像光軸Iaを、目領域E上に照射される光Lに沿った軸Aを中心として、照射光軸Laを含む垂直面(光線束に沿った面)を所定角度θだけ回転させた面上に有するように構成されている。すなわち、画像計測装置2は、その撮像光軸Iaが、照射光軸Laを角度θだけ回転させた軸を含む面上に設定され、正対方向に対して斜めの方向から領域Eを撮像する。
 図3は、照明装置1に対する画像計測装置2の配置位置による、領域E内の瞼Eと白目Eにおける光像の見え方を示す水平断面図であり、図4は、照明装置1に対する画像計測装置2の配置位置による、領域Eにおける画像イメージを示す図である。
 図3に示すように、照射光軸Laに対して撮像光軸Iaは角度θだけ回転している。そのため、照明装置1の位置から領域Eにおける光Lの照射位置を見る視線V1に対して、画像計測装置2の位置から領域Eにおける光Lの照射位置を見る視線V2も角度θだけ回転している。図3において、瞼Eは白目Eよりも位置的に前面に存在するため、領域E内において、照射光軸La上に存在する瞼Eにおける光Lの散乱位置POは、照射光軸La上に存在する白目Eにおける光Lの散乱位置POよりも手前に位置する。このとき、画像計測装置2を照明装置1と同軸上、すなわち照射光軸La上に画像計測装置2を設置した場合、画像計測装置2は視線V1から光Lの照射部分を見ることになる。この場合には、撮像光軸Iaと照射光軸Laが同軸上に存在するため、2つの位置PO,POからの散乱光成分による画像面GS上における光像の投影位置はいずれもGPとなり一致する。一方、画像計測装置2を照明装置1に対して角度θだけ回転して設置した場合、画像計測装置2は視線V2から光Lの照射部分を見ることになる。この場合には、位置POからの散乱光成分による画像面GS上における光像の投影位置はGPとなり、撮像光軸Iaと照射光軸Laとのなす角度θから幾何学的に計算される直線距離ΔLだけ画像面GSにおける中心位置から右方向にシフトする。同様に、位置POからの散乱光成分による画像面GS上における光像の投影位置はGPとなり、撮像光軸Iaと照射光軸Laとのなす角度θから幾何学的に計算される直線距離ΔLだけ画像面GSにおける中心位置から左方向にシフトする。すなわち、照明装置1から水平方向に角度θだけ回転して位置に設置される画像計測装置2によって撮像される光像における画像面GSにおける投影位置のずれ量が、領域Eにおける瞼Eと白目Eとの高低差を表すことになる。
 具体的には、図4(a)に示すように、撮像光軸Iaが照射光軸Laと同軸上に有る場合に取得される画像においては、領域Eにおいて光Lで照明された部分に存在する瞼E,Eと白目Eの各部分からの散乱光成分による光像は全て同一直線上に存在する。これに対して、図4(b)に示す本実施形態のように、照射光軸Laに対して撮像光軸Iaが水平方向に角度θだけ回転している場合に取得される画像においては、領域Eにおいて光Lで照明された部分に存在する瞼E,Eと白目Eの各部分からの散乱光成分による光像は、瞼E,Eと白目Eの各境界部分における高低差に応じた量だけシフトする(ずれる)。より詳細には、照射光軸Laに対して撮像光軸Iaが反時計方向に角度θだけ回転している場合、瞼E,Eにおける光Lの散乱光成分による光像の位置に対して、白目Eにおける光Lの散乱光成分による光像の位置は、画像面において水平方向左側にシフトする(ずれる)。このシフト量は瞼E,Eと白目Eとの高低差に比例する。そのため、このシフト量を画像データの1画素以下のサブピクセル単位で求めることにより、領域Eにおける高さ情報を高精度に求めることができる。
 次に、図5を参照して、画像計測装置2の詳細構成について説明する。
 同図に示すように、画像計測装置2は、撮像レンズ5、画像センサ(撮像装置)6、画像演算部7、及び制御通信部8によって構成されている。撮像レンズ5は、被験者の上瞼Eから下瞼Eまでを含む領域Eをカバーする画角を有し、照明装置1により照射された光Lの反射光及び散乱光成分を集光して画像センサ6上に結像する。画像センサ6は、撮像レンズ5により集光された反射光成分及び散乱光成分を画素ごとに光電変換することによって、画像面上における光像の輝度の二次元分布を表す画像信号(電気信号)を時系列に生成する。また、画像センサ6は、生成した画像信号を画像演算部7に転送する。画像演算部7は、画像センサ6で生成された画像信号に対して信号処理を行い、被験者の領域Eにおける水平方向(光Lの照射方向)に沿った高さ情報を取得し、さらに高さ情報を基に被験者の瞼位置を計測する。具体的には、画像演算部7は、画像信号に対して、平滑化処理、1次元重心演算処理、及び隣接画素差分処理などを実行し、光Lの照射位置における高さ情報及び輝度情報を取得し、それらの情報を基に瞼位置の検出を行う。制御通信部8は、画像センサ6及び画像演算部7の動作を制御するとともに、画像演算部7による演算結果を外部に送信する。このような画像計測装置2を構成する装置としては、例えば、高速2次元CMOSセンサと高速並列画像処理機構とを備える浜松ホトニクス社製のインテリジェントビジョンシステム(IVS)などが挙げられる。なお、撮像レンズ5には、外乱光による計測への影響を抑えるため、照明装置1における発光波長のみを通過させ、それ以外の波長帯を遮断する帯域通過フィルタ4が装着されても良い。帯域通過フィルタ4は単一のフィルタであっても良いし、複数枚のフィルタの組み合わせであっても良い。
 図6には、画像計測装置2によって被験者の開瞼時に撮像された画像データの一例を示し、図7には、このときの被験者の領域Eの横方向から見た断面図を示している。図7に示すように、帯状の光Lは上瞼E、下瞼E、及び眼球の白目、黒目部分に跨って照射される。このとき、図6に示されるように、画像データには、上瞼E及び下瞼Eにおける散乱光P1,P2、白目Eにおける散乱光S1,S2が現れる。散乱光S1,S2の画像データ上における位置は、上瞼E及び下瞼Eと白目Eにおける高低差に応じて、散乱光P1,P2に対して左方向にシフトする。なお、黒目部分における散乱光成分の強度は白目部分に比べて相対的に弱くなるため、図6に示す画像データ上においては、黒目部分の散乱光Iは現れていない。
 また、図8には、画像計測装置2によって被験者の閉瞼時に撮像された画像データの一例を示し、図9には、このときの被験者の領域Eの横方向から見た断面図を示している。図9に示すように、光Lは上瞼Eが閉瞼により伸長し下瞼Eに重なった状態で照射される。このとき、図8に示されるように、画像データには、上瞼E及び下瞼Eにおける散乱光P1,P2が現れる。閉瞼時には上瞼Eが下瞼Eの上に一部重なるため、散乱光P1およびP2の間には高低差が生じる。したがって、散乱光P2の画像データ上における位置は、散乱光P1との高低差に応じた移動量だけ左方向にシフトする。
 このような性質を利用することにより、画像計測装置2の画像演算部7は、光Lの伸びる方向に垂直な方向、すなわち、水平方向の光Lの光像の位置ずれを求めることにより、開瞼時及び閉瞼時のいずれにおいても眼球部分と瞼部分の高低差情報を求めることができる。さらに、画像演算部7は、求めた眼球部分と瞼部分の高低差情報を基に、開瞼時においては眼球と上下瞼との間における高さの変化点から瞼位置を推定し、閉瞼時においては上下瞼間における高さの変化点から瞼位置を推定する。
 画像計測装置2による瞼位置推定処理の手順について、より詳細に説明する。まず、被験者の領域Eを照明装置1に正対させた状態で領域Eに光Lを照射させる。この状態で画像計測装置2により領域Eを撮像して、時系列的に画像データを取得し時系列画像データを生成する。その後、画像計測装置2の画像演算部7により、時系列画像データに対して瞼位置の推定処理を実行する。具体的には、画像演算部7は、画像データに対して横方向(水平方向)に1次元重心演算を行うことにより、光Lの光像の正確な横方向位置を取得する。そして、画像演算部7は、1次元重心演算によって得られた光Lの光像の横方向位置からその光像の横方向におけるシフト量、すなわち、高低差情報を取得する。さらに、画像演算部7は、時系列画像データを連続的に処理することにより、高低差情報の時間変化を求める。そして、画像演算部7は、縦方向(垂直方向)における高低差情報の変化から瞼位置を推定し、瞼位置の時間的位置変化を取得する。なお、領域Eの黒目部分については、散乱光成分強度が白目部分に比べて相対的に弱くなるため、1次元重心演算時における閾値設定によっては演算対象とならない場合がある。その場合、当該部分における高低差情報の値はゼロとする。
 図10には、画像演算部7によって処理される時系列の画像データの一例を示している。同時では、左側に、領域Eにおける光Lの照射状態を時系列(時間t=T<T<T<T)に示しており、右側に、各照射状態に対応して画像計測装置2で得られた画像データ上の光Lの光像を示している。同図に示すように、開瞼状態(t=T)から閉瞼状態(t=T)に移行する間に、上瞼と白目との境界に表れる光Lの光像シフトの縦方向(垂直方向)Yにおける変化点が下方向に移動していることがわかる。なお、画像データ上には目の周辺部や睫毛、眉毛からの散乱光がバックグラウンドとして存在する場合があるが、この画像データの例では、説明のために光Lの光像のみを示している。画像演算部7は、光Lのシフトの変化点を求めることにより上瞼位置を計測し、その上瞼位置の時間変化から瞬目動作を解析する。
 図11は、画像計測装置2により撮像された時系列の画像データに対し、画像演算部7により1次元重心演算を行った結果を示す。同図では、高低差を色の明暗で示しており、白に近いほど高さが高く、黒に近いほど高さが低いことを示している。横方向(t)は時間軸であり、およそ4秒間にわたって計測を行い4回程度の瞼の開閉が計測されている。同図の結果から、開瞼時(図中で“開”と示された箇所)においては、上瞼部分Eと黒目部分E,Eおよび白目部分Eにおいては、各部の高低差を示す色の明暗に明確な差が存在する。画像演算部7は、さらに、この結果から縦方向(Y)において隣接する画素同士の差分を取り、縦方向において差分値の変化が大きく変化する位置を上瞼位置として取得する。また、閉瞼時(図中で“閉”と示された箇所)においても、上瞼部分Eと下瞼部分Eにおいて色の明暗に差が存在するため、縦方向において隣接画素同士の差分を取り、差分値が大きく変化する位置を、上瞼と下瞼との境界位置として取得する。
 さらに、図12には、上記のようにして画像演算部7が取得した上瞼の境界位置の時間変化の例を示している。このようにして得られたデータから、被験者の瞬きにおける開眼速度、閉眼速度、及び閉眼時間等のパラメータを取得することが可能となる。
 以上説明した瞬目計測システム10或いはそれを用いた計測方法によれば、照明装置1によって被験者の上瞼から下瞼にかけて照射される光Lの照射光軸Laに対して、角度θだけ傾いた撮像光軸Iaが設定された状態で被験者の画像が取得され、この画像における光Lの散乱光の光像の位置を基に高低差情報が取得され、その高低差情報に基づいて瞼位置が計測される。その結果、瞼等における散乱光の発生の影響、睫毛の影響、又は散乱条件の変化の影響を受けにくく、より正確な瞼位置の計測が可能になる。これにより、被験者の瞬目動作の正確な解析が実現される。
 ここで、画像計測装置2の画像演算部7は、光Lの光像が延びる方向に垂直な方向におけるその光像の位置に基づいて、光Lの照射方向に沿った領域Eの高さ情報を取得するので、被験者の上瞼から下瞼にかけての相対的な高さが精度よく検出され、その結果として被験者の瞼位置をさらに正確に計測することができる。
 また、照明装置1は被験者に正対するように照射光軸Laに沿って配置され、画像計測装置2は、照射光軸Laから角度θだけ回転させた撮像光軸Iaに沿って配置される。このような配置構成によれば、被験者の上瞼から下瞼にかけての相対的な高さを精度よく検出することができる。
 なお、本発明は、前述した実施形態に限定されるものではない。例えば、照明装置1から照射される光Lは、被験者の上瞼から下瞼に亘って延びる光であればその形状は特段限定されず、例えば、矩形状であってもよいし、台形形状であってもよい。ただし、帯状のライン光であれば、画像計測装置2によって取得される光像の位置に基づいて高さ情報を取得しやすいため、計測精度が向上する。
 また、照明装置1と画像計測装置2の配置関係は、様々変更することができる。
 図13は、本発明の変形例に係る瞬目計測システム10Aの配置関係を示す概略構成図である。同図に示す瞬目計測システム10Aにおいては、画像計測装置2が被験者の領域Eに正対するように撮像光軸Iaに沿って配置され、画像計測装置2が、照明装置1における照射光軸Laから角度θだけ回転させた撮像光軸Iaに沿って配置されるように構成される。このような構成によっても、領域Eに照射される光Lの光像の位置に基づいて、領域Eにおける高低差情報を取得することができるため、被験者の上瞼から下瞼にかけての相対的な高さを精度よく検出することができる。
 また、図14は、本発明の別の変形例に係る瞬目計測システム10Bの配置関係を示す概略構成図である。同図に示す瞬目計測システム10Bにおいては、照明装置1は被験者の領域Eにおける中心線Cに対して角度θLaだけ回転させた照射光軸Laに沿って設置される。また、画像計測装置2は被験者の領域Eにおける中心線Cに対して角度θIaだけ回転させた撮像光軸Iaに沿って設置される。このような構成によっても、領域Eに照射される光Lの光像の位置に基づいて、領域Eにおける高低差情報を取得することができるため、被験者の上瞼から下瞼にかけての相対的な高さを精度よく検出することができる。
 また、照明装置1は、単一の光Lを被験者の領域Eに垂直に照射することに限定されるものではない。図15は、被験者の領域Eに対し斜めに光Lが照射される場合の正面図である。また、図16は、被験者の領域Eに対し複数本の光Lが照射される場合の正面図である。光Lは、図15に示すように、領域Eに対して時計方向あるいは反時計方向に所定の角度θだけ回転させて照射されても良く、また、図16に示すように、領域Eに対して任意の間隔を持ち複数本照射されても良い。また、図15および図16に示す2つの方法が組み合わされても良い。いずれの場合も、被験者が計測中に動いてしまう場合や照射箇所の皮膚状態や睫毛等の影響がある場合でも、精度よく計測することが可能となる。また、照明装置1から照射される光は、上瞼Eから下瞼Eに亘って延びていればよく、瞳孔E、強膜(白目)E、及び虹彩Eの全てを含むように延びる必要はない。
 ここで、上記の計測装置においては、演算部は、光像が延びる方向に垂直な方向における光像の位置に基づいて高さ情報を取得する、ことが好適である。こうすれば、被験者の上瞼から下瞼にかけての相対的な高さが精度よく検出され、その結果として瞼位置をさらに正確に計測することができる。
 照明部は被験者に正対するように配置され、撮像装置は光の光軸に沿った面を被験者の正対方向から所定の角度だけ回転させた面上に光軸を有するものであってもよい。また、撮像装置は被験者に正対するように配置され、照明部は光軸を含む面が被験者の正対方向を含む面を所定の角度だけ回転させた面上になるように構成されてもよい。さらに、撮像装置及び照明部は、被験者に対して斜めに向くように配置されていてもよい。いずれの場合も、被験者の上瞼から下瞼にかけての相対的な高さを精度よく検出することができる。
 本発明は、被験者の瞼位置を計測する計測装置及び計測方法を使用用途とし、被験者の瞼位置をより正確に計測することを可能とするものである。
 1…照明装置(照明部)、2…画像計測装置、6…画像センサ(撮像装置)、7…画像演算部(演算部)、10,10A,10B…瞬目計測システム、E…領域、Ia…撮像光軸、L…光、La…照射光軸。

Claims (6)

  1.  被験者の瞼位置を計測する計測装置であって、
     被験者の上瞼から下瞼に亘って延びる光を照射する照明部と、
     前記光の光軸を含む面を、前記被験者に照射される前記光に沿った軸を中心に所定の角度だけ回転させた面上に光軸を有する撮像装置と、
     前記撮像装置によって撮像された画像における光像の位置に基づいて高さ情報を取得し、前記高さ情報に基づいて前記瞼位置を計測する演算部と、
    を備える計測装置。
  2.  前記演算部は、前記光像が延びる方向に垂直な方向における前記光像の位置に基づいて前記高さ情報を取得する、
    請求項1記載の計測装置。
  3.  前記照明部は前記被験者に正対するように配置され、
     前記撮像装置は前記光の光軸に沿った面を、前記被験者の正対方向から所定の角度だけ回転させた面上に光軸を有する、
    請求項1又は2記載の計測装置。
  4.  前記撮像装置は前記被験者に正対するように配置され、
     前記照明部は前記光軸を含む面が前記被験者の正対方向を含む面を前記所定の角度だけ回転させた面上になるように構成される、
    請求項1又は2記載の計測装置。
  5.  前記撮像装置及び前記照明部は、前記被験者に対して斜めに向くように配置される、
    請求項1又は2記載の計測装置。
  6.  被験者の瞼位置を計測する計測方法であって、
     被験者の上瞼から下瞼に亘って延びる光を照射する照明ステップと、
     前記光の光軸を含む面を、前記被験者に照射される前記光に沿った軸を中心に所定の角度だけ回転させた面上に撮像光軸を設定して、前記被験者の画像を取得する撮像ステップと、
     前記撮像ステップにおいて取得された画像における光像の位置に基づいて高さ情報を取得し、前記高さ情報に基づいて前記瞼位置を計測する演算ステップと、
    を備える計測方法。
PCT/JP2014/080239 2013-12-18 2014-11-14 計測装置及び計測方法 WO2015093202A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480068600.XA CN105828701B (zh) 2013-12-18 2014-11-14 测量装置和测量方法
US15/105,088 US10478063B2 (en) 2013-12-18 2014-11-14 Measurement device and measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013261251A JP6227996B2 (ja) 2013-12-18 2013-12-18 計測装置及び計測方法
JP2013-261251 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015093202A1 true WO2015093202A1 (ja) 2015-06-25

Family

ID=53402558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080239 WO2015093202A1 (ja) 2013-12-18 2014-11-14 計測装置及び計測方法

Country Status (4)

Country Link
US (1) US10478063B2 (ja)
JP (1) JP6227996B2 (ja)
CN (1) CN105828701B (ja)
WO (1) WO2015093202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040805A (ja) * 2019-09-09 2021-03-18 株式会社トーメーコーポレーション 眼科装置及びコンピュータプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448825B2 (en) * 2013-05-01 2019-10-22 Musc Foundation For Research Development Monitoring neurological functional status
AU2015278237B2 (en) * 2014-06-20 2018-01-18 Sdip Holdings Pty Ltd Monitoring drowsiness
JP6255470B1 (ja) * 2016-12-27 2017-12-27 株式会社Qdレーザ 網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、網膜走査型アイウェア提供システム、網膜走査型アイウェア提供方法及び網膜走査型アイウェア

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186538A (ja) * 1983-04-07 1984-10-23 キヤノン株式会社 眼科装置
JP2000102510A (ja) * 1998-09-29 2000-04-11 Oki Electric Ind Co Ltd 眼の開度測定方法および装置
JP2000157493A (ja) * 1998-11-27 2000-06-13 Nidek Co Ltd 眼科装置
JP2007531579A (ja) * 2004-04-01 2007-11-08 ウィリアム・シー・トーチ 目の動きをモニターするバイオセンサ、コミュニケーター及びコントローラー並びにそれらの使用方法
JP2010273954A (ja) * 2009-05-29 2010-12-09 Hamamatsu Photonics Kk 瞬目計測装置及び瞬目計測方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933756A (en) * 1988-04-12 1990-06-12 Kabushiki Kaisha Topcon Eye fundus camera
JP3143819B2 (ja) 1994-05-20 2001-03-07 株式会社豊田中央研究所 まぶたの開度検出装置
JP3539813B2 (ja) * 1995-11-30 2004-07-07 株式会社ニデック 眼科装置
JP4111592B2 (ja) * 1998-06-18 2008-07-02 コニカミノルタセンシング株式会社 3次元入力装置
JP2002122899A (ja) * 2000-10-16 2002-04-26 Matsushita Electric Ind Co Ltd 虹彩撮像装置
JP2003323607A (ja) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd 虹彩撮像装置
JP4549109B2 (ja) * 2004-06-14 2010-09-22 キヤノン株式会社 照明装置及び撮影装置
JP4710679B2 (ja) * 2006-03-23 2011-06-29 日産自動車株式会社 開閉眼判定方法及びその装置
JP2007319174A (ja) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd 撮影装置およびそれを用いた認証装置
JP4331197B2 (ja) * 2006-11-06 2009-09-16 トヨタ自動車株式会社 眼開度検出装置及び方法
JP4895797B2 (ja) * 2006-12-26 2012-03-14 アイシン精機株式会社 瞼検出装置、瞼検出方法及びプログラム
JP4888127B2 (ja) * 2007-01-17 2012-02-29 コニカミノルタセンシング株式会社 三次元測定装置及び携帯型計測器
JP4309926B2 (ja) * 2007-03-13 2009-08-05 アイシン精機株式会社 顔特徴点検出装置、顔特徴点検出方法及びプログラム
JP4848301B2 (ja) 2007-03-14 2011-12-28 アイシン精機株式会社 瞼検出装置及びプログラム
JP4309928B2 (ja) 2007-03-15 2009-08-05 アイシン精機株式会社 瞼検出装置、瞼検出方法、及び、プログラム
JP4307496B2 (ja) * 2007-03-19 2009-08-05 株式会社豊田中央研究所 顔部位検出装置及びプログラム
US8106783B2 (en) * 2008-03-12 2012-01-31 Denso Corporation Input apparatus, remote controller and operating device for vehicle
US9965681B2 (en) * 2008-12-16 2018-05-08 Osterhout Group, Inc. Eye imaging in head worn computing
JP5221436B2 (ja) * 2009-04-02 2013-06-26 トヨタ自動車株式会社 顔特徴点検出装置及びプログラム
JP5180997B2 (ja) * 2010-07-14 2013-04-10 株式会社豊田中央研究所 まぶた検出装置及びプログラム
JP2012038106A (ja) 2010-08-06 2012-02-23 Canon Inc 情報処理装置、情報処理方法、およびプログラム
JP5879825B2 (ja) * 2010-09-30 2016-03-08 株式会社ニデック 角膜内皮細胞撮影装置
KR101046677B1 (ko) * 2011-03-15 2011-07-06 동국대학교 산학협력단 눈 위치 추적방법 및 이를 이용한 의료용 헤드램프
JP5737401B2 (ja) * 2011-07-11 2015-06-17 トヨタ自動車株式会社 瞼検出装置
JP5571864B1 (ja) * 2011-07-14 2014-08-13 コーニンクレッカ フィリップス エヌ ヴェ 光学焦点の遠隔測定のためのシステム及び方法
EP2551636A1 (de) * 2011-07-25 2013-01-30 Leica Geosystems AG Berührungslos bedienbare Vermessungsvorrichtung und Steuerverfahren für eine solche
CA2750287C (en) * 2011-08-29 2012-07-03 Microsoft Corporation Gaze detection in a see-through, near-eye, mixed reality display
JP6338526B2 (ja) * 2011-10-17 2018-06-06 アイディール スキャニング リミテッド ライアビリティ カンパニー 眼のトポグラフィを特定するための方法及び装置
EP2767221B1 (en) * 2011-11-02 2018-09-05 Nidek Co., Ltd. Corneal imaging device
US8824779B1 (en) * 2011-12-20 2014-09-02 Christopher Charles Smyth Apparatus and method for determining eye gaze from stereo-optic views
US8942434B1 (en) * 2011-12-20 2015-01-27 Amazon Technologies, Inc. Conflict resolution for pupil detection
US8988519B2 (en) * 2012-03-20 2015-03-24 Cisco Technology, Inc. Automatic magnification of data on display screen based on eye characteristics of user
US9201512B1 (en) * 2012-04-02 2015-12-01 Google Inc. Proximity sensing for input detection
CN102752458A (zh) 2012-07-19 2012-10-24 北京理工大学 一种驾驶员疲劳检测手机与检测单元
JP6292799B2 (ja) * 2012-10-26 2018-03-14 キヤノン株式会社 眼科装置およびその制御方法
US20140267668A1 (en) * 2013-03-15 2014-09-18 Lumetrics, Inc. Portable fundus camera
US10379609B2 (en) * 2013-05-22 2019-08-13 National University Corporation Kobe University Line-of-sight measurement device, line-of-sight measurement method and line-of-sight measurement program
KR20150005094A (ko) * 2013-07-04 2015-01-14 삼성전자주식회사 전자 디바이스 및 전자 디바이스에서 눈 영역 검출 방법
US9795290B2 (en) * 2013-11-15 2017-10-24 Tearscience, Inc. Ocular tear film peak detection and stabilization detection systems and methods for determining tear film layer characteristics
JP6462209B2 (ja) * 2013-12-03 2019-01-30 浜松ホトニクス株式会社 計測装置及び計測方法
KR101613091B1 (ko) * 2014-04-24 2016-04-20 한국과학기술연구원 시선 추적 장치 및 방법
EP3218845A4 (en) * 2014-11-13 2018-07-11 Intel Corporation Facial liveness detection in image biometrics
KR101638095B1 (ko) * 2015-01-16 2016-07-20 한국과학기술원 시선 인식 및 생체 신호를 이용한 헤드 마운트 디스플레이를 통해 사용자 인터페이스를 제공하는 방법, 이를 이용한 장치 및 컴퓨터 판독 가능한 기록 매체
JP6530239B2 (ja) * 2015-05-28 2019-06-12 浜松ホトニクス株式会社 両眼計測装置、両眼計測方法、及び両眼計測プログラム
JP6231541B2 (ja) * 2015-06-25 2017-11-15 株式会社Qdレーザ 画像投影装置
JP2017131550A (ja) * 2016-01-29 2017-08-03 キヤノン株式会社 画像処理装置及び画像処理方法
US10796608B2 (en) * 2016-11-18 2020-10-06 Gaumard Scientific Comapny, Inc. Interactive education system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186538A (ja) * 1983-04-07 1984-10-23 キヤノン株式会社 眼科装置
JP2000102510A (ja) * 1998-09-29 2000-04-11 Oki Electric Ind Co Ltd 眼の開度測定方法および装置
JP2000157493A (ja) * 1998-11-27 2000-06-13 Nidek Co Ltd 眼科装置
JP2007531579A (ja) * 2004-04-01 2007-11-08 ウィリアム・シー・トーチ 目の動きをモニターするバイオセンサ、コミュニケーター及びコントローラー並びにそれらの使用方法
JP2010273954A (ja) * 2009-05-29 2010-12-09 Hamamatsu Photonics Kk 瞬目計測装置及び瞬目計測方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040805A (ja) * 2019-09-09 2021-03-18 株式会社トーメーコーポレーション 眼科装置及びコンピュータプログラム
JP7370570B2 (ja) 2019-09-09 2023-10-30 株式会社トーメーコーポレーション 眼科装置及びコンピュータプログラム

Also Published As

Publication number Publication date
US20160317033A1 (en) 2016-11-03
JP2015118523A (ja) 2015-06-25
US10478063B2 (en) 2019-11-19
CN105828701B (zh) 2018-02-13
JP6227996B2 (ja) 2017-11-08
CN105828701A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
US10102646B2 (en) Optical image measuring apparatus
US10360683B2 (en) Image processing apparatus, image processing method, and program
US8879069B2 (en) Optical image measurement device
JP6009935B2 (ja) 眼科装置
JP6112846B2 (ja) 眼科装置
JP6535223B2 (ja) 瞬目計測方法、瞬目計測装置、及び瞬目計測プログラム
US20120120368A1 (en) Fundus analyzing appartus and fundus analyzing method
KR101570666B1 (ko) 화상처리장치 및 화상처리방법
US20130063698A1 (en) Fundus observation apparatus
JP6227996B2 (ja) 計測装置及び計測方法
US9913581B2 (en) Photography apparatus and photography method
WO2015019867A1 (ja) 眼科撮影装置
US9861279B2 (en) Method and device for determining the eye position
US20160106312A1 (en) Data processing method and oct apparatus
US10080496B2 (en) Ophthalmological device
JP6585897B2 (ja) 眼科撮影装置
JP2014073207A (ja) 眼科撮影装置
JP6407631B2 (ja) 眼科装置
JP6901264B2 (ja) 眼科装置
JP6779674B2 (ja) Oct装置
WO2020250922A1 (ja) 眼科装置
JP6693149B2 (ja) 瞳孔検出装置、および瞳孔検出方法
JP7231366B2 (ja) 眼科装置および眼科装置の制御方法
JP6756873B2 (ja) 眼科撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15105088

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871656

Country of ref document: EP

Kind code of ref document: A1