WO2015093010A1 - 燃料電池システム - Google Patents
燃料電池システム Download PDFInfo
- Publication number
- WO2015093010A1 WO2015093010A1 PCT/JP2014/006145 JP2014006145W WO2015093010A1 WO 2015093010 A1 WO2015093010 A1 WO 2015093010A1 JP 2014006145 W JP2014006145 W JP 2014006145W WO 2015093010 A1 WO2015093010 A1 WO 2015093010A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- temperature
- fuel cell
- exhaust gas
- desulfurization
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2013—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0618—Reforming processes, e.g. autothermal, partial oxidation or steam reforming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0675—Removal of sulfur
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a fuel cell comprising an impurity removing unit that removes impurities in a raw material and a purification unit that removes harmful components (for example, carbon monoxide and hydrocarbon components) in combustion exhaust gas discharged from the fuel cell. It is about the system.
- Fuel cell systems are small but have high power generation efficiency, and are therefore being used as power generation units in distributed power generation systems.
- the fuel cell system In order for the fuel cell system to function as the power generation unit, it is necessary to stably supply raw materials necessary for power generation to the fuel cell system.
- the raw material supplied to the fuel cell system includes natural gas (city gas), LPG, gasoline, kerosene and the like supplied from an existing infrastructure.
- such a raw material contains, for example, a sulfur compound or a sulfur compound derived from the raw material as an odorant for detecting gas leakage.
- This sulfur compound poisons the reforming catalyst of the reformer that reforms the raw material to generate the fuel and the electrode catalyst of the fuel cell, and degrades their performance. Therefore, in the fuel cell system, a desulfurization section having a desulfurization catalyst is provided in order to remove sulfur components in the raw material.
- some desulfurization catalysts in the desulfurization part have temperature dependence, and one example thereof is a hydrodesulfurization catalyst used for hydrodesulfurization (hydrodesulfurization) treatment. Therefore, in order to improve the desulfurization performance of the desulfurization section having this hydrodesulfurization catalyst, a fuel cell system (solid oxide) that uses exhaust heat such as radiant heat and heat transfer discharged from the fuel cell or reformer to heat the desulfurization section. A fuel cell system) has been proposed. (For example, refer to Patent Document 1).
- a configuration is used in which unused fuel is combusted in the fuel cell, the combustion heat is recovered, and used for reforming reaction in the reformer, preheating of the air supplied to the fuel cell, heating of the desulfurization section, etc.
- An adopted fuel cell system solid oxide fuel cell system
- the combustion exhaust gas generated by burning this unused fuel contains harmful substances such as carbon monoxide. Ingredients are included. Therefore, a fuel cell system (solid oxide fuel cell system) provided with a combustion catalyst for oxidizing and decomposing harmful components in the combustion exhaust gas before exhausting the combustion exhaust gas to the outside air has been proposed (for example, a patent). Reference 2).
- a desulfurization section is arranged and heated in the vicinity of a fuel cell that operates at a high temperature, and harmful components such as carbon monoxide contained in combustion exhaust gas generated in the fuel cell.
- a combustion catalyst part is provided at the outlet for discharging the combustion exhaust gas.
- the amount of heat exhausted from the fuel cell system should be reduced while removing harmful components from the combustion exhaust gas and removing impurities such as sulfur components from the raw material. is important.
- Patent Documents 1 and 2 described above, removal of harmful components from the combustion exhaust gas and removal of impurities from the raw material are realized while effectively utilizing the heat of the exhaust gas flowing through the fuel cell system. There is a problem that the configuration is not possible.
- the present invention has been made in view of the above-described problems, and the object thereof is to remove harmful components from combustion exhaust gas and from raw materials while effectively utilizing the heat of combustion exhaust gas flowing through the fuel cell system. It is an object of the present invention to provide a fuel cell system that can appropriately remove impurities.
- a fuel cell system includes a fuel cell unit that generates power using a fuel obtained by reforming a supplied raw material and supplied air, and the fuel.
- An air heat exchange unit that preheats air supplied to the fuel cell unit by heat of combustion exhaust gas generated by burning unused fuel and air in the battery unit, and a part of the heat retained by the preheating of the air
- An impurity removing unit that removes impurities in the raw material that is heated to a predetermined temperature range by the heat of the lost combustion exhaust gas, a purification unit that removes harmful components contained in the combustion exhaust gas, the impurity removing unit, and
- a heat exchanging unit that exchanges heat between the heat of the flue gas that has lost some of the heat retained by heating the purification unit and the refrigerant.
- the fuel cell system according to the present invention is configured as described above, and removes harmful components from the combustion exhaust gas and impurities from the raw material while effectively utilizing the heat of the combustion exhaust gas flowing through the fuel cell system. The effect that it can remove appropriately is produced.
- FIG. 1 is a block diagram schematically showing an example of a schematic configuration of a fuel cell system according to Embodiment 1 of the present invention. It is a block diagram which shows schematic structure of the fuel cell unit with which the fuel cell system shown in FIG. 1 is provided. It is a block diagram which shows typically another example of schematic structure of the fuel cell system shown in FIG. 1 is a block diagram schematically showing an example of a schematic configuration of a fuel cell system according to Embodiment 1 of the present invention. It is a block diagram which shows the modification of the fuel cell system which concerns on Embodiment 1 of this invention. It is a block diagram which shows the modification of the fuel cell system which concerns on Embodiment 1 of this invention.
- FIG. 13 is a flowchart showing an example of a fuel cell temperature control process in the fuel cell system according to Embodiment 3 shown in FIG. It is a block diagram which shows the modification of the fuel cell system which concerns on Embodiment 3 of this invention. It is a block diagram which shows the modification of the fuel cell system which concerns on Embodiment 3 of this invention.
- a fuel cell system includes a fuel cell unit that generates electric power using fuel obtained by reforming a supplied raw material and supplied air, An air heat exchanger that preheats the air supplied to the fuel cell unit by the heat of the combustion exhaust gas generated by burning the fuel and air used, and the combustion exhaust gas that has lost part of the heat retained by the air preheating An impurity removing unit that removes impurities in the raw material, a purification unit that removes harmful components contained in the combustion exhaust gas, and an impurity removing unit and a purification unit that are heated to a predetermined temperature range by the heat of A heat exchange unit that exchanges heat between the heat of the flue gas that has lost some of the heat retained by heating and the refrigerant.
- the heat of the combustion exhaust gas is used as a heat source for heating in the air heat exchange unit, impurity removal unit, purification unit, and heat exchange unit. For this reason, the heat which the combustion exhaust gas which distribute
- the fuel cell system according to the first aspect of the present invention removes harmful components such as carbon monoxide from the combustion exhaust gas and effectively uses the heat of the combustion exhaust gas flowing through the fuel cell system. There is an effect that the impurities can be appropriately removed.
- the fuel cell system according to a second aspect of the present invention is the fuel cell system according to the first aspect described above, wherein the heat exchange unit is a water heat exchange unit using water as the refrigerant, and the water heat exchange.
- the unit may be configured to exchange heat between the heat of the combustion exhaust gas and water to heat the water.
- the heat exchanging unit is a water heat exchanging unit
- heat can be exchanged with the combustion exhaust gas using water as a refrigerant, and the heat held by the combustion exhaust gas can be recovered by water.
- the combustion exhaust gas is cooled to an appropriate temperature by heat exchange with the water and discharged, and condensed water can be obtained by condensing moisture contained in the exhaust gas as the temperature decreases. For this reason, when there exists a process which requires water in a system, the condensed water obtained from this combustion exhaust gas can be utilized for this process.
- a steam reforming reaction process performed in the reformer can be exemplified.
- the fuel cell system according to a third aspect of the present invention is the fuel cell system according to the first aspect described above, wherein the impurity removal unit is a desulfurization unit that removes sulfur compounds as impurities in the raw material. Good.
- the fuel cell system according to a fourth aspect of the present invention is the fuel cell system according to the third aspect described above, wherein a control unit, a combustion exhaust gas temperature adjustment unit for adjusting the temperature of the combustion exhaust gas, and the desulfurization unit are provided.
- a desulfurization unit temperature detection unit for detecting a temperature
- the control unit controls the desulfurization unit such that the detected temperature detected by the desulfurization unit temperature detection unit is an upper limit temperature in the predetermined temperature range of the desulfurization unit
- the control unit can grasp the temperature of the desulfurization unit. Moreover, the combustion exhaust gas temperature adjustment part is provided. For this reason, when the control unit determines that the detected temperature detected by the desulfurization unit temperature detection unit exceeds the desulfurization unit control temperature, the combustion exhaust gas temperature adjustment unit can be operated to reduce the temperature of the combustion exhaust gas. Therefore, the temperature of the desulfurization part heated using the heat which combustion exhaust gas has can be reduced.
- the temperature of the desulfurization unit can be adjusted so as not to exceed the desulfurization unit control temperature, and the desulfurization unit is stably heated within a predetermined temperature range. Can do.
- a fuel cell system is the fuel cell system according to the third aspect described above, wherein a control unit, a combustion exhaust gas temperature adjustment unit that adjusts the temperature of the combustion exhaust gas, and a purification unit are provided.
- a purification catalyst temperature detection unit for detecting a temperature and the control unit is a purification catalyst control in which the detected temperature detected by the purification catalyst temperature detection unit is an upper limit temperature in the predetermined temperature range of the purification unit
- the combustion exhaust gas temperature adjustment unit may be operated so that the detected temperature is equal to or lower than the purification catalyst control temperature.
- the control unit can grasp the temperature of the purification unit. Moreover, the combustion exhaust gas temperature adjustment part is provided. For this reason, when the control unit determines that the detected temperature detected by the purification catalyst temperature detection unit exceeds the purification catalyst control temperature, the combustion exhaust gas temperature adjustment unit can be operated to reduce the temperature of the combustion exhaust gas. . Therefore, the temperature of the purification unit heated using the heat of the combustion exhaust gas can be lowered.
- the temperature of the purification unit can be adjusted so as not to exceed the purification catalyst control temperature, and the purification unit can be stably heated within a predetermined temperature range. Can do.
- a fuel cell system is the fuel cell system according to the third aspect described above, wherein the temperature of the combustion exhaust gas is controlled by controlling the operating temperature of the control unit and the fuel cell unit.
- a combustion exhaust gas temperature adjusting unit for adjusting; and a fuel cell temperature detecting unit for detecting a temperature in the fuel cell unit, wherein the detected temperature detected by the fuel cell temperature detecting unit is the desulfurization temperature.
- the purifying unit is determined to be higher than the fuel cell control temperature, which is the upper limit temperature in the fuel cell unit, associated with the upper limit temperature in the predetermined temperature range, the detected temperature is the fuel cell control temperature
- You may be comprised so that the said flue gas temperature adjustment part may be operated so that it may become the following.
- the control unit can grasp the temperature in the fuel cell unit. Moreover, the combustion exhaust gas temperature adjustment part is provided. For this reason, when the control unit determines that the detected temperature detected by the fuel cell temperature detecting unit exceeds the fuel cell control temperature, the combustion exhaust gas temperature adjusting unit can be operated to reduce the temperature of the combustion exhaust gas. Therefore, the temperature of the desulfurization section and the purification section heated using the heat of the combustion exhaust gas can be reduced.
- the fuel cell system according to the sixth aspect of the present invention adjusts so that the temperature of the desulfurization unit does not exceed the desulfurization unit control temperature, and further, the temperature of the purification unit does not exceed the purification catalyst control temperature. be able to. For this reason, in the fuel cell system according to the sixth aspect of the present invention, the desulfurization section and the purification section can be stably heated within a predetermined temperature range.
- a fuel cell system is the fuel cell system according to any one of the third to sixth aspects described above, in which combustion exhaust gas discharged from the fuel cell unit circulates.
- An exhaust gas path is provided, the desulfurization part has a desulfurization part heating part for heating the desulfurization catalyst filled in the desulfurization part, and the desulfurization part heating part and the purification part are provided in the combustion exhaust gas path It may be configured.
- the desulfurization part heating unit and the purification unit are provided in the combustion exhaust gas path, the heat of the combustion exhaust gas guided by this combustion exhaust gas path is used to remove the desulfurization catalyst and the purification unit of the desulfurization part.
- the purification catalyst can be heated to a predetermined temperature range.
- a fuel cell system is the fuel cell system according to any one of the third to seventh aspects, further comprising a heat insulating member that covers both the desulfurization part and the purification part.
- the desulfurization part and the purification part share a part of the structure forming the desulfurization part and the part of the structure forming the purification part. It may be configured.
- the fuel cell system according to a ninth aspect of the present invention is the fuel cell system according to the fifth aspect described above, further comprising a purification catalyst heater for heating the purification unit, wherein the control unit includes the purification unit.
- the purification catalyst heater is operated so that the detected temperature becomes equal to or higher than the lower limit temperature. You may be comprised so that it may make.
- the purification catalyst heater since the purification catalyst heater is provided, if it is determined that the detected temperature detected by the purification catalyst temperature detection unit is lower than the lower limit temperature in the predetermined temperature range of the purification unit, the purification catalyst heater The purification unit can be heated.
- the purification unit can be heated using the purification catalyst heater. Therefore, in the fuel cell system according to the ninth aspect of the present invention, a trace amount of harmful components such as carbon monoxide in the combustion gas is obtained by the purification unit heated to be in a predetermined temperature range from the time of startup. Can be efficiently removed.
- a fuel cell system according to a tenth aspect of the present invention is the above-described fuel cell system according to any one of the third to ninth aspects, wherein the flue gas after heat is used in the desulfurization unit and the purification unit
- An auxiliary air heat exchanging unit that preheats the air before being supplied to the air heat exchanging unit using the heat of the air heat exchanging unit may be provided.
- the auxiliary air heat exchange unit since the auxiliary air heat exchange unit is provided, the heat of the combustion exhaust gas after being heat-utilized in the desulfurization unit and the purification unit is used to be pre-heated in the air heat exchange unit. Air can be preheated. In this way, the air sent to the air heat exchanger is preheated by the auxiliary air heat exchanger in advance, so that the temperature of the air sent to the fuel cell unit is appropriately increased to the same temperature as the operating temperature of the fuel cell unit. Can do.
- the fuel cell system according to the tenth aspect of the present invention can improve the heat utilization of the combustion exhaust gas and improve the power generation efficiency.
- FIG. 1 is a block diagram schematically showing an example of a schematic configuration of a fuel cell system 100 according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing a schematic configuration of the fuel cell unit 1 included in the fuel cell system 100 shown in FIG.
- FIG. 3 is a block diagram schematically showing another example of the schematic configuration of the fuel cell system 100 shown in FIG. 1.
- the fuel cell system 100 includes a fuel cell unit 1 serving as a power generation unit, an air heat exchange unit 6, a heat exchange unit 40, an impurity removal unit 41, and a purification unit 42. It is a configuration.
- the fuel cell unit 1 generates power in the impurity removing unit 41 using fuel obtained by reforming a raw material from which impurities such as sulfur compounds have been removed, and supplied air. As shown in FIG. 2, the fuel cell unit 1 uses a reforming unit 31 that reforms the raw material from which impurities are removed in the impurity removing unit 41 to generate fuel (reformed gas), and fuel and air.
- the fuel cell 32 generates electric power through an electrochemical reaction, and the combustion unit 33 combusts unused fuel in the fuel cell 32. That is, the fuel cell unit 1 is a so-called hot module in which the reforming unit 31, the fuel cell 32, and the combustion unit 33 are incorporated.
- the fuel cell unit 1 is connected to a cathode gas supply path 2 for supplying air as an oxidant gas from outside the system. Further, a combustion exhaust gas path 4 through which the combustion exhaust gas exhausted from the fuel cell unit 1 is circulated to exhaust outside the system and a raw material supply path 5 for supplying raw materials to the fuel cell unit 1 from outside the system are connected. .
- a raw material supplied from outside the system city gas mainly composed of natural gas can be mentioned.
- a reforming water supply path (not shown) for supplying water from outside the system may be connected.
- the air heat exchange unit 6 preheats the air supplied to the fuel cell unit 1 using the heat of the combustion exhaust gas discharged from the fuel cell unit 1.
- a solid oxide fuel cell that operates at a high temperature is used as the fuel cell 32. Therefore, it is necessary to preheat the air supplied to the fuel cell 32 to a temperature close to the operating temperature of the fuel cell 32. Therefore, the air heat exchange unit 6 exchanges heat between the combustion exhaust gas and the air, preheats this air, and supplies it to the fuel cell unit 1.
- a cathode gas supply path 2 and a combustion exhaust gas path 4 are connected to the air heat exchange unit 6, and air supplied to the fuel cell unit 1 through the cathode gas supply path 2 and combustion Heat exchange is performed with the combustion exhaust gas discharged from the fuel cell unit 1 through the exhaust gas path 4. Air preheated by heat exchange with the combustion exhaust gas in the air heat exchange unit 6 is supplied to the fuel cell unit 1. On the other hand, the combustion exhaust gas that has lost part of the heat retained by heat exchange with air is supplied to the impurity removal unit 41.
- the impurity removing unit 41 removes impurities contained in the raw material supplied to the fuel cell unit 1.
- the impurity removal unit 41 is filled with an impurity removal catalyst 52 for removing impurities.
- the desulfurization part 8 which removes a sulfur compound as an impurity in a raw material can be illustrated.
- the desulfurization section 8 is filled with a desulfurization catalyst 22 for removing sulfur compounds in the raw material as the impurity removal catalyst 52, and the raw material is passed through the desulfurization catalyst 22.
- a copper-zinc-based desulfurization catalyst 22 can be used, and when the desulfurization catalyst 22 is a cylinder-zinc system, the temperature dependency that a desired desulfurization performance is obtained within a predetermined temperature range (for example, 200 to 300 ° C.) can be obtained.
- a predetermined temperature range for example, 200 to 300 ° C.
- the desulfurization unit 8 may be installed in a space where the combustion exhaust gas flows, and the desulfurization unit 8 may be directly heated by the combustion exhaust gas. Furthermore, as shown in FIG. 4, the desulfurization unit 8 may include a desulfurization unit heating unit 20 below the desulfurization catalyst 22, and the desulfurization unit heating unit 20 may heat the desulfurization catalyst 22. In other words, the flue gas is supplied to the desulfurization unit heating unit 20 through the flue gas passage 4, and the heat of the supplied flue gas is transferred to the desulfurization catalyst 22 and heated.
- FIG. 4 is a block diagram schematically showing an example of a schematic configuration of the fuel cell system according to Embodiment 1 of the present invention.
- a copper-zinc based desulfurization catalyst is used as the desulfurization catalyst 22, but other desulfurization catalysts may be used.
- desulfurization in the desulfurization part 8 may be performed by the hydrodesulfurization system which makes the raw material containing a sulfur compound react with hydrogen in presence of the desulfurization catalyst 22, for example. Or you may perform using the desulfurization catalyst which the adsorption
- the desulfurization part 8 is a structure which removes the sulfur compound in a raw material by hydrodesulfurization
- hydrogen is mixed with the raw material which distribute
- FIG. This hydrogen may be supplied from outside the system, or a part of the fuel that is reformed and generated by the reforming unit 31 may be supplied.
- the fuel cell system 100 further includes a recycle path (not shown) for returning a part of the fuel (reformed gas) from the fuel cell unit 1 to the upstream side of the desulfurization unit 8 in the raw material supply path 5.
- the purifying unit 42 removes harmful components such as carbon monoxide and hydrocarbons contained in the combustion exhaust gas. As shown in FIG.
- the combustion catalyst unit 9 can be exemplified as the purification unit 42.
- the purification catalyst 53 can be the combustion catalyst 23 that continues combustion depending on the state.
- a catalyst in which a Pt-based noble metal catalyst is supported on a honeycomb carrier can be used.
- the combustion catalyst 23 is not limited to this.
- the combustion exhaust gas is guided to the combustion catalyst unit 9 after passing through the desulfurization unit 8. It is not limited to.
- the combustion exhaust gas may be guided to the desulfurization unit 8 after passing through the combustion catalyst unit 9 first.
- These arrangement orders can be determined in consideration of the temperature characteristics of the desulfurization catalyst 22 used in the desulfurization section 8 and the temperature characteristics of the combustion catalyst 23 used in the combustion catalyst section 9.
- the heat exchanging unit 40 performs heat exchange between the refrigerant supplied from the outside and the combustion exhaust gas discharged to the outside.
- the heat exchange section 40 is connected to a refrigerant supply path 10 through which a refrigerant supplied from the outside flows, and a combustion exhaust gas path 4 through which the combustion exhaust gas after being used by the combustion catalyst section 9 flows.
- the heat exchanging unit 40 exchanges heat between the refrigerant supplied through the refrigerant supply path 10 and the combustion exhaust gas supplied through the combustion exhaust gas path 4. Thereby, the temperature of the combustion exhaust gas exhausted outside the system can be lowered to an appropriate temperature.
- the heat exchange part 40 can be made into the water heat exchange part 7 which uses cooling water as a refrigerant
- the heat exchange part 40 is the water heat exchange part 7, the heat
- the heat exchange part 40 is not limited to the above-mentioned water heat exchange part 7, It is good also as a structure which uses a refrigerant
- Examples of the heat exchanging unit 40 that performs heat exchange with the combustion exhaust gas using the refrigerant as air include a radiator and the like.
- the water heat exchange unit 7 is more advantageous than the heat exchange unit 40 as a radiator in that the heat of the combustion exhaust gas can be recovered and used with water.
- the heat exchanging unit 40 can be configured to reduce the temperature of the combustion exhaust gas and condense the water contained in the combustion exhaust gas to obtain condensed water.
- the condensed water obtained from the combustion exhaust gas can be used as water used for the steam reforming reaction, for example, when the reforming unit 31 is configured to reform the raw material by the steam reforming reaction.
- air is supplied to the fuel cell unit 1 through the cathode gas supply path 2 as an oxidant gas supplied to the cathode (not shown) of the fuel cell 32.
- a raw material for generating fuel supplied to the anode (not shown) of the fuel cell 32 in the reforming unit 31 is supplied to the fuel cell unit 1 through the raw material supply path 5.
- the reforming water used in the steam reforming is supplied through a reforming water supply path (not shown).
- the fuel cell unit 1 power is generated using the air supplied with the fuel cell 32 and the fuel generated in the reforming unit 31 from the supplied raw material.
- the reforming unit 31 uses the supplied reforming water and raw materials to cause, for example, a steam reforming reaction to generate a reformed gas containing hydrogen.
- the reformed gas is supplied to the fuel cell 32 as fuel.
- the air supplied to the fuel cell 32 together with the fuel is preheated to the operating temperature of the fuel cell 32 in the air heat exchanger 6 as described above.
- combustion exhaust gas is generated in the fuel cell 32.
- This combustion exhaust gas is exhausted from the fuel cell unit 1 through the combustion exhaust gas path 4.
- An air heat exchange unit 6, a desulfurization unit 8, and a combustion catalyst unit 9 are disposed outside the fuel cell unit 1 in the combustion exhaust gas path 4, and the combustion exhaust gas flows through these parts in order through the combustion exhaust gas path 4. , Lose some of the heat you have in each part. Thereafter, the combustion exhaust gas is further deprived of heat by heat exchange with the cooling water in the water heat exchange section 7. Then, it is exhausted outside the system in a sufficiently low temperature state.
- the fuel cell system 100 uses the heat of the combustion exhaust gas as a heat source for preheating air. For this reason, compared with the structure which does not use the heat which combustion exhaust gas has, but uses the heating unit etc. which were prepared separately, the utilization factor of the heat utilized within a fuel cell system can be raised.
- the desulfurization catalyst 22 is heated using the heat of the combustion exhaust gas used by the air heat exchange unit 6. That is, when a copper-zinc-based desulfurization catalyst, for example, is used as the desulfurization catalyst 22, it is necessary to heat the desulfurization catalyst 22 to around 250 ° C. in order to efficiently remove sulfur compounds in the raw material.
- the temperature of the desulfurization catalyst 22 is raised to a temperature range that is optimal in the catalytic reaction. For example, by hydrodesulfurization using hydrogen contained in the supplied raw material. This raw material is desulfurized. As a result, the raw material that has passed through the desulfurization section 8 is supplied to the fuel cell unit 1 with the sulfur compounding section removed.
- the combustion exhaust gas in which a part of the heat held in the desulfurization unit 8 is used passes through the combustion catalyst unit 9 to remove trace components such as carbon monoxide and hydrocarbons in the combustion exhaust gas. That is, unused fuel and air are combusted in the fuel cell unit 1, and the generated combustion exhaust gas may contain a trace amount of harmful components such as carbon monoxide and hydrocarbons. This is because combustion exhaust gas is generated by flame combustion by the combustion unit 33, and the combustion conditions in this flame combustion are set in consideration of the operating conditions of the fuel cell 32 in which the combustion unit 33 is provided. For this reason, unused fuel and air may not burn completely. Therefore, harmful components such as carbon monoxide and hydrocarbons contained in the combustion exhaust gas are reduced by oxidative decomposition in the combustion catalyst section 9.
- the combustion catalyst 23 filled in the combustion catalyst section 9 has a temperature range (for example, around 250 ° C.) that is optimal for efficient oxidative decomposition. Therefore, the combustion catalyst 23 removes heat from the passing combustion exhaust gas and is raised to this optimum temperature range.
- the combustion exhaust gas from which harmful components such as carbon monoxide have been removed in the combustion catalyst unit 9 is guided to the water heat exchange unit 7.
- the fuel cell system 100 according to Embodiment 1 has a configuration in which the desulfurization catalyst 22 and the combustion catalyst 23 having close operating temperatures are arranged close to each other.
- the desulfurization catalyst 22 and the combustion catalyst 23, which are close in operating temperature can be combined and heated using the heat of the combustion exhaust gas. It is not necessary to adjust the temperature of the exhaust gas, and heat utilization in the fuel cell system 100 can be improved.
- the desulfurization performance of the desulfurization catalyst 22 having temperature dependency, and harmful effects such as carbon monoxide in the combustion gas of the combustion catalyst 23 are obtained.
- the component removal performance can be stabilized.
- the desulfurization unit 8 and the combustion catalyst unit 9 are respectively disposed between the air heat exchange unit 6 and the water heat exchange unit 7 in the combustion exhaust gas path 4. .
- Both the desulfurization unit 8 and the combustion catalyst unit 9 may be configured as shown in FIG.
- a configuration in which the desulfurization unit 8 and the combustion catalyst unit 9 are both covered with the heat insulating member 24 will be described as a first modification of the first embodiment with reference to FIG.
- FIG. 5 is a block diagram showing a modification of the fuel cell system 100 according to Embodiment 1 of the present invention.
- the desulfurization unit 8 and the combustion catalyst unit 9 are accommodated in a space formed by being surrounded by a heat insulating member 24.
- both the desulfurization part 8 and the combustion catalyst part 9 are accommodated in the space formed by the heat insulating member 24, both can be heated with the combustion exhaust gas in the same temperature range, and the combustion exhaust gas It can suppress that the heat which it has dissipates.
- the desulfurization performance in the temperature-dependent desulfurization part 8 and the combustion gas in the combustion catalyst part 9 can be stabilized. Furthermore, heat utilization in the fuel cell system 100 is improved, and as a result, power generation efficiency is improved.
- a part of the structure forming the desulfurization part 8 and a part of the structure forming the combustion catalyst part 9 are shared with each other. You may comprise. Specifically, in the example of FIG. 5, the contact surfaces of the desulfurization unit 8 and the combustion catalyst unit 9 are shared by both. Thus, by comprising the desulfurization part 8 and the combustion catalyst part 9, both can be efficiently heated with the heat which combustion exhaust gas has rather than setting it as the structure isolate
- the combustion exhaust gas in which a part of the heat held in the desulfurization unit 8 and the combustion catalyst unit 9 is used is guided, and the heat of the combustion exhaust gas is used. It is good also as a structure further provided with the auxiliary air heat exchange part 19 which preheats air.
- a configuration of the fuel cell system 100 further including the auxiliary air heat exchange unit 19 will be described as a second modification with reference to FIG.
- FIG. 6 is a block diagram showing a modification of the fuel cell system 100 according to Embodiment 1 of the present invention.
- the fuel cell system 100 according to the second modification of the first embodiment is configured so that the auxiliary air heat exchange unit 19 is connected to the combustion exhaust gas path in the configuration of the fuel cell system 100 according to the first embodiment described above.
- the configuration is provided after the combustion catalyst unit 9 and before the water heat exchange unit 7.
- a cathode gas supply path 2 is also connected to the auxiliary air heat exchanging section 19, and air before being preheated by the air heat exchanging section 6 is guided through the cathode gas supply path 2.
- the auxiliary air heat exchanging unit 19 exchanges heat between the combustion exhaust gas that has lost a part of the heat held in the combustion catalyst unit 9 and the air, and further takes heat from the combustion exhaust gas. Preheat.
- the temperature of the air sent to the fuel cell unit 1 can be increased by preheating the air sent to the air heat exchanger 6 in advance.
- the heat availability in the fuel cell system 100 can be improved, and as a result, the power generation efficiency can be improved.
- the configuration of the air heat exchange unit 6 can be simplified.
- the fuel cell system 100 according to Embodiment 1 described above is designed such that combustion exhaust gas in a desired temperature range flows into the desulfurization section 8 and the combustion catalyst section 9.
- the operating conditions of the fuel cell unit 1 such as the amount of generated power
- the voltage characteristics of the fuel cell 32 change and the amount of heat generated in the fuel cell 32 changes.
- the fuel cell 32 deteriorates, the amount of heat generated in the fuel cell 32 changes.
- the temperature of the combustion exhaust gas discharged from the fuel cell unit 1 changes due to the change in the operating conditions of the fuel cell 32 or the deterioration of the fuel cell 32.
- the environmental conditions such as the environmental temperature of the fuel cell unit 1 change, the temperature of the combustion exhaust gas discharged from the fuel cell unit 1 also changes.
- the operating temperatures of the desulfurization section 8 and the combustion catalyst section 9 may change and deviate from the desired temperature range.
- the desulfurization catalyst 22 and the combustion catalyst 23 are heated at a temperature higher than a desired temperature range.
- the catalyst components of the desulfurization catalyst 22 and the combustion catalyst 23 may be sintered and deteriorated.
- the temperature of the combustion exhaust gas flowing into the desulfurization unit 8 and the combustion catalyst unit 9 may be further controlled.
- a fuel cell system 200 according to Embodiment 2 will be described with reference to FIG. 7 as a fuel cell system further having a configuration capable of controlling the temperature of the flue gas flowing into the desulfurization unit 8 and the combustion catalyst unit 9.
- FIG. 7 is a block diagram schematically showing an example of a schematic configuration of the fuel cell system 200 according to Embodiment 2 of the present invention.
- the fuel cell system 200 according to the second embodiment has a control unit 11, a flue gas temperature cooling unit 12, and a desulfurization unit temperature as compared with the fuel cell system 100 according to the first embodiment.
- the difference is that the detector 13 is further provided. Since other configurations are the same as those of the fuel cell system 100 of the first embodiment, the description of the same parts is omitted.
- the combustion exhaust gas temperature cooling unit 12 lowers the temperature of the combustion exhaust gas flowing into the desulfurization unit heating unit 20, and corresponds to the combustion exhaust gas temperature adjustment unit of the present invention.
- Examples of the combustion exhaust gas temperature cooling unit 12 include a cooling device that cools by air cooling using an air fan.
- the combustion exhaust gas temperature cooling unit 12 is not limited to this, and may be another cooling device by air cooling, or a water cooling type cooling device using water as a refrigerant. That is, any configuration that can reduce the temperature of the combustion exhaust gas is optional.
- the combustion exhaust gas temperature cooling unit 12 is provided at a position on the combustion exhaust gas path 4 that is downstream of the air heat exchange unit 6 and upstream of the desulfurization unit 8 in the flow direction of the combustion exhaust gas.
- the desulfurization part temperature detection part 13 detects the temperature of the desulfurization part 8, and is provided in the arbitrary places in the desulfurization part 8. FIG. The desulfurization unit temperature detection unit 13 notifies the detected temperature of the desulfurization unit 8 to the control unit 11.
- the control unit 11 executes various controls in the fuel cell system 200 and can be realized by, for example, a CPU.
- the control unit 11 determines whether or not this temperature exceeds the desulfurization unit control temperature set as the upper limit temperature in the desulfurization unit 8. . And when it determines with having exceeded desulfurization part control temperature, the control part 11 operates the combustion exhaust gas temperature cooling part 12, and controls it so that combustion exhaust gas temperature may be reduced (desulfurization part temperature control process).
- FIG. 8 is a flowchart showing an example of a desulfurization section temperature control process executed in the fuel cell system 200 according to Embodiment 2 shown in FIG.
- a desulfurization section control temperature is set in advance as an upper limit temperature in the desulfurization section 8, and this desulfurization section control temperature is stored in a storage device (not shown).
- the storage device include a main memory.
- the control unit 11 sequentially acquires the temperatures detected by the desulfurization unit temperature detection unit 13 at a predetermined timing (step S11). And the control part 11 compares this acquired temperature with the desulfurization part control temperature memorize
- the control unit 11 determines that the temperature acquired from the desulfurization unit temperature detection unit 13 exceeds the desulfurization unit control temperature (“YES” in step S12)
- the temperature of the combustion exhaust gas flowing into the desulfurization unit heating unit 20 Is instructed to the flue gas temperature cooling unit 12 so as to be equal to or lower than the desulfurization unit control temperature.
- the combustion exhaust gas temperature cooling unit 12 decreases the temperature of the combustion exhaust gas so as to be equal to or lower than the desulfurization unit control temperature (step S13).
- the temperature detected by the desulfurization unit temperature detection unit 13 and the preset desulfurization unit control temperature are compared, and the detected temperature is the desulfurization unit control temperature.
- the control unit 11 instructs the combustion exhaust gas temperature cooling unit 12 to control the temperature of the desulfurization unit 8 to be equal to or lower than the desulfurization unit control temperature.
- the combustion exhaust gas temperature can be prevented from becoming high and stabilized. Therefore, it is possible to stabilize the operating temperature of the desulfurization unit 8 and further the operating temperature of the combustion catalyst unit 9 provided at the rear stage of the desulfurization unit 8 in the combustion exhaust gas path 4. As a result, the desulfurization performance of the temperature-dependent desulfurization catalyst 22 and the removal performance of harmful components such as trace amounts of carbon monoxide in the combustion gas by the combustion catalyst 23 can be stabilized.
- the preset desulfurization part control temperature can be set as appropriate in consideration of the temperature characteristics of the desulfurization catalyst 22 and the temperature characteristics of the combustion catalyst 23, respectively.
- FIG. 9 is a block diagram schematically showing an example of a schematic configuration of a fuel cell system 200 according to Modification 1 of Embodiment 2 of the present invention.
- FIG. 10 is a flowchart showing an example of the combustion catalyst temperature control process executed in the fuel cell system 200 according to Modification 1 of Embodiment 2 shown in FIG.
- the fuel cell system 200 according to the first modification of the second embodiment is different from the fuel cell system 200 according to the second embodiment in that the combustion catalyst temperature is used instead of the desulfurization unit temperature detection unit 13.
- the difference is that a detector (purified catalyst temperature detector) 14 is provided.
- Other configurations are the same as those of the fuel cell system 200 of the second embodiment, and thus the description of the same parts is omitted.
- the combustion catalyst temperature detection unit 14 detects the temperature of the combustion catalyst unit 9 and is provided at an arbitrary place in the combustion catalyst unit 9. The combustion catalyst temperature detection unit 14 notifies the detected temperature of the combustion catalyst unit 9 to the control unit 11.
- the operation of the fuel cell system 200 according to the first modification of the second embodiment is almost the same as that of the fuel cell system 200 according to the second embodiment, but differs only in the following points. That is, the fuel cell system 200 according to the first modification of the second embodiment is based on the temperature detected by the combustion catalyst temperature detection unit 14 instead of performing the desulfurization unit temperature control process shown in FIG. It differs in that the combustion catalyst temperature control process shown is carried out.
- a combustion catalyst control temperature (purification catalyst control temperature) is set in advance as an upper limit temperature in the combustion catalyst section 9, and this temperature is stored in a storage device (not shown).
- the control unit 11 sequentially acquires the temperature (detected temperature) detected by the combustion catalyst temperature detection unit 14 at a predetermined timing (step S21). And the control part 11 compares this acquired temperature with the combustion catalyst control temperature memorize
- the control unit 11 determines that the temperature acquired from the combustion catalyst temperature detection unit 14 exceeds the combustion catalyst control temperature ("YES" in step S22)
- the temperature of the combustion exhaust gas flowing into the combustion catalyst unit 9 is set.
- the combustion exhaust gas temperature cooling unit 12 is instructed to lower the temperature to the combustion catalyst control temperature.
- the combustion exhaust gas temperature cooling unit 12 decreases the temperature of the combustion exhaust gas so as to be equal to or lower than the combustion catalyst control temperature (step S23).
- the temperature detected by the combustion catalyst temperature detection unit 14 is compared with a preset combustion catalyst control temperature, and the detected temperature is When the temperature exceeds the combustion catalyst control temperature, the control unit 11 instructs the combustion exhaust gas temperature cooling unit 12 to operate so that the temperature of the combustion catalyst unit 9 becomes equal to or lower than the combustion catalyst control temperature.
- the combustion exhaust gas temperature can be prevented from becoming high and stabilized. Therefore, it is possible to stabilize the temperature of the combustion catalyst unit 9 and also the operating temperature of the desulfurization unit 8 provided immediately before (in front of) the combustion catalyst unit 9 in the combustion exhaust gas path 4. As a result, the desulfurization performance of the temperature-dependent desulfurization catalyst 22 and the removal performance of harmful components such as trace amounts of carbon monoxide in the combustion gas by the combustion catalyst 23 can be stabilized.
- the preset combustion catalyst control temperature can be appropriately set in consideration of the temperature characteristics of the combustion catalyst 23 and the temperature characteristics of the desulfurization catalyst 22.
- the operating temperature of the fuel cell unit 1 is lower than the operating temperature at the time of rating, and therefore the temperature of the combustion exhaust gas discharged from the fuel cell unit 1. Also lower.
- the desulfurization catalyst 22 and the combustion catalyst 23 are not heated to a desired temperature range, and the sulfur component cannot be sufficiently removed from the raw material, and harmful components such as carbon monoxide can be sufficiently removed from the combustion exhaust gas. Can not. In particular, exhausting out of the system while containing harmful components such as carbon monoxide in the combustion exhaust gas becomes a big problem.
- the combustion catalyst 23 may be further provided with a combustion catalyst heater (purified catalyst heater) 21 so that the temperature of the combustion catalyst 23 falls within a temperature range corresponding to the temperature characteristics.
- a combustion catalyst heater purified catalyst heater
- FIG. 11 is a block diagram showing a modification (Modification 2) of the fuel cell system 200 according to Embodiment 2 of the present invention.
- the fuel cell system 200 according to Modification 2 of Embodiment 2 further includes a combustion catalyst heater 21 in the configuration of the fuel cell system 200 according to Modification 1 of Embodiment 2. It has a configuration.
- the combustion catalyst heater 21 is a heater that heats the combustion catalyst unit 9 and can be realized by, for example, an electric heater.
- the combustion catalyst heater 21 is configured to heat the combustion catalyst 23 by raising the temperature of the combustion exhaust gas supplied to the combustion catalyst unit 9, the flow of the combustion exhaust gas to the combustion catalyst unit 9 in the combustion exhaust gas path 4. Provided near the entrance.
- the combustion catalyst heater 21 is provided in contact with the combustion catalyst unit 9.
- This combustion catalyst heater 21 operates as follows. That is, a predetermined temperature range is set as the operating temperature of the combustion catalyst unit 9, and the lower limit temperature (for example, 200 ° C.) is stored in a storage device (not shown).
- the control unit 11 sequentially acquires the temperatures (detected temperatures) detected by the combustion catalyst temperature detection unit 14 at a predetermined timing. And the control part 11 compares this acquired temperature with the minimum temperature memorize
- the control unit 11 determines that the detected temperature acquired from the combustion catalyst temperature detection unit 14 is lower than the lower limit temperature, the combustion catalyst unit 9 or the temperature of the combustion exhaust gas flowing into the combustion catalyst unit 9 is burned.
- the combustion catalyst heater 21 is instructed to heat the catalyst 23 until the temperature reaches the lower limit temperature or higher.
- the combustion catalyst heater 21 heats the combustion catalyst unit 9 or the combustion exhaust gas flowing into the combustion catalyst unit 9 so that the temperature of the combustion catalyst 23 becomes equal to or higher than the lower limit temperature.
- the combustion catalyst unit 9 is thereby heated to quickly raise the temperature of the combustion catalyst. It is possible to stably remove harmful components such as a small amount of carbon monoxide in the combustion gas. In particular, when the fuel cell system 200 is started from room temperature, the combustion catalyst unit 9 is not sufficiently warmed. However, even in such a case, since the combustion catalyst portion 9 can be heated using the combustion catalyst heater 21, harmful components such as a small amount of carbon monoxide in the combustion gas are removed from the time of startup. be able to.
- the fuel cell system 200 according to Embodiment 2 described above has a configuration in which the temperature of the combustion exhaust gas flowing into the desulfurization unit 8 and the combustion catalyst unit 9 is adjusted by operating the combustion exhaust gas temperature cooling unit 12.
- the configuration for adjusting the temperature of the combustion exhaust gas is not limited to this configuration.
- the operating temperature of the fuel cell unit 1 affects the temperature of the combustion exhaust gas discharged from the fuel cell unit 1.
- the fuel cell unit 1 is operated at a high temperature, the combustion exhaust gas temperature increases, and as a result, the temperature of the desulfurization catalyst 22 heated by the desulfurization unit heating unit 20 and the combustion catalyst 23 of the combustion catalyst unit 9 increase.
- the combustion exhaust gas temperature adjusting unit of the present invention includes a member for controlling the flow rate of air, raw material, or reformed water supplied to the fuel cell unit 1, and adjusts the temperature of the combustion exhaust gas discharged from the fuel cell unit 1.
- a configuration to be described will be described below as a third embodiment.
- FIG. 12 is a block diagram schematically showing an example of a schematic configuration of a fuel cell system 300 according to Embodiment 3 of the present invention.
- the fuel cell system 300 controls the flow rate of air supplied to the cathode of the fuel cell unit 1 in order to stabilize the temperatures of the desulfurization unit 8 and the combustion catalyst unit 9.
- the operating temperature is configured to fall within a predetermined temperature range.
- the fuel cell unit 1 is cooled by increasing the amount of air supplied to the fuel cell unit 1 so that the operating temperature of the fuel cell unit 1 falls within a predetermined temperature range.
- the fuel cell system 300 according to the third embodiment is different from the configuration of the fuel cell system 200 according to the second embodiment shown in FIG. 7 in the following points. . That is, instead of the desulfurization unit temperature detection unit 13, a combustion catalyst temperature detection unit 14 for detecting the temperature of the combustion catalyst unit 9 is provided. As a combustion exhaust gas temperature adjustment unit, a cathode air supply unit instead of the combustion exhaust gas temperature cooling unit 12. 16 and the fuel cell temperature detector 15 are further provided. Since the other points are the same as the configuration of the fuel cell system 200 according to Embodiment 2, the description thereof is omitted.
- the fuel cell temperature detector 15 detects the temperature in the fuel cell unit 1. When the fuel cell temperature detection unit 15 detects the temperature in the fuel cell unit 1, information on the detected temperature is sent to the control unit 11.
- the fuel cell temperature detection unit 15 is provided at an arbitrary position in the fuel cell unit 1, and particularly near the exhaust port of the combustion exhaust gas. This is because the combustion exhaust gas temperature when discharged from the fuel cell unit 1 can be detected.
- the cathode air supply unit 16 controls the operating temperature of the fuel cell unit 1. Specifically, the operating temperature of the fuel cell unit 1 is controlled by adjusting the amount of air (cathode air) supplied to the fuel cell unit 1. The cathode air supply unit 16 adjusts the flow rate of the supplied air under the control instruction from the control unit 11. That is, the cathode air supply unit 16 adjusts the temperature of the combustion exhaust gas discharged from the fuel cell unit 1 by controlling the operating temperature of the fuel cell unit 1.
- FIG. 13 is a flowchart showing an example of a fuel cell temperature control process in the fuel cell system 300 according to Embodiment 3 shown in FIG.
- the fuel cell system 300 according to the third embodiment is the same as the fuel cell system 200 according to the second embodiment except that the above-described fuel cell temperature control process is performed. Omitted.
- a fuel cell control temperature is set in advance as an upper limit temperature in the fuel cell unit 1, and this temperature is stored in a storage device (not shown).
- This fuel cell control temperature is the upper limit temperature in the fuel cell unit associated with the upper limit temperature in the combustion catalyst unit 9 or the desulfurization unit 8.
- the controller 11 sequentially acquires the temperatures detected by the fuel cell temperature detector 15 at a predetermined timing (step S31). And the control part 11 compares this acquired temperature with the fuel cell control temperature memorize
- the control unit 11 determines that the temperature acquired from the fuel cell temperature detection unit 15 is higher than the fuel cell control temperature (“YES” in step S32)
- the fuel cell unit with respect to the cathode air supply unit 16 is determined.
- An instruction is given to increase the supply amount of air so that the temperature of 1 is lowered to the fuel cell control temperature.
- the cathode air supply unit 16 increases the amount of air supplied to the fuel cell unit 1 (step S33).
- the temperature detected by the fuel cell temperature detection unit 15 is compared with the preset fuel cell control temperature, and the detected temperature is the fuel cell control.
- the cathode air supply unit 16 is configured to increase the amount of air supplied to the fuel cell unit 1 under a control instruction from the control unit 11.
- the operating temperature of the fuel cell unit 1 can be prevented from becoming high, and can be stabilized within a predetermined temperature range. For this reason, it is possible to prevent the temperature of the combustion exhaust gas discharged from the fuel cell unit 1 from becoming high and the temperature of the combustion catalyst unit 9 and further the temperature of the desulfurization unit 8 from becoming higher than the desired temperature range. Therefore, the operating temperatures of the desulfurization unit 8 and the combustion catalyst unit 9 can be stabilized. As a result, the desulfurization performance of the temperature-dependent desulfurization catalyst 22 and the removal performance of harmful components such as trace amounts of carbon monoxide in the combustion gas by the combustion catalyst 23 can be stabilized.
- the cathode air supply unit 16 increases the air supply amount to lower the temperature in the fuel cell unit 1. there were.
- the fuel cell system 300 may further operate as follows.
- the control unit 11 may be configured to control the cathode air supply unit 16 so as to reduce the air supply amount. That is, the cathode air supply unit 16 can suppress the cooling of the fuel cell unit 1 and increase the temperature of the exhaust gas when the flow rate of the air supplied to the fuel cell unit 1 is reduced.
- the temperature of the fuel cell unit 1 is controlled by adjusting the amount of air supplied from the cathode air supply unit 16 to the fuel cell unit 1. Can control the temperature of the combustion exhaust gas.
- the control unit 11 acquires the fuel cell control temperature, for example, the temperature of the combustion catalyst 23 detected by the combustion catalyst temperature detection unit 14 and the temperature of the fuel cell unit 1 detected by the fuel cell temperature detection unit 15. To do.
- the temperature of the combustion catalyst 23 and the temperature of the fuel cell unit 1 are correlated, and can be set as appropriate in consideration of a temperature range in which the operations of the desulfurization unit 8 and the combustion catalyst unit 9 are stabilized. .
- a desulfurization unit temperature detection unit 13 is provided instead of the combustion catalyst temperature detection unit 14, and the temperature of the desulfurization catalyst 22 detected by the desulfurization unit temperature detection unit 13 and the fuel cell unit detected by the fuel cell temperature detection unit 15.
- the control unit 11 acquires the temperature of 1. Then, the temperature of the desulfurization catalyst 22 and the temperature of the fuel cell unit 1 are correlated, and may be set as appropriate in consideration of a temperature range in which the operations of the desulfurization unit 8 and the combustion catalyst unit 9 are stabilized. .
- the fuel cell system 300 includes a raw material supply unit 17 that controls the supply amount of the raw material to the fuel cell unit 1 instead of the cathode air supply unit 16 as a combustion exhaust gas temperature adjustment unit, and combustion exhausted from the fuel cell unit 1 It is good also as a structure which adjusts the temperature of waste gas.
- the structure of the fuel cell system 300 provided with the raw material supply part 17 as a combustion exhaust gas temperature adjustment part is demonstrated below with reference to FIG. 14 as the modification 1 of Embodiment 3.
- FIG. 14 the modification 1 of Embodiment 3.
- FIG. 14 is a block diagram showing a modification (Modification 1) of fuel cell system 300 according to Embodiment 3 of the present invention.
- the fuel cell system 300 according to Modification 1 of Embodiment 3 includes a cathode air supply unit provided as a combustion exhaust gas temperature adjustment unit in the configuration of the fuel cell system 300 according to Embodiment 3.
- a material supply unit 17 is provided. Since the other configuration is the same as that of the fuel cell system 300 of Embodiment 3, the description of the same part is omitted.
- the raw material supply unit 17 controls the flow rate of the raw material supplied to the fuel cell unit 1 under the control instruction from the control unit 11, and is provided in the raw material supply path 5.
- the flow rate of the raw material supplied to the fuel cell unit 1 by the raw material supply unit 17 is decreased, unused fuel (reformed gas) to be burned in the combustion unit 33 of the fuel cell unit 1 is decreased. And the temperature of the combustion exhaust gas produced
- the raw material supply unit 17 is configured to control the raw material supply amount so that the temperature of the combustion exhaust gas falls within a predetermined temperature range. Yes.
- step S32 illustrated in FIG. 13 when the control unit 11 determines in step S32 illustrated in FIG. 13 that the temperature acquired from the fuel cell temperature detection unit 15 exceeds the fuel cell control temperature, the fuel cell unit is supplied to the raw material supply unit 17. An instruction is given to reduce the supply amount of the raw material so that the temperature of 1 is lowered to the fuel cell control temperature. In response to an instruction from the control unit 11, the raw material supply unit 17 reduces the amount of raw material supplied to the fuel cell unit 1.
- the control unit 11 determines whether or not the temperature detected by the fuel cell temperature detection unit 15 is lower than the lower limit temperature. And when it determines with the control part 11 being less than minimum temperature, it is good also as a structure which controls the raw material supply part 17 so that the supply amount of a raw material may be enlarged. That is, the raw material supply unit 17 can increase the exhaust gas temperature when the flow rate of the raw material supplied to the fuel cell unit 1 is increased.
- the fuel cell system 300 is configured to control the temperature of the combustion exhaust gas discharged from the fuel cell unit 1 by controlling the supply amount of reforming water instead of controlling the supply amount of air to the fuel cell unit 1. It can also be.
- the configuration of the fuel cell system 300 that controls the temperature of the combustion exhaust gas discharged from the fuel cell unit 1 by controlling the amount of reforming water supplied to the fuel cell unit 1 in this manner is a modification of the third embodiment. 2 will be described below with reference to FIG.
- FIG. 15 is a block diagram showing a modification (Modification 2) of the fuel cell system 300 according to Embodiment 3 of the present invention.
- the fuel cell system 300 according to Modification 2 of Embodiment 3 supplies water instead of the cathode air supply unit 16 provided in the configuration of the fuel cell system 300 according to Embodiment 3.
- the water supply part 18 and the fuel cell unit 1 are different by the point which is provided with the reforming water path
- the water supply unit 18 supplies reformed water for use in steam reforming to the reforming unit 31 in the fuel cell unit 1 through the reformed water path under the instruction from the control unit 11.
- the reformed water supplied from the water supply unit 18 may be water supplied from an external water source, or combustion that has been cooled by heat exchange between the combustion exhaust gas and the water heat exchange unit 7. It may be condensed water obtained from exhaust gas.
- the temperature of the combustion exhaust gas is changed within a predetermined temperature range by utilizing the point that the temperature of the combustion exhaust gas changes according to the flow rate of the reforming water to be supplied. It is configured to control the amount of reforming water supplied by the water supply unit 18 so as to be contained within.
- step S32 shown in FIG. 13 when the control unit 11 determines in step S32 shown in FIG. 13 that the temperature acquired from the fuel cell temperature detection unit 15 exceeds the fuel cell control temperature, the fuel cell unit is supplied to the water supply unit 18. An instruction is given to increase the supply amount of reforming water so as to lower the temperature of 1 to the fuel cell control temperature. In response to the instruction from the control unit 11, the water supply unit 18 increases the supply amount of reforming water to the fuel cell unit 1.
- the control unit 11 determines whether or not the temperature detected by the fuel cell temperature detection unit 15 is lower than the lower limit temperature. And when it determines with the control part 11 falling below a minimum temperature, it is good also as a structure which controls so that the supply_amount
- the fuel cell system 300 can keep the temperature of the combustion exhaust gas discharged from the fuel cell unit 1 within a predetermined temperature range. For this reason, both the temperature of the desulfurization part 8 and the temperature of the combustion catalyst part 9 can be kept within a predetermined temperature range, and the desulfurization performance of the desulfurization catalyst 22 having temperature dependency and the trace amount in the combustion gas of the combustion catalyst 23 The ability to remove harmful components such as carbon monoxide can be stabilized.
- the fuel cell system according to the present invention is useful in a fuel cell system including a hydrodesulfurization unit that removes sulfur components in a raw material and a combustion catalyst unit that removes harmful components such as carbon monoxide contained in combustion exhaust gas. is there.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Fuel Cell (AREA)
Abstract
燃料電池システム(100)は、原料を改質して得られた燃料と、空気とを用いて発電する燃料電池ユニット(1)と、燃料電池ユニット(1)において未利用の燃料と空気とを燃焼させ生成された燃焼排ガスの有する熱により燃料電池ユニット(1)に供給する空気を予熱する空気熱交換部(6)と、この空気の予熱によって保有する熱の一部を失った燃焼排ガスの有する熱により所定の温度範囲まで加熱される、原料中の不純物を除去する不純物除去部(41)および燃焼排ガス中に含まれる有害成分を除去する浄化部(42)と、不純物除去部(41)および浄化部(42)の加熱により保有する熱の一部をさらに失った燃焼排ガスの有する熱と冷媒との間で熱交換を行う熱交換部(40)とを備える。
Description
本発明は、原料中の不純物を除去する不純物除去部と、燃料電池から排出される燃焼排ガス中の有害成分(例えば、一酸化炭素および炭化水素成分)を除去する浄化部とを備えた燃料電池システムに関するものである。
燃料電池システムは小型でも発電効率が高いため、分散型発電システムにおける発電部としての利用が進められている。燃料電池システムをこの発電部として機能させるためには、発電に必要な原料を燃料電池システムに安定的に供給する必要がある。一般的に、燃料電池システムに供給する原料としては、既存のインフラストラクチャーから供給される天然ガス(都市ガス)、LPG、ガソリン、灯油等が挙げられる。
ところで、このような原料には、例えば、ガス漏れを検知するための付臭剤として硫黄化合物や、原料由来の硫黄化合物が含まれている。この硫黄化合物は、原料を改質して燃料を生成する改質器の改質触媒、および燃料電池の電極触媒を被毒させ、それらの性能を低下させてしまう。そこで、燃料電池システムでは、原料中の硫黄成分を除去するために脱硫触媒を有した脱硫部が設けられている。
ところで、脱硫部の脱硫触媒には、温度依存性があるものがあり、その一例として、水添脱硫(水素化脱硫)処理に用いられる水添脱硫触媒が挙げられる。そこで、この水添脱硫触媒を有する脱硫部の脱硫性能を高めるため、燃料電池または改質器から排出される輻射熱および伝熱等の排熱を脱硫部の加熱に使用する燃料電池システム(固体酸化物形燃料電池システム)が提案されている。(例えば、特許文献1参照)。
さらには、燃料電池で未利用の燃料を燃焼させ、その燃焼熱を回収して、改質器での改質反応、ならびに燃料電池に供給する空気の予熱、脱硫部の加熱等に用いる構成を採用した燃料電池システム(固体酸化物形燃料電池システム)も提案されている。このように未利用の燃料の燃焼熱を加熱に用いる構成を有した燃料電池システムの場合、この未利用の燃料を燃焼させて発生させた燃焼排ガス中には、例えば、一酸化炭素などの有害成分が含まれてしまう。そこで、燃焼排ガスを外気に排気する前にこの燃焼排ガス中の有害成分を酸化分解させるために燃焼触媒を備えた燃料電池システム(固体酸化物形燃料電池システム)も提案されている(例えば、特許文献2)。
この特許文献2に開示された燃料電池システムでは、高温で作動する燃料電池の近傍に脱硫部を配置して加熱させるとともに、燃料電池で発生する燃焼排ガス中に含有する一酸化炭素などの有害成分を低減させるため、燃焼排ガスを排出させる排出口に燃焼触媒部を設けている。
ところで、燃料電池システムでは、発電効率と熱利用とを含めた総合効率を向上させることが望まれている。燃料電池システムにおける総合効率を向上させるためには、燃焼排ガスから有害成分を除去し、原料から硫黄成分などの不純物を除去することを実現しつつ、燃料電池システムから排気される熱量を低減させることが重要である。
しかしながら、上記した特許文献1、2に示す従来技術では、燃料電池システムを流通する排気ガスが有する熱を有効に利用しつつ、燃焼排ガスからの有害成分の除去および原料からの不純物の除去を実現できる構成となっていないという問題がある。
本発明は、上述した問題点に鑑みてなされたものであり、その目的は、燃料電池システムを流通する燃焼排ガスが有する熱を有効に利用しつつ、燃焼排ガスからの有害成分の除去および原料からの不純物の除去を適切に行うことができる燃料電池システムを提供することにある。
本発明に係る燃料電池システムは、上記した課題を解決するために、供給された原料を改質して得られた燃料と、供給された空気とを用いて発電する燃料電池ユニットと、前記燃料電池ユニットにおいて未利用の燃料と空気とを燃焼させ生成された燃焼排ガスの有する熱により燃料電池ユニットに供給する空気を予熱する空気熱交換部と、前記空気の予熱によって保有する熱の一部を失った燃焼排ガスの有する熱により所定の温度範囲まで加熱される、前記原料中の不純物を除去する不純物除去部および該燃焼排ガス中に含まれる有害成分を除去する浄化部と、前記不純物除去部および前記浄化部の加熱により保有する熱の一部をさらに失った燃焼排ガスの有する熱と冷媒との間で熱交換を行う熱交換部と、を備える。
本発明に係る燃料電池システムは、以上に説明したように構成され、当該燃料電池システムを流通する燃焼排ガスが有する熱を有効に利用しつつ、燃焼排ガスからの有害成分の除去および原料からの不純物の除去を適切に行うことができるという効果を奏する。
以下本発明の実施の形態について、図面を参照しながら説明する。
本発明の第1の態様に係る燃料電池システムは、供給された原料を改質して得られた燃料と、供給された空気とを用いて発電する燃料電池ユニットと、前記燃料電池ユニットにおいて未利用の燃料と空気とを燃焼させ生成された燃焼排ガスの有する熱により燃料電池ユニットに供給する空気を予熱する空気熱交換部と、前記空気の予熱によって保有する熱の一部を失った燃焼排ガスの有する熱により所定の温度範囲まで加熱される、前記原料中の不純物を除去する不純物除去部および該燃焼排ガス中に含まれる有害成分を除去する浄化部と、前記不純物除去部および前記浄化部の加熱により保有する熱の一部をさらに失った燃焼排ガスの有する熱と冷媒との間で熱交換を行う熱交換部と、を備える。
上記構成によると空気熱交換部、不純物除去部、浄化部、および熱交換部における加熱の熱源に燃焼排ガスが有する熱を利用している。このため燃料電池システムを流通する燃焼排ガスが有する熱を有効に利用することができる。さらには、燃焼排ガスが有する熱により加熱された不純物除去部により原料から不純物を除去し、燃焼排ガスが有する熱により加熱された浄化部により燃焼排ガスから例えば、一酸化炭素などの有害成分を除去することができる。また、これら不純物除去部および浄化部には、空気熱交換部において熱利用され所定の温度範囲まで降温させた燃焼排ガスを導くことができる。このため、不純物除去部は不純物の除去を、ならびに浄化部は一酸化炭素などの有害成分の除去をそれぞれ適切に行うことができる。
したがって、本発明の第1の態様に係る燃料電池システムは、当該燃料電池システムを流通する燃焼排ガスが有する熱を有効に利用しつつ、燃焼排ガスからの一酸化炭素など有害成分の除去および原料からの不純物の除去を適切に行うことができるという効果を奏する。
本発明の第2の態様に係る燃料電池システムは、上記した第1の態様に係る燃料電池システムにおいて、前記熱交換部は、前記冷媒として水を用いる水熱交換部であり、前記水熱交換部は、前記燃焼排ガスの有する熱と水との間で熱交換を行い、該水を加熱させるように構成されていてもよい。
上記構成によると、熱交換部が水熱交換部であるため、冷媒として水を用いて燃焼排ガスと熱交換を行い、燃焼排ガスの保有する熱を水によって回収できる。また、燃焼排ガスは、この水との熱交換により適切な温度まで降温され、排出されるとともに、降温に伴い排ガス中に含まれる水分を凝縮させて凝縮水を得ることができる。このため、系内において水を必要とする処理がある場合、この燃焼排ガスから得た凝縮水をこの処理に利用することができる。なお、系内において水を必要とする処理としては、例えば、燃料電池が有する改質器が水蒸気改質反応により原料を改質する場合、この改質器で行う水蒸気改質反応処理が例示できる。
本発明の第3の態様に係る燃料電池システムは、上記した第1の態様に係る燃料電池システムにおいて、前記不純物除去部は、前記原料中の不純物として硫黄化合物を除去する脱硫部であってもよい。
本発明の第4の態様に係る燃料電池システムは、上記した第3の態様に係る燃料電池システムにおいて、制御部と、前記燃焼排ガスの温度を調整する燃焼排ガス温度調整部と、前記脱硫部の温度を検出する脱硫部温度検出部と、を備え、前記制御部が、前記脱硫部温度検出部で検出された検出温度が、前記脱硫部の前記所定の温度範囲における上限温度である脱硫部制御温度より大きくなると判定した場合、この検出温度が該脱硫部制御温度以下となるように、前記燃焼排ガス温度調整部を動作させるように構成されていてもよい。
上記した構成によると、脱硫部温度検出部を備えているため、制御部は、脱硫部の温度を把握することができる。また、燃焼排ガス温度調整部を備えている。このため、制御部が脱硫部温度検出部で検出された検出温度が脱硫部制御温度を上回ると判定した場合、この燃焼排ガス温度調整部を動作させて燃焼排ガスの温度を低減させることができる。それゆえ、燃焼排ガスの有する熱を利用して加熱される脱硫部の温度を低下させることができる。
したがって、本発明の第4の態様に係る燃料電池システムは、脱硫部の温度が脱硫部制御温度を超えないように調整することができ、所定の温度範囲で脱硫部を安定して加熱することができる。
本発明の第5の態様に係る燃料電池システムは、上記した第3の態様に係る燃料電池システムにおいて、制御部と、前記燃焼排ガスの温度を調整する燃焼排ガス温度調整部と、前記浄化部の温度を検出する浄化触媒温度検出部と、を備え、前記制御部が、前記浄化触媒温度検出部で検出された検出温度が、前記浄化部の前記所定の温度範囲における上限温度である浄化触媒制御温度より大きくなると判定した場合、この検出温度が該浄化触媒制御温度以下となるように、前記燃焼排ガス温度調整部を動作させるように構成されていてもよい。
上記した構成によると、浄化触媒温度検出部を備えているため、制御部は、浄化部の温度を把握することができる。また、燃焼排ガス温度調整部を備えている。このため、制御部が、浄化触媒温度検出部で検出された検出温度が浄化触媒制御温度を上回ると判定した場合、この燃焼排ガス温度調整部を動作させて燃焼排ガスの温度を低減させることができる。それゆえ、燃焼排ガスの有する熱を利用して加熱される浄化部の温度を低下させることができる。
したがって、本発明の第5の態様に係る燃料電池システムは、浄化部の温度が浄化触媒制御温度を超えないように調整することができ、所定の温度範囲で浄化部を安定して加熱することができる。
本発明の第6の態様に係る燃料電池システムは、上記した第3の態様に係る燃料電池システムにおいて、制御部と、前記燃料電池ユニットの動作温度を制御することにより、前記燃焼排ガスの温度を調整する燃焼排ガス温度調整部と、前記燃料電池ユニット内の温度を検出する燃料電池温度検出部と、を備え、前記制御部が、前記燃料電池温度検出部で検出された検出温度が、前記脱硫部または前記浄化部の前記所定の温度範囲における上限温度と対応づけられた、前記燃料電池ユニット内における上限温度である燃料電池制御温度より大きくなると判定した場合、この検出温度が該燃料電池制御温度以下となるように、前記燃焼排ガス温度調整部を動作させるように構成されていてもよい。
上記した構成によると、燃料電池温度検出部を備えているため、制御部は、燃料電池ユニット内の温度を把握することができる。また、燃焼排ガス温度調整部を備えている。このため、制御部が、燃料電池温度検出部で検出された検出温度が燃料電池制御温度を上回ると判定した場合、燃焼排ガス温度調整部を動作させて燃焼排ガスの温度を低減させることができる。それゆえ、燃焼排ガスの有する熱を利用して加熱される脱硫部および浄化部の温度を低下させることができる。
したがって、本発明の第6の態様に係る燃料電池システムは、脱硫部の温度が脱硫部制御温度を超えないように、さらにまた浄化部の温度が浄化触媒制御温度を超えないようにそれぞれ調整することができる。このため、本発明の第6の態様に係る燃料電池システムでは、所定の温度範囲で脱硫部および浄化部を安定して加熱することができる。
本発明の第7の態様に係る燃料電池システムは、上記した第3から第6の態様のいずれか1つの態様に係る燃料電池システムにおいて、前記燃料電池ユニットから排出される燃焼排ガスが流通する燃焼排ガス経路を備え、前記脱硫部が該脱硫部に充填される脱硫触媒を加熱する脱硫部加熱部を有しており、前記燃焼排ガス経路に前記脱硫部加熱部および前記浄化部が設けられるように構成されていてもよい。
上記した構成によると、燃焼排ガス経路に脱硫部加熱部および浄化部が設けられているため、この燃焼排ガス経路によって導かれる燃焼排ガスが有する熱を利用して、脱硫部の脱硫触媒および浄化部の浄化触媒を所定の温度範囲となるように加熱することができる。
本発明の第8の態様に係る燃料電池システムは、上記した第3から第7の態様のいずれか1つの態様に係る燃料電池システムにおいて、前記脱硫部および前記浄化部を共に覆う断熱部材を備え、前記断熱部材によって形成された空間内において、前記脱硫部および前記浄化部は、この脱硫部を形成する構造の一部とこの浄化部を形成する構造の一部とを互いが共有するように構成されていてもよい。
このように、脱硫部と浄化部とを構成することで、これらを別々に分離した構成とするよりも、断熱部材によって形成された空間内において効率よく両者を燃焼排ガスの有する熱により加熱することができる。
本発明の第9の態様に係る燃料電池システムは、上記した第5の態様に係る燃料電池システムにおいて、前記浄化部を加熱するための浄化触媒加熱ヒータをさらに備え、前記制御部が、前記浄化触媒温度検出部で検出された検出温度が前記浄化部の前記所定の温度範囲における下限温度より小さくなると判定した場合、この検出温度が該下限温度以上となるように、前記浄化触媒加熱ヒータを動作させるように構成されていてもよい。
上記した構成によると、浄化触媒加熱ヒータを備えるため、浄化触媒温度検出部で検出された検出温度が前記浄化部の前記所定の温度範囲における下限温度より小さくなると判定した場合、浄化触媒加熱ヒータにより浄化部を加熱することができる。
このため、例えば燃料電池システムを常温から起動させ、浄化部が十分に暖められていない場合であっても、浄化触媒加熱ヒータを用いて浄化部を加熱することができる。それゆえ、本発明の第9の態様に係る燃料電池システムでは、起動時から、所定の温度範囲となるように加熱された浄化部によって、燃焼ガス中の微量の、一酸化炭素などの有害成分の除去を効率よく行うことができる。
本発明の第10の態様に係る燃料電池システムは、上記した第3から第9のいずれか1つの態様に係る燃料電池システムにおいて、前記脱硫部および前記浄化部で熱利用された後の燃焼排ガスが有する熱を利用して、前記空気熱交換部に供給される前の空気を予熱する補助空気熱交換部を備えてもよい。
上記した構成によると、補助空気熱交換部を備えているため、脱硫部および浄化部で熱利用された後の燃焼排ガスが有する熱を利用して、空気熱交換部で予熱される前段階で空気を予熱することができる。このように空気熱交換部に送る空気を予め補助空気熱交換部により予熱することで、燃料電池ユニットに送る空気温度を適切に上昇させ、この燃料電池ユニットの動作温度と同様な温度とすることができる。
したがって、本発明の第10の態様に係る燃料電池システムは、燃焼排ガスの熱利用性を向上させるとともに、発電効率を向上させることができる。
(実施の形態1)
[燃料電池システムの構成]
実施の形態1に係る燃料電池システム100の構成について、図1~3を参照しながら説明する。図1は、本発明の実施の形態1に係る燃料電池システム100の概略構成の一例を模式的に示すブロック図である。また、図2は、図1に示す燃料電池システム100が備える燃料電池ユニット1の概略構成を示すブロック図である。図3は、図1に示す燃料電池システム100の概略構成の別の一例を模式的に示すブロック図である。
[燃料電池システムの構成]
実施の形態1に係る燃料電池システム100の構成について、図1~3を参照しながら説明する。図1は、本発明の実施の形態1に係る燃料電池システム100の概略構成の一例を模式的に示すブロック図である。また、図2は、図1に示す燃料電池システム100が備える燃料電池ユニット1の概略構成を示すブロック図である。図3は、図1に示す燃料電池システム100の概略構成の別の一例を模式的に示すブロック図である。
図1示すように、燃料電池システム100は、発電部となる燃料電池ユニット1と、空気熱交換部6と、熱交換部40と、不純物除去部41と、浄化部42と、を備えてなる構成である。
燃料電池ユニット1は、不純物除去部41において、例えば硫黄化合物などの不純物が除去された原料を改質して得られた燃料と、供給された空気とを用いて発電する。燃料電池ユニット1は、図2に示すように不純物除去部41において不純物が取り除かれた原料を改質して燃料(改質ガス)を生成する改質部31と、燃料と空気とを利用して電気化学反応により発電する燃料電池32と、燃料電池32で未利用の燃料を燃焼する燃焼部33と、を備えてなる構成である。すなわち、燃料電池ユニット1は、改質部31と燃料電池32と燃焼部33とを内部に組み込んだいわゆるホットモジュールである。
なお、この燃料電池ユニット1が備える上記した各部は、公知の部材であるため、これら各部材の詳細な説明は省略するものとする。また、本実施形態では燃料電池32として固体酸化物形燃料電池(SOFC)を例に挙げて説明するが、燃料電池32はこれに限定されるものではない。
図1に示すように、燃料電池ユニット1には、酸化剤ガスとして空気をシステム外から供給するカソードガス供給経路2が接続されている。また、燃料電池ユニット1から排気された燃焼排ガスをシステム外へ排気するために流通させる燃焼排ガス経路4と、システム外から原料を燃料電池ユニット1に供給する原料供給経路5とが接続されている。ここでシステム外から供給される原料としては、天然ガスを主成分とする都市ガスが挙げられる。さらには、改質部31が水蒸気改質により原料を改質する構成の場合、システム外から水を供給するための改質水供給経路(不図示)が接続されていてもよい。
空気熱交換部6は、燃料電池ユニット1から排出された燃焼排ガスの有する熱を利用して、この燃料電池ユニット1に供給される空気を予熱するものである。実施の形態1に係る燃料電池システム100では、燃料電池32として高温で動作する固体酸化物形燃料電池を用いている。そのため、燃料電池32に供給される空気を、燃料電池32の動作温度に近い温度まで予熱する必要がある。そこで、空気熱交換部6は、燃焼排ガスと空気との間で熱交換させ、この空気を予熱し燃料電池ユニット1に供給する。
具体的には、この空気熱交換部6には、カソードガス供給経路2と、燃焼排ガス経路4とが接続されており、カソードガス供給経路2を通じて燃料電池ユニット1に供給される空気と、燃焼排ガス経路4を通じて燃料電池ユニット1から排出される燃焼排ガスとを熱交換させる。空気熱交換部6における燃焼排ガスとの熱交換により予熱された空気は燃料電池ユニット1へ供給される。一方、空気との熱交換により保有する熱の一部を失った燃焼排ガスは、不純物除去部41へと供給される。
不純物除去部41は、燃料電池ユニット1に供給される原料に含まれる不純物を除去するものである。不純物除去部41には不純物を除去するための不純物除去触媒52が充填されている。不純物除去部41としては、図3に示すように、原料中の不純物として硫黄化合物を除去する脱硫部8を例示することができる。また、この脱硫部8には、不純物除去触媒52として、原料中の硫黄化合物を除去するための脱硫触媒22が充填されており、この脱硫触媒22に原料を通気させる構成となっている。例えば、銅-亜鉛系の脱硫触媒22を用いることができ、脱硫触媒22が胴-亜鉛系の場合、所定の温度範囲(例えば200~300℃)で所望の脱硫性能が得られる温度依存性を有している。そこで、実施の形態1に係る燃料電池システム100では、空気の予熱のために空気熱交換部6で熱利用され、所定の温度範囲となった燃焼排ガスを脱硫部8に導く。そして、この燃焼排ガスが有する熱を利用して脱硫触媒22を加熱する。
脱硫部8に充填された脱硫触媒22を加熱する構成としては、例えば、燃焼排ガスが流通する空間内に脱硫部8を据え付け、この燃焼排ガスにより脱硫部8を直接、加熱する構成としてもよい。さらには、図4に示すように脱硫部8は、脱硫触媒22の下方に脱硫部加熱部20を備え、この脱硫部加熱部20により脱硫触媒22を加熱する構成としてもよい。つまり、脱硫部加熱部20には、燃焼排ガス経路4を通じて燃焼排ガスが供給されており、この供給された燃焼排ガスが有する熱を脱硫触媒22に伝熱させて加熱する。図4は、本発明の実施の形態1に係る燃料電池システムの概略構成の一例を模式的に示すブロック図である。
なお、本実施の形態1では、脱硫触媒22として銅-亜鉛系の脱硫触媒を用いるが、他の脱硫触媒であっても良い。また、脱硫部8における脱硫は、例えば、硫黄化合物を含む原料を、脱硫触媒22の存在下で水素と反応させる水素化脱硫方式により行われてもよい。あるいは、所定の温度範囲に加熱されることで物理吸着の吸着性能が向上する脱硫触媒を用いて行われてもよい(例えば、特許文献3)。
なお、脱硫部8が水添脱硫により原料中の硫黄化合物を除去する構成の場合、原料供給経路5を流通する原料には水素を混合させる。この水素はシステム外から供給されてもよいし、改質部31で改質され生成された燃料の一部が供給される構成であってもよい。後者の構成とする場合、燃料電池ユニット1から燃料(改質ガス)の一部を原料供給経路5における脱硫部8の上流側に戻すためのリサイクル経路(不図示)が燃料電池システム100においてさらに設けられる。浄化部42は、燃焼排ガス中に含まれる一酸化炭素および炭化水素などの有害成分を除去するものであり、図1に示すように、不純物除去部41で保有する熱の一部が利用された後の燃焼排ガスが燃焼排ガス経路4を通じて供給される。そして、浄化部42は、供給された燃焼排ガスが、この浄化部42に充填されている浄化触媒53を通気する構成となっている。なお、本実施の形態1では、図3に示すように、浄化部42として燃焼触媒部9を例示することができる。浄化部42を燃焼触媒部9とする場合、浄化触媒53としては、状態に応じては燃焼を継続させる燃焼触媒23とすることができる。燃焼触媒23は、Pt系貴金属触媒をハニカム担体に担持したものを用いることができる。しかしながら、燃焼触媒23はこれに限定されるものではない。
なお、本実施の形態1に係る燃料電池システム100では、図3に示すように燃焼排ガスが脱硫部8を通過した後、燃焼触媒部9に導かれる構成であるが、両者の配置関係はこれに限定されるものではない。例えば、燃焼排ガスが先に、燃焼触媒部9を通過してから脱硫部8に導かれる構成としてもよい。これらの配置順は、脱硫部8において使用する脱硫触媒22の温度特性と、燃焼触媒部9において使用する燃焼触媒23の温度特性とを考慮して決めることができる。
熱交換部40は、図1に示すように、外部から供給された冷媒と外部に排出する燃焼排ガスとの間で熱交換を行うものである。この熱交換部40には外部から供給される冷媒が流通する冷媒供給経路10と、燃焼触媒部9で熱利用された後の燃焼排ガスが流通する燃焼排ガス経路4とが接続されている。そして、熱交換部40では、冷媒供給経路10を通じて供給された冷媒と燃焼排ガス経路4を通じて供給された燃焼排ガスとの間で熱交換する。これによりシステム外に排気する燃焼排ガスの温度を適切な温度まで低下させることができる。また、熱交換部40は、図3に示すように冷媒として冷却水を用いた水熱交換部7とすることができる。熱交換部40が水熱交換部7である場合、システム外に排気される燃焼排ガスの有する熱を水により回収することができる。このため、燃料電池システム100は、当該燃料電池システム100を流通する排気ガスが有する熱を有効に利用することができる。なお、熱交換部40は、上記した水熱交換部7に限定されるものではなく、冷媒を空気とし、該空気と燃焼排ガスとの熱交換を行う構成としてもよい。冷媒を空気として燃焼排ガスと熱交換を行う熱交換部40としては、例えば、ラジエータなどを例示できる。ただし、燃焼排ガスの有する熱を水により回収し利用できる点で、熱交換部40をラジエータとするよりは水熱交換部7とした方が有利である。
さらにまた、熱交換部40は、燃焼排ガスの温度を低下させ、燃焼排ガス中に含まれる水を凝縮させて凝縮水を得る構成とすることができる。燃焼排ガスから得た凝縮水は、例えば、改質部31が水蒸気改質反応により原料を改質する構成の場合、該水蒸気改質反応に用いる水として利用することができる。
(燃料電池システムの動作)
次に、上記した構成を有する燃料電池システム100の動作について説明する。特に、熱交換部40として水熱交換部7を備え、不純物除去部41として脱硫部8を備え、浄化部42として燃焼触媒部9を備えた構成を例に挙げて燃料電池システム100の動作について説明する。
次に、上記した構成を有する燃料電池システム100の動作について説明する。特に、熱交換部40として水熱交換部7を備え、不純物除去部41として脱硫部8を備え、浄化部42として燃焼触媒部9を備えた構成を例に挙げて燃料電池システム100の動作について説明する。
図2、3に示すように、燃料電池ユニット1へは、燃料電池32のカソード(不図示)に供給する酸化剤ガスとして空気が、カソードガス供給経路2を通じて供給される。さらに燃料電池32のアノード(不図示)に供給する燃料を改質部31で生成するための原料が、原料供給経路5を通じて燃料電池ユニット1へ供給される。また、改質部31において水蒸気改質を行う場合は、この水蒸気改質で利用する改質水が改質水供給経路(不図示)を通じて供給される。
燃料電池ユニット1内では、燃料電池32が供給された空気と、供給された原料から改質部31で生成した燃料と、を用いて発電する。つまり、改質部31は、供給された改質水と原料とを用いて、例えば水蒸気改質反応を進行させて水素を含む改質ガスを生成させる。そして、この改質ガスを燃料として燃料電池32に供給する。またこの燃料とともに燃料電池32に供給される空気は、上述したように空気熱交換部6で燃料電池32の動作温度まで予熱されている。
燃料電池32において未利用の燃料と未利用の空気とは、燃焼部33で燃焼され、燃焼排ガスが生成される。この燃焼排ガスは、燃焼排ガス経路4を通じて燃料電池ユニット1から排気される。燃料電池ユニット1の外部において燃焼排ガス経路4中に、空気熱交換部6、脱硫部8、および燃焼触媒部9がそれぞれ配置されており、燃焼排ガスは、これら各部を順に燃焼排ガス経路4を通じて流れ、各部において保有する熱の一部を失う。その後、燃焼排ガスは、さらに水熱交換部7における冷却水との熱交換で熱が奪われる。そして、十分に低温になった状態でシステム外に排気される。
上記したように、燃料電池システム100では、空気を予熱するための熱源として、燃焼排ガスの有する熱を利用した構成である。このため、空気を燃焼排ガスの有する熱を利用せず、別途用意された加熱ユニットなどにより加熱する構成と比較して、燃料電池システム内で利用する熱の利用率を高めることができる。
また、脱硫部8では、空気熱交換部6により熱利用された燃焼排ガスの熱を利用して脱硫触媒22を加熱する。つまり、脱硫触媒22として、例えば銅-亜鉛系の脱硫触媒を利用する場合、原料中の硫黄化合物を効率よく除去するためには、この脱硫触媒22を250℃近傍まで加熱させる必要がある。このように脱硫部8が加熱されることで、触媒反応において最適となる温度範囲まで脱硫触媒22の温度は上昇させられ、例えば、供給される原料に含まれる水素を利用した水添脱硫法によりこの原料を脱硫する。これにより脱硫部8を通過した原料は硫黄化合部が除去された状態で燃料電池ユニット1に供給される。
脱硫部8において保有する熱の一部が利用された燃焼排ガスは、燃焼触媒部9を通過することで、燃焼排ガス中の微量の一酸化炭素や炭化水素などの有害成分が除去される。つまり、燃料電池ユニット1において未利用の燃料と空気とを燃焼させ、生成された燃焼排ガスには、微量の一酸化炭素や炭化水素など有害成分を含む場合がある。これは、燃焼排ガスは、燃焼部33による火炎燃焼によって生成されるが、この火炎燃焼における燃焼条件は、該燃焼部33が設けられる燃料電池32の動作条件を考慮して設定される。このため、未利用の燃料と空気とが完全燃焼しない場合があるからである。そこで、燃焼排ガス中に含まれる一酸化炭素や炭化水素などの有害成分を、燃焼触媒部9での酸化分解により低減させる。
なお、燃焼触媒部9に充填される燃焼触媒23には、効率よく酸化分解を進行させるために最適となる温度範囲(例えば、250℃前後)がある。そこで、燃焼触媒23は、通過する燃焼排ガスから熱を奪い、この最適となる温度範囲まで上昇させられる。燃焼触媒部9において一酸化炭素などの有害成分が除去された燃焼排ガスは、水熱交換部7に導かれる。
なお、本実施の形態1に係る燃料電池システム100では、動作温度が近い脱硫触媒22と燃焼触媒23とを近接して配置する構成となっている。このような構成とすることで、動作温度の近い脱硫触媒22と燃焼触媒23とをまとめ、燃焼排ガスの有する熱を利用して加熱することができるため、これらの部材それぞれに流入する度に燃焼排ガスの温度調整を行う必要がなく、燃料電池システム100での熱利用性が向上させることができる。
また、脱硫触媒22および燃焼触媒23の動作温度も安定化できるため、結果として、温度依存性のある脱硫触媒22での脱硫性能、ならびに燃焼触媒23の燃焼ガス中の、一酸化炭素などの有害成分の除去性能を安定化させることができる。
水熱交換部7では、燃焼触媒部9において一酸化炭素などの有害成分が除去されるとともに、保有する熱の一部を失った燃焼排ガスと、システム外から供給された冷却水との間で熱交換を行う。これにより燃焼排ガスの温度を排気するのに十分な温度まで低下させる。このように、燃焼排ガスの熱を冷却水で熱回収する構成であるため燃焼排ガスの温度を効果的に低減させることができ、かつ多くの熱回収量を行うことができる。これにより、燃料電池システム100内での熱利用効率をさらに向上させることができる。
本実施の形態1に係る燃料電池システム100では、燃焼排ガス経路4において空気熱交換部6と水熱交換部7との間に脱硫部8および燃焼触媒部9がそれぞれ配置される構成であった。これら脱硫部8および燃焼触媒部9は共に、断熱部材24により覆われた、以下の図5に示す構成とすることもできる。ここで、脱硫部8および燃焼触媒部9を共に断熱部材24により覆って配置する構成を実施の形態1の変形例1として図5を参照して説明する。
(実施の形態1の変形例1)
図5は、本発明の実施の形態1に係る燃料電池システム100の変形例を示すブロック図である。
図5は、本発明の実施の形態1に係る燃料電池システム100の変形例を示すブロック図である。
図5に示すように、実施形態1の変形例1に係る燃料電池システム100では、脱硫部8および燃焼触媒部9を断熱部材24により囲まれて形成された空間内に収容する。このように、脱硫部8と燃焼触媒部9との両者を断熱部材24により形成された空間内に収容するため、両者を同様な温度範囲の燃焼排ガスで加熱することができるとともに、燃焼排ガスの有する熱が放熱することを抑制することができる。
このため、脱硫部8および燃焼触媒部9の動作温度を所定の温度範囲内に安定させることができるため、温度依存性のある脱硫部8での脱硫性能や、燃焼触媒部9の燃焼ガス中からの微量な一酸化炭素などの有害成分の除去性能を安定化できる。さらに、燃料電池システム100での熱利用性を向上させ、結果として発電効率を向上させる。
また、図5に示すように、断熱部材24により形成された空間内において、脱硫部8を形成する構造の一部と、燃焼触媒部9を形成する構造の一部とを互いが共有するように構成してもよい。具体的には、図5の例では脱硫部8と燃焼触媒部9との接触面を両者で共有している。このように、脱硫部8と燃焼触媒部9とを構成することで、別々に分離した構成とするよりも効率よく両者を燃焼排ガスの有する熱により加熱することができる。
さらには、燃焼排ガスが保有する熱の利用を効率的に行うために、脱硫部8および燃焼触媒部9で保有する熱の一部が利用された燃焼排ガスを導き、この燃焼排ガスの有する熱により空気を予熱する補助空気熱交換部19をさらに備える構成としてもよい。この補助空気熱交換部19をさらに備える燃料電池システム100の構成を変形例2として図6を参照して説明する。
(実施の形態1の変形例2)
図6は、本発明の実施の形態1に係る燃料電池システム100の変形例を示すブロック図である。図6に示すように、実施の形態1の変形例2に係る燃料電池システム100は、上記した実施の形態1に係る燃料電池システム100の構成において、補助空気熱交換部19を、燃焼排ガス経路4において燃焼触媒部9の後段であり、かつ水熱交換部7の前段に設けた構成となっている。そして、この補助空気熱交換部19にはカソードガス供給経路2も接続されており、このカソードガス供給経路2を通じて空気熱交換部6により予熱される前の空気が導かれている。
図6は、本発明の実施の形態1に係る燃料電池システム100の変形例を示すブロック図である。図6に示すように、実施の形態1の変形例2に係る燃料電池システム100は、上記した実施の形態1に係る燃料電池システム100の構成において、補助空気熱交換部19を、燃焼排ガス経路4において燃焼触媒部9の後段であり、かつ水熱交換部7の前段に設けた構成となっている。そして、この補助空気熱交換部19にはカソードガス供給経路2も接続されており、このカソードガス供給経路2を通じて空気熱交換部6により予熱される前の空気が導かれている。
補助空気熱交換部19では、燃焼触媒部9において保有する熱の一部を失った燃焼排ガスと空気との間で熱交換をし、燃焼排ガスからさらに熱を奪うとともに、この奪った熱により空気を予熱する。このように空気熱交換部6に送る空気を予め予熱することで、燃料電池ユニット1に送る空気温度を高くすることができる。そして、燃料電池システム100での熱利用性を向上させ、結果的には発電効率を向上させることができる。さらには、この補助空気熱交換部19において空気を燃料電池ユニット1の動作温度近傍まで昇温させることができる場合、空気熱交換部6の構成を簡素化することができる。
上記した実施の形態1に係る燃料電池システム100では、脱硫部8および燃焼触媒部9には所望の温度範囲の燃焼排ガスが流入するように設計されている。ところで、発電電力量など燃料電池ユニット1の動作条件を変化させた場合、燃料電池32の電圧特性が変化し、燃料電池32での発熱量が変化する。あるいは、燃料電池32が劣化した場合、燃料電池32での発熱量が変化する。このため、燃料電池32の動作条件の変更または燃料電池32の劣化に起因して燃料電池ユニット1から排出される燃焼排ガスの温度が変化してしまう。さらには、燃料電池ユニット1の環境温度など環境条件が変化した場合も、燃料電池ユニット1から排出される燃焼排ガス温度が変化する。
このように、燃料電池ユニット1から排出される燃焼排ガス温度が変化すると、脱硫部8および燃焼触媒部9の動作温度が変化し、所望される温度範囲から外れてしまうことがある。例えば、燃料電池ユニット1から排出される燃焼排ガス温度が定格運転時より高温となった場合、脱硫触媒22および燃焼触媒23は、所望の温度範囲よりも高温で加熱される。このように高温で加熱された場合、脱硫触媒22および燃焼触媒23の触媒成分がシンタリングして劣化する可能性がある。
そこで、実施の形態1に係る燃料電池システム100において、さらに、脱硫部8および燃焼触媒部9に流入する燃焼排ガスの温度を制御できる構成となっていてもよい。以下では、脱硫部8および燃焼触媒部9に流入する燃焼排ガスの温度を制御できる構成をさらに有した燃料電池システムとして実施の形態2に係る燃料電池システム200について図7を参照して説明する。
(実施の形態2)
図7は、本発明の実施の形態2における燃料電池システム200の概略構成の一例を模式的に示すブロック図である。図7に示すように、実施の形態2に係る燃料電池システム200は、実施の形態1に係る燃料電池システム100と比較して、制御部11と、燃焼排ガス温度冷却部12と、脱硫部温度検出部13とをさらに備えた点で異なる。それ以外の構成については、実施の形態1の燃料電池システム100と同様な構成となるので、同一部分の説明は省略する。
図7は、本発明の実施の形態2における燃料電池システム200の概略構成の一例を模式的に示すブロック図である。図7に示すように、実施の形態2に係る燃料電池システム200は、実施の形態1に係る燃料電池システム100と比較して、制御部11と、燃焼排ガス温度冷却部12と、脱硫部温度検出部13とをさらに備えた点で異なる。それ以外の構成については、実施の形態1の燃料電池システム100と同様な構成となるので、同一部分の説明は省略する。
燃焼排ガス温度冷却部12は、脱硫部加熱部20に流入する燃焼排ガスの温度を低下させるものであり、本発明の燃焼排ガス温度調整部に相当する。燃焼排ガス温度冷却部12としては、例えば、空気ファンを用いて空冷で冷却する冷却装置が挙げられる。ただし、燃焼排ガス温度冷却部12はこれに限定されるものではなく、空冷による他の冷却装置であってもよいし、冷媒として水を利用した水冷式の冷却装置であってもよい。すなわち、燃焼排ガスの温度を低減できる構成であれば任意である。この燃焼排ガス温度冷却部12は、燃焼排ガスの流通方向において、空気熱交換部6よりも下流側であって脱硫部8よりも上流側となる燃焼排ガス経路4上の位置に設けられている。
脱硫部温度検出部13は、脱硫部8の温度を検出するものであり、脱硫部8における任意の場所に設けられている。脱硫部温度検出部13は、検出した脱硫部8の温度を制御部11に通知する。
制御部11は、燃料電池システム200における各種制御を実行するものであり、例えば、CPUなどにより実現できる。脱硫部温度検出部13から検出された温度の情報が通知された場合、制御部11は、この温度が脱硫部8における上限温度として設定されている脱硫部制御温度を超えているか否か判定する。そして、脱硫部制御温度を超えていると判定した場合、制御部11は、燃焼排ガス温度冷却部12を動作させ、燃焼排ガス温度を低下させるように制御する(脱硫部温度制御処理)。
次に、図8を参照して実施の形態2に係る燃料電池システム200の動作について説明する。実施の形態2に係る燃料電池システム200の動作は、基本的には実施の形態1に係る燃料電池システム100とほぼ同じ動作となるが以下の点で異なる。すなわち、実施の形態2に係る燃料電池システム200は、図8に示す脱硫部温度制御処理を実行する点で実施の形態1に係る燃料電池システム100とは異なる。図8は図7に示す実施の形態2に係る燃料電池システム200において実行する脱硫部温度制御処理の一例を示すフローチャートである。
まず、脱硫部8における上限温度としてあらかじめ脱硫部制御温度が設定されており、この脱硫部制御温度は不図示の記憶装置に記憶されている。記憶装置としては、例えば、メインメモリなどが挙げられる。燃料電池システム200が動作すると、制御部11は、脱硫部温度検出部13で検出された温度を所定のタイミングで逐次取得する(ステップS11)。そして、制御部11は、この取得した温度と記憶装置に記憶した脱硫部制御温度とを比較し、取得した温度が脱硫部制御温度を上回るか否か監視する(ステップS12)。
ここで、制御部11が、脱硫部温度検出部13から取得した温度が脱硫部制御温度を上回ると判定した場合(ステップS12において「YES」)、脱硫部加熱部20に流入する燃焼排ガスの温度が脱硫部制御温度以下となるように燃焼排ガス温度冷却部12に指示する。この制御部11からの指示に応じて、燃焼排ガス温度冷却部12は、脱硫部制御温度以下となるように燃焼排ガスの温度を低下させる(ステップS13)。
以上のように実施の形態2に係る燃料電池システム200では、脱硫部温度検出部13で検出された温度と予め設定された脱硫部制御温度とを比較し、検出された温度が脱硫部制御温度を上回る場合、制御部11が燃焼排ガス温度冷却部12に指示して脱硫部8の温度を脱硫部制御温度以下となるように制御させる構成である。
このため、実施の形態2に係る燃料電池システム200では、燃焼排ガス温度が高温となることを防ぎ安定化させることができる。それゆえ、脱硫部8の動作温度、さらには燃焼排ガス経路4において脱硫部8の後段に設けられた燃焼触媒部9の動作温度も安定化することができる。その結果、温度依存性のある脱硫触媒22での脱硫性能や、燃焼触媒23による燃焼ガス中の微量の一酸化炭素などの有害成分除去性能を安定化できる。
なお、予め設定される脱硫部制御温度は、脱硫触媒22の温度特性、ならびに燃焼触媒23の温度特性もそれぞれ考慮して、適宜設定することができる。
上記したように実施の形態2に係る燃料電池システム200では、検出された脱硫部8の温度が脱硫部制御温度を上回るか否かに応じて、燃焼排ガス温度冷却部12を動作させるか否か制御部11が判定する構成であった。しかしながらこのような構成に限定されるものではなく、燃焼触媒部9の温度を基準にして、制御部11が燃焼排ガス温度冷却部12を動作させるか否か判定する構成としてもよい。この構成について実施の形態2の変形例1として以下に図9および図10を参照して説明する。
(実施の形態2の変形例1)
図9は、本発明の実施の形態2の変形例1に係る燃料電池システム200の概略構成の一例を模式的に示すブロック図である。図10は、図9に示す実施の形態2の変形例1に係る燃料電池システム200において実行する燃焼触媒温度制御処理の一例を示すフローチャートである。
図9は、本発明の実施の形態2の変形例1に係る燃料電池システム200の概略構成の一例を模式的に示すブロック図である。図10は、図9に示す実施の形態2の変形例1に係る燃料電池システム200において実行する燃焼触媒温度制御処理の一例を示すフローチャートである。
図9に示すように、実施の形態2の変形例1に係る燃料電池システム200は、実施の形態2に係る燃料電池システム200と比較して、脱硫部温度検出部13の代わりに燃焼触媒温度検出部(浄化触媒温度検出部)14を備えた点で異なる。それ以外の構成については、実施の形態2の燃料電池システム200と同様な構成となるので、同一部分の説明は省略する。
燃焼触媒温度検出部14は、燃焼触媒部9の温度を検出するものであり、燃焼触媒部9における任意の場所に設けられている。燃焼触媒温度検出部14は、検出した燃焼触媒部9の温度を制御部11に通知する。
また、実施の形態2の変形例1に係る燃料電池システム200の動作は、実施の形態2に係る燃料電池システム200とほぼ同じ動作となるが以下の点でのみ異なる。すなわち、実施の形態2の変形例1に係る燃料電池システム200は、図8に示す脱硫部温度制御処理を実施する代わりに、燃焼触媒温度検出部14で検出された温度に基づき、図10に示す燃焼触媒温度制御処理を実施する点で異なる。
具体的には、燃焼触媒部9における上限温度としてあらかじめ燃焼触媒制御温度(浄化触媒制御温度)が設定されており、この温度は不図示の記憶装置に記憶されている。燃料電池システム200が動作すると、制御部11は、燃焼触媒温度検出部14で検出された温度(検出温度)を所定のタイミングで逐次取得する(ステップS21)。そして、制御部11は、この取得した温度と記憶装置に記憶した燃焼触媒制御温度とを比較し、取得した温度が燃焼触媒制御温度を上回るか否か監視する(ステップS22)。
ここで、制御部11が、燃焼触媒温度検出部14から取得した温度が燃焼触媒制御温度を上回ると判定した場合(ステップS22において「YES」)、燃焼触媒部9に流入する燃焼排ガスの温度を燃焼触媒制御温度まで低下させるように燃焼排ガス温度冷却部12に指示する。この制御部11からの指示に応じて、燃焼排ガス温度冷却部12は、燃焼触媒制御温度以下となるように燃焼排ガスの温度を低下させる(ステップS23)。
以上のように実施の形態2の変形例1に係る燃料電池システム200では、燃焼触媒温度検出部14で検出された温度と予め設定された燃焼触媒制御温度とを比較し、検出された温度が燃焼触媒制御温度を上回る場合、制御部11が燃焼排ガス温度冷却部12に指示して燃焼触媒部9の温度を燃焼触媒制御温度以下となるように動作させる構成である。
このため、実施の形態2の変形例1に係る燃料電池システム200では、燃焼排ガス温度が高温となることを防ぎ安定化させることができる。それゆえ、燃焼触媒部9の温度、さらには燃焼排ガス経路4において燃焼触媒部9の前段(直前)に設けられた脱硫部8の動作温度も安定化させることができる。その結果、温度依存性のある脱硫触媒22での脱硫性能や、燃焼触媒23による燃焼ガス中の微量の一酸化炭素などの有害成分除去性能を安定化できる。
なお、予め設定される燃焼触媒制御温度は、燃焼触媒23の温度特性ならびに脱硫触媒22の温度特性を考慮して、適宜、設定することができる。
ところで、上記した実施の形態2に係る燃料電池システム200の動作開始時点では、燃料電池ユニット1の動作温度が定格時の動作温度よりも低く、そのため燃料電池ユニット1から排出される燃焼排ガスの温度も低くなる。このため、脱硫触媒22および燃焼触媒23が所望の温度範囲まで昇温されず、十分に原料から硫黄成分を取り除くことができないとともに、燃焼排ガスから一酸化炭素などの有害成分を十分に取り除くことができない。特に、燃焼排ガス中に一酸化炭素などの有害成分を含んだままシステム外に排出されることは大きな問題となる。そこで、燃焼触媒23の温度が、その温度特性に応じた温度範囲となるように燃焼触媒加熱ヒータ(浄化触媒加熱ヒータ)21をさらに備えた構成としてもよい。この燃焼触媒加熱ヒータ21をさらに備えた構成について実施の形態2の変形例2として以下に図11を参照して説明する。
(実施の形態2の変形例2)
図11は、本発明の実施の形態2に係る燃料電池システム200の変形例(変形例2)を示すブロック図である。図11に示すように、実施の形態2の変形例2に係る燃料電池システム200は、実施の形態2の変形例1に係る燃料電池システム200の構成において、燃焼触媒加熱ヒータ21をさらに備えた構成となっている。
図11は、本発明の実施の形態2に係る燃料電池システム200の変形例(変形例2)を示すブロック図である。図11に示すように、実施の形態2の変形例2に係る燃料電池システム200は、実施の形態2の変形例1に係る燃料電池システム200の構成において、燃焼触媒加熱ヒータ21をさらに備えた構成となっている。
燃焼触媒加熱ヒータ21は、燃焼触媒部9を加熱するヒータであり、例えば、電気ヒータなどにより実現できる。燃焼触媒加熱ヒータ21は、燃焼触媒部9に供給する燃焼排ガスの温度を昇温させることで燃焼触媒23を加熱させる構成の場合、燃焼排ガス経路4における、燃焼触媒部9への燃焼排ガスの流入口近傍に設けられる。一方、直接、燃焼触媒部9を加熱する構成の場合は、燃焼触媒加熱ヒータ21は、この燃焼触媒部9と接するように設けられる。
この燃焼触媒加熱ヒータ21は、以下のようにして動作する。すなわち、燃焼触媒部9の動作温度として所定の温度範囲が設定されており、その下限温度(例えば、200℃)を不図示の記憶装置に記憶する。燃料電池システム200が動作すると、制御部11は、燃焼触媒温度検出部14で検出された温度(検出温度)を所定のタイミングで逐次取得する。そして、制御部11は、この取得した温度と記憶装置に記憶した下限温度とを比較し、取得した温度が下限温度をより小さいか否か判定する。ここで、制御部11が、燃焼触媒温度検出部14から取得した検出温度が下限温度をより小さいと判定した場合、燃焼触媒部9またはこの燃焼触媒部9に流入する燃焼排ガスの温度を、燃焼触媒23の温度が下限温度以上となるまで加熱させるように燃焼触媒加熱ヒータ21に指示する。この制御部11からの指示に応じて、燃焼触媒加熱ヒータ21は、燃焼触媒23の温度が下限温度以上となるように燃焼触媒部9またはこの燃焼触媒部9に流入する燃焼排ガスを加熱する。
このように、実施の形態2の変形例2に係る燃料電池システム200では、燃焼触媒加熱ヒータ21を備えているため、これにより燃焼触媒部9を加熱して燃焼触媒を速やかに昇温させることができ、燃焼ガス中の微量の一酸化炭素などの有害成分除去を安定して行うことがきる。特に、燃料電池システム200を常温から起動させる場合、燃焼触媒部9が十分に暖められていない。しかしながらこのような場合であっても、燃焼触媒加熱ヒータ21を用いて燃焼触媒部9を加熱することができるため、起動時から燃焼ガス中の微量の一酸化炭素などの有害成分の除去を行うことができる。
ところで、上記した実施の形態2に係る燃料電池システム200では、燃焼排ガス温度冷却部12を動作させて脱硫部8および燃焼触媒部9に流入する燃焼排ガスの温度を調整する構成であった。しかしながら燃焼排ガスの温度調整を実施する構成はこの構成に限定されるものではない。例えば、燃料電池ユニット1の動作温度は、燃料電池ユニット1から排出される燃焼排ガスの温度に影響を及ぼす。燃料電池ユニット1を高温で動作させると、燃焼排ガス温度は高くなり、その結果、脱硫部加熱部20により加熱される脱硫触媒22、ならびに燃焼触媒部9の燃焼触媒23の温度が高くなる。
そこで、本発明の燃焼排ガス温度調整部として、燃料電池ユニット1に投入する空気、原料、または改質水の流量を制御する部材を備え、燃料電池ユニット1から排出される燃焼排ガスの温度を調整する構成について実施の形態3として以下に説明する。
(実施の形態3)
本実施の形態3に係る燃料電池システム300の構成について図12を参照して説明する。図12は、本発明の実施の形態3に係る燃料電池システム300の概略構成の一例を模式的に示すブロック図である。
本実施の形態3に係る燃料電池システム300の構成について図12を参照して説明する。図12は、本発明の実施の形態3に係る燃料電池システム300の概略構成の一例を模式的に示すブロック図である。
本実施の形態3に係る燃料電池システム300は、脱硫部8および燃焼触媒部9の温度を安定化させるため、燃料電池ユニット1のカソードへ供給する空気の流量を制御し、燃料電池ユニット1の動作温度が所定の温度範囲に収まるように構成されている。言い換えると、燃料電池ユニット1への空気の供給量を大きくして燃料電池ユニット1を冷却させることで、燃料電池ユニット1の動作温度が所定の温度範囲に収まるように構成されている。
具体的には本実施の形態3に係る燃料電池システム300は、図12に示すように、図7に示す実施の形態2に係る燃料電池システム200の構成と比較して以下の点で相違する。すなわち、脱硫部温度検出部13の代わりに燃焼触媒部9の温度を検出する燃焼触媒温度検出部14を設けた点、燃焼排ガス温度調整部として燃焼排ガス温度冷却部12の代わりにカソード空気供給部16を設けた点、さらに燃料電池温度検出部15を備えた点で異なる。それ以外の点については実施の形態2に係る燃料電池システム200の構成と同様であるため、その説明については省略する。
燃料電池温度検出部15は、燃料電池ユニット1内の温度を検出するものである。燃料電池温度検出部15が燃料電池ユニット1内の温度を検出すると、その検出した温度の情報を制御部11に送出する。燃料電池温度検出部15は燃料電池ユニット1内の任意の位置に設けられるが、特には燃焼排ガスの排出口近傍が好適である。これは、燃料電池ユニット1から排出される際の燃焼排ガス温度を検出することができるからである。
カソード空気供給部16は、燃料電池ユニット1の動作温度を制御するものである。具体的には、燃料電池ユニット1に供給する空気(カソード空気)の供給量を調整することで燃料電池ユニット1の動作温度を制御する。なお、このカソード空気供給部16は、制御部11からの制御指示の下、供給する空気の流量を調整する。すなわち、カソード空気供給部16は、燃料電池ユニット1の動作温度を制御することにより、燃料電池ユニット1から排出される燃焼排ガスの温度を調整する。
次に上記した構成を有する実施の形態3に係る燃料電池システム300の動作について説明する。実施の形態3に係る燃料電池システム300の動作は、実施の形態2に係る燃料電池システム100の動作と比較して、図8に示す脱硫部温度制御処理を実施する代わりに、図13に示す燃料電池温度制御処理を実施する点で異なる。図13は図12に示す実施の形態3に係る燃料電池システム300における燃料電池温度制御処理の一例を示すフローチャートである。なお、実施の形態3に係る燃料電池システム300は、上述した燃料電池温度制御処理を実施する以外は、実施形態2に係る燃料電池システム200と同様となるため、その同様な動作についての説明は省略する。
具体的には、燃料電池ユニット1内における上限温度としてあらかじめ燃料電池制御温度が設定されており、この温度は不図示の記憶装置に記憶されている。この燃料電池制御温度は、燃焼触媒部9または脱硫部8における上限温度と対応づけられた、燃料電池ユニット内における上限温度である。
燃料電池システム300が動作すると、制御部11は、燃料電池温度検出部15で検出される温度を所定のタイミングで逐次取得する(ステップS31)。そして、制御部11は、この取得した温度と記憶装置に記憶した燃料電池制御温度とを比較し、取得した温度が燃料電池制御温度を上回るか否か監視する(ステップS32)。
ここで、制御部11が、燃料電池温度検出部15から取得した温度が燃料電池制御温度を上回ると判定した場合(ステップS32において「YES」)、カソード空気供給部16に対して、燃料電池ユニット1の温度を燃料電池制御温度まで低下させるように空気の供給量を大きくするように指示する。この制御部11からの指示に応じてカソード空気供給部16は、燃料電池ユニット1への空気の供給量を大きくする(ステップS33)。
以上のように実施の形態3に係る燃料電池システム300では、燃料電池温度検出部15で検出された温度と予め設定されている燃料電池制御温度とを比較し、検出された温度が燃料電池制御温度を上回る場合、制御部11からの制御指示の下、カソード空気供給部16が、燃料電池ユニット1への空気の供給量を大きくする構成である。
このため、実施の形態3に係る燃料電池システム300では、燃料電池ユニット1の動作温度が高温になることを防ぎ、所定の温度範囲に収まるように安定化させることができる。このため、燃料電池ユニット1から排出される燃焼排ガス温度が高温となり燃焼触媒部9の温度、さらには脱硫部8の温度が所望される温度範囲よりも高くなってしまうことを防ぐことができる。それゆえ、脱硫部8および燃焼触媒部9の動作温度を安定化することができる。その結果、温度依存性のある脱硫触媒22での脱硫性能や、燃焼触媒23による燃焼ガス中の微量の一酸化炭素などの有害成分除去性能を安定化させることができる。
なお、上記では燃料電池ユニット1内の上限温度として設定した燃料電池制御温度を上回る場合に、カソード空気供給部16が空気の供給量を大きくして燃料電池ユニット1内の温度を低下させる構成であった。この構成においてさらに燃料電池システム300が以下のように動作する構成であってもよい。
すなわち、燃料電池ユニット1内の下限温度を設定し、記憶装置に記憶しておく。そして制御部11が燃料電池温度検出部15により検出された温度を取得する。この検出された温度が下限温度を下回ると判定した場合、制御部11は、カソード空気供給部16に空気の供給量を小さくするように制御する構成としてもよい。つまり、カソード空気供給部16は、燃料電池ユニット1へ供給する空気の流量を小さくさせると、燃料電池ユニット1の冷却を抑制し、焼排ガス温度を高くすることができる。
以上のように、本実施の形態3に係る燃料電池システム300では、カソード空気供給部16から燃料電池ユニット1への空気の供給量を調整することで燃料電池ユニット1の温度を制御し、さらには燃焼排ガスの温度を制御することができる。
なお、燃料電池制御温度は、例えば、燃焼触媒温度検出部14での検出された燃焼触媒23の温度と燃料電池温度検出部15で検出された燃料電池ユニット1の温度とを制御部11が取得する。そして、燃焼触媒23の温度と燃料電池ユニット1の温度との相関関係をとり、脱硫部8および燃焼触媒部9の動作が安定するような温度範囲を考慮して、適宜、設定することができる。
あるいは、燃焼触媒温度検出部14の代わりに脱硫部温度検出部13を備え、脱硫部温度検出部13での検出された脱硫触媒22の温度と燃料電池温度検出部15で検出された燃料電池ユニット1の温度とを制御部11が取得する。そして、脱硫触媒22の温度と燃料電池ユニット1の温度との相関関係をとり、脱硫部8および燃焼触媒部9の動作が安定するような温度範囲を考慮して、適宜、設定してもよい。
上記では燃焼排ガス温度調整部としてカソード空気供給部16を備え、燃料電池ユニット1から排出される燃焼排ガスの温度を調整する燃料電池システム300の構成について説明したが、この構成に限定されるものではない。燃料電池システム300は、燃焼排ガス温度調整部としてカソード空気供給部16の代わりに、燃料電池ユニット1への原料の供給量を制御する原料供給部17を備え、燃料電池ユニット1から排出される燃焼排ガスの温度を調整する構成としてもよい。このように、燃焼排ガス温度調整部として原料供給部17を備える燃料電池システム300の構成を、実施の形態3の変形例1として図14を参照して以下に説明する。
(実施の形態3の変形例1)
図14は、本発明の実施の形態3に係る燃料電池システム300の変形例(変形例1)を示すブロック図である。図14に示すように、実施の形態3の変形例1に係る燃料電池システム300は、実施の形態3に係る燃料電池システム300の構成において燃焼排ガス温度調整部として備えられていたカソード空気供給部16の代わりに、原料供給部17を備えた構成となっている。それ以外の構成については、実施の形態3の燃料電池システム300と同様な構成となるので、同一部分の説明は省略する。
図14は、本発明の実施の形態3に係る燃料電池システム300の変形例(変形例1)を示すブロック図である。図14に示すように、実施の形態3の変形例1に係る燃料電池システム300は、実施の形態3に係る燃料電池システム300の構成において燃焼排ガス温度調整部として備えられていたカソード空気供給部16の代わりに、原料供給部17を備えた構成となっている。それ以外の構成については、実施の形態3の燃料電池システム300と同様な構成となるので、同一部分の説明は省略する。
原料供給部17は、制御部11からの制御指示の下、燃料電池ユニット1に供給する原料の流量を制御するものであり、原料供給経路5に設けられている。ここで、原料供給部17により燃料電池ユニット1に供給する原料の流量を減少させると、燃料電池ユニット1の燃焼部33において燃焼させる、未利用の燃料(改質ガス)が減少し、その結果、燃焼部33において生成される燃焼排ガスの温度が低下する。
反対に原料供給部17が燃料電池ユニット1に供給する原料の流量を増加させると、燃料電池ユニット1の燃焼部33において燃焼させる、未利用の燃料(改質ガス)が増加し、その結果、燃焼排ガスの温度が上昇する。そこで、実施の形態3の変形例1に係る燃料電池システム300では、この燃焼排ガスの温度が所定の温度範囲内に収まるように、原料供給部17が原料供給量を制御するように構成されている。
具体的には、図13に示すステップS32において制御部11が、燃料電池温度検出部15から取得した温度が燃料電池制御温度を上回ると判定した場合、原料供給部17に対して、燃料電池ユニット1の温度を燃料電池制御温度まで低下させるように原料の供給量を小さくするように指示する。この制御部11からの指示に応じて原料供給部17は、燃料電池ユニット1への原料の供給量を小さくする。
さらには、燃料電池ユニット1内の下限温度を設定している場合は、制御部11が燃料電池温度検出部15により検出された温度がこの下限温度を下回るか否か判定する。そして制御部11が、下限温度を下回ると判定した場合、原料供給部17に原料の供給量を大きくするように制御する構成としてもよい。つまり、原料供給部17は、燃料電池ユニット1へ供給する原料の流量を大きくさせると、焼排ガス温度を高くすることができる。
また、燃料電池システム300は、燃料電池ユニット1への空気の供給量を制御する代わりに改質水の供給量を制御することで燃料電池ユニット1から排出される燃焼排ガスの温度を制御する構成とすることもできる。このように燃料電池ユニット1への改質水の供給量を制御することで燃料電池ユニット1から排出される燃焼排ガスの温度を制御する燃料電池システム300の構成を、実施の形態3の変形例2として図15を参照して以下に説明する。
(実施の形態3の変形例2)
図15は、本発明の実施の形態3に係る燃料電池システム300の変形例(変形例2)を示すブロック図である。図15に示すように、実施の形態3の変形例2に係る燃料電池システム300は、実施の形態3に係る燃料電池システム300の構成において備えられていたカソード空気供給部16の代わりに水供給部18を備え、この水供給部18と燃料電池ユニット1とが改質水経路(不図示)によって接続されている点で異なる。それ以外の構成については、実施の形態3の燃料電池システム300と同様な構成となるので、同一部分の説明は省略する。
図15は、本発明の実施の形態3に係る燃料電池システム300の変形例(変形例2)を示すブロック図である。図15に示すように、実施の形態3の変形例2に係る燃料電池システム300は、実施の形態3に係る燃料電池システム300の構成において備えられていたカソード空気供給部16の代わりに水供給部18を備え、この水供給部18と燃料電池ユニット1とが改質水経路(不図示)によって接続されている点で異なる。それ以外の構成については、実施の形態3の燃料電池システム300と同様な構成となるので、同一部分の説明は省略する。
水供給部18は、制御部11からに指示の下、燃料電池ユニット1における改質部31に、水蒸気改質で利用するための改質水を、改質水経路を通じて供給するものである。なお、水供給部18により供給される改質水は、外部の水源から供給された水であってもよいし、燃焼排ガスと水熱交換部7との間における熱交換で、降温された燃焼排ガスから得られる凝縮水であってもよい。
ここで、水供給部18により燃料電池ユニット1に供給する改質水の流量を増加させると、燃料電池ユニット1の蒸発器(不図示)において改質水を蒸発させるために必要となる熱量が増加する。このため、この改質水の蒸発に利用される燃焼排ガスが有する熱量が大きくなり、結果として燃料電池ユニット1から排出される燃焼排ガスの温度が低下することとなる。反対に、水供給部18により燃料電池ユニット1に供給する改質水の流量を減少させると、燃料電池ユニット1の蒸発器において改質水を蒸発させるために必要となる熱量が減少する。このため、この改質水の蒸発に利用される燃焼排ガスが有する熱量が小さくなり、結果として燃料電池ユニット1から排出される燃焼排ガスの温度が上昇することとなる。
そこで、実施の形態3の変形例2に係る燃料電池システム300では、供給する改質水の流量に応じて燃焼排ガスの温度が変化する点を利用してこの燃焼排ガスの温度が所定の温度範囲内に収まるように水供給部18による改質水供給量を制御するように構成されている。
具体的には、図13に示すステップS32において制御部11が、燃料電池温度検出部15から取得した温度が燃料電池制御温度を上回ると判定した場合、水供給部18に対して、燃料電池ユニット1の温度を燃料電池制御温度まで低下させるように改質水の供給量を大きくするように指示する。この制御部11からの指示に応じて水供給部18は、燃料電池ユニット1への改質水の供給量を大きくする。
さらには、燃料電池ユニット1内の下限温度を設定している場合は、制御部11が燃料電池温度検出部15により検出された温度がこの下限温度を下回るか否か判定する。そして制御部11が、下限温度を下回ると判定した場合、水供給部18に改質水の供給量を小さくするように制御する構成としてもよい。つまり、水供給部18は、燃料電池ユニット1へ供給する改質水の流量を小さくさせると、焼排ガス温度を高くすることができる。
上述した実施の形態3、ならびにその変形例1、2に係る燃料電池システム300は、燃料電池ユニット1から排出される燃焼排ガスの温度を所定の温度範囲内に収まるようにすることができる。このため、脱硫部8の温度、ならびに燃焼触媒部9の温度をともに所定の温度範囲に収めることができ、温度依存性のある脱硫触媒22の脱硫性能や、燃焼触媒23の燃焼ガス中の微量の一酸化炭素などの有害成分除去性能を安定化させることができる。
本発明に係る燃料電池システムは、原料中の硫黄成分を除去する水添脱硫部と、燃焼排ガスに含まれる一酸化炭素などの有害成分を除去する燃焼触媒部とを備える燃料電池システムにおいて有用である。
1 燃料電池ユニット
2 カソードガス供給経路
4 燃焼排ガス経路
5 原料供給経路
6 空気熱交換部
7 水熱交換部
8 脱硫部
9 燃焼触媒部
10 冷媒供給経路
11 制御部
12 燃焼排ガス温度冷却部
13 脱硫部温度検出部
14 燃焼触媒温度検出部(浄化触媒温度検出部)
15 燃料電池温度検出部
16 カソード空気供給部
17 原料供給部
18 水供給部
19 補助空気熱交換部
20 脱硫部加熱部
21 燃焼触媒加熱ヒータ(浄化触媒加熱ヒータ)
22 脱硫触媒
23 燃焼触媒
24 断熱部材
31 改質部
32 燃料電池
33 燃焼部
40 熱交換部
41 不純物除去部
42 浄化部
52 不純物除去触媒
53 浄化触媒
100 燃料電池システム
200 燃料電池システム
300 燃料電池システム
2 カソードガス供給経路
4 燃焼排ガス経路
5 原料供給経路
6 空気熱交換部
7 水熱交換部
8 脱硫部
9 燃焼触媒部
10 冷媒供給経路
11 制御部
12 燃焼排ガス温度冷却部
13 脱硫部温度検出部
14 燃焼触媒温度検出部(浄化触媒温度検出部)
15 燃料電池温度検出部
16 カソード空気供給部
17 原料供給部
18 水供給部
19 補助空気熱交換部
20 脱硫部加熱部
21 燃焼触媒加熱ヒータ(浄化触媒加熱ヒータ)
22 脱硫触媒
23 燃焼触媒
24 断熱部材
31 改質部
32 燃料電池
33 燃焼部
40 熱交換部
41 不純物除去部
42 浄化部
52 不純物除去触媒
53 浄化触媒
100 燃料電池システム
200 燃料電池システム
300 燃料電池システム
Claims (10)
- 供給された原料を改質して得られた燃料と、供給された空気とを用いて発電する燃料電池ユニットと、
前記燃料電池ユニットにおいて未利用の燃料と空気とを燃焼させ生成された燃焼排ガスの有する熱により燃料電池ユニットに供給する空気を予熱する空気熱交換部と、
前記空気の予熱によって保有する熱の一部を失った燃焼排ガスの有する熱により所定の温度範囲まで加熱される、前記原料中の不純物を除去する不純物除去部および該燃焼排ガス中に含まれる有害成分を除去する浄化部と、
前記不純物除去部および前記浄化部の加熱により保有する熱の一部をさらに失った燃焼排ガスの有する熱と冷媒との間で熱交換を行う熱交換部と、を備える燃料電池システム。 - 前記熱交換部は、前記冷媒として水を用いる水熱交換部であり、
前記水熱交換部は、前記燃焼排ガスの有する熱と水との間で熱交換を行い、該水を加熱させる請求項1に記載の燃料電池システム。 - 前記不純物除去部は、前記原料中の不純物として硫黄化合物を除去する脱硫部である請求項1に記載の燃料電池システム。
- 制御部と、
前記燃焼排ガスの温度を調整する燃焼排ガス温度調整部と、
前記脱硫部の温度を検出する脱硫部温度検出部と、を備え、
前記制御部が、前記脱硫部温度検出部で検出された検出温度が、前記脱硫部の前記所定の温度範囲における上限温度である脱硫部制御温度より大きくなると判定した場合、この検出温度が該脱硫部制御温度以下となるように、前記燃焼排ガス温度調整部を動作させる請求項3に記載の燃料電池システム。 - 制御部と、
前記燃焼排ガスの温度を調整する燃焼排ガス温度調整部と、
前記浄化部の温度を検出する浄化触媒温度検出部と、を備え、
前記制御部が、前記浄化触媒温度検出部で検出された検出温度が、前記浄化部の前記所定の温度範囲における上限温度である浄化触媒制御温度より大きくなると判定した場合、この検出温度が該浄化触媒制御温度以下となるように、前記燃焼排ガス温度調整部を動作させる請求項3に記載の燃料電池システム。 - 制御部と、
前記燃料電池ユニットの動作温度を制御することにより、前記燃焼排ガスの温度を調整する燃焼排ガス温度調整部と、
前記燃料電池ユニット内の温度を検出する燃料電池温度検出部と、を備え、
前記制御部が、前記燃料電池温度検出部で検出された検出温度が、前記脱硫部または前記浄化部の前記所定の温度範囲における上限温度と対応づけられた、前記燃料電池ユニット内における上限温度である燃料電池制御温度より大きくなると判定した場合、この検出温度が該燃料電池制御温度以下となるように、前記燃焼排ガス温度調整部を動作させる請求項3に記載の燃料電池システム。 - 前記燃料電池ユニットから排出される燃焼排ガスが流通する燃焼排ガス経路を備え、
前記脱硫部が該脱硫部に充填される脱硫触媒を加熱する脱硫部加熱部を有しており、
前記燃焼排ガス経路に前記脱硫部加熱部および前記浄化部が設けられる請求項3から6のいずれか1項に記載の燃料電池システム。 - 前記脱硫部および前記浄化部を共に覆う断熱部材を備え、
前記断熱部材によって形成された空間内において、前記脱硫部および前記浄化部は、この脱硫部を形成する構造の一部とこの浄化部を形成する構造の一部とを互いが共有するように構成されている請求項3から7のいずれか1項に記載の燃料電池システム。 - 前記浄化部を加熱するための浄化触媒加熱ヒータをさらに備え、
前記制御部が、前記浄化触媒温度検出部で検出された検出温度が前記浄化部の前記所定の温度範囲における下限温度より小さくなると判定した場合、この検出温度が該下限温度以上となるように、前記浄化触媒加熱ヒータを動作させる請求項5に記載の燃料電池システム。 - 前記脱硫部および前記浄化部で熱利用された後の燃焼排ガスが有する熱を利用して、前記空気熱交換部に供給される前の空気を予熱する補助空気熱交換部を備える、請求項3から9のいずれか1項に記載の燃料電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015553362A JP6034511B2 (ja) | 2013-12-19 | 2014-12-09 | 燃料電池システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-262381 | 2013-12-19 | ||
JP2013262381 | 2013-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093010A1 true WO2015093010A1 (ja) | 2015-06-25 |
Family
ID=53402388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/006145 WO2015093010A1 (ja) | 2013-12-19 | 2014-12-09 | 燃料電池システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6034511B2 (ja) |
WO (1) | WO2015093010A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017103218A (ja) * | 2015-11-20 | 2017-06-08 | パナソニックIpマネジメント株式会社 | 固体酸化物型燃料電池システム |
EP3240082A1 (en) | 2016-04-28 | 2017-11-01 | Panasonic Intellectual Property Management Co., Ltd. | High-temperature operating fuel cell system and method for operating high-temperature operating fuel cell system |
WO2019215931A1 (ja) * | 2018-05-11 | 2019-11-14 | 日産自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
JP2021002461A (ja) * | 2019-06-21 | 2021-01-07 | アイシン精機株式会社 | 燃料電池システムおよびその制御方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020733A (ja) * | 1999-07-12 | 2001-01-23 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2003017103A (ja) * | 2001-06-28 | 2003-01-17 | Mitsubishi Heavy Ind Ltd | 固体電解質型燃料電池システム |
JP2003229164A (ja) * | 2002-02-05 | 2003-08-15 | Tokyo Gas Co Ltd | 固体酸化物形燃料電池システム |
JP2006032291A (ja) * | 2004-07-21 | 2006-02-02 | Kyocera Corp | 発電装置 |
US20110189567A1 (en) * | 2004-01-22 | 2011-08-04 | Bloom Energy Corporation | High Temperature Fuel Cell System and Method of Operating the Same |
JP2012138361A (ja) * | 2012-02-14 | 2012-07-19 | Kyocera Corp | 燃料電池装置 |
JP2013211165A (ja) * | 2012-03-30 | 2013-10-10 | Dainichi Co Ltd | 燃料電池システム |
JP2013229129A (ja) * | 2012-04-24 | 2013-11-07 | Kyocera Corp | 燃料電池装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5584507B2 (ja) * | 2010-03-31 | 2014-09-03 | 大阪瓦斯株式会社 | 固体酸化物形燃料電池システム |
JP5753733B2 (ja) * | 2011-05-16 | 2015-07-22 | 日本特殊陶業株式会社 | 燃料電池モジュール及び燃料電池システム |
-
2014
- 2014-12-09 JP JP2015553362A patent/JP6034511B2/ja active Active
- 2014-12-09 WO PCT/JP2014/006145 patent/WO2015093010A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020733A (ja) * | 1999-07-12 | 2001-01-23 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2003017103A (ja) * | 2001-06-28 | 2003-01-17 | Mitsubishi Heavy Ind Ltd | 固体電解質型燃料電池システム |
JP2003229164A (ja) * | 2002-02-05 | 2003-08-15 | Tokyo Gas Co Ltd | 固体酸化物形燃料電池システム |
US20110189567A1 (en) * | 2004-01-22 | 2011-08-04 | Bloom Energy Corporation | High Temperature Fuel Cell System and Method of Operating the Same |
JP2006032291A (ja) * | 2004-07-21 | 2006-02-02 | Kyocera Corp | 発電装置 |
JP2012138361A (ja) * | 2012-02-14 | 2012-07-19 | Kyocera Corp | 燃料電池装置 |
JP2013211165A (ja) * | 2012-03-30 | 2013-10-10 | Dainichi Co Ltd | 燃料電池システム |
JP2013229129A (ja) * | 2012-04-24 | 2013-11-07 | Kyocera Corp | 燃料電池装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017103218A (ja) * | 2015-11-20 | 2017-06-08 | パナソニックIpマネジメント株式会社 | 固体酸化物型燃料電池システム |
EP3240082A1 (en) | 2016-04-28 | 2017-11-01 | Panasonic Intellectual Property Management Co., Ltd. | High-temperature operating fuel cell system and method for operating high-temperature operating fuel cell system |
WO2019215931A1 (ja) * | 2018-05-11 | 2019-11-14 | 日産自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
JP2021002461A (ja) * | 2019-06-21 | 2021-01-07 | アイシン精機株式会社 | 燃料電池システムおよびその制御方法 |
JP7226129B2 (ja) | 2019-06-21 | 2023-02-21 | 株式会社アイシン | 燃料電池システムおよびその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015093010A1 (ja) | 2017-03-16 |
JP6034511B2 (ja) | 2016-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111788731B (zh) | 燃料电池系统和燃料电池系统的运转方法 | |
JP6293044B2 (ja) | 燃料電池システム | |
JP6138378B2 (ja) | 燃料電池システム | |
JP6034511B2 (ja) | 燃料電池システム | |
WO2014132555A1 (ja) | 燃料電池装置、および燃料電池システム | |
US20190190050A1 (en) | Solid oxide fuel cell system | |
JP6090419B1 (ja) | 燃料電池装置 | |
JP6098795B2 (ja) | 固体酸化物形燃料電池システム | |
JP6405211B2 (ja) | 燃料電池システム | |
JP6510262B2 (ja) | 燃料電池モジュール及びその運転方法 | |
JP4902165B2 (ja) | 燃料電池用改質装置およびこの燃料電池用改質装置を備える燃料電池システム | |
JP2004149407A (ja) | 水素発生装置およびこれを用いた発電装置 | |
JP2001093550A (ja) | 固体高分子型燃料電池発電装置及びその運転方法 | |
US8328886B2 (en) | Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor | |
JP5102510B2 (ja) | 燃料電池システム | |
JP2002170583A (ja) | 燃料電池コージェネレーションシステム | |
JP4751589B2 (ja) | 燃料電池発電システム | |
JP2014107186A (ja) | 固体酸化物形燃料電池システム | |
JP6582572B2 (ja) | 燃料電池システム | |
JP4484585B2 (ja) | 改質装置 | |
JP4835273B2 (ja) | 水素生成装置および燃料電池システム | |
JP4917791B2 (ja) | 燃料電池システム | |
JP2004103358A (ja) | 燃料電池用水素供給システム | |
JP2016100160A (ja) | 燃料電池システム | |
JP2004315284A (ja) | 改質器と改質器を利用したシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14872307 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015553362 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14872307 Country of ref document: EP Kind code of ref document: A1 |