WO2015089940A1 - 一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品 - Google Patents

一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品 Download PDF

Info

Publication number
WO2015089940A1
WO2015089940A1 PCT/CN2014/072141 CN2014072141W WO2015089940A1 WO 2015089940 A1 WO2015089940 A1 WO 2015089940A1 CN 2014072141 W CN2014072141 W CN 2014072141W WO 2015089940 A1 WO2015089940 A1 WO 2015089940A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
powder
additive
silver
matrix
Prior art date
Application number
PCT/CN2014/072141
Other languages
English (en)
French (fr)
Inventor
刘立强
颜小芳
鲁香粉
翁桅
柏小平
林万焕
Original Assignee
福达合金材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福达合金材料股份有限公司 filed Critical 福达合金材料股份有限公司
Publication of WO2015089940A1 publication Critical patent/WO2015089940A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides

Definitions

  • the invention relates to an electrical contact material and a preparation method thereof, in particular to a silver oxide contact material with a reinforcing matrix performance additive, a preparation method thereof and a product thereof.
  • Silver oxide contact materials are the most widely used in low-voltage electrical appliances, especially in contactors and relays with medium and large current levels.
  • Conventional silver oxide contact materials exist in the form of a simple "fake alloy" of silver and oxide, which is dispersed around a pure silver matrix.
  • the more common methods for preparing silver oxide contact materials are internal oxidation process, powder mixing process, powder pre-oxidation process and coating process. These processes use an oxide addition to improve the wetting between the silver matrix and tin oxide, such as the following patents:
  • a preparation method of silver tin oxide the main principle is to add an oxidizing atmosphere during the atomization process of the silver-tin alloy powder to realize oxidation of the powder.
  • the main method of preparing the silver tin oxide by physical metallurgical coating method is to coat the surface of the tin oxide particles with a layer of alloy by physical metallurgy, and then convert it into oxide-coated tin oxide particles by oxidation, and then mix with the silver powder. Thereby obtaining a silver tin oxide material.
  • the object of the present invention is to overcome the disadvantages and deficiencies of the prior art, and to provide a method for preparing a silver oxide contact material with a reinforcing matrix property additive, by which the matrix can be provided with high current impact resistance, Material transfer properties under DC resistance and resistance to contact welding.
  • the technical proposal of the present invention is that the raw material is an oxide powder, the matrix performance additive and the second additive powder are reinforced, and the balance is silver, and the second additive may be tungsten oxide, oxide molybdenum, rare earth oxidation.
  • the second additive may be tungsten oxide, oxide molybdenum, rare earth oxidation.
  • the characteristic is that the production steps are as follows:
  • Silver and reinforced matrix performance additive alloys are smelted and water atomized to prepare silver powder with increased matrix properties.
  • the silver powder with the reinforced matrix performance additive and the oxide powder and the second additive powder are prepared into a mixed powder by a mixed powder process
  • the prepared mixed powder is subjected to cold isostatic pressing and pressed into an ingot;
  • the spindle is heated and extruded.
  • the extruded wire or strip is drawn or rolled into a final product.
  • the melting temperature in the step (1) is 1100-1300 ° C
  • the atomization temperature is 1000-1200 ° C
  • the atomization water pressure is 20-60 MPa
  • the content of the additive alloy increasing the matrix performance is relative to the silver mass ratio. It is in the range of 0.01-1%
  • the additive for adding matrix properties is any one or any of bismuth, copper, indium, rare earth element, magnesium, nickel and zinc, and when it contains various elements, the total content is not more than 1%.
  • the mixing powder in the step (2) the ratio of the silver powder to the oxide with the reinforcing matrix property additive is between 92:8 and 78:28; the proportion of the additive powder to the total weight ratio is 0.01-6 %; silver powder particle size is -200 mesh, oxide degree is ⁇ 15 ⁇ m, additive powder particle size is ⁇ 30 ⁇ m; mixing powder process is dry mechanical mixing powder, wet mechanical mixing powder, ball milling mixed powder, high energy ball milling mixed powder, etc. Powder process.
  • the pressure of the cold isostatic pressing in the step (3) is between 100 MPa and 250 MPa.
  • the sintering is carried out in the step (4), wherein the sintering temperature is 750 ° C - 920 ° C, the time is 2 h - 5 h, under nitrogen or under vacuum or under argon.
  • the heating temperature of the step (5) is 700 ° C - 900 ° C
  • the extrusion speed is 1-15 mm / s
  • after extrusion molding, it is a wire or a strip or a plate.
  • Another object of the present invention is to provide a silver oxide contact material with a reinforcing matrix property additive, the technical solution of which comprises the following components: oxide powder, reinforced matrix property additive, second additive powder, balance
  • the second additive may be tungsten oxide, molybdenum oxide, rare earth oxide, indium oxide, nickel oxide, cerium oxide, copper oxide, cerium oxide, and the reinforcing matrix property additives are bismuth, copper, indium, rare earth elements, Any one or any of magnesium, nickel and zinc.
  • the most important feature of the invention is that silver powder with additives with enhanced matrix properties is used, thereby solving the problem that the silver matrix in the conventional silver oxide material is a pure silver matrix, and the current resistance, arc ablation and anti-welding performance are poor; At the same time, the wetting condition between silver and oxide is improved, so that the oxide material is always surrounded by the silver matrix with enhanced properties, which reduces the aggregation and floating tendency of the oxide, and further improves the arc ablation of the contact material. At the same time, due to the lower control of the total amount of the additive alloy which increases the performance of the matrix, the conductivity of the silver matrix is not substantially lowered, and the conductivity of the silver matrix is further improved, so that the contact property of the material can be ensured.
  • the silver powder water atomization preparation technology and the contact material mixed powder preparation technology of the additive with enhanced matrix property used in the invention are simple in process and suitable for industrial mass production.
  • Figure 1 is a flow chart of the process of the present invention.
  • AgLa-SnO210 powder is ingot on a cold isostatic press at a pressure of 180 MPa, and the spindle has a diameter of 85 mm.
  • the AgLa-SnO210 spindle was sintered under vacuum for 4 h at a sintering temperature of 850 °C.
  • the AgLa-SnO210 spindle is extruded at 800 ° C and the extrusion specification is ⁇ 6.
  • the AgLa-SnO210 wire is drawn through a cold drawing machine to the required diameter.
  • the physical properties of AgLa-SnO210 prepared in this example were as follows: density 10.1 g/cm3, electrical resistivity 2.2 ⁇ cm, hardness (HV0.3) 91 (semi-hard state), tensile strength 331 MPa.
  • AgMgNi-SnO2In2O312 powder is ingot on a cold isostatic press at a pressure of 220 MPa, and the spindle has a diameter of 86 mm.
  • the AgMgNi-SnO2In2O312 spindle was sintered under vacuum for 4 h at a sintering temperature of 860 °C.
  • the AgMgNi-SnO2In2O312 spindle was extruded at 820 ° C with an extrusion specification of ⁇ 6.
  • the AgMgNi-SnO2In2O312 wire is drawn through a cold drawing machine to the required diameter.
  • the physical properties of the AgMgNi-SnO2In2O312 wire contact prepared in this example were as follows: density 9.91 g/cm3, resistivity 2.38 ⁇ cm, hardness (HV0.3) 102, tensile strength 354 MPa.
  • AgCuNi-ZnO10 powder is ingots under a pressure of 180 MPa on a cold isostatic press, and the spindle has a diameter of 83 mm.
  • the AgCuNi-ZnO10 spindle was sintered under vacuum for 4 h at a sintering temperature of 800 °C.
  • the AgCuNi-ZnO10 spindle was extruded at 780 ° C and the extrusion specification was 40X4.
  • the AgCuNi-ZnO10 strip is rolled and punched to the required specifications by a cold rolling mill.
  • the physical properties of the AgCuNi-ZnO10 sheet prepared in this example were as follows: density 9.68 g/cm3, resistivity 2.29 ⁇ cm, hardness (HV0.3) 87.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Contacts (AREA)

Abstract

一种具有增强基体添加物的银氧化物触点材料的制备方法及其产品,其原料包括增强基体性能的合金、氧化物粉、其它添加物以及银锭,制备方法包括:水雾化制粉、混粉、压锭、烧结、挤压、拉拔或轧制。

Description

一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品 技术领域
本发明涉及一种电接触材料及制备方法,尤其是一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品。
背景技术
银氧化物触点材料应用在低压电器中最为广泛,尤其是中大电流等级的接触器、继电器中。常规银氧化物触点材料为单纯的银与氧化物的'假合金'方式存在,氧化物分散在纯银基体周围。较为常见的银氧化物触点材料的制备方法为内氧化工艺、混粉工艺、粉体预氧化工艺和包覆工艺等。这些工艺均采用添加氧化物方式来改善银基体和氧化锡之间的润湿情况,如以下专利:
CN201210335376.9 一种复合银氧化锡电接触材料及其制造方法,主要原理是制备氧化锡与添加氧化物的分散混合物,再与银溶液充分混合,制备出复合银氧化锡材料。
CN201210439786.8 一种银氧化锡的制备方法,主要原理是在银锡合金粉体雾化过程中添加氧化性气氛,实现粉体的氧化。
CN201110331046.8 物理冶金包覆法银氧化锡的制备方法,主要原理是通过物理冶金方法在氧化锡颗粒表面包覆一层合金层,然后在氧化转化成添加氧化物包覆的氧化锡颗粒,再与银粉混合,从而得到银氧化锡材料。
以上此类专利均是银为基体材料,通过添加添加物改善电性能或者提高氧化物颗粒分散性提高电性能,这些专利或者技术均无法提高银基体的电性能,而在触点工作过程中,承载电流和电弧作用最大的是银基体。由于银基体性能未有较大的提升,从而大大限制了触点材料的抗大电流冲击性能、抗直流条件的下的材料转移性能以及抗触点熔焊的性能等。
在中国国内,随着人们生活水平的日益提高,各种电器也越来越多,并且电器也在向小型化发展。这就要求低压电器需要适应更多的负载类型,适应更高的电流等级等,这就要求触点材料能够满足更高的电流冲击性能、更大的电弧承载能力以及更小的熔焊倾向。常规银氧化物触点材料在没有解决银基体性能的前提下,只是依靠氧化物的类型的改变或者成分的变化,很难满足要求。
技术问题
本发明的目的是为了克服现有技术存在的缺点和不足,而提供一种带增强基体性能添加物的银氧化物触点材料的制备方法,通过该方法能够提供基体的抗大电流冲击性能、抗直流条件的下的材料转移性能以及抗触点熔焊的性能。
技术解决方案
为实现上述目的,本实用新型的技术方案是原料为氧化物粉,增强基体性能添加物、第二添加物粉,余量为银,第二添加物可以为氧化钨、氧化物钼、稀土氧化物、氧化铟、氧化镍、氧化碲、氧化铜、氧化铋中一种或多种组合,增强基体性能添加物为铋、铜、铟、稀土元素、镁、及锌等任一种或者任意几种,其特征在于制作步骤依次如下:
(1)水雾化制粉
将银和增强基体性能添加物合金经过熔炼、水雾化,制备成带有增加基体性能的银粉
(2)混粉
将带有增强基体性能添加物的银粉与氧化物粉、第二添加物粉通过混粉工艺制备成混合粉
(3)冷等静压
将制备的混合粉进行冷等静压,压制成锭;
(4)烧结
将压制成锭进行烧结;
(5)热挤压成型
将锭子加热并挤压成形。
(6)材料成型加工
将挤压的线材或者板带材经过拉拔或者轧制成最终产品。
进一步设置是所述步骤(1)中熔炼温度在1100-1300℃,雾化温度在1000-1200℃,雾化水压在20-60MPa;增加基体性能的添加物合金的含量相对于银质量比为0.01-1%范围;增加基体性能添加物为铋、铜、铟、稀土元素、镁、镍及锌等任一种或者任意几种,当含有多种元素时,总含量不超过1%。
进一步设置是所述步骤(2)中混粉中:带增强基体性能添加物的银粉与氧化物的比例在92:8至78:28之间;添加物粉比例占总重量比为0.01-6%;银粉粒度为-200目,氧化物度为<15μm,添加物粉粒度为<30μm;混粉工艺为干式机械混粉、湿式机械混粉、球磨混粉、高能球磨混粉等任意混粉工艺。
进一步设置是所述步骤(3)中冷等静压的压力在100MPa-250Mpa。
进一步设置是所述步骤(4)烧结,其中烧结温度为750℃-920℃,时间为2h-5h,氮气条件下或者真空条件下或者氩气条件下。
进一步设置是所述步骤(5)的加热温度为700℃-900℃,挤压速度在1-15mm/s,挤压成型后为线材或者带材或者板材。
本发明的另一个目的提供一种带增强基体性能添加物的银氧化物触点材料,其技术方案是包括以下组分:氧化物粉,增强基体性能添加物、第二添加物粉,余量为银,第二添加物可以为氧化钨、氧化物钼、稀土氧化物、氧化铟、氧化镍、氧化碲、氧化铜、氧化铋,增强基体性能添加物为铋、铜、铟、稀土元素、镁、镍及锌等任一种或者任意几种。
有益效果
本发明最大的特点是采用带有增强基体性能的添加物的银粉,从而解决了常规银氧化物材料中银基体为纯银基体,其抗电流冲击、电弧烧蚀、抗熔焊性能均较差;同时改善了银与氧化物之间润湿情况,使氧化物材料始终包围在带有增强性能的银基体中,降低了氧化物的聚集、漂浮趋势,进一步提高了触点材料的抗电弧烧蚀能力;同时由于增加基体性能的添加物合金总量控制的较低,基本不会降低银基体的导电性能,甚至会进一步提高其导电性能,所以该材料接触性能也可以保证。本发明采用的带有增强基体性能的添加物的银粉水雾化制备技术、触点材料混粉制备技术,均工艺非常简单,适合工业化大批量生产。
下面结合说明书附图和具体实施方式对本发明做进一步介绍。
附图说明
图 1 本发明工艺流程图。
本发明的最佳实施方式
下面通过实施例对本发明进行具体的描述,只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限定,该领域的技术工程师可根据上述发明的内容对本发明作出一些非本质的改进和调整。
实施例1
以AgLa-SnO210材料制备为例子
1、19.98kg Ag锭、0.02kgMg在1300℃条件下熔炼,然后在1250℃条件下水雾化制粉,水雾化压力为38MPa,最后粉体过200目筛,从而得到AgLa合金粉;
2、9kg的AgLa粉与1kg的3μm的SnO2粉机械干混粉制备出AgLa-SnO210粉;
3、AgLa-SnO210粉在冷等静压机上180MPa压力下制锭,锭子直径85mm。
4、AgLa-SnO210锭子在真空条件下烧结4h,烧结温度850℃。
5、AgLa-SnO210锭子在800℃条件下挤压,挤压规格为Φ6。
6、AgLa-SnO210线材经过冷拉拔机,冷拉拔至需要的直径尺寸。
本实例制备的AgLa-SnO210物理性能如下:密度10.1g/cm3、电阻率2.2μΩ.cm、硬度(HV0.3)91(半硬态)、抗拉强度331MPa。
实施例2
以AgMgNi-SnO2In2O312材料制备为例子
1、19.98kg 的Ag锭、0.01kg的Ni片、0.01kgMg锭在1200℃条件下熔炼,然后在1150条件下水雾化制粉,水雾化压力为42MPa,最后粉体过200目筛,从而得到AgMgNi合金粉;
2、8.8kg的AgMgNi粉与1.0kg的4μm的SnO2粉、0.2kg的5μm的In2O3粉机械干混粉制备出AgMgNi-SnO2In2O312粉;
3、AgMgNi-SnO2In2O312粉在冷等静压机上220MPa压力下制锭,锭子直径86mm。
4、AgMgNi-SnO2In2O312锭子在真空下烧结4h,烧结温度860℃。
5、AgMgNi-SnO2In2O312锭子在820℃条件下挤压,挤压规格为Φ6。
6、AgMgNi-SnO2In2O312线材经过冷拉拔机,冷拉拔至需要的直径尺寸。
本实例制备的AgMgNi-SnO2In2O312丝材触点物理性能如下:密度9.91g/cm3、电阻率2.38μΩ.cm、硬度(HV0.3)102、抗拉强度354MPa。
实施例3
以AgCuNi-ZnO10材料制备为例子
1、19.98kg 的Ag锭、0.01kg的Cu棒、0.01kg的Ni片,在1300℃条件下熔炼,然后在1250℃条件下水雾化制粉,水雾化压力为60MPa,最后粉体过200目筛,从而得到AgCuNi合金粉;
2、9kg的AgCuNi粉与1kg的7μm的ZnO粉机械干混粉制备出AgCuNi-ZnO10粉;
3、AgCuNi-ZnO10粉在冷等静压机上180MPa压力下制锭,锭子直径83mm。
4、AgCuNi-ZnO10锭子在真空条件下烧结4h,烧结温度800℃。
5、AgCuNi-ZnO10锭子在780℃条件下挤压,挤压规格为40X4。
6、AgCuNi-ZnO10带材经过冷轧机轧制、冲制至需要的规格。
本实例制备的AgCuNi-ZnO10片点物理性能如下:密度9.68g/cm3、电阻率2.29μΩ.cm、硬度(HV0.3)87。
本发明的实施方式
工业实用性
序列表自由内容

Claims (7)

  1. 一种带增强基体性能添加物的银氧化物触点材料制备方法,其特征在于:原料为氧化物粉,增强基体性能添加物、第二添加物粉,余量为银,第二添加物可以为氧化钨、氧化物钼、稀土氧化物、氧化铟、氧化镍、氧化碲、氧化铜、氧化铋中任一种或者任意几种组合,增强基体性能添加物为铋、铜、铟、稀土元素、镁、及锌中任一种或者任意几种,其特征在于制作步骤依次如下:
    (1)水雾化制粉
    将银和增强基体性能添加物合金经过熔炼、水雾化,制备成带有增加基体性能的银粉
    (2)混粉
    将带有增强基体性能添加物的银粉与氧化物粉、第二添加物粉通过混粉工艺制备成混合粉
    (3)冷等静压
    将制备的混合粉进行冷等静压,压制成锭;
    (4)烧结
    将压制成锭进行烧结;
    (5)热挤压成型
    将锭子加热并挤压成形。
    (6)材料成型加工
    将挤压的线材或者板带材经过拉拔或者轧制成最终产品。
  2. 根据权利要求1所述的一种带增强基体性能添加物的银氧化物触点材料制备方法,其特征在于:所述步骤(1)中熔炼温度在1100-1300℃,雾化温度在1000-1200℃,雾化水压在20-60MPa;增加基体性能的添加物合金的含量相对于银质量比为0.01-1%范围;增加基体性能添加物为铋、铜、铟、稀土元素、镁、镍及锌等任一种或者任意几种,当含有多种元素时,总含量不超过1%。
  3. 根据权利要求1所述的一种带增强基体性能添加物的银氧化物触点材料制备方法,其特征在于:所述步骤(2)中混粉中:带增强基体性能添加物的银粉与氧化物的比例在92:8至78:28之间;添加物粉比例占总重量比为0.01-6%;银粉粒度为-200目,氧化物度为<15μm,添加物粉粒度为<30μm;混粉工艺为干式机械混粉、湿式机械混粉、球磨混粉、高能球磨混粉等任意混粉工艺。
  4. 根据权利要求1所述的一种带增强基体性能添加物的银氧化物触点材料制备方法,其特征在于:所述步骤(3)中冷等静压的压力在100MPa-250Mpa。
  5. 根据权利要求1所述的一种带增强基体性能添加物的银氧化物触点材料制备方法,其特征在于:所述步骤(4)烧结,其中烧结温度为750℃-920℃,时间为2h-5h,氮气条件下或者真空条件下或者氩气条件下。
  6. 根据权利要求1所述的一种带增强基体性能添加物的银氧化物触点材料制备方法,其特征在于:所述步骤(5)的加热温度为700℃-900℃,挤压速度在1-15mm/s,挤压成型后为线材或者带材或者板材。
  7. 一种如权利要求1所述的制备方法制备的带增强基体性能添加物的银氧化物触点材料,其特征在于包括以下组分:氧化物粉,增强基体性能添加物、第二添加物粉,余量为银,第二添加物可以为氧化钨、氧化物钼、稀土氧化物、氧化铟、氧化镍、氧化碲、氧化铜、氧化铋等任一种或者任意几种,增强基体性能添加物为铋、铜、铟、稀土元素、镁、镍及锌等任一种或者任意几种,带增强基体性能添加物的银粉与氧化物的质量比在92:8至78:28之间;第二添加物粉比例占总重量比为0.01-6%;增强基体性能添加物占总含量的0.01-1%。
PCT/CN2014/072141 2013-12-18 2014-02-17 一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品 WO2015089940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310700969.5A CN103695682B (zh) 2013-12-18 2013-12-18 一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品
CN201310700969.5 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015089940A1 true WO2015089940A1 (zh) 2015-06-25

Family

ID=50357341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072141 WO2015089940A1 (zh) 2013-12-18 2014-02-17 一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品

Country Status (2)

Country Link
CN (1) CN103695682B (zh)
WO (1) WO2015089940A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086020A (zh) * 2021-10-28 2022-02-25 浙江福达合金材料科技有限公司 基于自发热氧化工艺的银氧化锡电接触材料的制备方法及其产品
CN114192774A (zh) * 2021-11-23 2022-03-18 浙江福达合金材料科技有限公司 高弥散度和高致密性的银钨电触头材料及其制备方法
CN114457253A (zh) * 2021-12-30 2022-05-10 无锡日月合金材料有限公司 一种用于微动开关的银镍-氧化铋材料及其制造方法
CN117026004A (zh) * 2023-08-31 2023-11-10 昆明理工大学 一种ZnO@In2O3增强银基复合材料及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047442B (zh) * 2015-07-13 2017-07-18 青海大学 一种Ag‑CuO低压触点材料及其制备方法
CN105374598A (zh) * 2015-11-05 2016-03-02 福达合金材料股份有限公司 一种粗氧化物颗粒银基电接触材料的制备方法
CN108015276B (zh) * 2017-11-29 2019-08-23 温州宏丰电工合金股份有限公司 一种增强相梯度分布熔渗类银基电接触材料及其制备方法
JP7272834B2 (ja) * 2018-04-11 2023-05-12 Dowaエレクトロニクス株式会社 銀粉およびその製造方法
CN112475295B (zh) * 2020-09-30 2022-11-15 浙江福达合金材料科技有限公司 一种氧化物颗粒弥散分布的银氧化铁电接触材料及其制备方法
CN115896530A (zh) * 2022-12-23 2023-04-04 贵研中希(上海)新材料科技有限公司 一种高性能AgCuNi复合材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827904A (ja) * 1981-08-10 1983-02-18 Matsushita Electric Works Ltd 電気接点材料の製法
CN1637158A (zh) * 2003-11-26 2005-07-13 马渊马达株式会社 滑动接点材料和金属包层复合材料以及直流小型电动机
CN101217226A (zh) * 2007-12-27 2008-07-09 重庆川仪总厂有限公司 弱电滑动接点材料
CN102268583A (zh) * 2011-08-09 2011-12-07 福达合金材料股份有限公司 一种银氧化锡电接触材料的制备方法
CN102392153A (zh) * 2011-11-21 2012-03-28 重庆川仪自动化股份有限公司 提高耐磨性和抗电弧侵蚀能力的微电机换向器电接触材料
CN102864364A (zh) * 2012-09-12 2013-01-09 宁波汉博贵金属合金有限公司 复合银氧化锡电接触材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202168A (zh) * 2007-10-23 2008-06-18 福达合金材料股份有限公司 新型银氧化锌触头材料制备工艺
CN102350502B (zh) * 2011-10-27 2013-01-09 福达合金材料股份有限公司 物理冶金包覆法银氧化锡的制备方法
CN102925738B (zh) * 2012-11-07 2015-01-07 福达合金材料股份有限公司 一种银氧化锡材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827904A (ja) * 1981-08-10 1983-02-18 Matsushita Electric Works Ltd 電気接点材料の製法
CN1637158A (zh) * 2003-11-26 2005-07-13 马渊马达株式会社 滑动接点材料和金属包层复合材料以及直流小型电动机
CN101217226A (zh) * 2007-12-27 2008-07-09 重庆川仪总厂有限公司 弱电滑动接点材料
CN102268583A (zh) * 2011-08-09 2011-12-07 福达合金材料股份有限公司 一种银氧化锡电接触材料的制备方法
CN102392153A (zh) * 2011-11-21 2012-03-28 重庆川仪自动化股份有限公司 提高耐磨性和抗电弧侵蚀能力的微电机换向器电接触材料
CN102864364A (zh) * 2012-09-12 2013-01-09 宁波汉博贵金属合金有限公司 复合银氧化锡电接触材料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086020A (zh) * 2021-10-28 2022-02-25 浙江福达合金材料科技有限公司 基于自发热氧化工艺的银氧化锡电接触材料的制备方法及其产品
CN114086020B (zh) * 2021-10-28 2022-06-14 浙江福达合金材料科技有限公司 基于自发热氧化工艺的银氧化锡电接触材料的制备方法及其产品
CN114192774A (zh) * 2021-11-23 2022-03-18 浙江福达合金材料科技有限公司 高弥散度和高致密性的银钨电触头材料及其制备方法
CN114192774B (zh) * 2021-11-23 2023-05-09 浙江福达合金材料科技有限公司 高弥散度和高致密性的银钨电触头材料及其制备方法
CN114457253A (zh) * 2021-12-30 2022-05-10 无锡日月合金材料有限公司 一种用于微动开关的银镍-氧化铋材料及其制造方法
CN117026004A (zh) * 2023-08-31 2023-11-10 昆明理工大学 一种ZnO@In2O3增强银基复合材料及其制备方法
CN117026004B (zh) * 2023-08-31 2024-01-12 昆明理工大学 一种ZnO@In2O3增强银基复合材料及其制备方法

Also Published As

Publication number Publication date
CN103695682B (zh) 2016-03-23
CN103695682A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2015089940A1 (zh) 一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品
CN104711443B (zh) 一种石墨烯/铜复合材料及其制备方法
EP3273448A1 (en) Graphene/silver composite material and preparation method thereof
WO2016090755A1 (zh) 一种石墨烯增强的复合铜基触点材料及其制备工艺
CN101250639B (zh) 纳米相弥散强化铜及其制备方法和产品生产工艺
CN107794389B (zh) 一种银氧化锡氧化铟电接触材料及其制备方法
US9761342B2 (en) Method of preparing silver-based oxide electrical contact materials with fiber-like arrangement
CN103643074B (zh) 一种银氧化锡片状触头的制备方法
WO2011003225A1 (zh) 一种银-金属氧化物电触头材料的制备方法
CN106057526A (zh) 一种包套法制造的层状银铜钎三复合电触头材料及其制造方法
CN102796914B (zh) 一种细化银氧化锡晶粒的制备方法
WO2012088734A1 (zh) 颗粒定向排列增强银基氧化物电触头材料的制备方法
WO2016090756A1 (zh) 一种碳纳米管增强的复合电接触材料及其制备工艺
CN105200262B (zh) 一种高氧化锡含量银基片状电触头材料的制备方法
CN106449190A (zh) 一种层状银铜钎三复合电触头材料及其制备方法
CN102044347B (zh) 银铜镍陶瓷高抗熔焊合金触头材料的制备方法及其产品
CN103667767B (zh) 一种带增强基体性能添加物的银镍触点材料的制备方法及其产品
CN112553499B (zh) 一种CuCrZr/WC复合材料、制备方法及其应用
CN106854710B (zh) 一种银基电接触材料的制备方法及装置
WO2012088735A1 (zh) 纤维状组织结构银基氧化物电触头材料的制备方法
CN106834783A (zh) 一种Ti2AlN‑碳纳米管复合增强银基电接触材料及其制备方法
CN102820153A (zh) 一种细化银氧化锡氧化铟晶粒的制备方法
JPS6148573B2 (zh)
CN102304658A (zh) 一种交流接触器用铜合金触头材料及其制备方法
CN117551907A (zh) 一种塑性和耐电弧侵蚀性良好的银氧化锡电触头材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871767

Country of ref document: EP

Kind code of ref document: A1