WO2011003225A1 - 一种银-金属氧化物电触头材料的制备方法 - Google Patents

一种银-金属氧化物电触头材料的制备方法 Download PDF

Info

Publication number
WO2011003225A1
WO2011003225A1 PCT/CN2009/001073 CN2009001073W WO2011003225A1 WO 2011003225 A1 WO2011003225 A1 WO 2011003225A1 CN 2009001073 W CN2009001073 W CN 2009001073W WO 2011003225 A1 WO2011003225 A1 WO 2011003225A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
powder
metal oxide
contact material
alloy
Prior art date
Application number
PCT/CN2009/001073
Other languages
English (en)
French (fr)
Inventor
易丹青
李荐
吴春萍
王斌
卢小东
许灿辉
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to AU2009349420A priority Critical patent/AU2009349420A1/en
Publication of WO2011003225A1 publication Critical patent/WO2011003225A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material

Definitions

  • the invention belongs to the field of electrical functional materials and is a method for manufacturing silver-based electrical contact materials.
  • Ag-MeO contact materials were introduced in the 1920s and 1930s. In the late 1930s, FR Hensel and his collaborators made the earliest Ag-CdO materials. In the late 1960s, Ag-Sn0 2 , Ag-ZnO and other Ag- MeO contact materials are emerging one after another. Due to its excellent performance, Ag-CdO has been widely used in engineering. However, the "cadmium poison" pollution caused by the manufacture and use of Ag-CdO materials has attracted the attention of governments around the world. The development of new silver-metal oxides that can replace Ag-CdO contacts and further improve alloy properties is an important trend in the development of medium and low voltage electrical contact materials. However, Ag-Sn0 2 , Ag-ZnO and other Ag-MeO contact materials without cadmium are generally difficult to process, so it is necessary to study new high-efficiency and low-cost preparation processes.
  • the current manufacturing methods of Ag-MeO contact materials mainly include alloy internal oxidation method and powder metallurgy method.
  • the powder metallurgy method includes a powder mixing method, a co-deposition method, and a coating method, wherein the powder mixing method mixes, reshapes, and sinters the silver powder and the metal oxide powder.
  • This process requires that the raw material powder is very fine to obtain a uniform structure.
  • the too fine powder is easily agglomerated, it is difficult to uniformly mix, and it is difficult to prepare a raw material powder having a particle size of less than 5 ⁇ m, so the process has certain limitations.
  • the process of preparing Ag-MeO composite powder by coprecipitation or coating method may cause waste water or exhaust gas pollution, and the wettability of silver and metal oxide in Ag-MeO contact material is poor, resulting in material
  • the resistance to arc erosion is not strong, and the oxide particles deposited on the surface of the contact cause the material contact resistance to be high.
  • the in vivo oxidation method of the alloy block is suitable for mass production, but the insufficiency of the process is: In the internal oxidation process, since the oxygen atom needs to diffuse in the dense body of the alloy, the gradient distribution of the concentration will cause the change of the microstructure of the material. Detrimental to the electrical properties of the material. At the same time, there are certain restrictions on the size and oxide content of the product.
  • the above problem can be avoided by using the oxidation method of the alloy powder, but the Ag-MeO composite powder obtained by the oxidation treatment of the silver alloy powder needs to be pressed, sintered, recompressed, re-fired, and multi-pass extrusion and drawing process.
  • the production process is long.
  • work hardening occurs, and MeO particles tend to aggregate together, resulting in stress concentration, making further processing of the material more difficult.
  • the object of the present invention is to solve the problem that the Ag-MeO material is difficult to be oxidized sufficiently, the processing is difficult, and the production process is long, and the bonding between the dispersed oxide and the silver matrix is firm, the comprehensive performance of the product is improved, the production process is shortened, and the production cost is reduced. .
  • a method for preparing a silver-metal oxide electrical contact material after melting Ag and Me according to a design ratio, atomizing Ag and Me into a uniform, fine-grained Ag-Me alloy powder by an atomizing device, and then The alloy powder is subjected to internal oxidation treatment to form Ag-MeO composite powder, and then the Ag-MeO composite powder is molded into a billet and then prepared into an electrical contact material by powder hot extrusion.
  • the Me metal in the Ag-Me alloy may be one or more of Sn, Zn, Cu, La, Ce, Sb, Bi, Mo, Al, Ti, Mg, Y, wherein Ag is in Ag-Me
  • the mass percentage in the alloy is 85% to 92%.
  • the preferred mode of internal oxidation treatment is as follows: The oxidation parameters are: temperature 400 to 800 ° C, oxygen pressure 0.21 to 50 atm.
  • the time of internal oxidation treatment is 3 ⁇ 6h.
  • the Ag-MeO composite powder is molded into a green body having a relative density of 65% to 80%.
  • the preferred hot extrusion conditions are: extrusion temperature 600 to 850 ° C, and extrusion ratio of 12:1 to 200:1.
  • the Ag-Me alloy powder may be dried and sieved before being subjected to internal oxidation treatment.
  • the inventors of the present invention firstly prepare a Ag-Me alloy powder having a uniform composition and fine particle size by gas atomization, and then subjecting the powder to internal oxidation treatment to form an Ag-MeO composite powder, and then molding the Ag-MeO composite powder into a blank. After that, it is prepared into an electrical contact material by a powder hot extrusion process.
  • the extrusion force is small, the extrusion temperature and the speed range are wide, and the Ag is solved. - The problem that the MeO material is difficult to process, and the structure of the Ag-MeO contact material is improved, thereby improving the overall performance.
  • the alloy is atomized by compressed air in the atomization equipment, and the alloy powder is sieved after atomization, and the powder with a particle size of -325 mesh is charged and oxidized.
  • the composition and the structure are tested to meet the requirements, and then molded into a green body having a relative density of 65%-80%, and then the green body is heated to 600 ° C - 850 ° C and then placed in a preheated to 300 ⁇ 500
  • the extrusion was carried out in a °C extrusion die to obtain Ag-MeO rods and wires.
  • the advantages of the present invention are:
  • the atomized alloy powder is more susceptible to oxidation than the cast alloy, which shortens the oxidation time and avoids the occurrence of a lean metal oxide region, so that the generated MeO particles are dispersed inside the composite powder.
  • the upper powder hot extrusion process adopted by the invention eliminates the cumbersome sintering, recompression, re-burning and multi-pass extrusion drawing process, saves production cost, and solves the problem that the cadmium-free Ag-MeO material is difficult to solve.
  • the problem of processing at the same time, the structure of the Ag-MeO contact material is improved, and the overall performance is improved.
  • the inventor has made the whole process simple, and can effectively solve the problem that the Ag-MeO material is difficult to be oxidized sufficiently, the processing is difficult, and the production process is long, and the dispersed oxide and silver are made.
  • the matrix is firmly bonded to improve the overall performance of the product, shorten the production process and reduce the production cost.
  • Figure 1 is a specific process flow chart of the present invention
  • Figure 2 is a magnified 100 times metallographic structure of the cross section of the article of the present invention.
  • Figure 3 is a magnified 100 times metallographic structure of the longitudinal section of the article of the present invention.
  • Figure 4 is a magnified 100 times metallographic structure of the cross section of the article of the comparative example
  • Figure 5 is a magnified 100-fold metallographic structure of the longitudinal section of the product of the comparative example.
  • the powder is oxidized in an oxidizing furnace, the oxidation temperature is controlled at 800 ° C, the oxygen pressure is maintained at 50 atm, the oxidation is carried out for 6 hours, and the green body is molded into a green body having a diameter of 28 mm and a relative density of 70%, and then heated to 800 ° C.
  • the blank was placed in a mold which had been preheated to 500 ° C, and after hot extrusion, a product having a diameter of 4 mm was obtained.
  • Example 2 Take 2000g of silver, 223g of zinc, 105g of bismuth, 25g of B. After being melted in the medium frequency induction furnace, atomize the alloy with compressed air in the atomization equipment. After atomization, the alloy powder is sieved. The powder of -325 is charged into an oxidizing furnace for oxidation. The oxidation temperature is controlled at 40 (TC, the oxygen pressure is kept at 10 atm, the oxidation is taken out for 3 hours, and the green body is molded into a green body having a diameter of 28 mm and a relative density of 75%, and then heated to 600. The green body at °C is placed in a mold that has been preheated to 450, and after hot extrusion, a product having a diameter of 8 mm is obtained.
  • the powder of -325 was charged into an oxidizing furnace for oxidation.
  • the oxidation temperature was controlled at 700 ° C, the oxygen pressure was maintained at 25 atm, and the oxidation was carried out for 5 hours.
  • the green body was molded into a green body having a diameter of 28 mm and a relative density of 80%, and then heated to 830.
  • the green body of °C was placed in a mold that had been preheated to 30 (TC), and after hot extrusion, a product having a diameter of 4 mm was obtained.
  • the powder of -325 is charged into an oxidizing furnace for oxidation.
  • the oxidation temperature is controlled at 650 ° C
  • the oxygen pressure is maintained at 20 atm
  • the oxidation is carried out for 5 hours
  • the green body is molded into a green body having a diameter of 28 mm and a relative density of 80%, and then heated to 800.
  • the green body of °C was placed in a mold which had been preheated to 450 ° C, and after hot extrusion, a product having a diameter of 2 mm was obtained.
  • the powder is oxidized in an oxidizing furnace, the oxidation temperature is controlled at 800 ° C, the oxygen pressure is maintained at 50 atm, and the oxidation is carried out for 6 hours.
  • the oxidized powder is compression-molded and sintered at 830 ° C for 2 hours, and the sintered billet is heated at 820 ° C. After forging, the product is obtained.
  • Example 1 98.9 950 2.3 380 23
  • Example 2 99.0 870 2.5 340
  • Example 3 99.4 700 2.2 300
  • Example 4 99.5 650 2.1 280 36
  • Example 5 99.6 800 2.2 320 28
  • Example 6 99.7 750 2.1 360
  • Comparative Example 7 98.5 1000 2.5 400 25

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

一种银-金属氧化物电触头材料的制备方法 技术领域
本发明属于电功能材料领域, 是一种银基电触头材料的制造方法。
技术背景
Ag-MeO触头材料于 20世纪 20年代至 30年代问世, 30年代末, F. R. Hensel 及其合作者制造了最早的 Ag-CdO材料, 60年代末, Ag-Sn02, Ag-ZnO等 Ag-MeO 触头材料陆续出现。由于 Ag-CdO具有优良的性能,在工程上得到了广泛的应用。 但是 Ag-CdO材料在制造和使用过程中产生的 "镉毒"污染, 弓 I起了世界各国政 府的高度重视。 发展能够替代 Ag-CdO触头的新型银 -金属氧化物并进一步提高 合金性能是中低压电触头材料发展的重要趋势。但无镉的新型 Ag-Sn02, Ag-ZnO 等 Ag-MeO触头材料普遍存在难加工的问题, 因此研究新的高效、低成本制备工 艺十分必要。
Ag-MeO触头材料目前的制造方法主要有合金内氧化法和粉末冶金法。粉末 冶金法包括混粉法、共沉积法和包覆法,其中的混粉法是将银粉和金属氧化物粉 混合, 再成型, 烧结。 此工艺要求原料粉末非常细才能获得均勾的组织, 但是, 过于细小的粉末容易团聚, 难以均匀混合, 且制备粒度小于 5μπι的原材料粉末 较为困难, 因此该工艺具有一定的局限性。采用共沉淀法或包覆法制备 Ag-MeO 复合粉末的过程,会产生废水或废气污染,而且 Ag-MeO触头材料中的银和金属 氧化物相互间的润湿性较差, 导致材料的耐电弧侵蚀能力不强, 同时沉积在触头 表面的氧化物颗粒使得材料接触电阻偏高。合金块体内氧化法适于批量生产,但 该工艺的不足之处为: 内氧化过程中, 由于氧原子需在合金的致密体中扩散, 其 浓度的梯度分布将造成材料显微组织的变化, 对材料电气性能不利。 同时, 对产 品的尺寸、氧化物含量都有一定限制。通过采用合金粉末氧化的方法可以避免上 述问题,但是银合金粉末经过氧化处理后得到的 Ag-MeO复合粉,需要经过压制、 烧结、复压、复烧以及多道次的挤压、拉拔工艺才能制成制品, 生产工艺流程长。 而且在挤压、 拉拔加工过程中, 出现加工硬化, MeO颗粒容易聚集在一起, 产 生应力集中, 使材料进一步加工变得较为困难。
发明内容 本发明的目的在于解决 Ag-MeO材料难以氧化充分、加工困难以及生产流程 长的难题, 并且使弥散的氧化物和银基体之间结合牢固, 提高产品的综合性能, 缩短生产流程, 降低生产成本。
本发明的解决方案是:
一种银-金属氧化物电触头材料的制备方法,将 Ag和 Me按设计配比熔化后, 用雾化设备将 Ag和 Me雾化成成分均匀、粒度细微的 Ag-Me合金粉末, 然后将 合金粉末进行内氧化处理, 生成 Ag-MeO复合粉末, 再将 Ag-MeO复合粉末模 压成坯料后采用粉末热挤压方式制备成电触头材料。
所述的 Ag-Me合金中的 Me金属可以是 Sn、 Zn、 Cu、 La、 Ce、 Sb、 Bi、 Mo、 Al、 Ti、 Mg、 Y中的一种或几种, 其中 Ag在 Ag-Me合金中的质量百分数 为 85%〜92%。
所述的内氧化处理优选方式为: 氧化参数为: 温度 400〜800°C, 氧气压力 0.21〜50atm。
内氧化处理的时间 3〜6h。
将 Ag-MeO复合粉末模压成相对密度为 65%-80%的生坯。
优选的热挤压条件为: 挤压温度 600〜850°C, 挤压比为 12:1〜200:1。
将 Ag-Me合金粉末进行内氧化处理前还可以进行干燥、 筛分。
本发明的发明人先用气体雾化法制备出成分均匀、 粒度细微的 Ag-Me合金 粉末, 然后将粉末进行内氧化处理, 生成 Ag-MeO复合粉末, 再将 Ag-MeO复 合粉末模压成坯料后采用粉末热挤压工艺制备成电触头材料。通过以上的工艺创 新省去了现有工艺中繁琐的烧结、 复压、 复烧及多道次的挤压拉拔工艺, 提高生 产效率、降低了生产成本。 由于粉末生坯中物料还基本保持粉末态在挤压力作用 下具有一定的变形、 流动能力, 与挤压致密金属材料相比, 挤压力小, 挤压温度 和速度范围宽, 解决了 Ag-MeO材料难以加工的问题, 而且改善了 Ag-MeO触 头材料的组织, 从而提高了其综合性能。
本发明的具体的工艺过程为:
Ag、 Me按设计比例配比后在中频感应炉内熔化, 然后用在雾化设备中用压 缩空气将合金雾化,雾化后合金粉末进行筛分,将粒度为 -325目的粉末装入氧化 炉中氧化, 氧化温度控制在 500-800°C, 氧气压力范围 0.21〜50atm, 经 3-6小时 氧化后取出, 成分、组织检测符合要求后, 模压成相对密度为 65%-80%的生坯, 然后将生坯加热至 600°C-850°C后放入到已预热至 300〜500°C的挤压模具中进行 热挤压, 从而制得 Ag-MeO棒、 丝材。
本发明的优势在于: .雾化合金粉末比铸造合金更容易氧化, 既缩短了氧化 时间又避免了贫金属氧化物区的出现, 使得生成的 MeO粒子弥散分布在复合粉 末内部。 而且本发明采用的上粉末热挤压工艺, 省去了繁琐的烧结、 复压、 复烧 及多道次的挤压拉拔工艺,节约了生产成本,并解决了无镉 Ag-MeO材料难以加 工的问题; 同时改善了 Ag-MeO触头材料的组织, 提高了其综合性能。发明人通 过对整个工艺路线的改进和创新, 使得整个工艺流程变得简单, 并可有效地解决 Ag-MeO材料难以氧化充分、加工困难以及生产流程长的难题, 并且使弥散的氧 化物和银基体之间结合牢固, 提高产品的综合性能, 缩短生产流程, 降低生产成 本。
本发明还优选 .Ag、 Me按设计配比后在中频感应炉内熔化, 可有效地保证 合金成分的均匀性。
附图说明
图 1为本发明的具体工艺流程图;
图 2为本发明的制品横截面的放大 100倍的金相组织;
图 3为本发明的制品纵截面的放大 100倍的金相组织;
图 4为对比例的制品横截面的放大 100倍的金相组织;
图 5为对比例的制品纵截面的放大 100倍的金相组织。
具体实施方式
以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例 1
取银 2004克, 锡 112.5克, 锑 76.5克, 置于中频感应炉内熔化后, 在雾化 设备中用压缩空气将合金雾化,雾化后合金粉末进行筛分,将粒度为 -325目的粉 末装入氧化炉中氧化, 氧化温度控制在 800°C, 保持氧气压力 50atm, 氧化 6小 时取出, 模压成直径为 28mm, 相对密度为 70%的生坯, 然后将加热至 800°C的 生坯放入己预热到 500°C的模具中, 进行热挤压后即得直径为 4mm制品。
实施例 2 取银 2000克, 锌 223克, 镧 105克, 乙25克, 置于中频感应炉内熔化后, 在雾化设备中用压缩空气将合金雾化, 雾化后合金粉末进行筛分, 将粒度为 -325 目的粉末装入氧化炉中氧化, 氧化温度控制在 40(TC, 保持氧气压力 10atm, 氧 化 3小时取出, 模压成直径为 28mm、 相对密度为 75 %的生坯, 然后将加热至 600 °C的生坯放入已预热到 450 的模具中,进行热挤压后即得直径为 8mm制品。
实施例 3
取银 2000克,铜 110.5克,锑 82.9克,铈 20克,置于中频感应炉内熔化后, 在雾化设备中用压缩空气将合金雾化, 雾化后合金粉末进行筛分, 将粒度为 -325 目的粉末装入氧化炉中氧化, 氧化温度控制在 700°C, 保持氧气压力 25atm, 氧 化 5小时取出, 模压成直径为 28mm、 相对密度为 80%的生坯, 然后将加热至 830°C的生坯放入已预热到 30(TC的模具中,进行热挤压后即得直径为 4mm制品。
实施例 4
取银 2005克, 铈 160克, 铋 10克, 镧 5克, 置于中频感应炉内熔化后, 在 雾化设备中用压缩空气将合金雾化, 雾化后合金粉末进行筛分, 将粒度为 -325 目的粉末装入氧化炉中氧化, 氧化温度控制在 650°C, 保持氧气压力 20atm, 氧 化 5小时取出, 模压成直径为 28mm、 相对密度为 80%的生坯, 然后将加热至 800°C的生坯放入已预热到 450°C的模具中,进行热挤压后即得直径为 2mm制品。
实施例 5
取银 1980克, 镧 155克, 钼 43.7克, 镁 10克, 锑 15克, 置于中频感应炉 内熔化后, 在雾化设备中用压缩空气将合金雾化, 雾化后合金粉末进行筛分, 将 粒度为 -325目的粉末装入氧化炉中氧化, 氧化温度控制在 750 , 保持氧气压力 lOatm, 氧化 3小时取出, 模压成直径为 28mm、 相对密度为 75 %的生坯, 然后 将加热至 82(TC的生坯放入已预热到 400°C的模具中, 进行热挤压后即得直径为 6mm制品。
实施例 6
取银 2003克, 锡 157克, 铝 43.7克, 钇 5克, 钛 10克, 置于中频感应炉 内熔化后, 在雾化设备中用压缩空气将合金雾化, 雾化后合金粉末进行筛分, 将 粒度为 -325目的粉末装入氧化炉中氧化, 氧化温度控制在 600°C, 保持氧气压力 5atm, 氧化 3小时取出, 模压成直径为 28mm、 相对密度为 70%的生坯, 然后将 加热至 85(TC的生坯放入已预热到 450°C的模具中, 进行热挤压后即得直径为 4mm制品。
对比例 7
取银 2004克, 锡 112.5克, 锑 76.5克, 置于中频感应炉内熔化后, 在雾化 设备中用压缩空气将合金雾化,雾化后合金粉末进行筛分,将粒度为 -325目的粉 末装入氧化炉中氧化, 氧化温度控制在 800°C, 保持氧气压力 50atm, 氧化 6小 时取出, 将氧化粉末压制成型后在 830°C烧结 2小时, 将烧结坯料在 820°C下进 行热锻后即得制品。
实施例和对比例的性能指标
制品 相对密度% 硬度 电阻率 抗拉强度 伸长率
HV/MPa μ Ω »cm MPa % 实施例 1 98.9 950 2.3 380 23 实施例 2 99.0 870 2.5 340 30 实施例 3 99.4 700 2.2 300 30 实施例 4 99.5 650 2.1 280 36 实施例 5 99.6 800 2.2 320 28 实施例 6 99.7 750 2.1 360 25 对比例 7 98.5 1000 2.5 400 25

Claims

权 利 要 求
1. 一种银-金属氧化物电触头材料的制备方法, 其特征在于: 将 Ag和金属 Me按设计配比熔化后, 用雾化设备将 Ag和 Me雾化成成分均匀、 粒度细微的 Ag-Me合金粉末, 然后将合金粉末进行内氧化处理, 生成 Ag-MeO复合粉末, 再将 Ag-MeO复合粉末模压成坯料后采用粉末热挤压方式制备成电触头材料。
2.根据权利要求 1所述银-金属氧化物电触头材料的制备方法,其特征在于: 所述的 Ag-Me合金中的 Me金属是 Sn、 Zn、 Cu、 La、 Ce、 Sb、 Bi、 Mo、 Al、 Ti、 Mg、 Y中的一种或几种, 其中 Ag在 Ag-Me合金中的质量百分数为 85%〜 92%。
3. 根据权利要求 1所述的银-金属氧化物电触头材料的制备方法, 其特征在 于:所述的内氧化处理的氧化参数为:温度 400〜800°C,氧气压力 0.21〜50atm。
4. 根据权利要求 3所述的银-金属氧化物电触头材料的制备方法, 其特征在 于: 内氧化处理时间 3〜6h。
5. 根据权利要求 1所述的银-金属氧化物电触头材料的制备方法, 其特征在 于: 将 Ag-MeO复合粉末模压成相对密度为 65%-80%的生坯。
6. 根据权利要求 1或 5所述的银-金属氧化物电触头材料的制备方法, 其特 征在于: 挤压温度 600〜850°C, 挤压比为 12:1〜200:1。
PCT/CN2009/001073 2009-07-08 2009-09-24 一种银-金属氧化物电触头材料的制备方法 WO2011003225A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2009349420A AU2009349420A1 (en) 2009-07-08 2009-09-24 Preparation method for silver metal oxide made electric contact material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910304113XA CN101609755B (zh) 2009-07-08 2009-07-08 一种银-金属氧化物电触头材料的制备方法
CN200910304113.X 2009-07-08

Publications (1)

Publication Number Publication Date
WO2011003225A1 true WO2011003225A1 (zh) 2011-01-13

Family

ID=41483450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001073 WO2011003225A1 (zh) 2009-07-08 2009-09-24 一种银-金属氧化物电触头材料的制备方法

Country Status (3)

Country Link
CN (1) CN101609755B (zh)
AU (2) AU2009349420A1 (zh)
WO (1) WO2011003225A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512359A (zh) * 2022-01-05 2022-05-17 浙江福达合金材料科技有限公司 一种银金属氧化物镶嵌复合带材及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350502B (zh) * 2011-10-27 2013-01-09 福达合金材料股份有限公司 物理冶金包覆法银氧化锡的制备方法
CN103762099B (zh) * 2013-12-20 2016-06-22 宁波赛特勒电子有限公司 一种银基复合氧化物电触点材料及其应用
CN103824711B (zh) * 2013-12-20 2016-01-20 宁波赛特勒电子有限公司 一种双层银基复合氧化物电触点材料及其应用
CN103722041B (zh) * 2013-12-26 2017-01-11 浙江科扬新材料科技有限公司 一种复合银带的制造设备和制造方法
CN104525968A (zh) * 2014-12-30 2015-04-22 桂林电器科学研究院有限公司 一种片状银钨电触头材料的制备方法
CN106158436B (zh) * 2016-07-20 2019-04-30 永兴金荣材料技术有限公司 银基电触头及其制造方法、专用设备、专用模具
CN107400819A (zh) * 2017-06-15 2017-11-28 昆明理工大学 一种纳米金属氧化物增强银基电触头材料的制备方法
CN108165797A (zh) * 2017-12-27 2018-06-15 洛阳神佳窑业有限公司 一种锌基合金材料的制备方法
CN108149122A (zh) * 2017-12-27 2018-06-12 洛阳神佳窑业有限公司 一种银基合金触点材料的制备方法
CN109994327B (zh) * 2019-04-30 2020-12-01 温州宏丰电工合金股份有限公司 一种用于断路器的AgMe触头材料及其制备方法
CN114262815B (zh) * 2021-02-01 2022-05-31 中南大学 一种银-金属氧化物复合材料及其制备方法和作为电触头材料的应用
CN114262812B (zh) * 2021-02-28 2022-05-31 中南大学 一种弥散强化超细晶银基-金属氧化物复合材料及其制备方法
CN115709288B (zh) * 2022-11-28 2024-09-17 桂林金格电工电子材料科技有限公司 一种银氧化锡氧化镧触头材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320608A (ja) * 1994-05-19 1995-12-08 Toshiba Corp 接点材料の製造方法
JPH08143989A (ja) * 1994-11-28 1996-06-04 Matsushita Electric Works Ltd 電気接点材料の製造方法
CN1311487C (zh) * 2003-10-28 2007-04-18 章景兴 以银氧化锌氧化铟为基础的电接触材料及其生产工艺
CN101038818A (zh) * 2007-04-05 2007-09-19 章景兴 以银氧化锡氧化镧为基础的电接触材料及其生产工艺
CN101202169A (zh) * 2007-10-23 2008-06-18 福达合金材料股份有限公司 新型银氧化锡丝材电触头材料制造方法
CN101202170A (zh) * 2007-10-23 2008-06-18 福达合金材料股份有限公司 片状银氧化锡电触头材料的制造方法
CN101217074A (zh) * 2008-01-14 2008-07-09 中希合金有限公司 银氧化锡/铜复合电触头及其制备方法
CN100444294C (zh) * 2005-09-01 2008-12-17 中南大学 银氧化锡触头材料的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320608A (ja) * 1994-05-19 1995-12-08 Toshiba Corp 接点材料の製造方法
JPH08143989A (ja) * 1994-11-28 1996-06-04 Matsushita Electric Works Ltd 電気接点材料の製造方法
CN1311487C (zh) * 2003-10-28 2007-04-18 章景兴 以银氧化锌氧化铟为基础的电接触材料及其生产工艺
CN100444294C (zh) * 2005-09-01 2008-12-17 中南大学 银氧化锡触头材料的制造方法
CN101038818A (zh) * 2007-04-05 2007-09-19 章景兴 以银氧化锡氧化镧为基础的电接触材料及其生产工艺
CN101202169A (zh) * 2007-10-23 2008-06-18 福达合金材料股份有限公司 新型银氧化锡丝材电触头材料制造方法
CN101202170A (zh) * 2007-10-23 2008-06-18 福达合金材料股份有限公司 片状银氧化锡电触头材料的制造方法
CN101217074A (zh) * 2008-01-14 2008-07-09 中希合金有限公司 银氧化锡/铜复合电触头及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512359A (zh) * 2022-01-05 2022-05-17 浙江福达合金材料科技有限公司 一种银金属氧化物镶嵌复合带材及其制备方法
CN114512359B (zh) * 2022-01-05 2023-08-01 浙江福达合金材料科技有限公司 一种银金属氧化物镶嵌复合带材及其制备方法

Also Published As

Publication number Publication date
CN101609755A (zh) 2009-12-23
AU2009349420A8 (en) 2012-02-16
AU2009349420A1 (en) 2012-02-02
AU2009101361A4 (en) 2012-03-01
CN101609755B (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2011003225A1 (zh) 一种银-金属氧化物电触头材料的制备方法
CN104711443B (zh) 一种石墨烯/铜复合材料及其制备方法
CN107794389B (zh) 一种银氧化锡氧化铟电接触材料及其制备方法
CN101649399B (zh) 银氧化锡电接触材料的制备方法
WO2012088736A1 (zh) 一种纤维状结构银基氧化物电触头材料的制备方法
CN102290261B (zh) 含添加元素的银铜基金属氧化物电触头材料及其制备方法
JP6333099B2 (ja) Ag/SnO2電気接点用粉末の製造方法及びAg/SnO2電気接点材料の製造方法
CN104700961A (zh) 一种石墨烯/银复合材料及其制备方法
CN103695682B (zh) 一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品
CN101202169A (zh) 新型银氧化锡丝材电触头材料制造方法
CN101885060B (zh) 高性能铜-金刚石电触头材料及其制造工艺
CN105200262B (zh) 一种高氧化锡含量银基片状电触头材料的制备方法
EP2913413B1 (en) Preparation method for electrical contact materials
WO2012071767A1 (zh) 纤维状结构银基电接触材料的制备方法
WO2012088734A1 (zh) 颗粒定向排列增强银基氧化物电触头材料的制备方法
CN110144481A (zh) 一种高温高强高导高耐磨铜基复合材料及其制备方法
CN101135011A (zh) AgSnO2电接触材料制备新方法
CN102044347B (zh) 银铜镍陶瓷高抗熔焊合金触头材料的制备方法及其产品
CN114592138B (zh) 一种纳米氧化铝颗粒增强铜基复合材料及其制备方法
CN112501464B (zh) 一种银镍复合材料及其制备方法
CN109593981A (zh) 一种改善锭坯烧结性的银氧化锡触头材料的制备方法
CN105803283A (zh) 一种Nb-Si-Ti-W-Cr合金棒材及其制备方法
WO2012088735A1 (zh) 纤维状组织结构银基氧化物电触头材料的制备方法
CN111349838B (zh) 一种高熵合金复合材料的制备方法
CN111363947A (zh) 一种添加镍合金的银碳化钨石墨复合材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009349420

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009349420

Country of ref document: AU

Date of ref document: 20090924

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09846976

Country of ref document: EP

Kind code of ref document: A1