WO2015088295A1 - 터치 센서 및 이의 제조방법 - Google Patents

터치 센서 및 이의 제조방법 Download PDF

Info

Publication number
WO2015088295A1
WO2015088295A1 PCT/KR2014/012362 KR2014012362W WO2015088295A1 WO 2015088295 A1 WO2015088295 A1 WO 2015088295A1 KR 2014012362 W KR2014012362 W KR 2014012362W WO 2015088295 A1 WO2015088295 A1 WO 2015088295A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode part
pattern
touch sensor
wiring electrode
sensing
Prior art date
Application number
PCT/KR2014/012362
Other languages
English (en)
French (fr)
Inventor
황지영
이동현
이승헌
서한민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/039,732 priority Critical patent/US10261638B2/en
Priority to JP2016534159A priority patent/JP6497752B2/ja
Priority to EP14870184.0A priority patent/EP3082023A4/en
Priority to CN201480068350.XA priority patent/CN105830000B/zh
Publication of WO2015088295A1 publication Critical patent/WO2015088295A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present application relates to a touch sensor and a method of manufacturing the same.
  • a display device is a term referring to a TV, a computer monitor, and the like, and includes a display element for forming an image and a case for supporting the display element.
  • Examples of the display device may include a plasma display panel (PDP), a liquid crystal display (LCD), an electrophoretic display, and a cathode-ray tube (CRT).
  • the display device may be provided with an RGB pixel pattern and an additional optical filter for implementing an image.
  • the optical filter includes an anti-reflection film that prevents external light incident from the outside from being reflected back to the outside, a near-infrared shielding film that shields near infrared rays generated from a display element to prevent malfunction of electronic devices such as a remote control, and color control dyes. At least one of a color correction film to increase the color purity by adjusting the color tone, and an electromagnetic shielding film for shielding the electromagnetic waves generated from the display element when the display device is driven.
  • the electromagnetic shielding film includes a transparent substrate and a metal mesh pattern provided on the substrate.
  • Touch sensors having the above functions may be classified as follows according to a signal detection method.
  • a resistive type that senses a position pressed by pressure in a state in which a DC voltage is applied through a change in current or a voltage value, and a capacitance coupling in which an AC voltage is applied
  • a capacitive type and an electromagnetic type for sensing a selected position as a change in voltage in the state of applying a magnetic field.
  • the most common resistive and capacitive touch sensors use a transparent conductive film, such as an ITO film, to recognize whether the touch is performed by an electrical contact or a change in capacitance.
  • a transparent conductive film such as an ITO film
  • the transparent conductive film has a high resistance of 100 ohm / square or more, sensitivity decreases at the time of enlargement, and as the size of the screen increases, commercialization is not easy due to the problem that the price of ITO film increases rapidly.
  • an attempt has been made to implement an enlargement by using a metal pattern with high conductivity.
  • the present application is to improve the manufacturing process of the touch sensor, to reduce the manufacturing cost of the touch sensor, and to improve the weight, thinning and the like of the touch sensor.
  • a touch sensor including a driving electrode part, a sensing electrode part, and a wiring electrode part provided on the same surface on the substrate.
  • the driving electrode part, the sensing electrode part, and the wiring electrode part each include a conductive pattern including a shield part and an opening part,
  • the wiring electrode part includes a first wiring electrode part located in a touch sensing area of a touch sensor and a second wiring electrode part located in a touch non-sensing area of a touch sensor, and the first wiring electrode part includes the driving electrode part or the sensing electrode part. 1 or 2 or more bundles of wires connected to the second wire electrode part,
  • Each of the wirings is made of a mesh pattern
  • a touch sensor In a bundle including a maximum number of wires among the bundles, a neighbor sharing at least one side of a width W of the bundle, the number of wires n included in the bundle, and a mesh pattern constituting the wires. It provides a touch sensor, characterized in that the minimum value (P) of the distance between the center points of one of the network structures satisfy the following equation (1).
  • a touch sensor including a driving electrode part, a sensing electrode part, and a wiring electrode part provided on the same surface on the substrate.
  • the driving electrode part, the sensing electrode part and the wiring electrode part may include a conductive pattern including a shield part and an opening part.
  • the wiring electrode part includes a first wiring electrode part located in a touch sensing area of a touch sensor and a second wiring electrode part located in a touch non-sensing area of a touch sensor, and the first wiring electrode part includes the driving electrode part or the sensing electrode part. 1 or 2 or more bundles of wires connected to the second wire electrode part,
  • the bundle consists of a pattern in which a closed figure having two disconnection points is continuously disposed in a direction from one side of the substrate adjacent to the end of the second wiring electrode to the other side of the substrate opposite thereto,
  • the virtual straight line connecting the adjacent disconnection points of the continuously arranged closed figures in the shortest distance has one or more inflection points, the angle formed by the virtual straight line at the inflection point is 90 degrees or more,
  • the pattern in contact with the virtual straight line provides a touch sensor, wherein the driving electrode part or the sensing electrode part is electrically connected to the second wiring electrode part.
  • another exemplary embodiment of the present application provides a display device including the touch sensor.
  • the thickness of the touch sensor can be minimized and the manufacturing method is easy because all the conductive patterns are formed on the cross-section.
  • it is a single sheet type, there is an advantage that the lamination is not required as compared with the prior art formed by using two or more substrates.
  • the sensing electrode part and the driving electrode part are on the same plane, installation and attachment of the FPCB (Flexible Printed Circuit Board) is easy.
  • it is a single sheet
  • when laminating the functional surface film on the surface of the touch sensor there is an advantage that bubbles are not occupied because the step is not large.
  • the manufacturing process of the touch sensor by improving the manufacturing process of the touch sensor, it is possible to reduce the manufacturing cost of the touch sensor, it is possible to improve the weight, thinning and the like of the touch sensor.
  • 1 to 3 schematically show a conventional touch sensor.
  • FIG. 4 is a view schematically showing a wiring electrode part of a conventional touch sensor.
  • 5 and 6 are schematic diagrams of a touch sensor according to an exemplary embodiment of the present application.
  • FIG. 7 to 9 are diagrams schematically showing a moiré evaluation result of the touch sensor according to an exemplary embodiment of the present application.
  • 10 to 14 are views schematically showing the results of evaluation of the aperture ratio of the touch sensor according to the exemplary embodiment of the present application.
  • 15 and 16 are diagrams schematically illustrating a conductive metal line pattern of a wiring electrode part of a touch sensor according to an exemplary embodiment of the present application.
  • 17 to 24 are diagrams schematically illustrating a moiré evaluation result according to a shape of a conductive metal line pattern of a wiring electrode part of a touch sensor according to an exemplary embodiment of the present application.
  • 25 is a view schematically illustrating a touch sensor and a display device including the same according to an exemplary embodiment of the present application.
  • FIG. 26 is a diagram schematically illustrating a disconnection point of a conductive metal line pattern according to an exemplary embodiment of the present application.
  • FIG. 27 is a diagram schematically illustrating a touch sensor according to an exemplary embodiment of the present application.
  • FIG. 28 is a view schematically showing a printing direction of a wiring electrode of a touch sensor according to an exemplary embodiment of the present application.
  • a driving electrode pattern (Tx pattern) serving as voltage driving and a sensing electrode pattern (Rx pattern) that receive a signal of mutual capacitance and transmit it to a circuit are separate. It is mainly formed of a product formed on the substrate, or a product in which the driving electrode pattern and the sensing electrode pattern are formed on both sides of the substrate, that is, the form in which the driving electrode pattern and the sensing electrode pattern are spatially separated.
  • this method has continuously generated cost issues in terms of the cost of the sensor in terms of using two sheets of indium tin oxide (ITO) film that is used as an optically clear adhesive (OCA) and a transparent electrode corresponding to a dielectric.
  • ITO indium tin oxide
  • OCA optically clear adhesive
  • Tx pattern driving electrode pattern
  • Rx pattern sensing electrode pattern
  • the touch sensor of the first-layer single layer can be largely classified into a method using self capacitance, a method using mutual capacitance, and a so-called Fxy method using a metal bridge.
  • the method of using self-capacitance and the method of using metal bridges respectively, have performance issues (limiting ghost phenomenon and multi-touch in the case of self-cap) and yield issues between manufacturing processes. It is true that the back did not give great charm.
  • the method of using mutual capacitance has been greatly received recently. This is mainly due to the fact that in the method of using mutual capacitance, the area where capacitance is formed is formed in a plane in the same space. This is because there is an issue of pattern manufacturing in terms of issues such as sensitivity and wiring area formed on the screen, but it has the best characteristics in terms of performance compared to other methods. Accordingly, in the case of ITO, development activities for implementing the same are actively progressing. However, this method also has the issue of resistance due to the use of a relatively high resistance material called ITO, which is because the limit of the applicable inches is limited to 5 inches or less.
  • the present application proposes a touch sensor having a single-sided single layer using a conductive metal wire as a driving electrode pattern and a sensing electrode pattern.
  • FIGS. 1 and 2 A touch sensor of one layer of cross section using a conventional ITO electrode is schematically shown in FIGS. 1 and 2.
  • the driving electrode pattern and the sensing electrode pattern of the touch sensor having a single-sided single layer using the conventional ITO electrode are shown in more detail in FIG. 3.
  • a sensing electrode pattern (Rx pattern) and a driving electrode pattern (Tx pattern) that is an X-shaped pattern are shown. That is, the sensing electrode pattern (Rx pattern) is designed to have a larger area than the driving electrode pattern (Tx pattern), and the signal is applied through the common electrode.
  • the driving electrode pattern (Tx pattern) is embodied in an X-shaped pattern, and a wiring portion is formed through a dead zone region to apply a signal to each driving electrode pattern (Tx pattern).
  • the dead zone according to the wiring area is most preferably minimized in view of touch resolution, and for this purpose, appropriate control of the width of the conductive metal wire and / or the space of the dead zone is required.
  • the width of the space is more than a predetermined value, it can be said to be a pattern of an advantageous form in the interference of mutual signals.
  • the width of the conductive metal wire should be wide, and the smaller the width of the space, the more advantageous. Therefore, it is desirable to appropriately adjust the width of the conductive metal wire and / or space of the dead zone.
  • portions other than the sensing electrode pattern, the driving electrode pattern, and the dead zone are areas corresponding to the dummy electrode or the area in which the pattern is not formed, and have no significant effect on the actual electrical connectivity. can do.
  • the wiring part is generally formed of a line / space concept, and a pattern having a form as shown in FIG. 4 is formed. Accordingly, the present application has introduced a design that minimizes the space in order to secure the connectivity of the conductive metal wire and improve the yield.
  • a touch sensor including a driving electrode part, a sensing electrode part, and a wiring electrode part provided on the same surface on the substrate.
  • the driving electrode part, the sensing electrode part, and the wiring electrode part each include a conductive pattern including a shield part and an opening part,
  • the wiring electrode part includes a first wiring electrode part located in a touch sensing area of a touch sensor and a second wiring electrode part located in a touch non-sensing area of a touch sensor, and the first wiring electrode part includes the driving electrode part or the sensing electrode part. 1 or 2 or more bundles of wires connected to the second wire electrode part,
  • Each of the wirings is made of a mesh pattern
  • the minimum value (P) of the distances between the center points of one network structure is characterized by satisfying the following equation (1).
  • the driving electrode part, the sensing electrode part and the wiring electrode part each include a conductive pattern including a shielding part and an opening part.
  • the shielding portion means a region in which a conductive metal line, for example, a conductive metal line, is provided on the substrate, and includes a conductive pattern of the driving electrode portion, the sensing electrode portion, and the wiring electrode portion. it means. That is, the shield may mean an area that is not optically transparent, for example, the transmittance of the shield may be 20% or less, or 10% or less.
  • the mesh pattern a pattern form in the art such as a mesh pattern may be used.
  • the mesh pattern may include a polygonal pattern including at least one of triangular, square, pentagonal, hexagonal, and octagonal shapes.
  • the distance between the center points of neighboring network structures sharing at least one side of the mesh patterns constituting the wires may correspond to the pitch of the mesh pattern when the mesh pattern is a regular mesh pattern.
  • the mesh pattern is a polygonal pattern including various shapes
  • the mesh pattern may correspond to a distance between center points of the neighboring polygon patterns sharing at least one side or a distance between centers of gravity.
  • Equation 1 may be represented by Equation 2 below.
  • [theta] 1 represents a smaller value among angles formed by a straight line connecting the shortest distance in the width direction of the bundle and a straight line connecting the center points of neighboring network structures sharing at least one side with the shortest distance.
  • the touch sensing area of the touch sensor may include a driving electrode part, a sensing electrode part, and a first wiring electrode part.
  • the touch non-sensing area of the touch sensor may include a second wiring electrode part.
  • the touch sensing area may be expressed in terms such as a touch sensitive area, a touch enabled area, and a touch activation area.
  • the driving electrode part and the sensing electrode part of the touch sensor according to the exemplary embodiment of the present application are as shown in FIG. 5.
  • the shape of the wiring electrode part of the touch sensor according to the exemplary embodiment of the present application is as shown in FIG. 6.
  • a touch sensor including a driving electrode part, a sensing electrode part, and a wiring electrode part provided on the same surface on the substrate.
  • the driving electrode part, the sensing electrode part and the wiring electrode part may include a conductive pattern including a shield part and an opening part.
  • the wiring electrode part includes a first wiring electrode part located in a touch sensing area of a touch sensor and a second wiring electrode part located in a touch non-sensing area of a touch sensor, and the first wiring electrode part includes the driving electrode part or the sensing electrode part. 1 or 2 or more bundles of wires connected to the second wire electrode part,
  • the bundle consists of a pattern in which a closed figure having two disconnection points is continuously disposed in a direction from one side of the substrate adjacent to the end of the second wiring electrode to the other side of the substrate opposite thereto,
  • the virtual straight line connecting the adjacent disconnection points of the continuously arranged closed figures in the shortest distance has one or more inflection points, the angle formed by the virtual straight line at the inflection point is 90 degrees or more,
  • the pattern in contact with the virtual straight line may be electrically connected to the driving electrode part or the sensing electrode part to the second wiring electrode part.
  • the disconnection point means a region in which a part of the edge pattern of the closed figure is disconnected to disconnect the electrical connection, and may be expressed in terms of disconnection point and disconnection part. That is, when the wiring electrode part includes a pattern made of a conductive metal line, the pattern may include two or more metal lines spaced apart in the longitudinal direction of the conductive metal line by a disconnection point.
  • the moire is evaluated.
  • the average diameter of the disconnection point or the width of the disconnection part is within 13 ⁇ m.
  • the moiré evaluation result of the wiring electrode part including the conductive pattern having the average diameter of the disconnection point or the width of the disconnection part is 15 ⁇ m is shown in FIG. 7, and the average diameter or the disconnection part of the disconnection point is shown in FIG. 7.
  • the moiré evaluation result of the wiring electrode part including the conductive pattern having a width of 10 ⁇ m is shown in FIG. 8.
  • the moiré evaluation result of the wiring electrode part including the conductive pattern having the average diameter of the disconnection point or the width of the disconnection part is 7 ⁇ m. It is shown in Figure 9 below.
  • the average diameter of the disconnection point or the width of the disconnection part may mean a distance between the closest ends of two or more conductive metal wires spaced apart.
  • the distance between the closest ends of the two or more conductive metal wires spaced apart means a distance between the closest ends of the two or more conductive metal wires spaced apart from each other, and specific examples thereof are shown in FIG. 26.
  • Equation 1 may be represented by Equation 3 below.
  • [theta] 2 represents a smaller value of an angle formed by a straight line in the vertical direction with respect to an imaginary straight line connecting the disconnection points at the shortest distance and a straight line connecting the center points of neighboring network structures sharing at least one side with the shortest distance.
  • the longest part between the inflection points of the imaginary straight line is parallel to each other or forms an angle of more than 0 degrees and less than 90 degrees with at least one side constituting the closed figure. Can be.
  • the conductive patterns of the driving electrode part and the sensing electrode part may further include a disconnection point or a disconnection part as described above.
  • the average diameter of the disconnection point or the width of the disconnection part may be 13 ⁇ m or less, 10 ⁇ m or less, or 7 ⁇ m or less, but is not limited thereto.
  • the aperture ratio may mean a ratio of the entire planar area of the opening to the entire planar area of the driving electrode part, the sensing electrode part, and the wiring electrode part.
  • the touch sensor of FIG. 10 is to process the disconnection of the conductive metal wire pattern into dots of a predetermined size, and then process the dummy pattern portion as an irregular pattern.
  • the touch sensor of FIG. 11 minimizes the difference between the wiring electrode portion and the aperture ratio by disconnecting the conductive pattern region and the dummy pattern region with different dots.
  • the conductive pattern area and the dummy pattern area of the sensing electrode part are disconnected by dots of the same size, but the gap between the dots is different from the conductive pattern area and the dummy pattern area of the sensing electrode part.
  • the conductive pattern region and the dummy pattern region of the sensing electrode unit are disconnected by dots having the same size, but the gap between the dots introduces the conductive pattern region and the dummy pattern region as similarly as possible.
  • the touch sensor of FIG. 14 maintains transmittance of the wiring part by positioning the touch sensor immediately after disconnection rather than removing the disconnected segment.
  • the width of the bundle is called W
  • the aperture ratio deviation between arbitrary regions of the touch sensor corresponding to the area of (W ⁇ W) is 10 based on the area of (W ⁇ W). It may be within%, may be within 5%, may be within 3%, but is not limited thereto.
  • Arbitrary areas of the touch sensor may include an area inside the driving electrode part, an area inside the sensing electrode part, an area inside the wiring electrode part, an area where the driving electrode part and the sensing electrode part are combined, and the driving electrode part and the wiring electrode part are combined. And a region in which the detected electrode portion and the wiring electrode portion are combined.
  • the driving electrode part and the sensing electrode part may be made of a conductive metal line, and the disconnection point or the disconnection part may be provided at an intersection area where conductive metal lines in the driving electrode part or the sensing electrode part cross each other.
  • the present invention is not limited thereto.
  • the diameter of the disconnection point may be 40 ⁇ m or less, or 20 ⁇ m or less, in terms of moiré characteristics and visibility. It is not limited only to this. Optical characteristics when the disconnection point is provided in the intersection region are shown in FIG. 27.
  • an electrically isolated conductive metal wire may be further provided within a predetermined distance from the disconnection point or the center of the disconnection part.
  • the length of the electrically isolated conductive metal wire is not particularly limited, and may be within 10% of the average diameter of the disconnection point or the width of the disconnection part.
  • the electrically isolated conductive metal wire may be provided in parallel with the disconnection point or the disconnection part, or may be provided vertically or irregularly.
  • the electrically isolated conductive metal wire may have an area of 80% to 120% with respect to the product of the average diameter of the disconnection point or the width of the disconnection part and the line width of the conductive metal wire.
  • the distance between the terminal of the electrically isolated conductive metal wire and the terminal of the conductive metal wire adjacent thereto may be 13 ⁇ m or less.
  • the size, shape, length, etc. of the electrically isolated conductive metal wire can be appropriately adjusted so that the aperture ratio deviation between arbitrary regions of the touch sensor is within 10%.
  • the conductive pattern constituting the wiring electrode part is a mesh pattern and the mesh pattern is a square shape
  • the width of the bundle is W
  • the pitch of the mesh pattern is P
  • n the number of the mesh pattern
  • the directionality of the disconnection means the direction of the line displayed when adjacent disconnection points or disconnection portions are connected at the shortest distance.
  • the directionality of the disconnection is a straight line through proper design of the disconnection position.
  • the flow direction of the current can be set.
  • the moiré evaluation results according to the shape of the conductive metal wire pattern of the wiring electrode part are shown in FIGS. 17 to 20 and Table 1 below.
  • the moiré evaluation results of the conductive metal line patterns according to FIGS. 17 to 20 are shown in FIGS. 21 to 24, respectively.
  • the optimum bundle width is formed when 16 wires are formed according to the pitch of the mesh pattern.
  • the touch sensor according to the present application may recognize a touch input by using a mutual capacitance method.
  • the touch sensor according to the present application does not insert a separate insulating material between the driving electrode part and the sensing electrode part, and performs electrical disconnection between the driving electrode part and the sensing electrode part using a disconnection point, a disconnection part, or a dummy pattern. This is different from the conventional touch sensor using a metal bridge, an insulating layer, or the like.
  • the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part may be formed by independent printing processes, and the printing patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part are printed once. It can also form simultaneously.
  • the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part may have the same consensus.
  • At least a part of the conductive pattern of the driving electrode part and the wiring electrode part may include a region connected to each other, and the connected region may have no joint.
  • at least a part of the conductive pattern of the sensing electrode part and the wiring electrode part may include an area connected to each other, and the connected area may have no joint.
  • the absence of seams means that there are no artificial trailing traces in the electrically connected conductive pattern.
  • the pattern shape and scale of the touch part and the wiring part are different, in the related art, since the touch part and the wiring part are formed in different ways, a joint part is inevitably formed at the part where these patterns are connected.
  • the touch part, the wiring part, and the like can be formed by using one process, there is no joint part and their consensus can have the same feature.
  • the same sentence means that the standard deviation of the sentence is less than 10%, preferably less than 5%, or more preferably less than 2%.
  • the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part are provided on the substrate, and the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part are all provided on the same side of the substrate. Can be.
  • At least one surface of the substrate may further include a hard coating layer.
  • one surface of the substrate may be provided with a hard coating layer having a high hardness
  • the other surface of the substrate may include a conductive pattern of a driving electrode, a sensing electrode, and a wiring electrode, but is not limited thereto.
  • a conductive pattern may be provided on the hard coating layer of the hard electrode, the sensing electrode, and the wiring electrode, but the present invention is not limited thereto.
  • the high hardness hard coat layer a binder monomer comprising a 3 to 6 functional acrylate monomer; Inorganic fine particles; Photoinitiator; And a solid coating composition comprising an organic solvent, wherein the weight ratio of the solid content to the organic solvent is 70:30 to 99: 1 with respect to the solid content including the binder monomer, the inorganic fine particles, and the photoinitiator. can do.
  • the high hardness hard coat layer a binder monomer containing a 3 to 6 functional acrylate monomer; Inorganic fine particles; And a hard coating composition in a solvent-free form including a photoinitiator.
  • the acrylate-based means not only acrylate but also methacrylate or a derivative in which a substituent is introduced into acrylate or methacrylate.
  • the 3 to 6 functional acrylate monomers include trimethylolpropane triacrylate (TMPTA), trimethylolpropaneethoxy triacrylate (TMPEOTA), glycerin propoxylated triacrylate (GPTA), pentaerythritol tetraacrylate (PETA) or dipentaerythritol hexaacrylate (DPHA).
  • TMPTA trimethylolpropane triacrylate
  • TMPEOTA trimethylolpropaneethoxy triacrylate
  • GPTA glycerin propoxylated triacrylate
  • PETA pentaerythritol tetraacrylate
  • DPHA dipentaerythritol hexaacrylate
  • the 3 to 6 functional acrylate monomers may be used alone or in combination with each other.
  • the binder monomer may further include 1 to 2 functional acrylate monomers.
  • the 1 to 2 functional acrylate monomers are, for example, hydroxyethyl acrylate (HEA), hydroxyethyl methacrylate (HEMA), hexanediol diacrylate (HDDA), or tripropylene glycol diacrylate. (TPGDA), ethylene glycol diacrylate (EGDA), etc. are mentioned.
  • the 1 to 2 functional acrylate monomers may also be used alone or in combination with each other.
  • the binder monomer is about 35 to about 85 parts by weight, or about 45 to about 80 parts by weight based on 100 parts by weight of the solid content including the binder monomer, the inorganic fine particles and the photoinitiator. It can be included as a wealth.
  • the monomer for the binder is in the above range can exhibit a high hardness and can form a hard coating film with less curl or crack generation with excellent processability.
  • the binder monomer further includes 1 to 2 functional acrylate monomers
  • the content ratio of the 1 to 2 functional acrylate monomers and the 3 to 6 functional acrylate monomers is not particularly limited.
  • the 1 to 2 functional acrylate monomer and the 3 to 6 functional acrylate monomer is about 1: 99 to about 50: 50, or about 10: 90 to And from about 50:50, or about 20:80 to about 40:60 by weight.
  • 1 to 2 functional acrylate monomers and 3 to 6 functional acrylate monomers in the weight ratio it is possible to impart high hardness and flexibility without deterioration of other physical properties such as curling properties and light resistance.
  • the binder monomer may further include a photocurable elastomer.
  • the photocurable elastomer means a polymer material that exhibits elasticity and includes a functional group capable of crosslinking polymerization by ultraviolet irradiation.
  • the photocurable elastomer is about 15% or more, for example about 15 to about 200%, or about 20 to about 200%, or about 20 to about as measured by ASTM D638. It can have an elongation of 150%.
  • the hard coating composition of the present application further includes a photocurable elastomer
  • the photocurable elastomer is cross-polymerized with the 3 to 6 functional acrylate-based monomer to form a hard coating layer after curing, thereby being flexible to the hard coating layer formed. And impact resistance can be imparted.
  • the binder monomer further comprises a photocurable elastomer
  • the content ratio of the photocurable elastomer and the 3 to 6 functional acrylate monomer is not particularly limited, but according to an embodiment of the present invention,
  • the photocurable elastomer and the 3 to 6 functional acrylate monomer may be included in a weight ratio of about 5:95 to about 20:80.
  • the 3 to 6 functional acrylate-based monomer and the photocurable elastomer in the weight ratio, it provides high hardness and flexibility without deterioration of other physical properties such as curling properties and light resistance, in particular to prevent damage by external impact Excellent impact resistance can be secured.
  • the photocurable elastomer has a weight average molecular weight of about 1,000 to about 600,000 g / mol, or about 10,000 to about 600,000 g / mol It may be a polymer or oligomer in the range of.
  • the photocurable elastomer may be, for example, at least one member selected from the group consisting of polycaprolactone, urethane acrylate polymer, and polyrotaxane.
  • polycaprolactone is formed by ring-opening polymerization of caprolactone and has excellent physical properties such as flexibility, impact resistance, and durability.
  • the urethane acrylate polymer has excellent elasticity and durability, including urethane bonds.
  • the polyrotaxane refers to a compound in which a dumbbell shaped molecule and a cyclic compound are structurally sandwiched.
  • the dumbbell shaped molecule includes a constant linear molecule and a blocking group disposed at both ends of the linear molecule, the linear molecule penetrates the interior of the cyclic compound, and the cyclic compound can move along the linear molecule. And the departure is prevented by the blocker.
  • a cyclic compound in which a lactone compound having a (meth) acrylate compound introduced therein is bound; Linear molecules penetrating the cyclic compound; And a rotasein compound disposed at both ends of the linear molecule and including a blocking group to prevent the cyclic compound from being separated.
  • the cyclic compound may be used without limitation as long as it has a size enough to penetrate or surround the linear molecule, and may be a hydroxyl group, an amino group, a carboxyl group, a thiol group, or the like, which may react with another polymer or compound.
  • Functional groups such as an aldehyde group, may also be included.
  • Specific examples of such cyclic compounds include ⁇ -cyclodextrin and ⁇ -cyclodextrin, ⁇ -cyclodextrin or mixtures thereof.
  • a compound having a straight chain form having a molecular weight of a predetermined or more may be used without great limitation, but a polyalkylene compound or a polylactone compound may be used.
  • a polyoxyalkylene compound containing a oxyalkylene repeating unit having 1 to 8 carbon atoms or a polylactone compound having a lactone repeating unit having 3 to 10 carbon atoms may be used.
  • the blocking group may be appropriately adjusted according to the properties of the rotacein compound to be produced, for example, one selected from the group consisting of dinitrophenyl group, cyclodextrin group, ammantane group, triyl group, fluorescein group and pyrene group or Two or more kinds can be used.
  • Such polyrotaxane compounds may have excellent scratch resistance and may exhibit self-healing ability when scratches or external damages occur.
  • the hard coating composition of the present application includes inorganic fine particles.
  • the inorganic fine particles may be included in a form dispersed in the binder monomer.
  • inorganic fine particles having a particle size of nanoscale, for example, nanoparticles having a particle diameter of about 100 nm or less, or about 10 to about 100 nm, or about 10 to about 50 nm may be used.
  • inorganic fine particles for example, silica fine particles, aluminum oxide particles, titanium oxide particles, zinc oxide particles, or the like can be used.
  • the hardness of the hard coat film can be further improved.
  • the inorganic fine particles are about 10 to about 60 parts by weight, or about 20 to about 50 parts by weight based on 100 parts by weight of the solid content including the monomer for the binder, the inorganic fine particles and the photoinitiator. May be included.
  • the inorganic fine particles in the above range it is possible to achieve the effect of improving the hardness of the hard coat film according to the addition of the inorganic fine particles within a range not lowering the physical properties.
  • the hard coating composition of the present application includes a photo initiator.
  • the photoinitiator is 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-1-propanone, 2-hydroxy-1- [4- (2-hydroxyethoxy) phenyl] -2-methyl-1-propanone, methylbenzoylformate, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone, 2-benzoyl-2- (dimethylamino ) -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1 -Propanone diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide, or bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like, but are not limited thereto.
  • commercially available products include Irgacure 184, Irgacure 500, Irgacure 651, Irgacure 369, Irgacure 907, Darocur 1173, Darocur MBF, Irgacure 819, Darocur TPO, Irgacure 907, and Esacure KIP 100F.
  • These photoinitiators can be used individually or in mixture of 2 or more types different from each other.
  • the photoinitiator is about 0.5 to about 10 parts by weight, or about 1 to about 5 parts by weight based on 100 parts by weight of the solid content including the monomer for the binder, the inorganic fine particles and the photoinitiator. May be included.
  • the photoinitiator is in the above range, sufficient crosslinking photopolymerization can be achieved without lowering the physical properties of the hard coat film.
  • the hard coating composition of the present application in addition to the above-described binder monomer, inorganic fine particles and photoinitiator, further comprises additives commonly used in the art to which the present application belongs, such as surfactants, anti-yellowing agents, leveling agents, antifouling agents can do.
  • additives commonly used in the art to which the present application belongs such as surfactants, anti-yellowing agents, leveling agents, antifouling agents can do.
  • the content can be variously adjusted within a range that does not lower the physical properties of the hard coating composition of the present application, it is not particularly limited, for example, it is included in about 0.1 to about 10 parts by weight based on 100 parts by weight of the solid content Can be.
  • the hard coating composition may include a surfactant as an additive, and the surfactant may be a 1 to 2 functional fluorine acrylate, a fluorine surfactant or a silicone surfactant.
  • the surfactant may be included in the form of being dispersed or crosslinked in the crosslinked copolymer.
  • the additive may include a yellowing inhibitor
  • the yellowing inhibitor may include a benzophenone compound or a benzotriazole compound.
  • the hard coating composition of the present application includes an organic solvent.
  • the organic solvent is a solid ratio of the solid content: organic solvent with respect to the solid content including the monomer for the binder, the inorganic fine particles, and the photoinitiator is about 70: 30 to about In the range of 99: 1 May be included.
  • the hard coating composition of the present invention contains a solid content in a high content, a high viscosity composition is obtained, thereby enabling a thick coating, thereby forming a hard coating layer having a high thickness, for example, 50 ⁇ m or more. have.
  • the organic solvent is an alcohol solvent such as methanol, ethanol, isopropyl alcohol, butanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol and Alkoxy alcohol solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, ketone solvents such as cyclohexanone, propylene glycol monopropyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono Ethers such as propyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethyl glycol monoethyl ether, diethyl glycol monopropyl ether, diethyl glycol monobutyl ether, diethylene glycol-2-ethylhexyl ether
  • aromatic solvents such as benzen
  • the viscosity of the hard coating composition is not particularly limited as long as it has a range of appropriate fluidity and applicability, but may exhibit high viscosity due to its relatively high solid content.
  • the hard coating composition of the present invention may have a viscosity of about 100 to about 1,200 cps, or about 100 to about 1,200 cps, or about 150 to about 1,200 cps, or about 300 to about 1,200 cps at a temperature of 25 ° C. It can have
  • the solvent- or solvent-free hard coating composition of the present invention comprising the above-described components may form a hard coating layer by applying a support substrate to photocuring.
  • the thickness of the hard coating layer should be increased to 50 ⁇ m, 70 ⁇ m, or 100 ⁇ m or more.
  • the process of planarizing the support substrate may be additionally performed, but since the crack occurs in the hard coating layer during the planarization process, it is not preferable.
  • Hard coating composition according to the present application is less curl or crack generation even when applied and photocured to a high thickness on the support substrate in order to form a hard coating layer of high hardness, to form a hard coating layer having high transparency and high hardness Can be.
  • a thickness of about 50 ⁇ m or more, for example, about 50 to about 150 ⁇ m, or about 70 to about 100 ⁇ m A hard coating layer having a thickness can be formed.
  • the hard coating layer may be formed by a conventional method used in the art.
  • the hard coating composition according to the present application is applied to one surface of the support substrate.
  • the method of applying the composition is not particularly limited as long as it can be used in the technical field to which the present invention belongs, for example, bar coating method, knife coating method, roll coating method, blade coating method, die coating method, micro gravure A coating method, a comma coating method, a slot die coating method, a lip coating method, or a solution casting method may be used.
  • the stabilizing step may be performed, for example, by treating the support substrate to which the hard coating composition is applied at a constant temperature. As a result, the coated surface may be stabilized by planarizing the coated surface and volatilizing the volatile components included in the hard coating composition.
  • the hard coating layer may be formed by irradiating ultraviolet light on the applied hard coating composition to photocuring the same.
  • the hard coating layer is formed on both sides of the supporting substrate using the hard coating composition of the present application, first the first hard coating composition is applied to one side of the supporting substrate and the first photocuring, and then the other side of the supporting substrate, That is, the second hard coating composition may be formed on the back by a two step process of second coating and second photocuring.
  • the film including the hard coating layer formed by using the hard coating composition of the present application when exposed at a temperature of 50 ° C. or higher and a humidity of 80% or higher for 70 hours or more and placed on a flat surface, each corner or one side of the film is flat
  • the maximum distance of the spaced apart may be about 1.0 mm or less, or about 0.6 mm or less, or about 0.3 mm or less. More specifically, when placed in a plane after exposure for 70 to 100 hours at a temperature of 50 ⁇ 90 °C and a humidity of 80 ⁇ 90%, the maximum value of the distance from each corner or one side plane of the film is about 1.0 mm or less, or about 0.6 mm or less, or about 0.3 mm or less.
  • the film including the hard coating layer formed using the hard coating composition of the present application exhibits excellent high hardness, scratch resistance, high transparency, durability, light resistance, light transmittance, and the like, and may be usefully used in various fields.
  • the film including the hard coating layer formed by using the hard coating composition of the present application may have a pencil hardness of 1H or more, 7H or more, or 8H or more, or 9H or more.
  • the high hardness hard coating layer may be provided on only one side of the substrate, or both sides of the substrate may be provided.
  • the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part may each independently include a pattern made of a conductive metal line.
  • the pattern made of the conductive metal line may include a straight line, a curve, or a closed curve made of a straight line or a curve.
  • the conductive patterns of the driving electrode part and the sensing electrode part may each independently be a regular pattern or an irregular pattern.
  • the regular pattern a pattern form in the art such as a mesh pattern may be used.
  • the mesh pattern may include a regular polygonal pattern including one or more of a triangle, a square, a pentagon, a hexagon, and an octagon.
  • the conductive patterns of the driving electrode part and the sensing electrode part are regular patterns, and include intersection points formed by crossing a plurality of lines among the lines constituting the pattern, wherein the number of the intersection points is 3.5 cm It may be 3,000 to 122,500 pieces in an area of 3.5 cm, may be 13,611 to 30,625 pieces, and may be 19,600 to 30,625 pieces. In addition, according to the present application, it was confirmed that the case of 4,000 to 123,000 when mounted on the display exhibits optical characteristics that do not significantly damage the optical characteristics of the display.
  • the conductive patterns of the driving electrode part and the sensing electrode part are irregular patterns, and include an intersection point formed by crossing a plurality of lines among the lines constituting the pattern, wherein the number of such intersection points is It may be 6,000 to 245,000 in an area of 3.5 cm ⁇ 3.5 cm, may be 3,000 to 122,500, may be 13,611 to 30,625, and may be 19,600 to 30,625.
  • the pitch of the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part may be 600 ⁇ m or less, and 250 ⁇ m or less, but it may be adjusted by a person skilled in the art according to a desired transmittance and conductivity.
  • a material having a specific resistance of 1 ⁇ 10 6 ohm ⁇ cm to 30 ⁇ 10 6 ohm ⁇ cm is appropriate, and it is 7 ⁇ 10 6 ohm ⁇ cm or less. More preferred.
  • the conductive patterns of the driving electrode part and the sensing electrode part may be an irregular pattern.
  • the irregular pattern includes a border structure of continuously connected closed figures, and there is no closed figure of the same shape in any irregular unit area (1 cm ⁇ 1 cm), and the number of vertices of the closed figures is: It may be different from the number of vertices of the same number of rectangles as the closed figures. More specifically, the number of vertices of the closed figures may be greater than the number of vertices of the same number of squares as the closed figures, and may be 1.9 to 2.1 times more, but is not limited thereto.
  • closed figures are continuously connected to each other.
  • adjacent closed figures may share a shape with at least one side.
  • the irregular pattern includes a border structure of continuously connected closed figures, and the irregular pattern does not have the same closed figure within an arbitrary unit area (1 cm ⁇ 1 cm), and the number of vertices of the closed figures is
  • the number of vertices of the polygon formed by connecting the shortest distance between the centers of gravity of each of the closed figures may be different. More specifically, the number of vertices of the closed figures may be greater than the number of vertices of the polygon formed by connecting the shortest distance between the centers of gravity of each of the closed figures, and may be 1.9 to 2.1 times more.
  • the present invention is not limited thereto.
  • the irregular pattern includes a border structure of continuously connected closed figures, and the irregular pattern does not have the same closed figure in an arbitrary unit area (1 cm ⁇ 1 cm), and the closed figures are represented by the following equation.
  • the value of 1 may be 50 or more.
  • the value of Equation 1 may be calculated within the unit area of the conductive pattern.
  • the unit area may be an area where a conductive pattern is formed, and for example, 3.5 cm ⁇ 3.5 cm, but is not limited thereto.
  • the vertex is defined as meaning that the lines constituting the border of the closed figures of the conductive pattern cross each other.
  • the irregular pattern may be in the form of a border structure of closed figures in which arbitrary points are arranged in regularly arranged unit unit cells, and then each point is connected to a point closest to the distance from other points. have.
  • the irregular pattern may be formed when an irregularity is introduced in a method of arranging arbitrary points in the regularly arranged unit unit cells. For example, when the irregularity is set to 0, if the unit unit cell is square, the conductive pattern has a square mesh structure. If the unit unit cell is a regular hexagon, the conductive pattern has a honeycomb structure. That is, the irregular pattern means a pattern in which the irregularity is not zero.
  • the conductive pattern of the irregular pattern form according to the present application, it is possible to suppress the pulling phenomenon of the lines constituting the pattern, to obtain a uniform transmittance from the display and at the same time to maintain the same line density for the unit area, It is possible to ensure uniform conductivity.
  • the conductive pattern of the driving electrode portion, the sensing electrode portion, and the wiring electrode portion is not particularly limited, but at least one selected from the group consisting of metals, metal oxides, metal nitrides, metal oxynitrides, and metal alloys. It is preferable to include.
  • the material of the conductive pattern of the driving electrode part, the sensing electrode part and the wiring electrode part is preferably a material having excellent conductivity and easy etching.
  • the total reflectance can be lowered, the visibility of the conductive pattern can be lowered, and the contrast characteristics can be maintained or improved.
  • the material of the conductive pattern of the driving electrode part, the sensing electrode part and the wiring electrode part As a specific example of the material of the conductive pattern of the driving electrode part, the sensing electrode part and the wiring electrode part, a single film or a multilayer film containing gold, silver, aluminum, copper, neodymium, molybdenum, nickel or an alloy thereof is preferable.
  • the thickness of the conductive pattern of the driving electrode part, the sensing electrode part, and the wiring electrode part is not particularly limited, but is preferably 0.01 to 10 ⁇ m in view of the conductivity of the conductive pattern and the economics of the forming process.
  • the conductive patterns of the driving electrode part and the sensing electrode part may have a line width of 10 ⁇ m or less, 7 ⁇ m or less, 5 ⁇ m or less, 4 ⁇ m or less, 2 ⁇ m or less, and 0.1 ⁇ m. It may be abnormal. More specifically, the conductive patterns of the driving electrode part and the sensing electrode part may have a line width of 0.1 to 1 ⁇ m, 1 to 2 ⁇ m, 2 to 4 ⁇ m, 4 to 5 ⁇ m, 5 to 7 ⁇ m, but are not limited thereto. no.
  • the line width of the conductive patterns of the driving electrode and the sensing electrode may be 10 ⁇ m or less and the thickness of 10 ⁇ m or less, and the line width of the conductive patterns of the driving electrode and the sensing electrode may be 7 ⁇ m or less and the thickness may be 1 ⁇ m or less.
  • the line widths of the conductive patterns of the driving electrode part and the sensing electrode part may be 5 ⁇ m or less and the thickness may be 0.5 ⁇ m or less.
  • the line widths of the conductive patterns of the driving electrode part and the sensing electrode part are 10 ⁇ m or less, and the conductive patterns of the driving electrode part and the sensing electrode part are each of the closed figures within an area of 3.5 cm ⁇ 3.5 cm.
  • the number of vertices can be between 6,000 and 245,000.
  • the line widths of the conductive patterns of the driving electrode part and the sensing electrode part may be 7 ⁇ m or less, and the conductive pattern may have the number of vertices of the closed figures within the area of 3.5 cm ⁇ 3.5 cm.
  • the line width of the conductive patterns of the driving electrode and the sensing electrode is 5 ⁇ m or less, and the number of vertices of the closed figures is 15,000 to 62,000 within the area of 3.5 cm ⁇ 3.5 cm. Can be.
  • the opening ratio of the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part, that is, the area ratio not covered by the pattern may be 70% or more, 85% or more, or 95% or more.
  • an opening ratio of the conductive pattern of the driving electrode part, the sensing electrode part, and the wiring electrode part may be 90 to 99.9%, but is not limited thereto.
  • any region of 1 mm x 1 mm of the conductive patterns of the driving electrode portion, the sensing electrode portion, and the wiring electrode portion at least one region having different aperture ratios of the conductive patterns of the driving electrode portion, the sensing electrode portion, and the wiring electrode portion is different from each other. Including, the difference in the aperture ratio may be 0.1 to 5%, but is not limited thereto.
  • the line width of the conductive pattern of the wiring electrode part may be 150 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, 30 ⁇ m or less, 10 ⁇ m or less, or 0.1 ⁇ m or more, but is not limited thereto. It doesn't happen.
  • At least a part of the conductive pattern of the wiring electrode part may have a line width different from the conductive patterns of the driving electrode part and the sensing electrode part.
  • the difference in the line width may be 5 ⁇ 100 ⁇ m, may be 5 ⁇ 30 ⁇ m, may be 5 ⁇ 15 ⁇ m, but is not limited thereto.
  • a thin line width is formed on the transparent substrate by using a printing method, thereby forming a precise conductive pattern of the driving electrode part, the sensing electrode part, and the wiring electrode part.
  • the printing method may be performed by transferring a paste or ink including a conductive pattern material onto a transparent substrate in the form of a desired pattern and firing the same.
  • the printing method is not particularly limited, and printing methods such as offset printing, screen printing, gravure printing, flexographic printing, inkjet printing, and nano imprint may be used, and one or more of these complex methods may be used.
  • the printing method may use a roll to roll method, a roll to plate, a plate to roll or a plate to plate method.
  • a reverse offset printing method it is preferable to apply a reverse offset printing method to realize a precise conductive pattern.
  • an ink that can act as a resist during etching on a silicone rubber called a blanket is coated over the entire surface, and then, through the intaglio inscribed with a pattern called a first cliché, the unnecessary portion is removed and secondly.
  • the printing pattern remaining on the blanket may be transferred onto a substrate such as a film or glass on which metal or the like is deposited, and thereafter, a method of forming the desired pattern may be performed through a baking and etching process.
  • Using this method has the advantage of maintaining uniformity in the thickness direction as the uniformity of the consensus in the entire area is secured by using the metal deposited substrate.
  • the present application may include a direct printing method of forming a desired pattern by directly printing a conductive ink such as Ag ink and then firing by using the reverse offset printing method described above.
  • a conductive ink such as Ag ink
  • the line height of the pattern is flattened by the pressing pressure, and the conductivity can be given by a thermo firing process or microwave firing process or laser partial firing process for the purpose of connection due to mutual surface fusion of Ag nanoparticles. have.
  • the conductive pattern of the wiring electrode part is formed by a printing process
  • the present invention is not limited thereto. That is, according to the exemplary embodiment of the present application, in order to ensure the dimensional stability of the FPCB bonding area, the FPCB bonding pads PAD may be disposed in the same direction in a direction in which the shrinkage expansion ratio of the film is easy, There is a feature to set the print direction. Details of the printing direction of the wiring electrode unit are schematically illustrated in FIG. 28.
  • the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part may each independently include a darkening pattern provided in an area corresponding to the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part. It may include.
  • the reflective diffraction intensity of the reflective diffraction image obtained by irradiating light from a point light source on one surface where the darkening pattern of the touch sensing region is visible, the conductive pattern is made of Al, and the darkening pattern Except that it does not include may be reduced by more than 60% compared to the touch sensor having the same configuration.
  • the reflective diffraction intensity may be reduced by 60% or more and 70% or more, compared to the touch sensor having the same configuration except that the conductive pattern is made of Al and does not include a darkening pattern.
  • the total reflectance measured by using a total reflectance measuring device assuming ambient light on one surface where the darkening pattern of the touch sensing area is visible the conductive pattern is Al Except that it is made and does not include a darkening pattern may be reduced by more than 20% compared to the touch sensor having the same configuration.
  • the total reflectance may be reduced by 20% or more, and may be reduced by 25% or more compared to the touch sensor having the same configuration except that the conductive pattern is made of Al and does not include a darkening pattern. More than 30%. For example, it may be a 25 to 50% reduction.
  • the darkening pattern of the touch sensing area may be provided on the upper and / or lower surfaces of the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part, and the driving electrode part, the sensing electrode part, and the wiring electrode part. It may be provided on at least a portion of the side surface as well as the top and bottom of the conductive pattern, and may be provided on the top, bottom and side surfaces of the conductive pattern of the driving electrode part, the sensing electrode part, and the wiring electrode part.
  • the darkening pattern of the touch sensing area is provided on the entire surface of the conductive pattern of the driving electrode part, the sensing electrode part, and the wiring electrode part, so that the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part are formed. Visibility due to high reflectivity can be reduced.
  • the darkening pattern since the darkening pattern has an extinction interference and its own absorbance under a certain thickness condition when combined with a layer having high reflectivity such as a conductive layer, the driving electrode passes through the light and the darkening pattern reflected by the darkening pattern.
  • the drive electrode part, the sensing electrode part, and the wiring part are induced by mutually extinguishing interference between two lights under a certain thickness condition.
  • the effect of lowering the reflectivity by the conductive pattern of the electrode portion is exhibited.
  • the color range of the pattern region consisting of the darkening pattern and the conductive pattern, measured in view of the darkening pattern of the touch sensing area according to the present application L value is 20 or less, A value based on the CIE LAB color coordinates Is -10 to 10, B value can be -70 to 70, L value is 10 or less, A value is -5 to 5, B value can be 0 to 35, L value is 5 or less, A value is The value of -2 to 2 and B may be 0 to 15.
  • the total reflectance of the pattern area including the darkening pattern and the conductive pattern of the driving electrode part, the sensing electrode part, or the wiring electrode part measured from the view of the darkening pattern of the touch sensing area according to the present application is based on the external light of 550 nm. When used, it may be 17% or less, 10% or less, and 5% or less.
  • the total reflectance means a reflectance in consideration of both a diffuse reflectance and a specular reflectance.
  • the total reflectance is a value observed by measuring only the reflectivity of the surface to be measured after making the reflectance zero using a black paste or a tape on the opposite side of the surface to which the reflectance is to be measured.
  • the incoming light source introduced a diffuse light source most similar to the ambient light condition.
  • the measurement position which measures a reflectance at this time was based on the position inclined about 7 degree
  • the darkening pattern may be patterned simultaneously or separately with the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part, but a layer for forming each pattern is formed separately. However, it is most preferable to simultaneously form the conductive pattern and the darkened pattern so that the conductive pattern and the darkened pattern exist on the surface corresponding to each other.
  • a fine conductive pattern required for the touch sensor may be realized while optimizing and maximizing the effect of the darkening pattern itself.
  • the touch sensor when failing to implement a fine conductive pattern, it is not possible to achieve the properties required for the touch sensor, such as resistance.
  • the darkening pattern and the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part have a separate pattern layer in a stacked structure, at least a part of the light absorbing material is recessed or dispersed in the conductive pattern.
  • the structure of a single layer or a conductive layer of a single layer is different from the structure in which a part of the surface is physically or chemically modified by surface treatment.
  • the darkening pattern is provided directly on the substrate or directly on the conductive patterns of the driving electrode part, the sensing electrode part, and the wiring electrode part without interposing the adhesive layer or the adhesive layer.
  • the adhesive layer or adhesive layer may affect durability or optical properties.
  • the laminate included in the touch sensor according to the present application is completely different in the manufacturing method compared with the case of using the adhesive layer or the adhesive layer.
  • the interface characteristic of the conductive pattern and the darkening pattern of a base material or a drive electrode part, a sensing electrode part, and a wiring electrode part is excellent.
  • the etching characteristics with the conductive pattern during the manufacturing process it is preferable to select between 10nm to 400nm, the preferred thickness may vary depending on the material and the manufacturing process used, the scope of the present application It is not limited by the numerical range.
  • the darkening pattern may be formed of a single layer or may be formed of two or more layers.
  • the darkening pattern is preferably close to an achromatic color. However, it does not necessarily need to be achromatic, and even if it has color, it can be introduced if it has low reflectivity.
  • the achromatic color means a color that appears when light incident on the surface of the object is not selectively absorbed and is evenly reflected and absorbed for the wavelength of each component.
  • the darkening pattern may use a material having a standard deviation of 50% of the total reflectance for each wavelength band when measuring the total reflectance in the visible region (400 nm to 800 nm).
  • a material made of a metal, a metal oxide, a metal nitride, or a metal oxynitride having the above-described physical properties when the front layer is formed may be used without particular limitation.
  • the darkening pattern may be an oxide film, a nitride film, an oxide-nitride film, a carbide film, a metal film, or a combination thereof according to deposition conditions set by those skilled in the art using Ni, Mo, Ti, Cr, and the like.
  • the darkening pattern may include Ni and Mo simultaneously.
  • the darkening pattern may include 50 to 98 atomic% of Ni and 2 to 50 atomic% of Mo, and may further include 0.01 to 10 atomic% of other metals such as Fe, Ta, Ti, and the like.
  • the darkening pattern may further include 0.01 to 30 atomic% nitrogen or 4 atomic% or less oxygen and carbon, if necessary.
  • the darkening pattern is a dielectric material selected from SiO, SiO 2 , MgF 2 and SiNx (x is an integer of 1 or more) and Fe, Co, Ti, V, Al, Cu, Au and Ag.
  • the metal may be selected, and may further include an alloy of two or more metals selected from Fe, Co, Ti, V, Al, Cu, Au, and Ag.
  • the dielectric material is distributed such that it gradually decreases away from the direction in which external light is incident, and the metal and alloy components are distributed in the opposite direction. At this time, the content of the dielectric material is 20 to 50% by weight, the content of the metal is preferably 50 to 80% by weight.
  • the darkening pattern further includes an alloy
  • the darkening pattern may include 10 to 30 wt% of dielectric material, 50 to 80 wt% of metal, and 5 to 40 wt% of alloy.
  • the darkening pattern may be formed of a thin film including at least one of an alloy of nickel and vanadium, an oxide of nickel and vanadium, nitride, and oxynitride.
  • vanadium is preferably contained at 26 to 52 atomic%, and the atomic ratio of vanadium to nickel is preferably 26/74 to 52/48.
  • the darkening pattern may include a transition layer having two or more elements, and one elemental composition ratio increases by up to about 20% per 100 angstroms according to the direction in which external light is incident.
  • one element may be a metal element such as chromium, tungsten, tantalum, titanium, iron, nickel or molybdenum, and elements other than the metal element may be oxygen, nitrogen, or carbon.
  • the darkening pattern may include a first chromium oxide layer, a metal layer, a second chromium oxide layer, and a chromium mirror, wherein tungsten, vanadium, iron, chromium, molybdenum and It may include a metal selected from niobium.
  • the metal layer may have a thickness of 10 to 30 nm
  • the first chromium oxide layer may have a thickness of 35 to 41 nm
  • the second chromium oxide layer may have a thickness of 37 to 42 nm.
  • a layered structure of an alumina (Al 2 O 3 ) layer, a chromium oxide (Cr 2 O 3 ) layer, and a chromium (Cr) layer may be used as the darkening pattern.
  • the alumina layer has an improvement in reflection characteristics and light diffusion prevention characteristics
  • the chromium oxide layer may improve contrast characteristics by reducing mirror reflectance.
  • the darkening pattern is provided in an area corresponding to the conductive pattern of the driving electrode part, the sensing electrode part, and the wiring electrode part.
  • the region corresponding to the conductive pattern means that the pattern has the same shape as the conductive pattern.
  • the pattern scale of the darkening pattern is not necessarily the same as the conductive pattern, and the case where the line width of the darkening pattern is narrower or wider than the line width of the conductive pattern is also included in the scope of the present application.
  • the darkening pattern preferably has an area of 80% to 120% of the area provided with the conductive pattern.
  • the darkening pattern may have a pattern shape having a line width equal to or larger than the line width of the conductive pattern.
  • the darkening pattern has a pattern shape having a line width larger than the line width of the conductive pattern
  • the glossiness of the conductive pattern itself may be greater because the darkening pattern may give a greater effect of masking the conductive pattern when viewed by a user.
  • the line width of the darkening pattern is the same as the line width of the conductive pattern can achieve the desired effect in the present application. It is preferable that the line width of the darkening pattern has a width larger than the line width of the conductive pattern by a value according to Equation 2 below.
  • Tcon is the thickness of the conductive pattern
  • ⁇ 3 is the angle that the light makes with the normal to the surface of the substrate when the light incident from the user's sight of the touch sensor passes through the edges of the conductive pattern and the darkening pattern.
  • ⁇ 3 is Snell's law based on the user's vision of the touch sensor and the angle between the substrate ( ⁇ 1 ) by the refractive index of the substrate and the medium of the region where the darkening pattern and the conductive pattern are disposed, for example, the refractive index of the adhesive of the touch sensor. Along the angle.
  • the darkening pattern is based on the side width of the conductive pattern. It is preferable that the thickness is as large as about 2.24 ⁇ m (200 nm ⁇ tan (80) ⁇ 2). However, as described above, even when the darkening pattern has the same line width as the conductive pattern, the effect desired in the present application can be achieved.
  • the manufacturing process of the touch sensor by improving the manufacturing process of the touch sensor, it is possible to reduce the manufacturing cost of the touch sensor, it is possible to improve the weight, thinning and the like of the touch sensor.
  • the thickness of the touch sensor can be minimized and the manufacturing method is easy because all the conductive patterns are formed on the cross-section.
  • it is a single sheet type, there is an advantage that the lamination is not required as compared with the prior art formed by using two or more substrates.
  • the driving electrode portion and the sensing electrode portion are on the same surface, installation and attachment of the FPCB (Flexible Printed Circuit Board) is easy.
  • it is a single sheet
  • when laminating the functional surface film on the surface of the touch sensor there is an advantage that bubbles are not occupied because the step is not large.
  • the manufacturing process of the touch sensor by improving the manufacturing process of the touch sensor, it is possible to reduce the manufacturing cost of the touch sensor, it is possible to improve the weight, thinning and the like of the touch sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

본 출원은 터치 센서 및 이의 제조방법에 관한 것으로서, 본 출원에 따른 터치 센서는 기재; 및 상기 기재 상의 동일 면 상에 구비된 구동 전극부, 감지 전극부 및 배선 전극부를 포함하고, 상기 구동 전극부, 감지 전극부 및 배선 전극부는 각각 차폐부와 개구부를 포함하는 전도성 패턴을 포함한다.

Description

터치 센서 및 이의 제조방법
본 출원은 2013년 12월 13일에 한국특허청에 제출된 한국 특허 출원 제10-2013-0155800호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 터치 센서 및 이의 제조방법에 관한 것이다.
일반적으로, 디스플레이 장치란 TV나 컴퓨터용 모니터 등을 통틀어 일컫는 말로서, 화상을 형성하는 디스플레이 소자 및 디스플레이 소자를 지지하는 케이스를 포함한다.
상기 디스플레이 소자로는 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 액정 디스플레이(Liquid Crystal Display, LCD), 전기영동 디스플레이 (Electrophoretic display) 및 음극선관(Cathode-Ray Tube, CRT)를 예로 들 수 있다. 디스플레이 소자에는 화상 구현을 위한 RGB 화소 패턴 및 추가적인 광학 필터가 구비되어 있을 수 있다.
상기 광학 필터는 외부로부터 입사된 외광이 다시 외부로 반사되는 것을 방지하는 반사방지 필름, 리모콘과 같은 전자기기의 오작동 방지를 위해 디스플레이 소자에서 발생된 근적외선을 차폐하는 근적외선 차폐필름, 색 조절 염료를 포함하여 색조를 조절함으로써 색순도를 높이는 색 보정 필름, 및 디스플레이 장치 구동시 디스플레이 소자에서 발생되는 전자파의 차폐를 위한 전자파 차폐필름 중 적어도 하나를 포함할 수 있다. 여기서, 전자파 차폐필름은 투명 기재 및 기재 위에 구비된 금속 메쉬 패턴을 포함한다.
한편, 디스플레이 장치와 관련하여,IPTV의 보급이 가속화됨에 따라 리모컨 등 별도의 입력장치 없이 사람의 손이 직접 입력 장치가 되는 터치 기능에 대한 필요성이 점점 커지고 있다. 또한, 특정 포인트 인식뿐만 아니라 필기가 가능한 다중 인식(multi-touch) 기능도 요구되고 있다.
상기와 같은 기능을 하는 터치 센서는 신호의 검출 방식에 따라 다음과 같이 분류할 수 있다.
즉, 직류 전압을 인가한 상태에서 압력에 의해 눌려진 위치를 전류 또는 전압 값의 변화를 통해 감지하는 저항막 방식(resistive type)과, 교류 전압을 인가한 상태에서 캐패시턴스 커플링(capacitance coupling)을 이용하는 정전 용량 방식(capacitive type)과, 자계를 인가한 상태에서 선택된 위치를 전압의 변화로서 감지하는 전자 유도 방식(electromagnetic type) 등이 있다.
이중, 가장 보편화된 저항막 및 정전 용량 방식의 터치 센서는 ITO 필름과 같은 투명 도전막을 이용하여 전기적인 접촉이나 정전 용량의 변화에 의하여 터치 여부를 인식한다. 하지만, 상기 투명 도전막은 100 ohm/square 이상의 고저항이어서 대형화시에 감도가 떨어지고, 스크린의 크기가 커질수록 ITO 필름의 가격이 급증한다는 문제로 상용화가 쉽지 않다. 이를 극복하기 위하여 전도도가 높은 금속 패턴을 이용한 방식으로 대형화를 구현하려는 시도가 이루어지고 있다.
본 출원은 터치 센서의 제조공정을 개선하여, 터치 센서의 제조원가를 절감할 수 있고, 터치 센서의 경량화, 박형화 등을 향상시키고자 한다.
본 출원의 일 실시상태는,
기재; 및 상기 기재 상의 동일 면 상에 구비된 구동 전극부, 감지 전극부 및 배선 전극부를 포함하는 터치 센서이고,
상기 구동 전극부, 감지 전극부 및 배선 전극부는 각각 차폐부와 개구부를 포함하는 전도성 패턴을 포함하며,
상기 배선 전극부는 터치 센서의 터치 감지영역에 위치한 제1 배선 전극부 및 터치 센서의 터치 비감지영역에 위치한 제2 배선 전극부를 포함하고, 상기 제1 배선 전극부는 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 연결하는 배선들의 번들(bundle)을 1 또는 2 이상 포함하고,
상기 배선들 각각은 그물망 패턴으로 이루어지고,
상기 번들 중 최대 개수의 배선들이 포함되는 번들에서, 상기 번들의 폭(W), 상기 번들에 포함되는 배선들의 개수(n), 및 상기 배선들을 구성하는 그물망 패턴 중 적어도 하나의 변을 공유하는 이웃한 그물망 구조들의 중심점들간의 거리 중 최소값(P)이 하기 식 1을 만족하는 것을 특징으로 하는 터치 센서를 제공한다.
[식 1]
Figure PCTKR2014012362-appb-I000001
또한, 본 출원의 다른 실시상태는,
기재; 및 상기 기재 상의 동일 면 상에 구비된 구동 전극부, 감지 전극부 및 배선 전극부를 포함하는 터치 센서이고,
상기 구동 전극부, 감지 전극부 및 배선 전극부는 차폐부와 개구부를 포함하는 전도성 패턴을 포함하며,
상기 배선 전극부는 터치 센서의 터치 감지영역에 위치한 제1 배선 전극부 및 터치 센서의 터치 비감지영역에 위치한 제2 배선 전극부를 포함하고, 상기 제1 배선 전극부는 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 연결하는 배선들의 번들(bundle)을 1 또는 2 이상 포함하고,
상기 번들은 2개의 단선점을 갖는 폐쇄도형이, 상기 제2 배선 전극의 단부에 인접한 상기 기재의 일 변으로부터 이에 대향하는 기재의 타 변까지의 방향으로 연속 배치되는 패턴의 형태로 이루어지고,
상기 연속 배치된 폐쇄도형들의 인접하는 단선점들을 최단거리로 연결한 가상의 직선은 1 이상의 변곡점을 갖고, 상기 변곡점에서 상기 가상의 직선이 이루는 각은 90도 이상이고,
상기 가상의 직선에 접하는 패턴은 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 전기적으로 연결하는 것을 특징으로 하는 터치 센서를 제공한다.
또한, 본 출원의 다른 실시상태는, 상기 터치 센서를 포함하는 디스플레이 장치를 제공한다.
본 출원의 일 실시상태에 따르면, 단면 1매형의 터치 센서를 제공할 수 있으므로, 터치 센서의 두께를 최소화할 수 있으며, 단면에 전도성 패턴을 모두 형성하기 때문에 제조방법이 용이하다. 또한, 1매형이기 때문에, 2장 이상의 기재를 이용하여 형성하는 종래기술과 비교할 때 라미네이션을 하지 않아도 되는 장점이 있다. 또한, 감지전극부와 구동전극부가 같은 면상에 있기 때문에 FPCB(연성인쇄회로기판)의 설치 및 부착이 용이하다. 또한, 1매형이기 때문에 2매형에 비하여 광투과율이 우수하다. 또한, 터치 센서의 표면에 기능성 표면 필름을 라미네이션하는 경우, 단차가 크지 않기 때문에 기포가 차지 않는 장점이 있다.
본 출원의 일구체예에 따르면, 터치 센서의 제조공정을 개선하여, 터치 센서의 제조원가를 절감할 수 있고, 터치 센서의 경량화, 박형화 등을 향상시킬 수 있다.
도 1 내지 도 3은 종래의 터치 센서를 개략적으로 나타낸 도이다.
도 4는 종래의 터치 센서의 배선 전극부를 개략적으로 나타낸 도이다.
도 5 및 도 6은 본 출원의 일 실시상태에 따른 터치 센서를 개략적으로 나타낸 도이다.
도 7 내지 도 9은 본 출원의 일 실시상태에 따른 터치 센서의 모아레 평가결과를 개략적으로 나타낸 도이다.
도 10 내지 도 14는 본 출원의 일 실시상태에 따른 터치 센서의 개구율 평가결과를 개략적으로 나타낸 도이다.
도 15 및 도 16은 본 출원의 일 실시상태에 따른 터치 센서의 배선 전극부의 전도성 금속선 패턴을 개략적으로 나타낸 도이다.
도 17 내지 도 24는 본 출원의 일 실시상태에 따른 터치 센서의 배선 전극부의 전도성 금속선 패턴의 형태에 따른 모아레 평가결과를 개략적으로 나타낸 도이다.
도 25는 본 출원의 일 실시상태에 따른 터치 센서 및 이를 포함하는 디스플레이 장치를 개략적으로 나타낸 도이다.
도 26은 본 출원의 일 실시상태에 따른 전도성 금속선 패턴의 단선점을 개략적으로 나타낸 도이다.
도 27은 본 출원의 일 실시상태에 따른 터치 센서를 개략적으로 나타낸 도이다.
도 28은 본 출원의 일 실시상태에 다른 터치 센서의 배선 전극의 인쇄방향을 개략적으로 나타낸 도이다.
이하 본 출원에 대하여 상세히 설명한다.
기존의 터치 센서의 경우 전압 구동(Voltage Driving) 역할을 하는 구동전극 패턴(Tx 패턴)과 이에 대한 뮤추얼 캐패시턴스(Mutual Capacitance)의 신호를 받아들여 회로에 전달하는 감지전극 패턴(Rx 패턴)이 각각 별개의 기재 상에 형성되거나, 구동전극 패턴과 감지전극 패턴이 기재의 양면에 각각 형성된 제품, 즉 구동전극 패턴과 감지전극 패턴이 공간적으로 분리된 형태의 제품이 주를 이루고 있다. 이는 터치 감도 및 정전용량의 값을 극대화 하기 위하여 층(Layer) 구조 및 중간에 삽입되는 유전체의 유전율 등을 고려하여, 이를 설계 및 제조하는 부분이 핵심적인 기술로 받아들여져 왔다. 그러나, 이러한 방식은 유전체에 해당되는 OCA(optically clear adhesive) 및 투명전극으로 사용되는 ITO(indium tin oxide) 필름을 2장을 사용한다는 측면에서 센서의 원가적인 측면의 비용 이슈가 지속적으로 발생되어 왔으며, 이러한 비용 이슈의 해결을 위하여 구동전극 패턴(Tx 패턴) 및 감지전극 패턴(Rx 패턴)이 한 면에 존재하는 단면 1층의 터치 센서의 설계 및 제조 기술이 새로이 대두되었다.
단면 1층의 터치 센서는 크게 셀프 캐패시턴스(Self Capacitance)를 이용하는 방법, 뮤추얼 캐패시턴스(Mutual capacitance)를 이용하는 방법, 및 금속 브릿지(Metal Bridge) 등을 이용한 이른바 Fxy 방식으로 크게 구분이 가능하다. 그러나, 셀프 캐패시턴스를 이용하는 방식과 금속 브릿지(Metal Bridge)를 이용하는 방식은, 각각 성능적인 이슈(셀프 캡의 경우 고스트(Ghost) 현상 및 멀티 터치(Muti touch)의 제한) 및 제조 공정간 수율의 이슈 등으로 인하여 큰 매력을 주지 못한 것이 사실이다.
이러한 두 방식 이외에 뮤추얼 캐패시턴스를 이용하는 방법에 대한 부분이 최근에 크게 각광을 받고 있는데, 이는 뮤추얼 캐패시턴스를 이용하는 방법에 있어서 캐패시턴스(Capacitance)가 형성되는 영역이 같은 공간상에서 평면으로 형성되는 것을 주로 하고 있음으로 인하여, 감도 등의 이슈 및 배선 영역이 화면부에 구성된다는 측면에서의 패턴 제조의 이슈가 존재하기는 하나, 타 방식대비 성능적 관점에서 가장 우수한 특성을 지니고 있기 때문이다. 이에 따라, ITO의 경우에 있어서 이를 구현하기 위한 개발 활동이 활발하게 진행되고 있다. 그러나, 이러한 방식 역시 ITO라고 하는 상대적으로 높은 저항의 물질을 사용함으로 인한 저항의 이슈가 존재하며, 이로 인하여 적용 가능인치의 한계가 5인치 이하로 국한되고 있는 것이 사실이다.
본 출원에서는 이러한 문제점들을 해결하기 위하여, 구동전극 패턴 및 감지전극 패턴으로서 전도성 금속선을 이용한 단면 1층의 터치 센서를 제안하고자 한다.
종래의 ITO 전극을 이용한 단면 1층의 터치 센서를 하기 도 1 및 2에 개략적으로 나타내었다. 또한, 상기 종래의 ITO 전극을 이용한 단면 1층의 터치 센서의 구동전극 패턴 및 감지전극 패턴을 하기 도 3에 보다 구체적으로 나타내었다.
하기 도 3에서, 감지전극 패턴(Rx 패턴)과 X 형태의 패턴인 구동전극 패턴(Tx 패턴)이 표시되어 있다. 즉, 감지전극 패턴(Rx 패턴)이 구동전극 패턴(Tx 패턴) 대비 더욱 넓은 면적을 지니게 설계되어 있으며, 공통 전극을 통한 신호의 인가가 이루어져 있다. 반면에, 구동전극 패턴(Tx 패턴)은 X 형태의 패턴으로 구현되어 있으며, 각각의 구동전극 패턴(Tx 패턴)에의 신호의 인가를 위하여 데드존(Dead Zone) 영역을 통하여 배선부가 형성된다.
이러한 배선부 영역에 따른 데드존(Dead Zone)은 터치 해상도의 관점에서 최소화되는 것이 가장 바람직하며, 이를 위해서 데드존의 전도성 금속선 및/또는 스페이스(Space)의 폭의 적절한 조절이 필요하다. 이 때, 스페이스의 폭이 일정 수치 이상인 경우에, 상호 신호의 간섭에 있어서 유리한 형태의 패턴이라 할 수 있다. 또한, 전도성을 확보하기 위해서는 전도성 금속선의 폭이 넓어야 하며, 스페이스의 폭은 작을수록 유리하다. 따라서, 데드존의 전도성 금속선 및/또는 스페이스의 폭을 적절하게 조절하는 것이 바람직하다.
또한, 하기 도 3에서 감지전극 패턴, 구동전극 패턴 및 데드존 이외의 부분은 더미(Dummy) 전극 또는 패턴이 미형성된 영역에 대응되는 영역이며, 실질적인 전기적인 연결성 등에는 큰 영향을 미치지 않는 영역이라 할 수 있다.
본 출원에 있어서, 전술한 단면 1층의 터치 센서의 구동전극 패턴 및 감지전극 패턴을 전도성 금속선으로 구성하기 위한 구체적인 내용은 아래와 같다.
일반적인 ITO 패턴의 경우에 있어서, 배선부의 형성은 라인(Line) / 스페이스(Space)의 개념이 도입되어, 하기 도 4와 같은 형태의 패턴이 형성되는 것이 일반적이다. 이에 따라, 본 출원에서는 전도성 금속선의 연결성을 확보하고 수율을 향상시키기 위하여 스페이스(space)를 최소화하는 디자인을 도입하였다.
본 출원의 일 실시상태에 따른 터치 센서는,
기재; 및 상기 기재 상의 동일 면 상에 구비된 구동 전극부, 감지 전극부 및 배선 전극부를 포함하는 터치 센서이고,
상기 구동 전극부, 감지 전극부 및 배선 전극부는 각각 차폐부와 개구부를 포함하는 전도성 패턴을 포함하며,
상기 배선 전극부는 터치 센서의 터치 감지영역에 위치한 제1 배선 전극부 및 터치 센서의 터치 비감지영역에 위치한 제2 배선 전극부를 포함하고, 상기 제1 배선 전극부는 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 연결하는 배선들의 번들(bundle)을 1 또는 2 이상 포함하고,
상기 배선들 각각은 그물망 패턴으로 이루어지고,
상기 번들 중 최대 개수의 배선들이 포함되는 번들에서, 상기 번들의 폭(W), 상기 번들에 포함되는 배선들의 개수(n), 및 상기 배선들을 구성하는 그물망 패턴 중 적어도 하나의 변을 공유하는 이웃한 그물망 구조들의 중심점들간의 거리 중 최소값(P)이 하기 식 1을 만족하는 것을 특징으로 한다.
[식 1]
Figure PCTKR2014012362-appb-I000002
본 출원에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부는 각각 차폐부와 개구부를 포함하는 전도성 패턴을 포함한다. 상기 차폐부는 기재 상에 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴을 구성하는 재료, 예컨대 전도성 금속선이 구비되는 영역을 의미하고, 상기 개구부는 기재 상에 상기 전도성 금속선이 구비되지 않는 영역을 의미한다. 즉, 상기 차폐부는 광학적으로 투명하지 않은 영역을 의미할 수 있고, 예컨대 상기 차폐부의 투과율은 20% 이하일 수 있고, 10% 이하일 수 있다.
본 출원에 있어서, 상기 그물망 패턴으로는 메쉬 패턴 등 당 기술분야의 패턴 형태가 사용될 수 있다. 상기 메쉬 패턴은 삼각형, 사각형, 오각형, 육각형 및 팔각형 중 하나 이상의 형태를 포함하는 다각형 패턴을 포함할 수 있다.
본 출원에 있어서, 상기 배선들을 구성하는 그물망 패턴 중 적어도 하나의 변을 공유하는 이웃한 그물망 구조들의 중심점들간의 거리는, 상기 그물망 패턴이 규칙적인 메쉬 패턴인 경우에 메쉬 패턴의 피치에 대응될 수 있고, 상기 그물망 패턴이 다양한 형태를 포함하는 다각형 패턴인 경우에는 적어도 하나의 변을 공유하는 이웃한 다각형 패턴의 중심점들 간의 거리 또는 무게중심점들 간의 거리에 대응될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 식 1은 하기 식 2로 표시될 수 있다.
[식 2]
Figure PCTKR2014012362-appb-I000003
상기 식 2에서, W, n 및 P는 상기 식 1에서 정의한 바와 동일하고,
θ1은 상기 번들의 폭 방향으로 최단거리를 잇는 직선과, 적어도 하나의 변을 공유하는 이웃한 그물망 구조들의 중심점들을 최단거리로 잇는 직선이 이루는 각 중 작은 값을 나타낸다.
본 출원의 일 실시상태에 있어서, 상기 터치 센서의 터치 감지영역은 구동 전극부, 감지 전극부 및 제1 배선 전극부를 포함할 수 있다. 또한, 상기 터치 센서의 터치 비감지영역은 제2 배선 전극부를 포함할 수 있다. 본 출원에 있어서, 상기 터치 감지영역은 터치 감응영역, 터치 가능영역, 터치 활성화영역 등의 용어로 표현될 수도 있다.
본 출원의 일 실시상태에 따른 터치 센서의 구동 전극부 및 감지 전극부의형태는 하기 도 5와 같다. 또한, 본 출원의 일 실시상태에 따른 터치 센서의 배선 전극부의 형태는 하기 도 6과 같다.
본 출원의 다른 실시상태에 따른 터치 센서는,
기재; 및 상기 기재 상의 동일 면 상에 구비된 구동 전극부, 감지 전극부 및 배선 전극부를 포함하는 터치 센서이고,
상기 구동 전극부, 감지 전극부 및 배선 전극부는 차폐부와 개구부를 포함하는 전도성 패턴을 포함하며,
상기 배선 전극부는 터치 센서의 터치 감지영역에 위치한 제1 배선 전극부 및 터치 센서의 터치 비감지영역에 위치한 제2 배선 전극부를 포함하고, 상기 제1 배선 전극부는 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 연결하는 배선들의 번들(bundle)을 1 또는 2 이상 포함하고,
상기 번들은 2개의 단선점을 갖는 폐쇄도형이, 상기 제2 배선 전극의 단부에 인접한 상기 기재의 일 변으로부터 이에 대향하는 기재의 타 변까지의 방향으로 연속 배치되는 패턴의 형태로 이루어지고,
상기 연속 배치된 폐쇄도형들의 인접하는 단선점들을 최단거리로 연결한 가상의 직선은 1 이상의 변곡점을 갖고, 상기 변곡점에서 상기 가상의 직선이 이루는 각은 90도 이상이고,
상기 가상의 직선에 접하는 패턴은 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 전기적으로 연결하는 것을 특징으로 한다.
본 출원에 있어서, 상기 단선점은 폐쇄도형의 테두리 패턴 중 그 일부가 단선되어 전기적 연결을 서로 단절시키는 영역을 의미하는 것으로서, 단선점, 단선부 등의 용어로 표현될 수도 있다. 즉, 상기 배선 전극부가 전도성 금속선으로 이루어진 패턴을 포함하는 경우에, 상기 패턴은 단선점에 의하여 전도성 금속선의 길이방향으로 이격된 2 이상의 금속선을 포함할 수 있다.
이 때, 상기 배선 전극부의 전도성 패턴의 선폭을 다양한 선폭으로 스플릿(Split)하여 제작 후, 이에 대한 모아레(Moire)를 평가한 결과, 상기 단선점의 평균지름 또는 단선부의 폭이 13㎛ 이내의 경우에 있어서 디스플레이에 풀 본딩(Full bonding)시 배선 전극부에 의한 모아레(Moire)가 발생하지 않음을 확인하였으며, 상기 단선점의 평균 지름 또는 단선부의 폭이 7㎛ 이하인 경우에 가장 유리함을 확인하였다. 본 출원의 일 실시상태로서, 상기 단선점의 평균 지름 또는 단선부의 폭이 15㎛인 전도성 패턴을 포함하는 배선 전극부의 모아레 평가결과를 하기 도 7에 나타내었고, 상기 단선점의 평균 지름 또는 단선부의 폭이 10㎛인 전도성 패턴을 포함하는 배선 전극부의 모아레 평가결과를 하기 도 8에 나타내었으며, 상기 단선점의 평균 지름 또는 단선부의 폭이 7㎛인 전도성 패턴을 포함하는 배선 전극부의 모아레 평가결과를 하기 도 9에 나타내었다.
본 출원에 있어서, 상기 단선점의 평균지름 또는 단선부의 폭은 이격된 2 이상의 전도성 금속선의 최인접 말단간의 거리를 의미할 수 있다. 상기 이격된 2 이상의 전도성 금속선의 최인접 말단간의 거리는 서로 이격된 2 이상의 전도성 금속선 중 가장 인접한 말단간의 거리를 의미하는 것으로서, 이의 구체적인 예시를 하기 도 26에 나타내었다.
본 출원의 일 실시상태에 있어서, 상기 식 1은 하기 식 3으로 표시될 수 있다.
[식 3]
Figure PCTKR2014012362-appb-I000004
상기 식 3에서, W, n 및 P는 상기 식 1에서 정의한 바와 동일하고,
θ2는 상기 단선점들을 최단거리로 연결한 가상의 직선에 대하여 수직방향의 직선과, 적어도 하나의 변을 공유하는 이웃한 그물망 구조들의 중심점들을 최단거리로 잇는 직선이 이루는 각 중 작은 값을 나타낸다.
본 출원의 일 실시상태에 있어서, 상기 가상의 직선 중 변곡점 사이의 길이가 가장 긴 부분이, 상기 폐쇄도형을 구성하는 적어도 하나의 변과 서로 평행하거나, 0도 초과 90도 미만의 각을 이루는 것일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구동 전극부 및 감지 전극부의 전도성 패턴 중 적어도 일부는 전술한 바와 같은 단선점 또는 단선부를 추가로 포함할 수 있다. 이 때, 상기 단선점의 평균지름 또는 단선부의 폭은 13㎛ 이하일 수 있고, 10㎛ 이하일 수 있으며, 7㎛ 이하일 수 있으나, 이에만 한정되는 것은 아니다.
또한, 본 출원에서는 단선 방법을 변경함과 동시에 각 부분의 투과율을 최대한 일치시킴으로써 디스플레이 부착시 균일도를 향상시키기 위하여 다양한 단선방법을 통한 평가를 진행하였다.
본 출원의 일 실시상태에 따른 터치 센서의 개구율 평가결과를 하기 도 10 내지 14에 개략적으로 나타내었다. 본 출원에 있어서, 상기 개구율은 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전체 평면적을 기준으로, 상기 개구부의 전체 평면적이 차지하지 비율을 의미할 수 있다.
보다 구체적으로, 하기 도 10의 터치 센서는 전도성 금속선 패턴의 단선을 정해진 크기의 도트(dot)로 처리 후 더미(dummy) 패턴 부분을 불규칙 패턴으로 처리한 것이다. 또한, 하기 도 11의 터치 센서는 감지 전극부의 전도성 패턴 영역과 더미 패턴 영역을 각기 다른 도트로 단선 처리하여 배선 전극부와 개구율 차이를 최소화하였다. 또한, 하기 도 12의 터치 센서는 감지 전극부의 전도성 패턴 영역과 더미 패턴 영역을 동일한 크기의 도트로 단선 처리하되, 도트 간 간격을 감지 전극부의 전도성 패턴 영역과 더미 패턴 영역을 달리하였다. 또한, 하기 도 13의 터치 센서는 감지 전극부의 전도성 패턴 영역과 더미 패턴 영역을 동일한 크기의 도트로 단선 처리하되, 도트 간 간격을 감지 전극부의 전도성 패턴 영역과 더미 패턴 영역을 최대한 유사하게 도입하였다. 또한, 하기 도 14의 터치 센서는 단선 후 단선된 분절을 제거하는 것이 아닌 바로 근접하여 위치시킴으로써, 배선부의 투과율을 유지하였다.
하기 도 10 내지 14의 평가결과, 본 출원의 일 실시상태에 따른 전도성 금속선 패턴이 눈에 띄지 않음을 관찰할 수 있었다. 특히, 도 11, 도 13 및 도 14의 경우에서는 투과율의 일치로 인하여, 보다 우수한 효과를 나타낼 수 있었다.
따라서, 본 출원에 있어서, 상기 번들의 폭을 W라 하고, (W × W)의 면적을 기준으로, (W × W)의 면적에 대응되는 상기 터치 센서의 임의의 영역들 간의 개구율 편차는 10% 이내일 수 있고, 5% 이내일 수 있으며, 3% 이내일 수 있으나, 이에만 한정되는 것은 아니다. 상기 터치 센서의 임의의 영역들은, 상기 구동 전극부 내부의 영역, 감지 전극부 내부의 영역, 배선 전극부 내부의 영역, 구동 전극부와 감지 전극부가 조합된 영역, 구동 전극부와 배선 전극부가 조합된 영역, 감지 전극부와 배선 전극부가 조합된 영역 등을 들 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구동 전극부 및 감지 전극부는 전도성 금속선으로 이루어지고, 상기 단선점 또는 단선부는 상기 구동 전극부 또는 감지 전극부 내 전도성 금속선이 서로 교차하는 교차점 영역에 구비될 수 있으나, 이에만 한정되는 것은 아니다. 상기 단선점이 상기 구동 전극부 또는 감지 전극부 내 전도성 금속선이 서로 교차하는 교차점 영역에 구비되는 경우에는, 모아레 특성, 시인성 관점 등에서 상기 단선점의 지름은 40㎛ 이하일 수 있고, 20㎛ 이하일 수 있으나, 이에만 한정되는 것은 아니다. 상기 교차점 영역에 단선점이 구비되는 경우의 광특성을 하기 도 27에 나타내었다.
또한, 상기 단선점 또는 단선부의 중심을 기준으로 일정 거리 내에는 전기적으로 고립된 전도성 금속선이 추가로 구비될 수 있다. 상기 전기적으로 고립된 전도성 금속선의 길이는 특별히 한정되는 것은 아니고, 상기 단선점의 평균지름 또는 단선부의 폭과 10% 편차 이내일 수 있다. 또한, 상기 전기적으로 고립된 전도성 금속선은 상기 단선점 또는 단선부와 서로 평행하게 구비될 수도 있고, 수직하게 또는 불규칙하게 구비될 수도 있다. 또한, 상기 전기적으로 고립된 전도성 금속선은, 상기 단선점의 평균지름 또는 단선부의 폭과 전도성 금속선의 선폭의 곱에 대하여 80% 내지 120%의 면적을 가질수 있다. 또한, 상기 전기적으로 고립된 전도성 금속선의 말단과 이에 인접한 전도성 금속선의 말단 간의 거리는 13㎛ 이하일 수 있다. 상기 전기적으로 고립된 전도성 금속선의 크기, 형태, 길이 등은, 상기 터치 센서의 임의의 영역들 간의 개구율 편차가 10% 이내가 되도록, 적절하게 조절할 수 있다.
이러한 전도성 패턴의 은폐와 더불어 중요한 부분은 앞서 언급한 바와 같이 배선 전극부 내 데드존(Dead Zone)의 최소화를 들 수 있다.
본 출원에서는 데드존(Dead Zone)의 최소화를 위한 디자인을 확인하기 위하여 배선 전극부의 번들의 폭을 고정하고, 배선 전극부의 전도성 금속선 패턴의 피치 및 각도를 변화시켜 이를 관찰하였다. 그 결과를 하기 도 15 및 도 16에 나타내었다.
그 결과, 상기 배선 전극부를 구성하는 전도성 패턴이 메쉬 패턴이고, 상기 메쉬 패턴이 정사각형 형태인 경우에는, 번들의 폭을 W라 가정하고, 메쉬 패턴의 피치를 P라 하고, 번들에 포함되는 배선들의 개수를 n이라 할 때, 상기 수학식 1의 관계를 만족하는 경우에 메쉬 패턴의 각도의 변화에 무관하게 번들의 폭이 형성됨을 확인할 수 있었다.
이 때, 배선 전극부의 형성을 위한 단선의 방향성이 굳이 직선이 아닌 경우에 있어서도 배선 전극부의 형성에 큰 무리가 없음을 확인할 수 있었고, 가장 좋은 경우는 45도의 모아레(Moire) 회피각을 갖는 경우가 모든 경우에 있어서 유리함을 확인할 수 있었다.
특히, 상기 배선 전극부의 형성을 위한 단선의 방향성이 직선인 경우를 하기 도 15에 나타내었고, 상기 배선 전극부의 형성을 위한 단선의 방향성이 직선이 아닌 경우를 하기 도 16에 나타내었다. 여기서 단선의 방향성이란, 인접하는 단선점 또는 단선부들을 최단거리로 연결하였을 때 표시되는 선의 방향을 의미한다. 하기 도 16의 결과와 같이, 상기 배선 전극부의 형성을 위한 단선의 방향성이 직선이 아닌 경우, 예컨대 지그재그선, 직선과 지그재그선의 조합 등인 경우에도, 단선 위치의 적절한 설계를 통하여, 단선의 방향성이 직선인 경우와 유사하게 전류의 흐름 방향을 설정할 수 있다.
또한, 본 출원의 일 실시상태로서, 상기 배선 전극부의 전도성 금속선 패턴의 형태에 따른 모아레 평가결과를 하기 도 17 내지 도 20, 및 표 1에 나타내었다. 또한, 하기 도 17 내지 도 20에 따른 전도성 금속선 패턴의 모아레 평가결과를 각각 하기 도 21 내지 도 24에 나타내었다.
[표 1]
Figure PCTKR2014012362-appb-I000005
상기 결과에 따르면, 메쉬 패턴의 피치에 따른 16개의 배선 형성시 최적의 번들 폭의 형성을 나타내고 있음을 알 수 있다.
또한, 본 출원에 따른 터치 센서는 뮤추얼 캐패시턴스 방식을 이용하여 터치 입력을 인식할 수 있다. 특히, 본 출원에 따른 터치 센서는 구동 전극부와 감지 전극부 사이에 별도의 절연 물질을 삽입하지 않고, 단선점 또는 단선부, 더미 패턴 등을 이용하여 구동 전극부와 감지 전극부 간의 전기적 단절을 도모하는 것으로서, 종래의 금속 브릿지, 절연층 등을 이용한 터치 센서와는 그 차이점이 있다.
본 출원에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 각각 독립적인 인쇄공정으로 형성할 수도 있고, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴을 1회의 인쇄공정에 의하여 동시에 형성할 수도 있다.
이에 따라, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 서로 동일한 선고를 가질 수 있다.
또한, 상기 구동 전극부와 배선 전극부의 전도성 패턴의 적어도 일부는 서로 연결되는 영역을 포함하고, 상기 연결되는 영역은 이음부가 없을 수 있다. 또한, 상기 감지 전극부와 배선 전극부의 전도성 패턴의 적어도 일부는 서로 연결되는 영역을 포함하고, 상기 연결되는 영역은 이음부가 없을 수 있다.
본 출원에 있어서, 이음부가 없다는 것은, 물리적으로 연결된 전도성 패턴에 인위적인 이어진 흔적이 없음을 의미한다. 통상적으로 터치부와 배선부의 패턴 형태 및 규모가 달라서, 종래에는 상기 터치부와 배선부를 상이한 방법으로 형성하였기 때문에, 이들의 패턴이 연결되는 부분에는 이음부가 형성될 수 밖에 없었다. 그러나, 본 출원에서는 하나의 공정을 이용하여 터치부, 배선부 등을 형성할 수 있기 때문에 이음부가 없고 이들의 선고가 동일한 특징을 가질 수 있다.
본 출원에 있어서, 선고가 동일하다는 것은 선고의 표준편차가 10% 미만, 바람직하게는 5% 미만, 또는 더욱 바람직하게는 2% 미만인 것을 의미한다.
본 출원에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 기재 상에 구비되고, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 모두 상기 기재의 동일한 면에 구비될 수 있다.
상기 기재 상의 적어도 일면에는 고경도 하드 코팅층을 추가로 포함할 수 있다. 이 때, 상기 기재 상의 어느 한 면에는 고경도 하드 코팅층이 구비되고, 상기 기재 상의 다른 한 면에는 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴이 구비될 수 있으나, 이에만 한정되는 것은 아니다. 또한, 상기 고경도 하드 코팅층 상에 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴이 구비될 수 있으나, 이에만 한정되는 것은 아니다.
상기 고경도 하드 코팅층은, 3 내지 6 관능성 아크릴레이트계 단량체를 포함하는 바인더용 단량체; 무기 미립자; 광 개시제; 및 유기 용매를 포함하고, 상기 바인더용 단량체, 상기 무기 미립자 및 상기 광 개시제를 포함하는 고형분에 대하여, 상기 고형분 : 상기 유기 용매의 중량비가 70 : 30 내지 99 : 1 인 하드코팅 조성물을 이용하여 형성할 수 있다.
또한, 상기 고경도 하드 코팅층은, 3 내지 6 관능성 아크릴레이트계 단량체를 포함하는 바인더용 단량체; 무기 미립자; 및 광 개시제를 포함하는 무용제(solvent-free) 형태의 하드 코팅 조성물을 이용하여 형성할 수 있다.
상기 하드 코팅 조성물에 대한 구체적인 내용은 아래와 같다.
상기 아크릴레이트계란, 아크릴레이트 뿐만 아니라 메타크릴레이트, 또는 아크릴레이트나 메타크릴레이트에 치환기가 도입된 유도체를 모두 의미한다.
상기 3 내지 6 관능성 아크릴레이트계 단량체는 트리메틸올프로판 트리아크릴레이트(TMPTA), 트리메틸올프로판에톡시 트리아크릴레이트(TMPEOTA), 글리세린 프로폭실화 트리아크릴레이트(GPTA), 펜타에리트리톨 테트라아크릴레이트(PETA), 또는 디펜타에리트리톨 헥사아크릴레이트(DPHA) 등을 들 수 있다. 상기 3 내지 6 관능성 아크릴레이트계 단량체는 단독으로 또는 서로 다른 종류를 조합하여 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 바인더용 단량체는 1 내지 2 관능성 아크릴레이트계 단량체를 더 포함할 수 있다.
상기 1 내지 2관능성 아크릴레이트계 단량체는, 예를 들어 하이드록시에틸아크릴레이트(HEA), 하이드록시에틸메타크릴레이트(HEMA), 헥산디올디아크릴레이트(HDDA), 또는 트리프로필렌글리콜 디아크릴레이트(TPGDA), 에틸렌글리콜 디아크릴레이트(EGDA) 등을 들 수 있다. 상기 1 내지 2 관능성 아크릴레이트계 단량체도 단독으로 또는 서로 다른 종류를 조합하여 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 바인더용 단량체는 상기 바인더용 단량체, 상기 무기 미립자 및 상기 광 개시제를 포함하는 고형분 100중량부에 대하여 약 35 ~ 약 85중량부, 또는 약 45 ~ 약 80중량부로 포함될 수 있다. 상기 바인더용 단량체가 상기 범위일 때 고경도를 나타내며 우수한 가공성으로 컬 또는 크랙 발생이 적은 하드코팅 필름을 형성할 수 있다.
또한, 상기 바인더용 단량체가 1 내지 2 관능성 아크릴레이트계 단량체를 더 포함할 때, 상기 1 내지 2 관능성 아크릴레이트계 단량체 및 상기3 내지 6 관능성 아크릴레이트계 단량체의 함량비는 특별히 제한되지는 않으나, 본 발명의 일 실시예에 따르면, 상기 1 내지 2 관능성 아크릴레이트계 단량체 및 상기3 내지 6 관능성 아크릴레이트계 단량체가 약 1 : 99 내지 약 50 : 50, 또는 약 10 : 90 내지 약 50 : 50, 또는 약 20 : 80 내지 약 40 : 60의 중량비가 되도록 포함될 수 있다. 상기 중량비로 1내지 2관능성 아크릴레이트계 단량체 및 3내지 6관능성 아크릴레이트계 단량체를 포함할 때, 컬 특성이나 내광성 등의 다른 물성의 저하 없이 고경도 및 유연성을 부여할 수 있다.
본 출원의 다른 일 실시예에 따르면, 상기 바인더용 단량체는 광경화성 탄성 중합체를 더 포함할 수 있다.
본 명세서 전체에서 상기 광경화성 탄성 중합체란, 자외선 조사에 의해 가교 중합될 수 있는 관능기를 포함하며 탄성을 나타내는 고분자 물질을 의미한다.
본 출원의 일 실시예에 따르면, 상기 광경화성 탄성 중합체는 ASTM D638에 의해 측정하였을 때 약15% 이상, 예를 들어 약 15 ~ 약 200%, 또는 약 20 ~ 약 200%, 또는 약 20 ~ 약 150%의 신율(elongation)을 가질 수 있다.
본 출원의 하드 코팅 조성물이 광경화성 탄성 중합체를 더 포함할 때, 상기 광경화성 탄성 중합체는 상기 3 내지 6 관능성 아크릴레이트계 단량체와 가교 중합되어 경화 후 하드 코팅층을 형성하며 형성되는 하드 코팅층에 유연성 및 내충격성을 부여할 수 있다.
상기 바인더용 단량체가 광경화성 탄성 중합체를 더 포함할 때, 상기 광경화성 탄성 중합체 및 상기3 내지 6 관능성 아크릴레이트계 단량체의 함량비는 특별히 제한되지는 않으나, 본 발명의 일 실시예에 따르면, 상기 광경화성 탄성 중합체 및 상기3 내지 6 관능성 아크릴레이트계 단량체가 약 5 : 95 내지 약 20 : 80의 중량비가 되도록 포함될 수 있다. 상기 중량비로 3 내지 6 관능성 아크릴레이트계 단량체 및 광경화성 탄성 중합체를 포함할 때, 컬 특성이나 내광성 등의 다른 물성의 저하 없이 고경도 및 유연성을 부여하며, 특히 외부 충격에 의한 손상을 방지하여 우수한 내충격성을 확보할 수 있다.
본 출원의 일 실시예에 따르면, 상기 광경화성 탄성 중합체는 중량 평균 분자량이 약 1,000 ~ 약 600,000 g/mol, 또는 약 10,000 ~ 약 600,000 g/mol 의 범위인 폴리머 또는 올리고머일 수 있다.
상기 광경화성 탄성 중합체는 예를 들어 폴리카프로락톤, 우레탄 아크릴레이트계 폴리머, 및 폴리로타세인으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 광경화성 탄성 중합체로 사용할 수 있는 물질 중 폴리카프로락톤은 카프로락톤의 개환 중합에 의해 형성되며 유연성, 내충격성, 내구성 등의 물성이 우수하다.
상기 우레탄 아크릴레이트계 폴리머는 우레탄 결합을 포함하여 탄성 및 내구성이 우수한 특성을 가진다.
상기 폴리로타세인(polyrotaxane)은 덤벨 모양의 분자(dumbbell shaped molecule)과 고리형 화합물(macrocycle)이 구조적으로 끼워져 있는 화합물을 의미한다. 상기 덤벨 모양의 분자는 일정한 선형 분자 및 이러한 선형 분자의 양 말단에 배치된 봉쇄기를 포함하며, 상기 선형 분자가 상기 고리형 화합물의 내부를 관통하며, 상기 고리형 화합물이 상기 선형 분자를 따라서 이동할 수 있으며 상기 봉쇄기에 의하여 이탈이 방지된다.
본 출원의 일 실시예에 따르면, 말단에 (메타)아크릴레이트계 화합물이 도입된 락톤계 화합물이 결합된 고리형 화합물; 상기 고리형 화합물을 관통하는 선형 분자; 및 상기 선형 분자의 양 말단에 배치되어 상기 고리형 화합물의 이탈을 방지하는 봉쇄기를 포함하는 로타세인 화합물을 포함할 수 있다.
이 때, 상기 고리형 화합물은 상기 선형 분자를 관통 또는 둘러쌀 수 있을 정도의 크기를 갖는 것이면 별 다른 제한 없이 사용할 수 있으며, 다른 중합체나 화합물과 반응할 수 있는 수산기, 아미노기, 카르복실기, 티올기 또는 알데히드기 등의 작용기를 포함할 수도 있다. 이러한 고리형 화합물의 구체적인 예로 α-사이클로덱스트린 및 β-사이클로덱스트린, γ-사이클로덱스트린 또는 이들의 혼합물을 들 수 있다.
또한 상기 선형 분자로는 일정 이상의 분자량을 가지면 직쇄 형태를 갖는 화합물은 큰 제한 없이 사용할 수 있으나, 폴리알킬렌계 화합물 또는 폴리락톤계 화합물을 사용할 수 있다. 구체적으로, 탄소수 1 내지 8의 옥시알킬렌 반복 단위를 포함하는 폴리옥시알킬렌계 화합물 또는 탄소수 3 내지 10의 락톤계 반복단위를 갖는 폴리락톤계 화합물을 사용할 수 있다.
한편, 상기 봉쇄기는 제조되는 로타세인 화합물의 특성에 따라서 적절히 조절할 수 있으며, 예를 들어 디니트로페닐기, 시클로덱스트린기, 아마만탄기, 트리릴기, 플루오레세인기 및 피렌기로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용할 수 있다.
상기와 같은 폴리로타세인 화합물은 우수한 내찰상성을 가져 스크래치 또는 외부 손상이 발생한 경우 자기 치유 능력을 발휘할 수 있다.
본 출원의 하드코팅 조성물은 무기 미립자를 포함한다. 이때, 상기 무기 미립자는 상기 바인더용 단량체에 분산된 형태로 포함될 수 있다.
본 출원의 일 실시예에 따르면, 상기 무기 미립자로 입경이 나노 스케일인 무기 미립자, 예를 들어 입경이 약 100nm 이하, 또는 약 10 ~ 약 100nm, 또는 약 10 ~ 약 50nm의 나노 미립자를 사용할 수 있다. 또한, 상기 무기 미립자로는 예를 들어 실리카 미립자, 알루미늄 옥사이드 입자, 티타늄 옥사이드 입자, 또는 징크 옥사이드 입자 등을 사용할 수 있다.
상기 무기 미립자를 포함함으로써 하드코팅 필름의 경도를 더욱 향상시킬 수 있다.
본 출원의 일 실시예에 따르면, 상기 무기 미립자는 상기 바인더용 단량체, 상기 무기 미립자 및 상기 광 개시제를 포함하는 고형분 100중량부에 대하여 약 10 ~ 약 60중량부, 또는 약 20 ~ 약 50중량부로 포함될 수 있다. 상기 무기 미립자를 상기 범위로 포함함으로써 물성을 저하시키지 않는 범위 내에서 무기 미립자 첨가에 따른 하드코팅 필름의 경도 향상 효과를 달성할 수 있다.
본 출원의 하드코팅 조성물은 광 개시제를 포함한다.
본 출원의 일 실시예에 따르면, 상기 광 개시제로는 1-히드록시-시클로헥실-페닐 케톤, 2-하이드록시-2-메틸-1-페닐-1-프로판온, 2-하이드록시-1-[4-(2-하이드록시에톡시)페닐]-2-메틸-1-프로판온, 메틸벤조일포르메이트, α,α-디메톡시-α-페닐아세토페논, 2-벤조일-2-(디메틸아미노)-1-[4-(4-모포린일)페닐]-1-부타논, 2-메틸-1-[4-(메틸씨오)페닐]-2-(4-몰포린일)-1-프로판온 디페닐(2,4,6-트리메틸벤조일)-포스핀옥사이드, 또는 비스(2,4,6-트리메틸벤조일)-페닐포스핀옥사이드 등을 들 수 있으나, 이에 제한되지는 않는다. 또한, 현재 시판되고 있는 상품으로는 Irgacure 184, Irgacure 500, Irgacure 651, Irgacure 369, Irgacure 907, Darocur 1173, Darocur MBF, Irgacure 819, Darocur TPO, Irgacure 907, Esacure KIP 100F 등을 들 수 있다. 이들 광 개시제는 단독으로 또는 서로 다른 2종 이상을 혼합하여 사용할 수 있다.
본 출원의 일 실시예에 따르면, 상기 광 개시제는 상기 바인더용 단량체, 상기 무기 미립자 및 상기 광 개시제를 포함하는 고형분 100중량부에 대하여 약 0.5 ~ 약 10중량부, 또는 약 1 ~ 약 5중량부로 포함될 수 있다. 상기 광 개시제가 상기 범위에 있을 때 하드코팅 필름의 물성을 저하시키지 않으면서 충분한 가교 광중합을 달성할 수 있다.
한편, 본 출원의 하드코팅 조성물은 전술한 바인더용 단량체, 무기 미립자 및 광 개시제 외에도, 계면활성제, 황변 방지제, 레벨링제, 방오제 등 본 출원이 속하는 기술 분야에서 통상적으로 사용되는 첨가제를 추가로 포함할 수 있다. 또한, 그 함량은 본 출원의 하드코팅 조성물의 물성을 저하시키기 않는 범위 내에서 다양하게 조절할 수 있으므로, 특별히 제한하지는 않으나, 예를 들어 상기 고형분 100중량부에 대하여, 약 0.1 ~ 약 10중량부로 포함될 수 있다.
본 출원의 일 실시예에 따르면, 예를 들어 상기 하드 코팅 조성물은 첨가제로 계면활성제를 포함할 수 있으며, 상기 계면활성제는1 내지 2 관능성의 불소계 아크릴레이트, 불소계 계면 활성제 또는 실리콘계 계면 활성제일 수 있다. 이 때, 상기 계면활성제는 상기 가교 공중합체 내에 분산 또는 가교되어 있는 형태로 포함될 수 있다.
또한, 상기 첨가제로 황변 방지제를 포함할 수 있으며, 상기 황변 방지제로는 벤조페논계 화합물 또는 벤조트리아졸계 화합물 등을 들 수 있다.
본 출원의 하드코팅 조성물은 유기 용매를 포함한다.
본 출원의 일 실시예에 따른 하드코팅 조성물에서, 상기 유기 용매는 상기 바인더용 단량체, 상기 무기 미립자, 및 상기 광 개시제를 포함하는 고형분에 대하여, 고형분 : 유기 용매의 중량비가 약 70 : 30 내지 약 99 : 1 의 범위로 포함될 수 있다. 상기와 같이 본 발명의 하드코팅 조성물이 고형분을 높은 함량으로 포함함으로써, 고점도 조성물이 얻어지며 이에 따라 후막 코팅(thick coating)이 가능하게 하여 높은 두께, 예를 들어 50㎛ 이상의 하드 코팅층을 형성할 수 있다.
본 출원의 일 실시예에 따르면, 상기 유기 용매로는 메탄올, 에탄올, 이소프로필알코올, 부탄올과 같은 알코올계 용매, 2-메톡시에탄올, 2-에톡시에탄올, 1-메톡시-2-프로판올과 같은 알콕시 알코올계 용매, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 메틸프로필케톤, 사이클로헥사논과 같은 케톤계 용매, 프로필렌글리콜모노프로필에테르, 프로필렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노프로필에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸글리콜모노에틸에테르, 디에틸글리콜모노프로필에테르, 디에틸글리콜모노부틸에테르, 디에틸렌글리콜-2-에틸헥실에테르와 같은 에테르계 용매, 벤젠, 톨루엔, 자일렌과 같은 방향족 용매 등을 단독으로 또는 혼합하여 사용할 수 있다.
본 출원의 일 실시예에 따르면, 상기 하드 코팅 조성물의 점도는 적절한 유동성 및 도포성을 갖는 범위이면 특별히 제한되지는 않으나 상대적으로 고형분 함량이 높아 고점도를 나타낼 수 있다. 예를 들어, 본 발명의 하드코팅 조성물은 25℃의 온도에서 약 100 ~ 약1,200cps의 점도, 또는 약 100 ~ 약1,200cps, 또는 약 150 ~ 약1,200cps, 또는 약 300 ~ 약1,200cps의 점도를 가질 수 있다.
상술한 성분들을 포함하는 본 발명의 용제 타입 또는 무용제 타입의 하드 코팅 조성물은 지지 기재에 도포 후 광경화시킴으로써 하드 코팅층을 형성할 수 있다.
이동통신 단말기나 태블릿 PC 등의 커버로 사용되기 위한 하드 코팅 필름에 있어서는 하드 코팅 필름의 경도를 유리를 대체할 수 있는 수준으로 향상시키는 것이 중요한데, 하드 코팅 필름의 경도를 향상시키기 위해서는 기본적으로 일정 두께 이상, 예를 들어 50㎛, 또는 70㎛, 또는 100㎛ 이상으로 하드 코팅층의 두께를 증가시켜야 한다. 그러나, 하드 코팅층의 두께가 증가함에 따라 경화 수축에 의한 컬 현상도 증가하여 부착력이 감소하고 하드 코팅 필름이 현상이 발생하기 쉽다. 이에, 지지 기재를 평탄화시키는 공정을 추가로 수행할 수 있으나, 이러한 평탄화 과정에서 하드 코팅층에 균열이 일어나므로 바람직하지 않다.
본 출원에 따른 하드 코팅 조성물은 고경도의 하드 코팅층을 형성하기 위하여 지지 기재 상에 높은 두께로 도포 및 광경화하여도 컬이나 크랙 발생이 적으며, 고투명도 및 고경도를 갖는 하드 코팅층을 형성할 수 있다. 예를 들어, 본 출원의 하드 코팅 조성물을 이용하여 두께가 약 50㎛ 이상, 예를 들어 약 50 ~ 약 150㎛, 또는 약 70 ~ 약 100㎛의 두께를 갖는 하드 코팅층을 형성할 수 있다.
본 출원의 하드 코팅 조성물을 이용하여 하드 코팅층을 형성하는 경우, 본 발명이 속하는 기술분야에서 사용되는 통상의 방법으로 형성할 수 있다.
예를 들어, 먼저 지지 기재의 일면에 본 출원에 따른 하드 코팅 조성물을 도포한다. 이 때, 조성물을 도포하는 방법은 본 발명이 속하는 기술분야에서 사용될 수 있는 것이면 특별히 제한되지 않으며, 예를 들면 바코팅 방식, 나이프 코팅방식, 롤 코팅방식, 블레이드 코팅방식, 다이 코팅방식, 마이크로 그라비아 코팅방식, 콤마코팅 방식, 슬롯다이 코팅방식, 립 코팅방식, 또는 솔루션 캐스팅(solution casting)방식 등을 이용할 수 있다.
상기 하드 코팅 조성물을 도포한 후, 선택적으로 상기 하드 코팅 조성물의 도포면을 안정화하는 단계를 수행할 수 있다. 상기 안정화 단계는, 예를 들면 상기 하드 코팅 조성물이 도포된 지지 기재를 일정한 온도에서 처리함으로써 수행할 수 있다. 이에 의해 도포면을 평탄화하고 상기 하드코팅 조성물에 포함된 휘발성 성분을 휘발시킴으로써 도포면을 보다 안정화시킬 수 있다.
다음에, 도포된 하드코팅 조성물에 대해 자외선을 조사하여 광경화함으로써 하드 코팅층을 형성할 수 있다.
본 출원의 하드 코팅 조성물을 이용하여 지지 기재의 양면에 하드 코팅층을 형성하는 경우, 먼저 지지 기재의 일면에 제1 하드 코팅 조성물을 제1 도포 및 제1 광경화한 후, 지지 기재의 다른 면, 즉 배면에 다시 제2 하드 코팅 조성물을 제2 도포 및 제2 광경화하는 2 단계의 공정에 의해 형성할 수 있다.
상기 제2 광경화 단계에서는 자외선 조사가 제1 하드 코팅 조성물이 도포된 반대쪽에서 이루어지므로, 제1 광경화 단계에서 경화 수축에 의해 발생한 컬을 반대 방향으로 상쇄하여 평탄한 하드 코팅 필름을 수득할 수 있다. 따라서, 추가적인 평탄화 과정이 불필요하다.
본 출원의 하드 코팅 조성물을 이용하여 형성한 하드 코팅층을 포함하는 필름은, 50℃ 이상의 온도 및 80% 이상의 습도에서 70시간 이상 노출시킨 후 평면에 위치시켰을 때, 상기 필름의 각 모서리 또는 일 변이 평면에서 이격되는 거리의 최대값이 약 1.0mm 이하, 또는 약 0.6mm 이하, 또는 약 0.3mm 이하일 수 있다. 보다 구체적으로는, 50 ~ 90℃의 온도 및 80 ~ 90%의 습도에서 70 ~ 100시간 노출시킨 후 평면에 위치시켰을 때, 상기 필름의 각 모서리 또는 일 변이 평면에서 이격되는 거리의 최대값이 약 1.0mm 이하, 또는 약 0.6mm 이하, 또는 약 0.3mm이하일 수 있다.
본 출원의 하드 코팅 조성물을 이용하여 형성한 하드 코팅층을 포함하는 필름은 우수한 고경도, 내찰상성, 고투명도, 내구성, 내광성, 광투과율 등을 나타내어 다양한 분야에 유용하게 이용될 수 있다.
예를 들어, 본 출원의 하드 코팅 조성물을 이용하여 형성한 하드 코팅층을 포함하는 필름은, 1kg 하중에서의 연필 경도가 7H 이상, 또는 8H 이상, 또는 9H 이상일 수 있다.
본 출원에 있어서, 상기 고경도 하드 코팅층은 기재의 어느 한 면에만 구비될 수 있고, 기재의 양면에 모두 구비될 수도 있다.
본 출원에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 각각 독립적으로 전도성 금속선으로 이루어진 패턴을 포함할 수 있다. 상기 전도성 금속선으로 이루어진 패턴은 직선, 곡선, 또는 직선이나 곡선으로 이루어진 폐곡선을 포함할 수 있다.
상기 구동 전극부 및 감지 전극부의 전도성 패턴은 각각 독립적으로 규칙적 패턴일 수도 있고, 불규칙적인 패턴일 수도 있다.
상기 규칙적인 패턴으로는 메쉬 패턴 등 당 기술분야의 패턴 형태가 사용될 수 있다. 상기 메쉬 패턴은 삼각형, 사각형, 오각형, 육각형 및 팔각형 중 하나 이상의 형태를 포함하는 규칙적인 다각형 패턴을 포함할 수 있다.
본 출원에 있어서, 상기 구동 전극부 및 감지 전극부의 전도성 패턴은 규칙적 패턴이고, 패턴을 구성하는 선들 중 임의의 복수의 선이 교차하여 형성되는 교차점을 포함하며, 이 때 이러한 교차점의 수는 3.5cm × 3.5cm 면적에서 3,000 ~ 122,500개 일 수 있고, 13,611 ~ 30,625개 일 수 있으며, 19,600 ~ 30,625개 일 수 있다. 또한, 본 출원에 따르면, 디스플레이에 장착시 4,000 ~ 123,000개인 경우가 디스플레이의 광학특성을 크게 해치지 않는 광특성을 나타냄을 확인하였다.
또한, 본 출원에 따르면, 상기 구동 전극부 및 감지 전극부의 전도성 패턴은 불규칙적 패턴이고, 패턴을 구성하는 선들 중 임의의 복수의 선이 교차하여 형성되는 교차점을 포함하며, 이 때 이러한 교차점의 수는 3.5cm × 3.5cm 면적에서 6,000 ~ 245,000개 일 수 있고, 3,000 ~ 122,500개 일 수 있고, 13,611 ~ 30,625개 일 수 있으며, 19,600 ~ 30,625개 일 수 있다. 또한, 본 출원에 따르면, 디스플레이에 장착시 4,000 ~ 123,000개인 경우가 디스플레이의 광학특성을 크게 해치지 않는 광특성을 나타냄을 확인하였다.
상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 피치는 600㎛ 이하일 수 있고, 250㎛ 이하일 수 있으나, 이는 당업자가 원하는 투과도 및 전도도에 따라 조정할 수 있다.
본 출원에서 사용되는 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 비저항 1 × 106 옴·cm 내지 30 × 106 옴·cm의 물질이 적절하며, 7 × 106 옴·cm 이하인 것이 더욱 바람직하다.
본 출원에 있어서, 상기 구동 전극부 및 감지 전극부의 전도성 패턴은 불규칙적인 패턴일 수 있다.
상기 불규칙적인 패턴은 연속하여 연결된 폐쇄도형들의 테두리 구조를 포함하며, 상기 불규칙적인 임의의 단위면적(1cm × 1cm) 내에서 동일한 형태의 폐쇄도형이 존재하지 않고, 상기 폐쇄도형들의 꼭지점 개수는, 상기 폐쇄도형들과 동일한 개수의 사각형들의 꼭지점 개수와 상이할 수 있다. 보다 구체적으로, 상기 폐쇄도형들의 꼭지점 개수는, 상기 폐쇄도형들과 동일한 개수의 사각형들의 꼭지점 개수와 비교하였을 때 더 많을 수 있고, 1.9 ~ 2.1배 더 많을 수 있으나, 이에만 한정되는 것은 아니다.
상기 폐쇄도형들은 서로 연속하여 연결된 것으로서, 예컨대 상기 폐쇄도형들이 다각형인 경우에는 서로 이웃하는 폐쇄도형들이 적어도 하나의 변을 공유하는 형태일 수 있다.
상기 불규칙적인 패턴은 연속하여 연결된 폐쇄도형들의 테두리 구조를 포함하며, 상기 불규칙적인 패턴은 임의의 단위면적(1cm × 1cm) 내에서 동일한 형태의 폐쇄도형이 존재하지 않고, 상기 폐쇄도형들의 꼭지점 개수는, 상기 폐쇄도형들 각각의 무게중심들간의 최단거리를 연결하여 형성한 다각형의 꼭지점의 개수와 상이할 수 있다. 보다 구체적으로, 상기 폐쇄도형들의 꼭지점 개수는, 상기 폐쇄도형들 각각의 무게중심들간의 최단거리를 연결하여 형성한 다각형의 꼭지점의 개수와 비교하였을 때 더 많을 수 있고, 1.9 ~ 2.1배 더 많을 수 있으나, 이에만 한정되는 것은 아니다.
상기 불규칙적인 패턴은 연속하여 연결된 폐쇄도형들의 테두리 구조를 포함하며, 상기 불규칙적인 패턴은 임의의 단위면적(1cm × 1cm) 내에서 동일한 형태의 폐쇄도형이 존재하지 않고, 상기 폐쇄도형들은 하기 수학식 1의 값이 50 이상일 수 있다.
[수학식 1]
(꼭지점간의 거리의 표준편차 / 꼭지점간 거리의 평균) × 100
상기 수학식 1의 값은 전도성 패턴의 단위면적 내에서 계산될 수 있다. 상기 단위면적은 전도성 패턴이 형성되는 면적일 수 있고, 예컨대 3.5cm × 3.5cm 등일 수 있으나, 이에만 한정되는 것은 아니다.
본 출원에 있어서, 상기 꼭지점은 전도성 패턴의 폐쇄도형들의 테두리를 구성하는 선들이 서로 교차하는 점을 의미하는 것으로 정의하기로 한다.
상기 불규칙적인 패턴은, 규칙적으로 배열된 단위 유닛셀 내에 각각 임의의 점들을 배치한 후, 각각의 점들이 다른 점들로부터의 거리에 비하여 가장 가까운 점과 연결되어 이루어진 폐쇄도형들의 테두리 구조의 형태일 수 있다.
이 때, 상기 규칙적으로 배열된 단위 유닛셀 내에 임의의 점들을 배치하는 방식에 불규칙도를 도입하는 경우에 상기 불규칙적인 패턴이 형성될 수 있다. 예컨대, 상기 불규칙도를 0으로 부여하는 경우에는 단위 유닛셀이 정사각형이면 전도성 패턴이 정사각형 메쉬 구조가 형성되고, 단위 유닛셀이 정육각형이면 전도성 패턴이 벌집(honeycomb) 구조가 형성되게 된다. 즉, 상기 불규칙적인 패턴은 상기 불규칙도가 0이 아닌 패턴을 의미한다.
본 출원에 따른 불규칙 패턴 형태의 전도성 패턴에 의하여, 패턴을 이루는 선의 쏠림현상 등을 억제할 수 있고, 디스플레이로부터 균일한 투과율을 얻게 해줌과 동시에 단위면적에 대한 선밀도를 동일하게 유지시켜 줄 수 있으며, 균일한 전도도를 확보할 수 있게 된다.
본 출원에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 재료는 특별히 한정되지 않지만, 금속, 금속 산화물, 금속 질화물, 금속 산화질화물 및 금속 합금으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것이 바람직하다. 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 재료는 전도도가 우수하고, 식각(etching)이 용이한 재료일수록 바람직하다.
본 출원에서는 전반사율이 70 ~ 80% 이상인 재료를 이용하는 경우에도, 전반사율을 낮추고, 전도성 패턴의 시인성을 낮추며, 콘트라스트 특성을 유지 또는 향상시킬 수 있다.
상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 재료의 구체적인 예로는 금, 은, 알루미늄, 구리, 네오디윰, 몰리브덴, 니켈 또는 이들의 합금을 포함하는 단일막 또는 다층막이 바람직하다. 여기서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 두께는 특별히 한정되는 것은 아니지만, 0.01 ~ 10㎛인 것이 전도성 패턴의 전도도 및 형성 공정의 경제성 측면에서 바람직하다.
본 출원에 있어서, 상기 구동 전극부 및 감지 전극부의 전도성 패턴은 선폭이 10㎛ 이하일 수 있고, 7㎛ 이하일 수 있고, 5㎛ 이하일 수 있으며, 4㎛ 이하일 수 있고, 2㎛ 이하일 수 있으며, 0.1㎛ 이상일 수 있다. 보다 구체적으로, 상기 구동 전극부 및 감지 전극부의 전도성 패턴은 선폭이 0.1 ~ 1㎛, 1 ~ 2㎛, 2 ~ 4㎛, 4 ~ 5㎛, 5 ~ 7㎛ 등일 수 있으나, 이에만 한정되는 것은 아니다.
또한, 상기 구동 전극부 및 감지 전극부의 전도성 패턴의 선폭은 10㎛ 이하 및 두께는 10㎛ 이하일 수 있고, 상기 구동 전극부 및 감지 전극부의 전도성 패턴의 선폭은 7㎛ 이하 및 두께는 1㎛ 이하일 수 있으며, 상기 구동 전극부 및 감지 전극부의 전도성 패턴의 선폭은 5㎛ 이하 및 두께는 0.5㎛ 이하일 수 있다.
보다 구체적으로, 본 출원에 있어서, 상기 구동 전극부 및 감지 전극부의 전도성 패턴의 선폭은 10㎛ 이하이고, 상기 구동 전극부 및 감지 전극부의 전도성 패턴은 3.5cm × 3.5cm의 면적 내에서 폐쇄도형들의 꼭지점의 수가 6,000 ~ 245,000개일 수 있다. 또한, 상기 구동 전극부 및 감지 전극부의 전도성 패턴의 선폭은 7㎛ 이하이고, 상기 전도성 패턴은 3.5cm × 3.5cm의 면적 내에서 폐쇄도형들의 꼭지점의 수가 7,000 ~ 62,000개일 수 있다. 또한, 상기 구동 전극부 및 감지 전극부의 전도성 패턴의 선폭은 5㎛ 이하이고, 상기 구동 전극부 및 감지 전극부의 전도성 패턴은 3.5cm × 3.5cm의 면적 내에서 폐쇄도형들의 꼭지점의 수가 15,000 ~ 62,000개일 수 있다.
상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 개구율, 즉 패턴에 의하여 덮여지지 않는 면적 비율은 70% 이상일 수 있고, 85% 이상일 수 있으며, 95% 이상일 수 있다. 또한, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 개구율은 90 내지 99.9% 일 수 있으나, 이에만 한정되는 것은 아니다.
또한, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 1mm × 1mm의 임의의 영역에서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 개구율이 서로 상이한 영역을 적어도 1 이상 포함하고, 상기 개구율의 차이는 0.1 ~ 5%일 수 있으나, 이에만 한정되는 것은 아니다.
또한, 상기 배선 전극부의 전도성 패턴의 선폭은 150㎛ 이하일 수 있고, 100㎛ 이하일 수 있으며, 50㎛ 이하일 수 있고, 30㎛ 이하일 수 있으며, 10㎛ 이하일 수 있고, 0.1㎛ 이상일 수 있으나, 이에만 한정되는 것은 아니다.
본 출원에 있어서, 상기 배선 전극부의 전도성 패턴의 적어도 일부는 상기 구동 전극부 및 감지 전극부의 전도성 패턴과 선폭이 상이할 수 있다. 이 때, 상기 선폭의 차이는 5 ~ 100㎛일 수 있고, 5 ~ 30㎛일 수 있으며, 5 ~ 15㎛일 수 있으나, 이에만 한정되는 것은 아니다.
본 출원에서는 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴을 형성하기 위하여, 인쇄법을 이용함으로써 투명 기재 상에 선폭이 얇으며 정밀한 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴을 형성할 수 있다. 상기 인쇄법은 전도성 패턴 재료를 포함하는 페이스트 혹은 잉크를 목적하는 패턴 형태로 투명 기재 상에 전사한 후 소성하는 방식으로 수행될 수 있다. 상기 인쇄법으로는 특별히 한정되지 않으며, 오프셋 인쇄, 스크린 인쇄, 그라비아 인쇄, 플렉소 인쇄, 잉크젯 인쇄, 나노 임프린트 등의 인쇄법이 사용될 수 있으며, 이들 중 1종 이상의 복합방법이 사용될 수도 있다. 상기 인쇄법은 롤 대 롤(roll to roll) 방법, 롤 대 평판(roll to plate), 평판 대 롤(plate to roll) 또는 평판 대 평판(plate to plate) 방법을 사용할 수 있다.
본 출원에서는 정밀한 전도성 패턴을 구현하기 위해서 리버스 오프셋 인쇄법을 응용하는 것이 바람직하다. 이를 위하여 본 출원에서는 블랭킷이라 부르는 실리콘계 고무 위에 에칭시 레지스트 역할을 수행할 수 있는 잉크를 전면적에 걸쳐 코팅한 후 이를 1차 클리쉐라 부르는 패턴이 새겨져 있는 요판을 통하여 필요 없는 부분을 제거하고 2차로 블랭킷에 남아 있는 인쇄 패턴을 메탈 등이 증착되어 있는 필름 혹은 유리와 같은 기재에 전사한 후 이를 소성 및 에칭공정을 거쳐 원하는 패턴을 형성하는 방법을 수행할 수 있다. 이러한 방법을 이용하는 경우 메탈 증착된 기재를 이용함에 따라 전 영역에서의 선고의 균일성이 확보됨에 따라 두께 방향의 저항을 균일하게 유지할 수 있다는 장점을 지니고 있다. 이외에도 본 출원에서는 앞서 구술한 리버스 오프셋 프린팅 방법을 이용하여 Ag 잉크와 같은 전도성 잉크를 직접 인쇄한 후 소성함으로써 원하는 패턴을 형성하는 직접 인쇄방식을 포함할 수 있다. 이 때 패턴의 선고는 누르는 인압에 의하여 평탄화 되며, 전도도의 부여는 Ag 나노 입자의 상호 표면융착으로 인한 연결을 목적으로 하는 열소성 공정이나 혹은 마이크로웨이브 소성 공정 / 레이저 부분 소성 공정 등으로 부여할 수 있다.
특히, 상기 배선 전극부의 전도성 패턴을 인쇄공정에 의하여 형성하는 경우에는, 보다 정밀한 전도성 패턴을 구현하기 위하여, 인쇄공정시 상기 배선 전극부의 전도성 패턴의 길이방향과 수직인 방향으로 인쇄를 진행하는 것이 바람직하나, 이에만 한정되는 것은 아니다. 즉, 본 출원의 일 실시상태에 따르면, FPCB 본딩(Bonding) 영역의 치수 안정성 확보를 위하여, 필름의 수축 팽창률이 용이한 방향으로 FPCB 본딩(Bonding) 패드(PAD)를 일치하게 배치할 수 있도록, 인쇄방향을 설정할 수 있는 특징이 있다. 상기 배선 전극부의 인쇄방향에 대한 내용을 하기 도 28에 개략적으로 나타내었다.
본 출원에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 각각 독립적으로 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴에 대응되는 영역에 구비된 암색화 패턴을 추가로 포함할 수 있다.
본 출원에 있어서, 상기 터치 감지영역의 암색화 패턴이 가시되는 일면에 점광원으로부터 나온 빛을 조사하여 얻은 반사형 회절 이미지의 반사형 회절 강도가, 상기 전도성 패턴이 Al로 이루어지고 암색화 패턴을 포함하지 않는 것을 제외하고 동일한 구성을 갖는 터치 센서에 비하여 60% 이상 감소된 것일 수 있다. 여기서, 상기 반사형 회절 강도가, 상기 전도성 패턴이 Al로 이루어지고 암색화 패턴을 포함하지 않는 것을 제외하고 동일한 구성을 갖는 터치 센서에 비하여 60% 이상 감소된 것일 수 있고, 70% 이상 감소된 것일 수 있으며, 80% 이상 감소된 것일 수 있다. 예컨대, 60 ~ 70% 감소된 것일 수 있고, 70 ~ 80% 감소된 것일 수 있으며, 80 ~ 85% 감소된 것일 수 있다.
본 출원에 있어서, 상기 터치 감지영역의 암색화 패턴이 가시되는 일면에 주변광(Ambient light)을 가정한 전반사도 측정장비를 이용하여 측정한 전반사율(total reflectance)이, 상기 전도성 패턴이 Al로 이루어지고 암색화 패턴을 포함하지 않는 것을 제외하고 동일한 구성을 갖는 터치 센서에 비하여 20% 이상 감소된 것일 수 있다. 여기서, 상기 전반사율이, 상기 전도성 패턴이 Al로 이루어지고 암색화 패턴을 포함하지 않는 것을 제외하고 동일한 구성을 갖는 터치 센서에 비하여 20% 이상 감소된 것일 수 있고, 25% 이상 감소된 것일 수 있으며, 30% 이상 감소된 것일 수 있다. 예컨대, 25 ~ 50% 감소된 것일 수 있다.
본 출원에 있어서, 상기 터치 감지영역의 암색화 패턴은 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 상면 및/또는 하면에 구비될 수 있고, 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 상면 및 하면뿐만 아니라 측면의 적어도 일부분에 구비될 수 있으며, 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 상면, 하면 및 측면 전체에 구비될 수 있다.
본 출원에 있어서, 상기 터치 감지영역의 암색화 패턴은 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 전면(全面)에 구비됨으로서 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴의 높은 반사도에 따른 시인성을 감소시킬 수 있다. 이 때, 상기 암색화 패턴은 전도층과 같은 높은 반사도를 지니는 층과 결합시 특정 두께조건하에서 소멸간섭 및 자체적인 흡광성을 가지기 때문에 암색화 패턴에 의하여 반사되는 빛과 암색화 패턴을 거쳐서 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴에 의하여 반사되는 빛의 양을 서로 유사하게 맞춰줌과 동시에 아울러 특정 두께조건에서 두 빛간의 상호 소멸간섭을 유도해 줌으로써 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴에 의한 반사도를 낮춰 주는 효과를 나타내게 된다.
이 때, 본 출원에 따른 터치 감지영역의 암색화 패턴이 보이는 면에서 측정한, 암색화 패턴과 전도성 패턴으로 이루어진 패턴 영역의 색상범위는, CIE LAB 색좌표를 기준으로 L 값이 20 이하, A 값은 -10 ~ 10, B 값은 -70 ~ 70 일 수 있고, L 값이 10 이하, A 값은 -5 ~ 5, B 값은 0 ~ 35 일 수 있으며, L 값이 5 이하, A 값은 -2 ~ 2, B 값은 0 ~ 15 일 수 있다.
또한, 본 출원에 따른 터치 감지영역의 암색화 패턴이 보이는 면에서 측정한, 암색화 패턴과 구동 전극부, 감지 전극부 또는 배선 전극부의 전도성 패턴으로 이루어진 패턴 영역의 전반사율은 외부광 550nm를 기준으로 할 때, 17% 이하일 수 있고, 10% 이하일 수 있으며, 5% 이하일 수 있다.
여기서 전반사율(total reflectance)이란, 확산반사율(diffuse reflectance) 및 거울반사율(specular reflectance)을 모두 고려한 반사율을 의미한다. 상기 전반사율은, 반사율을 측정하고자 하는 면의 반대면을 블랙 페이스트(Black paste) 또는 테이프(tape) 등을 이용하여 반사율을 0으로 만든 후 측정하고자 하는 면의 반사도만을 측정하여 관찰한 값으로, 이 때 들어오는 광원은 주변광(ambient light) 조건과 가장 유사한 디퓨즈(diffuse) 광원을 도입하였다. 또한, 이 때 반사율을 측정하는 측정 위치는 적분구 반원의 수직선에서 약 7도 기울어진 위치를 기본으로 하였다.
본 출원에 있어서, 상기 암색화 패턴은 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴과 동시에 또는 별도로 패턴화될 수는 있으나, 각각의 패턴을 형성하기 위한 층은 별도로 형성된다. 그러나, 전도성 패턴과 암색화 패턴이 정확히 대응되는 면에 존재하기 위해서는 전도성 패턴과 암색화 패턴을 동시에 형성하는 것이 가장 바람직하다.
이와 같이 패턴을 형성함으로써 암색화 패턴 자체의 효과를 최적화 및 최대화하면서, 터치 센서에 요구되는 미세한 전도성 패턴을 구현할 수 있다. 터치 센서에 있어서, 미세한 전도성 패턴을 구현하지 못하는 경우, 저항 등 터치 센서에 요구되는 물성을 달성할 수 없다.
본 출원에 있어서, 상기 암색화 패턴과 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 별도의 패턴층이 적층 구조를 이루는 점에서, 흡광 물질의 적어도 일부가 전도성 패턴 내에 함몰 또는 분산되어 있는 구조나 단일층의 도전층이 표면처리에 의하여 표면측 일부가 물리적 또는 화학적 변형이 이루어진 구조와는 차별된다.
또한, 본 출원에 따른 터치 센서에 있어서, 상기 암색화 패턴은 접착층 또는 점착층을 개재하지 않고, 직접 상기 기재 상에 또는 직접 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴 상에 구비된다. 접착층 또는 점착층은 내구성이나 광학 물성에 영향을 미칠 수 있다. 또한, 본 출원에 따른 터치 센서에 포함되는 적층체는 접착층 또는 점착층을 이용하는 경우와 비교할 때 제조방법이 전혀 상이하다. 더욱이, 접착층이나 점착층을 이용하는 경우에 비하여, 본 출원에서는 기재 또는 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴과 암색화 패턴의 계면 특성이 우수하다.
본 출원에 있어서, 상기 암색화 패턴의 두께는 전술한 물리적 성질인 소멸간섭 특성과 흡수계수 특성을 지닌다면 빛의 파장을 λ라 하고, 암색화 패턴의 굴절률을 n으로 정의할 때, λ / (4 × n) = N (여기서 N은 홀수)의 두께조건을 만족하면 어떠한 두께든 무관하다. 다만, 제조공정 중 전도성 패턴과의 식각(etching) 특성을 고려하는 경우 10nm 내지 400nm 사이에서 선택하는 것이 바람직하지만, 사용하는 재료 및 제조 공정에 따라 바람직한 두께는 상이할 수 있으며, 본 출원의 범위가 상기 수치범위에 의하여 한정되는 것은 아니다.
상기 암색화 패턴은 단일층으로 이루어질 수도 있고, 2층 이상의 복수층으로 이루어질 수도 있다.
상기 암색화 패턴은 무채색(無彩色) 계열의 색상에 가까운 것이 바람직하다. 다만, 반드시 무채색일 필요는 없으며, 색상을 지니고 있더라도 낮은 반사도를 지니는 경우라면 도입 가능하다. 이 때, 무채색 계열의 색상이라 함은 물체의 표면에 입사(入射)하는 빛이 선택 흡수되지 않고 각 성분의 파장(波長)에 대해 골고루 반사 흡수될 때에 나타나는 색을 의미한다. 본 출원에 있어서, 상기 암색화 패턴은 가시광 영역(400nm ~ 800nm)에 있어서 전반사율 측정시 각 파장대별 전반사율의 표준편차가 50% 내인 재료를 사용할 수 있다.
상기 암색화 패턴의 재료로는 흡광성 재료로서, 바람직하게는 전면층을 형성했을 때 전술한 물리적 특성을 지니는 금속, 금속산화물, 금속 질화물 또는 금속 산질화물로 이루어진 재료라면 특별히 제한되지 않고 사용할 수 있다.
예컨대, 상기 암색화 패턴은 Ni, Mo, Ti, Cr 등을 이용하여 당업자가 설정한 증착 조건 등에 의하여 산화물막, 질화물막, 산화물-질화물막, 탄화물막, 금속막 또는 이들의 조합일 수 있다.
구체적인 예로서, 상기 암색화 패턴은 Ni 및 Mo를 동시에 포함할 수 있다. 상기 암색화 패턴은 Ni 50 ~ 98 원자% 및 Mo 2 ~ 50 원자%를 포함할 수 있으며, 그 외 금속, 예컨대 Fe, Ta, Ti 등의 원자를 0.01 ~ 10 원자%를 더 포함할 수 있다. 여기서, 상기 암색화 패턴은, 필요한 경우, 질소 0.01 ~ 30 원자% 또는 산소 및 탄소 4 원자% 이하를 더 포함할 수도 있다.
또 하나의 구체적인 예로서, 상기 암색화 패턴은 SiO, SiO2, MgF2 및 SiNx(x는 1 이상의 정수)에서 선택되는 유전성 물질 및 Fe, Co, Ti, V, Al, Cu, Au 및 Ag 중에서 선택되는 금속을 포함할 수 있으며, Fe, Co, Ti, V, Al, Cu, Au 및 Ag 중에서 선택되는 2원 이상의 금속의 합금을 더 포함할 수 있다. 상기 유전성 물질은 외부광이 입사되는 방향으로부터 멀어질수록 점차적으로 감소되도록 분포되어 있고, 상기 금속 및 합금 성분은 그 반대로 분포되어 있는 것이 바람직하다. 이 때, 상기 유전성 물질의 함량은 20 ~ 50 중량%, 상기 금속의 함량은 50 ~ 80 중량%인 것이 바람직하다. 상기 암색화 패턴이 합금을 더 포함하는 경우, 상기 암색화 패턴은 유전성 물질 10 ~ 30 중량%, 금속 50 ~ 80 중량% 및 합금 5 ~ 40 중량%를 포함하는 것이 바람직하다.
또 하나의 구체적인 예로서, 상기 암색화 패턴은 니켈과 바나듐의 합금, 니켈과 바나듐의 산화물, 질화물 또는 산질화물 중 어느 하나 이상을 포함하는 박막으로 이루어질 수 있다. 이 때, 바나듐은 26 ~ 52 원자%로 함유되는 것이 바람직하며, 니켈에 대한 바나듐의 원자비는 26/74 ~ 52/48인 것이 바람직하다.
또 하나의 구체적인 예로서, 상기 암색화 패턴은 2 이상의 원소를 갖고, 하나의 원소 조성비율이 외광이 입사하는 방향에 따라 100 옴스트롬당 최대 약 20%씩 증가하는 천이층을 포함할 수 있다. 이 때, 하나의 원소는 크롬, 텅스텐, 탄탈, 티탄, 철, 니켈 또는 몰리브덴과 같은 금속원소일 수 있으며, 금속원소 이외의 원소는 산소, 질소 또는 탄소일 수 있다.
또 하나의 구체적인 예로서, 상기 암색화 패턴은 제1 산화크롬층, 금속층, 제2 산화크롬층 및 크롬 미러를 포함할 수 있으며, 이 때 크롬을 대신하여 텅스텐, 바나듐, 철, 크롬, 몰리브덴 및 니오븀 중에서 선택된 금속을 포함할 수 있다. 상기 금속층은 10 ~ 30nm의 두께, 상기 제1 산화크롬층은 35 ~ 41nm의 두께, 상기 제2 산화크롬층은 37 ~ 42nm의 두께를 가질 수 있다.
또 구체적인 하나의 예로서, 상기 암색화 패턴으로는 알루미나(Al2O3)층, 크롬 산화물(Cr2O3)층 및 크롬(Cr)층의 적층 구조를 사용할 수 있다. 여기서, 상기 알루미나층은 반사 특성의 개선 및 광확산 방지특성을 갖고, 상기 크롬 산화물층은 경면 반사율을 감소시켜 콘트라스트 특성을 향상시킬 수 있다.
본 출원에 있어서, 상기 암색화 패턴은 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴에 대응되는 영역에 구비된다. 여기서 전도성 패턴에 대응되는 영역이라 함은 상기 전도성 패턴과 동일한 형상의 패턴을 가지는 것을 의미한다. 다만, 암색화 패턴의 패턴 규모가 상기 전도성 패턴과 완전히 동일한 필요는 없으며, 암색화 패턴의 선폭이 전도성 패턴의 선폭에 비하여 좁거나 넓은 경우도 본 출원의 범위에 포함된다. 예컨대, 상기 암색화 패턴은 상기 전도성 패턴이 구비된 면적의 80% 내지 120%의 면적을 가지는 것이 바람직하다.
상기 암색화 패턴은 상기 전도성 패턴의 선폭과 동일하거나 큰 선폭을 갖는 패턴 형태를 가지는 것이 바람직하다.
상기 암색화 패턴이 상기 전도성 패턴의 선폭보다 더 큰 선폭을 갖는 패턴 형상을 갖는 경우, 사용자가 바라볼 때 암색화 패턴이 전도성 패턴을 가려주는 효과를 더 크게 부여할 수 있으므로, 전도성 패턴 자체의 광택이나 반사에 의한 효과를 효율적으로 차단할 수 있다는 장점이 있다. 그러나, 상기 암색화 패턴의 선폭이 상기 전도성 패턴의 선폭과 동일하여도 본 출원에 목적하는 효과를 달성할 수 있다. 상기 암색화 패턴의 선폭은 전도성 패턴의 선폭보다 하기 수학식 2에 따른 값만큼 더 큰 폭을 지니는 것이 바람직하다.
[수학식 2]
Tcon × tangent Θ 3 × 2
상기 수학식 2에 있어서,
Tcon는 전도성 패턴의 두께이고,
Θ 3 는 터치 센서의 사용자의 시각이 위치한 곳으로부터 입사한 광이 상기 전도성 패턴 및 상기 암색화 패턴의 모서리를 통과할 때, 광이 기재 표면에 대한 법선과 이루는 각이다.
Θ 3 는 터치 센서의 사용자의 시각과 기재가 이루는 각(Θ 1 )이 기재의 굴절율 및 상기 암색화 패턴과 전도성 패턴이 배치된 영역의 매질, 예컨대 터치 센서의 점착제의 굴절율에 의하여 스넬의 법칙에 따라 변화된 각이다.
한 예로, 바라보는 사람이 Θ 3 의 값이 약 80도의 각을 이루도록 상기 적층체를 바라본다고 가정하고, 전도성 패턴의 두께가 약 200nm이라 가정하면, 암색화 패턴이 전도성 패턴 대비 선폭이 측면을 기준으로 할 때 약 2.24㎛(200nm × tan(80) × 2)만큼 큰 것이 바람직하다. 그러나, 앞서 기술한 바와 같이 암색화 패턴이 전도성 패턴과 동일한 선폭을 갖는 경우에도 본 출원에서 목적으로 하는 효과를 달성할 수 있다.
본 출원의 일구체예에 따르면, 터치 센서의 제조공정을 개선하여, 터치 센서의 제조원가를 절감할 수 있고, 터치 센서의 경량화, 박형화 등을 향상시킬 수 있다.
본 출원의 일 실시상태에 따르면, 단면 1매형의 터치 센서를 제공할 수 있으므로, 터치 센서의 두께를 최소화할 수 있으며, 단면에 전도성 패턴을 모두 형성하기 때문에 제조방법이 용이하다. 또한, 1매형이기 때문에, 2장 이상의 기재를 이용하여 형성하는 종래기술과 비교할 때 라미네이션을 하지 않아도 되는 장점이 있다. 또한, 구동 전극부와 감지 전극부가 같은 면상에 있기 때문에 FPCB(연성인쇄회로기판)의 설치 및 부착이 용이하다. 또한, 1매형이기 때문에 2매형에 비하여 광투과율이 우수하다. 또한, 터치 센서의 표면에 기능성 표면 필름을 라미네이션하는 경우, 단차가 크지 않기 때문에 기포가 차지 않는 장점이 있다.
본 출원의 일구체예에 따르면, 터치 센서의 제조공정을 개선하여, 터치 센서의 제조원가를 절감할 수 있고, 터치 센서의 경량화, 박형화 등을 향상시킬 수 있다.

Claims (17)

  1. 기재; 및 상기 기재 상의 동일 면 상에 구비된 구동 전극부, 감지 전극부 및 배선 전극부를 포함하는 터치 센서이고,
    상기 구동 전극부, 감지 전극부 및 배선 전극부는 각각 차폐부와 개구부를 포함하는 전도성 패턴을 포함하며,
    상기 배선 전극부는 터치 센서의 터치 감지영역에 위치한 제1 배선 전극부 및 터치 센서의 터치 비감지영역에 위치한 제2 배선 전극부를 포함하고, 상기 제1 배선 전극부는 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 연결하는 배선들의 번들(bundle)을 1 또는 2 이상 포함하고,
    상기 배선들 각각은 그물망 패턴으로 이루어지고,
    상기 번들 중 최대 개수의 배선들이 포함되는 번들에서, 상기 번들의 폭(W), 상기 번들에 포함되는 배선들의 개수(n), 및 상기 배선들을 구성하는 그물망 패턴 중 적어도 하나의 변을 공유하는 이웃한 그물망 구조들의 중심점들간의 거리 중 최소값(P)이 하기 식 1을 만족하는 것을 특징으로 하는 터치 센서:
    [식 1]
    Figure PCTKR2014012362-appb-I000006
  2. 기재; 및 상기 기재 상의 동일 면 상에 구비된 구동 전극부, 감지 전극부 및 배선 전극부를 포함하는 터치 센서이고,
    상기 구동 전극부, 감지 전극부 및 배선 전극부는 차폐부와 개구부를 포함하는 전도성 패턴을 포함하며,
    상기 배선 전극부는 터치 센서의 터치 감지영역에 위치한 제1 배선 전극부 및 터치 센서의 터치 비감지영역에 위치한 제2 배선 전극부를 포함하고, 상기 제1 배선 전극부는 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 연결하는 배선들의 번들(bundle)을 1 또는 2 이상 포함하고,
    상기 번들은 2개의 단선점을 갖는 폐쇄도형이, 상기 제2 배선 전극의 단부에 인접한 상기 기재의 일 변으로부터 이에 대향하는 기재의 타 변까지의 방향으로 연속 배치되는 패턴의 형태로 이루어지고,
    상기 연속 배치된 폐쇄도형들의 인접하는 단선점들을 최단거리로 연결한 가상의 직선은 1 이상의 변곡점을 갖고, 상기 변곡점에서 상기 가상의 직선이 이루는 각은 90도 이상이고,
    상기 가상의 직선에 접하는 패턴은 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 전기적으로 연결하는 것을 특징으로 하는 터치 센서.
  3. 청구항 1에 있어서, 상기 식 1은 하기 식 2로 표시되는 것을 특징으로 하는 터치 센서:
    [식 2]
    Figure PCTKR2014012362-appb-I000007
    상기 식 2에서, W, n 및 P는 상기 식 1에서 정의한 바와 동일하고,
    θ1은 상기 번들의 폭 방향으로 최단거리를 잇는 직선과, 적어도 하나의 변을 공유하는 이웃한 그물망 구조들의 중심점들을 최단거리로 잇는 직선이 이루는 각 중 작은 값을 나타낸다.
  4. 청구항 1에 있어서, 상기 번들은 2개의 단선점을 갖는 폐쇄도형이, 상기 제2 배선 전극의 단부에 인접한 상기 기재의 일 변으로부터 이에 대향하는 기재의 타 변까지의 방향으로 연속 배치되는 패턴의 형태로 이루어지고,
    상기 연속 배치된 폐쇄도형들의 인접하는 단선점들을 최단거리로 연결한 가상의 직선은 1 이상의 변곡점을 갖고, 상기 변곡점에서 상기 가상의 직선이 이루는 각은 90도 이상이고,
    상기 가상의 직선에 접하는 패턴은 상기 구동 전극부 또는 상기 감지 전극부를 상기 제2 배선 전극부에 전기적으로 연결하는 것을 특징으로 하는 터치 센서.
  5. 청구항 4에 있어서, 상기 식 1은 하기 식 3으로 표시되는 것을 특징으로 하는 터치 센서:
    [식 3]
    상기 식 3에서, W, n 및 P는 상기 식 1에서 정의한 바와 동일하고,
    θ2는 상기 단선점들을 최단거리로 연결한 가상의 직선에 대하여 수직방향의 직선과, 적어도 하나의 변을 공유하는 이웃한 그물망 구조들의 중심점들을 최단거리로 잇는 직선이 이루는 각 중 작은 값을 나타낸다.
  6. 청구항 2에 있어서, 상기 가상의 직선 중 변곡점 사이의 길이가 가장 긴 부분이,
    상기 폐쇄도형을 구성하는 적어도 하나의 변과 서로 평행하거나, 0도 초과 90도 미만의 각을 이루는 것을 특징으로 하는 터치 센서.
  7. 청구항 1 또는 2에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부는 전도성 금속선으로 이루어진 것을 특징으로 하는 터치 센서.
  8. 청구항 7에 있어서, 상기 전도성 금속선은 금, 은, 알루미늄, 구리, 네오디윰, 몰리브덴, 니켈 및 이들의 합금으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 터치 센서.
  9. 청구항 1 또는 2에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 전도성 패턴은 각각 독립적으로, 상기 패턴 상에 암색화 패턴을 추가로 포함하는 것을 특징으로 하는 터치 센서.
  10. 청구항 2에 있어서, 상기 단선점의 평균 지름은 13㎛ 이하인 것을 특징으로 하는 터치 센서.
  11. 청구항 1 또는 2에 있어서, 상기 구동 전극부 및 감지 전극부의 전도성 패턴 중 적어도 일부는 단선점을 포함하고,
    상기 단선점의 평균 지름은 13㎛ 이하인 것을 특징으로 하는 터치 센서.
  12. 청구항 11에 있어서, 상기 구동 전극부 및 감지 전극부는 전도성 금속선으로 이루어지고,
    상기 단선점은 상기 구동 전극부 또는 감지 전극부 내 전도성 금속선이 서로 교차하는 교차점 영역에 구비되는 것을 특징으로 하는 터치 센서.
  13. 청구항 1 또는 2에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부의 패턴은 각각 독립적으로 다각형의 메쉬 패턴을 포함하는 것을 특징으로 하는 터치 센서.
  14. 청구항 1 또는 2에 있어서, 상기 번들의 폭이 W이고, (W × W)의 면적을 기준으로,
    상기 (W × W)의 면적에 대응되는 상기 터치 센서의 임의의 영역들 간의 개구율 편차는 10% 이내인 것을 특징으로 하는 터치 센서.
  15. 청구항 1 또는 2에 있어서, 상기 구동 전극부, 감지 전극부 및 배선 전극부는 1회의 인쇄공정에 의하여 동시에 형성되는 것을 특징으로 하는 터치 센서.
  16. 청구항 1 또는 2에 있어서, 상기 터치 센서는 뮤추얼 캐패시턴스 방식을 이용하여 터치 입력을 인식하는 것을 특징으로 하는 터치 센서.
  17. 청구항 1 또는 2의 터치 센서를 포함하는 디스플레이 장치.
PCT/KR2014/012362 2013-12-13 2014-12-15 터치 센서 및 이의 제조방법 WO2015088295A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/039,732 US10261638B2 (en) 2013-12-13 2014-12-15 Touch sensor and method for manufacturing same
JP2016534159A JP6497752B2 (ja) 2013-12-13 2014-12-15 タッチセンサおよびその製造方法{touch sensor and method for manufacturing same}
EP14870184.0A EP3082023A4 (en) 2013-12-13 2014-12-15 Touch sensor and method for manufacturing same
CN201480068350.XA CN105830000B (zh) 2013-12-13 2014-12-15 触控传感器以及该触控传感器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0155800 2013-12-13
KR20130155800 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015088295A1 true WO2015088295A1 (ko) 2015-06-18

Family

ID=53371513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012362 WO2015088295A1 (ko) 2013-12-13 2014-12-15 터치 센서 및 이의 제조방법

Country Status (7)

Country Link
US (1) US10261638B2 (ko)
EP (1) EP3082023A4 (ko)
JP (1) JP6497752B2 (ko)
KR (1) KR101682773B1 (ko)
CN (1) CN105830000B (ko)
TW (1) TWI559186B (ko)
WO (1) WO2015088295A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849149B1 (ko) * 2014-01-16 2018-04-16 미쓰비시 세이시 가부시키가이샤 광투과성 도전재료
WO2017111540A1 (ko) * 2015-12-23 2017-06-29 주식회사 엘지화학 터치스크린 센서
KR102382042B1 (ko) 2016-06-21 2022-04-04 삼성디스플레이 주식회사 터치 센싱 유닛 및 이를 포함하는 전자 장치
JPWO2018123974A1 (ja) * 2016-12-28 2019-06-27 株式会社フジクラ 配線体、配線基板、及びタッチセンサ
WO2019049617A1 (ja) * 2017-09-05 2019-03-14 富士フイルム株式会社 導電性フィルム、タッチパネルセンサー、及びタッチパネル
JP7346879B2 (ja) * 2019-04-02 2023-09-20 村田機械株式会社 磁気式リニアセンサ
DE102019214417A1 (de) * 2019-09-23 2021-03-25 Aktiebolaget Skf Verfahren zum Beschichten einer Sensoreinheit und zugehörige Sensoreinheit
CN114072756B (zh) 2020-05-29 2023-10-20 京东方科技集团股份有限公司 显示面板、触控结构和显示装置
CN111596805B (zh) * 2020-07-27 2020-10-23 武汉华星光电半导体显示技术有限公司 触控显示装置
JP2022550652A (ja) * 2020-09-01 2022-12-05 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー 電場法を用いた形態可変型マイクロパターン化高分子触覚素材の製造方法
TWI746264B (zh) * 2020-11-13 2021-11-11 友達光電股份有限公司 觸控裝置
KR102584917B1 (ko) * 2022-12-13 2023-10-05 주식회사 에스피에스 투명성을 갖는 유연성 터치 센서 모듈 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100123670A1 (en) * 2008-11-15 2010-05-20 Atmel Corporation Touch Screen Sensor
US20100302204A1 (en) * 2009-05-29 2010-12-02 Mitsubishi Electric Corporation Touch panel and display apparatus having the same
KR20110127429A (ko) * 2010-05-19 2011-11-25 주식회사 일야 금속박막을 이용한 터치패널 및 그 제조방법
US20130100054A1 (en) * 2009-10-29 2013-04-25 Harald Philipp Dual-Substrate-Sensor Stack With Electrodes Opposing a Display
US20130127775A1 (en) * 2011-11-22 2013-05-23 Esat Yilmaz Single-Layer Touch Sensor with Crossovers

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017071B (zh) * 2008-02-28 2013-12-18 3M创新有限公司 图案化基底上的导体的方法
US8921726B2 (en) * 2009-02-06 2014-12-30 Lg Chem, Ltd. Touch screen and manufacturing method thereof
JP5174745B2 (ja) * 2009-06-09 2013-04-03 グンゼ株式会社 タッチスイッチ
TWI441049B (zh) 2009-10-09 2014-06-11 Egalax Empia Technology Inc 分辨單觸或雙觸的方法與裝置
KR20110076188A (ko) * 2009-12-29 2011-07-06 삼성전자주식회사 정전 용량 센싱 장치 및 제조방법
JP5647864B2 (ja) 2010-11-05 2015-01-07 富士フイルム株式会社 タッチパネル
JP5589859B2 (ja) * 2011-01-14 2014-09-17 ソニー株式会社 位置情報補正装置、タッチセンサ、位置情報補正方法、及びプログラム
TWI471796B (zh) * 2011-02-11 2015-02-01 Wintek Corp 觸控顯示裝置
CN102985900B (zh) * 2011-02-24 2016-05-25 谱瑞科技股份有限公司 单层触摸传感器
CN103443137A (zh) 2011-03-25 2013-12-11 埃克森美孚化学专利公司 支化的乙烯基封端的聚合物及其制造方法
CN103477398B (zh) * 2011-03-28 2016-12-07 Lg化学株式会社 导电基板和包含其的触摸屏
WO2012169864A2 (ko) * 2011-06-10 2012-12-13 (주)삼원에스티 터치패널센서
KR101381729B1 (ko) * 2011-07-05 2014-04-17 전자부품연구원 단일 금속박막 터치패널 및 제조방법
KR20140059196A (ko) * 2011-09-06 2014-05-15 도판 인사츠 가부시키가이샤 일체형 터치 센서 기판, 이를 구비하는 표시 장치 및 일체형 터치 센서 기판의 제조 방법
US20140168543A1 (en) 2011-09-27 2014-06-19 Lg Chem, Ltd. Touch panel comprising conductive pattern
KR101379963B1 (ko) * 2011-09-27 2014-04-01 주식회사 엘지화학 투명 전도성 기판 및 이의 제조방법
US20140151098A1 (en) 2011-09-27 2014-06-05 Lg Chem, Ltd Conductive substrate comprising conductive pattern and touch panel comprising same
US8711292B2 (en) * 2011-11-22 2014-04-29 Atmel Corporation Integrated touch screen
KR102029434B1 (ko) * 2011-12-12 2019-10-08 엘지디스플레이 주식회사 정전용량 방식 터치 스크린 패널
KR101376089B1 (ko) 2011-12-30 2014-03-20 (주)멜파스 접촉 감지 장치 및 접촉 감지 장치 제조 방법
KR101340026B1 (ko) 2012-02-08 2013-12-10 (주)이엔에이치 정전용량 방식의 터치스크린 패널 및 그 제조방법
TWM445719U (zh) * 2012-05-22 2013-01-21 Inv Element Inc 具金屬感應層之內嵌式觸控顯示面板結構
KR101553604B1 (ko) * 2012-06-04 2015-09-16 크루셜텍 (주) 터치 검출 장치 및 방법
US20140041999A1 (en) * 2012-08-13 2014-02-13 Samsung Electro-Mechanics Co., Ltd. Touch panel
WO2014050306A1 (ja) * 2012-09-26 2014-04-03 三菱電機株式会社 タッチスクリーン
JP6031980B2 (ja) * 2012-12-04 2016-11-24 三菱電機株式会社 タッチスクリーン
JP6001089B2 (ja) * 2012-12-18 2016-10-05 富士フイルム株式会社 表示装置及び導電性フイルムのパターンの決定方法
KR101750776B1 (ko) * 2013-02-05 2017-06-26 후지필름 가부시키가이샤 도전성 필름, 그것을 구비하는 표시 장치 및 도전성 필름의 평가 방법
KR102002884B1 (ko) * 2015-06-14 2019-07-24 주식회사 엘지화학 터치 센서 및 이의 제조방법
KR102002882B1 (ko) * 2015-06-14 2019-07-24 주식회사 엘지화학 터치 센서 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100123670A1 (en) * 2008-11-15 2010-05-20 Atmel Corporation Touch Screen Sensor
US20100302204A1 (en) * 2009-05-29 2010-12-02 Mitsubishi Electric Corporation Touch panel and display apparatus having the same
US20130100054A1 (en) * 2009-10-29 2013-04-25 Harald Philipp Dual-Substrate-Sensor Stack With Electrodes Opposing a Display
KR20110127429A (ko) * 2010-05-19 2011-11-25 주식회사 일야 금속박막을 이용한 터치패널 및 그 제조방법
US20130127775A1 (en) * 2011-11-22 2013-05-23 Esat Yilmaz Single-Layer Touch Sensor with Crossovers

Also Published As

Publication number Publication date
CN105830000B (zh) 2019-02-12
US20160364043A1 (en) 2016-12-15
TWI559186B (zh) 2016-11-21
JP6497752B2 (ja) 2019-04-10
EP3082023A4 (en) 2017-08-23
JP2016540304A (ja) 2016-12-22
KR20150069568A (ko) 2015-06-23
EP3082023A1 (en) 2016-10-19
TW201543293A (zh) 2015-11-16
US10261638B2 (en) 2019-04-16
KR101682773B1 (ko) 2016-12-05
CN105830000A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2015088295A1 (ko) 터치 센서 및 이의 제조방법
WO2014084697A1 (ko) 터치스크린 및 이의 제조방법
WO2016204488A1 (ko) 터치 센서 및 이의 제조방법
WO2013157858A2 (ko) 전도성 구조체 및 이의 제조방법
WO2012121519A2 (ko) 전도성 구조체 및 이의 제조방법
WO2018155940A1 (ko) 편광층 및 터치 센서 일체형 광학 적층체 및 이를 포함하는 화상 표시 장치
WO2015076572A1 (ko) 전도성 구조체 및 이의 제조방법
WO2014137192A2 (ko) 금속 세선을 포함하는 투명 기판 및 그 제조 방법
WO2014035207A1 (ko) 전도성 구조체 및 이의 제조방법
WO2016159602A1 (ko) 전도성 구조체, 이의 제조방법 및 전도성 구조체를 포함하는 전극
WO2016204487A1 (ko) 터치 센서 및 이의 제조방법
WO2015065162A1 (ko) 전도성 구조체 및 이의 제조방법
WO2017048077A1 (ko) 편광자 보호필름, 이를 포함하는 편광판 및 상기 편광판을 포함하는 액정 디스플레이 장치
WO2015126088A1 (en) Touch window and display with the same
WO2015093855A1 (ko) 굴절률 매칭용 조성물, 이를 이용하여 제조된 터치스크린 기판 및 표시장치
WO2016137282A1 (ko) 전도성 구조체 및 이의 제조방법
WO2017078247A1 (ko) 필름 터치 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534159

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15039732

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014870184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014870184

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE