WO2015087847A1 - ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法 - Google Patents

ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法 Download PDF

Info

Publication number
WO2015087847A1
WO2015087847A1 PCT/JP2014/082468 JP2014082468W WO2015087847A1 WO 2015087847 A1 WO2015087847 A1 WO 2015087847A1 JP 2014082468 W JP2014082468 W JP 2014082468W WO 2015087847 A1 WO2015087847 A1 WO 2015087847A1
Authority
WO
WIPO (PCT)
Prior art keywords
perhydropolysilazane
phps
film
present
xylol
Prior art date
Application number
PCT/JP2014/082468
Other languages
English (en)
French (fr)
Inventor
聡也 岡村
崇 神田
一成 櫻井
ベルント バートラム バーニッケル
宏幸 青木
Original Assignee
アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ filed Critical アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ
Priority to KR1020167018321A priority Critical patent/KR101817927B1/ko
Priority to SG11201604172UA priority patent/SG11201604172UA/en
Priority to CN201480066142.6A priority patent/CN105793963B/zh
Priority to US15/039,440 priority patent/US9793109B2/en
Priority to EP14868948.2A priority patent/EP3082153B1/en
Publication of WO2015087847A1 publication Critical patent/WO2015087847A1/ja
Priority to IL245736A priority patent/IL245736B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Definitions

  • the present invention relates to a perhydropolysilazane capable of forming a siliceous film with few defects in the manufacturing process of a semiconductor element or the like, and a composition containing the perhydropolysilazane.
  • the present invention also relates to a method for forming a siliceous film using them.
  • interlayer insulating films are formed between transistor elements and bit lines, between bit lines and capacitors, between capacitors and metal wires, between metal wires, etc. Have been made. Further, an insulating material may be embedded in an isolation groove provided on the substrate surface or the like. Furthermore, after a semiconductor element is formed on the substrate surface, a coating layer may be formed using a sealing material to form a package. Such an interlayer insulating film and coating layer are often formed of a siliceous material.
  • a method for forming a siliceous film a chemical vapor deposition method (CVD method), a sol-gel method, a method of applying and baking a composition containing a silicon-containing polymer, and the like are used.
  • CVD method chemical vapor deposition method
  • sol-gel method a method of applying and baking a composition containing a silicon-containing polymer
  • a method for forming a siliceous film using a composition is often employed because it is relatively simple.
  • a composition containing a silicon-containing polymer such as polysilazane, polysiloxane, polysiloxazan, or polysilane is applied to the surface of a substrate and baked, and then included in the polymer. Silicon is oxidized to form a siliceous film.
  • a method for reducing defects in the siliceous film to be formed has been studied.
  • Patent Document 1 a method for reducing defects in a siliceous film by reducing a polymer component having an excessive molecular weight
  • Patent Document 2 hydrogenated polysilazane
  • Patent Document 3 a polysilazane having a specific elemental composition and a filler containing polysiloxazan (Patent Document 3) for filling a gap in a semiconductor element, and a film-forming composition using polysilazane having a specific structure (Patent Document) 4 and 5) have been studied, however, the compositions described in these documents are not intended to reduce defects in the siliceous film or silicon nitride film to be formed. Is not allowed.
  • a silicon-containing polymer or a composition containing the same that can suppress or prevent the occurrence of defects and form a siliceous film with few defects is desired. It was rare.
  • the perhydropolysilazane according to the present invention is a perhydropolysilazane having a weight average molecular weight of 5,000 or more and 17,000 or less, and 1 H-NMR of a 17% by weight solution obtained by dissolving the perhydropolysilazane in xylol was measured.
  • the ratio of the amounts of SiH 1 and 2 based on the amount of aromatic ring hydrogen of xylol, is 0.235 or less, and the ratio of the amount of NH is 0.055 or less.
  • the curable composition according to the present invention is characterized by comprising the perhydropolysilazane and a solvent.
  • the method for forming a siliceous film according to the present invention is characterized by comprising applying the curing composition onto a substrate and heating.
  • the perhydropolysilazane according to the present invention is highly stable against oxidation, and a siliceous film with few defects can be formed by using a composition containing this perhydropolysilazane. Furthermore, the obtained siliceous film has the characteristics that shrinkage at the time of curing is small, the wet etching rate is small, and cracks are hardly generated. For this reason, the manufacturing efficiency of an electronic device can be improved by forming an electronic device using the composition.
  • the perhydropolysilazane (hereinafter referred to as PHPS) according to the present invention is a silicon-containing polymer containing a Si—N bond as a repeating unit and consisting only of Si, N, and H. In this PHPS, except for the Si—N bond, all elements bonded to Si and N are H, and other elements such as carbon and oxygen are not substantially contained.
  • the simplest structure of perhydropolysilazane is a chain structure having the following repeating unit (I).
  • PHPS having a chain structure and a cyclic structure in the molecule may be used.
  • Such PHPS has a branched structure or a cyclic structure in the molecule, and an example of a specific partial structure of such PHPS is represented by the following general formula.
  • it may have a structure represented by the following formula, that is, a structure in which a plurality of Si—N molecular chains are crosslinked.
  • the PHPS according to the present invention is not limited as long as it is a silicon-containing polymer containing a Si—N bond as a repeating unit and composed only of Si, N, and H, and includes various other structures exemplified above. I can take it. For example, you may have the structure which combined the above-mentioned linear structure, cyclic structure, and bridge
  • the PHPS in the present invention preferably has a cyclic structure or a crosslinked structure, particularly a crosslinked structure.
  • the PHPS according to the present invention needs to have a specific molecular weight.
  • the composition containing PHPS according to the present invention is heated to convert it to siliceous, the low molecular components that are scattered (evaporated) are reduced, the volume shrinkage caused by the scattering of the low molecular components, and hence the inside of the fine groove
  • the weight average molecular weight of PHPS is large.
  • the weight average molecular weight of PHPS according to the present invention is required to be 5,000 or more, and preferably 5,700 or more.
  • PHPS is dissolved in a solvent to form a composition, it is necessary to increase the applicability of the composition.
  • the viscosity of the composition becomes excessively high, and the uneven portion is formed. It is necessary to control the curing rate of the composition in order to ensure the permeability of the composition.
  • the weight average molecular weight of PHPS according to the present invention needs to be 17,000 or less, and preferably 15,000 or less.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight, and can be measured by gel permeation chromatography as a standard for polystyrene.
  • the PHPS according to the present invention is characterized by a molecular structure, and has a feature that it has less —SiH 1,2 — and —NH— structures than the conventionally known PHPS. That is, there are relatively many branched structures or crosslinked structures in the PHPS molecule. Specifically, the repeating unit (Ia) constituting PHPS is relatively small and (Ib) to (If) are large.
  • Such structural features can be detected by quantitative NMR. That is, PHPS according to the present invention exhibits a specific characteristic value when evaluated by quantitative NMR.
  • Quantitative NMR quantitative NMR
  • the analysis is performed by comparing the integrated value of the signal derived from the internal standard substance and the measurement target substance (internal standard method).
  • PHPS using xylol (xylene) measured by 1 H-NMR as internal standard, in PHPS molecule (1) with reference to the aromatic ring hydrogenation of xylene, SiH 2 (in the formula ( Ia) and (Ib)) and SiH 1 (corresponding to (Ic) and (Id) in the above formula) relative value (hereinafter referred to as R (SiH 1,2 )), and (2) Relative value of the total amount of NH (corresponding to (Ia), (Ic) and (Ie) in the above formula) based on the aromatic ring hydrogen of xylol (hereinafter referred to as R (NH)) Is in a specific range. Note that (If) in the above formula is not detected by 1 H-NMR and can be ignored.
  • a sample PHPS
  • xylol a sample dissolved in xylol at a concentration of 17% by weight to prepare a polymer solution.
  • 51 mg of the obtained polymer solution is dissolved in 1.0 g of a heavy solvent such as deuterated chloroform (manufactured by Kanto Chemical Co., Inc.) to obtain a sample solution.
  • 1 H-NMR of the sample solution is measured 64 times using a JNM-ECS400 type nuclear magnetic resonance apparatus (trade name, manufactured by JEOL Ltd.) to obtain an NMR spectrum.
  • FIG. 1 is an example of an NMR spectrum of PHPS according to the present invention obtained by this method.
  • the amount of NH can be determined by subtracting the ethyl group of ethylbenzene determined from the above.
  • the ratio (c) of the amount of hydrogen based on the amount of is as follows.
  • the corrected spectral integral value (b) for ArH and NH was determined as follows.
  • R (SiH 1,2 ) is at 0.235 or less is preferably 0.230 or less.
  • R (SiH 1,2 ) is generally 0.187 or more and preferably 0.195 or more from the viewpoint of ease of manufacture of PHPS, particularly solubility of the synthesized polymer.
  • R (NH) is 0.055 or less, and preferably 0.050 or less.
  • R (NH) is generally 0.038 or more, and preferably 0.042 or more, from the viewpoint of ease of manufacture of PHPS, particularly solubility of the synthesized polymer.
  • the ratio of the total amount of SiH 2 and SiH 1 based on the amount of SiH 3 or the amount of NH based on the total amount of hydrogen is small.
  • qNMR measurement is basically performed using a solution having a PHPS concentration of 17% with respect to xylol.
  • the 17% by weight solution of xylol cannot be adjusted due to the solubility of PHPS, or if it is advantageous to measure an existing solution, it is converted to a 17% by weight concentration based on the concentration of the solution to be measured. It is also possible to do.
  • PHPS having such a specific structure is characterized in that it is hardly oxidized when it is applied as a composition on a substrate and comes into contact with the atmosphere. Further, when a siliceous film is formed using PHPS according to the present invention, the number of defects is suppressed. The reason for this is that, since the PHPS has a specific structure, the reactivity with water vapor is suppressed, so that, for example, oxidation from the atmosphere immediately after the application of PHPS can be suppressed, and the curing reaction is controlled at an appropriate rate. It is considered that the occurrence of defects is suppressed. [Method for producing perhydropolysilazane]
  • PHPS according to the present invention can generally be synthesized by forming a low molecular weight inorganic polysilazane and further polycondensing the low molecular weight inorganic polysilazane in the presence of a basic compound.
  • the PHPS according to the present invention can be produced by reacting at a relatively high temperature and for a relatively long time with respect to the conventional method.
  • a low molecular weight inorganic polysilazane may be formed by reacting dichlorosilane with a basic compound such as pyridine to form an adduct and reacting the adduct with ammonia.
  • the low molecular weight inorganic polysilazane which is an intermediate product, is heated in a basic solvent or a solvent containing a basic compound and subjected to a polycondensation reaction, whereby the PHPS according to the present invention can be formed.
  • a basic compound a compound containing a basic element such as nitrogen or phosphorus, for example, a tertiary amine, a secondary amine having a sterically hindered group, or phosphine can be used. .
  • the reaction solvent used in the present invention is a solvent obtained by adding such a basic compound to a non-basic solvent or a solvent composed of the basic compound itself.
  • the addition amount of the basic compound is conventionally at least 5 parts by weight with respect to 100 parts by weight of the non-basic solvent (Patent Document 1).
  • Patent Document 1 the cross-linking reaction between —SiH 1,2 — and —NH— in the inorganic silazane skeleton is promoted, and the condensation reaction or decomposition reaction between —SiH 3 and —NH— is suppressed.
  • the ratio of the basic compound to 100 parts by weight of the non-basic solvent is preferably at least 100 parts or more, and more preferably 185 parts or more. If the amount of the basic compound is less than this, -SiH 1, 2 - sometimes a polycondensation reaction of -NH- is not smoothly promoted.
  • Any basic compound or basic solvent may be used as long as it does not decompose inorganic polysilazane.
  • examples of such compounds include trialkylamines such as trimethylamine, dimethylethylamine, diethylmethylamine and triethylamine, and tertiary amines such as pyridine, picoline, dimethylaniline, pyrazine, pyrimidine, pyridazine and derivatives thereof.
  • non-basic solvent examples include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbon hydrocarbon solvents, halogenated hydrocarbons such as halogenated methane, halogenated ethane, and halogenated benzene; Ethers such as aromatic ethers and alicyclic ethers can be used.
  • Preferred solvents are halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride, trichloroethane, tetrachloroethane, ethyl ether, isopropyl ether, ethyl butyl ether, butyl ether, 1,2-dioxyethane, dioxane.
  • halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride, trichloroethane, tetrachloroethane, ethyl ether, isopropyl ether, ethyl butyl ether, butyl ether, 1,2-dioxyethane, dioxane.
  • Ethers such as dimethyldioxane, tetrahydrofuran, tetrahydropyran, pentane, hexane, isohexane, methylpentane, heptane, isoheptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, etc. Hydrocarbons and the like.
  • the polycondensation reaction of the present invention is carried out in a solvent as described above.
  • the concentration of the inorganic polysilazane in the solvent is generally 0.1% by weight to 50% by weight, preferably 1% by weight to 12% by weight. is there. If the concentration of the inorganic polysilazane is lower than this, the intermolecular polycondensation reaction does not proceed sufficiently, and if it is higher than that, the intermolecular polycondensation reaction proceeds excessively to form a gel.
  • the reaction temperature is generally 40 ° C. to 200 ° C., preferably 80 ° C.
  • the polycondensation reaction does not proceed sufficiently at lower temperatures, and only the crosslinking reaction intended by the present invention at higher temperatures.
  • the decomposition reaction of the inorganic polysilazane occurs at the same time, the structure control becomes difficult, and the polycondensation reaction proceeds too much to generate a gel.
  • air can be used as the reaction atmosphere, a hydrogen atmosphere, an inert gas atmosphere such as dry nitrogen or dry argon, or a mixed atmosphere thereof is preferably used.
  • pressure is applied during the reaction due to hydrogen as a by-product, but pressurization is not necessarily required, and normal pressure can be employed.
  • the reaction time varies depending on various conditions such as the type and concentration of inorganic polysilazane and the type and concentration of the basic compound or basic solvent, and the polycondensation reaction temperature, but is generally in the range of 0.5 to 40 hours. Is enough.
  • the optimum conditions for the polycondensation reaction to form PHPS according to the present invention depend on the average molecular weight and molecular weight distribution of the inorganic polysilazane, but the lower the average molecular weight of the inorganic polysilazane, the higher the reaction temperature or the longer the reaction time is. It is said. That is, when the reaction temperature is increased or the reaction time is increased, the molecular weight of PHPS formed is generally increased. On the other hand, as described above, when the molecular weight of PHPS becomes too large, the applicability of the composition and the solubility in a synthetic solvent tend to decrease. Such reaction conditions also cause an increase in manufacturing costs.
  • the upper limit of the molecular weight of PHPS currently in general use is 3,000 to 3,500. For this reason, increasing the reaction temperature, increasing the reaction time, and obtaining a large molecular weight PHPS is feared because the applicability of the composition containing the PHPS and the solubility in a synthetic solvent are inferior. Was avoided.
  • the inorganic polysilazane is polymerized to have a high molecular weight.
  • the molecular chains of the polysilazane are cross-linked with each other.
  • the —SiH3 group present at the end of the molecular chain is not so much for the cross-linking reaction.
  • —SiH 1,2 — and —NH— in the middle of the molecular chain react with each other, so that the PHPS according to the present invention is formed with relatively little SiH1,2 and NH.
  • a solvent solution containing a high molecular weight PHPS is obtained.
  • the solution composition is adjusted so that the basic compound or the basic solvent content is 30 wt% in the total solvent. % Or less, preferably 5% by weight or less. Since the basic compound or basic solvent acts as an intermolecular polycondensation reaction catalyst for PHPS, if the ratio of the basic compound or basic solvent to the total solvent is too large, a gel may be formed during storage at room temperature for a long time. Because there is.
  • This solution composition is adjusted by, for example, heating the PHPS solution obtained by the above polycondensation reaction, distilling off the basic compound or solvent contained therein, and then adding a non-basic (non-reactive) solvent. Can be done.
  • a non-basic solvent that can be used for improving the stability of the solution in the present invention include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, aliphatics as described above. Ether, alicyclic ether, and the like can be used.
  • the curable composition according to the present invention contains the aforementioned PHPS and a solvent.
  • Solvents used to prepare this composition liquid include (a) aromatic compounds such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, triethylbenzene, etc.
  • unsaturated hydrocarbons such as cyclohexene, etc.
  • ethers such as dipropyl ether, dibutyl ether, anisole, etc.
  • esters such as acetic acid n -Butyl, acetic acid i- Chill acetate n- amyl acetate i- amyl,
  • ketones such as methyl isobutyl ketone (MIBK) and the like, but are exemplified, but not limited to. Further, by using a plurality of types of solvents, the solubility of PHPS and the evaporation rate of the solvent can be adjusted.
  • the amount of the solvent to be added to the composition is such that the workability is improved by the applied coating method, and the PHPS used is taken into consideration the permeability of the solution into the fine groove and the film thickness required outside the groove. Can be appropriately selected according to the weight average molecular weight, distribution and structure thereof.
  • the curable composition according to the invention generally comprises 0.1 to 70% by weight, preferably 1 to 30% by weight of PHPS, based on the total weight of the composition.
  • the method for forming a siliceous film according to the present invention comprises applying the curing composition to a substrate and heating.
  • the shape of the substrate is not particularly limited and can be arbitrarily selected according to the purpose.
  • the curable composition according to the present invention has a feature that it can easily penetrate into narrow grooves and the like and can form a uniform siliceous film even inside the grooves, so that the substrate having grooves and holes with a high aspect ratio. It is preferable to apply to. Specifically, it is preferably applied to a substrate having at least one groove having a deepest portion width of 0.2 ⁇ m or less and an aspect ratio of 2 or more.
  • the shape of the groove is not particularly limited, and the cross section may be any shape such as a rectangle, a forward taper shape, a reverse taper shape, a curved surface shape, and the like. Further, both end portions of the groove may be open or closed.
  • a representative example of a base material having at least one groove having a high aspect ratio is a substrate for an electronic device including a transistor element, a bit line, a capacitor, and the like.
  • an insulating film called a PMD between a transistor element and a bit line, between a transistor element and a capacitor, between a bit line and a capacitor, or between a capacitor and a metal wiring
  • a process of forming an insulating film between a plurality of metal wirings called IMD or embedding an isolation groove is followed by a through-hole plating process for forming a hole penetrating vertically through the embedding material of the fine groove.
  • the present invention is suitable for any other application that requires embedding with a homogeneous siliceous material inside and outside the groove of a base material having a high aspect ratio.
  • Examples of such applications include undercoat of liquid crystal glass (passivation film such as Na), overcoat of liquid crystal color filter (insulation flattening film), gas barrier of film liquid crystal, hard coating of base material (metal, glass), heat resistance -Oxidation resistant coating, antifouling coating, water repellent coating, hydrophilic coating, glass, UV cut coating of plastic, and colored coating.
  • curable composition there are no particular restrictions on the method of applying the curable composition to such a substrate, and examples include ordinary coating methods such as spin coating, dipping, spraying, transfer, and slit coating.
  • a drying process is performed under the treatment conditions of 10 seconds to 30 minutes at a temperature of 50 to 400 ° C. in the air, in an inert gas or oxygen gas for the purpose of drying or precuring the coating film. Do.
  • the solvent is removed by drying, and the fine groove is substantially filled with PHPS.
  • the PHPS contained inside and outside the groove is heated to be converted into a siliceous material. It is preferable to heat in an atmosphere containing water vapor when heating.
  • the atmosphere containing water vapor means an atmosphere having a water vapor partial pressure in the range of 0.5 to 101 kPa, preferably 1 to 90 kPa, more preferably 1.5 to 80 kPa. Heating can be performed in a temperature range of 300 to 1200 ° C.
  • the silica conversion process is divided into two or more stages, first heated at a relatively low temperature in an atmosphere containing water vapor, for example, in a temperature range of 300 to 600 ° C., and then at a higher temperature in an atmosphere containing no water vapor. Thus, it can be heated in a temperature range of 500 to 1200 ° C.
  • Arbitrary gas can be used as components (henceforth dilution gas) other than water vapor
  • oxygen is preferably used in terms of the film quality of the siliceous material to be obtained.
  • the dilution gas is appropriately selected in consideration of the influence on other elements such as an electronic device exposed to the heat treatment.
  • a reduced pressure or vacuum atmosphere of less than 1.0 kPa can be employed in addition to an atmosphere containing any of the above-described dilution gases.
  • the curable composition according to the present invention is applied to a predetermined substrate, dried, and then heated in an atmosphere having a temperature in the range of 300 to 600 ° C. and a water vapor partial pressure in the range of 0.5 to 101 kPa. Heating in an atmosphere having a partial pressure of oxygen of 400 to 1200 ° C. and a partial pressure of oxygen of 0.5 to 101 kPa; (2) After the curing composition according to the present invention is applied to a predetermined substrate and dried, the composition is heated in an atmosphere having a temperature in the range of 300 to 600 ° C. and a water vapor partial pressure in the range of 0.5 to 101 kPa.
  • the curable composition according to the present invention is treated with a predetermined group. After applying to the material and drying, it is heated in an atmosphere where the temperature is in the range of 300 to 600 ° C. and the partial pressure of water vapor is in the range of 0.5 to 101 kPa, and then the temperature is in the range of 400 to 1200 ° C. Heat in a vacuum or vacuum.
  • the rate of temperature rise and the rate of temperature fall to the target temperature during heating can generally be in the range of 1 ° C to 100 ° C / min. Further, there is no particular limitation on the heating and holding time after reaching the target temperature, and it can be generally in the range of 1 minute to 10 hours.
  • the siliceous film according to the present invention is obtained by the hydrolysis reaction of PHPS, it mainly contains Si—O bonds, but also contains some Si—N bonds depending on the degree of conversion. That is, the fact that the siliceous material contains Si—N bonds indicates that the material is derived from polysilazane.
  • the siliceous film according to the present invention contains nitrogen in an atomic percentage range of 0.005 to 5%. Indeed, it is difficult to reduce this nitrogen content below 0.005%. The atomic percentage of nitrogen can be measured by atomic absorption spectrometry.
  • siloxane polymer solution coating methods or methods using polysilazane containing organic groups
  • large volume shrinkage occurs when converted to siliceous materials.
  • the siliceous material inside the groove tends to be heterogeneous with respect to the density, and the film density is lowered.
  • the siliceous film according to the present invention has little volume shrinkage when converted to a siliceous material, the siliceous material becomes more homogeneous inside and outside the groove, and is formed by silica conversion by stabilizing the oxidation reactivity.
  • the film density of the coating can be improved.
  • the finer the groove the greater the influence of restraint by the groove wall surface.
  • the density tends to be low. Since the siliceous film according to the present invention hardly undergoes volume shrinkage when converted to a siliceous material, the density becomes uniform even if the groove width is different.
  • the thickness of the siliceous film formed on the surface of the substrate and the thickness of the coating film formed on the surface outside the groove are not particularly limited. It can be set to an arbitrary thickness within a range in which cracks do not occur in the film upon conversion to. As described above, according to the method of the present invention, even when the film thickness is 0.5 ⁇ m or more, cracks are unlikely to occur in the film. For example, a contact hole having a width of 1000 nm and a groove having a depth of 2.0 ⁇ m are substantially defective. Can be embedded without any problem.
  • Example 1 After replacing the inside of a 10 L reaction vessel equipped with a cooling condenser, a mechanical stirrer, and a temperature control device with dry nitrogen, 4680 g of dry pyridine, 151 g of dry xylol and 1673 g of intermediate (A) obtained in Comparative Example 1 1673 g was added and stirred to be uniform while bubbling with nitrogen gas at 0.5 NL / min. Subsequently, the reforming reaction was performed at 110 ° C. for 9.6 hours, and PHPS of Example 1 was obtained.
  • Example 2 For Example 1, synthesis was performed by changing the reforming reaction time to 10.4 hours, and PHPS having a different structure was synthesized. Each characteristic value of the obtained PHPS was as shown in Table 2.
  • Example 3 For Example 1, the modification reaction time was changed to 9.0 hours, and synthesis was performed to synthesize PHPS having a different structure. Each characteristic value of the obtained PHPS was as shown in Table 2.
  • Example 4 The inside of a 10 L reaction vessel equipped with a cooling condenser, a mechanical stirrer, and a temperature controller was replaced with dry nitrogen, and then the dry pyridine 5697 g, dry xylol 428 g and 41.3% obtained in the same manner as in Comparative Example 1, Mw 1388 1790 g of the intermediate (A) was added and stirred uniformly while bubbling with a nitrogen gas of 0.5 NL / min. Subsequently, the reforming reaction was performed at 130 ° C. for 8.2 hours, and PHPS of Example 4 was obtained.
  • Comparative Example 1 The inorganic polysilazane xylol solution obtained in Synthesis Example 1 was used as Comparative Example 1.
  • Example 2 For Example 1, synthesis was performed at 100 ° C. with the modification reaction time changed to 11.4 hours, and PHPS having a different structure was synthesized. Each characteristic value of the obtained PHPS was as shown in Table 2.
  • the obtained slurry product was subjected to pressure filtration using a 0.2 ⁇ m filter made of Teflon (registered trademark) under a dry nitrogen atmosphere to obtain 6,000 ml of a filtrate.
  • Teflon registered trademark
  • an inorganic polysilazane xylol solution having a concentration of 39.8% was obtained.
  • the weight average molecular weight of the obtained inorganic polysilazane was measured by GPC (developing solution: CHCl 3 ), and was 12368 in terms of polystyrene.
  • Each characteristic value of the obtained PHPS was as shown in Table 2.
  • Example 4 For Example 1, the modification reaction time was changed to 7.0 hours at 130 ° C., and synthesis was performed to synthesize PHPS having a different structure. Each characteristic value of the obtained PHPS was as shown in Table 2.
  • Example 5 For Example 1, synthesis was performed at 140 ° C. with the reforming reaction time changed to 6.0 hours, and PHPS having a different structure was synthesized. Each characteristic value of the obtained PHPS was as shown in Table 2.
  • Example 6 For Example 1, synthesis was performed at 150 ° C. with the reforming reaction time changed to 5.1 hours, and PHPS having a different structure was synthesized. Each characteristic value of the obtained PHPS was as shown in Table 2.
  • the wafer sample after baking was divided for 30 seconds in an aqueous solution containing 5% by weight ammonium fluoride and 0.5% by weight hydrofluoric acid after dividing the trench pattern portion perpendicular to the trench direction. After washing with water and drying, SEM observation was performed. 200 trenches were observed, and the number of trenches in which voids were confirmed was defined as the number of voids.
  • the obtained silicon wafer with a siliceous film and a silicon wafer with a thermal oxide film as a reference were immersed in an aqueous solution containing 0.5% by weight of hydrofluoric acid at 20 ° C., and then thoroughly washed with pure water. And dried.
  • the cross section of this silicon wafer is observed with an electron microscope, and the etching rate of the sample is calculated by linear approximation from the relationship between the etching time and the film thickness reduction amount for the part without the trench (blanket part) and the inside of the trench, The ratio of the etching rate of the sample film to the thermal oxide film was calculated, and the etching rate was calculated.
  • the obtained results show that the coating film formed using PHPS according to the present invention has few defects and voids, and the wet etching rate is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Formation Of Insulating Films (AREA)
  • Silicon Polymers (AREA)
  • Silicon Compounds (AREA)

Abstract

[課題]欠陥の少ないシリカ質膜を形成することができるペルヒドロポリシラザンとそれを含む硬化用組成物の提供。 [解決手段]本発明によれば、重量平均分子量が5,000以上17,000以下のペルヒドロポリシラザンであって、前記ペルヒドロポリシラザンをキシロールに溶解させた17重量%溶液のH-NMRを測定した時、キシロールの芳香族環水素の量を基準としたSiH1,2の量の比が0.235以下、NHの量の比が0.055以下であることを特徴とするペルヒドロポリシラザンと、それを含む硬化用組成物が提供される。本発明は、その硬化用組成物を基材上に塗布し、加熱することを含むシリカ質膜の形成方法も提供するものである。

Description

ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法
 本発明は、半導体素子等の製造過程において欠陥の少ないシリカ質膜を形成させることができるペルヒドロポリシラザン、およびそれを含む組成物に関するものである。また、本発明は、それらを用いたシリカ質膜の形成方法にも関するものである。
 電子デバイス、とりわけ半導体デバイスの製造において、トランジスター素子とビットラインとの間、ビットラインとキャパシターとの間、キャパシターと金属配線との間、複数の金属配線の間などに、層間絶縁膜の形成がなされていることがある。さらに、基板表面などに設けられたアイソレーション溝に絶縁物質が埋設されることがある。さらには、基板表面に半導体素子を形成させた後、封止材料を用いて被覆層を形成させてパッケージにすることがある。このような層間絶縁膜や被覆層は、シリカ質材料から形成されていることが多い。
 一方、電子デバイスの分野においては、徐々にデバイスルールの微細化が進んでおり、デバイスに組み込まれる各素子間を分離する絶縁構造などの大きさも微細化が要求されている。しかし、絶縁構造の微細化が進むにつれて、トレンチなどの構成するシリカ質膜における欠陥発生が増大してきており、電子デバイスの製造効率低下の問題が大きくなってきている。
 一方、シリカ質膜の形成方法としては化学気相成長法(CVD法)、ゾルゲル法、ケイ素含有ポリマーを含む組成物を塗布および焼成する方法などが用いられている。これらのうち、比較的簡便であるため、組成物を用いたシリカ質膜の形成方法が採用されることが多い。このようなシリカ質膜を形成させるためには、ポリシラザン、ポリシロキサン、ポリシロキサザン、またはポリシランなどのケイ素含有ポリマーを含む組成物を基板などの表面に塗布し、焼成をすることでポリマーに含まれるケイ素を酸化して、シリカ質膜とする。このような場合において、形成されるシリカ質膜の欠陥を低減する方法が検討されている。
 たとえば、水素化されたポリシラザンまたはポリシロキサザンを含む組成物において、過大な分子量を有するポリマー成分を低減させることによって、シリカ質膜の欠陥を低減させる方法(特許文献1)、水素化されたポリシロキサザン溶液の塩素含有量を制御して形成されるシリカ質膜の欠陥を低減させる方法(特許文献2)などが検討されている。しかしながら、本発明者らの検討によれば、これらの方法では十分な欠陥低減が達成できない場合があり、さらなる改良の余地があった。
 また、半導体素子のギャップに充填するための、特定の元素組成を有するポリシラザンおよびポリシロキサザンを含む充填剤(特許文献3)、特定の構造を有するポリシラザンを用いた被膜形成用組成物(特許文献4および5)なども検討されているが、これらの文献に記載された組成物は形成されるシリカ質膜または窒化ケイ素膜の欠陥の低減を目的としたものではなく、その観点では十分な効果が認められるものではない。
米国特許公開第2012/164382A1号公報 米国特許公開第2012/177829A1号公報 米国特許公開第2013/017662A1号公報 特許第2613787号明細書 特許第2651464号明細書
 上記のような課題に鑑みて、シリカ質膜を形成した場合に、欠陥の発生を抑制または防止し、欠陥の少ないシリカ質膜を形成させることができるケイ素含有ポリマーまたはそれを含む組成物が望まれていた。
 本発明によるペルヒドロポリシラザンは、重量平均分子量が5,000以上17,000以下のペルヒドロポリシラザンであって、前記ペルヒドロポリシラザンをキシロールに溶解させた17重量%溶液のH-NMRを測定した時、キシロールの芳香族環水素の量を基準とした、SiH1,2の量の比が0.235以下、NHの量の比が0.055以下であることを特徴とするものである。
 また、本発明による硬化用組成物は、前記のペルヒドロポリシラザンと、溶媒とを含んでなることを特徴とするものである。
 また、本発明によるシリカ質膜の形成方法は、前記硬化用組成物を基材上に塗布し、加熱することを含んでなることを特徴とするものである。
 本発明によるペルヒドロポリシラザンは、酸化に対する安定性が高く、このペルヒドロポリシラザンを含む組成物を用いることにより欠陥の少ないシリカ質膜を形成させることができる。さらに、得られたシリカ質膜は、硬化時の収縮が小さく、ウェットエッチングレートが小さく、クラックが発生しにくいという特徴も併せ持つ。このため、その組成物を用いて電子デバイスを形成することによって、電子デバイスの製造効率を改善することができる。
本発明の一実施態様であるペルヒドロポリシラザンのNMRスペクトル。
 以下、本発明の実施の形態について、詳細に説明する。
[ペルヒドロポリシラザン]
 本発明によるペルヒドロポリシラザン(以下、PHPSという)は、Si-N結合を繰り返し単位として含み、かつSi、N、およびHのみからなるケイ素含有ポリマーである。このPHPSは、Si-N結合を除き、Si,Nに結合する元素がすべてHであり、その他の元素、たとえば炭素や酸素を実質的に含まないものである。ペルヒドロポリシラザンの最も単純な構造は、下記の繰り返し単位(I)を有する鎖状構造である。
Figure JPOXMLDOC01-appb-C000003
 本発明では、分子内に鎖状構造と環状構造を有するPHPSを使用してもよく、例えば、分子内に下記一般式(Ia)~(If)で表される繰り返し単位と下記一般式(Ig)で表される末端基とから構成されるPHPSが挙げられる。
Figure JPOXMLDOC01-appb-C000004
 このようなPHPSは、分子内に分岐構造や環状構造を有するものであり、そのようなPHPSの具体的な部分構造の例は下記一般式に示されるものである。
Figure JPOXMLDOC01-appb-C000005
 また、下記式に示される構造、すなわち複数のSi-N分子鎖が架橋された構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000006
 本発明によるPHPSは、Si-N結合を繰り返し単位として含み、かつSi、N、およびHのみからなるケイ素含有ポリマーであれば、その構造は限定されず、上記に例示したほかの種々の構造を取りえる。たとえば、前記したような直鎖構造、環状構造、架橋構造を組み合わせた構造を有するものであってもよい。なお、本発明におけるPHPSは、環状構造または架橋構造、特に架橋構造を有するものが好ましい。
 本発明によるPHPSは、特定の分子量を有することが必要である。本発明によるPHPSを含む組成物をシリカ質へ転化させるために加熱する際に、飛散(蒸発)する低分子成分を少なくし、低分子成分の飛散に起因する体積収縮、ひいては微細な溝内部の低密度化を防ぐために、PHPSの重量平均分子量は大きいことが好ましい。このような観点から、本発明によるPHPSの重量平均分子量は5,000以上であることが必要であり、5,700以上であることが好ましい。一方、PHPSを溶媒に溶解させて組成物とした場合、その組成物の塗布性を高くすることが必要である、具体的には、組成物の粘度が過度に高くなること、および凹凸部への浸透性を確保するために組成物の硬化速度を制御することが必要である。このような観点から、本発明によるPHPSの重量平均分子量は、17,000以下であることが必要であり、15,000以下であることが好ましい。ここで重量平均分子量とは、ポリスチレン換算重量平均分子量であり、ポリスチレンの基準としてゲル浸透クロマトグラフィーにより測定することができる。
 また、本発明によるPHPSは、分子構造に特徴があり、従来一般的に知られているPHPSに比較して、-SiH1,2-および-NH-構造が少ないという特徴がある。すなわち、PHPS分子中に分岐構造または架橋構造が相対的に多い。具体的には、PHPSを構成する繰り返し単位(Ia)が相対的に少なく、(Ib)~(If)が多い。
 このような構造の特徴は、定量的NMRにより検出することができる。すなわち、本発明によるPHPSは、定量的NMRにより評価した場合に特定の特性値を示す。定量的NMR(quantitative NMR)、は、NMRを用いて末端基定量などを行うための方法として知られている。具体的には内標準物質と測定対象物質由来の信号の積分値を比較することにより分析を行う(内部標準法)。本発明によるPHPSは、内標準物質としてキシロール(キシレン)を用いてH-NMRを測定し、PHPS分子中の(1)キシロールの芳香族環水素を基準とした、SiH(上記式の(Ia)および(Ib)に対応)およびSiH(上記式の(Ic)および(Id)に対応)との合計量の相対値(以下、R(SiH1,2)という)、ならびに
(2)キシロールの芳香族環水素を基準とした、NH(上記式の(Ia)、(Ic)および(Ie)に対応)の合計量の相対値(以下、R(NH)という)
が特定の範囲にあることを特徴の一つとしている。なお、上記式の(If)は、H-NMRによって検出されないものなので無視できる。
 本発明においては定量的NMRの測定は具体的に以下のようにして行う。
 まず、試料(PHPS)をキシロールに17重量%の濃度で溶解させてポリマー溶液を調製する。次いで、得られたポリマー溶液51mgを重溶媒、たとえば重クロロホルム(関東化学株式会社製)1.0gに溶解させて試料溶液を得る。 試料溶液のH-NMRをJNM-ECS400型核磁気共鳴装置(商品名、日本電子株式会社製)を用いて、64回測定してNMRスペクトルを得る。図1はこの方法により得られた、本発明によるPHPSのNMRスペクトルの一例である。このNMRスペクトルには、PHPSのSiHおよびSiHに帰属されるピーク(δ=4.8ppm付近)、SiHに帰属されるピーク(δ=4.4ppm付近)、NHに帰属されるピーク(δ=1.5ppm付近)、キシロールの芳香環水素に帰属されるピーク(δ=7.2ppm付近)が認められる。また、内標準資料に用いたキシロールに含まれる不純物であるエチルベンゼンのエチル基の水素に帰属されるピーク(δ=2.7ppm)も認められる。このエチルベンゼンのエチル基の水素に帰属されるピークはδ=1.3ppm付近にも現れ、このピークはNHに帰属されるδ=1.5ppm付近のピークと重なるが、δ=2.7ppmのピークから求められるエチルベンゼンのエチル基が定量されるので、それを差し引いてNH量を定量できる。同様にエチルベンゼンのフェニル基の水素に帰属されるピークはδ=7.2ppm付近に現れ、このピークはキシロールの芳香環水素に帰属されるδ=7.2ppm付近のピークと重なるが、δ=2.7ppmのピークから求められるエチルベンゼンのフェニル基が定量されるので、それを差し引いてキシロール芳香環水素を定量できる。
 図1に示されるNMRスペクトルから、各水素に対応するスペクトルの積分値(a)、エチルベンゼンの水素の影響を考慮して修正したスペクトル積分値(b)、およびそれらから求められるキシロール芳香族環水素の量を基準とした水素量の比(c)を求めると以下の通りである。
Figure JPOXMLDOC01-appb-T000007
 なお、表中、ArHおよびNHについての修正したスペクトル積分値(b)は、以下のようにして求めた。
ArH: ArHのスペクトル積分値(a)-CH2(エチルベンゼン)のスペクトル積分値(a)×(5/2) =22.55-1.22×(5/2)=19.5
NH: [NH+CH3(エチルベンゼン)]のスペクトル積分値(a)-CH2(エチルベンゼン)のスペクトル積分値(a)×(3/2) =2.64-1.22×(3/2)=0.81
 本発明によるPHPSにおいて、R(SiH1,2)は、小さいほど本発明の効果が強く発現し、シリカ質膜を形成させたときに欠陥が少なくなる傾向にある。このため、R(SiH1,2)は、0.235以下であり、0.230以下であることが好ましい。一方、繰り返し単位(Ia)~(Id)を含まないPHPSを合成することは極めて困難である。このため、PHPSの製造の容易性、とりわけ合成されたポリマーの溶解性の観点から、R(SiH1,2)は一般的に0.187以上であり、0.195以上であることが好ましい。
 また、本発明によるPHPSにおいて、R(NH)は、小さいほど本発明の効果が強く発現し、シリカ質膜を形成させたときに欠陥が少なくなる傾向にある。このため、R(NH)は、0.055以下であり、0.050以下であることが好ましい。一方、繰り返し単位(Ia)または(Ic)を含まないPHPSを合成することは困難である。このため、PHPSの製造の容易性、とりわけ合成されたポリマーの溶解性の観点から、R(NH)は一般的に0.038以上であり、0.042以上であることが好ましい。
 また、上記したのと同様の理由により、SiHの量を基準とした、SiHおよびSiHとの合計量の比、あるいは、全水素の量を基準としたNHの量は小さいほうが好ましい。
 なお、本発明において、qNMRの測定は、キシロールに対するPHPSの濃度が17%である溶液を用いるのが原則である。しかし、PHPSの溶解性のためにキシロール17重量%溶液が調整できない場合や、既存の溶液を測定することが有利な場合には、測定される溶液の濃度のもとに17重量%濃度に換算することも可能である。
 このような特定の構造を有するPHPSは、組成物として基板上に塗布されて大気と接触した場合に酸化されにくいという特徴を有する。また本発明によるPHPSを用いてシリカ質膜を形成させた場合に、欠陥の数が抑制される。その理由は、PHPSが特定の構造を有することにより、水蒸気との反応性が抑制されるため、たとえばPHPS塗布直後の大気からの酸化を抑えられ、硬化反応が適切な速度に制御され、その結果欠陥の発生が抑制されるものと考えられる。
[ペルヒドロポリシラザンの製造方法]
 本発明によるPHPSは、一般に、低分子量の無機ポリシラザンを形成させ、さらにその低分子量の無機ポリシラザンを塩基性化合物の存在下に重縮合させることにより合成することができる。ここで、従来の方法に対して、比較的高い温度で、かつ比較的長い時間反応させることによって、本発明によるPHPSを製造することができる。
 本発明によるPHPSの製造方法をより具体的に説明すると以下の通りである。
 まず、原料としてジクロロシランをジクロロメタンまたはベンゼンなどの溶媒中でアンモニアと反応させて低分子量の無機ポリシラザンを形成させる。または、ジクロロシランにピリジンなどの塩基性化合物を反応させてアダクトを形成させ、そのアダクトにアンモニアを反応させることによって低分子量無機ポリシラザンを形成させてもよい。
 次いで、中間生成物である低分子量の無機ポリシラザンを、塩基性溶媒または塩基性化合物を含む溶媒中で加熱し、重縮合反応させることによって本発明によるPHPSを形成させることができる。この場合、塩基性化合物としては、窒素やリンの如き塩基性元素を含有する化合物、例えば、第3級アミン類や、立体障害性の基を有する2級アミン類、フォスフィン等を用いることができる。
 本発明で用いる反応溶媒は、非塩基性溶媒にこのような塩基性化合物を添加した溶媒あるいは塩基性化合物自体からなる溶媒である。非塩基性溶媒に塩基性化合物を添加する場合、塩基性化合物の添加量は、従来は非塩基性溶媒100重量部に対し少なくとも5重量部とされていた(特許文献1)。しかし、本発明において特定されたPHPSを得るには無機シラザン骨格中の-SiH1,2-と-NH-の架橋反応を促進させ、-SiHと-NH-の縮合反応や分解反応を抑止するために、非塩基性溶媒100重量部に対して、塩基性化合物の割合が少なくとも100部以上であることが好ましく、185部以上であることがより好ましい。塩基性化合物の添加量がこれより少なくなると、-SiH1,2-と-NH-の重縮合反応が円滑に促進されない場合がある。
 前記塩基性化合物又は塩基性溶媒としては、無機ポリシラザンを分解しないものであれば任意のものが使用できる。このようなものとしては、例えば、トリメチルアミン、ジメチルエチルアミン、ジエチルメチルアミン及びトリエチルアミン等のトリアルキルアミン、ピリジン、ピコリン、ジメチルアニリン、ピラジン、ピリミジン、ピリダジン及びこれらの誘導体等の第3級アミン類の他、ピロール、3-ピロリン、ピラゾール、2-ピラゾリン、及びそれらの混合物等を挙げることができる。また、非塩基性溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素の炭化水素溶媒、ハロゲン化メタン、ハロゲン化エタン、ハロゲン化ベンゼン等のハロゲン化炭化水素、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。好ましい溶媒は、塩化メチレン、クロロホルム、四塩化炭素、ブロモホルム、塩化エチレン、塩化エチリデン、トリクロロエタン、テトラクロロエタン等のハロゲン化炭化水素、エチルエーテル、イソプロピルエーテル、エチルブチルエーテル、ブチルエーテル、1,2-ジオキシエタン、ジオキサン、ジメチルジオキサン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類、ペンタン、ヘキサン、イソヘキサン、メチルペンタン、ヘプタン、イソヘプタン、オクタン、イソオクタン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン等の炭化水素等である。
 本発明の重縮合反応は、前記した如き溶媒中で実施されるが、この場合、無機ポリシラザンの溶媒中濃度は一般に0.1重量%~50重量%、好ましくは1重量%~12重量%である。無機ポリシラザンの濃度がこれより低いと分子間重縮合反応が十分進行せず、またそれより高いと分子間重縮合反応が進みすぎてゲルを生成するようになる。反応温度は、一般に40℃~200℃、好ましくは80℃~140℃であり、それより低い温度では重縮合反応が十分進行せず、それより高い温度では本発明が目的としている架橋反応だけではなく、無機ポリシラザンの分解反応が同時に起こり、構造制御が困難になるとともに、重縮合反応が進みすぎてゲルを生成することがある。反応雰囲気としては、大気の使用が可能であるが、好ましくは、水素雰囲気や、乾燥窒素、乾燥アルゴン等の不活性ガス雰囲気あるいはそれらの混合雰囲気が使用される。本発明における重縮合反応においては、副生物の水素によって反応の際圧力がかかるが、必ずしも加圧は必要でなく、常圧を採用することができる。なお、反応時間は、無機ポリシラザンの種類、濃度および塩基性化合物又は塩基性溶媒の種類、濃度、重縮合反応温度など諸条件により異なるが、一般的に0.5時間~40時間の範囲とすれば充分である。
 本発明によるPHPSを形成させる重縮合反応の最適条件は無機ポリシラザンの平均分子量、分子量分布等にも依存するが、無機ポリシラザンの平均分子量が低い程、より高い反応温度、またはより長い反応時間が必要とされる。すなわち、反応温度を高くする、または反応時間を長くすると、形成されるPHPSの分子量が大きくなるのが一般的である。一方で、前記したようにPHPSの分子量が大きくなりすぎると、組成物の塗布性や合成溶剤に対する溶解性が低下する傾向にある。また、そのような反応条件は製造上のコストが増大する原因となる。事実、現在、一般的に使用されているPHPSの分子量は3,000~3,500が上限である。このため、反応温度を高くし、かつ反応時間を長くし、分子量の大きなPHPSを得ることは、そのPHPSを含む組成物の塗布性や合成溶剤に対する溶解性が劣ることが懸念されるため、従来は避けられていたのである。
 このような反応条件で無機ポリシラザンが重合して高分子量化し、それと同時に、ポリシラザンの分子鎖同士が相互に架橋するが、その際に分子鎖の末端に存在する-SiH3基は架橋反応にはあまり寄与せず、分子鎖中間にある-SiH1,2-と-NH-とが反応するために、SiH1,2やNHが相対的に少ない、本発明によるPHPSが形成される。
 本発明の重縮合反応においては、高分子量化されたPHPSを含む溶媒溶液が得られるが、この場合、その溶液組成を調整して、塩基性化合物又は塩基性溶媒含量を、全溶媒中30重量%以下、好ましくは5重量%以下にするのがよい。塩基性化合物又は塩基性溶媒は、PHPSの分子間重縮合反応触媒として作用するため、その全溶媒に対する割合が余りにも多くなると、室温で長時間保存している間にゲルを生成する可能性があるためである。この溶液組成の調整は、例えば、前記重縮合反応で得られたPHPS溶液を加熱することにより、それに含まれる塩基性化合物もしくは溶媒を留去した後、非塩基性(非反応性)溶媒を添加することによって行うことができる。溶液中の塩基性化合物の含量が高い場合や、反応溶媒として塩基性化合物自体を用いる場合は、この溶液組成調整操作を行うことによって、溶液の安定性を改良することができる。本発明において溶液の安定性改良のために用いることができる非塩基性溶媒としては、前記で示した如き脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素、脂肪族エーテル、脂環式エーテル等を用いることができる。
[硬化用組成物]
 本発明による硬化用組成物は、前記のPHPSと溶媒とを含むものである。この組成物液を調製するために用いられる溶媒としては、(a)芳香族化合物、たとえばベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、トリエチルベンゼン等、(b)飽和炭化水素化合物、たとえばシクロヘキサン、デカヒドロナフタレン、ジペンテン、n-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、n-オクタン、i-オクタン、n-ノナン、i-ノナン、n-デカン、エチルシクロヘキサン、メチルシクロヘキサン、シクロヘキサン、p-メンタン等、(c)不飽和炭化水素、たとえばシクロヘキセン等、(d)エーテル、たとえばジプロピルエーテル、ジブチルエーテル、アニソール等、(e)エステル、たとえば酢酸n-ブチル、酢酸i-ブチル、酢酸n-アミル、酢酸i-アミル等、(f)ケトン、たとえばメチルイソブチルケトン(MIBK)等、が挙げられるが、これらに限定はされない。また、複数種の溶媒を使用することにより、PHPSの溶解度や溶媒の蒸発速度を調節することもできる。
 組成物への溶媒の配合量は、採用する塗布方法により作業性がよくなるように、また微細な溝内への溶液の浸透性や溝外部において必要とされる膜厚を考慮して、用いるPHPSの重量平均分子量、その分布及び構造に応じて適宜選定することができる。本発明による硬化用組成物は、組成物の全重量を基準として、一般に0.1~70質量%、好ましくは1~30質量%のPHPSを含む。
[シリカ質膜の形成方法]
 本発明によるシリカ質膜の形成方法は、前記の硬化用組成物を、基材に塗布し、加熱することを含んでなる。基材の形状は特に限定されず、目的に応じて任意に選択することができる。しかしながら、本発明による硬化用組成物は、狭い溝部などにも容易に浸透し、溝の内部においても均一なシリカ質膜を形成できるという特徴があるため、アスペクト比の高い溝部や孔を有する基板に適用することが好ましい。具体的には最深部の幅が0.2μm以下でそのアスペクト比が2以上である溝を少なくとも一つ有する基材などに適用することが好ましい。ここで溝の形状に特に限定はなく、断面が長方形、順テーパー形状、逆テーパー形状、曲面形状、等いずれの形状であってもよい。また、溝の両端部分は開放されていても閉じていてもよい。
 従来法では、最深部の幅が0.2μm以下でそのアスペクト比が2以上である溝をシリカ質材料で埋封しようとしても、シリカ質への転化時の体積収縮が大きいために溝内部が溝外部よりも低密度化し、溝の内外で材質が均質となるように溝を埋封することが困難であった。これに対して、本発明によると、溝の内外で均一なシリカ質膜を得ることができる。このような本発明の効果は、最深部の幅が0.1μm以下のような非常に微細な溝を有する基材を用いた場合により一層顕著なものとなる。
 アスペクト比の高い溝を少なくとも一つ有する基材の代表例として、トランジスター素子、ビットライン、キャパシター、等を具備した電子デバイス用基板が挙げられる。このような電子デバイスの製作には、PMDと呼ばれるトランジスター素子とビットラインとの間、トランジスター素子とキャパシターとの間、ビットラインとキャパシターとの間、またはキャパシターと金属配線との間の絶縁膜や、IMDと呼ばれる複数の金属配線間の絶縁膜の形成、或いはアイソレーション溝の埋封、といった工程に続き、微細溝の埋封材料を上下に貫通する孔を形成するスルーホールめっき工程が含まれる場合がある。
 本発明は、アスペクト比の高い基材に対し、その溝の内外で均質なシリカ質材料による埋封が必要とされる他のいずれの用途にも適している。このような用途として、例えば、液晶ガラスのアンダーコート(Na等パッシベーション膜)、液晶カラーフィルターのオーバーコート(絶縁平坦化膜)、フィルム液晶のガスバリヤ、基材(金属、ガラス)のハードコーティング、耐熱・耐酸化コーティング、防汚コーティング、撥水コーティング、親水コーティング、ガラス、プラスチックの紫外線カットコーティング、着色コーティング、が挙げられる。
 このような基材への硬化用組成物の塗布方法に特に制限はなく、通常の塗布方法、例えば、スピンコート法、浸漬法、スプレー法、転写法、スリットコート法等が挙げられる。
 硬化用組成物の塗布後、塗膜の乾燥又は予備硬化の目的で、大気中、不活性ガス中又は酸素ガス中で50~400℃の温度で10秒~30分の処理条件による乾燥工程を行う。乾燥により溶媒は除去され、微細溝は実質的にPHPSによって埋封されることになる。
 本発明によると、溝内外に含まれるPHPSを加熱することでシリカ質材料に転化させる。加熱する際に水蒸気を含む雰囲気において加熱することが好ましい。
 水蒸気を含む雰囲気とは、水蒸気分圧が0.5~101kPaの範囲内にある雰囲気をいい、好ましくは1~90kPa、より好ましくは1.5~80kPaの範囲の水蒸気分圧を有する。加熱は300~1200℃の温度範囲で行うことができる。
 なお、水蒸気を含む雰囲気において高温で、例えば600℃を超える温度で、加熱すると、同時に加熱処理に晒される電子デバイス等の他の要素が存在する場合に当該他の要素への悪影響が懸念されることがある。このような場合には、シリカ転化工程を二段階以上に分け、最初に水蒸気を含む雰囲気において比較的低温で、例えば300~600℃の温度範囲で加熱し、次いで水蒸気を含まない雰囲気においてより高温で、例えば500~1200℃の温度範囲で加熱することができる。
 水蒸気を含む雰囲気における水蒸気以外の成分(以下、希釈ガスという。)としては任意のガスを使用することができ、具体例として空気、酸素、窒素、ヘリウム、アルゴン、等が挙げられる。希釈ガスは、得られるシリカ質材料の膜質の点では酸素を使用することが好ましい。しかしながら、希釈ガスは、当該加熱処理に晒される電子デバイス等の他の要素への影響をも考慮して適宜選択される。なお、上述の二段階加熱方式における水蒸気を含まない雰囲気としては、上記希釈ガスのいずれかを含む雰囲気の他、1.0kPa未満の減圧または真空雰囲気を採用することもできる。
 これらの事情を勘案して設定される好適な加熱条件の例を挙げる。
(1)本発明による硬化用組成物を所定の基材に塗布、乾燥後、温度が300~600℃の範囲、水蒸気分圧が0.5~101kPaの範囲の雰囲気中で加熱し、引き続き温度が400~1200℃の範囲で、酸素分圧が0.5~101kPaの範囲の雰囲気中で加熱すること;
(2)本発明による硬化用組成物を所定の基材に塗布、乾燥後、温度が300~600℃の範囲、水蒸気分圧が0.5~101kPaの範囲の雰囲気中で加熱し、引き続き温度が400~1200℃の範囲で、窒素、ヘリウム及びアルゴンの中から選ばれる一種又は二種以上の不活性ガス雰囲気中で加熱すること、並びに
(3)本発明による硬化用組成物を所定の基材に塗布、乾燥後、温度が300~600℃の範囲、水蒸気分圧が0.5~101kPaの範囲の雰囲気中で加熱し、引き続き温度が400~1200℃の範囲で、1.0kPa未満の減圧または真空雰囲気中で加熱すること。
 加熱の際の目標温度までの昇温速度及び降温速度に特に制限はないが、一般に1℃~100℃/分の範囲とすることができる。また、目標温度到達後の加熱保持時間にも特に制限はなく、一般に1分~10時間の範囲とすることができる。
 上記の加熱工程により、PHPSが水蒸気による加水分解反応を経てSi-O結合を主体とするシリカ質材料へ転化する。この転化反応は、また有機基の分解もないため、反応前後での体積変化が非常に小さい。このため、本発明による硬化用組成物を用いてアスペクト比の高い溝を有する基材の表面にシリカ質膜を形成させた場合には、溝の内外のいずれにおいても均質になる。また、本発明の方法によると、CVD法のようなコンフォーマル性がないため、微細溝内部に均一に埋封できる。さらに、従来法ではシリカ膜の高密度化が不十分であったが、本発明の方法によると、シリカ質転化後の膜の高密度化が促進され、クラックが生じにくい。
 上述したように、本発明によるシリカ質膜はPHPSの加水分解反応により得られるため、Si-O結合を主体とするが、転化の程度によって多少のSi-N結合をも含有している。すなわち、シリカ質材料にSi-N結合が含まれているということは、その材料がポリシラザンに由来することを示すものである。具体的には、本発明によるシリカ質膜は、窒素を原子百分率で0.005~5%の範囲で含有する。実際、この窒素含有量を0.005%よりも少なくすることは困難である。窒素の原子百分率は原子吸光分析法で測定することができる。
 従来のゾルゲル法やシロキサン系ポリマー溶液塗布法、或いは有機基を含むポリシラザンを用いた方法では、シリカ質材料への転化時に大きな体積収縮が発生するため、これらの方法によりアスペクト比が高い溝などをシリカ質材料で埋封した場合には溝内部のシリカ質材料が密度に関して不均質となりやすく、また膜密度が低下してしまう。本発明によるシリカ質膜は、シリカ質材料への転化時に体積収縮がほとんどなく、シリカ質材料は溝の内外でより均質となり、さらに酸化反応性を安定化させることにより、シリカ転化により形成される被膜の膜密度を向上させることができる。
 また、溝幅の異なる複数の溝の間では、シリカ質材料への転化時に体積収縮が発生する場合には、溝が微細になればなるほど溝壁面による拘束の影響が大きくなり、シリカ質材料の密度が低くなる傾向にある。本発明によるシリカ質膜は、シリカ質材料への転化時に体積収縮がほとんどないため、溝幅が異なっていても密度が均一となる。
 なお、本発明によるシリカ質膜の形成方法において、基板表面に形成されるシリカ質膜の厚さ、溝外部の表面に形成された塗膜の厚さに特に制限はなく、一般にはシリカ質材料への転化時に膜にクラックが生じない範囲の任意の厚さとすることができる。上述したように、本発明の方法によると膜厚が0.5μm以上となる場合でも被膜にクラックが生じにくいので、たとえば幅1000nmのコンタクトホールで、2.0μm深さの溝を実質的に欠陥なく埋封することができる。
 本発明を実施例によってさらに詳述すると以下の通りである。
[合成例1:中間体(A)の合成]
 冷却コンデンサー、メカニカルスターラーと温度制御装置を備えた10L反応容器内部を乾燥窒素で置換した後、乾燥ピリジン7,500mlを反応容器に投入し、-3℃まで冷却した。次いでジクロロシラン500gを加えると各色固体状のアダクト(SiHCl・2CN))が生成した。反応混合物が-3℃以下になったことを確認し、撹拌しながらこれにゆっくりとアンモニア350gを吹き込んだ。引き続いて30分間撹拌し続けた後、乾燥窒素を液層に30分間吹き込み、過剰のアンモニアを除去した。得られたスラリー状の生成物を乾燥窒素雰囲気下でテフロン(登録商標)製0.2μmフィルターを用いて加圧濾過を行い、濾液6,000mlを得た。エバポレーターを用いてピリジンを留去したところ、濃度38.9%の無機ポリシラザンのキシロール溶液を得た。得られた無機ポリシラザンの重量平均分子量をGPC(展開液:CHCl)により測定を行い、ポリスチレン換算で1401であった。この処方にて得られた無機ポリシラザンを以下、中間体(A)と呼ぶ。
[実施例1]
 冷却コンデンサー、メカニカルスターラーと温度制御装置を備えた10L反応容器内部を乾燥窒素で置換した後、乾燥ピリジン4680g、乾燥キシロール151gと比較例1で得られた38.9%の中間体(A)1673gを投入し、窒素ガス0.5NL/minでバブリングを行いながら、均一になるように撹拌した。引き続いて110℃で9.6時間改質反応を行い、実施例1のPHPSが得られた。
 得られたPHPSの
(1)重量平均分子量Mw、
(2)重量平均分子量Mw/数平均分子量Mn、
(3)キシロールの芳香族環水素を基準とした、SiHおよびSiHとの合計量の相対値(R(SiH1,2))、
(4)キシロールの芳香族環水素を基準とした、NHの量の相対値(R(NH))、
(5)キシロールの芳香族環水素を基準とした、SiHの量の相対値(R(SiH))、
(6)キシロールの芳香族環水素を基準とした、PHPSに含まれる全水素の合計量の相対値R(SiHtotal)、
(7)前記(4)と前記(6)から算出される、全水素の量に対するNHの量の比、および
(8)前記(3)と前記(5)から算出される、SiHの量に対する、SiHおよびSiHとの合計量の比
は表2に示す通りであった。
[実施例2]
 実施例1に対して、改質反応時間を10.4時間に変更して合成を行い、構造の異なるPHPSを合成した。得られたPHPSの各特性値は表2に示す通りであった。
[実施例3]
 実施例1に対して、改質反応時間を9.0時間に変更して合成を行い、構造の異なるPHPSを合成した。得られたPHPSの各特性値は表2に示す通りであった。
[実施例4]
冷却コンデンサー、メカニカルスターラーと温度制御装置を備えた10L反応容器内部を乾燥窒素で置換した後、乾燥ピリジン5697g、乾燥キシロール428gと比較例1と同様の方法で得られた41.3%、Mw1388の中間体(A)1790gを投入し、窒素ガス0.5NL/minでバブリングを行いながら、均一になるように撹拌した。引き続いて130℃で8.2時間改質反応を行い、実施例4のPHPSが得られた。
[比較例1]
 合成例1で得られた無機ポリシラザンのキシロール溶液を比較例1とした。
[比較例2]
 実施例1に対して、100℃で改質反応時間を11.4時間に変更して合成を行い、構造の異なるPHPSを合成した。得られたPHPSの各特性値は表2に示す通りであった。 
[比較例3]
 冷却コンデンサー、メカニカルスターラーと温度制御装置を備えた10L反応容器内部を乾燥窒素で置換した後、乾燥キシロール7,000mlと乾燥ピリジン500mlを反応容器に投入し、-3℃まで冷却した。次いでジクロロシラン500gを加えると各色固体状のアダクト(SiHCl・2CN))が生成した。反応混合物を30℃になったことを確認し、撹拌しながらこれにゆっくりとアンモニア350gを吹き込んだ。
引き続いて30分間撹拌し続けた後、乾燥窒素を液層に30分間吹き込み、過剰のアンモニアを除去した。得られたスラリー状の生成物を乾燥窒素雰囲気下でテフロン(登録商標)製0.2μmフィルターを用いて加圧濾過を行い、濾液6,000mlを得た。エバポレーターを用いてピリジンを留去したところ、濃度39.8%の無機ポリシラザンのキシロール溶液を得た。得られた無機ポリシラザンの重量平均分子量をGPC(展開液:CHCl)により測定を行い、ポリスチレン換算で12368であった。得られたPHPSの各特性値は表2に示す通りであった。
[比較例4]
 実施例1に対して、130℃で改質反応時間を7.0時間に変更して合成を行い、構造の異なるPHPSを合成した。得られたPHPSの各特性値は表2に示す通りであった。
[比較例5]
 実施例1に対して、140℃で改質反応時間を6.0時間に変更して合成を行い、構造の異なるPHPSを合成した。得られたPHPSの各特性値は表2に示す通りであった。
[比較例6]
 実施例1に対して、150℃で改質反応時間を5.1時間に変更して合成を行い、構造の異なるPHPSを合成した。得られたPHPSの各特性値は表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000008
[PHPSの酸化安定性評価]
 各PHPSを塗布膜300nmになるように濃度調整を行い、塗布液を調製した。得られた塗布液をスピンコーター(ミカサ株式会社製スピンコーター1HDX2(商品名))を用いて、4インチウェハに回転数1000rpmでスピン塗布した。得られた塗布膜を湿度50.5%で22.5℃に15分間暴露させた。成膜直後と、暴露後とに、Pelletron 3SDH(商品名、National Electrostatics Corporation製)を用いて、ラザフォード後方散乱分光法にて元素分析を行った。得られた結果は表3に示す通りであった。
Figure JPOXMLDOC01-appb-T000009
 この結果より、本発明によるPHPSを含む組成物をシリコンウェハ上に塗布し、塗布膜を大気暴露させてとしても酸化が起こりにくいことがわかる。このことから本発明による特定の構造を持つPHPSは大気酸化に対する安定性が著しく向上していることがわかる。
[PHPSの評価]
 得られたシリカ質膜について、表面の欠陥、トレンチ内におけるボイド、収縮率、ウェットエッチングレートを評価した。評価方法はそれぞれ以下の通りである。
(a)欠陥数
 各PHPSを塗布膜で580nm程度になるように濃度調整を行い、塗布液を調製した。得られた塗布液を、スピンコーター(東京エレクトロン株式会社製ACT12 SOD(商品名))を用いて、12インチウェハに回転数1000rpmでスピン塗布し、150℃のホットプレート上で3分間プリベークを行った。プリベーク後の膜厚を、M-44型分光エリプソメーター(商品名、JA ウーラム社製)にて測定し、各サンプルが一定膜厚(580nm程度)であることを確認した。その後、ウェハ上膜の欠陥検査をLS9100(商品名、株式会社日立ハイテクノロジーズ製)、ならびにUVision4(商品名、アプライドマテリアルズ社製)にて行った。
(b)ボイド数
 スピンコーター(東京エレクトロン株式会社製Mark8(商品名))を用いて、PHPSを含む塗布液を1000rpmにて塗布した。このシリコンウェハは、縦断面が長方形であり、深さ500nm、幅50nmのトレンチを有するものであった。塗布済みのウェハを150℃にて3分間プリベークに付した。その後、焼成炉(光洋サーモシステム製VF1000LP)にて400℃の水蒸気雰囲気にて30分、引き続いて400℃の窒素雰囲気下で焼成を行った。焼成後のウェハーサンプルを、トレンチパターン部をトレンチ方向に対して垂直に割ってから、 5重量%のフッ化アンモニウムと0.5重量%のフッ化水素酸を含有する水溶液に30秒浸し、純水洗浄後に乾燥させてからSEM観察を行った。トレンチを200箇所観察し、そのうちのボイドが確認されるトレンチの数をボイド数とした。
(c)収縮率
 各PHPSを塗布膜で580nm程度になるように濃度調整を行い、塗布液を調製した。
得られた塗布液をスピンコーター(東京エレクトロン株式会社製Mark8(商品名))を用いて、ベアシリコンウェハーに1000rpmにて塗布した。塗布済みのウェハを、150℃にて3分間プリベークに付し、得られた被膜の膜厚を、M-44型分光エリプソメーター(商品名、JA ウーラム社製)にて測定し、初期膜厚を得た。その後、焼成炉(光洋サーモシステム株式会社製VF1000LP(商品名))にて400℃の水蒸気雰囲気にて30分、引き続いて400℃の窒素雰囲気下で焼成を行った。焼成後の各サンプルの膜厚を分光エリプソメーター(JA ウーラム社製M-2000V(商品名))にて測定し、焼成後膜厚を得た。収縮率は、以下の式にて算出した。
    (初期膜厚-焼成後膜厚)/初期膜厚×100=収縮率(%)
(e)ウェットエッチングレート
 各PHPSを塗布膜で580nm程度になるように濃度調整を行い、塗布液を調製した。調製した塗布液を濾過精度0.02μmのPTFE製フィルターで濾過した。濾過後の塗布液をスピンコーター(東京エレクトロン株式会社製Mark8)を用いて、シリコンウェハー上に1000rpmにて塗布した。このウェハは、縦断面が長方形であり、深さ500nm、幅50nmのトレンチを有するものであった。塗布済みのウェハをまず150℃にて3分間プリベークに付した。その後、焼成炉(光洋サーモシステム製VF1000LP)にて400℃の水蒸気雰囲気にて30分、引き続いて400℃の窒素雰囲気下で焼成を行った。そして、化学機械研磨(CMP)にて溝の最表面まで研磨を行い、基盤上の余剰の膜を除去した。
 得られたシリカ質膜付きのシリコンウェハとリファレンスとしての熱酸化膜付きシリコンウェハを、0.5重量%のフッ化水素酸を含有する水溶液に20℃で浸漬し、その後純水でよく洗浄して乾燥させた。このシリコンウェハの断面を電子顕微鏡にて観察し、トレンチのない部分(ブランケット部)と、トレンチ内部について、エッチング時間と膜厚減少量の関係からサンプルのエッチングレートを線形近似にて算出し、また熱酸化膜に対するサンプル膜のエッチングレートの比を計算し、エッチングレートを算出した。
 評価の結果、得られた結果は表4に示す通りであった。
Figure JPOXMLDOC01-appb-T000010
 得られた結果より、本発明によるPHPSを用いて形成された塗膜は、欠陥およびボイドが少なく、またウェットエッチングレートも低いことがわかる。

Claims (9)

  1.  重量平均分子量が5,000以上17,000以下のペルヒドロポリシラザンであって、前記ペルヒドロポリシラザンをキシロールに溶解させた17重量%溶液のH-NMRを測定した時、キシロールの芳香族環水素の量を基準とした、SiH1,2の量の比が0.235以下、NHの量の比が0.055以下であることを特徴とするペルヒドロポリシラザン。
  2.  下記一般式(Ia)~(If)で表される繰り返し単位と下記一般式(Ig)で表される末端基とから構成される、請求項1に記載のペルヒドロポリシラザン。
    Figure JPOXMLDOC01-appb-C000001
  3.  重量平均分子量が、5,700以上15,000以下である、請求項1または2に記載のペルヒドロポリシラザン。
  4.  下記式:
    Figure JPOXMLDOC01-appb-C000002
    で表される構造を含む、請求項1~3のいずれか1項に記載のペルヒドロポリシラザン。
  5.  請求項1~4のいずれか1項に記載のペルヒドロポリシラザンと、溶媒とを含んでなることを特徴とする、硬化用組成物。
  6.  前記溶媒が、(a)芳香族化合物、(b)飽和炭化水素化合物、(c)不飽和炭化水素、(d)エーテル、(e)エステル、および(f)ケトンからなる群から選択される、請求項5に記載の硬化用組成物。
  7.  組成物の全重量を基準として、0.1~70質量%のペルヒドロポリシラザンを含んでなる、請求項5または6に記載の硬化用組成物。
  8.  請求項5~7のいずれか1項に記載の硬化用組成物を基材上に塗布し、加熱することを含んでなることを特徴とする、シリカ質膜の形成方法。
  9.  前記加熱を水蒸気雰囲気下で行う、請求項8に記載のシリカ質膜の形成方法。
PCT/JP2014/082468 2013-12-09 2014-12-08 ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法 WO2015087847A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167018321A KR101817927B1 (ko) 2013-12-09 2014-12-08 퍼하이드로폴리실라잔, 및 이를 포함하는 조성물, 및 이를 사용한 실리카질막의 형성 방법
SG11201604172UA SG11201604172UA (en) 2013-12-09 2014-12-08 Perhydropolysilazane, composition containing same, and method for forming silica film using same
CN201480066142.6A CN105793963B (zh) 2013-12-09 2014-12-08 全氢聚硅氮烷、以及包含其的组合物、以及使用了其的二氧化硅质膜的形成方法
US15/039,440 US9793109B2 (en) 2013-12-09 2014-12-08 Perhydropolysilazane, composition containing same, and method for forming silica film using same
EP14868948.2A EP3082153B1 (en) 2013-12-09 2014-12-08 Perhydropolysilazane, composition containing same, and method for forming silica film using same
IL245736A IL245736B (en) 2013-12-09 2016-05-19 Parahydropolysilazane, and preparations containing it, and a method for creating a form layer by using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013254456A JP6104785B2 (ja) 2013-12-09 2013-12-09 ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法
JP2013-254456 2013-12-09

Publications (1)

Publication Number Publication Date
WO2015087847A1 true WO2015087847A1 (ja) 2015-06-18

Family

ID=53371150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082468 WO2015087847A1 (ja) 2013-12-09 2014-12-08 ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法

Country Status (9)

Country Link
US (1) US9793109B2 (ja)
EP (1) EP3082153B1 (ja)
JP (1) JP6104785B2 (ja)
KR (1) KR101817927B1 (ja)
CN (1) CN105793963B (ja)
IL (1) IL245736B (ja)
SG (1) SG11201604172UA (ja)
TW (1) TWI601764B (ja)
WO (1) WO2015087847A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018107155A1 (en) * 2016-12-11 2018-06-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude N-h free and si-rich perhydridopolysilzane compositions, their synthesis, and applications
WO2022069507A1 (en) 2020-10-02 2022-04-07 Merck Patent Gmbh Polysilazane, siliceous film-forming composition comprising the same, and method for producing siliceous film using the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806328B1 (ko) * 2014-10-07 2017-12-07 삼성에스디아이 주식회사 실리카계 막 형성용 조성물, 실리카계 막, 및 전자 디바이스
US20190153307A1 (en) 2016-03-31 2019-05-23 Merck Patent Gmbh A color conversion sheet and an optical device
US10316216B2 (en) * 2016-08-31 2019-06-11 Samsung Sdi Co., Ltd. Composition for forming silica layer, and silica layer
US10062561B2 (en) * 2016-11-01 2018-08-28 Applied Materials, Inc. High-pressure annealing and reducing wet etch rates
JP2018083736A (ja) * 2016-11-24 2018-05-31 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ シロキサザン化合物、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法
US20200017763A1 (en) 2016-12-20 2020-01-16 Merck Patent Gmbh Optical medium and an optical device
JP7126064B2 (ja) * 2016-12-28 2022-08-26 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
WO2019025392A1 (en) 2017-08-03 2019-02-07 Merck Patent Gmbh QUANTUM PERFORMANCE RECOVERY
CN109485853B (zh) * 2017-09-11 2020-09-08 中国科学院化学研究所 一种聚硅氧烷/全氢聚硅氮烷杂化聚合物及其合成方法
KR102192462B1 (ko) 2017-12-14 2020-12-17 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막, 및 전자소자
TWI793262B (zh) * 2018-02-21 2023-02-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 全氫聚矽氮烷組成物和用於使用其形成氮化物膜之方法
CN111902359A (zh) * 2018-02-21 2020-11-06 乔治洛德方法研究和开发液化空气有限公司 全氢聚硅氮烷组合物和用于使用其形成氧化物膜的方法
JP2020102525A (ja) * 2018-12-21 2020-07-02 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH ブロックコポリマーを含んでなるシリカ質膜形成組成物、およびそれを用いたシリカ質膜の製造方法
KR102432933B1 (ko) * 2019-05-17 2022-08-12 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 그로부터 형성된 실리카 막, 및 상기 실리카 막을 포함하는 전자 소자
KR102395487B1 (ko) * 2019-08-21 2022-05-06 삼성에스디아이 주식회사 실리카 막 형성용 조성물 및 실리카 막
KR20210128235A (ko) * 2020-04-16 2021-10-26 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 그로부터 형성된 실리카 막, 및 상기 실리카 막을 포함하는 전자 소자
KR102591159B1 (ko) * 2020-05-07 2023-10-20 메르크 파텐트 게엠베하 폴리카보실라잔, 및 이를 포함하는 조성물 및 이를 사용하는 규소-함유 막의 제조방법
JP2022036556A (ja) 2020-08-24 2022-03-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリシラザン、およびそれを含むシリカ質膜形成組成物、ならびにそれを用いたシリカ質膜の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138107A (ja) * 1987-08-13 1989-05-31 Sekiyu Sangyo Katsuseika Center 改質ポリシラザン、その製造方法及びその用途
JP2613787B2 (ja) 1987-08-13 1997-05-28 財団法人石油産業活性化センター 無機シラザン高重合体、その製造方法及びその用途
JP2005150702A (ja) * 2003-11-11 2005-06-09 Samsung Electronics Co Ltd スピンオンガラス組成物及びこれを用いたシリコン酸化膜形成方法
JP2009511670A (ja) * 2005-10-05 2009-03-19 ナノグラム・コーポレーション 線状及び架橋済み高分子量ポリシラン、ポリゲルマン、及びそれらのコポリマー、それらを含む組成物、並びにこのような化合物及び組成物の製造及び使用方法
WO2011027826A1 (ja) * 2009-09-04 2011-03-10 Azエレクトロニックマテリアルズ株式会社 シリカ質膜製造方法およびそれに用いるポリシラザン塗膜処理液
JP2011142207A (ja) * 2010-01-07 2011-07-21 Az Electronic Materials Kk ポリシラザンを含むコーティング組成物
US20120164382A1 (en) 2010-12-22 2012-06-28 Hui-Chan Yun Composition for forming a silica layer, method of manufacturing the composition, silica layer prepared using the composition, and method of manufacturing the silica layer
US20120177829A1 (en) 2011-01-07 2012-07-12 Lim Sang-Hak Composition for forming silica based insulating layer, method for manufacturing composition for forming silica based insulating layer, silica based insulating layer and method for manufacturing silica based insulating layer
US20130017662A1 (en) 2011-07-15 2013-01-17 Park Eun-Su Filler for filling a gap, method of preparing the same and method of manufacturing semiconductor capacitor using the same
JP2013162072A (ja) * 2012-02-08 2013-08-19 Az Electronic Materials Mfg Co Ltd 無機ポリシラザン樹脂

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975512A (en) * 1987-08-13 1990-12-04 Petroleum Energy Center Reformed polysilazane and method of producing same
US5030744A (en) * 1989-03-23 1991-07-09 Tonen Corporation Polyborosilazane and process for producing same
US7053005B2 (en) * 2000-05-02 2006-05-30 Samsung Electronics Co., Ltd. Method of forming a silicon oxide layer in a semiconductor manufacturing process
US7270886B2 (en) 2000-10-12 2007-09-18 Samsung Electronics Co., Ltd. Spin-on glass composition and method of forming silicon oxide layer in semiconductor manufacturing process using the same
JP4501451B2 (ja) * 2004-02-18 2010-07-14 株式会社豊田自動織機 塗料組成物、塗料組成物を用いた透明性保護膜の製造方法および透明性保護膜を有する有機ガラス
KR100909757B1 (ko) * 2007-10-31 2009-07-29 주식회사 하이닉스반도체 반도체 소자의 층간절연막 형성 방법
US8084186B2 (en) * 2009-02-10 2011-12-27 Az Electronic Materials Usa Corp. Hardmask process for forming a reverse tone image using polysilazane
US8905748B2 (en) 2010-12-16 2014-12-09 Northwestern University Deformation-based micro surface texturing system
US8796398B2 (en) * 2010-12-27 2014-08-05 Az Electronic Materials Usa Corp. Superfine pattern mask, method for production thereof, and method employing the same for forming superfine pattern
JP2013001721A (ja) * 2011-06-13 2013-01-07 Adeka Corp 無機ポリシラザン、これを含有してなるシリカ膜形成用塗布液及びシリカ膜の形成方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138107A (ja) * 1987-08-13 1989-05-31 Sekiyu Sangyo Katsuseika Center 改質ポリシラザン、その製造方法及びその用途
JP2613787B2 (ja) 1987-08-13 1997-05-28 財団法人石油産業活性化センター 無機シラザン高重合体、その製造方法及びその用途
JP2651464B2 (ja) 1987-08-13 1997-09-10 財団法人石油産業活性化センター 改質ポリシラザン、その製造方法及びその用途
JP2005150702A (ja) * 2003-11-11 2005-06-09 Samsung Electronics Co Ltd スピンオンガラス組成物及びこれを用いたシリコン酸化膜形成方法
JP2009511670A (ja) * 2005-10-05 2009-03-19 ナノグラム・コーポレーション 線状及び架橋済み高分子量ポリシラン、ポリゲルマン、及びそれらのコポリマー、それらを含む組成物、並びにこのような化合物及び組成物の製造及び使用方法
WO2011027826A1 (ja) * 2009-09-04 2011-03-10 Azエレクトロニックマテリアルズ株式会社 シリカ質膜製造方法およびそれに用いるポリシラザン塗膜処理液
JP2011142207A (ja) * 2010-01-07 2011-07-21 Az Electronic Materials Kk ポリシラザンを含むコーティング組成物
US20120164382A1 (en) 2010-12-22 2012-06-28 Hui-Chan Yun Composition for forming a silica layer, method of manufacturing the composition, silica layer prepared using the composition, and method of manufacturing the silica layer
US20120177829A1 (en) 2011-01-07 2012-07-12 Lim Sang-Hak Composition for forming silica based insulating layer, method for manufacturing composition for forming silica based insulating layer, silica based insulating layer and method for manufacturing silica based insulating layer
US20130017662A1 (en) 2011-07-15 2013-01-17 Park Eun-Su Filler for filling a gap, method of preparing the same and method of manufacturing semiconductor capacitor using the same
JP2013162072A (ja) * 2012-02-08 2013-08-19 Az Electronic Materials Mfg Co Ltd 無機ポリシラザン樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3082153A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018107155A1 (en) * 2016-12-11 2018-06-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude N-h free and si-rich perhydridopolysilzane compositions, their synthesis, and applications
WO2022069507A1 (en) 2020-10-02 2022-04-07 Merck Patent Gmbh Polysilazane, siliceous film-forming composition comprising the same, and method for producing siliceous film using the same
KR20230078722A (ko) 2020-10-02 2023-06-02 메르크 파텐트 게엠베하 폴리실라잔, 이를 포함하는 규산질 필름-형성 조성물, 및 이를 사용하여 규산질 필름을 제조하는 방법
CN116323840A (zh) * 2020-10-02 2023-06-23 默克专利有限公司 聚硅氮烷、包含其的硅质膜形成用组合物以及使用其制造硅质膜的方法

Also Published As

Publication number Publication date
US20160379817A1 (en) 2016-12-29
SG11201604172UA (en) 2016-07-28
KR101817927B1 (ko) 2018-01-12
KR20160096671A (ko) 2016-08-16
CN105793963A (zh) 2016-07-20
EP3082153A1 (en) 2016-10-19
EP3082153A4 (en) 2017-06-14
TW201529644A (zh) 2015-08-01
IL245736B (en) 2019-03-31
US9793109B2 (en) 2017-10-17
EP3082153B1 (en) 2019-04-10
JP6104785B2 (ja) 2017-03-29
CN105793963B (zh) 2018-10-19
IL245736A0 (en) 2016-07-31
JP2015115369A (ja) 2015-06-22
TWI601764B (zh) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6104785B2 (ja) ペルヒドロポリシラザン、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法
JP5172867B2 (ja) ポリシラザンを含むコーティング組成物
US20090305063A1 (en) Composition for forming siliceous film and process for producing siliceous film from the same
JP2006054353A (ja) フラットバンドシフトの少ないシリカ質膜およびその製造法
EP2637203B1 (en) Method for forming isolation structure
CN109957261B (zh) 用于形成二氧化硅层的组合物、二氧化硅层以及电子装置
JP3015104B2 (ja) 半導体装置およびその製造方法
KR20230078722A (ko) 폴리실라잔, 이를 포함하는 규산질 필름-형성 조성물, 및 이를 사용하여 규산질 필름을 제조하는 방법
CN108164711B (zh) 用于形成硅氧层的组成物、制造硅氧层的方法及电子装置
JP6655767B1 (ja) シロキサザン化合物、およびそれを含む組成物、ならびにそれを用いたシリカ質膜の形成方法
JP7470794B2 (ja) ポリカルボシラザンを使用してlow-k誘電体ケイ素含有膜を形成するための硬化性配合物
US20230312978A1 (en) Polysilazane, siliceous film-forming composition comprising the same, and method for producing siliceous film using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 245736

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 15039440

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014868948

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014868948

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167018321

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868948

Country of ref document: EP

Kind code of ref document: A1