WO2015087749A1 - 制御弁式鉛蓄電池 - Google Patents

制御弁式鉛蓄電池 Download PDF

Info

Publication number
WO2015087749A1
WO2015087749A1 PCT/JP2014/081945 JP2014081945W WO2015087749A1 WO 2015087749 A1 WO2015087749 A1 WO 2015087749A1 JP 2014081945 W JP2014081945 W JP 2014081945W WO 2015087749 A1 WO2015087749 A1 WO 2015087749A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
mass
negative electrode
active material
electrode active
Prior art date
Application number
PCT/JP2014/081945
Other languages
English (en)
French (fr)
Inventor
悠 宇田川
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2015552400A priority Critical patent/JP6112225B2/ja
Publication of WO2015087749A1 publication Critical patent/WO2015087749A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/121Valve regulated lead acid batteries [VRLA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a control valve type lead storage battery used in a partially charged state.
  • Control valve type lead storage batteries are generally used for lead storage batteries used for power storage and system power leveling such as wind power and solar power generation.
  • This valve-regulated lead-acid battery is always required to be able to be used in harsh conditions such as being kept in an undercharged state called partial state of charge (PSOC) and being charged and discharged with a large current.
  • PSOC partial state of charge
  • a crystal of lead sulfate which is a discharge material, grows and coarsens on the negative electrode, and a problem (sulfation) in which reversibility is lost occurs.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-123760 discloses a lead obtained by adding carbon black (acetylene black) to a negative electrode active material as a negative electrode of a lead storage battery used in a PSOC state.
  • a technique using a negative electrode for a storage battery is disclosed.
  • Patent Document 1 the lead storage battery described in Patent Document 1 is intended for automotive applications, and has sufficient cycle characteristics when applied to a lead storage battery used for storage of natural energy and leveling of system power. This is not clear from the results of the study by the present inventors.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control valve type lead storage battery having excellent cycle characteristics in a control valve type lead storage battery operated in a partially charged state.
  • the control valve type lead acid battery to be improved by the present invention is a control valve type lead acid battery including a negative electrode plate containing carbon black as a negative electrode active material.
  • the negative electrode active material contains graphite in addition to carbon black.
  • the graphite used in the present invention is graphite having an average particle size of 90 ⁇ m or less and a DBP oil absorption of 55 ml / 100 g or more.
  • average particle diameter means a particle diameter (D50) at which the volume-based cumulative distribution measured by the laser diffraction / scattering method is 50%.
  • the “DBP oil absorption amount” is the oil absorption amount determined by the oil absorption amount B method (the spatula kneading method) described in JIS K-6221 (1982).
  • the high DBP oil absorption of graphite generally indicates that the crystallinity of graphite is high.
  • the lower limit of the average particle diameter of graphite and the upper limit of the DBP oil absorption amount are not limited as long as the average particle diameter is small and graphite has high crystallinity.
  • the lower limit of the average particle diameter of graphite is about 1 ⁇ m
  • the upper limit of DBP oil absorption of graphite is considered to be about 300 ml / 100 g.
  • the graphite added to the negative electrode active material is preferably graphite having an average particle diameter of 1 ⁇ m to 60 ⁇ m and a DBP oil absorption of 65 ml / 100 g or more.
  • graphite having such an average particle size and DBP oil absorption in such a numerical range is used, not only the cycle characteristics are improved, but also the initial capacity can be improved.
  • the graphite has an average particle diameter of 1 ⁇ m to 20 ⁇ m and a DBP oil absorption of 85 ml / 100 g or more.
  • the cycle characteristics are remarkably improved while maintaining or improving the initial capacity.
  • the graphite content is preferably 0.5 to 3.0% by mass with respect to 100% by mass of the negative electrode active material.
  • the graphite content is 1.0 to 3.0% by mass with respect to 100% by mass of the negative electrode active material.
  • the carbon black content is preferably adjusted to 0.3 to 3.0% by mass with respect to 100% by mass of the negative electrode active material.
  • the carbon black content is adjusted to such a numerical range, a control valve type lead-acid battery with improved initial capacity and cycle characteristics can be obtained even when the graphite content is relatively low.
  • the carbon black content is adjusted to 1.5 to 3.0% by mass with respect to 100% by mass of the negative electrode active material.
  • examples of carbon black added to the negative electrode active material include acetylene black, furnace black, channel black, thermal black, and ketjen black.
  • acetylene black when acetylene black is used, cycle characteristics can be improved as compared with the case where carbon black other than acetylene black is used.
  • control valve type lead storage battery of this example can be manufactured as follows, for example.
  • the negative electrode active material is composed of at least carbon black (acetylene black) and graphite having an average particle size of 90 ⁇ m or less and a DBP oil absorption of 55 ml / 100 g or more with respect to lead powder containing lead monoxide as a main component.
  • a kneaded mixture is prepared by adding barium sulfate, reinforcing short fibers (acrylic fiber, polypropylene fiber, polyethylene terephthalate fiber, etc.) and the like as necessary. Water and sodium lignin sulfonate are added to the mixture and mixed, and further dilute sulfuric acid is added to prepare a negative electrode active material paste.
  • the content of acetylene black added as carbon black is preferably 0.1 to 5.0% by mass with respect to 100% by mass of the negative electrode active material from the viewpoint of improving the cycle characteristics while at least maintaining the initial capacity. .
  • the content is preferably 0.1 to 3.0% by mass with respect to 100% by mass of the negative electrode active material.
  • the content is preferably 1.5 to 3.0% by mass with respect to 100% by mass of the negative electrode active material.
  • the graphite content may be 0.5 to 5% by mass with respect to 100% by mass of the negative electrode active material in consideration of improving the cycle characteristics while maintaining at least the initial capacity.
  • the content is preferably 0.5 to 3.0% by mass with respect to 100% by mass of the negative electrode active material.
  • the content is more preferably 1.0 to 3.0% by mass with respect to 100% by mass of the negative electrode active material.
  • DBP oil absorption of graphite can be determined by the above-described spatula kneading method.
  • the average particle diameter of graphite may be 90 ⁇ m or less as described above from the viewpoint of improving cycle characteristics while maintaining at least the initial capacity. Further, from the viewpoint of improving not only the cycle characteristics but also the initial capacity, 1 ⁇ m to 60 ⁇ m is preferable, and from the viewpoint of improving the initial capacity and further improving the cycle characteristics, 1 ⁇ m to 20 ⁇ m is more preferable. In addition, an average particle diameter is calculated
  • the DBP oil absorption amount of graphite may be 55 ml / 100 g or more as described above from the viewpoint of improving the cycle characteristics while maintaining at least the initial capacity. Moreover, from the viewpoint of improving not only the cycle characteristics but also the initial capacity, it is preferably 65 ml / 100 g or more, and from the viewpoint of improving the initial capacity and further improving the cycle characteristics, it is 85 ml / 100 g or more. Is more preferable. Note that the upper limit of the DBP oil absorption amount is not limited, but may be 500 ml / 100 g or less from a practical viewpoint, and may be 300 ml / 100 g or less in practice.
  • sodium lignin sulfonate may be added.
  • the content thereof is preferably 0.05 to 1% by mass, more preferably 0.1 to 0.8% by mass, and more preferably 0.2 to 0% with respect to 100% by mass of the negative electrode active material. More preferably, 6% by mass.
  • the content is preferably 0.01 to 0.3% by mass, more preferably 0.02 to 0.1% by mass with respect to 100% by mass of the negative electrode active material.
  • barium sulfate When barium sulfate is used, its content is preferably 0.01 to 2% by mass, more preferably 0.1 to 1.5% by mass with respect to 100% by mass of the negative electrode active material.
  • the negative electrode active material paste produced as described above is filled in a current collector grid, aged and then dried to produce an unformed negative electrode plate.
  • the current collector grid is composed of a lead-calcium-tin alloy, a lead-calcium alloy, or a lead-calcium-tin alloy or a lead-calcium alloy in which a small amount of arsenic, selenium, silver, or bismuth is added. Can be used.
  • the aging conditions are preferably 40 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 90%. Drying conditions are preferably 15 to 30 hours at a temperature of 50 to 80 ° C.
  • the positive electrode plate can be obtained, for example, by the following method. First, after adding a reinforcing short fiber to lead powder containing lead monoxide as a main component, water and dilute sulfuric acid are added. This is kneaded to prepare a positive electrode active material paste. In producing the positive electrode active material paste, red lead (Pb 3 O 4 ) may be added. After filling this positive electrode active material paste into a current collector (current collector grid or the like), aging and drying are performed to obtain an unformed positive electrode. In the positive electrode active material paste, the content of reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode active material. The type of collector grid, aging conditions, and drying conditions are almost the same as in the case of the negative electrode.
  • the negative electrode and the positive electrode manufactured as described above are stacked via a retainer (separator), and the electrode plates having the same polarity are connected to each other with a strap to obtain the electrode plate group.
  • This electrode group is arranged in a battery case to produce an unformed battery.
  • dilute sulfuric acid is added to the non-chemical cell to perform chemical conversion treatment.
  • a lead storage battery is obtained by adding an electrolytic solution (dilute sulfuric acid).
  • the specific gravity (converted to 20 ° C.) of dilute sulfuric acid is preferably 1.25 to 1.35.
  • the material of the battery case is not particularly limited, and specifically, polypropylene, ABS, modified PPE (polyphenylene ether) or the like can be used.
  • the lid is not particularly limited as long as the lid closes the opening of the battery case described above, and the material can be the same as or different from the battery case. However, it is preferable to use a material having the same thermal expansion coefficient so that the lid body does not fall off due to deformation when heated.
  • the control valve is for discharging excess gas that could not be absorbed by the gas absorption reaction of the negative electrode out of the battery case in the oxygen gas generated during charging.
  • the material it is preferable to use a material excellent in chemical resistance (acid resistance, silicon oil resistance), wear resistance, and heat resistance, specifically, fluororubber.
  • the chemical conversion conditions and the specific gravity of dilute sulfuric acid can be adjusted according to the size of the electrode.
  • the chemical conversion treatment is not limited to being performed in the assembly process, and may be performed in the electrode manufacturing process.
  • Example 1 Preparation of negative electrode plate> Acetylene black (trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) 1.5% by mass and graphite (trade name: UP-5, manufactured by Nippon Graphite Industry Co., Ltd., average grain) with respect to 100% by mass of lead powder Diameter: 5 ⁇ m, DBP oil absorption: 220 ml / 100 g) 2% by mass, barium sulfate 1% by mass, polyethylene terephthalate fiber (PET fiber) 0.03% by mass, sodium lignin sulfonate (trade name: Vanillex N, Japan After adding 0.5% by mass (manufactured by Paper Manufacturing Co., Ltd.), dry mixing was performed.
  • Acetylene black trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • graphite trade name: UP-5, manufactured by Nippon Graphite Industry Co., Ltd., average grain
  • ⁇ Preparation of positive electrode plate> Based on the total mass of the lead powder, a cut fiber made of 0.15% by mass of polyethylene fiber and 6% by mass of red lead were added to the lead powder and then dry mixed. Next, dilute sulfuric acid (specific gravity 1.26 / 20 ° C conversion) and water were added and kneaded to prepare a positive electrode active material paste. A lead-calcium-tin alloy was melted and cast to prepare a current collector grid having a length of 130.0 mm, a width of 115.0 mm, and a thickness of 4.05 mm. After filling the positive electrode active material paste into the current collector grid, a positive electrode plate was prepared under the following aging and drying conditions.
  • the applied amount is 250% of the theoretical capacity, the formation time is 40 hours, and the ambient temperature is 40 ° C.
  • a control valve type lead-acid battery was assembled with a safety valve.
  • Example 2 Example 2 to (Example 16) and (Comparative Example 1) to (Comparative Example 7)
  • a control valve type lead-acid battery was obtained in the same manner as in Example 1 except that the negative electrode plate was made of the material and composition shown in Table 1.
  • the test was conducted according to the following procedure with the 10 hour rate capacity of the battery set to 4 Ah.
  • the second discharge capacity of the lead storage battery was taken as the initial capacity.
  • the initial capacity was evaluated according to the following criteria.
  • the test was conducted according to the following procedure with the 10 hour rate capacity of the battery set to 4 Ah.
  • the number of cycles when the discharge capacity of the lead storage battery reached 70% of the initial capacity ratio was evaluated as the PSOC life cycle characteristics.
  • the evaluation of cycle characteristics was performed according to the following criteria.
  • Cycle characteristics are maintained or improved (when cycle characteristics are 100 or more and less than 130)
  • X The cycle characteristic decreased (when the cycle characteristic is less than 100)
  • the battery performance of the control valve type lead storage battery was comprehensively evaluated from the initial capacity and cycle characteristics evaluated in this way. The overall evaluation was performed according to the following criteria.
  • A The initial capacity is maintained or improved, and the cycle characteristics are remarkably improved (when the initial capacity exceeds 100 and the cycle characteristics are 130 or more).
  • Both initial capacity and cycle characteristics improved (when initial capacity exceeds 100 and cycle characteristics exceed 100 and less than 130)
  • The cycle characteristics were improved while maintaining the initial capacity (when the initial capacity was 95 to 100 and the cycle characteristics exceeded 100 and less than 130).
  • X At least one of the initial capacity and the cycle characteristics decreases (when the initial capacity is less than 95 or when the cycle characteristics are 100 or less).
  • UP-5 Graphite (manufactured by Nippon Graphite Industry Co., Ltd.) having a DBP oil absorption of 220 ml / 100 g and an average particle size (D50) of 5 ⁇ m
  • UP-10 Graphite (manufactured by Nippon Graphite Co., Ltd.) having a DBP oil absorption of 180 ml / 100 g and an average particle size (D50) of 10 ⁇ m
  • SP-20 Graphite (manufactured by Nippon Graphite Industries Co., Ltd.) having a DBP oil absorption of 90 ml / 100 g and an average particle size (D50) of 12 ⁇ m
  • ACB150 Graphite (manufactured by Nippon Graphite Industries Co., Ltd.) having a DBP oil absorption of 75 ml / 100 g and an average particle diameter (D50) of 50 ⁇ m
  • ACB100 graphite having
  • Comparative Example 2 when the average particle diameter and DBP oil absorption amount do not satisfy the conditions of the present invention, the initial capacity decreased (the initial capacity was less than 95). Further, even in Comparative Example 3 (when the DBP oil absorption amount satisfies the conditions of the present invention but the average particle diameter does not satisfy the conditions of the present invention), the initial capacity was reduced (the initial capacity was not less than 95).
  • Examples 6 to 10 (average particle size: 10 ⁇ m, DBP oil absorption: 180 ml / 100 g, addition amount: 0.5 to 5.0% by mass of graphite), cycle characteristics while maintaining or improving the initial capacity It can be seen that is improved.
  • Examples 6 to 9 (average particle size: 10 ⁇ m, DBP oil absorption: 180 ml / 100 g, addition amount: 0.5 to 3.0% by mass of graphite) not only improved cycle characteristics but also initial capacity. It can also be seen that Further, in Examples 7 to 9 (average particle size: 10 ⁇ m, DBP oil absorption: 180 ml / 100 g, addition amount: 1.0 to 3.0% by mass of graphite), the cycle capacity is remarkably improved as the initial capacity is improved.
  • Examples 11 to 15 the addition amount of acetylene black: 0.1 to 5.0% by mass
  • the addition amount of graphite (average particle size: 10 ⁇ m, DBP oil absorption: 180 ml / 100 g) was 1% by mass. It can be seen that even when the amount is relatively small, the initial capacity is maintained or improved and the cycle characteristics are improved.
  • Examples 11 to 14 acetylene black addition amount is 0.1 to 3.0 mass%), it can be seen that not only the cycle characteristics are improved but also the initial capacity is improved. Further, in Examples 13 and 14 (addition amount of acetylene black is 1.5 to 3.0 mass%), the initial capacity is improved and the cycle characteristics are remarkably improved (both the cycle characteristics are 130 or more).
  • Example 16 when furnace black was used instead of acetylene black, improved the cycle characteristics while maintaining the initial capacity. However, when Example 2 is compared with Example 16, it can be seen that when acetylene black is used for furnace black, not only the cycle characteristics are improved but also the initial capacity is improved.
  • the present invention in a valve-regulated lead-acid battery operated in a partially charged state, in addition to carbon black, graphite having an average particle size of 90 ⁇ m or less and a DBP oil absorption of 55 ml / 100 g or more is used as a negative electrode active material.
  • graphite having an average particle size of 90 ⁇ m or less and a DBP oil absorption of 55 ml / 100 g or more is used as a negative electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 部分充電状態で運用される制御弁式鉛蓄電池において、サイクル特性に優れる制御弁式鉛蓄電池を提供する。制御弁式鉛蓄電池を構成する負極板の負極活物質にカーボンブラック及び黒鉛を添加する。負極活物質に添加する黒鉛として、平均粒径が90μm以下であり、且つDBP吸油量が55ml/100g以上の黒鉛を用いる。

Description

制御弁式鉛蓄電池
 本発明は、部分充電状態で使用される制御弁式鉛蓄電池に関するものである。
 風力や太陽光発電等の蓄電及び系統電力の平準化に利用される鉛蓄電池には、一般的に制御弁式鉛蓄電池が用いられている。この制御弁式鉛蓄電池は、常に部分充電状態(PSOC:Partial State of Charge)と呼ばれる充電不足状態に保たれ、しかも大電流のパルス充放電が行われるなど、過酷な使用条件で使用できることが要求されている。しかしながら、PSOC状態で充放電を繰り返すと、負極で放電物質である硫酸鉛の結晶が成長・粗大化し、可逆性が失われる問題(サルフェーション)が生じる。これに対して、下記特許文献1(特開2003-123760号公報)には、PSOC状態で使用される鉛蓄電池の負極として、負極活物質にカーボンブラック(アセチレンブラック)を添加して得られる鉛蓄電池用負極を用いる技術が開示されている。
特開2003-123760号公報
 しかしながら、特許文献1に記載されている鉛蓄電池は、自動車用途を指向したものであり、自然エネルギーの蓄電及び系統電力の平準化に利用される鉛蓄電池に適用した場合には、サイクル特性が十分でないことが、本発明者らの検討の結果から明らかとなった。
 本発明は、上記事情に鑑みてなされたものであり、部分充電状態で運用される制御弁式鉛蓄電池において、サイクル特性に優れる制御弁式鉛蓄電池を提供することを目的とする。
 本発明が改良の対象とする制御弁式鉛蓄電池は、負極活物質にカーボンブラックを含む負極板を備える制御弁式鉛蓄電池である。負極活物質には、カーボンブラックに加えて、黒鉛が含まれている。本発明で用いる黒鉛は、平均粒径が90μm以下で、且つDBP吸油量が55ml/100g以上の黒鉛である。
 ここで、「平均粒径」は、レーザー回折・散乱法により測定される体積基準の累積分布が50%となる粒子径(D50)を意味する。また、「DBP吸油量」は、JIS K-6221(1982)に記載される吸油量B法(へら練り法)により求めた吸油量である。なお、黒鉛のDBP吸油量が高いことは、一般的に、黒鉛の結晶性が高いことを示す。
 このような平均粒径およびDBP吸油量を有する黒鉛をカーボンブラックと一緒に負極活物質に添加すると、PSOC状態で使用する鉛蓄電池の場合でも、初期容量を維持しながらサイクル特性が向上する。すなわち、平均粒径が小さく、しかも結晶性が高い(層状構造が破壊されていない)黒鉛を、カーボンブラックと一緒に含有する負極活物質を用いた負極板を備えることにより、従来よりも高いサイクル特性を示す制御弁式鉛蓄電池を得ることができる。
 なお、平均粒径が小さく且つ結晶性が高い黒鉛であれば、黒鉛の平均粒径の下限値及びDBP吸油量の上限値は限定されない。ただし黒鉛材料の入手可能性を考慮すると、黒鉛の平均粒径の下限値は1μm程度で、黒鉛のDBP吸油量の上限値は300ml/100g程度であると考えられる。
 負極活物質に添加する黒鉛は、平均粒径が1μm~60μmであり、且つDBP吸油量が65ml/100g以上である黒鉛を添加するのが好ましい。このような数値範囲の平均粒径およびDBP吸油量を示す黒鉛を用いると、サイクル特性が向上するだけでなく、初期容量も向上させることができる。
 また黒鉛は、平均粒径が1μm~20μmであり、且つDBP吸油量が85ml/100g以上であることがさらに好ましい。このような数値範囲の平均粒径およびDBP吸油量を有する黒鉛を用いると、初期容量が維持または向上しながらサイクル特性が格段に向上する。
 また、黒鉛の含有量は、好ましくは、負極活物質100質量%に対して0.5~3.0質量%である。黒鉛の含有量をこのような数値範囲に調整すると、初期容量とサイクル特性がともに向上する制御弁式鉛蓄電池を確実に得ることができる。
 さらに好ましくは、黒鉛の含有量は、負極活物質100質量%に対して1.0~3.0質量%である。黒鉛の含有量をこのような数値範囲に調整すると、初期容量が維持または向上しながらサイクル特性が格段に向上する制御弁式鉛蓄電池を確実に得ることができる。
 一方、カーボンブラックの含有量は、負極活物質100質量%に対して0.3~3.0質量%に調整するのが好ましい。カーボンブラックの含有量をこのような数値範囲に調整すると、黒鉛の含有量が比較的少ない場合でも、初期容量とサイクル特性がともに向上する制御弁式鉛蓄電池が得られる。
 より好ましくは、カーボンブラックの含有量は、負極活物質100質量%に対して1.5~3.0質量%に調整する。カーボンブラックの含有量をこのような数値範囲に調整することにより、黒鉛の含有量が比較的少ない場合でも、初期容量が維持または向上しながらサイクル特性が格段に向上する制御弁式鉛蓄電池を得ることができる。
 なお、負極活物質に添加するカーボンブラックとしては、アセチレンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック、ケッチェンブラック等が挙げられる。中でも、アセチレンブラックを用いると、アセチレンブラック以外のカーボンブラックを用いた場合に比べて、サイクル特性を高くすることができる。
 以下、本発明の実施の形態について、詳細に説明する。本例の制御弁式鉛蓄電池は、例えば以下のように作製することができる。
(負極板)
 まず、負極活物質は一酸化鉛を主成分とする鉛粉に対して、少なくともカーボンブラック(アセチレンブラック)、及び平均粒径が90μm以下であり且つDBP吸油量が55ml/100g以上である黒鉛を添加する。また、必要に応じて硫酸バリウム、補強用短繊維(アクリル繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等)等を添加して混練した混合物を準備する。この混合物に水及びリグニンスルホン酸ナトリウムを加えて混合し、さらに希硫酸を加えて負極活物質ペーストを作製する。
 カーボンブラックとして添加するアセチレンブラックの含有量は、初期容量を少なくとも維持しながらサイクル特性を向上させる観点から、負極活物質100質量%に対して0.1~5.0質量%であることが好ましい。また、サイクル特性を向上させるだけでなく初期容量も向上させることを考慮すると、負極活物質100質量%に対して0.1~3.0質量%であることが好ましい。さらに初期容量を向上させるとともに高いサイクル特性を得るためには、負極活物質100質量%に対して、1.5~3.0質量%であることが好ましい。
 黒鉛の含有量は、初期容量を少なくとも維持しながらサイクル特性を向上させることを考慮すれば、負極活物質100質量%に対して0.5~5質量%にすればよい。また、サイクル特性を向上させるだけでなく初期容量も向上させることを考慮すると、負極活物質100質量%に対して0.5~3.0質量%であることが好ましい。さらに初期容量を向上させるとともに高いサイクル特性を得るためには、負極活物質100質量%に対して、1.0~3.0質量%であることがより好ましい。
 なお、黒鉛のDBP吸油量は上述のへら練り法により求めることができる。
 黒鉛の平均粒径は、初期容量を少なくとも維持しながらサイクル特性を向上させる観点から、上述のように90μm以下にすればよい。また、サイクル特性を向上させるだけでなく初期容量も向上させる観点から、1μm~60μmが好ましく、初期容量を向上させるとともにサイクル特性をさらに向上させる観点から、1μm~20μmがより好ましい。なお、平均粒径は上述の粒子径(D50)として求める。
 また、黒鉛のDBP吸油量は、初期容量を少なくとも維持しながらサイクル特性を向上させる観点から、上述のように55ml/100g以上にすればよい。また、サイクル特性を向上させるだけでなく初期容量も向上させる観点から、65ml/100g以上であることが好ましく、初期容量を向上させるとともにサイクル特性をさらに向上させる観点から、85ml/100g以上であることがより好ましい。なお、DBP吸油量は、上限に制限はないが、実用的な観点から500ml/100g以下でよく、現実的には300ml/100g以下であればよいと考えられる。
 また、放電特性をより向上させるためには、リグニンスルホン酸ナトリウムを添加しても良い。リグニンスルホン酸ナトリウムを含む場合、その含有量は、負極活物質100質量%に対して0.05~1質量%が好ましく、0.1~0.8質量%がより好ましく、0.2~0.6質量%が更に好ましい。
 また、補強用短繊維を含む場合、その含有量は、負極活物質100質量%に対して0.01~0.3質量%が好ましく、0.02~0.1質量%がより好ましい。
 硫酸バリウムを用いる場合、その含有量は、負極活物質100質量%に対して0.01~2質量%とすることが好ましく、0.1~1.5質量%とすることがより好ましい。
 次に、上記のようにして作製した負極活物質ペーストを集電体格子に充填して、熟成した後に、乾燥させ、未化成の負極板を作製する。
 集電体格子としては、鉛-カルシウム-錫合金、鉛-カルシウム合金、またはこれらに砒素、セレン、銀、ビスマスを微量添加した鉛-カルシウム-錫系合金、鉛-カルシウム系合金などからなるものを使用することができる。
 熟成条件は、温度35~85℃、湿度50~90%の雰囲気で40~60時間とすることが好ましい。乾燥条件は、温度50~80℃で15~30時間とすることが好ましい。
(正極板)
 正極板は、例えば、下記の方法により得ることができる。まず、一酸化鉛を主成分とする鉛粉に対して、補強用短繊維を加えた後、水及び希硫酸を加える。これを混練して正極活物質ペーストを作製する。正極活物質ペーストを作製するに際しては、鉛丹(Pb34)を加えてもよい。この正極活物質ペーストを集電体(集電体格子等)に充填した後に熟成及び乾燥を行うことにより未化成の正極が得られる。正極活物質ペーストにおいて、補強用短繊維の含有量は、正極活物質の全質量を基準として0.005~0.3質量%が好ましい。集電体格子の種類、熟成条件、乾燥条件は、負極の場合とほぼ同様である。
(制御弁式鉛蓄電池の組み立て)
 組み立て工程では、例えば、上記のように作製した負極及び正極を、リテーナ(セパレータ)を介して積層し、同極性の極板同士をストラップで連結させて極板群を得る。この極板群を電槽内に配置して未化成電池を作製する。次に、未化成電池に希硫酸を入れて化成処理を行う。続いて、希硫酸を一度抜いた後、電解液(希硫酸)を入れることにより鉛蓄電池が得られる。希硫酸の比重(20℃換算)は、1.25~1.35が好ましい。電槽の材質は、特に制限されるものではなく、具体的には、ポリプロピレン、ABS、変性PPE(ポリフェニレンエーテル)等を用いることができる。
 蓋体は、先に述べた電槽の開口部を閉塞するものであれば、特に制限されるものではなく、材質についても、電槽と同じでも、異なるものでも使用することができる。但し、加熱した際の変形による蓋体の脱落が発生しないように、熱膨張係数が同程度のものを用いることが好ましい。
 制御弁は、充電時に発生する酸素ガスの中で、負極のガス吸収反応で吸収しきれなかった過剰ガスを、電槽外へ排出するためのものである。材質は、耐薬品性(耐酸性、耐シリコンオイル)、耐摩耗性、耐熱性に優れた材質、具体的には、フッ素ゴムを用いることが好ましい。
 リテーナ(セパレータ)の材質としては、ガラス繊維等が挙げられる。なお、化成条件、及び、希硫酸の比重は、電極のサイズに応じて調整することができる。また、化成処理は、組み立て工程において実施されることに限られず、電極製造工程において実施してもよい。
 以下、本例で用いた実施例について、具体的に説明する。
(実施例1)
<負極板の作製>
 鉛粉100質量%に対して、アセチレンブラック(商品名:デンカブラック、電気化学工業株式会社製)1.5質量%と、黒鉛(商品名:UP-5、日本黒鉛工業株式会社製、平均粒径:5μm、DBP吸油量:220ml/100g)2質量%と、硫酸バリウム1質量%と、ポリエチレンテレフタレート繊維(PET繊維)0.03質量%と、リグニンスルホン酸ナトリウム(商品名:バニレックスN、日本製紙株式会社製)0.5質量%を添加した後に乾式混合した。次に、希硫酸(比重1.26/20℃換算)及び水を加えながら混練して負極活物質ペーストを作製した。一方、鉛-カルシウム-スズ合金を溶融、鋳造して、縦:131.0mm、横:116.0mm、厚み:2.5mmの集電体格子を作製した。この集電体格子に、準備した負極活物質ペーストを充填した後、以下の熟成、乾燥条件により負極板を作製した。
 熟成条件・・・温度:40℃、湿度:98%、時間:40時間
 乾燥条件・・・温度:60℃、時間:24時間
 黒鉛の吸油量は、へら練り法により、フタル酸ジブチル(DBP)を少量ずつ黒鉛へ滴下し、黒鉛試料全体が塊となった時のDBP滴下量を測定した。また、黒鉛の平均粒径(D50)は、JIS R1629記載の方法で測定した。
<正極板の作製>
 鉛粉の全質量を基準として、0.15質量%のポリエチレン繊維からなるカットファイバー、6質量%の鉛丹を鉛粉に対して添加した後に乾式混合した。次に、希硫酸(比重1.26/20℃換算)及び水を加えて混練して正極活物質ペーストを作製した。鉛-カルシウム-スズ合金を溶融、鋳造して、縦:130.0mm、横:115.0mm、厚み:4.05mmの集電体格子を作製した。正極活物質ペーストを集電体格子へ充填した後、以下の熟成、乾燥条件により正極板を作製した。
 熟成条件1・・・温度:80℃、湿度:98%、時間:10時間
 熟成条件2・・・温度:65℃、湿度:75%、時間:11時間
 乾燥条件・・・・温度:60℃、時間:24時間
<電池の組み立て>
 未化成の負極板及び未化成の正極板が交互に積層されるように、ガラス繊維製のリテーナ(制御弁式鉛蓄電池用のセパレータ)を介して3枚の未化成負極板及び2枚の未化成正極板を積層した後に、同極性極板の耳部同士をストラップで連結させて極板群を作製した。極板群を電槽へ挿入し、比重が1.050(20℃)の希硫酸電解液を注液し、理論容量の250%の課電量、化成時間が40時間、周囲温度が40℃の条件で化成した。化成後に電解液を排出し、ガラス繊維製のリテーナを介して1枚の既化成負極板及び2枚の既化成正極板を積層した後に所定量の電解液(比重1.275希硫酸)を注入し安全弁を装着して制御弁式鉛蓄電池を組み立てた。
(実施例2)~(実施例16)及び(比較例1)~(比較例7)
 負極板を表1に示す材料及び組成にした以外は、実施例1と同様にして制御弁式鉛蓄電池を得た。
<電池性能の評価>
 上記の制御弁式鉛蓄電池について、電池性能(初期容量及びサイクル特性)を下記のとおり測定した。比較例1の初期容量及びサイクル特性の測定結果をそれぞれ100とし、実施例の各特性を相対評価した。結果を表1に示す。
(初期容量)
 上記の制御弁式鉛蓄電池に対して、以下の(a)~(d)の手順で初期容量試験を実施して、電池性能を評価した。なお、この試験は、25℃に管理された環境で行った。
 電池の10時間率容量を4Ahとして、以下の手順で試験を行った。
(a)0.4A、終止電圧1.80V、で放電する
(b)0.4A、制御電圧2.42V、で24時間充電する
(c)24時間以上休止する
(d)上記(a)~(c)の手順を2回繰り返す。
 鉛蓄電池の2回目の放電容量を初期容量とした。初期容量の評価は、以下の基準で行った。
 ○:初期容量が向上した(初期容量が100を超え120未満の場合)
 △:初期容量が維持された(初期容量が95以上100以下の場合)
 ×:初期容量が減少した(初期容量が95未満の場合)
(サイクル特性(鉛蓄電池のPSOCサイクル試験))
 上記の制御弁式鉛蓄電池に対して、以下の(e)~(h)の手順でPSOCサイクル試験を実施して評価した。なお、この試験は、25℃に管理された環境で行った。
 電池の10時間率容量を4Ahとして、以下の手順で試験を行った。
(e)0.4Aで9時間放電する
(f)2.0Aで1時間充電する
(g)1.6Aで1.25時間充電する
(h)上記(e)~(g)の手順で繰り返し、100サイクル経過毎に10時間率の放電容量を測定する。
 鉛蓄電池の放電容量が、初期容量比70%に達したときのサイクル数をPSOC寿命サイクル特性として評価した。サイクル特性の評価は、以下の基準で行った。
 ◎:サイクル特性が格段に向上した(サイクル特性が130以上の場合)
 ○:サイクル特性が維持されまたは向上した(サイクル特性が100以上130未満の場合)
 ×:サイクル特性が減少した(サイクル特性が100未満の場合)
 このようにして評価した初期容量およびサイクル特性から、制御弁式鉛蓄電池の電池性能を総合的に評価した。なお、総合評価は、以下の基準で行った。
 ◎:初期容量が維持されまたは向上し、サイクル特性が格段に向上した(初期容量が100を超え、かつ、サイクル特性が130以上の場合)
 ●:初期容量、サイクル特性が、ともに向上した(初期容量が100を超え、かつ、サイクル特性が100を超え130に満たない場合)
 ○:初期容量が維持されながらサイクル特性が向上した(初期容量が95以上100以下、かつ、サイクル特性が100を超え130に満たない場合)
 ×:初期容量、サイクル特性の少なくともいずれかが低下(初期容量が95未満である場合、または、サイクル特性が100以下である場合)
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の各材料の詳細は以下の通りである。
 UP-5:DBP吸油量が220ml/100g、平均粒径(D50)が5μmの黒鉛(日本黒鉛工業株式会社製)、
 UP-10:DBP吸油量が180ml/100g、平均粒径(D50)が10μmの黒鉛(日本黒鉛(株)製)、
 SP-20:DBP吸油量が90ml/100g、平均粒径(D50)が12μmの黒鉛(日本黒鉛工業株式会社製)、
 ACB150:DBP吸油量が75ml/100g、平均粒径(D50)が50μmの黒鉛(日本黒鉛工業株式会社製)、
 ACB100:DBP吸油量が55ml/100g、平均粒径(D50)が80μmの黒鉛(日本黒鉛工業株式会社製)、
 ACB100(分級):DBP吸油量が50ml/100g、平均粒径(D50)が100μmの黒鉛(ACB100を発明者が分級して、ACB100の平均粒径を大きくしたもの)、
 ACB50:DBP吸油量が40ml/100g、平均粒径(D50)が300μmの黒鉛(日本黒鉛工業株式会社製)、
 デンカブラック:アセチレンブラック(電気化学工業株式会社製)、
 バルカンXC72:ファーネスブラック(CABOT社製)、
 パールレックスDP:高純度変性リグニンスルホン酸ナトリウム(日本製紙株式会社製)、
 バニレックスN:高純度部分脱スルホンリグニンスルホン酸ナトリウム(日本製紙株式会社製)。
 表1より、比較例1を基準にすると、実施例1~5(平均粒径:5~80μm、DBP吸油量:55~220ml/100g)で、初期容量が維持されまたは向上しながらサイクル特性が向上していることが分かる。このうち、実施例1~4(平均粒径:5~50μm、DBP吸油量:75~220ml/100g)では、サイクル特性が向上するだけでなく初期容量も向上していることが分かる。さらに、実施例1~3(平均粒径:5~12μm、DBP吸油量:90~220ml/100g)では、初期容量の向上とともに特性が格段に向上する(いずれもサイクル特性が130以上である)ことが分かる。
 なお、比較例2(平均粒径、DBP吸油量ともに、本発明の条件を満たさない場合)では、初期容量が低下した(初期容量が95に満たなかった)。また、比較例3(DBP吸油量は本発明の条件を満たすが、平均粒径が本発明の条件を満たさない場合)でも、初期容量が低下した(初期容量が95に満たなかった)。
 また、実施例6~10(平均粒径:10μm、DBP吸油量:180ml/100g、添加量:0.5~5.0質量%の黒鉛)で、初期容量を維持しまたは向上させながらサイクル特性が向上していることが分かる。このうち、実施例6~9(平均粒径:10μm、DBP吸油量:180ml/100g、添加量:0.5~3.0質量%の黒鉛)では、サイクル特性が向上するだけでなく初期容量も向上していることが分かる。さらに、実施例7~9(平均粒径:10μm、DBP吸油量:180ml/100g、添加量:1.0~3.0質量%の黒鉛)では、初期容量の向上とともにサイクル特性が格段に向上する(サイクル特性が130以上である)ことが分かる。なお、比較例4(黒鉛を添加しない場合)はサイクル特性に殆ど変化はなく、比較例5(黒鉛の添加量が7質量%の場合)は初期容量、サイクル特性がともに低下した。
 さらに、実施例11~15(アセチレンブラックの添加量:0.1~5.0質量%)では、黒鉛(平均粒径:10μm、DBP吸油量:180ml/100g)の添加量が1質量%と比較的少ない場合でも、初期容量が維持されまたは向上するとともにサイクル特性が向上していることが分かる。このうち、実施例11~14(アセチレンブラックの添加量が0.1~3.0質量%)では、サイクル特性が向上するだけでなく初期容量も向上していることが分かる。さらに、実施例13及び14(アセチレンブラックの添加量が1.5~3.0質量%)では、初期容量が向上するとともにサイクル特性が格段に向上する(いずれもサイクル特性が130以上である)ことが分かる。なお、比較例6(アセチレンブラックを添加しない場合)はサイクル特性が低下し、比較例7(アセチレンブラックの添加量が7質量%の場合)は初期容量、サイクル特性がともに低下した。
 なお、実施例16(アセチレンブラックの替わりにファーネスブラックを用いた場合)も初期容量を維持しながらサイクル特性が向上することが分かった。しかしながら、実施例2と実施例16を対比すると、ファーネスブラックに対してアセチレンブラックを用いた場合は、サイクル特性が向上するだけでなく初期容量も向上することが分かる。
 このように、本発明の条件を満たす負極板を備えることにより、初期容量を維持または向上しながらサイクル特性に優れる制御弁式鉛蓄電池を得ることができる。
 以上、本発明の実施の形態について具体的に説明したが、本発明はこれらの実施の形態および実施例に限定されるものではない。すなわち、上記の実施の形態及び実施例に記載されている条件は、特に記載がない限り、本発明技術的思想に基づく変更が可能である。
 本発明によれば、部分充電状態で運用される制御弁式鉛蓄電池において、カーボンブラックに加えて、平均粒径が90μm以下で、且つDBP吸油量が55ml/100g以上の黒鉛を負極活物質に含有させることにより、サイクル特性に優れる制御弁式鉛蓄電池を提供することができる。

Claims (8)

  1.  負極活物質にカーボンブラックが含まれる負極板を備える、制御弁式鉛蓄電池であって、
     前記負極活物質には、平均粒径が90μm以下であり、且つDBP吸油量が55ml/100g以上である黒鉛がさらに含まれていることを特徴とする制御弁式鉛蓄電池。
  2.  前記黒鉛は、前記平均粒径が1μm~60μmであり、且つ前記DBP吸油量が65ml/100g以上であることを特徴とする請求項1に記載の制御弁式鉛蓄電池。
  3.  前記黒鉛は、前記平均粒径が1μm~20μmであり、且つ前記DBP吸油量が85ml/100g以上であることを特徴とする請求項1に記載の制御弁式鉛蓄電池。
  4.  前記黒鉛の含有量が、前記負極活物質100質量%に対して0.5~3.0質量%である、請求項1に記載の制御弁式鉛蓄電池。
  5.  前記黒鉛の含有量が、前記負極活物質100質量%に対して1.0~3.0質量%である、請求項1に記載の制御弁式鉛蓄電池。
  6.  前記カーボンブラックの含有量が、前記負極活物質100質量%に対して0.1~3.0質量%である、請求項1乃至5のいずれか1項に記載の制御弁式鉛蓄電池。
  7.  前記カーボンブラックの含有量が、前記負極活物質100質量%に対して1.5~3.0質量%である、請求項1乃至5のいずれか1項に記載の制御弁式鉛蓄電池。
  8.  前記カーボンブラックがアセチレンブラックである請求項1乃至5のいずれか1項に記載の制御弁式鉛蓄電池。
PCT/JP2014/081945 2013-12-11 2014-12-03 制御弁式鉛蓄電池 WO2015087749A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015552400A JP6112225B2 (ja) 2013-12-11 2014-12-03 制御弁式鉛蓄電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-256387 2013-12-11
JP2013256387 2013-12-11
JP2014068055 2014-03-28
JP2014-068055 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015087749A1 true WO2015087749A1 (ja) 2015-06-18

Family

ID=53371057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081945 WO2015087749A1 (ja) 2013-12-11 2014-12-03 制御弁式鉛蓄電池

Country Status (3)

Country Link
JP (1) JP6112225B2 (ja)
TW (1) TWI545831B (ja)
WO (1) WO2015087749A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087680A1 (ja) 2017-10-31 2019-05-09 株式会社Gsユアサ 鉛蓄電池
DE112018002253T5 (de) 2017-04-28 2020-01-23 Gs Yuasa International Ltd. Blei-säure-batterie
CN111106315A (zh) * 2019-12-05 2020-05-05 安徽理士电源技术有限公司 采用碳材料的高充电接受能力铅酸蓄电池
WO2021131033A1 (ja) * 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 系統電力安定化用又は負荷平準化用の鉛蓄電池用負極材及びその製造方法
JP2021118060A (ja) * 2020-01-23 2021-08-10 古河電池株式会社 液式鉛蓄電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174825A (ja) * 1991-12-25 1993-07-13 Shin Kobe Electric Mach Co Ltd 鉛電池
JP2007173112A (ja) * 2005-12-22 2007-07-05 Ntt Data Ex Techno Corp 二次電池用負極活物質、二次電池およびそれらの製造方法
JP2008153128A (ja) * 2006-12-19 2008-07-03 Ntt Data Ex Techno Corp 二次電池用負極活物質

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231247A (ja) * 2001-01-30 2002-08-16 Shin Kobe Electric Mach Co Ltd 制御弁式鉛蓄電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174825A (ja) * 1991-12-25 1993-07-13 Shin Kobe Electric Mach Co Ltd 鉛電池
JP2007173112A (ja) * 2005-12-22 2007-07-05 Ntt Data Ex Techno Corp 二次電池用負極活物質、二次電池およびそれらの製造方法
JP2008153128A (ja) * 2006-12-19 2008-07-03 Ntt Data Ex Techno Corp 二次電池用負極活物質

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018002253T5 (de) 2017-04-28 2020-01-23 Gs Yuasa International Ltd. Blei-säure-batterie
WO2019087680A1 (ja) 2017-10-31 2019-05-09 株式会社Gsユアサ 鉛蓄電池
CN111106315A (zh) * 2019-12-05 2020-05-05 安徽理士电源技术有限公司 采用碳材料的高充电接受能力铅酸蓄电池
WO2021131033A1 (ja) * 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 系統電力安定化用又は負荷平準化用の鉛蓄電池用負極材及びその製造方法
JP2021118060A (ja) * 2020-01-23 2021-08-10 古河電池株式会社 液式鉛蓄電池
JP7348089B2 (ja) 2020-01-23 2023-09-20 古河電池株式会社 液式鉛蓄電池

Also Published As

Publication number Publication date
JPWO2015087749A1 (ja) 2017-03-16
JP6112225B2 (ja) 2017-04-12
TW201535847A (zh) 2015-09-16
TWI545831B (zh) 2016-08-11

Similar Documents

Publication Publication Date Title
US11916221B2 (en) Composite anode material including surface-stabilized active material particles and methods of making same
JP6334720B2 (ja) シアノメタレート正極電池、及び製造方法
US10873075B2 (en) Composite anode material including particles having buffered silicon-containing core and graphene-containing shell
US9431146B2 (en) Battery electrodes and methods of manufacture
JP6112225B2 (ja) 制御弁式鉛蓄電池
JP2015503196A (ja) 安全性と安定性が向上したリチウム二次電池
JP2009259605A (ja) 正極活物質及びその製造方法ならびに該正極活物質を備えた電池
JP5748091B2 (ja) 鉛蓄電池
CN114094068B (zh) 钴包覆的正极材料及其制备方法、正极片和锂离子电池
WO2018229875A1 (ja) 液式鉛蓄電池
JP2009048800A (ja) ペースト式正極板の製造方法
US11171325B2 (en) Optimized electrode design for graphene based anodes
EP3553870A1 (en) Lead acid storage battery
KR101142533B1 (ko) 금속계 아연 음극 활물질 및 이를 이용한 리튬이차전지
JP6628070B2 (ja) 制御弁式鉛蓄電池用の正極板の製造法
JP5545975B2 (ja) 鉛蓄電池用正極活物質及びそれを充填して成る鉛蓄電池用正極板
JP2019079713A (ja) 固体電池用負極活物質層
JP2004327299A (ja) 密閉型鉛蓄電池
JP6233252B2 (ja) 固体電解質電池の製造方法
JP6164502B2 (ja) 鉛蓄電池
KR20150045833A (ko) 바인더 수지가 흡착된 양극 활물질의 제조 방법, 상기 방법에 의해 제조된 양극 활물질 및 이를 포함하는 이차전지용 양극
JP6447866B2 (ja) 制御弁式鉛蓄電池の製造方法
JP2019079778A (ja) 鉛蓄電池
JP2022138753A (ja) 鉛蓄電池
JP2022158053A (ja) 全固体電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869938

Country of ref document: EP

Kind code of ref document: A1