WO2015087377A1 - 永久磁石埋込型電動機 - Google Patents

永久磁石埋込型電動機 Download PDF

Info

Publication number
WO2015087377A1
WO2015087377A1 PCT/JP2013/082941 JP2013082941W WO2015087377A1 WO 2015087377 A1 WO2015087377 A1 WO 2015087377A1 JP 2013082941 W JP2013082941 W JP 2013082941W WO 2015087377 A1 WO2015087377 A1 WO 2015087377A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
permanent magnet
bent
electric motor
rotor
Prior art date
Application number
PCT/JP2013/082941
Other languages
English (en)
French (fr)
Inventor
直弘 桶谷
馬場 和彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/082941 priority Critical patent/WO2015087377A1/ja
Priority to PCT/JP2014/082102 priority patent/WO2015087773A1/ja
Priority to CN201480065591.9A priority patent/CN105814773B/zh
Priority to DE112014005591.3T priority patent/DE112014005591T5/de
Priority to US15/032,656 priority patent/US10056795B2/en
Priority to JP2015552409A priority patent/JP6120991B2/ja
Priority to GB1608761.1A priority patent/GB2534805B/en
Priority to CN201420770180.7U priority patent/CN204290538U/zh
Publication of WO2015087377A1 publication Critical patent/WO2015087377A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet embedded type electric motor.
  • magnet insertion holes are provided in the circumferential direction at substantially equal intervals in advance in the rotor core, which is formed by laminating and fixing a plurality of electromagnetic steel sheets punched into a predetermined shape.
  • One permanent magnet having a substantially rectangular cross section viewed from the axial direction is inserted into each magnet insertion hole.
  • a thin portion exists between both end portions of the magnet insertion hole and the outer peripheral surface of the rotor core. This is because the portion between the both end portions of the magnet insertion hole and the outer peripheral surface of the rotor core does not contribute to the output because the magnetic flux emitted from the surface of the permanent magnet enters the other surface of the permanent magnet without passing through the stator core. This is because the leakage flux becomes a path and is often designed to have the minimum necessary thickness in terms of strength.
  • Patent Document 1 discloses that a magnet insertion hole of one magnetic pole is divided into a plurality of pieces in the circumferential direction (and thus a permanent magnet of one magnetic pole is also divided into a plurality of pieces in the circumferential direction).
  • a configuration is disclosed in which a bridge that connects a radially outer portion and a radially inner portion is provided to increase the strength of the rotor core against centrifugal force.
  • this Patent Document 1 also discloses that an arc portion is provided at a corner formed at the base of the bridge in consideration of stress concentration at the corner formed at the base of the bridge.
  • the present invention has been made in view of the above, and it is possible to improve the strength of the rotor core while avoiding an increase in the manufacturing cost of the permanent magnet, and to improve the output efficiency.
  • An object is to provide a built-in electric motor.
  • the present invention includes a stator and a rotor rotatably supported to face the stator, and the rotor has a plurality of separated permanent magnets per magnetic pole.
  • the rotor core of the rotor has a plurality of separated magnet insertion holes as many as the plurality of permanent magnets per magnetic pole, and each magnetic pole has Bridges are provided between the adjacent magnet insertion holes, each of the bridges including a pair of parallel straight portions and two pairs of bent portions, and the pair of straight portions is respectively In the state where the plurality of permanent magnets are inserted into the corresponding plurality of magnet insertion holes, the corresponding permanent magnets are in contact with corresponding end surfaces in the alignment direction, and the two pairs of bent portions are , Serial and connected to corresponding ends of the extending direction of the straight portion, the spacing of the corresponding pair of the bent portion is expanded with the distance from the straight portion.
  • the plurality of permanent magnets may have a rectangular cross-sectional shape as viewed from the rotation axis direction of the rotor.
  • one end side of the turn part is connected to the opposite side of the corresponding linear part
  • one end side of the return part is connected to the other end side of the turn part.
  • the present invention it is possible to improve the strength of the rotor core and increase the output efficiency while avoiding an increase in the manufacturing cost of the permanent magnet.
  • Embodiment 3 regarding Embodiment 3 of this invention. It is a figure of the same aspect as FIG. 3 regarding Embodiment 4 of this invention. It is an enlarged view of the part of a bridge
  • FIG. 1 is a longitudinal sectional view of a permanent magnet embedded electric motor according to Embodiment 1 of the present invention as seen from the side, and FIG. 2 shows a rotor of the permanent magnet embedded electric motor of FIG. It is the cross-sectional view seen along. Further, in the partially enlarged views after FIG. 3, priority is given to the clarity of the drawing, and hatching is omitted.
  • the embedded permanent magnet electric motor includes a rotor 1, a stator 2, a frame 3, and a bracket 4.
  • the rotor 1 includes a rotor core 5, a shaft 6, a rare earth magnet 7 as an example of a permanent magnet, and an end plate 8.
  • the rotor core 5 is formed, for example, by laminating and fixing a plurality of electromagnetic steel plates punched into a predetermined shape.
  • the shape of the rotor core 5 is, for example, a substantially annular shape.
  • the rotor core 5 has a plurality of magnet insertion holes 9. Each of the plurality of magnet insertion holes 9 extends in the rotation axis direction in the rotor core 5, and the rare earth magnet 7 is inserted in each of the magnet insertion holes 9 in the rotation axis direction.
  • the plurality of rare earth magnets 7 have a rectangular cross-sectional shape as viewed from the rotation axis direction of the rotor 1. The details of the plurality of magnet insertion holes 9 will be described later.
  • the shaft 6 is fitted in the shaft fitting hole provided in the center of the rotor core 5.
  • One end of the shaft 6 is rotatably supported by the frame 3 via a bearing 10, and the other end of the shaft 6 is rotatably supported by the bracket 4 via a bearing 11.
  • a wave washer 12 for preloading is laid on the bearing surface of the bearing 10.
  • the shaft 6 has a circular cross section, for example, and the shaft fitting hole has a corresponding circular shape.
  • a plurality of teeth are provided, for example, at substantially equal intervals in the circumferential direction at a radially inner portion of the stator core 13, and windings 14 are provided on these teeth via insulators (not shown). Wrapped.
  • the bracket 4 supports the load side of the rotor 1 via the bearing 11.
  • the bracket 4 has, for example, a substantially cylindrical shape, and one end in the axial direction is opened to form a bowl shape, and a hole for providing an output end of the shaft 6 is provided at the other end.
  • the frame 3 and the bracket 4 are fastened in a manner such as screwing with their hook-shaped portions in contact with each other.
  • the embedded permanent magnet electric motor shown in FIG. 2 is an example of the number of poles having six poles, and includes six magnetic pole units. In each magnetic pole unit, three magnet insertion holes 9 are provided. Is assigned.
  • the plurality of magnet insertion holes 9 are arranged on the outer side of the rotor core 5 in the radial direction. In each magnetic pole, the three magnet insertion holes 9 are arranged at intervals in the alignment direction E perpendicular to the corresponding magnetic pole center line MC.
  • a bridge 15 which is a part of the rotor core 5 is formed between two adjacent magnet insertion holes 9 in the same magnetic pole unit (in the alignment direction E).
  • two bridges 15 are provided in each magnetic pole unit.
  • Each of the bridges 15 connects the core outer portion 5 a that is the radially outer side of the magnet insertion hole 9 and the core inner portion 5 b that is the radially inner side of the magnet insertion hole 9.
  • the rotor 1 has a plurality of separated rare earth magnets 7 for one magnetic pole
  • the rotor core 5 of the rotor 1 has a plurality of rare earth magnets 7 assigned to one magnetic pole for each magnetic pole.
  • the same number of separated magnet insertion holes 9 are provided, and a bridge 15 is provided between each adjacent magnet insertion hole 9 in each magnetic pole.
  • Each of the bridges 15 includes a pair of parallel straight portions 16 and two pairs of bent portions 17.
  • Each of the pair of linear portions 16 is in surface contact with the corresponding end surface 7a in the alignment direction E in the corresponding rare earth magnet 7 in a state where the plurality of rare earth magnets 7 are inserted into the corresponding magnet insertion holes 9. Yes. Strictly speaking, however, there is a slight gap between the rare earth magnet 7 and the magnet insertion hole 9 for enabling assembly.
  • the two pairs of bent portions 17 are connected to corresponding ends in the extending direction of the pair of linear portions 16 (in this example, the direction parallel to the magnetic pole center line MC), and the distance between the corresponding pair of bent portions 17 ( In this example, the interval in the direction orthogonal to the magnetic pole center line MC) increases as the distance from the straight line portion 16 increases.
  • one end side of the turn portion 18 is connected to the opposite side of the corresponding straight portion 16 in each of the two pairs of bent portions 17, and the other end side of the turn portion 18 is connected to the other end side.
  • the one end side of the return part 19 is connected, and the other end side of the return part 19 is connected to the corresponding magnet holding part 20 in the corresponding magnet insertion hole 9.
  • the turn part 18, the return part 19, and the bending part 17 have a gentle degree of bending in this order.
  • the turn portion 18, the return portion 19, and the bent portion 17 are each formed in an arc shape, and thus the turn portion 18, the return portion 19, and the bent portion 17 are arranged in this order in the radius of curvature. Is getting bigger.
  • the arc center of the turn portion 18 is between the return portion 19 and the bent portion 17, and the arc centers of the return portion 19 and the bent portion 17 are on the side away from the corresponding straight portion 16 and the return portion 19. It is between the magnet holder 20 (including the magnet holder 20).
  • the straight portion 16 and the magnet holding portion 20 are not directly connected, and the bent portion 17 is interposed between the straight portion 16 and the magnet holding portion 20.
  • the straight portion 16 is connected to the magnet holding portion 20 with a bent portion 17, a turn portion 18, and a return portion 19 interposed in this order.
  • Magnetic flux entering and exiting the surface of the rare earth magnet 7 enters the air gap 30 at a portion of a distance Lg (in this example, a distance in a direction perpendicular to the magnetic pole center line MC) from the tip of the magnet holding portion 20 to the bridge 15 (straight portion 16).
  • Lg should be set as short as possible in the manufacturing process because it will cause a reduction in the efficiency and output of the motor. Therefore, when punching a magnetic steel sheet, it is appropriate to set Lg to about 1 to 2 times the plate thickness.
  • Wb of the bridge 15 is increased, the strength of the centrifugal force is increased, while the leakage magnetic flux is decreased as the width is reduced. ) Can be made large, and it is preferable to set Wb as short as possible in the range in which sufficient strength can be secured.
  • Wb the width Wb of the bridge 15 is increased, the strength of the centrifugal force is increased, while the leakage magnetic flux is decreased as the width is reduced.
  • Wb can be made large, and it is
  • the permanent magnet embedded electric motor According to the permanent magnet embedded electric motor according to the first embodiment configured as described above, the following advantages can be obtained.
  • a centrifugal force is acting on the rotor due to the rotation of the rotor, a large stress acts on the bridge.
  • an extremely large stress acts on the intersecting portion, thereby causing so-called stress concentration.
  • the bridge if the portion between adjacent magnet insertion holes is curved, the stress concentration can be slightly reduced, but the portion between adjacent magnet insertion holes is curved.
  • the portion between adjacent magnet insertion holes is configured as a straight portion, and the end of the straight portion is directly on the magnet holding portion, Without being connected, it is connected to a bent portion whose interval increases as the distance from the straight portion increases. Therefore, in this Embodiment 1, the stress which can be produced in the edge part of the linear part of a bridge
  • bridging can be reduced significantly. Also, looking at the relationship between the bent part and the gap, if the radius of curvature of the bent part is increased, the bent part can bend gently and the stress concentration can be eased. May fall.
  • the portion between adjacent magnet insertion holes is configured as a straight portion, so the entire region between adjacent magnet insertion holes can be used as a portion that bears the strength of the bridge.
  • the entire end surface of the magnet abuts on the bridge, and the magnet can be disposed in the magnet insertion hole without creating a large gap between the magnet and the bridge. it can.
  • the powder of the material is usually fired into a large rectangular parallelepiped and then cut out into a desired small rectangular parallelepiped. Can do. Conversely, when a curved surface or chamfer is provided, additional processing is required, resulting in additional costs.
  • the strength of the rotor core is improved while the increase in the manufacturing cost of the permanent magnet is avoided, and the efficiency of the output is also increased. Can be planned.
  • FIG. 4 is a diagram for explaining the shape of the bridge and the shape of the air gap accompanying the bridge in the second embodiment.
  • FIG. 5 is a graph showing the relationship between the stress and the angle ⁇ with respect to the description of the shape of FIG.
  • this Embodiment 2 is the same as that of the said Embodiment 1 except the part demonstrated below, and, in other words, is the form which further limited the said Embodiment 1.
  • FIG. 4 is a diagram for explaining the shape of the bridge and the shape of the air gap accompanying the bridge in the second embodiment.
  • FIG. 5 is a graph showing the relationship between the stress and the angle ⁇ with respect to the description of the shape of FIG.
  • this Embodiment 2 is the same as that of the said Embodiment 1 except the part demonstrated below, and, in other words, is the form which further limited the said Embodiment 1.
  • FIG. 4 is a diagram for explaining the shape of the bridge and the shape of the air gap accompanying the bridge in the second embodiment.
  • FIG. 5 is
  • the arc radius of the bent portion 17 is R
  • the arc radius of the turn portion 18 is r.
  • the bent portion 17, the turn portion 18, and the return portion 19 are fan-shaped so that a semicircle having a diameter (2 ⁇ r) between the bent portion 17 and the return portion 19 is separated from the straight portion 16. Is formed by a trajectory at the time of rotational movement, and the rotational movement angle of the semicircle is ⁇ .
  • the “stress” in this case is a value called “Mises stress”, which is a value corresponding to the tensile stress during uniaxial tension (used for determining the yield condition).
  • ⁇ p in FIG. 5 indicates an allowable value (OK / NG threshold), and is set in consideration of the strength and safety factor of the electrical steel sheet.
  • the rotational movement angle ⁇ is in an angle range where the stress ⁇ is lower than the allowable value ⁇ p in the relationship line (the line in FIG. 5) between the rotational movement angle ⁇ and the stress ⁇ at the stress concentration point ST. Is set.
  • FIG. 6 is a diagram of the same mode as FIG.
  • the third embodiment is the same as the first embodiment except for the parts described below.
  • Each of the bridges 115 in the present third embodiment includes a pair of parallel straight portions 16 and two pairs of bent portions 117 similar to those in the first embodiment.
  • the two pairs of bent portions 117 are connected to corresponding ends in the extending direction of the pair of straight portions 16, and the distance between the corresponding pair of bent portions 117 increases as the distance from the straight portions 16 increases.
  • one end side of the turn part 118 is connected to the opposite side of the corresponding straight line part 16 in each of the two pairs of bent parts 117, and one end side of the return part 119 is connected to the other end side of the turn part 118.
  • the other end side of the return part 119 is connected to the corresponding magnet holding part 20 in the corresponding magnet insertion hole 9.
  • the turn part 118, the return part 119, and the bent part 117 have the same degree of bending, that is, the turn part 118, the return part 119, and the bent part 117 have a clear boundary with each other.
  • the width Wb of the bridge 115 is the same as the width of the bridge 15 of the first embodiment, and the distance Lg from the tip of the magnet holding unit 20 to the bridge 115 (straight line portion 16) is the above-described embodiment.
  • the diameter of the arc of the turn portion 18 of the bridge 15 in the first embodiment is set to be the same.
  • the third embodiment it is possible to improve the strength of the rotor core and increase the output efficiency while avoiding an increase in the manufacturing cost of the permanent magnet.
  • FIG. 7 is a diagram of the same mode as FIG. 3 regarding the fourth embodiment.
  • this Embodiment 4 is the same as that of the said Embodiment 3 except the part demonstrated below.
  • Each of the bridges 215 according to the fourth embodiment corresponds to a structure in which the bridge 115 according to the third embodiment is enlarged while maintaining a similar relationship.
  • Each of the bridges 215 includes a pair of parallel straight portions 16 and two pairs of bent portions 217 similar to those in the first embodiment.
  • the turn part 218, the return part 219, and the bent part 217 are arranged without a clear boundary with each other, and form one arc with a single radius (in this example, a semicircular arc).
  • the width Wb of the bridge 215 is the same as the width of the bridge 15 of the first embodiment, and the distance Lg from the tip of the magnet holding unit 20 to the bridge 215 (straight line portion 16) is the above-described embodiment. 1 is set to be the same as the diameter of the arc of the bent portion 17 of the bridge 15.
  • FIG. 8 is a diagram of the same mode as FIG.
  • this Embodiment 5 is the same as that of the said Embodiment 1 except the part demonstrated below.
  • the bending portion 17 having a boundary with the straight portion 16 is provided as a configuration for reducing stress concentration, and a line connecting the bending portion 17 and the magnet holding portion 20 is a bridge.
  • the effect on the stress at the base is small, and the degree of freedom in shape is large.
  • the fifth embodiment is an example of an aspect in which a line including a bent portion, a turn portion, and a return portion is not a uniform arc, does not have a common arc center, and a straight line is partially included.
  • One end side of the turn portion 318 is connected to the opposite side of the corresponding straight portion 16 in each of the two pairs of bent portions 317, and one end side of the return portion 319 is connected to the other end side of the turn portion 318.
  • the other end side of the return portion 319 is connected to the corresponding magnet holding portion 20 in the corresponding magnet insertion hole 9.
  • the return portion 319 extends linearly.
  • the two pairs of bent portions 317 have an arc center on the magnet holding portion 20, an arc having a radius Ra extending over the angle range ⁇ a, and an arc on a line defining the angle range ⁇ a from the magnet holding portion 20.
  • the turn part 318 is configured by an arc having a radius Rc having an arc center on a line defining the angle range ⁇ b related to the bent part 317 and extending over the angle range ⁇ c.
  • the return part 319 is configured by a straight line extending from the terminal part of the turn part 318 so as to be orthogonal to the magnet holding part 20.
  • the fifth embodiment it is possible to improve the strength of the rotor core and increase the output efficiency while avoiding an increase in the manufacturing cost of the permanent magnet.
  • FIG. 9 is a diagram of the same mode as FIG. 3 regarding the sixth embodiment.
  • the sixth embodiment is the same as the first embodiment except for the parts described below.
  • a bridge 15 and a gap 30 are formed as in the first embodiment. Yes.
  • a material 31 having a permeability greater than at least air is disposed in the gap 30.
  • the sixth embodiment it is possible to improve the strength of the rotor core and increase the output efficiency while avoiding an increase in the manufacturing cost of the permanent magnet. Furthermore, in the sixth embodiment, the magnetic flux entering and exiting the surface of the rare earth magnet 7 does not need to pass through the air having a low permeability in the portion of the distance Lg from the end of the magnet holding unit 20 to the bridge 15, and the magnetic circuit The efficiency of the motor can be further improved, and the motor can be further improved in efficiency and output.
  • Embodiment 7 FIG. Next, a seventh embodiment of the present invention will be described.
  • the seventh embodiment is similar to FIG. 9 when illustrated.
  • the seventh embodiment is the same as the first embodiment except for the parts described below.
  • the seventh embodiment it is possible to improve the strength of the rotor core and increase the output efficiency while avoiding an increase in the manufacturing cost of the permanent magnet. Further, similarly to the sixth embodiment, the efficiency of the magnetic circuit can be further improved, and the motor can be further improved in efficiency and output. Furthermore, compared with the case where the material for filling the gap is a solid material (for example, elongated columnar iron), the seventh embodiment is extremely productive in filling the gap with the material.
  • the bridge includes a straight portion and a bent portion, and the other end of the bent portion whose one end is connected to the straight portion as viewed in a cross section orthogonal to the rotation axis draws any line. It may be possible to modify the connection to the magnet holding portion in various ways.
  • the straight portion, the bent portion, the turn portion, and the return portion are vertically and horizontally symmetrical (both in the direction parallel to the magnetic pole center line MC and in the alignment direction E).
  • the present invention is not limited to this.
  • sixth and seventh embodiments are implemented by filling a part of a plurality of voids or partially filling one void with a material having a magnetic permeability at least larger than that of air. You can also

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 永久磁石埋込型電動機は、ステータ2と、ロータ1とを備え、ロータは、1つの磁極につき、複数の分離した永久磁石7を有しており、ロータコアは、1つの磁極につき、複数の永久磁石と同数の分離した複数の磁石挿入穴9を有しており、それぞれの磁極において、隣り合う磁石挿入穴の間毎に、ブリッジ15が設けられており、ブリッジは、一対の平行な直線部16と、二対の曲がり部17とを含んでおり、一対の直線部は、永久磁石が磁石挿入穴に挿入された状態で、永久磁石の端面と接触しており、二対の曲がり部は、直線部の端部に接続しており、一対の曲がり部の間隔は、直線部から離れるに従い拡大する。

Description

永久磁石埋込型電動機
 本発明は、永久磁石埋込型電動機に関するものである。
 一般的な永久磁石埋込型電動機では、所定の形状に打ち抜かれた複数の電磁鋼板を積層固着してなるロータコアに、あらかじめ極数に対応して周方向に略等間隔に磁石挿入穴が設けられており、各磁石挿入穴に、軸方向から視た断面形状が略長方形を成す一つの永久磁石が挿入されている。磁石挿入穴の両端部とロータコアの外周面との間には、薄肉部が存在する。これは、磁石挿入穴の両端部とロータコアの外周面との間の部分が、永久磁石の表面から出た磁束がステータコアを通らずに永久磁石の別の表面に入って出力に寄与しない、いわゆる漏れ磁束の通り道となるため、強度上必要最低限の肉厚に設計されることが多いからである。
 しかしながら、このような薄肉部を有するロータコアにおいては、磁石挿入穴よりも径方向外側の部分と、径方向内側の部分とが、薄肉部でつながることとなる。よって、電動機の回転数上限を上げる場合、ロータに作用する遠心力の大きさは回転数の2乗に比例するため、ロータコアの強度向上が必要となる。
 このような事情に対し、例えば、特許文献1には、一つの磁極の磁石挿入穴を周方向に複数に分割(よって一つの磁極の永久磁石も周方向に複数に分割)し、その分割位置に、径方向外側の部分と、径方向内側の部分とを連結するブリッジを設け、遠心力に対するロータコアの強度向上を図ることを意図する構成が開示されている。また、この特許文献1では、ブリッジの付け根に形成される角部に応力が集中することを考慮し、ブリッジの付け根に形成される角部に円弧部を設けることも開示している。
 また、特許文献2には、同様に、ブリッジの付け根に形成される角部に応力が集中することを考慮し、ブリッジ自体を湾曲形状に形成することが開示されている。
特開2002-281700号公報 国際公開第2009/069718号パンフレット
 しかしながら、特許文献1に開示の構成及び特許文献2に開示の構成のいずれにおいても、略長方形の断面形状の永久磁石とブリッジとの間には、隙間が生じるため、その分だけ永久磁石の挿入スペースを活かしきれていないこととなる。換言すれば、永久磁石は、隙間が生じている分だけ、周方向の寸法が小さく設定されていることとなる。このため、永久磁石の寸法が小さい分だけ磁束量が減ることとなり、効率・出力の低下を招いている。一方、隙間が生じないように永久磁石の形状を複雑化することは、永久磁石の製造コストを大幅に増加させるという別の問題を生じさせる。特に、ロータコアの強度を上げるべくブリッジを設けた態様においては、一極あたりの永久磁石の数が一つではないので、永久磁石のコスト増加は、永久磁石埋込型電動機全体では、極めて大きな問題となる。
 本発明は、上記に鑑みてなされたものであり、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる、永久磁石埋込型電動機を提供することを目的とする。
 上述した目的を達成するため、本発明は、ステータと、前記ステータに対向して回転可能に支持されたロータとを備え、前記ロータは、1つの磁極につき、複数の分離した永久磁石を有している、永久磁石埋込型電動機であって、前記ロータのロータコアは、1つの磁極につき、複数の前記永久磁石と同数の分離した複数の磁石挿入穴を有しており、それぞれの磁極において、隣り合う前記磁石挿入穴の間毎に、ブリッジが設けられており、前記ブリッジのそれぞれは、一対の平行な直線部と、二対の曲がり部とを含んでおり、一対の前記直線部はそれぞれ、前記複数の永久磁石が、対応する複数の前記磁石挿入穴に挿入された状態で、対応する前記永久磁石における、整列方向でいう対応する端面と接触しており、前記二対の曲がり部は、前記直線部の延長方向の対応する端部に接続しており、対応する一対の前記曲がり部の間隔は、前記直線部から離れるに従い拡大する。
 前記複数の永久磁石は、前記ロータの回転軸方向から視た断面形状が長方形であってもよい。
 前記二対の曲がり部のそれぞれにおける、対応する前記直線部とは反対側には、ターン部の一端側が接続され、該ターン部の他端側には、戻り部の一端側が接続されており、該戻り部の他端側は、対応する前記磁石挿入穴における対応する磁石保持部に接続しているように構成してもよい。
 前記ターン部、前記戻り部及び前記曲がり部は、この順に、曲がり度合いが緩やかであるように構成してもよい。
 前記ターン部、前記戻り部及び前記曲がり部は、該曲がり部及び該戻り部の間隔を直径とする半円を、前記直線部から遠ざかるように扇状に回転移動させた際の軌跡で形成されており、前記半円の回転移動角度θは、当該回転移動角度θと前記直線部の端部の応力σとの関係線において許容値σpよりも低い応力σとなる角度範囲に設定されているように構成してもよい。
 前記ブリッジの前記曲がり部と前記永久磁石との間に生じる空隙に、透磁率が少なくとも空気より大きい材料が充填されているように構成してもよい。
 本発明によれば、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる。
本発明の実施の形態1に係る永久磁石埋込型電動機を側方からみた縦断面図である。 図1の永久磁石埋込型電動機のロータを回転軸方向に沿ってみた横断面図である。 同一の磁極に含まれる磁石挿入穴の整列方向において端となっている磁石挿入穴の周囲を拡大して示す図である。 本発明の実施の形態2に関する、ブリッジの形状及びブリッジに伴う空隙の形状を説明する図である。 図4の形状の説明に関し、応力と、角度θとの関係を示すグラフである。 本発明の実施の形態3に関する、図3と同態様の図である。 本発明の実施の形態4に関する、図3と同態様の図である。 本発明の実施の形態5に関する、ブリッジの部分の拡大図である。 本発明の実施の形態6に関する、図3と同態様の図である。
 以下、本発明に係る永久磁石埋込型電動機の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。
 実施の形態1.
 図1は、本発明の実施の形態1に係る永久磁石埋込型電動機を側方からみた縦断面図であり、図2は、図1の永久磁石埋込型電動機のロータを回転軸方向に沿ってみた横断面図である。また、図3以降の部分拡大図については、図の明瞭性を優先し、ハッチングは省略する。
 本実施の形態1に係る永久磁石埋込型電動機は、ロータ1と、ステータ2と、フレーム3と、ブラケット4とを備えている。ロータ1は、ロータコア5と、シャフト6と、永久磁石の一例としての希土類磁石7と、端板8とを備えている。
 ロータコア5は、例えば所定の形状に打ち抜かれた複数の電磁鋼板を積層固着して形成される。ロータコア5の形状は、例えば略円環形状である。ロータコア5は、複数の磁石挿入穴9を有している。複数の磁石挿入穴9はそれぞれ、ロータコア5において回転軸方向に延びており、磁石挿入穴9のそれぞれには、希土類磁石7が回転軸方向に挿入されている。複数の希土類磁石7は、ロータ1の回転軸方向から視た断面形状が長方形である。なお、これら複数の磁石挿入穴9の詳細については、後述する。
 ロータコア5には、軸方向の両端面のそれぞれに、希土類磁石7が磁石挿入穴9から抜け出さないようにするための端板8が取り付けられている。端板8のロータコア5の端面への取り付け手段は図示していないが、例えば、溶接、接着、貫通穴を設けてのボルトやリベットを用いた締結、インロー部を設けての圧入などである。
 ロータコア5の中央に設けられたシャフト嵌合穴には、シャフト6が嵌合される。シャフト6の一端は、ベアリング10を介してフレーム3に回転自在に支持され、シャフト6の他端は、ベアリング11を介してブラケット4に回転自在に支持される。ベアリング10の座面には、予圧をかけるためのウェーブワッシャ12が敷かれる。シャフト6は例えば断面円形であり、シャフト嵌合穴もこれに応じた円形である。
 ステータ2は、ステータコア13と巻線14とを備えて構成される。ステータコア13は、例えば所定の形状に打ち抜かれた複数の電磁鋼板を積層固着して形成される。ステータコア13の形状は、例えば略円環形状である。
 ステータコア13の径方向内側の部分には、周方向に例えば略等間隔で複数のティース(図示しない)が設けられており、これらのティースには、インシュレータ(図示しない)を介して巻線14が巻装される。
 ステータ2は、例えば焼嵌めなどの方法でフレーム3の内側に固定され、ロータ1の外側に、所定の空隙30を隔ててロータ1と対向して設置される。
 フレーム3は、ベアリング10を介してロータ1の反負荷側を支持し、ステータ2を収容する。フレーム3は、例えば略円筒形状であり、その軸方向の一端は開口して鍔状を成し、他端には底が設けられている。
 ブラケット4は、ベアリング11を介してロータ1の負荷側を支持する。ブラケット4は、例えば略円筒形状であり、その軸方向の一端は開口して鍔状を成し、他端にはシャフト6の出力端を出すための穴が設けられている。フレーム3とブラケット4とはそれぞれの鍔状部分を当接させてネジ止めなどの態様で締結されている。
 続いて、磁石挿入穴9の詳細について説明する。本発明においては、複数の磁石挿入穴9が、1つの磁極単位でまとまっており、そのような複数の磁極単位の構成が、電動機の極数と同数だけ設けられている。具体的一例を説明すると、図2に示す永久磁石埋込型電動機は、6極の極数の例であり、6つの磁極単位を備えており、それぞれの磁極単位において、3つの磁石挿入穴9が割り当てられている。
 複数の磁石挿入穴9は、ロータコア5における径方向の外側寄りに配置されている。それぞれの磁極においては、3つの磁石挿入穴9は、対応する磁極中心線MCと直交する整列方向Eに間隔を空けて並んでいる。
 同一の磁極単位において隣り合う2つの磁石挿入穴9の間(整列方向Eでいう間)には、ロータコア5の一部分であるブリッジ15が形成されている。本実施の形態1の例では、1つの磁極単位において、3つの磁石挿入穴9が割り当てられているので、それぞれの磁極単位において、2つのブリッジ15が設けられている。ブリッジ15はそれぞれ、磁石挿入穴9の径方向外側となるコア外側部分5aと、磁石挿入穴9の径方向内側となるコア内側部分5bとを接続している。
 すなわち、ロータ1は、1つの磁極につき、複数の分離した希土類磁石7を有しており、ロータ1のロータコア5は、1つの磁極につき、1つの磁極に割り当てられている複数の希土類磁石7と同数の分離した複数の磁石挿入穴9を有しており、それぞれの磁極において、隣り合う磁石挿入穴9の間毎に、ブリッジ15が設けられている。
 図2及び図3をもとに、さらに詳細に説明する。図3は、同一の磁極に含まれる磁石挿入穴9の整列方向Eにおいて端となっている磁石挿入穴9の周囲を拡大して示す図である。同一の磁極に含まれる3つの磁石挿入穴9のうち、それら磁石挿入穴9の整列方向Eにおいて端となる2つの磁石挿入穴9には、フラックスバリア21と、位置決め段差22とが形成されている。フラックスバリア21は、対応する磁石挿入穴9における対応する磁極中心線MCと遠い側に設けられており、漏れ磁束を低減すると共に、ロータ表面の磁束を好適な正弦波状に近付けるようにする役割を持つ。また、位置決め段差22は、そのようなフラックスバリア21の形成されている側に形成されている。
 ブリッジ15のそれぞれは、一対の平行な直線部16と、二対の曲がり部17とを含んでいる。一対の直線部16はそれぞれ、複数の希土類磁石7が対応する複数の磁石挿入穴9に挿入された状態で、対応する希土類磁石7における、整列方向Eでいう対応する端面7aと面接触している。ただし、厳密には、希土類磁石7と磁石挿入穴9との間には、組立を可能とするための僅かな隙間を有する。二対の曲がり部17は、一対の直線部16の延長方向(本例では磁極中心線MCと平行な方向)の対応する端部に接続しており、対応する一対の曲がり部17の間隔(本例では磁極中心線MCと直交する方向の間隔)は、直線部16から離れるに従い拡大している。
 一例として、本実施の形態1では、二対の曲がり部17のそれぞれにおける、対応する直線部16とは反対側には、ターン部18の一端側が接続され、このターン部18の他端側には、戻り部19の一端側が接続されており、戻り部19の他端側は、対応する磁石挿入穴9における対応する磁石保持部20に接続している。そして、ターン部18、戻り部19及び曲がり部17は、この順に、曲がり度合いが緩やかになっている。
 なお、図3の図示例では、ターン部18、戻り部19及び曲がり部17はそれぞれ円弧状に形成されており、よって、ターン部18、戻り部19及び曲がり部17は、この順に、曲率半径が大きくなっている。また、ターン部18の円弧中心は、戻り部19及び曲がり部17の間にあり、戻り部19及び曲がり部17の円弧中心は、対応する直線部16から離れる側であって且つ戻り部19と磁石保持部20との間(磁石保持部20上を含む)にある。
 換言すると、本実施の形態1では、直線部16と、磁石保持部20とは直接、接続されてなく、直線部16と磁石保持部20との間には曲がり部17が介在している。特に、図示例では、直線部16は、曲がり部17、ターン部18及び戻り部19をこの順に介在させて、磁石保持部20と接続されている。
 磁石保持部20の先端からブリッジ15(直線部16)までの距離Lg(本例では磁極中心線MCと直交する方向の距離)の部分では、希土類磁石7の表面を出入りする磁束が空隙30を通ることになり、電動機の効率および出力を低下させる要因となるため、製造上可能な限りLgを短く設定するのが良い。したがって、電磁鋼板の打ち抜き加工による場合、Lgは板厚の1~2倍程度に設定するのが適当である。また、ブリッジ15の幅Wbは、大きいほど耐遠心力の強度が増す一方で、小さいほど漏れ磁束が減り、さらに希土類磁石7の周方向寸法(本例では磁極中心線MCと直交する方向の寸法)を大きくとれるため、十分な強度が確保できる範囲で、製造上可能な限りWbを短く設定するのが良い。電磁鋼板の打ち抜き加工による場合、Wbは板厚の1~1.5倍程度に設定するのが適当である。
 以上のように構成された本実施の形態1に係る永久磁石埋込型電動機によれば、次のような利点が得られる。電動機の運転中、ロータの回転によりロータに遠心力が作用しているとき、ブリッジには、大きな応力が作用する。ここで、特に磁石挿入穴の磁石保持部がブリッジにほぼ直角に交差するように接続している態様では、その交差部に極めて大きな応力が作用し、いわゆる応力集中を生じさせることとなる。その一方で、ブリッジにおいて、隣り合う磁石挿入穴の間の部分を湾曲させれば、若干、応力集中を緩和させることができる見込みはあるものの、隣り合う磁石挿入穴の間の部分が湾曲する分だけ、磁石挿入穴においてブリッジが占めていないスペースに、磁石の配置に活用できない領域が存在してしまい、出力の高効率化を阻害する問題が生じうる。さらに、この問題に対して、磁石の端面を、ブリッジの湾曲に合わせて形成しても、磁石のコストが増加するという別の問題が生じる。また、応力集中の問題についても、ブリッジにおける隣り合う磁石挿入穴の間の部分が、直接、磁石保持部につながる限り、応力集中の大幅な緩和は期待できない。
 このような問題に対し、本実施の形態1では、ブリッジにおいて、隣り合う磁石挿入穴の間の部分は、直線部として構成されており、その直線部の端部は、磁石保持部に直接、接続されることなく、直線部から離れるに従い間隔が拡がる曲がり部に接続されている。よって、本実施の形態1では、ブリッジの直線部の端部に生じうる応力を、大幅に低減することができる。また、曲がり部と空隙との関係でみると、曲がり部の曲率半径を大きくすると、曲がり部は緩やかに曲がり応力集中が緩和できる一方、空隙は大きくなり空隙を通る磁束が増え電動機の効率および出力は低下する恐れがある。逆に、曲がり部の曲率半径を小さくすると、空隙は小さくなり空隙を通る磁束を減らして電動機の効率および出力の低下は回避できる一方、曲がり部は急激に曲がり応力集中の緩和効果が低下する恐れがある。これに関し、本実施の形態1では、ターン部、戻り部及び曲がり部という、複数の曲がり具合を採用することで、応力集中の緩和効果の獲得と、電動機の効率および出力の低下抑制との両立を図ることができる。
 また、ブリッジにおいて、隣り合う磁石挿入穴の間の部分は、あくまでも直線部として構成されているので、隣り合う磁石挿入穴の間の領域の全体を、ブリッジの強度を担う部分として活用することができると共に、長方形のような単純形状の磁石を用いても、磁石の端面全体がブリッジと当接し、磁石とブリッジとの間に大きな隙間を作ることなく磁石挿入穴内に磁石を配置し尽くすことができる。永久磁石の製造コストの増加を回避しながら、磁石の配置量を効率よく稼いで出力の高効率化を図ることができる。特に、希土類磁石の場合は、通常、材料の粉体を大きな直方体に焼成したあと所望の小さい直方体に切り出して使うため、最終形状として直方体(すなわち断面が長方形)の場合、最も安価に用意することができる。逆に、曲面や面取を設ける場合は、別途加工が必要になり、追加のコストが発生する。
 以上のように、本実施の形態1に係る永久磁石埋込型電動機によれば、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる。
 実施の形態2.
 次に、本発明の実施の形態2に係る永久磁石埋込型電動機を説明する。図4は、本実施の形態2に関する、ブリッジの形状及びブリッジに伴う空隙の形状を説明する図である。また、図5は、図4の形状の説明に関し、応力と、角度θとの関係を示すグラフである。なお、本実施の形態2は、以下に説明する部分を除いては、上記実施の形態1と同様であり、換言すると、上記実施の形態1をさらに限定した形態である。
 図4に示されるように、曲がり部17の円弧半径をRとし、ターン部18の円弧半径をrとする。本実施の形態2では、曲がり部17、ターン部18及び戻り部19は、曲がり部17及び戻り部19の間隔を直径(2×r)とする半円を、直線部16から遠ざかるように扇状に回転移動させた際の軌跡で形成されており、その半円の回転移動角度はθである。そして、図5は、ブリッジ幅Wb=0.6(mm)、R=2(mm)、r=0.5(mm)として遠心力を作用させた場合のブリッジ付け根の応力集中箇所ST(直線部16と曲がり部17との境界部)における応力の値の一例(弾性解析の結果)である。この場合の「応力」とは、正確には「ミーゼス応力」と呼ばれる値で、1軸引張り時の引張応力に相当する値(降伏条件の判定に用いる)を指す。図5におけるσpは、許容値(OK/NGの閾値)を示し、電磁鋼板の強度や安全率を考慮して設定される。
 本実施の形態2では、回転移動角度θが、回転移動角度θと応力集中箇所STの応力σとの関係線(図5の線)において、許容値σpよりも低い応力σとなる角度範囲に設定されている。
 本実施の形態2によっても、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる。
 実施の形態3.
 次に、本発明の実施の形態3に係る永久磁石埋込型電動機を説明する。図6は、本実施の形態3に関する、図3と同態様の図である。なお、本実施の形態3は、以下に説明する部分を除いては、上記実施の形態1と同様である。
 本実施の形態3における、ブリッジ115のそれぞれは、上記実施の形態1と同様な一対の平行な直線部16と、二対の曲がり部117とを含んでいる。二対の曲がり部117は、一対の直線部16の延長方向の対応する端部に接続しており、対応する一対の曲がり部117の間隔は、直線部16から離れるに従い拡大している。
 また、二対の曲がり部117のそれぞれにおける、対応する直線部16の反対側には、ターン部118の一端側が接続され、このターン部118の他端側には、戻り部119の一端側が接続されており、戻り部119の他端側は、対応する磁石挿入穴9における対応する磁石保持部20に接続している。本実施の形態3では、ターン部118、戻り部119及び曲がり部117は、同じ曲がり度合いを有しており、つまり、ターン部118、戻り部119及び曲がり部117は、相互に明確な境界はなく配置されており、単一半径の一つの円弧(本例は半円弧)を構成している。
 なお、図示例では、ブリッジ115の幅Wbは、実施の形態1のブリッジ15の幅と同じであり、磁石保持部20の先端からブリッジ115(直線部16)までの距離Lgは、上述した実施の形態1におけるブリッジ15のターン部18の円弧の直径と同一に設定している。
 本実施の形態3によっても、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる。
 実施の形態4.
 次に、本発明の実施の形態4に係る永久磁石埋込型電動機を説明する。図7は、本実施の形態4に関する、図3と同態様の図である。なお、本実施の形態4は、以下に説明する部分を除いては、上記実施の形態3と同様である。
 本実施の形態4における、ブリッジ215のそれぞれは、相似関係を維持して上記実施の形態3のブリッジ115を大きくしたものに相当する。ブリッジ215のそれぞれは、上記実施の形態1と同様な一対の平行な直線部16と、二対の曲がり部217とを含んでいる。ターン部218、戻り部219及び曲がり部217は、相互に明確な境界はなく配置されており、単一半径の一つの円弧(本例は半円弧)を構成している。図示例では、ブリッジ215の幅Wbは、実施の形態1のブリッジ15の幅と同じであり、磁石保持部20の先端からブリッジ215(直線部16)までの距離Lgは、上述した実施の形態1におけるブリッジ15の曲がり部17の円弧の直径と同一に設定している。
 本実施の形態4によっても、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる。
 実施の形態5.
 次に、本発明の実施の形態5に係る永久磁石埋込型電動機を説明する。図8は、本実施の形態5に関する、図3と同態様の図である。なお、本実施の形態5は、以下に説明する部分を除いては、上記実施の形態1と同様である。
 本発明において、応力集中を緩和する構成としては、直線部16との境界を持つ曲がり部17が設けられていることが重要であり、曲がり部17と磁石保持部20とをつなぐラインは、ブリッジ付け根の応力への影響は小さく、形状の自由度は大きい。本実施の形態5は、曲がり部、ターン部及び戻り部からなるラインが、一様な円弧ではなく、共通の円弧中心を持たず、且つ、直線が部分的に含まれる態様の一例である。
 本実施の形態5における、ブリッジ315のそれぞれは、上記実施の形態1と同様な一対の平行な直線部16と、二対の曲がり部317とを含んでいる。二対の曲がり部317は、一対の直線部16の延長方向の対応する端部に接続しており、対応する一対の曲がり部317の間隔は、直線部16から離れるに従い拡大している。
 二対の曲がり部317のそれぞれにおける、対応する直線部16の反対側には、ターン部318の一端側が接続され、このターン部318の他端側には、戻り部319の一端側が接続されており、戻り部319の他端側は、対応する磁石挿入穴9における対応する磁石保持部20に接続している。本実施の形態5では、戻り部319が直線的に延びている。
 より詳細には、二対の曲がり部317は、磁石保持部20上に円弧中心を有し、角度範囲θaにわたって広がる半径Raの円弧と、磁石保持部20から角度範囲θaを規定する線上に円弧中心を持ち角度範囲θbにわたって広がる半径Rbの円弧とで構成されている。また、ターン部318は、曲がり部317に関する角度範囲θbを規定する線上に円弧中心を持ち角度範囲θcにわたって広がる半径Rcの円弧で構成されている。さらに、戻り部319は、ターン部318の終端部から磁石保持部20に直交するように延びる直線で構成されている。
 本実施の形態5によっても、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる。
 実施の形態6.
 次に、本発明の実施の形態6に係る永久磁石埋込型電動機を説明する。図9は、本実施の形態6に関する、図3と同態様の図である。なお、本実施の形態6は、以下に説明する部分を除いては、上記実施の形態1と同様である。
 本実施の形態6においては、実施の形態1と同様なブリッジ15及び空隙30(曲がり部17、ターン部18、戻り部19及び希土類磁石7の対応の面によって囲まれた空間)が形成されている。そして、その空隙30に、透磁率が少なくとも空気より大きい材料31が配置される。
 本実施の形態6によっても、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる。さらに、本実施の形態6では、磁石保持部20の端からブリッジ15までの距離Lgの部分において、希土類磁石7の表面を出入りする磁束が、透磁率の小さい空気を通らなくて済み、磁気回路の効率をより一層向上することができ、電動機の更なる高効率化・高出力化を図ることができる。
 実施の形態7.
 次に、本発明の実施の形態7について説明する。本実施の形態7は、図示すると図9と同様となる。なお、本実施の形態7は、以下に説明する部分を除いては、上記実施の形態1と同様である。
 本実施の形態7においては、上記実施の形態6において空隙30を埋める材料31として、樹脂と粉末状の磁性材料を混ぜたものを空隙30に注入して成型する。
 本実施の形態7によっても、永久磁石の製造コストの増加を回避しつつ、ロータコアの強度を向上させ、尚且つ、出力の高効率化も図ることができる。また、実施の形態6と同様、磁気回路の効率をより一層向上することができ、電動機の更なる高効率化・高出力化を図ることができる。さらに、空隙を埋める材料が固形物(例えば細長い柱状の鉄など)である場合に比べ、本実施の形態7は、空隙に材料を充填するにあたって、極めて生産性が良い。
 なお、上述した実施の形態6及び7については、実施の形態1の空隙に組み合わせた例として説明したが、これに限定されず、実施の形態2~5において生じる空隙に、実施の形態6又は7で説明した材料を充填することもできる。
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 例えば、上述した説明では、磁極数が6極で、1つの磁極あたりでは、磁石挿入穴及び希土類磁石が3つに分割され、したがって、ブリッジは2つ形成されていたが、本発明はこれに限定されるものではない。よって、1つの磁極あたりで磁石挿入穴及び希土類磁石が2つに分割され、ブリッジは1つ形成されている態様や、1つの磁極あたりで磁石挿入穴及び希土類磁石が4つ以上に分割され、ブリッジは3つ以上形成されている態様として実施することもできる。
 また、本発明においては、ブリッジに直線部及び曲がり部が含まれていればよく、回転軸と直交する断面においてみて、一端が直線部と接続する曲がり部の他端が、如何なるラインを描いて磁石保持部に接続されているかについては、様々に改変することが可能であろう。
 上述した実施の形態1~6の図示例は、ブリッジそれぞれにおいて、直線部、曲がり部、ターン部及び戻り部を、上下左右対称的(磁極中心線MCと平行な方向及び整列方向Eとの双方の方向に関し対称的)に形成したものを示しているが、本発明は、これに限定されるものではない。
 また、実施の形態6及び7は、複数の空隙のうちに一部の空隙に対して、又は、一つの空隙の内部を部分的に、透磁率が少なくとも空気より大きい材料で埋めるようにして実施することもできる。
 また、本発明で用いる永久磁石は、希土類磁石に限定されず、他の種類の永久磁石であってもよく、例えばフェライト磁石を用いることもできる。
 1 ロータ、2 ステータ、7 希土類磁石(永久磁石)、9 磁石挿入穴、15、115、215、315 ブリッジ、16 直線部、17、117、217、317 曲がり部、18、118、218、318 ターン部、19、119、219、319 戻り部、20 磁石保持部、30 空隙、31 材料。E 整列方向、MC 磁極中心線。

Claims (6)

  1.  ステータと、
     前記ステータに対向して回転可能に支持されたロータとを備え、
     前記ロータは、1つの磁極につき、複数の分離した永久磁石を有している、永久磁石埋込型電動機であって、
     前記ロータのロータコアは、1つの磁極につき、複数の前記永久磁石と同数の分離した複数の磁石挿入穴を有しており、
     それぞれの磁極において、隣り合う前記磁石挿入穴の間毎に、ブリッジが設けられており、
     前記ブリッジのそれぞれは、一対の平行な直線部と、二対の曲がり部とを含んでおり、
     一対の前記直線部はそれぞれ、前記複数の永久磁石が、対応する複数の前記磁石挿入穴に挿入された状態で、対応する前記永久磁石における、整列方向でいう対応する端面と接触しており、
     前記二対の曲がり部は、前記直線部の延長方向の対応する端部に接続しており、対応する一対の前記曲がり部の間隔は、前記直線部から離れるに従い拡大する、
    永久磁石埋込型電動機。
  2.  前記複数の永久磁石は、前記ロータの回転軸方向から視た断面形状が長方形である、
    請求項1の永久磁石埋込型電動機。
  3.  前記二対の曲がり部のそれぞれにおける、対応する前記直線部とは反対側には、ターン部の一端側が接続され、該ターン部の他端側には、戻り部の一端側が接続されており、該戻り部の他端側は、対応する前記磁石挿入穴における対応する磁石保持部に接続している、
    請求項1又は2の永久磁石埋込型電動機。
  4.  前記ターン部、前記戻り部及び前記曲がり部は、この順に、曲がり度合いが緩やかである、
    請求項3の永久磁石埋込型電動機。
  5.  前記ターン部、前記戻り部及び前記曲がり部は、該曲がり部及び該戻り部の間隔を直径とする半円を、前記直線部から遠ざかるように扇状に回転移動させた際の軌跡で形成されており、
     前記半円の回転移動角度θは、当該回転移動角度θと前記直線部の端部の応力σとの関係線において許容値σpよりも低い応力σとなる角度範囲に設定されている、
    請求項4の永久磁石埋込型電動機。
  6.  前記ブリッジの前記曲がり部と前記永久磁石との間に生じる空隙に、透磁率が少なくとも空気より大きい材料が充填されている、
    請求項1~5の何れか一項の永久磁石埋込型電動機。
PCT/JP2013/082941 2013-12-09 2013-12-09 永久磁石埋込型電動機 WO2015087377A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2013/082941 WO2015087377A1 (ja) 2013-12-09 2013-12-09 永久磁石埋込型電動機
PCT/JP2014/082102 WO2015087773A1 (ja) 2013-12-09 2014-12-04 永久磁石埋込型電動機
CN201480065591.9A CN105814773B (zh) 2013-12-09 2014-12-04 永磁铁埋入型电动机
DE112014005591.3T DE112014005591T5 (de) 2013-12-09 2014-12-04 Eingebetteter Permanentmagnetelektromotor
US15/032,656 US10056795B2 (en) 2013-12-09 2014-12-04 Embedded-permanent-magnet electric motor
JP2015552409A JP6120991B2 (ja) 2013-12-09 2014-12-04 永久磁石埋込型電動機
GB1608761.1A GB2534805B (en) 2013-12-09 2014-12-04 Embedded-permanent-magnet electric motor
CN201420770180.7U CN204290538U (zh) 2013-12-09 2014-12-09 永久磁铁埋入式电动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082941 WO2015087377A1 (ja) 2013-12-09 2013-12-09 永久磁石埋込型電動機

Publications (1)

Publication Number Publication Date
WO2015087377A1 true WO2015087377A1 (ja) 2015-06-18

Family

ID=53370726

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/082941 WO2015087377A1 (ja) 2013-12-09 2013-12-09 永久磁石埋込型電動機
PCT/JP2014/082102 WO2015087773A1 (ja) 2013-12-09 2014-12-04 永久磁石埋込型電動機

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082102 WO2015087773A1 (ja) 2013-12-09 2014-12-04 永久磁石埋込型電動機

Country Status (6)

Country Link
US (1) US10056795B2 (ja)
JP (1) JP6120991B2 (ja)
CN (1) CN105814773B (ja)
DE (1) DE112014005591T5 (ja)
GB (1) GB2534805B (ja)
WO (2) WO2015087377A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649676B2 (ja) * 2014-10-03 2020-02-19 株式会社三井ハイテック 積層鉄心の製造方法
KR102504423B1 (ko) * 2015-05-27 2023-02-28 엘지이노텍 주식회사 로터 및 이를 포함하는 모터
JP2017184571A (ja) * 2016-03-31 2017-10-05 株式会社豊田自動織機 永久磁石式回転電機
JPWO2018037529A1 (ja) * 2016-08-25 2018-12-06 三菱電機株式会社 回転電機
JP6689449B2 (ja) * 2017-03-27 2020-04-28 三菱電機株式会社 回転子、電動機、圧縮機、送風機、および空気調和装置
JP2020202673A (ja) * 2019-06-11 2020-12-17 日立オートモティブシステムズ株式会社 回転電機の回転子、及び回転電機
CN113994570B (zh) * 2019-06-26 2023-06-20 三菱电机株式会社 转子、电动机、压缩机及空调机
JP2021019411A (ja) * 2019-07-19 2021-02-15 アイシン精機株式会社 電動モーターの回転子、及びその製造方法
CN113098166B (zh) * 2020-01-09 2022-11-04 蜂巢传动系统(江苏)有限公司保定研发分公司 转子冲片及转子铁芯
WO2024090279A1 (ja) * 2022-10-27 2024-05-02 株式会社アイシン ロータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294344A (ja) * 1996-04-26 1997-11-11 Meidensha Corp 永久磁石式回転機の回転子
JP2002136008A (ja) * 2000-08-18 2002-05-10 Yaskawa Electric Corp 永久磁石形同期電動機のロータ
JP2005245120A (ja) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd 電動機
JP2008182824A (ja) * 2007-01-25 2008-08-07 Mitsubishi Electric Corp 内部磁石埋め込み型ロータの製造方法
JP2013081302A (ja) * 2011-10-04 2013-05-02 Hitachi Automotive Systems Ltd 永久磁石式回転電機および永久磁石式回転電機を備えた車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598887B2 (ja) * 1999-06-28 2004-12-08 トヨタ自動車株式会社 永久磁石式回転機の回転子
JP2002281700A (ja) 2001-03-23 2002-09-27 Fuji Electric Co Ltd 埋込み磁石型回転機の回転子
JP4274288B1 (ja) 2007-11-28 2009-06-03 ダイキン工業株式会社 界磁子用コア
CN102939699B (zh) * 2010-03-30 2016-05-18 沃尔沃技术公司 具有嵌入式永磁体的电机转子以及电机
JP5447418B2 (ja) 2011-03-28 2014-03-19 株式会社豊田自動織機 回転電機の永久磁石埋設型回転子及び回転電機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294344A (ja) * 1996-04-26 1997-11-11 Meidensha Corp 永久磁石式回転機の回転子
JP2002136008A (ja) * 2000-08-18 2002-05-10 Yaskawa Electric Corp 永久磁石形同期電動機のロータ
JP2005245120A (ja) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd 電動機
JP2008182824A (ja) * 2007-01-25 2008-08-07 Mitsubishi Electric Corp 内部磁石埋め込み型ロータの製造方法
JP2013081302A (ja) * 2011-10-04 2013-05-02 Hitachi Automotive Systems Ltd 永久磁石式回転電機および永久磁石式回転電機を備えた車両

Also Published As

Publication number Publication date
GB201608761D0 (en) 2016-06-29
US10056795B2 (en) 2018-08-21
WO2015087773A1 (ja) 2015-06-18
CN105814773A (zh) 2016-07-27
DE112014005591T5 (de) 2016-09-08
JPWO2015087773A1 (ja) 2017-03-16
CN105814773B (zh) 2018-05-04
JP6120991B2 (ja) 2017-04-26
GB2534805A (en) 2016-08-03
US20160268856A1 (en) 2016-09-15
GB2534805B (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6120991B2 (ja) 永久磁石埋込型電動機
US8957560B2 (en) Electric rotating machine
CN109661760B (zh) 表面磁体型马达
CN203589986U (zh) 永磁体埋入型电动机
JP5240593B2 (ja) 回転電機
US9923436B2 (en) Rotor for a rotary electric machine
WO2014034344A1 (ja) 回転電機
US11165293B2 (en) Rotor and motor
US9806569B2 (en) Hybrid excitation rotating electrical machine
US20120187696A1 (en) Rotating electric machine and wind power generation system
US20180041080A1 (en) Rotor, rotary electric machine, and method for manufacturing rotor
JP5240592B2 (ja) 回転電機
JPWO2017141361A1 (ja) 回転電機及び回転電機の製造方法
JP2013099038A (ja) 電動機用ロータおよびブラシレスモータ
JP2006333656A (ja) 回転電機の回転子及びそれを用いた回転電機
JP2017204922A (ja) ロータ,回転電機およびロータの製造方法
JP6112970B2 (ja) 永久磁石式回転電機
US20190245418A1 (en) Axial Gap-Type Rotary Electrical Machine
WO2014069288A1 (ja) インナーロータ型モータ
JP2014225935A (ja) 永久磁石式回転電機
WO2017199355A1 (ja) アキシャルギャップ型回転電機
JP2015061374A (ja) ステータ
JP2011229263A (ja) 電動機ロータ
JP6537613B2 (ja) 電動機の回転子、電動機、送風機及び冷凍空調機
JP2017046386A (ja) 永久磁石電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP