WO2014069288A1 - インナーロータ型モータ - Google Patents

インナーロータ型モータ Download PDF

Info

Publication number
WO2014069288A1
WO2014069288A1 PCT/JP2013/078617 JP2013078617W WO2014069288A1 WO 2014069288 A1 WO2014069288 A1 WO 2014069288A1 JP 2013078617 W JP2013078617 W JP 2013078617W WO 2014069288 A1 WO2014069288 A1 WO 2014069288A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
stator
inner rotor
core
motor
Prior art date
Application number
PCT/JP2013/078617
Other languages
English (en)
French (fr)
Inventor
親 深沢
グエン・タン・チュン
隆弥 加藤
美保 荒川
剛史 仲川
Original Assignee
日本電産サーボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サーボ株式会社 filed Critical 日本電産サーボ株式会社
Publication of WO2014069288A1 publication Critical patent/WO2014069288A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • H02K37/04Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/14Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to an inner rotor type motor such as a stepping motor provided with a stator formed by winding a coil around a plurality of main poles which are wound poles, and a rotor disposed inside the stator.
  • an inner rotor type motor such as a stepping motor provided with a stator formed by winding a coil around a plurality of main poles which are wound poles, and a rotor disposed inside the stator.
  • stepping motors have been used in a wide range of driving parts including information equipment fields such as printers, facsimiles and copying machines, and industrial equipment fields such as FA equipment.
  • information equipment fields such as printers, facsimiles and copying machines
  • industrial equipment fields such as FA equipment.
  • this type of stepping motor for example, in the case of a hybrid type using a magnetic body and a permanent magnet as a rotor, an inner rotor type shown in, for example, Japanese Patent Application Laid-Open No. 2012-044826 is often used.
  • FIG. 8 shows a part of a hybrid stepping motor which is an example of this type of inner rotor type motor.
  • a stator core 3 is formed by providing a plurality of (eight) main poles 2 radially and inwardly on a back yoke 1 which is an annular magnetic body frame.
  • a stator (4) is formed by winding a coil (not shown) with an insulating member (not shown) interposed between the main poles (2) of each of the main poles (2).
  • a hybrid rotor 5 configured by sandwiching a permanent magnet magnetized in the axial direction between magnetic bodies is disposed. Cover members (not shown) are fixed to both sides of the stator 4 in the axial direction, and the rotor shaft 6 of the rotor 5 is supported by bearings respectively held at the center of the cover member.
  • the outer peripheral surface of the stator core 3, that is, the outer peripheral surface of the back yoke 1 constitutes a part of the outer surface of the motor, so that heat generated in the motor is transmitted through the stator core 3.
  • the outer peripheral surface of the stator core need not be covered with a motor cover or the like, and the material cost of the motor cover or the like can be reduced.
  • the cover members provided on both sides in the axial direction of the stator core 3 are configured to comprehensively cover the coil protruding from the axial end surface of the stator core 3 and the entire insulating member, the dust-proof against the inside of the motor Sex is secured.
  • the torque of the stator core in the inner rotor type stepping motor having a round outer shape is lower than the square type as shown in FIG. 8 due to the restriction of the magnetic path area.
  • the outer shape is increased and the motor becomes large. Therefore, the stepping motor using the rectangular stator core shown in FIG. 8 can be expected to have a higher torque than that using the round stator core.
  • the present invention has been made in order to solve the above-described problems, and the object of the present invention is to have a stator employing a square stator core and realize torque increase without causing an increase in size. It is an object of the present invention to provide an inner rotor type motor.
  • a stator core having a plurality of main poles projecting radially inside the annular core back portion, and each of the stator cores
  • a stator having a coil wound around the main pole via an insulator, and a rotor that is rotatably arranged inside the stator so as to face the tip of each main pole, and has a rotation shaft at the center of the axis
  • an inner rotor type motor comprising two cover members that are provided so as to cover both sides of the stator in the axial direction and each support a bearing that supports the rotor shaft.
  • the core back portion of the stator core has a substantially square shape with four corners cut off, and the side surfaces of the four sides of the square form the outer surface of the motor, respectively, and each main pole of the stator core is connected to the core back portion. It is arranged at a position inclined at a predetermined angle in the circumferential direction from the center of the four pieces about the axis center, and the ratio of the maximum inner diameter to the minimum outer diameter in the stator core is set to 0.65 to 0.75. .
  • the stator is constituted by eight main poles in the stator core, and a two-phase coil is wound around the stator, and the main poles are arranged at equal intervals of 45 °.
  • the position of the pole is preferably set at an angle inclined by 22.5 ° in the circumferential direction from the center of each of the four square pieces in the stator core.
  • the insulator is composed of two insulating members attached to the stator core from both sides in the axial direction, and each of the insulating members covers a plurality of slot insulating portions and the slot insulating portions are connected to the stator core. And four outer surface portions that are substantially flush with the motor outer surface on the four sides of the core back portion.
  • Each of the two cover members includes an end plate portion that constitutes a motor end surface and has a bearing holding portion at the center, and a side wall portion that extends in the axial direction from the periphery of the end plate portion and has a tip that abuts against the end surface of the stator core. It is preferable that the outer surface portions of the four sides of the frame portion are fitted in the openings formed in the center portions of the four sides of the side wall portions of both cover members.
  • each of the two cover members is formed into an end plate portion that constitutes a motor end surface and has a bearing holding portion at the center portion, and a shape that extends in the axial direction from the peripheral edge of the end plate portion and conforms to the outer peripheral shape of the core back portion. And at the end plate portion of at least one of the cover members, the corner portions corresponding to the cut portions of the four corners of the stator core are integrally provided. It can be set as the structure which forms the screw hole for motor attachment in this corner
  • the rotor can be configured using a unit rotor composed of a pair of magnetic poles having magnetism and a permanent magnet sandwiched between the rotor magnetic poles and magnetized in the axial direction.
  • a plurality of magnetic teeth are formed at an equal pitch on the outer peripheral surface of the rotor magnetic pole, and each magnetic tooth of the pair of rotor magnetic poles is arranged by being shifted by 1/2 pitch in the circumferential direction.
  • each main pole is arranged at a position inclined at a predetermined angle in the circumferential direction from the center of the four sides of the core back portion, and then fixed.
  • the ratio of the maximum inner diameter to the minimum outer diameter of the child core is ensured while ensuring the number of turns and volume of the coil in each main pole.
  • the outer diameter of the rotor can be increased and the torque can be increased. In other words, since the outer diameter of the rotor can be increased, even if a lower-grade magnet is used for the rotor, a torque equivalent to or higher than that of the conventional magnet can be secured, which greatly contributes to cost reduction. It will be possible.
  • each main pole is set at an angle inclined by 22.5 ° from the center of the four sides of the square, so that the above-described effects can be obtained.
  • the stator core can be 90 ° rotationally symmetric, and when the stator core is configured by laminating a predetermined number of silicon steel plates, the silicon steel plates are press punched into a predetermined shape 90 ° at a time. A method of rotating and stacking can be adopted, and a permeance vector variation suppressing effect can be obtained.
  • FIG. 1 is a plan view showing an inner rotor type stepping motor according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line XY of the stepping motor of FIG. 1. It is a perspective view of the stepping motor of FIG. It is a top view which shows the stator core and rotor core which are a part of stepping motor of FIG. It is a top view which shows the state which mounted
  • FIG. 1 to 3 show an overall configuration of a two-phase hybrid (HB) type stepping motor as an example of the present invention
  • FIG. 1 is a plan view
  • FIG. 2 is a cross-sectional view
  • FIG. 3 is a perspective view
  • FIG. 4 shows the stator core 12 of the stator 10 having the number of main poles 8 and the HB type rotor 20 arranged inside thereof
  • FIG. 5 shows a state in which the insulating members 16 and (18) are mounted.
  • FIG. 6 shows the insulating member 16.
  • the stator 10 is an example of adopting an 8-main pole structure that does not generate an unbalanced electromagnetic force and is excellent in high-speed performance.
  • Each of the necks that are the winding poles of the 8 main poles is wound with windings.
  • the coils wound around the four main poles are connected to form one phase, and the remaining four main poles are used to form the other one phase, resulting in a two-phase coil configuration as a whole.
  • the stator 10 is provided with an annular core back portion 12a whose outer shape is formed in a substantially regular quadrilateral shape with four corners cut off and whose inner periphery is formed on a circumferential surface, and is provided so as to protrude radially inward from the core back portion 12a.
  • a stator core 12 composed of eight main poles 12b arranged at equal intervals in the direction, a two-phase coil 14 (shown in FIG. 2) wound around each main pole 12b, and each main pole 12b It consists of upper and lower insulating members 16, 18 interposed between the coils 14. For example, six inductor teeth protrude from the tip of each main pole 12 b that is a wound pole.
  • the main poles 12b are arranged so as to be inclined by ⁇ in the circumferential direction as compared with the conventional one shown in FIG. 8 so that the main poles 12b are arranged.
  • the six inductor teeth are arranged at equal intervals, and are arranged at symmetrical positions with respect to the center line of the main pole 12b.
  • the six inductor teeth can be arranged at unequal pitches for the purpose of improving harmonic components, in addition to being arranged at equal pitches.
  • the stator core 12 is configured by laminating a plurality of silicon steel plates.
  • four main poles 12b arranged every 90 ° constitute one phase (A phase / C phase), and the remaining four mechanical angles are separated from each other by 90 ° and for one phase.
  • Two phases (B phase and D phase) are formed by the main pole 12b disposed at a mechanical angle of 45 degrees from the main pole.
  • the four main poles 12b every 90 ° are excited and driven so as to have different polarities alternately when the coil 14 is energized.
  • the radial thickness at each side of the core back portion 12a is set to the minimum value in the range allowed for magnetic characteristics, and the inner diameter is maximized accordingly. That is, for example, in JP-A-5-168214, in order to generate the maximum torque from the rotor, the ratio of the inner diameter to the outer diameter of the stator is set to 0.62 to 0.64 in the case of two phases. In the conventional configuration shown in FIG. 8, the ratio of the inner diameter Di to the minimum outer diameter Do of the stator core 3 is 0.625.
  • the minimum outer side of the stator core 12 corresponding to the length of one side of the square is characteristic. It has been confirmed that the ratio of the inner diameter Di to the diameter Do can be set to about 0.66, and the inner diameter Di can be set larger by several% or more than the conventional one.
  • the stator core 12 shown in FIG. 4 is an example of a size of 56 mm ⁇ 56 mm, but the protrusion length similar to the protrusion length of the main pole of the conventional one in FIG. If the radial thickness of the core back portion 12a is set to the minimum value in the allowable range in terms of magnetic characteristics while securing at 12, the ratio of the inner diameter of the core back portion 12a to the minimum outer diameter Do becomes about 0.91.
  • the maximum inner diameter Di (including the main pole 12b) of the stator core 12 at this time is about 0.66 as described above.
  • a pair of insulating members 16 and 18 are attached to the stator core 12 from both axial sides (referred to as upper and lower sides for convenience). These are insulators that insulate the coil 14 from the stator core 12, and are formed of a molded body of insulating resin.
  • the upper insulating member 16 mounted from the upper side and the lower insulating member 18 mounted from the lower side respectively have a slot insulating portion 16a covering the upper surface and both side surfaces of each main pole 12b and the lower surface and both side surfaces of each main electrode 12b.
  • the slot insulation part 18a to cover and the frame parts 16b and 18b which connect each slot insulation part 16a and 18a by the upper and lower outer part are each provided.
  • the slot insulating portions 16a and 18a have radially outer edges extending along the inner peripheral surface of the core back portion 12a to connect the adjacent slot insulating portions 16a and 18a to each other. It is configured to cover. At the inner peripheral edges of the upper and lower surfaces of the slot insulating portions 16a and 18a, tongue pieces are provided so as to protrude upward corresponding to the tip portions of the main poles 12b, thereby preventing the coil 14 from protruding to the inner peripheral side. is doing.
  • the frame portions 16b and 18b are formed in a substantially circular outer shape, and the outer surface portions 16c and 18c are radially outward at the positions of the slots on the outer peripheral side of the frame portions 16b and 18b.
  • relay projections 16d and 18d are provided on the inner sides of the outer surface portions 16c and 18c, respectively, for locking the connecting wires of the coils 14.
  • those located on the four sides of the stator core 12 are such that the outer surfaces of the outer surface portions 16c and 18c are positioned on the stator core, as is apparent from FIG. 12 is arranged so as to be substantially flush with the outer surfaces of the four sides.
  • the frame portion 18b of the lower insulating member 18 is not provided with an outer surface portion at a portion corresponding to a connector to be described later in the four sides of the square, and a connector holding portion is formed.
  • the axial ends of the slot insulating portions 16a and 18a face each other through a slight gap in the slots of the stator core 12.
  • the peripheral surface of each main pole 12b and the inner surface of the core back portion 12a are covered with the insulating members 16 and 18, and the coil 14 is wound around each main pole 12b in this state.
  • the slot insulating portion 16 a of the upper insulating member 16 has a longer axial length than the slot insulating portion 18 a of the lower insulating member 18.
  • the axial lengths of the slot insulating portions 16a and 18a of the both insulating members 16 and 18 may be the same length, and the lower side may be formed longer than the upper side.
  • the rotor 20 disposed inside the stator core 12 includes a pair of rotor magnetic poles 24 ⁇ / b> A and 24 ⁇ / b> B that are fixed to the rotor shaft 22 and are opposed to each other in the axial direction. It is composed of a cylindrical permanent magnet 26 sandwiched between the child magnetic poles 24A and 24B and magnetized in the axial direction.
  • Each of the rotor magnetic poles 24A and 24B is formed by laminating silicon steel plates and the like, and a plurality of (for example, 50) magnetic teeth are provided on each outer periphery at an equal pitch.
  • the permanent magnets 26 are sandwiched between the two by being arranged with a half shift.
  • the magnetic teeth of the rotor magnetic poles 24A and 24B of the rotor 20 are opposed to the inductor teeth of the main magnetic poles 12b of the stator 10 in the radial direction through an air gap of, for example, 0.05 mm.
  • the permanent magnet 26 for example, an FCC magnet is used.
  • the inner diameter of the stator 10 is set to be several percent or more larger than that of the conventional one.
  • the outer diameter of the rotor 20 is about several percent of that of the conventional one. It is set large. For this reason, even if an FCC magnet substantially equivalent to an alnico magnet is used as the permanent magnet 26, the torque obtained is large at each stage.
  • a ferrite type having a low residual magnetic flux density may be used as the permanent magnet 26 as the permanent magnet 26 a ferrite type having a low residual magnetic flux density may be used.
  • an upper cover member 30 and a lower cover member 32 are disposed on both sides in the axial direction of the stator 10, and constitute an outer surface of the motor together with the outer peripheral surface of the stator 10.
  • Both cover members 30 and 32 are each made of a metal material, and the outer shape thereof is formed in a substantially regular quadrilateral shape like the stator core 12.
  • the upper cover member 30 includes a substantially square end plate portion 30a constituting the upper end surface of the motor, and a cylindrical bearing holding portion 30b formed so as to protrude downward at the center portion of the end plate portion 30a. And a side wall portion 30c that is formed in a peripheral edge portion of the end plate portion 30a so as to protrude downward, and has a substantially square shape with the outer peripheral surface being substantially flush with the outer peripheral surface of the stator core 12. It becomes.
  • Four corners 30d of the end plate 30a protrude from the four corners of the side wall 30c, and screw holes 30d 'are formed at these positions.
  • the lower cover member 32 includes a substantially square end plate portion 32a with four corners forming the lower end surface of the motor, and a cylindrical bearing formed so as to protrude upward at the center portion of the end plate portion 32a.
  • the holding part 32b and the peripheral wall part 32c formed so that it might protrude upward from the periphery of the end plate part 32a are provided.
  • One side of the square four sides of the lower cover member 32 has a large opening by extending one side of the end plate 32a outward and extending the peripheral wall 32c along both sides.
  • a lead portion 32d is formed, in which the connector holding portion of the frame portion 18b is accommodated, and the connector 34 held by the connector holding portion is housed.
  • Each terminal of the two-phase coil 14 is connected to a terminal pin of the connector 34.
  • the bearing holding portions 30b and 32b of the upper cover member 30 and the lower cover member 32 hold bearings 36 and 38 formed of ball bearings, and the rotor shaft 22 of the rotor 20 is a double bearing. 36 and 38 are rotatably supported. Further, as shown in FIG. 7, four screw insertion holes 30 e are formed in the vicinity of the screw holes 30 d at the four corners of the end plate portion 30 a of the upper cover member 30. The axial insertion holes 12c communicate with each other, and screw holes (not shown) are formed in the lower cover member 32 in accordance therewith.
  • the fixing screws 40 are inserted through the screw insertion holes 30e of the end plate portion 30a, and are fastened to the screw holes in the lower cover member 32 through the screw insertion holes 12c of the stator core 12, whereby both the upper and lower sides of the stator 10 are fixed.
  • the upper and lower cover members 30 and 32 can be integrally fixed to each other.
  • the side wall 30c of the upper cover member 30 is formed with openings 30f serving as windows at the center of the four sides of the square and the center of the four corners, respectively.
  • Each outer surface portion 16c of the frame portion 16b of the upper insulating member 16 is fitted to this, and the outer surface of each outer surface portion 16c is the outer surface of the motor continuous with the outer surface of the side wall portion 30c of the upper cover member 30. Part of it.
  • the side wall portion 32c of the lower cover member 32 has an opening 32f serving as a window portion at the central portion of the three sides excluding the lead portion 32d and the central portion of the four corner portions of the four sides of the square.
  • each outer surface portion 18c is formed on the side wall portion 32c of the lower cover member 32 in the same manner as described above. It constitutes a part of the motor outer surface that is continuous with the outer surface.
  • Insulating covers 42 and 44 are arranged above and below the stator 12 so as to cover the upper and lower surfaces of the coil 14 wound around each main pole 12 b, and coils for the end plate portions 30 a and 32 a of the upper and lower cover members 30 and 32. 14 insulation is secured.
  • the insulating covers 42 and 44 are formed of an insulating resin and cover the upper and lower sides of the main poles 12b, that is, slot insulation corresponding to the frame portions 16b and 18b of the insulating members 16 and 18 and the tips of the main poles 12b. It is formed in an annular shape so as to cover the space between the tongues of the portions 16a and 18a.
  • insulating covers 42 and 44 are formed with auxiliary projections 42a and 44a respectively corresponding to the outer surface portions 16c and 18c of the frame portions 16b and 18b on the outer peripheral edges thereof.
  • the cover members 30 and 32 are fitted into the openings 30f and 32f of the side walls 30c and 32c.
  • the insulating covers 42 and 44 are prevented from rotating and pressed against the cover members 30 and 32 to be securely fixed.
  • the openings 30f and 32f are hermetically closed. A dustproof effect on the inside of 30 and 32 is obtained.
  • the frame portions 16b and 18b of the upper and lower insulating members 16 and 18 used to insulate the coil 14 from the stator core 12 are accommodated inside the upper and lower cover members 30 and 32. Instead, the outer surface portions 16c and 18c are partly exposed on the motor surface, so that the inner diameter of the stator core 12 can be maximized, and each main pole of the stator core 12 can be maximized. Since 12b is set at an angle inclined by 22.5 ° in the circumferential direction compared to the conventional one, it becomes possible to secure a predetermined number of turns of the coil 14 in each main pole 12b, and the rotor 20 has a larger diameter. The output can be greatly increased. For this reason, even if a low-grade ferrite permanent magnet is used as the permanent magnet 26 of the rotor 20, it is possible to increase the output as compared with the conventional one, and an inexpensive motor can be provided.
  • the rotor of the motor is not limited to the hybrid type, and a permanent magnet type rotor in which different magnetic poles are alternately arranged in the circumferential direction may be used.
  • the bearings 36 and 38 that rotatably support the rotor 20 are not limited to ball bearings, and sliding bearings can also be used.
  • the rotor an HB type rotor is used in which a permanent magnet magnetized in the axial direction is sandwiched between a pair of magnetic poles having magnetism, but a rotor adopting a plurality of the rotor configurations is used.
  • the rotor can be configured by adjoining, for example, two sets of unit rotors each composed of a pair of rotor magnetic poles and permanent magnets. In this case, both unit rotors are preferably arranged so that the magnetization directions of the respective permanent magnets are opposite to each other and the tooth positions of the adjacent rotor magnetic poles coincide with each other.
  • the permanent magnets are magnetized in the same direction, while a nonmagnetic insulator is interposed between the unit rotors. You may do it.
  • the inner rotor type motor according to the present invention can increase the torque and reduce the cost, and as a stepping motor, it can be rotated at low cost, high speed, high torque and low vibration for use in a copying machine or printer as an OA device. Electricity can be provided and a significant industrial contribution is expected. In addition, application to medical equipment, FA equipment, robots, amusement machines, and housing equipment is also highly expected.
  • Stator 12 Stator core 12a: Core back part 12b: Main pole 14: Coils 16, 18: Insulating members 16a, 18a: Slot insulating parts 16b, 18b: Frame parts 16c, 18c: Outer surface part 20: Rotation Child 24A / 24B: Rotor magnetic pole 22: Rotor shaft 26: Permanent magnet 30/32: Cover member 30a / 32a: End plate 30c / 32c: Side wall 30f / 32f: Opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 本発明は、角型の固定子コアを採用した固定子を有し、大型化を招くことなくトルクアップを実現し得るインナーロータ型モータを提供することを目的とする。 環状コアバック部の内側に複数の主極を突出させた固定子コア、及びこの各主極に絶縁体を介して巻回されたコイルを有する固定子と、この固定子の内側に各主極の先端に対向するように回転自在に配置され軸中心に回転軸を備えた回転子と、を有するインナーロータ型モータであって、固定子コアのコアバック部を、外形が四隅を切除したほぼ正方形状であり正方形の4辺の側面がそれぞれモータ外表面を形成する構成とし、固定子コアの各主極を、コアバック部の4片の中央から軸中心を中心に周方向に所定角度傾いた位置に配置し、固定子コアにおける最小外径に対する最大内径の比を0.65~0.75に設定したことを特徴とする。

Description

インナーロータ型モータ
 本発明は、巻き線極である複数個の主極にコイルを巻回してなる固定子と、固定子の内側に配置される回転子とを備えたステッピングモータ等のインナーロータ型モータに関する。
 従来より、ステッピングモータは、プリンタ・ファクシミリ・複写機などの情報機器分野や、FA機器などの産業機器分野を含め、広範囲に渡ってその駆動部分に使用されている。この種ステッピングモータとしては、例えば回転子に磁性体と永久磁石とを用いたハイブリッド型の場合、例えば特開2012-044826号公報に示されるインナーロータ型のものが多用されている。
 図8は、この種インナーロータ型モータの一例であるハイブリッド型ステッピングモータの一部を示したものである。このステッピングモータでは、環状の磁性体枠であるバックヨーク1に放射状でかつ内方に突出するよう複数(8個)の主極2を設けて固定子コア3を形成し、この固定子コア3の各主極2にそれぞれ図外の絶縁部材を介在させてコイル(図示せず)を巻回することにより固定子4を構成し、この固定子4の内側にエアギャップを介して、対の磁性体間に軸方向に着磁した永久磁石を挟持して構成されたハイブリッド型回転子5を配置させている。固定子4の軸方向両側にはカバー部材(図示せず)が固定され、このカバー部材の中央部にそれぞれ保持した軸受により回転子5の回転子軸6を支持するようにしている。
 上述したステッピングモータにあっては、固定子コア3の外周面、つまりバックヨーク1の外周面がモータ外表面の一部を構成することにより、モータ内部で発生する熱を固定子コア3を介して外部に効果的に放散することができる上、固定子コア外周面をモータカバー等で覆う必要が無く、モータカバー等の材料費を削減することができる利点がある。また、固定子コア3の軸方向両側に設けられるカバー部材は、固定子コア3の軸方向端面より突出するコイルや絶縁部材全体を包括的に覆うように構成されているため、モータ内部に対する防塵性が確保される。
特開2012-044826号公報
 ところで、上述した特許文献1には、インナーロータ型のステッピングモータにおける固定子コアの外形が丸形状のものは、図8に示したような角型に比べて磁路面積の制約からトルクが低く、角型と同等のトルクを得るためには外形の増加を招き、モータが大型になる主旨の記載がある。従って、図8に示した角型の固定子コアを用いたステッピングモータは丸型の固定子コアを用いたものに比し高トルク化が期待できることになる。
 しかし、近年では、用途に応じ、益々の高トルク化が要求される傾向にあり、このような場合、角型の固定子コアを用いたとしても大型にならざるを得ない問題がある。既存モータと同等の大きさでトルクアップを図る手立てとしては、回転子のマグネットを高磁束密度のネオジムにする等の対応が行われるが、コストアップを招く結果となる。
 本発明は、上記問題点を解決するためになされたものであり、その目的とするところは、角型の固定子コアを採用した固定子を有し、大型化を招くことなくトルクアップを実現し得るインナーロータ型モータを提供することにある。
 上記目的を達成するために、本発明のインナーロータ型モータにあっては、環状のコアバック部の内側に放射方向に突出した複数の主極を有する固定子コア、及びこの固定子コアの各主極に絶縁体を介して巻回されたコイルを有する固定子と、この固定子の内側に各主極の先端に対向するように回転自在に配置され軸中心に回転軸を備えた回転子と、固定子の軸方向両側を覆うように設けられそれぞれ回転子軸を支持する軸受を保持した2つのカバー部材とからなるインナーロータ型モータにおいて、
 固定子コアのコアバック部を、外形が四隅を切除したほぼ正方形状であり正方形の4辺の側面がそれぞれモータ外表面を形成する構成とし、固定子コアの各主極を、コアバック部の4片の中央から軸中心を中心に周方向に所定角度傾いた位置に配置し、固定子コアにおける最小外径に対する最大内径の比を0.65~0.75に設定したことを特徴とする。
 上記した構成において、固定子を、固定子コアにおける主極を8個としこれに2相のコイルを巻回して構成し、各主極を45°毎の等間隔に配置すると共に、これら各主極の位置を固定子コアにおける正方形のそれぞれの4片の中央から周方向に22.5°傾いた角度に設定するのがよい。加えて、絶縁体を、固定子コアに対し軸方向両側から装着される2つの絶縁部材から構成し、それぞれの絶縁部材に主極を覆う複数のスロット絶縁部とこれらスロット絶縁部を固定子コアの軸方向端面側において連結する環状の枠部とを備え、かつ枠部にコアバック部の4辺におけるモータ外表面とほぼ面一となる4つの外表面部を形成しておき、他方、2つのカバー部材をそれぞれ、モータ端面を構成し中央部に軸受保持部を有する端板部と、この端板部の周縁より軸線方向に延び先端が固定子コアの端面に当接する側壁部とを備えたものとし、両カバー部材における側壁部の4辺の中央部に形成した開口に枠部における4辺の外表面部が嵌り込むようにするのがよい。
 この場合、絶縁部材における枠部に、正方形の四隅の位置にそれぞれ外表面部と同形状の4つの外表面部を形成し、両カバー部材の側壁部における正方形四隅の位置にそれぞれ、枠部の外表面部が嵌り込む開口を形成することができる。さらに、枠部における外表面部の内径側に、主極に巻回されたコイルの渡り線部が係止する中継突部を設けることが望ましい。
 また、固定子コアの各主極の間にそれぞれ形成される複数のスロットにおけるコアバック側の内面は、軸中心を中心とした円弧面としてもよく、固定子コアにおける最小外径に対するスロットにおけるコアバック側の円弧面の内径の比が0.9より大きく設定するのがよい。さらに、2つのカバー部材をそれぞれ、モータ端面を構成し中央部に軸受保持部を有する端板部と、この端板部の周縁より軸線方向に延びコアバック部の外周形状に沿った形状に形成すると共に先端が固定子コアの端面に当接する側壁部とを備える構成とし、少なくとも一方のカバー部材における端板部に、固定子コアの四隅の切除部分に対応する角部を一体に有し、この角部にモータ取付用のねじ孔を形成する構成とすることができる。
 一方、回転子は、磁性を有する1対の回転子磁極と該両回転子磁極で挟み込まれ軸方向に着磁された永久磁石とからなる単位回転子を用いて構成することができ、この場合、回転子磁極の外周面に複数個の磁歯を等ピッチで形成し、1対の回転子磁極のそれぞれの磁歯を周方向に1/2ピッチ分ずらせて配置する。或いは、回転子を、単位回転子を2組軸方向に隣接させて構成してもよい。この場合、両単位回転子をそれぞれの永久磁石の着磁方向が互いに逆になる向きとし、かつ隣接する回転子磁極の歯位置が一致するように配置する。
 上述した構成のインナーロータ型モータにあっては、角型の固定子コアにおいて、その各主極をコアバック部の4辺の中央から周方向に所定角度傾けた位置に配置した上で、固定子コアの最小外径に対する最大内径の比を0.65~0.75に設定したことにより、各主極におけるコイルの巻数・巻容積を所定確保した上で、内径の比率を従来のものより大きくすることができ、これにより回転子の外径を大きくでき、高トルク化を図ることができる。言い換えれば、回転子の外径を大きくできることから、回転子に使用するマグネットを従来より低グレードのものを使用しても従来と同等若しくはそれ以上のトルクを確保できることになり、コスト低減に大きく寄与できることになる。
 加えて、固定子を8主極構成で2相コイルを用いた場合に、各主極を正方形の4辺の中央から22.5°傾いた角度に設定することにより、上述した効果は勿論のこと、固定子コアを90°回転対称形状とすることができ、固定子コアを珪素鋼板を所定枚数積層して構成する場合に、珪素鋼板を所定形状にプレス打ち抜きしたものを90°ずつ次々に回転して積層する手法を採用でき、パーミアンスベクトルのバラツキ抑制効果を得ることができる。
本発明の一実施形態によるインナーロータ型ステッピングモータを示す平面図である。 図1のステッピングモータのX-Y線断面図である。 図1のステッピングモータの斜視図である。 図1のステッピングモータの一部である固定子コアと回転子コアとを示す平面図である。 図3の固定子コアに絶縁部材を装着した状態を示す平面図である。 図5における上側絶縁部材を示す平面図である。 図1のステッピングモータにおける上カバーの下面図である。 従来のインナーロータ型ステッピングモータにおける固定子コアと回転子コアとを示す平面図である。
 本発明に係るインナーロータ型モータの実施形態につき、以下図面に基づいて説明する。
 図1~図3は、本発明の一例である2相ハイブリッド(HB)型ステッピングモータの全体構成を示し、図1は平面図、図2は断面図、図3は斜視図であり、また、図4は主極数が8である固定子10の固定子コア12とその内側に配置されたHB型回転子20とを示し、さらに、図5は絶縁部材16・(18)を装着した状態の固定子コア12を示し、図6はこの絶縁部材16を示している。固定子10は不平衡電磁力が発生せず高速性に優れた8主極構造を採用した例であり、8主極の巻き線極である首部にはそれぞれ巻き線が施され、1個おきの4個の主極に巻回されたコイルが連結されて1相分を形成し、残りの4主極で他の1相分を形成し、全体で2相コイル構成としている。
 固定子10は、外形が四隅を切除したほぼ正四辺形状に形成され内周が円周面に形成された環状のコアバック部12aとこのコアバック部12aより放射状内方に突出して設けられ周方向に等間隔に配列された8個の主極12bとからなる固定子コア12と、各主極12bに巻回された2相のコイル14(図2に示す)と、各主極12bとコイル14との間に介在された上下の絶縁部材16・18とからなり、巻き線極である各主極12bの先端には例えば6個の誘導子歯が突出して設けられている。8個の主極12bは周方向等間隔に45°毎に配列されており、図4に示すように、コアバック部12aの一辺の中央からθ=22.5°周方向にずれた位置に主極12bが配置されるよう、各主極12bが図8で示した従来のものに比し周方向にθだけ傾いてそれぞれ配置されている。各主極12bにおいて、6個の誘導子歯は等間隔に配置され、かつ主極12bの中心線に対し対称位置に配置されている。なお、6個の誘導子歯は等ピッチに配置する以外に、高調波成分の改善を目的として不等ピッチに配置することもできる。
 固定子コア12は複数枚の珪素鋼板を積層して構成されている。図4において、例えば90°毎に配置された4個の主極12bで1相分(A相・C相)を構成し、残りの4個の機械角で互いに90°隔てて且つ1相分主極からは機械角で45度隔てて配置された主極12bで2相分(B相・D相)を形成する。各相において、90°毎の4個の主極12bはコイル14への通電時に交互に異極となるように励磁され駆動される。
 図4に示すように、固定子コア12は、コアバック部12aの各辺における径方向厚みが磁気特性上許容される範囲の最小値に設定され、その分、内径が最大化されている。すなわち、例えば特開平5-168214号公報には、回転子から最大トルクを発生させるために、固定子の外径に対する内径の比を、2相の場合で0.62~0.64にすることが規定されており、図8に示した従来構成のものでは、固定子コア3の最小外径Doに対し内径Diの比は0.625となっている。これに対して、本実施形態のようにコアバック部12aがほぼ正方形の場合につき、実験や各種解析で検証した結果、特性上、正方形の一辺の長さに相当する固定子コア12の最小外径Doに対し内径Diの比を約0.66に設定可能であることが確認され、内径Diが従来に比し数%以上大きく設定できる。
 ここで、固定子コア12の内径を大きくすることは、その分、回転子の外径を大きくでき、出力トルクをアップすることが期待できることになる。ところが、図8で示した従来構成の場合、単に固定子コアの内径を大きくすると、その分、主極の突出長が短くなり、コイルの巻数・線積率が小さくなり、逆に発生トルクの低下を招く結果となる。これに対し、図4で説明したように、各主極12bの位置を図8のものに比べ、周方向に所定角度θ、実施例では22.5°傾けることにより、各主極12bの突出長さを所定確保した上で、固定子コアの内径を大きくすることが可能になり、トルクアップに大きく寄与できることになる。具体的には、図4に示した固定子コア12は56mm×56mmの大きさの例であるが、図8における従来のものの主極の突出長と同様の突出長を図4における固定子コア12で確保しつつ、コアバック部12aの径方向厚みを磁気特性上許容される範囲の最小値に設定すると、最小外径Doに対するコアバック部12aの内径の比が0.91程度となる。このときの固定子コア12の(主極12bを含む)最大内径Diが上述したように0.66程度となる。
 上記固定子コア12に対しては、軸方向両側(便宜上、上側及び下側と称する)から一対の絶縁部材16・18が装着される。これらは固定子コア12に対しコイル14を絶縁する絶縁体となり、絶縁性樹脂の成形体により構成される。上側から装着される上側絶縁部材16及び下側から装着される下側絶縁部材18はそれぞれ、各主極12bの上面及び両側面を覆うスロット絶縁部16a・各主極12bの下面及び両側面を覆うスロット絶縁部18aと、各スロット絶縁部16a・18aをそれぞれ上・下の外側部で連結する枠部16b・18bとを備えてなる。各スロット絶縁部16a・18aはその径方向外側縁がコアバック部12aの内周面に沿って延設されて隣り合うスロット絶縁部16a・18aが相互に連結され、これにより各スロットの内面を覆う構成になっている。スロット絶縁部16a・18aにおける上面・下面の内周縁には、各主極12bの先端部に対応して舌片が上方に突出するように設けられ、コイル14の内周側へのはみ出しを防止している。
 枠部16b・18bは、図5及び図6に示すように、外形がほぼ円形に形成され、枠部16b・18bの外周側の各スロットの位置には外表面部16c・18cが径方向外側に段付きで突出して形成されると共に、各外表面部16c・18cの内側にコイル14の渡り線を係止する中継突部16d・18dが設けられている。この枠部16b・18bにおける各外表面部16c・18cのうち固定子コア12の4辺に位置するものは、図5より明らかなように、外表面部16c・18cの外側面が固定子コア12の4辺の外側面とほぼ面一になる配置とされている。なお、実際には、下側絶縁部材18の枠部18bは、正方形の4辺のうち後述するコネクタに対応する部分には外表面部は設けられず、コネクタ保持部が形成されている。
 固定子コア12に対し、その上下より絶縁部材16・18が装着されると、それぞれのスロット絶縁部16a・18aの軸方向の先端は固定子コア12のスロットにおいて僅かの隙間を介して対峙し、これにより各主極12bの周面及びコアバック部12aの内面が絶縁部材16・18で覆われ、この状態で各主極12bにコイル14が巻回される。なお、上側絶縁部材16のスロット絶縁部16aは下側絶縁部材18のスロット絶縁部18aより軸長が長く形成されている。勿論、両絶縁部材16・18のそれぞれのスロット絶縁部16a・18aの軸長は同じ長さでもよく、下側を上側より長く形成することもできる。
 一方、固定子コア12の内側に配置された回転子20は、図2に示すように、回転子軸22に固定された軸方向に対向した一対の回転子磁極24A・24Bと、対の回転子磁極24A・24B間で挟持され軸方向に着磁された円筒状の永久磁石26とにより構成されている。これら回転子磁極24A・24Bはそれぞれ珪素鋼鈑等を積層して構成され、それぞれの外周には等ピッチで複数個(例えば50個)の磁歯が設けられ、かつ互いに歯ピッチが周方向に1/2ずれて配置され、両者の間に永久磁石26を挟持する構成になっている。回転子20の各回転子磁極24A・24Bのそれぞれの磁歯は、固定子10の各主磁極12bの誘導子歯に例えば0.05mmのエアギャップを介して径方向に対向する。永久磁石26としては例えばFCC磁石が用いられている。
 ここで、上述したように、固定子10においては、その内径が従来に比し数%以上大きく設定されているが、これに合わせて、回転子20の外径も従来に比し数%程度大きく設定されている。このため、永久磁石26にアルニコ磁石とほぼ同等のFCC磁石を用いても得られるトルクは各段に大きなものとなる。勿論、永久磁石26として残留磁束密度の低いフェライト系のものを使用することもできる。
 図2において、固定子10の軸方向両側には、上カバー部材30及び下カバー部材32が配置され、固定子10の外周面と共にモータ外表面を構成している。両カバー部材30・32はそれぞれ金属材料により構成され、その外形はそれぞれ固定子コア12と同様にほぼ正四辺形状に形成されている。
 上カバー部材30は、モータの上端面を構成するほぼ正方形状の端板部30aと、この端板部30aの中央部に下方へ突出するように形成された円筒状の軸受保持部30bと、端板部30aの周縁部に下方へ突出するように形成され外周面が固定子コア12の外周面とほぼ面一になるよう四隅を切り欠いたほぼ正方形状とされた側壁部30cとを備えてなる。この端板部30aの四隅の角部30dはそれぞれ側壁部30cの四隅より突出し、この位置にねじ孔30d’が形成されている。
 下カバー部材32は、モータの下端面を構成する四隅を切り欠いたほぼ正方形状の端板部32aと、この端板部32aの中央部に上方へ突出するように形成された円筒状の軸受保持部32bと、端板部32aの周縁に上方へ突出するように形成された周壁部32cとを備えてなる。この下カバー部材32の正方形の4辺のうち特定の一辺には、端板部32aの一辺を外方に延設すると共にこの両側に沿って周壁部32cを延設することにより大きな開口を有する口出し部32dが形成され、これに枠部18bのコネクタ保持部が収容され、コネクタ保持部に保持されたコネクタ34が内装されている。このコネクタ34の端子ピンには、2相のコイル14の各端子が接続されている。
 図2に示すように、上カバー部材30及び下カバー部材32のそれぞれの軸受保持部30b・32bにはボールベアリングからなる軸受36・38が保持され、回転子20の回転子軸22が両軸受36・38により回転自在に支持されている。また、図7に示すように、上カバー部材30の端板部30aの四隅部におけるねじ孔30dの近傍には、4個のねじ挿通孔30eが形成されており、これに固定子コア12の軸方向の挿通孔12cが連通しており、さらにこれに合わせて下カバー部材32にねじ孔(図示せず)がそれぞれ形成されている。そして、端板部30aのねじ挿通孔30eからそれぞれ固定ねじ40を挿通し、固定子コア12のねじ挿通孔12cを通して下カバー部材32におけるねじ孔に締着することにより、固定子10の上下両側に上下カバー部材30・32を一体に固着することができる。
 ここで、図3及び図7より明らかなように、上カバー部材30における側壁部30cには、正方形の4辺の中央部及び四隅部分の中央部にそれぞれ窓部となる開口30fが形成され、これに上側絶縁部材16の枠部16bにおける各外表面部16cがそれぞれ嵌合されて、各外表面部16cの外側面が上カバー部材30の側壁部30cの外側面と連続したモータ外側面の一部を構成するようになっている。また、下カバー部材32における側壁部32cには、図3に示すように、正方形の4辺のうち口出し部32dを除く3辺の中央部及び四隅部分の中央部にそれぞれ窓部となる開口32fが形成され、これに下側絶縁部材18の枠部18bにおける各外表面部18cがそれぞれ嵌合され、上述と同様に、各外表面部18cの外側面が下カバー部材32の側壁部32cの外側面と連続したモータ外側面の一部を構成している。
 固定子12の上下には、各主極12bに巻回されたコイル14の上下面を覆うように絶縁カバー42・44が配置され、上下カバー部材30・32の端板部30a・32aに対するコイル14の絶縁を確保している。この絶縁カバー42・44は絶縁性樹脂により形成され、それぞれ各主極12bの上下を覆うよう、つまり絶縁部材16・18における枠部16b・18bと各主極12bの先端部に対応したスロット絶縁部16a・18aの舌片との間を覆うように環状に形成されている。これら絶縁カバー42・44には、それぞれの外周縁に、枠部16b・18bの各外表面部16c・18cにそれぞれ合致する補助突部42a・44aが形成されており、これが外表面部16c・18cと共にカバー部材30・32における側壁部30c・32cの開口30f・32fに嵌め込まれている。この結果、絶縁カバー42・44が回り止めされた上でカバー部材30・32に押さえつけられて確実に固定され、加えて、各開口30f・32fがそれぞれ気密に閉塞されることになり、カバー部材30・32の内部に対する防塵効果が得られる。
 以上のような構成のステッピングモータにあっては、固定子コア12に対するコイル14の絶縁に用いられる上下の絶縁部材16,18の枠部16b、18bを上下カバー部材30,32の内部に収容するのではなく、一部を外表面部16c・18cとしてモータ表面に露出させる構成としたため、固定子コア12の内径を最大限に大きくすることが可能となり、しかも、固定子コア12の各主極12bを従来のものに比し周方向に22.5°傾いた角度に設定するため、各主極12bにおけるコイル14のターン数を所定数確保することが可能となり、回転子20を大径化し、出力を大幅にアップすることができる。このため、回転子20の永久磁石26として低グレードのフェライト系永久磁石を用いたとしても、従来のものに比し高出力化を図ることが可能となり、安価なモータを提供できることになる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記実施形態に限定されることなく、特許請求の範囲に記載した範囲において種々の変形が可能である。
 本発明の構成は、大きさの異なるモータにも同様に適用することが可能であり、例えば、外形が42mm×42mmの8主極2相のHB型ステッピングモータに適用した場合、実験や各種解析で検証した結果、固定子コアの最小外径Doに対し内径Diの比を約0.75に設定可能であることが確認され、内径Diが従来に比し十数%以上大きく設定できることになる。
 なお、上記実施形態では、2相ステッピングモータの場合について説明したが、これに限らず、他のインナーロータ型モータに適用でき、また、3相モータの場合であってもよい。さらに、モータの回転子として、ハイブリッド型に限らず、異なる磁極を周方向に交互に配置した永久磁石型回転子を用いてもよい。加えて、回転子20を回転自在に支持する軸受36・38として、ボールベアリングに限らず、すべり軸受を用いることもできる。
 また、回転子としては、磁性を有する1対の回転子磁極に軸方向に着磁された永久磁石を挟持するHB型回転子を用いたが、この回転子構成を複数採用した回転子とすることもできる。すなわち、1対の回転子磁極と永久磁石とからなる単位回転子を例えば2組軸方向に隣接させて回転子を構成することができる。この場合、両単位回転子をそれぞれの永久磁石の着磁方向が互いに逆になる向きとし、かつ隣接する回転子磁極の歯位置が一致するように配置するのがよい。或いは、単位回転子を2組軸方向に隣接させて回転子を構成する場合に、それぞれの永久磁石を同一方向に着磁する一方、両単位回転子の間に非磁性の絶縁体を介在させるようにしてもよい。
 本発明によるインナーロータ型モータは、高トルク化が可能で、低コスト化を図ることができ、ステッピングモータとして、OA機器である複写機やプリンターの用途に対し安価で高速高トルク低振動の回転電機の提供が可能であり、工業的に大きな寄与が期待される。その他、医療機器、FA機器、ロボット、遊戯機械、住宅設備機器への応用も大いに期待される。
10:固定子
12:固定子コア
12a:コアバック部
12b:主極
14:コイル
16・18:絶縁部材
16a・18a:スロット絶縁部
16b・18b:枠部
16c・18c:外表面部
20:回転子
24A・24B:回転子磁極
22:回転子軸
26:永久磁石
30・32:カバー部材
30a・32a:端板部
30c・32c:側壁部
30f・32f:開口

Claims (10)

  1.  環状のコアバック部の内側に放射方向に突出した複数の主極を有する固定子コア、及び該固定子コアの各主極に絶縁体を介して巻回されたコイルを有する固定子と、この固定子の内側に前記各主極の先端に対向するように回転自在に配置され軸中心に回転軸を備えた回転子と、前記固定子の軸方向両側を覆うように設けられそれぞれ前記回転子軸を支持する軸受を保持した2つのカバー部材とからなるインナーロータ型モータにおいて、
     前記固定子コアのコアバック部は、外形が四隅を切除したほぼ正方形状であり正方形の4辺の側面がそれぞれモータ外表面を形成する構成とされ、
     前記固定子コアの各主極は、コアバック部の4片の中央から軸中心を中心に周方向に所定角度傾いた位置に配置され、
     前記固定子コアにおける最小外径に対する最大内径の比が0.65~0.75に設定されていることを特徴とするインナーロータ型モータ。
  2.  前記固定子は、前記固定子コアにおける主極を8個としこれに2相のコイルを巻回して構成され、前記各主極は45°毎の等間隔に配置されると共に、これら各主極の位置は前記固定子コアにおける正方形のそれぞれの4片の中央から周方向に22.5°傾いた角度に設定されていることを特徴とする請求項1に記載のインナーロータ型モータ。
  3.  前記絶縁体は、前記固定子コアに対し軸方向両側から装着される2つの絶縁部材からなり、それぞれ前記主極を覆う複数のスロット絶縁部とこれらスロット絶縁部を前記固定子コアの軸方向端面側において連結する環状の枠部とを備え、該枠部には前記コアバック部の4辺におけるモータ外表面とほぼ面一となる4つの外表面部が形成されており、
     前記2つのカバー部材はそれぞれ、モータ端面を構成し中央部に軸受保持部を有する端板部と、該端板部の周縁より軸線方向に延び先端が前記固定子コアの端面に当接する側壁部とを備え、前記両カバー部材における前記側壁部の4辺の中央部に、前記枠部における4辺の外表面部が嵌り込む開口が形成されていることを特徴とする請求項2に記載のインナーロータ型モータ。
  4.  前記絶縁部材における枠部には、正方形の四隅の位置にそれぞれ前記外表面部と同形状の4つの外表面部が形成されており、前記両カバー部材の側壁部における正方形四隅の位置にそれぞれ、前記枠部の外表面部が嵌り込む開口が形成されていることを特徴とする請求項3に記載のインナーロータ型モータ。
  5.  前記枠部における外表面部の内径側には、前記主極に巻回されたコイルの渡り線部が係止する中継突部が設けられていることを特徴とする請求項3または4に記載のインナーロータ型モータ。
  6.  前記固定子コアの前記各主極の間にそれぞれ形成される複数のスロットにおける前記コアバック側の内面は、前記軸中心を中心とした円弧面とされていることを特徴とする請求項1に記載のインナーロータ型モータ。
  7.  前記固定子コアにおける最小外径に対する前記スロットにおけるコアバック側の円弧面の内径の比が0.9より大きく設定されていることを特徴とする請求項6に記載のインナーロータ型モータ。
  8.  前記2つのカバー部材はそれぞれ、モータ端面を構成し中央部に軸受保持部を有する端板部と、該端板部の周縁より軸線方向に延び前記コアバック部の外周形状に沿った形状に形成されると共に先端が前記固定子コアの端面に当接する側壁部とを備えており、少なくとも一方のカバー部材における端板部には、前記固定子コアの四隅の切除部分に対応して角部を一体に有しており、当該角部にモータ取付用のねじ孔が形成されていることを特徴とする請求項1に記載のインナーロータ型モータ。
  9.  前記回転子は、磁性を有する1対の回転子磁極と該両回転子磁極で挟み込まれ軸方向に着磁された永久磁石とからなる単位回転子を用いて構成され、前記回転子磁極の外周面には複数個の磁歯が等ピッチで形成され、1対の回転子磁極はそれぞれの磁歯が周方向に1/2ピッチ分ずらせて配置されてなる請求項1に記載のインナーロータ型モータ。
  10.  前記回転子は、前記単位回転子を2組軸方向に隣接させて構成され、該両単位回転子はそれぞれの永久磁石の着磁方向が互いに逆になる向きとされ、かつ隣接する回転子磁極の歯位置が一致するように配置されている請求項9に記載のインナーロータ型モータ。
PCT/JP2013/078617 2012-10-29 2013-10-22 インナーロータ型モータ WO2014069288A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012237992A JP2014090541A (ja) 2012-10-29 2012-10-29 インナーロータ型モータ
JP2012-237992 2012-10-29

Publications (1)

Publication Number Publication Date
WO2014069288A1 true WO2014069288A1 (ja) 2014-05-08

Family

ID=50627199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078617 WO2014069288A1 (ja) 2012-10-29 2013-10-22 インナーロータ型モータ

Country Status (2)

Country Link
JP (1) JP2014090541A (ja)
WO (1) WO2014069288A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046354A (zh) * 2016-02-06 2017-08-15 南京德朔实业有限公司 无刷电机和电动工具
CN109038877A (zh) * 2017-06-09 2018-12-18 发那科株式会社 马达
CN111987822A (zh) * 2019-05-21 2020-11-24 株式会社电装 定子组件及马达

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180159384A1 (en) * 2016-12-07 2018-06-07 Nidec Servo Corporation Motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503078A (ja) * 1998-02-04 2002-01-29 パシフィック サイエンティフィック カンパニー 最適化したトルク密度を有するハイブリッドステッパモータ
JP2007124848A (ja) * 2005-10-31 2007-05-17 Oriental Motor Co Ltd ステッピングモータのステータ構造
JP2010104220A (ja) * 2008-09-29 2010-05-06 Sanyo Denki Co Ltd モールドモータ
JP2010246323A (ja) * 2009-04-09 2010-10-28 Nidec Servo Corp ハイブリッド型永久磁石回転電機
JP2012005311A (ja) * 2010-06-21 2012-01-05 Nidec Servo Corp 回転電機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503078A (ja) * 1998-02-04 2002-01-29 パシフィック サイエンティフィック カンパニー 最適化したトルク密度を有するハイブリッドステッパモータ
JP2007124848A (ja) * 2005-10-31 2007-05-17 Oriental Motor Co Ltd ステッピングモータのステータ構造
JP2010104220A (ja) * 2008-09-29 2010-05-06 Sanyo Denki Co Ltd モールドモータ
JP2010246323A (ja) * 2009-04-09 2010-10-28 Nidec Servo Corp ハイブリッド型永久磁石回転電機
JP2012005311A (ja) * 2010-06-21 2012-01-05 Nidec Servo Corp 回転電機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046354A (zh) * 2016-02-06 2017-08-15 南京德朔实业有限公司 无刷电机和电动工具
CN107046354B (zh) * 2016-02-06 2020-05-26 南京德朔实业有限公司 无刷电机和电动工具
CN109038877A (zh) * 2017-06-09 2018-12-18 发那科株式会社 马达
CN111987822A (zh) * 2019-05-21 2020-11-24 株式会社电装 定子组件及马达
CN111987822B (zh) * 2019-05-21 2024-04-02 株式会社电装 定子组件及马达

Also Published As

Publication number Publication date
JP2014090541A (ja) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6667084B2 (ja) 表面磁石型モータ
WO2013094659A1 (ja) インナーロータ型モータ
JP2014236576A (ja) インナーロータ型モータ
US10014736B2 (en) Permanent magnet-embedded motor and rotor thereof
JP2014045634A (ja) ロータ及びこのロータを備える回転電機
WO2014069288A1 (ja) インナーロータ型モータ
JP2018082600A (ja) ダブルロータ型の回転電機
KR20190074467A (ko) 분할 고정자를 갖는 모터
US20220190659A1 (en) Motor
JP7149497B2 (ja) ブラシレスモータ及びブラシレスモータの製造方法
JP5128800B2 (ja) ハイブリッド式永久磁石回転電機
JP2018098936A (ja) 磁石ユニット
KR101597967B1 (ko) 평판형 모터의 고정자 및 이를 이용한 평판형 모터
WO2021235376A1 (ja) 回転電機
JP2007259514A (ja) 分割形固定子鉄心を採用した回転電機
JP6582432B2 (ja) マルチランデル型モータ
WO2021210249A1 (ja) 回転子及び電動機
WO2024089882A1 (ja) モータ
WO2022172478A1 (ja) 回転電機
US20230163646A1 (en) Rotary electrical device
WO2022219923A1 (ja) 回転子及び電動機
WO2022172479A1 (ja) 回転電機
JP6662008B2 (ja) ステータ、モータ及びステータの製造方法
JP6585108B2 (ja) Ipmモータ
JP2016052162A (ja) インナーロータ型モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851111

Country of ref document: EP

Kind code of ref document: A1