WO2015085781A1 - 一种无铬气相氟化催化剂及其应用 - Google Patents

一种无铬气相氟化催化剂及其应用 Download PDF

Info

Publication number
WO2015085781A1
WO2015085781A1 PCT/CN2014/083679 CN2014083679W WO2015085781A1 WO 2015085781 A1 WO2015085781 A1 WO 2015085781A1 CN 2014083679 W CN2014083679 W CN 2014083679W WO 2015085781 A1 WO2015085781 A1 WO 2015085781A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas phase
chromium
phase fluorination
catalyst
free gas
Prior art date
Application number
PCT/CN2014/083679
Other languages
English (en)
French (fr)
Inventor
吕剑
王博
秦越
毛伟
寇联岗
张振华
何飞
张伟
马辉
马洋博
郝志军
李春迎
杜咏梅
李凤仙
韩升
Original Assignee
西安近代化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安近代化学研究所 filed Critical 西安近代化学研究所
Priority to US15/103,803 priority Critical patent/US9845274B2/en
Publication of WO2015085781A1 publication Critical patent/WO2015085781A1/zh
Priority to US15/806,138 priority patent/US10087125B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • Chromium-free gas phase fluorination catalyst and application thereof
  • This invention relates to a chromium-free gas phase fluorination catalyst and its use.
  • it relates to chromium-free fluorination catalysts for the preparation of hydrofluoroolefins (HFOs) or hydrofluorochloroolefins (HCFOs) for gas phase fluorinated halogenated hydrocarbons.
  • HFOs hydrofluoroolefins
  • HCFOs hydrofluorochloroolefins
  • the method of preparing a hydrofluoroolefin and a hydrofluorochloroolefin by using a gas phase fluorinated halogenated hydrocarbon is often used.
  • the method has the advantages of simple equipment, easy large-scale production and safety, and the like.
  • a central role of the gas phase fluorinated halogenated hydrocarbon reaction is a fluorination catalyst.
  • industrially used gas phase fluorination catalysts are chromium-containing fluorination catalysts.
  • Chinese patent CN94106793.9 reports the precipitation of a mixture of Cr(N0 3 ) 3 and In(N0 3 ) 3 with aqueous ammonia to prepare a fluoride precursor, which is calcined and fluorinated with HF to obtain indium, chromium, oxygen and fluorine. Fluorination catalyst.
  • No. 5,773,671 discloses the use of a blend of A1 2 0 3 and Cr 2 0 3 in a CoCl 2 solution, followed by drying, calcination and fluorination to obtain a fluorination catalyst.
  • EP0514932A3 reports the preparation of Cr 2 O 3 having a specific surface area of more than 170 m 2 g- 1 by precipitation, followed by fluorination to obtain a fluorination catalyst, and other cocatalysts which are not disclosed.
  • CN01141970.9 reports that an aqueous solution of a soluble salt of chromium and other components is reacted with a precipitating agent (alkaline substance) at 20 to 100 ° C to obtain a specific surface area of more than 200 m 1 .
  • the pore volume is greater than 0.3 m 2 g—
  • the amorphous catalyst precursor of 1 is subsequently calcined and activated to obtain 0. . 3 ⁇ . . 1 0. 2 . Fluorination catalyst.
  • chromium-containing catalysts The practical application of gas phase fluorination catalysts is mostly chromium-containing catalysts. It has been proved that chromium compounds are toxic, causing damage to human digestive tract and kidney, and high-priced chromium has strong carcinogenic effects, and its production and use will be human and environmental. Causing harm, In order to solve the above problems, a chromium-free fluorination catalyst is used instead of a chromium-containing fluorination catalyst, for example
  • CN107817A and CN1111606A disclose a chromium-free catalyst which is supported on alumina, halogenated alumina or halo alumina, but which is less active;
  • CN1680029A discloses a chromium-free catalyst which will be a ruthenium halide. (SbF n Cl 5 _ n ) is supported on calcium fluoride, but the catalytic activity of the catalyst is low, and the ruthenium halide is easily lost during the fluorination reaction, and the thermal stability of the catalyst is poor.
  • the existing chromium-free catalysts have poor catalytic activity and are prone to loss, and have no practical application value.
  • one of the objects of the present invention is to provide a gas phase fluorination catalyst which does not contain chromium, has a long catalyst life and has good catalytic activity.
  • the present invention provides a chromium-free gas phase fluorination catalyst, the precursor of the catalyst comprising a compound containing an iron element, a compound containing a rare earth metal element, a compound containing an element A, wherein the element A is selected from the group consisting of Ca And one of Al, Mg and Ti, the precursor of the catalyst is calcined and fluorinated to obtain a chromium-free gas phase fluorination catalyst.
  • the mass percentage composition of the three elements of iron element, rare earth metal element and element A in the precursor of the catalyst is: iron element: 5.0% ⁇ 50.0%; rare earth metal element: 0.5% ⁇ 5.0%; A element: 45.0 % ⁇ 94.5 %; and the mass percentage sum of the three elements is 100%.
  • the precursor of the catalyst is calcined at 400 to 500 ° C, followed by fluorination with hydrogen fluoride gas at 350 to 450 ° C to obtain a chromium-free gas phase fluorination catalyst.
  • the iron element-containing compound in the precursor of the catalyst is an iron oxyhalide, an iron metal salt compound, an iron oxide, an iron hydroxide, an iron-containing organic salt or an iron-containing element.
  • the compound containing A is an oxyhalide of element A, a metal salt compound of element A, an oxide of element A, a hydroxide containing element A, and an element containing A Organic salt or complex containing A element.
  • the iron element in the precursor of the catalyst is ferric iron, and the crystal form of ferric iron is ⁇ , ⁇ , ⁇ or ⁇ .
  • the rare earth metal element-containing compound is a rare earth metal element-containing compound or a combination of two or more rare earth metal element-containing compounds, wherein the rare earth metal element is selected from the group consisting of Sc, Y, Ce, La, Nd, Pr One of Pm, Sm, Eu, Gd, Tb, Yb, Ho, Dy, Er, Tm, Yb, and Lu.
  • Fe 3+ is preferred as the active component of the catalyst.
  • the key to the chlorofluoro exchange reaction is the presence of unsteady F 1 , and the Fe 3+ covalent radius is close to that of Cr 3+ , which can be formed in the fluorination reaction. More unsteady F 1 is beneficial to the chlorofluoro exchange reaction.
  • Fe 3+ has different crystal forms of ⁇ , ⁇ , ⁇ and ⁇ .
  • rare earth metal is used as catalytic aid, and rare earth metal compound has strong oxygen storage.
  • the rare earth metal oxide has a center of adsorbing oxygen on the surface of the catalyst, which inhibits the surface area carbon of the catalyst, thereby prolonging the life of the catalyst, such as gas phase fluorination synthesis of HCFO-1233xf or HCFO-1233zd, catalyst
  • the lifespan is greater than 1000 hours.
  • the chromium-free gas phase fluorination catalyst catalyst of the invention has long service life and good catalytic activity, and is suitable for gas phase fluorination to prepare various HFOs or HCFOs, such as gas phase fluorinated HCFO-1233zd synthesis.
  • HFO-1234ze gas phase fluorination HCC-240ab synthesis HCFO-1233xf; gas phase fluorination HCC-240db synthesis HCFO-1233xf; gas phase fluorination HCC-1230xf synthesis HCFO-1233xf; gas phase fluorination HCC-1230xa synthesis HCFO-1233xf; Chemical synthesis of HFO-1243zf; gas phase fluorination HCFO-1233xf synthesis HCFC-244bb; gas phase fluorination HCC-240fa synthesis HCFO-1233zd; HCFC-244fa dehydrogenation reaction synthesis HFO-1234ze; HFC-245fa deHF synthesis HFO-1234ze; HCFC-244bb dehydrogenation reaction to synthesize HFO-1234yf; HFC-245eb dehydrogenation synthesis HFO-1234yf ; HFC-245cb dehydrogenation synthesis HFO-1234yf; HFC-236ea
  • reaction rate is up to 100%
  • conversion of HCC-1230xa is up to 100%
  • selectivity of HCFO-1233xf is up to 99.6%.
  • the conversion rate of HCC-1230xa can reach 100%, HCFO-1233xf selectivity of up to 93.4%.
  • HFO-1243zf When gas phase fluorination TCP synthesizes HFO-1243zf, the reaction rate can reach 100%, the conversion of HFO-1243zf can reach 97.6%, and the conversion rate of tetrachloropropane can reach 100. %, HFO-1243zf has a selectivity of up to 90.5%.
  • the chromium-free gas phase fluorination catalyst of the invention has the characteristics of chromium-free environmental protection, long catalyst life and good catalytic activity.
  • the iron-containing compound of the present invention is, for example, iron oxide, iron hydroxide, iron chloride, iron sulfate, iron nitrate, iron oxalate, ammonium iron thiocyanate, rattan blue, diammonium chloride or the like, preferably iron salt thereof.
  • the rare earth metal element of the present invention is selected from the group consisting of Sc, Y, Ce, La, Nd, Pr, Pm, Sm, Eu, Gd, Tb, Yb, Ho, Dy, Er, Tm and B Lu, preferably Y, Ce , La, Pr, Tb.
  • cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium oxide and other rare earth oxides cerium hydroxide, cerium hydroxide, cerium hydroxide, cerium hydroxide, cerium hydroxide, cerium hydroxide, cerium hydroxide, Barium hydroxide, barium hydroxide, barium hydroxide, barium hydroxide, barium hydroxide, barium hydroxide, barium hydroxide and other rare earth hydroxides, barium nitrate, barium nitrate, barium nitrate, barium nitrate, barium nitrate, nitric acid
  • Rare earth nitrates such as barium, cerium nitrate, barium nitrate, barium nitrate, barium nitrate, barium nitrate, barium nitrate, barium nitrate, barium nitrate, barium nitrate, barium nitrate, barium chloride, barium chloride,
  • element A is one selected from the group consisting of Ca, Al, Mg and Ti, such as: calcium carbonate, magnesium carbonate, calcium chloride, magnesium chloride, aluminum chloride, calcium oxide, aluminum oxide, magnesium oxide, titanium dioxide, hydrogen Calcium oxide, magnesium hydroxide, aluminum hydroxide, calcium acetate, magnesium acetate, aluminum acetate, calcium hypochlorite, magnesium perchlorate or the like, preferably a corresponding metal salt compound, metal oxide and hydroxide.
  • the chromium-free gas phase fluorination catalyst of the present invention is not limited in its preparation method, and any known method for preparing a gas phase fluorination catalyst is suitable for use in the present invention.
  • the present invention preferably uses the dipping method, the coprecipitation method or the blending method to prepare the present invention.
  • a variety of chromium-free gas phase fluorination catalysts are used. During the calcination process, the catalyst undergoes physical and chemical changes such as thermal decomposition, solid phase reaction, crystal form change, recrystallization and sintering, which play an important role in the catalyst preparation process.
  • the chromium-free gas phase fluorination catalyst of the present invention has no limitation on the calcination atmosphere, and can be carried out under different calcination atmospheres of air, hydrogen and nitrogen.
  • the fluorination process is an important step affecting the activity of the catalyst.
  • the temperature of the chrome-free gas phase fluorination catalyst precursor after high-temperature calcination of the present invention is preferably 400 ° C, preferably the initial fluorination temperature is 300 ° C. The temperature was gradually raised to 400 ° C and the fluorination was continued for 8 hours.
  • the type of reactor used in the fluorination reaction of the present invention is not critical, and any suitable gas phase fluorination reactor is suitable for use in the present invention. It is preferred in the present invention to have materials resistant to hydrogen fluoride corrosion such as nickel and its alloys (including Hastelloy, InconeL Incoloy). A tubular fixed bed reactor made of Monel).
  • the chromium-free gas phase fluorination catalyst of the present invention is suitable for the preparation of a series of HFOs or HCFOs by a gas phase fluorinated halogenated hydrocarbon reaction.
  • the halogenated hydrocarbon may be 1,1,1,3-1,3-chloropropane (TCP), 1,1,1,3,3-pentachloropropane (HCC-240fa), 1,1,1,2,2-five.
  • HFOs or HCFOs are trifluoropropene (HFO-1243zf), HCFO-1233zd, 1,3,3,3-tetrafluoropropene (HFO-1234ze), HCFO-1233xf, 2,3,3 , 3-tetrafluoropropene (HFO-1234yf), 1,1, 1,2,3-pentafluoropropene (HFO-1225ye), and the like.
  • HFO-1243zf trifluoropropene
  • HFO-1233zd 1,3,3,3-tetrafluoropropene
  • HFO-1234ze 1,3,3,3-tetrafluoropropene
  • HFO-1233xf 2,3,3
  • 3-tetrafluoropropene (HFO-1234yf) 1,1, 1,2,3-pentafluoropropene (HFO-1225ye), and the like.
  • a certain amount of FeCl 3 '6H 2 0, MgCl r 6H 2 0 and La(N0 3 ) 3 '6H 2 0 are dissolved in water, and a precipitant ammonia water is added at 60 ° C to control the pH of the solution between 7.5 and 8.5.
  • the precipitate was sufficiently precipitated under stirring, and the formed slurry was filtered, washed with deionized water to neutrality, and dried at 12 CTC to obtain a catalyst precursor having a Fe content of 20.0%, a Mg content of 77.0%, and a La content of 3.0%. Body, then press molded.
  • a nickel tube fixed bed tubular reactor having an inner diameter of 38 mm 60 ml of the chromium-free gas phase fluorination catalyst prepared in this example was charged, and HF and 1,1,2,3-tetrachloropropene (HCC-1230xa) were introduced.
  • the reaction was carried out to control the molar ratio of HF/HCC-1230xa to 15:1, the contact time was 10.9 seconds, the reaction temperature was 260 ° C, and after reacting for 20 hours, the reaction product was washed with water, washed with alkali to remove HC1 and HF, and then used in the gas phase.
  • the catalyst preparation process of this example is basically the same as that of Example 1, except that MgCl r 6H 2 0 is replaced by CaCl 2 , and La(N0 3 ) 3 .6H 2 0 is replaced by ⁇ ( ⁇ 0 3 ) 3 ⁇ 6 ⁇ 2 0 .
  • a catalyst precursor having a Fe content of 20.0%, a Ca content of 77.0%, and a Y content of 3.0% was obtained, followed by press molding.
  • a nickel tube fixed bed tubular reactor having an inner diameter of 38 mm 50 ml of the chromium-free gas phase fluorination catalyst prepared in this example was charged, and HF and 1,1,1,3,3-pentachloropropane (HCC) were introduced.
  • HCC 1,1,1,3,3-pentachloropropane
  • -240fa The reaction was carried out to control the molar ratio of HF/HCC-240fa to 15:1, the contact time was 10.9 seconds, the reaction temperature was 240 ° C, and after reacting for 20 hours, the reaction product was washed with water and alkali washed to remove HC1 and HF.
  • the conversion of HCC-240fa was 100% by gas chromatography, and the selectivity of HCFO-1233zd was 99.2%.
  • the catalyst preparation process of the embodiment is substantially the same as Example 1, except that MgCl r 6H 2 0 replaced with A1C1 3 -6H 2 0, with Ce (N0 3) 3 .6H 2 0 replaced La (N0 3) 3 .6H 2 0, a catalyst precursor having an Fe content of 20.0%, an A1 content of 77.0%, and a Ce content of 3.0% was obtained, followed by press molding. It was calcined in a muffle furnace at 45 CTC for 8 hours, then charged into a tubular reactor, heated to 300 ° C, fluorinated with hydrogen fluoride gas for 1 hour, and then heated to 400 ° C at a heating rate of 1 ° C / min to continue fluorine.
  • a chromium-free gas phase fluorination catalyst was obtained.
  • 30 ml of the chromium-free gas phase fluorination catalyst prepared in this example was charged, and HF and tetrachloropropane were introduced to carry out a reaction to control the molar ratio of HF/tetrachloropropane.
  • reaction reaction 15:1, contact time is 3.2 seconds, reaction temperature is 260 ° C, reaction reaction is 20 hours, the reaction product is washed with water, alkali washed to remove HC1 and HF, and the conversion of tetrachloropropane is analyzed by gas chromatography to be 100%, HFO The selectivity of -1243zf was 97.6%. After 1000 hours of reaction, the reaction product was washed with water and washed with alkali to remove HC1 and HF. The conversion of tetrachloropropane was determined by gas chromatography to be 100%, and the selectivity of HFO-1243zf was 90.5%.
  • the catalyst preparation process of this embodiment is basically the same as that of the embodiment 1, except that Sc is used.
  • a nickel tube fixed bed tubular reactor having an inner diameter of 38 mm 60 ml of the chromium-free gas phase fluorination catalyst prepared in this example was charged, and HF and 1,1,1,2,2-pentachloropropane 010 were introduced.
  • the reaction was carried out at 24 ( ⁇ 13), the molar ratio of HF/HCC-240ab was controlled to 15:1, the contact time was 10.9 seconds, the reaction temperature was 260 ° C, and after 20 hours of reaction, the reaction product was washed with water and washed with alkali to remove HC1 and HF. Thereafter, the conversion of HCC-240ab by gas chromatography was 100%, and the selectivity of HCFO-1233xf was 98.8%.
  • the preparation process of the catalyst of this example is basically the same as that of the first embodiment except that La(N0 3 ) 3 -6H 2 0 is replaced by Nd(N0 3 ) 3 -6H 2 0 to obtain a Fe content of 20.0%, Mg.
  • a catalyst precursor having a content of 77.0% and an Nd content of 3.0% was then press-formed. It was calcined in a muffle furnace at 450 ° C for 8 hours, then charged into a tubular reactor, heated to 300 ° C, fluorinated with hydrogen fluoride gas for 1 hour, and then heated to 400 ° C at a heating rate of rC / min to continue fluorine. After 8 hours, a chromium-free gas phase fluorination catalyst was obtained.
  • a nickel tube fixed bed tubular reactor having an inner diameter of 38 mm 60 ml of the chromium-free gas phase fluorination catalyst prepared in this example was charged, and HF and 1,1,1,2,3-pentachloropropane 010 were introduced.
  • the reaction was carried out at 240 (3 ⁇ 4), and the molar ratio of HF/HCC-240db was controlled to 10: 1, the contact time was 10.9 seconds, the reaction temperature was 260 ° C, and after the reaction for 20 hours, the reaction product was washed with water and washed with alkali to remove HC1 and HF.
  • the conversion of HCC-240db by gas chromatography was 100%, and the selectivity of HCFO-1233xf was 98.4%.
  • the catalyst preparation process of this example is basically the same as that of Example 1, except that La(N0 3 ) 3 '6H 2 0 is replaced with Pr ( ⁇ 0 3 ) 3 ⁇ 6 ⁇ 2 0 to obtain a Fe content of 20.0%, Mg.
  • a catalyst precursor having a content of 77.0% and a Pr content of 3.0% was then press-formed. It was calcined in a muffle furnace at 450 ° C for 8 hours, then charged into a tubular reactor, heated to 300 ° C, fluorinated with hydrogen fluoride gas for 1 hour, and then heated to 400 ° C at a heating rate of rC / min to continue fluorine. After 8 hours, a chromium-free gas phase fluorination catalyst was obtained.
  • Preparation Example catalyst of this embodiment is basically the same, except that 3 ⁇ 6 ⁇ 2 0 replaced by Tb ( ⁇ 0 3) La (N0 3) 6H 2 0, to obtain the Fe content is made of 15.0%, Ca content of 83.5% of a catalyst precursor having a Tb content of 1.5% was then press molded. It was calcined in a muffle furnace at 450 ° C for 8 hours, then charged into a tubular reactor, heated to 300 ° C, fluorinated with hydrogen fluoride gas for 1 hour, and then heated to 400 ° C at a heating rate of rC / min to continue fluorine. After 8 hours, a chromium-free gas phase fluorination catalyst was obtained.
  • a nickel tube fixed bed tubular reactor having an inner diameter of 38 mm 60 ml of the chromium-free gas phase fluorination catalyst prepared in this example was charged, and HF and 1,1,2,3-tetrachloropropene (HCC-1230xa) were introduced.
  • the reaction was carried out to control the molar ratio of HF/HCC-1230xf to 15:1, the contact time was 10.9 seconds, the reaction temperature was 260 ° C, and after reacting for 20 hours, the reaction product was washed with water, and alkali washed to remove HC1 and HF, followed by gas phase.
  • Example 8 Chromatographic analysis of HCC-1230xa conversion rate of 100%, HCFO-1233xf selectivity of 99.6%; after 1000 hours of reaction, the reaction product was washed with water, alkali washed to remove HC1 and HF, the gas chromatographic analysis of HCC-1230xa conversion rate For 100%, the selectivity of HCFO-1233xf is 93.4%.
  • Example 8 A-Fe 2 0 3 and MgO, Yb 2 0 3 were uniformly mixed according to a Fe content of 5.0%, a Mg content of 94.5%, and a Tb content of 0.5%, and tableting was carried out to obtain a catalyst precursor, and the obtained catalyst was obtained.
  • the body was calcined in a muffle furnace at 45 CTC for 8 hours, then charged into a tubular reactor, heated to 300 ° C, fluorinated with hydrogen fluoride gas for 1 hour, and then heated to 400 ° C at a heating rate of 1 ° C / min to continue fluorination. After 8 hours, a chromium-free gas phase fluorination catalyst was obtained.
  • a nickel tube fixed bed tubular reactor with an inner diameter of 38 mm 60 ml of the chromium-free gas phase fluorination catalyst prepared in this example was charged, and HF and HCFC-1233zd were introduced to carry out a reaction to control the molar ratio of HF to HCFC-1233zd.
  • the reaction time was 10:1, the contact time was 2 seconds, the reaction temperature was 380 ° C, and after reacting for 20 hours, the reaction product was washed with water and washed with alkali to remove HC1 and HF.
  • the conversion of HCFC-1233zd by gas chromatography was 86%, HFO.
  • the selectivity of the -1234ze active component was 97.0%.
  • the catalyst precursor was obtained, and the obtained catalyst precursor was calcined in a muffle furnace at 45 CTC for 8 hours, and then charged into a tubular reactor, heated to 300 ° C, and fluorinated with hydrogen fluoride gas for 1 hour, and then at 1 ° C / The heating rate of min was raised to 400 ° C, and fluorination was continued for 8 hours to obtain a chromium-free gas phase fluorination catalyst.
  • P-FeO(OH) and CaC0 3 , Eu(OH) 3 and Gd(OH) 3 were uniformly mixed according to Fe content of 50.0%, Ca content of 45.0%, and Eu and Gd content of 2.5%, respectively.
  • the catalyst precursor was obtained, and the obtained catalyst precursor was calcined in a muffle furnace at 45 CTC for 8 hours, and then charged into a tubular reactor, heated to 300 ° C, and fluorinated with hydrogen fluoride gas for 1 hour, and then at 1 ° C / min. The heating rate was raised to 400 ° C, and fluorination was continued for 8 hours to obtain a chromium-free gas phase fluorination catalyst.
  • the temperature was raised to 400 ° C at a heating rate of 1 ° C /min, and fluorination was continued for 8 hours to obtain a chromium-free gas phase fluorination catalyst.
  • a nickel tube fixed bed tubular reactor with an inner diameter of 38 mm 60 ml of the chromium-free gas phase fluorination catalyst prepared in this example was charged, and the reaction was carried out by HFC-245fa, the contact time was 30 seconds, and the reaction temperature was 380 ° C. After reacting for 20 hours, the reaction product was washed with water and washed with alkali to remove HF.
  • P-FeO(OH), Al(OH) 3 and Er 2 0 3 are uniformly mixed according to the Fe content of 50.0%, the A1 content of 45.0%, and the Er content of 5.0%, and tableting is carried out to obtain a catalyst precursor.
  • the obtained catalyst precursor was calcined in a muffle furnace at 45 CTC for 8 hours, then charged into a tubular reactor, heated to 300 ° C, hydrogen fluoride gas was fluorinated for 1 hour, and then heated to 400 ° C at a heating rate of 1 ° C /min. , continued to fluorinate for 8 hours to obtain a chromium-free gas phase fluorination catalyst.
  • Tm(OH) 3 have a Fe content of 50.0% and a Ca content of 45.0%.
  • the Tm content is 5.0%, the mixture is uniformly mixed, and the catalyst precursor is obtained by tableting.
  • the obtained catalyst precursor is calcined in a muffle furnace at 45 CTC for 8 hours, and then charged into a tubular reactor, and heated to 300 ° C, hydrogen fluoride gas. After fluorination for 1 hour, the temperature was raised to 400 ° C at a heating rate of 1 ° C /min, and fluorination was continued for 8 hours to obtain a chromium-free gas phase fluorination catalyst.
  • FeCl 3 .6H 2 0 and Lu(N0 3 ) 3 .6H 2 0 were dissolved in 100 ml of distilled water to prepare an immersion liquid, and then the Ti0 2 carrier was placed in the immersion liquid, immersed for 5 hours, and then subjected to rotary evaporation.
  • the water was evaporated to dryness at 60 ° C to obtain a chromium-free gas phase fluorination catalyst precursor having a Fe content of 20.0%, a Ti content of 75.0%, and a Lu content of 5.0%.
  • the obtained catalyst precursor was calcined in a muffle furnace at 45 CTC for 8 hours, and then charged into a tubular reactor, heated to 30 CTC, and fluorinated with hydrogen fluoride gas for 1 hour, and then heated to 400 ° C at a heating rate of 1 ° C /min. The fluorination was continued for 8 hours to obtain a chromium-free gas phase fluorination catalyst.
  • FeCl 3 .6H 2 0 and Ce(N0 3 ) 3 .6H 2 0 were dissolved in 100 ml of distilled water to prepare an immersion liquid, and then the Ti0 2 carrier was placed in an immersion liquid, immersed for 5 hours, and then subjected to rotary evaporation. The water was evaporated to dryness at 60 ° C to obtain a chromium-free gas phase fluorination catalyst precursor having a Fe content of 20.0%, a Ti content of 75.0%, and a Ce content of 5.0%.
  • the obtained catalyst precursor was calcined in a muffle furnace at 45 CTC for 8 hours, and then charged into a tubular reactor, heated to 30 CTC, and fluorinated with hydrogen fluoride gas for 1 hour, and then heated to 400 ° C at a heating rate of 1 ° C /min. The fluorination was continued for 8 hours to obtain a chromium-free gas phase fluorination catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种无铬气相氟化催化剂及其应用。所涉及的无铬气相氟化催化剂的前躯体由含铁元素的化合物、含稀土金属元素的化合物、含A元素的化合物组成,其中A元素选自Ca、Al、Mg和Ti中的一种,将所述前驱体经焙烧、氟化处理后制得无铬气相氟化催化剂。该催化剂前躯体在400~500℃焙烧,在350~450℃用氟化氢气体氟化制得无铬气相氟化催化剂。该催化剂具有无铬,友善环境,催化活性好,寿命长等特点。该催化剂可用于卤代烃制备氢氟烯烃或氢氟氯烯烃。

Description

一种无铬气相氟化催化剂及其应用
技术领域
本发明涉及到一种无铬气相氟化催化剂及其用途。 尤其是涉及用于气相 氟化卤代烃制备氢氟烯烃 (HFOs) 或氢氟氯烯烃 (HCFOs) 的无铬氟化催化 剂。
背景技术
在氟化工中经常采用气相氟化卤代烃的方法制备氢氟烯烃和氢氟氯烯烃, 该法具有设备简单, 易于连续大规模生产、 安全等优点。 在气相氟化卤代烃 反应中起核心作用的是氟化催化剂。 目前, 工业上用的气相氟化催化剂为含 铬氟化催化剂。
中国专利 CN94106793.9报道了用氨水沉淀 Cr(N03)3和 In(N03)3的混合物, 制得氟化物前体, 经焙烧、 HF氟化后制得铟、铬、氧和氟组成的氟化催化剂。
US5,773,671报道了用 A1203与 Cr203的共混物在 CoCl2溶液中浸渍,然后 进行干燥、 焙烧、 氟化制得氟化催化剂。
EP0514932A3报道了用沉淀法制得比表面积大于 170m2g— 1的 Cr203, 然后 氟化制得氟化催化剂, 未公开添加的其它助催化剂。
CN01141970.9报道了将铬与其它组分的可溶性盐的水溶液,在 20〜100°C 下与沉淀剂(碱性物质)反应制得了比表面积大于 200 m 1.孔容大于 0.3m2g— 1 的无定形催化剂前体, 随后进行焙烧、 活化制得了 0^。.3^^。.10。 2.。的氟化 催化剂。
实际应用的气相氟化催化剂多为含铬催化剂,业已证明铬的化合物都有毒 性, 会对人的消化道和肾造成损害, 并且高价铬具有强致癌作用, 其生产和 使用会对人和环境造成危害, 为了解决上述问题, 采用无铬氟化催化剂取代含有铬氟化催化剂, 例如
CN107817A和 CN1111606A公开了一种无铬催化剂, 是在氧化铝、 卤代氧化 铝或卤氧化铝上负载锌, 但该催化剂活性较差; CN1680029A公开了一种无 铬催化剂, 该催化剂将锑卤化物(SbFnCl5_n)负载在氟化钙上, 但该催化剂催 化活性较低, 且锑卤化物在氟化反应过程中易流失, 催化剂热稳定性差。
综上, 现有的无铬催化剂存在催化活性差且易流失的问题, 无实际应用价 值。
发明内容
针对现有技术的缺陷或不足, 本发明的目的之一在于提供一种不含铬, 催化剂使用寿命长、 催化活性好的气相氟化催化剂。
为了解决上述技术问题, 本发明提供一种无铬气相氟化催化剂, 该催化 剂的前躯体由含铁元素的化合物、 含稀土金属元素的化合物、 含 A元素的化 合物组成, 其中 A元素选自 Ca、 Al、 Mg和 Ti中的一种, 将所述催化剂的 前驱体经焙烧、 氟化处理后制得无铬气相氟化催化剂。
优选的, 所述催化剂的前驱体中铁元素、 稀土金属元素、 A元素三种元 素的质量百分比组成为:铁元素: 5.0%〜50.0%;稀土金属元素: 0.5 %〜5.0%; A元素: 45.0%〜94.5 %; 且三种元素的质量百分比和为 100%。
优选的, 将所述催化剂的前躯体在 400〜500°C焙烧, 接着在 350〜450°C 条件下用氟化氢气体氟化制得无铬气相氟化催化剂。
优选的, 所述催化剂的前躯体中含铁元素的化合物为铁的卤氧化物、 铁 的金属盐化合物, 铁的氧化物、 铁的氢氧化物、 含铁元素的有机盐或含铁元 素的配合物; 所述含稀土金属元素的化合物为稀土金属元素的金属盐化合物, 稀土金属元素的氧化物、 稀土金属元素的氢氧化物、 含稀土金属元素的有机 盐或含稀土金属元素的稀土复盐; 所述含 A的化合物为 A元素的卤氧化物、 A元素的金属盐化合物, A元素的氧化物、 含 A元素的氢氧化物、 含 A元素 的有机盐或含 A元素的配合物。
优选的, 所述催化剂的前躯体中铁元素为三价铁, 且三价铁的晶型为 α、 β、 γ或 δ。
优选的, 所述含稀土金属元素的化合物为一种含稀土金属元素的化合物 或两种以上含稀土金属元素化合物的组合物, 其中稀土金属元素选自 Sc、 Y、 Ce、 La、 Nd、 Pr、 Pm、 Sm、 Eu、 Gd、 Tb、 Yb、 Ho、 Dy、 Er、 Tm、 Yb 和 Lu中的一种。
针对现有技术的缺陷或不足, 本发明的又一目的在于提供关于上述无铬 气相氟化催化剂用于以卤代烃为原料制备氢氟烯烃或氢氟氯烯烃的应用。
与现有技术相比, 本发明的优点在于:
( 1 ) 本发明的无铬气相氟化催化剂生产和使用过程中工业三废少, 不会 接触到铬等有毒物质, 友善环境。
(2) 本发明优选 Fe3+作为催化剂活性组分, 氟氯交换反应的关键在于非 稳态的 F1的存在, Fe3+共价半径与 Cr3+接近, 在氟化反应中能形成更多非稳 态的 F1, 有利于氟氯交换反应发生, Fe3+存在 α、 β、 γ、 δ不同晶型; 同时选 用稀土金属作为催化助剂, 稀土金属化合物有较强的贮氧能力, 在稀土掺杂 型复合催化剂中, 稀土金属氧化物在催化剂表面上有吸附氧的中心, 会抑制 催化剂表面积碳, 从而延长催化剂寿命, 例如气相氟化合成 HCFO-1233xf或 HCFO-1233zd, 催化剂寿命均大于 1000小时。
(3 ) 本发明的无铬气相氟化催化剂催化剂使用寿命长, 催化活性好, 适 用于气相氟化制备多种 HFOs或 HCFOs, 例如气相氟化 HCFO-1233zd合成 HFO-1234ze;气相氟化 HCC- 240ab合成 HCFO-1233xf;气相氟化 HCC-240db 合成 HCFO-1233xf; 气相氟化 HCC-1230xf 合成 HCFO-1233xf; 气相氟化 HCC-1230xa合成 HCFO-1233xf; 气相氟化 TCP合成 HFO-1243zf; 气相氟化 HCFO-1233xf合成 HCFC-244bb; 气相氟化 HCC-240fa合成 HCFO-1233zd; HCFC-244fa脱 HCl反应合成 HFO-1234ze; HFC-245fa脱 HF合成 HFO-1234ze; HCFC-244bb 脱 HCl 反应合成 HFO-1234yf ; HFC-245eb 脱 HF 合成 HFO-1234yf; HFC-245cb脱 HF合成 HFO-1234yf; HFC-236ea脱 HF合成 HFO-1225ye。
(4) 应用本发明的无铬气相氟化催化剂
气相氟化 HCC-1230xa合成 HCFO-1233xf时,反应 20小时, HCC-1230xa 转化率可达 100%, HCFO-1233xf 的选择性可达 99.6%; 反应 1000小时后, HCC-1230xa的转化率可达 100%, HCFO-1233xf的选择性可达 93.4%。
气相氟化 HCC-240ab合成 HCFO-1233xf 时, 反应 20小时, HCC-240ab 转化率为 100%, HCFO-1233xf 的选择性可达 98.8 %。 反应 1000小时后, HCC-240ab的转化率为 100%, HCFO-1233xf的选择性为 91.9%。
气相氟化 HCC-240db合成 HCFO-1233xf 时, 反应 20小时, HCC-240db 转化率可达 100%, HCFO-1233xf的选择性可达 98.4 %。 反应 1000小时后, HCC-240db的转化率可达 100%, HCFO-1233xf的选择性可达 91.6%。
气相氟化 HCC-1230xf合成 HCFO-1233xf时, 反应 20小时, HCC-1230xf 的转化率可达 100%, HCFO-1233xf的选择性可达 99.5%。 反应 1000小时后, HCC-1230xf的转化率可达 100%, HCFO-1233xf的选择性可达 93.7%。
气相氟化 HCC-240fa合成 HCFO-1233zd时, 反应 20小时后, HCC-240fa 的转化率可达 100%, HCFO-1233zd的选择性可达 99.2%; 反应 1000小时后, HCC-240fa的转化率可达 100%, HCFO-1233zd的选择性可达 93.5%。
气相氟化 TCP合成 HFO-1243zf时, 反应 20小时, 四氯丙烷的转化率可 达 100%, HFO-1243zf 的选择性可达 97.6% ; 反应 1000小时后, 四氯丙烷的 转化率可达 100%, HFO-1243zf的选择性可达 90.5%。
综上, 本发明的无铬气相氟化催化剂具有无铬环保、 催化剂使用寿命长、 催化活性好等特点。
具体实施方式
本发明的含铁元素化合物如氧化铁、 氢氧化铁、 氯化铁、 硫酸铁、 硝酸 铁、 草酸铁、 硫氰酸铁铵、 藤氏蓝、 氯化二氨合铁等, 优选其中铁盐化合物, 铁氧化物、 铁氢氧化物。
本发明稀土金属元素选自 Sc、 Y、 Ce、 La、 Nd、 Pr、 Pm、 Sm、 Eu、 Gd、 Tb、 Yb、 Ho、 Dy、 Er、 Tm禾 B Lu中的一种, 优选 Y、 Ce、 La、 Pr、 Tb。 具 体化合物如: 氧化钐、 氧化钕、 氧化镧、 氧化铽、 氧化铈、 氧化铥等稀土氧 化物, 氢氧化铈、 氢氧化镧、 氢氧化钇, 氢氧化镨, 氢氧化钕, 氢氧化钐, 氢氧化铕, 氢氧化钆, 氢氧化铽, 氢氧化镝, 氢氧化钬, 氢氧化铥, 氢氧化 镱, 氢氧化镥等稀土氢氧化物, 硝酸铈、 硝酸镧、 硝酸钇、 硝酸镨、 硝酸钆、 硝酸钕、 硝酸铕、 硝酸镝、 硝酸钪、 硝酸铒、 硝酸铽、 硝酸镱、 硝酸钬、 硝 酸钍、 硝酸镥等稀土硝酸盐, 氯化铈、 氯化镧、 氯化镨、 氯化钕、 氯化钇、 氯化钐、 氯化铕、 氯化钆、 氯化镝、 氯化镱、 氯化钬、 氯化铒、 氯化铽等稀 土氯化盐, 醋酸铈、 醋酸镧、 醋酸铕、 醋酸镝、 醋酸钇、 醋酸钐、 醋酸钆、 醋酸镨、 醋酸钕、 醋酸钬、 醋酸铽、 醋酸铒等稀土醋酸盐, 硝酸铈铵、 硫酸 铈铵等稀土复盐。
本发明的无铬气相氟化催化剂, 其前躯体中, 含 A元素的化合物为催化 剂载体, A元素为选自 Ca、 Al、 Mg和 Ti中的一种, 如: 碳酸钙、 碳酸镁、 氯化钙、 氯化镁、 氯化铝、 氧化钙、 氧化铝、 氧化镁、 二氧化钛、 氢氧化钙、 氢氧化镁、 氢氧化铝、 醋酸钙、 醋酸镁、 醋酸铝、 次氯酸钙、 高氯酸镁等, 优选相应地金属盐化合物, 金属氧化物和氢氧化物。
本发明的无铬气相氟化催化剂, 对其制备方法没有限制, 任何已知的气 相氟化催化剂制备方法均适用于本发明, 本发明优先采用浸渍法、 共沉淀法 或共混法制备本发明的各种无铬气相氟化催化剂。 焙烧过程催化剂会发生热 分解、 固相反应、 晶形变化、 再结晶和烧结等物理化学变化, 在催化剂制备 过程中起着重要作用。 本发明的无铬气相氟化催化剂, 对其焙烧气氛没有限 制, 在空气、 氢气、 氮气不同焙烧气氛下都可以进行。 氟化过程, 是影响催 化剂活性的重要步骤, 本发明的高温焙烧后的无铬气相氟化催化剂前躯体用 氟化氢氟化处理的温度优选 400°C, 更优选初始氟化温度为 300°C, 逐渐升温 至 400°C继续氟化 8小时。
本发明用于氟化反应的反应器类型不是关键, 任何合适的气相氟化反应 器均适用于本发明, 本发明优先选用具有抗氟化氢腐蚀作用的材料例如镍及 其合金 (包括 Hastelloy、 InconeL Incoloy和 Monel) 制成的列管式固定床反 应器。
本发明的无铬气相氟化催化剂适用于气相氟化卤代烃反应制备系列制备 HFOs或 HCFOs。 卤代烃可以是 1,1, 1,3-四氯丙烷 (TCP)、 1,1, 1,3,3-五氯丙烷 ( HCC-240fa )、 1,1,1,2,2-五氯丙烷 (HCC-240ab)、 1,1,1,2,3-五氯丙烷 HCC-240db)、 1-氯 -3,3,3-三氟丙烯 ( HCFO-1233zd)、 3-氯 -1,1, 1,3-四氟丙烷 ( HCFC-244fa )、 1,1,2,3-四氯丙烯 ( HCC-1230xa )、 2,3,3,3-四氯丙烯 (HCC-1230xf)、 2-氯 -3,3,3-三氟丙烯(HCFO-1233xf)、 2-氯 -1,1, 1,2-四氟丙烷 ( HCFC-244bb )、 1,1,1,2,3-五氟丙烷(HFC-245eb)、 1,1,1,2,2-五氟丙烷 (HFC-245cb)、 1,1,1,3,3-五氟丙烷(HFC-245fa)、 1,1,1,2,3,3-六氟丙烷
(HFC-236ea)等; HFOs或 HCFOs是三氟丙烯(HFO-1243zf)、 HCFO-1233zd、 1,3,3,3-四氟丙烯 ( HFO-1234ze )、 HCFO-1233xf 、 2,3,3,3-四氟丙烯 (HFO-1234yf)、 1,1, 1,2,3-五氟丙烯 (HFO-1225ye) 等。 以下是发明人提供的实施例, 以对本发明的技术方案作进一步解释说明。 实施例 1
将一定量的 FeCl3'6H20、MgClr6H20和 La(N03)3'6H20溶于水中,在 60°C 加入沉淀剂氨水, 控制溶液 PH值在 7.5~8.5之间, 使其在搅拌下充分沉淀, 将形成的浆体过滤, 用去离子水洗涤至中性, 在 12CTC干燥制得 Fe含量为 20.0%, Mg含量为 77.0%, La含量为 3.0%的催化剂前驱体, 然后压制成型。 在马弗炉中 45CTC焙烧 8小时, 然后装入管式反应器, 升温至 300°C, 通入氟 化氢气体氟化 1 小时, 然后以 rC/min 升温速率升温至 400°C, 继续氟化 8 小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HF和 1,1,2,3-四氯丙烯(HCC-1230xa)进行反应, 控制 HF/HCC-1230xa的摩尔比为 15:1,接触时间为 10.9秒,反应温度 260°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCC-1230xa的转化率为 100%, HCFO-1233xf的选择性为 99.4%; 反应 1000 小时后,反应产物经水洗、碱洗除去 HC1和 HF后,用气相色谱分析 HCC- 1230xa 的转化率为 100%, HCFO-1233xf的选择性为 92.5%。 实施例 2
该实施例的催化剂制备工艺与实施例 1 基本相同, 所不同的是用 CaCl2 替换 MgClr6H20, 用 Υ(Ν03)3·6Η20替换 La(N03)3.6H20, 制得 Fe含量为 20.0%, Ca含量为 77.0%, Y含量为 3.0%的催化剂前驱体, 然后压制成型。 在马弗炉中 45CTC焙烧 8小时, 然后装入管式反应器, 升温至 300°C, 通入氟 化氢气体氟化 1 小时, 然后以 rC/min 升温速率升温至 400°C, 继续氟化 8 小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 50ml该实施例制得的 无铬气相氟化催化剂, 通入 HF和 1,1, 1,3,3-五氯丙烷(HCC-240fa)进行反应, 控制 HF/ HCC-240fa的摩尔比为 15:1, 接触时间为 10.9秒, 反应温度 240°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCC-240fa的转化率为 100%, HCFO-1233zd的选择性为 99.2%; 反应 1000 小时后,反应产物经水洗、碱洗除去 HC1和 HF后,用气相色谱分析 HCC-240fa 的转化率为 100%, HCFO-1233zd的选择性为 93.5%。 实施例 3
该实施例的催化剂制备工艺与实施例 1 基本相同, 所不同的是用 A1C13-6H20替换 MgClr6H20, 用 Ce(N03)3.6H20替换 La(N03)3.6H20, 制得 Fe含量为 20.0%, A1含量为 77.0%, Ce含量为 3.0%的催化剂前驱体, 然后压 制成型。在马弗炉中 45CTC焙烧 8小时, 然后装入管式反应器, 升温至 300°C, 通入氟化氢气体氟化 1小时,然后以 l °C/min 升温速率升温至 400°C, 继续氟 化 8小时, 制得无铬气相氟化催化剂。 在内径为 38mm的镍管固定床管式反应器中,装入 30ml该实施例制得的 无铬气相氟化催化剂, 通入 HF和四氯丙烷进行反应, 控制 HF/四氯丙烷的摩 尔比为 15:1, 接触时间为 3.2秒, 反应温度 260°C, 反应 20小时后, 反应产 物经水洗、碱洗除去 HC1和 HF后,用气相色谱分析四氯丙烷的转化率为 100%, HFO-1243zf的选择性为 97.6%。 反应 1000小时后, 反应产物经水洗、 碱洗除 去 HC1和 HF后, 用气相色谱分析四氯丙烷的转化率为 100%, HFO-1243zf 的选择性为 90.5%。 实施例 4
该实施例的催化剂制备工艺与实施例 1 基本相同, 所不同的是用 Sc
(Ν03)3·6Η20替换 La(N03)3'6H20, 制得 Fe含量为 20.0%, Mg含量为 77.0%, Sc含量为 3.0%的催化剂前驱体, 然后压制成型。 在马弗炉中 450°C焙烧 8小 时, 然后装入管式反应器, 升温至 300°C, 通入氟化氢气体氟化 1小时, 然后 以 rC/min 升温速率升温至 400°C, 继续氟化 8小时,制得无铬气相氟化催化 剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HF和 1,1,1,2,2-五氯丙烷010 -24(^13)进行反应, 控制 HF/ HCC-240ab的摩尔比为 15:1, 接触时间为 10.9秒, 反应温度 260°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCC-240ab的转化率为 100%, HCFO-1233xf的选择性为 98.8 %。 反应 1000 小时后,反应产物经水洗、碱洗除去 HC1和 HF后,用气相色谱分析 HCC-240ab 的转化率为 100%, HCFO-1233xf的选择性为 91.9%。 实施例 5
该实施例催化剂的制备工艺与实施例 1 基本相同, 所不同的是用 Nd(N03)3-6H20替换 La(N03)3-6H20,制得 Fe含量为 20.0%, Mg含量为 77.0%, Nd含量为 3.0%的催化剂前驱体, 然后压制成型。 在马弗炉中 450°C焙烧 8小 时, 然后装入管式反应器, 升温至 300°C, 通入氟化氢气体氟化 1小时, 然后 以 rC/min 升温速率升温至 400°C, 继续氟化 8小时,制得无铬气相氟化催化 剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HF和 1,1,1,2,3-五氯丙烷010 -240(¾)进行反应, 控制 HF/ HCC-240db的摩尔比为 10: 1, 接触时间为 10.9秒, 反应温度 260°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCC-240db的转化率为 100%, HCFO-1233xf 的选择性为 98.4%。 反应 1000 小时后,反应产物经水洗、碱洗除去 HC1和 HF后,用气相色谱分析 HCC-240db 的转化率为 100%, HCFO-1233xf的选择性为 91.6%。 实施例 6
该实施例的催化剂制备工艺与实施例 1 基本相同, 所不同的是用 Pr (Ν03)3·6Η20替换 La(N03)3'6H20, 制得 Fe含量为 20.0%, Mg含量为 77.0%, Pr含量为 3.0%的催化剂前驱体, 然后压制成型。 在马弗炉中 450°C焙烧 8小 时, 然后装入管式反应器, 升温至 300°C, 通入氟化氢气体氟化 1小时, 然后 以 rC/min 升温速率升温至 400°C, 继续氟化 8小时,制得无铬气相氟化催化 剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HF和 2,3,3,3-四氯丙烯(HCC-1230xf)进行反应, 控制 HF/ HCC-1230xf的摩尔比为 10: 1,接触时间为 10.9秒,反应温度 260°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCC-1230xf 的转化率为 100%, HCFO-1233xf 的选择性为 99.5%。 反应 1000 小时后,反应产物经水洗、碱洗除去 HC1和 HF后,用气相色谱分析 HCC- 1230xf 的转化率为 100%, HCFO-1233xf的选择性为 93.7%。 实施例 7
该实施例催化剂的制备工艺与实施例 1 基本相同, 所不同的是用 Tb (Ν03)3·6Η20替换 La(N03) 6H20, 制得 Fe含量为 15.0%, Ca含量为 83.5%, Tb含量为 1.5%的催化剂前驱体, 然后压制成型。 在马弗炉中 450°C焙烧 8小 时, 然后装入管式反应器, 升温至 300°C, 通入氟化氢气体氟化 1小时, 然后 以 rC/min 升温速率升温至 400°C, 继续氟化 8小时,制得无铬气相氟化催化 剂。
在内径为 38mm的镍管固定床管式反应器中, 装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HF和 1,1,2,3-四氯丙烯(HCC-1230xa)进行反应, 控制 HF/HCC-1230xf的摩尔比为 15: 1,接触时间为 10.9秒, 反应温度 260°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCC-1230xa的转化率为 100%, HCFO-1233xf的选择性为 99.6%; 反应 1000 小时后,反应产物经水洗、碱洗除去 HC1和 HF后,用气相色谱分析 HCC- 1230xa 的转化率为 100%, HCFO-1233xf的选择性为 93.4%。 实施例 8 将 a-Fe203与 MgO、 Yb203按 Fe含量为 5.0%, Mg含量为 94.5%, Tb含 量为 0.5%比例均匀混合, 压片成型, 得到催化剂前躯体, 将得到的催化剂前 躯体在马弗炉中 45CTC焙烧 8小时, 然后装入管式反应器, 升温至 300°C, 氟 化氢气体氟化 1小时, 然后以 1 °C /min升温速率升温至 400°C, 继续氟化 8 小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HF 和 HCFC-1233zd 进行反应, 控制 HF 与 HCFC-1233zd的摩尔比为 10:1, 接触时间为 2秒, 反应温度 380°C, 反应 20 小时后, 反应产物经水洗、 碱洗除去 HC1 和 HF 后, 用气相色谱分析 HCFC-1233zd的转化率为 86%, HFO-1234ze有效组分的选择性为 97.0%。 反 应 300小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCFC-1233zd的转化率为 70%, HFO-1234ze有效组分的选择性为 92.4%。 实施例 9
将 γ-FeO OH)与 MgC03、 Ho203和 Dy203按 Fe含量为 50.0%, Mg含量 为 45.0%, Ho含量为 2.0%, Dy含量化为 3.0%比例均匀混合, 压片成型, 得 到催化剂前躯体, 将得到的催化剂前躯体在马弗炉中 45CTC焙烧 8小时, 然后 装入管式反应器,升温至 300°C,氟化氢气体氟化 1小时,然后以 1 °C /min升 温速率升温至 400°C, 继续氟化 8小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂,通入 HF和 HCFO-1233xf进行反应,接触时间为 10秒, 反应温度 330°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCFO-1233xf的转化率为 65.2%, HCFC-244bb有效组分的选 择性为 97.0%。 反应 300小时后, 反应产物经水洗、 碱洗除去 HC1和 HF后, 用气相色谱分析 HCFO-1233xf的转化率为 50.0%, HCFC-244bb有效组分的选 择性为 94.5%。 实施例 10
将 P-FeO(OH)与 CaC03、 Eu(OH)3和 Gd(OH)3按 Fe含量为 50.0%, Ca含 量为 45.0%, Eu和 Gd含量各为 2.5%比例均匀混合, 压片成型, 得到催化剂 前躯体, 将得到的催化剂前躯体在马弗炉中 45CTC焙烧 8小时, 然后装入管式 反应器, 升温至 300°C, 氟化氢气体氟化 1小时, 然后以 1 °C /min升温速率 升温至 400°C, 继续氟化 8小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 氟化催化剂, 通入 HFC-236ea进行反应, 接触时间为 30秒, 反应温度 400°C, 反应 20小时后,反应产物经水洗、碱洗除去 HF后,用气相色谱分析 HFC-236ea 的转化率为 66.4%, HFO-1225ye的选择性为 98.0%。 反应 500小时后, 反应 产物经水洗、碱洗除去 HF后,用气相色谱分析 HFC-236ea的转化率为 52.0%, HFO-1225ye的选择性为 92.4%。 实施例 11
将 y-Fe203、 CaO、 Pm2(C204)3和 Sm2(C204)3、 按 Fe含量为 50.0%, Ca含 量为 45.0%, Pm和 Sm含量各为 2.5%比例均匀混合, 压片成型, 得到催化剂 前躯体, 将得到的催化剂前躯体在马弗炉中 45CTC焙烧 8小时, 然后装入管式 反应器, 升温至 300°C, 氟化氢气体氟化 1小时, 然后以 1 °C /min升温速率 升温至 400°C, 继续氟化 8小时, 制得无铬气相氟化催化剂。 在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HFC-245fa进行反应, 接触时间为 30秒, 反应温 度 380°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HF后, 用气相色谱 分析 HFC-245fa的转化率为 86.4%, E-HFO-1234ze的选择性为 94.0%。 反应 300小时后, 反应产物经水洗、 碱洗除去 HF后, 用气相色谱分析 HFC-245fa 的转化率为 75.0%, E-HFO-1234ze的选择性为 90.0%。 实施例 12
将 P-FeO(OH)与 Al(OH)3、 Er203按 Fe含量为 50.0%, A1含量为 45.0%, Er含量为 5.0%比例均匀混合, 压片成型, 得到催化剂前躯体, 将得到的催化 剂前躯体在马弗炉中 45CTC焙烧 8小时,然后装入管式反应器,升温至 300°C, 氟化氢气体氟化 1小时,然后以 1 °C /min升温速率升温至 400°C, 继续氟化 8 小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HFC-245eb进行反应, 接触时间为 30秒, 反应温 度 400°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HF后, 用气相色谱 分析 HFC-245eb的转化率为 92.4%, HFO-1234yf的选择性为 98.0%。反应 500 小时后, 反应产物经水洗、 碱洗除去 HF后, 用气相色谱分析 HFC-245cb的 转化率为 75.5%, HFO-1234yf的选择性为 92.4%。
实施例 13
将 S-FeO(OH)与 CaO、 Tm(OH)3按 Fe含量为 50.0%, Ca含量为 45.0%, Tm含量为 5.0%比例均匀混合, 压片成型, 得到催化剂前躯体, 将得到的催 化剂前躯体在马弗炉中 45CTC焙烧 8 小时, 然后装入管式反应器, 升温至 300°C , 氟化氢气体氟化 1小时, 然后以 l °C /min 升温速率升温至 400°C, 继 续氟化 8小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HFC-245cb进行反应, 接触时间为 30秒, 反应温 度 360°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HF后, 用气相色谱 分析 HFC-245cb的转化率为 96.4%, HFO-1234yf的选择性为 98.4%。反应 500 小时后, 反应产物经水洗、 碱洗除去 HF后, 用气相色谱分析 HFC-245cb的 转化率为 80.2%, HFO-1234yf的选择性为 94.4%。 实施例 14
将 FeCl3.6H20和 Lu(N03)3.6H20按一定量溶于 100ml蒸馏水中配成浸渍 液, 然后将 Ti02载体置于浸渍液中, 浸渍 5小时后, 在旋转蒸发仪上 60°C蒸 干水分, 制得 Fe含量为 20.0%, Ti含量为 75.0%, Lu含量为 5.0%的无铬气 相氟化催化剂前驱体。 将得到的催化剂前躯体在马弗炉中 45CTC焙烧 8小时, 然后装入管式反应器,升温至 30CTC,氟化氢气体氟化 1小时,然后以 1 °C /min 升温速率升温至 400°C, 继续氟化 8小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HCFC-244fa进行反应, 接触时间为 20秒, 反应 温度 380°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1后, 用气相色 谱分析 HCFC-244fa转化率为 95.0%, HFO-1234ze的选择性为 95.0%。 反应 500小时后,反应产物经水洗、碱洗除去 HC1后,用气相色谱分析 HCFC-244fa 的转化率为 80.2%, HFO-1234ze的选择性为 92.4%: 实施例 15
将 FeCl3.6H20和 Ce(N03)3.6H20按一定量溶于 100ml蒸馏水中配成浸渍 液, 然后将 Ti02载体置于浸渍液中, 浸渍 5小时后, 在旋转蒸发仪上 60°C蒸 干水分, 制得 Fe含量为 20.0%, Ti含量为 75.0%, Ce含量为 5.0%的无铬气 相氟化催化剂前驱体。 将得到的催化剂前躯体在马弗炉中 45CTC焙烧 8小时, 然后装入管式反应器,升温至 30CTC,氟化氢气体氟化 1小时,然后以 1 °C /min 升温速率升温至 400°C, 继续氟化 8小时, 制得无铬气相氟化催化剂。
在内径为 38mm的镍管固定床管式反应器中,装入 60ml该实施例制得的 无铬气相氟化催化剂, 通入 HCFC-244bb进行反应, 接触时间为 20秒, 反应 温度 380°C, 反应 20小时后, 反应产物经水洗、 碱洗除去 HC1后, 用气相色 谱分析 HCFC-244bb转化率为 68.0%, HFO-1234yf 的选择性为 99.0%。 反应 500小时后,反应产物经水洗、碱洗除去 HC1后,用气相色谱分析 HCFC-244bb 的转化率为 36.2%, HFO-1234yf的选择性为 96.7%。

Claims

权利要求书
1、 一种无铬气相氟化催化剂, 其特征在于, 该催化剂的前躯体由含铁元 素的化合物、 含稀土金属元素的化合物、 含 A元素的化合物组成, 其中 A元 素选自 Ca、 Al、 Mg和 Ti中的一种, 将所述催化剂的前驱体经焙烧、 氟化处 理后制得无铬气相氟化催化剂。
2、 根据权利要求 1所述的无铬气相氟化催化剂, 其特征在于, 所述催化 剂的前躯体中铁元素、 稀土金属元素、 A元素三种元素的质量百分比组成为: 铁元素: 5.0%〜50.0%;稀土金属元素: 0.5 %〜5.0%; A元素: 45.0%〜94.5 %; 且三种元素的质量百分比和为 100%。
3、 根据权利要求 1所述的无铬气相氟化催化剂, 其特征在于, 将所述催 化剂的前躯体在 400〜500°C焙烧, 接着在 350〜450°C条件下用氟化氢气体氟 化制得无铬气相氟化催化剂。
4、 根据权利要求 1所述的无铬气相氟化催化剂, 其特征在于:
所述含铁元素的化合物为铁的卤氧化物、 铁的金属盐化合物, 铁的氧化 物、 铁的氢氧化物、 含铁元素的有机盐或含铁元素的配合物;
所述含稀土金属元素的化合物为稀土金属元素的金属盐化合物, 稀土金 属元素的氧化物、 稀土金属元素的氢氧化物、 含稀土金属元素的有机盐或含 稀土金属元素的稀土复盐;
所述含 A的化合物为 A元素的卤氧化物、 A元素的金属盐化合物, A元 素的氧化物、含 A元素的氢氧化物、含 A元素的有机盐或含 A元素的配合物。
5、 根据权利要求 1至 4任一权利要求所述的无铬气相氟化催化剂, 其特 征在于, 所述铁元素为三价铁, 且三价铁的晶型为 α、 β、 7或5。
6、 根据权利要求 1至 4任一权利要求所述的无铬气相氟化催化剂, 其特 征在于, 所述含稀土金属元素的化合物为一种含稀土金属元素的化合物或两 种以上含稀土金属元素化合物的组合物, 其中稀土金属元素选自 Sc、 Y、 Ce、 La、 Nd、 Pr、 Pm、 Sm、 Eu、 Gd、 Tb、 Yb、 Ho、 Dy、 Er、 Tm、 Yb和 Lu中 的一种。
7、 权利要求 1所述的无铬气相氟化催化剂用于以卤代烃为原料制备氢氟 烯烃或氢氟氯烯烃的应用。
8、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气相 氟化催化剂存在下, 氟化氢与 1,1,2,3-四氯丙烯、 2,3,3,3-四氯丙烯、 1,1,1,2,2- 五氯丙烷或 1,1, 1,2,3-五氯丙烷, 气相氟化合成 2-氯 -3,3,3-三氟丙烯。
9、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气 相氟化催化剂存在下, 1,1,1,3,3-五氯丙烷与氟化氢气相氟化合成 1-氯 -3,3,3- 三氟丙烯。
10、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气 相氟化催化剂存在下, 1,1,1,3-四氯丙烷与氟化氢气相氟化合成 3,3,3-三氟丙 烯。
11、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气 相氟化催化剂存在下, 1-氯 -3,3,3-三氟丙烯与氟化氢气相氟化合成 1,3,3,3-四氟 丙烯。
12、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气 相氟化催化剂存在下, 2-氯 -3,3,3-三氟丙烯与氟化氢气相氟化合成 2-氯 -1,1, 1,2- 四氟丙烷。
13、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气 相氟化催化剂存在下, 1,1, 1,3,3-五氟丙烷脱氟化氢合成 E-1,3,3,3-四氟丙烯。
14、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气 相氟化催化剂存在下, 1,1, 1,2,3,3-六氟丙烷脱氟化氢合成 1,1,1,2,3-五氟丙烯。
15、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气 相氟化催化剂存在下, 1,1,1,2,3-五氟丙烷或 1,1,1,2,2-五氟丙烷脱氟化氢合成 2,3,3,3-四氟丙烯。
16、根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气相 氟化催化剂存在下, 3-氯 -1,1,1,3-四氟丙烷脱氯化氢合成 1,3,3,3-四氟丙烯。
17、 根据权利要求 7所述的应用, 其特征在于, 该应用是在所述无铬气 相氟化催化剂存在下, 2-氯 -1,1,1,2-四氟丙烷脱氯化氢合成 2,3,3,3-四氟丙烯。
PCT/CN2014/083679 2013-12-12 2014-08-05 一种无铬气相氟化催化剂及其应用 WO2015085781A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/103,803 US9845274B2 (en) 2013-12-12 2014-08-05 Chromium-free catalyst for gas-phase fluorination and application thereof
US15/806,138 US10087125B2 (en) 2013-12-12 2017-11-07 Chromium-free catalyst for gas-phase fluorination and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310680436.5A CN104707631A (zh) 2013-12-12 2013-12-12 一种无铬气相氟化催化剂及其应用
CN201310680436.5 2013-12-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/103,803 A-371-Of-International US9845274B2 (en) 2013-12-12 2014-08-05 Chromium-free catalyst for gas-phase fluorination and application thereof
US15/806,138 Division US10087125B2 (en) 2013-12-12 2017-11-07 Chromium-free catalyst for gas-phase fluorination and application thereof

Publications (1)

Publication Number Publication Date
WO2015085781A1 true WO2015085781A1 (zh) 2015-06-18

Family

ID=53370590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083679 WO2015085781A1 (zh) 2013-12-12 2014-08-05 一种无铬气相氟化催化剂及其应用

Country Status (3)

Country Link
US (2) US9845274B2 (zh)
CN (1) CN104707631A (zh)
WO (1) WO2015085781A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107126954B8 (zh) * 2017-04-18 2020-05-05 北京宇极科技发展有限公司 浸渍法制备钼基和钨基氟-氯交换催化剂
WO2020051417A2 (en) * 2018-09-07 2020-03-12 The Chemours Company Fc, Llc Fluorine removal from antimony fluorohalide catalyst using chlorocarbons
CN109718813B (zh) * 2018-12-17 2022-02-22 西安近代化学研究所 气相氟化合成3,3,3-三氟丙烯用无铬环保催化剂
CN111054402B (zh) * 2020-02-18 2022-11-11 浙江工业大学 一种TiOF2催化剂及其制备方法和应用
CN111408388B (zh) * 2020-03-13 2022-12-02 浙江工业大学 一种层状多金属氟化物催化剂的制备方法及其应用
CN111604093B (zh) * 2020-06-16 2023-01-24 中国民航大学 一种铝单原子催化剂的制备方法及其应用
CN114247445B (zh) * 2021-11-26 2024-03-29 西安近代化学研究所 一种氟化复合催化剂、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231519A (en) * 1961-07-25 1966-01-25 Union Carbide Corp Catalyst composition consisting essentially of the oxides of iron, rare earth and zirconium
US3322692A (en) * 1963-08-30 1967-05-30 Union Carbide Corp Catalyst composition consisting of the oxides of cobalt, iron and rare earth
CN1078172A (zh) * 1992-02-26 1993-11-10 帝国化学工业公司 氟化催化剂和氟化方法
CN101028991A (zh) * 2007-04-11 2007-09-05 西安近代化学研究所 二氟甲烷的制备方法
CN101913986A (zh) * 2010-09-07 2010-12-15 西安近代化学研究所 气相氟化制备2-氯-3,3,3-三氟丙烯的方法
CN101961658A (zh) * 2010-09-07 2011-02-02 西安近代化学研究所 氟化钙基氟化催化剂及其用途
CN102527414A (zh) * 2011-12-28 2012-07-04 临海市利民化工有限公司 一种制备二氟甲烷或二氟一氯甲烷的氟化催化剂及制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2069149C (en) 1991-05-24 2002-09-03 Takashi Shibanuma Fluorination catalyst and process for fluorinating halogenated hydrocarbon
EP0629440B1 (en) 1993-06-18 1998-01-14 Showa Denko Kabushiki Kaisha Fluorination catalyst and fluorination process
WO1995011875A1 (en) 1993-10-28 1995-05-04 Alliedsignal Inc. Process for purifying 1,1-dichloro-2,2,2-trifluoroethane and 1-chloro-1,2,2,2-tetrafluoroethane
CN1169620C (zh) 2001-09-26 2004-10-06 西安金珠近代化工有限责任公司 高活性长效氟化催化剂及其制造方法
JP4257424B2 (ja) 2004-03-09 2009-04-22 独立行政法人産業技術総合研究所 フッ素化反応用触媒

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231519A (en) * 1961-07-25 1966-01-25 Union Carbide Corp Catalyst composition consisting essentially of the oxides of iron, rare earth and zirconium
US3322692A (en) * 1963-08-30 1967-05-30 Union Carbide Corp Catalyst composition consisting of the oxides of cobalt, iron and rare earth
CN1078172A (zh) * 1992-02-26 1993-11-10 帝国化学工业公司 氟化催化剂和氟化方法
CN101028991A (zh) * 2007-04-11 2007-09-05 西安近代化学研究所 二氟甲烷的制备方法
CN101913986A (zh) * 2010-09-07 2010-12-15 西安近代化学研究所 气相氟化制备2-氯-3,3,3-三氟丙烯的方法
CN101961658A (zh) * 2010-09-07 2011-02-02 西安近代化学研究所 氟化钙基氟化催化剂及其用途
CN102527414A (zh) * 2011-12-28 2012-07-04 临海市利民化工有限公司 一种制备二氟甲烷或二氟一氯甲烷的氟化催化剂及制备方法和应用

Also Published As

Publication number Publication date
US20160311736A1 (en) 2016-10-27
US10087125B2 (en) 2018-10-02
CN104707631A (zh) 2015-06-17
US20180057431A1 (en) 2018-03-01
US9845274B2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
US10087125B2 (en) Chromium-free catalyst for gas-phase fluorination and application thereof
ES2740848T3 (es) Fluoración catalítica en fase gaseosa
ES2708131T3 (es) Fluoración catalizada en fase gaseosa
JP7336849B2 (ja) クロム触媒を用いた気相接触フッ素化
US10442743B2 (en) Process for the preparation of halogenated alkenes by dehydrohalogenation of halogenated alkanes
EP2846907B1 (en) Process for preparing a c3-c7 (hydro)fluoroalkene by dehydrohalogenation
WO2016078226A1 (zh) 氟化镁基催化剂及其用途
JP2019089803A (ja) 気相でのフッ素化方法
WO2020148540A2 (en) Method
CN106902808B (zh) 高活性钨基催化剂、制备方法及用途
CN101961658B (zh) 氟化钙基氟化催化剂及其用途
CN104707633A (zh) 一种无铬氟化催化剂的制备方法和用途
JP2004209431A (ja) フッ素化触媒およびフルオロ化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15103803

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869690

Country of ref document: EP

Kind code of ref document: A1