WO2015083734A1 - ガラス板およびガラス板の製造方法 - Google Patents
ガラス板およびガラス板の製造方法 Download PDFInfo
- Publication number
- WO2015083734A1 WO2015083734A1 PCT/JP2014/081960 JP2014081960W WO2015083734A1 WO 2015083734 A1 WO2015083734 A1 WO 2015083734A1 JP 2014081960 W JP2014081960 W JP 2014081960W WO 2015083734 A1 WO2015083734 A1 WO 2015083734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass plate
- lower mold
- mold
- molding
- forming
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/02—Re-forming glass sheets
- C03B23/023—Re-forming glass sheets by bending
- C03B23/03—Re-forming glass sheets by bending by press-bending between shaping moulds
- C03B23/0305—Press-bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/02—Re-forming glass sheets
- C03B23/023—Re-forming glass sheets by bending
- C03B23/03—Re-forming glass sheets by bending by press-bending between shaping moulds
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B35/00—Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
- C03B35/14—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
- C03B35/16—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
- C03B35/166—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors specially adapted for both flat and bent sheets or ribbons
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B35/00—Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
- C03B35/14—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
- C03B35/20—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by gripping tongs or supporting frames
- C03B35/202—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by gripping tongs or supporting frames by supporting frames
Definitions
- the present invention relates to a glass plate and a method for producing the glass plate.
- Patent Document 1 discloses a molding apparatus having an outer mold formed in a frame shape and an inner mold disposed inside the outer mold. According to this molding apparatus, the heated glass plate is first supported by the inner mold, and the first press molding is performed. Thereafter, after the glass plate is transferred from the inner mold to the outer mold, the second press molding is performed. This prevents wrinkles and cracks from occurring on the glass plate.
- a peripheral part when the temperature of a peripheral part falls, a peripheral part will solidify rather than a center part, and there exists a possibility that a wrinkle may arise around the boundary of a peripheral part and a central part at the time of shaping
- the present invention has been made to solve the above problems, and provides a method for producing a glass plate that can prevent wrinkling and cracking when the glass plate is formed into a curved surface. Objective.
- the method for producing a glass plate according to the present invention includes a carrying-in step of carrying a heated glass plate into a molding apparatus, and at least a part of a peripheral edge of at least one of the upper surface or the lower surface of the glass plate in an open state.
- the glass plate in the first forming step, is formed with the peripheral edge portion opened. Therefore, the force acting on the peripheral portion is reduced by molding, and for example, even if the temperature of the peripheral portion is lowered, it is possible to prevent distortion and cracking from occurring in the central portion. Further, after the first forming step, the region formed in the first forming step on the glass plate is separated from any forming mold, and then the glass plate is formed in the second forming step, so that the first forming step is completed. Thereafter, the glass plate is not subjected to stress from the outside until the second forming step. Therefore, the residual stress generated in the glass plate in the first forming step is released.
- the glass plate is separated from any of the molds, but does not prevent the glass plate from coming into contact with the outside so as not to receive stress from the outside.
- the manufacturing method according to the present invention is particularly advantageous for a thin glass plate.
- a thin glass plate has a small heat capacity and a high cooling rate.
- distortion for example, roll distortion, distortion caused by unevenness of the press mold surface, distortion due to residual stress after cooling. Is likely to occur. Therefore, it is difficult to increase the heating temperature.
- the present invention can prevent distortion and cracking even if the temperature of the peripheral edge is lowered as described above, a thin glass plate is formed without increasing the heating temperature. can do.
- the entire peripheral portion is formed in an open state, and in the second forming step, the entire peripheral portion can be formed.
- the molding apparatus can have various configurations.
- the molding apparatus includes a first molding die and a second forming die, and in the first molding step, The glass plate is formed by the first mold, and in the separating step, the glass plate and the first mold are released from contact, and then the glass plate is placed in the second mold.
- the glass plate can be formed by the second forming die.
- the molding apparatus can be configured as follows. That is, the molding apparatus has an upper mold and a lower mold that can move up and down. In the first molding step, the glass plate is molded by the upper mold and the lower mold, and in the separation step, the lower mold is formed. By moving downward, at least the region formed in the first forming step in the glass plate is separated from both the upper mold and the lower mold, and in the second forming step, at least the periphery of the glass plate A region including a portion can be formed by the upper mold and the lower mold moved downward.
- the thickness of the glass plate can be 3.0 mm or less.
- the method for manufacturing a glass plate may further include a step of heating the glass with a heating furnace prior to loading the glass plate into the forming apparatus.
- a molding apparatus can be arranged in the heating furnace.
- the first mold includes a first lower mold
- the second mold includes a second lower mold
- in the first molding step the glass
- the glass In a state where the plate is supported by the first lower mold, molding is performed, and in the contact release step, after the contact between the glass plate and the first lower mold is released, the glass plate is moved to the first mold.
- molding can be performed in a state where the glass plate is supported by the second lower mold.
- the first and second lower molds can be variously configured, for example, as follows. That is, the second lower mold is formed in a frame shape, and the first lower mold is configured to be movable up and down so as to pass through the frame of the second lower mold.
- the glass plate is formed in a state where the first lower mold is disposed above the second lower mold, and in the contact releasing step, the first lower mold is formed. After releasing the contact between the glass plate and the first lower mold by moving the lower mold downward, the glass plate is dropped onto the second lower mold, and in the second molding step, The glass plate can be formed in a state where the first lower mold is disposed below the second lower mold.
- the transition of the glass plate from the first lower mold to the second lower mold is shortened. Can be done in time. Therefore, the glass plate forming time can be shortened. As a result, the glass plate can be formed before the glass plate is greatly cooled, which is advantageous for forming a thin glass plate.
- the first mold and the second mold include a common upper mold that can move up and down, and in the first molding step, the glass sheet is combined with the upper mold and the mold. In the second molding step, the glass plate can be molded with the upper mold and the second lower mold.
- the first mold and the second mold include the common upper mold that can move up and down, and in the first molding step, between the first lower mold and the upper mold. After performing the first molding, the upper mold can be further lowered to perform the second molding with the second lower mold. In this way, by using a common upper mold and lowering it in two stages, it is possible to perform molding twice, so that the molding time can be shortened.
- the temperature of the peripheral edge of the glass plate in the first forming step, can be formed at 600 to 700 ° C.
- the manufacturing method of the glass plate which concerns on this invention carries out the said glass plate in the state which carried out the carrying-in step which carries in the heated glass plate in a shaping
- a second forming step for forming at least a region including the peripheral edge of the glass with the second forming mold, and a carrying-out step for carrying out the glass plate that has undergone the second forming step from the forming apparatus. ing.
- the glass plate in the first molding, the glass plate is molded with the peripheral edge portion opened. Therefore, the force acting on the peripheral portion is reduced by the molding, and for example, even if the temperature of the peripheral portion is lowered, it is possible to prevent a crack from occurring with the central portion. Further, after the first molding, after the contact between the glass plate and the first molding die is released, the glass plate is arranged from the first molding die to the second molding die to be arranged in the second molding die. In the meantime, the glass plate is not subjected to external stress. Therefore, the residual stress generated in the glass plate in the first molding is released. As a result, it is possible to prevent the glass plate from being wrinkled or cracked in the subsequent second molding.
- the glass plate according to the present invention is formed into a curved surface, has a thickness of 1.0 to 3.0 mm, and changes in plane residual stress from the peripheral edge toward the central portion over almost the entire circumference of the glass plate.
- the planar residual stress is a compressive stress at the periphery, and changes to a tensile stress toward the central portion.
- a plurality of local maximum points are provided in the planar residual stress distribution indicating the tensile stress. Have.
- a plurality of maximum points of the tensile stress may indicate a greater tensile stress as it is closer to the peripheral edge.
- FIG. 4 is a front view of FIG. 3.
- FIG. 4 is a side view of FIG. 3.
- molding apparatus It is a front view which shows operation
- FIG. 1 is a plan view showing a part of a glass plate production line according to the present embodiment
- FIG. 2 is a side view of FIG.
- the upstream side of the production line may be referred to as “rear” and the downstream side may be referred to as “front” or “front”.
- directions perpendicular to the traveling direction of the production line may be referred to as “left-right direction” and “side”.
- molding apparatus 2, and the cooling device 4 are arrange
- the roller conveyor 3 is arrange
- the glass plate G used as a process target is conveyed by this roller conveyor 3.
- the thickness of the glass plate G used here after molding is preferably 0.7 to 6.0 mm, and more preferably 1.0 to 3.0 mm, from the viewpoint of weight reduction. Further, 1.0 to 2.3 mm is preferable.
- the molding device 2 and the cooling device 4 are arranged separately, but the molding device 2 may have a cooling function as is well known.
- the measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used.
- SM-112 manufactured by Teclock Co., Ltd.
- Teclock Co., Ltd. Teclock Co., Ltd.
- it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate G is sandwiched by the above thickness gauge for measurement.
- the glass plate G is flat, it can measure similarly to the case where it is curving.
- the heating furnace 1 can have various configurations, for example, an electric heating furnace.
- This electric heating furnace is provided with a rectangular tube-shaped furnace main body whose upstream and downstream ends are opened, and a roller conveyor 3 is disposed in the interior from upstream to downstream.
- Heaters (not shown) are respectively arranged on the upper surface, the lower surface, and the pair of side surfaces of the inner wall surface of the furnace body, and the temperature at which the glass plate G passing through the heating furnace 1 can be formed, for example, 600 to 700 ° C. Heat to.
- the molding apparatus 2 includes one upper mold 20 and two lower molds, that is, a first lower mold 21 and a second lower mold 22.
- the upper mold 20 has a downwardly convex curved shape that covers the entire upper surface of the glass plate G, and is configured to be movable up and down.
- a heater (not shown) is built in the surface of the upper die 21 so that heat is generated, and the glass plate G can be heated.
- the second lower mold 22 is formed in a frame shape corresponding to the peripheral edge of the glass plate G, and the upper surface thereof has a curved surface shape corresponding to the upper mold 20.
- the glass plate G is press-molded between the upper mold 20 and the second lower mold 22 and formed into a final curved surface shape.
- the first lower mold 21 is configured by a pair of support members 211 arranged in the left-right direction and extending in the front-rear direction, and these support members 211 pass through the frame of the second lower mold 22. It is supported so that it can move up and down.
- the pair of support members 211 are arranged so as to support both side portions of the glass plate G from below, and the upper surface of the pair of support members 211 protrudes downward from the front and rear portions as shown in FIG. Is so curved.
- the curvature radius is generally larger than the curvature of the lower surface of the glass sheet G formed by the second lower mold 22.
- a roller conveyor 31 is disposed between the support members 211, and the roller conveyor 31 can be moved up and down so as to pass through the frame of the first lower mold 21.
- the cooling device 4 described above is disposed downstream of the molding device 2.
- the cooling device 4 includes an upper device 41 and a lower device 42 arranged in the vertical direction with the roller conveyor 3 interposed therebetween.
- the upper apparatus 41 and the lower apparatus 42 are respectively the nozzle boxes 411 and 421 in which the some nozzle 40 opened toward the roller conveyor 3 was formed, and the air blower 412 which each supplies air to each nozzle box 411 and 421. 422.
- the flat glass plate G heated through the heating furnace 1 is carried into the forming apparatus 2.
- the first lower mold 21 rises from the frame of the second lower mold 22, and the first lower mold 21 is higher than the second lower mold 22.
- the first lower mold 21 can be disposed above the second lower mold 22 by, for example, 0 to 20 mm at the end of the mold.
- the roller conveyor 31 is located above the first lower mold 21 and is disposed at substantially the same height as the roller conveyor 3 extending from the heating furnace 1 to the molding apparatus 2. Furthermore, the upper mold
- the first lower mold 21 descends as shown in FIG.
- the lowering speed of the first lower mold 21 at this time is set faster than the free falling speed of the glass sheet G. Therefore, the glass plate G cannot follow the lowering of the first lower mold 21, and when the first lower mold 21 is lowered, the contact state between the glass plate G and the first lower mold 21 is released. Thereafter, as shown in FIGS. 10 and 11, the glass plate G is separated from the upper mold 20 by its own weight and falls to the second lower mold 22. Subsequently, as shown in FIG. 12, the upper mold 20 is lowered from the position where the first molding is performed, and the glass plate G is pressed between the upper mold 20 and the second lower mold 22 for a predetermined time. . That is, the second molding is performed.
- the roller conveyor 31 is raised and the glass plate G is supported as shown in FIG. Thereafter, the glass plate G is unloaded from the molding device 2 by the roller conveyor 31 and is conveyed to the cooling device 4.
- the blowers 412 and 422 are driven, and air is blown from the upper device 41 and the lower device 42 toward the glass plate G to be cooled.
- the formation of the glass plate G is completed.
- the glass plate G is molded in a state where the peripheral edge of the glass plate G is opened. Therefore, the force acting on the peripheral portion is reduced by the molding, and for example, even if the temperature of the peripheral portion is lowered, it is possible to prevent a crack from occurring with the central portion. And after 1st shaping
- the glass plate G is pressed by the upper die 20 and the first lower die 21 and is not in contact with either the upper die 20 or the first lower die 21, as shown in FIG.
- the upper die 20 and the second lower die 22 are pressed. Accordingly, when the contact is released, the glass plate G is not subjected to any stress, and the residual stress received by the first molding is released. As a result, the glass plate G is prevented from cracking in the subsequent second molding.
- FIG. 14 is a graph showing the planar residual stress distribution of the glass plate, where the horizontal axis indicates the distance in the direction from the periphery of the glass plate toward the center, and the vertical axis indicates the stress. However, the stress shows that compression is negative and tension is positive.
- graph 1 shows a planar residual stress distribution of a conventional glass plate formed using the upper mold 20 and the second lower mold 22 without using the first lower mold 21.
- the graph 2 shows the planar residual stress distribution of the glass plate formed using the above forming apparatus.
- the plane residual stress of the glass plate shows compression at the periphery of the glass plate, and changes so as to turn to tension as it goes from the periphery toward the center. And when it changes from compression to tension, it has a maximum point 1 of tensile stress, from which the tensile stress decreases and approaches zero.
- the glass plate molded by the molding apparatus is molded by using the two lower molds 21 and 22, so that the first lower mold 21 is in contact with the glass sheet.
- Two maximum points of stress (maximum points 2-1 (C) and 2-2 (E)) exist in the vicinity of the region where the second lower mold 22 is in contact.
- Such a planar residual stress distribution is considered to be formed by superimposing the residual stress distribution of molding by the first lower mold 21 and the residual stress distribution of molding by the second lower mold 22. Therefore, the tensile stress (maximum point 2-1) corresponding to the second lower mold 22 in the graph 2 is smaller than the tensile stress (maximum point 1) corresponding to the second lower mold 22 in the graph 1. Therefore, it can be said that the strength of the glass plate is stronger in the glass plate shown in graph 2, that is, in the glass plate formed by the forming apparatus according to the above embodiment than in the glass plate shown in graph 1.
- the glass plate as shown in the graph 2 has, for example, coordinates in the graph 2 of A (0, ⁇ 20), B (10, 0), C (20, 8), D (30, 3), E (40, 6), F (100, 0).
- the tensile stress at the maximum point is lower than when using a single lower mold. Yes. Therefore, when three or more lower molds are used, the number of maximum points may be more than two as described above. In graph 2, the tensile stress at the maximum point is larger at the maximum point 2-1 than at the maximum point 2-2 in the above example, but this is not necessarily the case. The tensile stress at the maximum point on the center side may be larger than that on the edge side. Moreover, the above characteristics do not necessarily have to be shown in the entire circumference of the glass plate, and it is sufficient that the above characteristics are shown in approximately 90% or more of the entire circumference.
- the first lower mold 21 is configured by the pair of support members 211 extending in the front-rear direction.
- the first lower mold 21 is configured to open at least one peripheral edge of the upper surface or the lower surface of the glass plate G, 1
- the shape of the lower mold 21 is not particularly limited.
- a pair of support members extending in the left-right direction can be arranged on the upstream side and the downstream side.
- it may be formed in a frame shape. This frame is formed smaller than the outline of the glass plate G so as to open the peripheral edge of the glass plate G.
- the shape of the upper surface of the first lower mold 21 may not be the same as that of the second lower mold 22 and may be a curved shape that is looser than that of the second lower mold 22.
- type 21 is comprised so that the inside of the frame of the 2nd lower mold
- the glass plate G in the first molding, is press-molded by the upper mold 20 and the first lower mold 21, but the glass sheet G is arranged in the first lower mold 21 without using the upper mold 20. It can also be molded. That is, the glass plate G can be formed so as to be along the first lower mold 21 by its own weight.
- the upper mold 20 and the second lower mold 22 are molded.
- the heating furnace 1 is arranged on the upstream side of the molding apparatus 2, but the molding apparatus can also be arranged in the heating furnace 1.
- the cooling device 4 is provided on the downstream side of the molding device 2, but the position where the cooling device is provided is not particularly limited.
- the cooling device 4 is provided inside the molding device 2 and immediately after press molding, The plate G can also be cooled.
- a molding apparatus 500 shown in FIG. 15 includes an upper mold 51 and a lower mold 52.
- the lower surface of the upper mold 51 that is, the molding surface has a curved surface that is convex downward so as to cover the entire upper surface of the glass plate G.
- the upper die 51 is supported so as to be movable up and down so as to be close to and away from the lower die 52.
- the lower mold 52 is composed of three parts, that is, a central member 521 constituting a central portion, and a pair of side members 522 arranged on both sides of the central member 521, and these three parts are combined. Thus, it is formed in a frame shape.
- the central member 521 is formed in a downwardly convex concave shape, and the upper surface serving as a molding surface has a shape corresponding to the central portion of the upper mold 51.
- the central member 521 is supported so as to be movable up and down.
- each side member 522 is connected to the side portion of the central member 521 so as to be swingable in the vertical direction. is doing. In this example, the upper surface of each side member 522 is inclined upward so as to correspond to the side portion of the upper mold 51.
- the lower mold 52 is configured to be able to take two positions. That is, as shown in FIG. 15, the first position for press-molding the central portion of the glass plate G, and the second position for press-molding the entire glass plate G into the final shape as shown in FIG. And can be taken.
- the swing position of the side member 522 is determined so that the upper surface of each side member 522 does not contact the side portion of the upper mold 51.
- the central member 521 moves downward, and accordingly, the side member 522 swings upward, and the upper surface of the side member 522 faces the side portion of the upper mold 51.
- the upper surface of the lower mold 52 has a shape corresponding to the lower surface of the upper mold 51 by the transition of the central member 521 and the pair of side members 522.
- the lower mold 52 moves to the first position.
- the upper mold 51 is lowered and press molding is performed (first molding).
- the glass plate G is formed between the central portion of the upper mold 51 and the central member 521 of the lower mold 52. It is press-molded between. That is, the peripheral edge portion of the glass plate G is opened on the upper surface and the lower surface of the glass plate G, and only the central portion is formed.
- the central member 521 of the lower mold 52 is lowered about 0 to 20 mm.
- the side member 522 swings upward, and the lower mold 52 shifts to the second position.
- the lowering speed of the central member 521 is set to be faster than the free falling speed of the glass plate G. Therefore, the glass plate G cannot follow the lowering of the central member 521, and when the central member 521 descends, the contact state between the glass plate G and the central member 521 is released.
- FIGS. 18 and 19 the glass plate G is separated from the upper mold 51 by its own weight and falls to the lower mold 52. Subsequently, as shown in FIG.
- the upper mold 51 is lowered from the position where the first molding is performed, and the glass plate G is pressed between the upper mold 51 and the lower mold 52 for a predetermined time (second molding). ).
- second molding is thus completed, the glass plate G is cooled by the method described above, and the molding of the glass plate G is completed. Even in the molding apparatus as described above, the glass plate G is not subjected to stress between the first molding and the second molding as in the above-described embodiment, so that wrinkles and cracks of the glass plate G are prevented. can do.
- the lower mold 52 includes the central member 521 and the side members 522 arranged on both sides thereof, but a swingable side member 522 may be provided in front of and behind the central member 521.
- the glass plate having the characteristics shown in FIG. 14 can be formed also by this forming apparatus.
- the glass plate as shown in FIG. 14 can be molded by other than the above-described molding apparatus. That is, in a case where molding is performed by a mold at a plurality of locations in the direction from the peripheral edge to the center of the glass plate, a glass having a plurality of maximum points in the residual stress distribution as shown in FIG. A plate can be formed.
- such a glass plate can also be formed by the following forming apparatus.
- the glass plate is placed on a ring-shaped (frame-shaped) mold.
- This forming die is disposed on a transfer table, and the transfer table passes through a known heating furnace and slow cooling furnace with a glass plate placed on the forming die.
- the heating furnace is provided with a heater at least above and below the path of the transport table, and the glass plate is heated by this heater.
- this mold includes a frame-shaped mold body that substantially matches the outer shape of the glass plate. Since this type
- fever is provided in the inner periphery of a type
- a heat shield plate as described in JP-A-2005-343747 can be arranged above the glass plate to control the heat from above. it can. More specifically, the space above the glass plate is divided into a plurality of sections in the horizontal direction, and the plurality of heat shield plates are suspended from above so as to follow the boundaries of the sections. Thus, heat from the heater is applied to the glass plate only from above in the compartment, and for example, heat can be prevented from entering obliquely from outside the compartment into the compartment. Thereby, the heat
- the upper and lower heaters as described above can be appropriately combined.
- the glass plate passes through the heating furnace in a state where the peripheral portion is supported by the molding die as described above. And if it heats to softening point temperature vicinity in a heating furnace, an inner side will curve below a peripheral part by dead weight, and it will shape
- the glass plate which shows can be shape
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
図1及び図2に示すように、この製造ラインには、上流から下流へ、加熱炉1、成形装置2、及び冷却装置4がこの順で配置されている。そして、加熱炉1から成形装置2、冷却装置4及びその下流側に亘ってはローラコンベア3が配置されており、加工対象となるガラス板Gは、このローラコンベア3により搬送される。なお、ここで用いるガラス板Gの成形後の厚みは、軽量化の観点から、例えば、0.7~6.0mmであることが好ましく、1.0~3.0mmであることがさらに好ましい。さらに、1.0~2.3mmが好ましい。なお、本実施例では成形装置2と冷却装置4は別に配置されているが、公知のように成形装置2に冷却機能を持たせてもよい。
次に、上記のように構成された製造ラインによるガラスの成形加工処理について、図6~図12を参照しつつ説明する。まず、加熱炉1を通過して加熱された平板状のガラス板Gは、成形装置2に搬入される。このとき、成形装置2においては、図5及び図6に示すように、第2下型22の枠内から第1下型21が上昇し、第1下型21が第2下型22よりも上方に位置している。このとき、第1下型21は、例えば、型の端部で0~20mmだけ第2下型22よりも上方に配置することができる。これは、第1下型21の位置が高すぎると、後述するようにガラス板Gの落下の衝撃が大きくなり、低すぎると、第1下型21とガラス板Gとを完全に離間することができない可能性があることによる。また、ローラコンベア31が第1下型21よりも上方に位置しており、加熱炉1から成形装置2へ延びるローラコンベア3とほぼ同じ高さに配置されている。さらに、上型20は上昇しており、ローラコンベア31との間にガラス板Gが搬入できる隙間が形成されている。
以上のように、本実施形態によれば、第1成形において、ガラス板Gの周縁部を開放した状態でガラス板Gの成形を行っている。そのため、成形により周縁部に作用する力が緩和され、例えば、周縁部の温度が低下していたとしても中央部との間に割れが生じるのを防止することができる。そして、上型20と第1下型21とでガラス板Gに対して第1成形が行われた後、第1下型21が下降することにより、ガラス板Gと第1下型21との当接状態が解除される。このとき、第1下型21の下降に遅れてガラス板Gが落下することで、ガラス板Gと上型20との当接状態も解除され、その後、ガラス板Gは第2下型22に支持された状態で、上型20と第2下型22により第2成形が行われる。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。そして、以下に示す複数の変形例は適宜組合わせることが可能である。
上記実施形態では、第1下型21を前後方向に延びる一対の支持部材211により構成したが、ガラス板Gの上面または下面の少なくとも一方の周縁部を開放するように構成されていれば、第1下型21の形状は特には限定されない。例えば、左右方向に延びる一対の支持部材を、上流側及び下流側に配置することもできる。また、第2下型22と同様に、枠状に形成してもよい。この枠はガラス板Gの周縁部を開放するように、ガラス板Gの輪郭よりも小さく形成される。また、第1下型21の上面の形状は、湾曲の度合いが第2下型22と同じでなければよく、第2下型22よりも緩い湾曲形状であればよい。また、上記実施形態では、第1下型21が、第2下型22の枠内を上下動するように構成されているが、枠の外側を上下動するようにしてもよい。
上記実施形態では、第1成形において、ガラス板の周縁部全体を開放し、第2成形においては周縁部全体を成形型により成形しているが、これに限定されるものではない。例えば、第1成形においてガラス板の周縁部の一部のみを開放し、第2成形においては第1成形で開放した一部の周縁部を成形するようにすることもできる。
上記実施形態では、第1成形において、上型20と第1下型21とでガラス板Gをプレス成形しているが、上型20を用いず、ガラス板Gを第1下型21に配置することで成形することもできる。すなわち、ガラス板Gの自重で、ガラス板Gが第1下型21に沿うように成形することもできる。そして、第2成形において、上型20と第2下型22とで成形を行う。
上記実施形態では、加熱炉1を成形装置2の上流側に配置しているが、加熱炉1の中に成形装置を配置することもできる。
上記実施形態では、成形装置2の下流側に冷却装置4を設けているが、冷却装置を設ける位置は特には限定されず、例えば、成形装置2の内部に設け、プレス成形の直後に、ガラス板Gを冷却することもできる。
上記実施形態では、第1成形と第2成形において、上型は共通するものの、異なる下型を用いて成形を行っているが、図15~図20に示すように、共通の下型を使用することもできる。例えば、図15に示す成形装置500は、上型51と下型52とを備えている。上型51の下面、つまり成形面はガラス板Gの上面全体を覆うような下に凸の曲面形状を有している。また、上型51は下型52に対して近接離間するように、上下動可能に支持されている。一方、下型52は3つのパーツ、すなわち、中央部分を構成する中央部材521と、この中央部材521の両側にそれぞれ配置される一対の側部材522とで構成され、これら3つのパーツが組み合わされることで枠状に形成されている。中央部材521は、下に凸の凹状に形成されており、成形面となる上面が、上型51の中央部分と対応する形状を有している。そして、この中央部材521は、上下動可能に支持されている。一方、各側部材522は、中央部材521の側部において上下方向に揺動自在に連結されており、その上面である成形面は、上型51の成形面における側部と対応する形状を有している。この例では、各側部材522の上面は、上型51の側部に対応するように、上方に向かって傾斜している。
2 成形装置
20 上型
21 第1下型
22 第2下型
3 ローラコンベア
G ガラス板
Claims (12)
- 加熱したガラス板を成形装置に搬入する搬入ステップと、
前記ガラス板の上面または下面の少なくとも一方の少なくとも周縁部の一部を開放した状態で、当該ガラス板を成形する第1成形ステップと、
前記ガラス板において、少なくとも前記第1成形ステップで成形された領域をいずれの成形型からも離間する離間ステップと、
前記ガラス板の少なくとも周縁部の一部を含む領域を成形する第2成形ステップと、
前記第2成形ステップを経た前記ガラス板を、前記成形装置から搬出する搬出ステップと、
を備えている、ガラス板の製造方法。 - 前記第1成形ステップでは、前記周縁部全体を開放した状態で成形し、
前記第2成形ステップでは、前記周縁部全体を成形する、請求項1に記載のガラス板の製造方法。 - 前記成形装置は、第1の成形型及び第2の形成型を有し、
前記第1成形ステップでは、前記ガラス板を前記第1の成形型により成形し、
前記離間ステップでは、前記ガラス板と前記第1の成形型との当接を解除した後、当該ガラス板を第2の成形型に配置し、
前記第2成形ステップでは、前記ガラス板を、前記第2の成形型により成形する、
を備えている、請求項1または2に記載のガラス板の製造方法。 - 前記ガラス板の厚みが3.0mm以下である、請求項1から3のいずれかに記載のガラス板の製造方法。
- 前記成形装置に前記ガラス板を搬入するのに先立って、加熱炉により、前記ガラスを加熱するステップ、をさらに備えている、請求項1から4のいずれかに記載のガラス板の製造方法。
- 前記第1の成形型は、第1の下型を含み、
前記第2の成形型は、第2の下型を含み、
前記第1成形ステップでは、前記ガラス板を前記第1の下型で支持した状態で、成形を行い、
前記離間ステップでは、前記ガラス板と前記第1の下型との当接を解除した後、前記ガラス板を前記第2の下型に配置し、
前記第2成形ステップでは、前記ガラス板を前記第2の下型で支持した状態で、成形を行う、請求項3から5のいずれかに記載のガラス板の製造方法。 - 前記第2の下型は、枠状に形成され、
前記第1の下型は、前記第2の下型の枠内又は枠外を通過するように上下動可能に構成されており、
前記第1成形ステップでは、前記第1の下型が前記第2の下型よりも上方に配置された状態で、前記ガラス板を成形し、
前記離間ステップでは、前記第1の下型を下方に移動させることで、前記ガラス板と前記第1の下型との当接を解除した後、前記ガラス板を前記第2の下型へ落下させ、
前記第2成形ステップでは、前記第1の下型が前記第2の下型よりも下方に配置された状態で、前記ガラス板を成形する、請求項6に記載のガラス板の製造方法。 - 前記第1の成形型及び第2の成形型は、上下動可能な共通の上型を含み、
前記第1成形ステップでは、前記ガラス板を前記上型と前記第1の下型とで成形し、
前記第2成形ステップでは、前記ガラス板を前記上型と前記第2の下型とで成形する、請求項6または7に記載のガラス板の製造方法。 - 前記第1成形ステップでは、前記ガラス板の周縁部の温度を600~700℃で成形する、請求項1から8のいずれかに記載のガラス板の製造方法。
- 前記成形装置は、上下動可能な上型及び下型を有し、
前記第1成形ステップでは、前記ガラス板を前記上型及び下型により成形し、
前記離間ステップでは、前記下型を下方に移動させることで、前記ガラス板において少なくとも前記第1成形ステップで成形された領域が、前記上型及び下型のいずれからも離間し、
前記第2成形ステップでは、少なくとも前記ガラス板の周縁部を含む領域を、前記上型と、下方に移動した前記下型とで成形する、請求項1または2に記載のガラス板の製造方法。 - ガラス板であって、
曲面状に成形され、
1.0~3.0mmの厚みを有し、
当該ガラス板のほぼ全周に亘って、周縁から中央部に向かって変化する平面残留応力分布を有し、
前記平面残留応力は、前記周縁において圧縮応力であり、前記中央部に向かうにつれて、引張応力に変化し、
前記引張応力を示す前記平面残留応力分布においては、複数の極大点を有している、ガラス板。 - 前記引張応力の複数の極大点は、前記周縁に近いほど、大きい引張応力を示す、請求項11に記載のガラス板。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14867300.7A EP3078642B1 (en) | 2013-12-03 | 2014-12-03 | Glass plate and method for producing glass plate |
JP2015551536A JP6476131B2 (ja) | 2013-12-03 | 2014-12-03 | ガラス板およびガラス板の製造方法 |
US15/101,233 US20160304384A1 (en) | 2013-12-03 | 2014-12-03 | Glass plate and method for producing glass plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013250666 | 2013-12-03 | ||
JP2013-250666 | 2013-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015083734A1 true WO2015083734A1 (ja) | 2015-06-11 |
Family
ID=53273496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081960 WO2015083734A1 (ja) | 2013-12-03 | 2014-12-03 | ガラス板およびガラス板の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160304384A1 (ja) |
EP (1) | EP3078642B1 (ja) |
JP (1) | JP6476131B2 (ja) |
WO (1) | WO2015083734A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020521711A (ja) * | 2017-06-01 | 2020-07-27 | ピルキントン グループ リミテッド | ガラスシートを成形するための方法および装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115432946B (zh) * | 2022-08-30 | 2024-06-07 | 维达力实业(深圳)有限公司 | Ag效果微晶玻璃制备模具、微晶玻璃及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0452014B2 (ja) | 1985-10-11 | 1992-08-20 | Nippon Electric Co | |
JPH1160256A (ja) * | 1997-06-16 | 1999-03-02 | Ppg Ind Inc | 板ガラスを成形する装置と方法 |
JP2003335533A (ja) * | 2002-05-22 | 2003-11-25 | Asahi Glass Co Ltd | ガラス板の曲げ成形方法および装置 |
JP2005343747A (ja) | 2004-06-03 | 2005-12-15 | Nippon Sheet Glass Co Ltd | 板ガラスの曲げ加工方法及び板ガラスの曲げ加工装置 |
WO2011096447A1 (ja) * | 2010-02-03 | 2011-08-11 | 旭硝子株式会社 | ガラス板及びガラス板の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1120726A (en) * | 1978-05-01 | 1982-03-30 | Harold A. Mcmaster | Apparatus and method for bending glass |
JPS6345138A (ja) * | 1986-08-08 | 1988-02-26 | Asahi Glass Co Ltd | ガラス板の曲げ加工方法 |
DE4215285C1 (ja) * | 1992-05-09 | 1993-08-19 | Vegla Vereinigte Glaswerke Gmbh, 5100 Aachen, De | |
JP3414205B2 (ja) * | 1997-06-27 | 2003-06-09 | 日本板硝子株式会社 | 合わせガラス |
EP1238839A4 (en) * | 1999-12-14 | 2005-04-27 | Asahi Glass Co Ltd | TRANSPARENT DISC WITH A MOLDING STRIP AND METHOD FOR REMOVING THE TRANSPARENT DISC |
CN1275886C (zh) * | 2002-03-13 | 2006-09-20 | 旭硝子株式会社 | 玻璃板的弯曲成形方法及装置 |
DE10314267B3 (de) * | 2003-03-29 | 2004-08-19 | Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg | Verfahren und Vorrichtung zum Biegen von Glasscheiben |
FR2855168B1 (fr) * | 2003-05-19 | 2007-03-30 | Saint Gobain | Bombage de vitrages par gravite sur une multiplicite de supports |
US7437892B2 (en) * | 2004-04-21 | 2008-10-21 | Ppg Industries Ohio, Inc. | Apparatus having vacuum applying facilities and method of using vacuum to bend and/or shape one or more sheets |
JP4807515B2 (ja) * | 2004-06-29 | 2011-11-02 | 旭硝子株式会社 | 合わせガラスの製造方法及び製造装置 |
US9206067B2 (en) * | 2013-03-12 | 2015-12-08 | Glasstech, Inc. | Glass sheet support structure |
-
2014
- 2014-12-03 JP JP2015551536A patent/JP6476131B2/ja active Active
- 2014-12-03 EP EP14867300.7A patent/EP3078642B1/en active Active
- 2014-12-03 US US15/101,233 patent/US20160304384A1/en not_active Abandoned
- 2014-12-03 WO PCT/JP2014/081960 patent/WO2015083734A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0452014B2 (ja) | 1985-10-11 | 1992-08-20 | Nippon Electric Co | |
JPH1160256A (ja) * | 1997-06-16 | 1999-03-02 | Ppg Ind Inc | 板ガラスを成形する装置と方法 |
JP2003335533A (ja) * | 2002-05-22 | 2003-11-25 | Asahi Glass Co Ltd | ガラス板の曲げ成形方法および装置 |
JP2005343747A (ja) | 2004-06-03 | 2005-12-15 | Nippon Sheet Glass Co Ltd | 板ガラスの曲げ加工方法及び板ガラスの曲げ加工装置 |
WO2011096447A1 (ja) * | 2010-02-03 | 2011-08-11 | 旭硝子株式会社 | ガラス板及びガラス板の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020521711A (ja) * | 2017-06-01 | 2020-07-27 | ピルキントン グループ リミテッド | ガラスシートを成形するための方法および装置 |
JP7227927B2 (ja) | 2017-06-01 | 2023-02-22 | ピルキントン グループ リミテッド | ガラスシートを成形するための方法および装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015083734A1 (ja) | 2017-03-16 |
US20160304384A1 (en) | 2016-10-20 |
EP3078642B1 (en) | 2020-08-19 |
EP3078642A1 (en) | 2016-10-12 |
EP3078642A4 (en) | 2017-06-21 |
JP6476131B2 (ja) | 2019-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5641254B2 (ja) | ガラス板の徐冷方法及びその装置 | |
JP5641255B2 (ja) | ガラス板及びガラス板の製造方法 | |
JP4972561B2 (ja) | ガラスの曲げおよび冷却方法、ならびに2つの支持具列を含む装置 | |
JP6079789B2 (ja) | 強化ガラスの製造方法及び製造装置 | |
JP6638656B2 (ja) | 合わせガラスの製造方法 | |
JP5766813B2 (ja) | 窓板を曲げる方法および装置 | |
JP6451320B2 (ja) | 板ガラスの成形方法 | |
JPH03131539A (ja) | 曲げ成型用プレス型とガラス板の曲げ成型方法及びその装置 | |
EA032544B1 (ru) | Инструмент для процесса моллирования стекла | |
JP6476131B2 (ja) | ガラス板およびガラス板の製造方法 | |
CN106795032A (zh) | 过压辅助的重力弯曲方法和适合用于该方法的装置 | |
JP2014094563A (ja) | 真空断熱材芯材の成形方法(methodformoldingcoreofvacuuminsulationpanel) | |
JPH04119931A (ja) | ガラス板の曲げ成形方法 | |
TWI406826B (zh) | 立體玻璃殼體的製造方法 | |
WO2015129605A1 (ja) | ガラス板の徐冷方法及びガラス板 | |
JP2006521273A (ja) | ガラス板を屈曲させるための方法および装置 | |
KR20180100310A (ko) | 유리 시트 몰드 장치 및 방법 | |
CN109071304B (zh) | 用于使玻璃盘片压弯的装置和方法 | |
JP6622545B2 (ja) | ガラス成形装置及びガラス成形方法 | |
JP6313049B2 (ja) | 窓ガラス及びその製造方法 | |
TWI613159B (zh) | 模造立體玻璃連續成型裝置之氣密腔斷熱層 | |
JP2014105121A (ja) | ガラス曲げ成形装置及びガラス曲げ成形方法 | |
JP2011136882A (ja) | 光学素子の成形装置 | |
TWI613160B (zh) | 氣密式模造立體玻璃連續成型裝置 | |
JP2014091671A (ja) | ガラス曲げ成形方法及びガラス曲げ成形装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14867300 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015551536 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15101233 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014867300 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014867300 Country of ref document: EP |