WO2015129605A1 - ガラス板の徐冷方法及びガラス板 - Google Patents

ガラス板の徐冷方法及びガラス板 Download PDF

Info

Publication number
WO2015129605A1
WO2015129605A1 PCT/JP2015/054963 JP2015054963W WO2015129605A1 WO 2015129605 A1 WO2015129605 A1 WO 2015129605A1 JP 2015054963 W JP2015054963 W JP 2015054963W WO 2015129605 A1 WO2015129605 A1 WO 2015129605A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
region
cooling
blowing
temperature
Prior art date
Application number
PCT/JP2015/054963
Other languages
English (en)
French (fr)
Inventor
岳大 石田
雅士 笠嶋
欣靖 森田
大塚 剛史
依田 和成
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015129605A1 publication Critical patent/WO2015129605A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/044Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position
    • C03B27/048Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position on a gas cushion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • C03B25/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/22Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal
    • C03B35/24Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for slowly cooling a glass plate and a glass plate, and more particularly to a method for slowly cooling a glass plate constituting a laminated glass and a glass plate.
  • Laminated glass is a laminated glass in which two glass plates are joined to each other with a plastic interlayer made of PVB (polyvinyl butyral) or the like, and is also used as a door glass in addition to a car windshield. .
  • This kind of laminated glass is manufactured in a curved shape according to the demands of the body line and design of an automobile.
  • a flat glass plate is placed on a molding die having a bending molding surface corresponding to a desired curved surface, and in this state, the molding die is placed in a heating furnace.
  • the glass plate is heated to near the glass softening temperature in a heating furnace.
  • molding method since a glass plate curves along the bending shaping
  • a method is also known in which a heated glass plate is pressed and pressed from above by a pressing means in a state of being placed on a mold.
  • Laminated glass for vehicles is fixed by being fitted into the frame of the vehicle.
  • a plane compression stress (hereinafter referred to as the edge of the glass plate in this specification) is applied to the edge of the glass plate.
  • the plane compressive stress formed in the above is referred to as edge compression, and hereinafter referred to as E / C).
  • E / C is defined as follows.
  • E / C is obtained when the compressive stress becomes larger.
  • a region immediately inside the region adjacent to the E / C region is a plane tensile stress whose internal tensile stress has been increased so as to balance the E / C.
  • the formed plane tensile stress is referred to as inner tension, which will be hereinafter referred to as I / T). That is, an I / T is formed along the edge just inside the edge so as to balance E / C.
  • This I / T has a peak in the peripheral region within a range of about 50 mm from the outer peripheral edge of the glass plate toward the inner surface of the glass plate.
  • I / T means that the surface compressive stress layer in the cross-sectional direction of the glass plate at that portion is thin, so that the peripheral region is a portion that is more easily damaged than an edge or in-plane.
  • the conventional laminated glass covered the edge and peripheral area of the glass plate with a resin molding or the like, there was no problem even if a certain large I / T was formed.
  • the flush mount method that is, a method in which laminated glass is attached so that the vehicle body surface and the glass surface are substantially flush with each other
  • the peripheral region is exposed to the outside of the vehicle. There is a need to reduce T.
  • Patent Document 1 As an example in which such a small I / T can be formed, the technique described in Patent Document 1 is known.
  • a glass plate is slowly cooled by bending a molded glass plate placed on a ring-shaped mold at a high temperature above the strain point by using a push-up member and separating the glass sheet from the mold.
  • the region including at least the position where the push-up member abuts when pushing up the glass plate is a region separated by 50 mm or more inward from the edge of the glass plate, and the push-up A method of gradually cooling a glass plate is disclosed, wherein the glass plate is pushed up by the push-up member after the temperature of the region to be cooled is lower than the strain point earlier than the edge of the glass plate.
  • laminated glass for vehicles in addition to the small I / T in the peripheral area, in the glass surface, it is hard to break strongly in stepping stones etc. in normal times, but it breaks at the time of abnormalities such as people colliding. It is also required to achieve both strength and safety, such as absorbing impact.
  • This invention is made
  • a glass plate having a small I / T and having both strength and safety is provided.
  • a pre-blow-up step for cooling the glass plate in a state of being placed on a ring-shaped mold The glass plate is blown up by a blowing device provided below the glass plate and provided with blowing means for jetting gas toward the glass plate, and is gradually cooled while being separated from the mold, and A blow-up holding step of gradually cooling the glass plate while holding it in contact with a contact member provided above the glass plate with a space therebetween, with the glass plate spaced apart from the mold,
  • the glass plate includes a peripheral region less than 50 mm inward from the outer peripheral edge of the glass plate, and a predetermined region facing the ejection means in a plan view separated from the outer peripheral edge of the glass plate by 50 mm or more inward.
  • the temperature of the predetermined region is cooled to a slow cooling point or less
  • the temperature of the predetermined region is higher than the strain point and lower than the annealing point
  • the temperature of the peripheral region is higher than the strain point and starts to eject the gas from the ejection means. Blow up the glass plate
  • the blowing-up holding step holds the state where the glass plate is blown up by the pressure of the gas.
  • a method of slowly cooling a glass plate and an apparatus therefor in which the I / T formed on the glass plate is reduced and the productivity is high.
  • FIG. 1 is a drawing of a manufacturing apparatus for a glass sheet for laminated glass provided with a glass sheet slow cooling apparatus in one aspect of the present embodiment, (A) is a side view showing an outline of the side surface, and (B) is the side view thereof. It is the top view which showed the outline of the plane.
  • the glass sheet manufacturing apparatus 103 for laminated glass includes a heating furnace 101 that heats and forms the sheet glass g, and a slow cooling zone 102 that is provided in the subsequent stage of the heating furnace 101 and includes the slow cooling apparatus of the present embodiment. .
  • the heating furnace 101 heats and flat-forms the flat plate glass g before bending.
  • the heating furnace 101 includes a carriage 105 and a ring-shaped mold 104 having a desired curved surface placed on the carriage 105, and the inside of the heating furnace 101 is formed with a desired curved surface by a heater (not shown). Is heated to a temperature (580 ° C. to 700 ° C.) for forming the glass plate G having
  • the mold 104 and the carriage 105 are made of a heat-resistant material that can withstand the glass plate forming temperature of the heating furnace 101.
  • the cart 105 moves in the heating furnace 101 by an arbitrary transfer device (not shown).
  • the slow cooling zone 102 slowly cools the glass plate G that has been bent so as to have a desired curved surface.
  • the slow cooling zone 102 refers to a space surrounded by a wall surface provided outside the heating furnace, but is not limited to this embodiment, for example, an open space that is not surrounded by a wall surface. But it ’s okay.
  • the slow cooling zone 102 is a cooling device 106 that gradually cools the glass plate G in a state where the glass plate G is placed on the molding die 104 in addition to a transport device that transports the molding die 104 on which the glass plate G is placed.
  • a slow cooling device having a blow-up device 107 that blows out the gas to separate the glass plate G from the mold 104 and blows it up and a contact member 108 that comes into contact with the blown-up glass plate G.
  • the cooling device 106 includes an upper cooling device 106A provided above the glass plate G and a lower cooling device 106B provided below the glass plate (hereinafter, when the upper cooling device 106A and the lower cooling device 106B are not distinguished from each other). , Simply referred to as a cooling device 106), and a cooling means for blowing a cooling gas toward the glass plate G.
  • the cooling means of the cooling device 106 is configured to have a duct (blow hole) that blows and cools the cooling gas supplied from a blower (not shown) that is a cooling gas supply device to the glass plate G.
  • cooling gas in the present specification, air, an inert gas, or the like can be suitably used.
  • the temperature and dew point of the cooling gas may be controlled, and the cooling gas may contain a cooling medium other than gas (for example, a mist-like liquid or powder).
  • blowing refers to sending a cooling gas from the cooling device 106 toward the glass plate G.
  • the cooling device 106 is configured to blow the cooling gas from the cooling means toward the glass plate G, but is not limited thereto.
  • the cooling device 106 may be configured to include other cooling means such as cooling by radiation or cooling by contacting a solid.
  • an aspect in which both the upper cooling device 106A and the lower cooling device 106B are provided up and down is shown, but both are not essential, and an aspect in which only one of them is provided may be used.
  • the blow-up device 107 is provided below the glass plate G, and includes jetting means for jetting gas toward the glass plate G.
  • the jetting unit of the blowing device 107 has a configuration having a duct (blowout port) that jets gas supplied from a blower (not shown) that is a gas supply device toward the glass plate G.
  • a blower not shown
  • gas in this specification, air, an inert gas, or the like can be suitably used.
  • the temperature and dew point of the gas may be controlled, and a cooling medium other than gas (for example, a mist-like liquid or powder) may be included.
  • “spout” refers to sending gas from the blowing device 107 toward the glass plate.
  • the ejection means is provided so as to face a part of a region separated from the outer peripheral edge of the glass plate G by 50 mm or more on the surface inner side in a state where the glass plate G is placed on the mold 104.
  • the ejection means is provided in a region 130 mm or more away from the outer peripheral edge of the glass plate G inwardly, more preferably in a region 150 mm or more away from the outer peripheral edge of the glass plate G inwardly.
  • I / T formed in the glass plate G can be made small.
  • the maximum value of I / T is preferably 10.5 MPa or less, more preferably 8 MPa or less, and even more preferably 5 MPa or less.
  • the lower cooling device 106B also serves as the blowing device 107, which sprays or blows the same gas (cooling gas) on the glass plate G.
  • the blowing device 107 which sprays or blows the same gas (cooling gas) on the glass plate G.
  • the lower cooling device 106B and the blowing device 107 are combined, if the gas pressure is set to a value at which the glass plate G does not blow up, the lower cooling device 106B works and the gas pressure is set to a value at which the glass plate G blows up. Then, it works as a blowing device 107.
  • the gas pressure is adjusted by adjusting the output (flow velocity, flow rate, etc.) of the blower by an arbitrary control device.
  • the configurations of the lower cooling device 106B and the blowing device 107 are not limited to this embodiment. Even in a configuration that serves as both the lower cooling device 106B and the blowing device 107, the same gas may not be used.
  • the temperature-controlled cooling gas may be used when working as the lower cooling device 106
  • the temperature-controlled gas may be used when working as the blowing device 107.
  • the lower cooling device 106B and the blowing device 107 may be independent devices.
  • the abutting member 108 is provided above the glass plate G with a space therebetween, and abuts on the glass plate G blown up by the blowing device 107 by gas pressure.
  • the contact member 108 only needs to have a configuration that can control the glass plate G that has been blown up.
  • the contact member 108 is configured to provide two bars above the glass plate with a space therebetween.
  • the contact member 108 is preferably provided from the ceiling of the slow cooling zone 102, but may be provided integrally with the mold 104 or the carriage 105 as necessary.
  • the temperature of the region in contact with the contact member 108 of the glass plate G is lower than the strain point until the glass plate G is blown up by the blowing device 107 and contacts the contact member 108. It can be configured. Such a configuration can be controlled by the arrangement position of the contact member 108, the speed at which the blowing device 107 blows up the glass plate G, and the like.
  • the abutting member 108 is configured so that the glass plate G is in contact with the abutting member 108 after the glass plate G is blown up by the blowing device 107 according to the speed at which the blowing device 107 blows up the glass plate G.
  • the blowing device 107 is configured such that after the glass plate G is blown up and before the glass plate G contacts the contact member 108, the temperature of the region in contact with the contact member 108 of the glass plate G is lower than the strain point. It is possible to control the force and speed at which the glass plate G is blown up so that the glass plate G is kept in contact with the contact member 108 after the glass plate G has been blown up for a sufficient time. With such a configuration, the slow cooling conditions of the present embodiment can shorten the time to complete the slow cooling as compared with the conventional case, and can prevent the glass plate G from being distorted.
  • the glass plate G immediately after carrying in to the slow cooling zone 102 is divided into the following areas.
  • A indicates the outer peripheral edge of the glass plate G, that is, the edge of the outer edge of the glass plate G
  • the alternate long and short dash line B is a line connecting the inner 10 mm portion from the outer peripheral edge A of the glass plate G.
  • a region G1 surrounded by the outer peripheral end A and the alternate long and short dash line B indicates the edge of the glass plate G.
  • the edge G1 has a certain width along the periphery of the glass plate and is an area where E / C is formed. This is a portion that protrudes out of the plane of the mold 104 in plan view, and is a portion where E / C is formed because of its high heat dissipation effect during cooling.
  • the alternate long and short dash line B is a line connecting a portion 10 mm inside from the outer peripheral end A of the glass plate G, but is not limited thereto.
  • a line connecting any part of 5 mm to 25 mm from the outer peripheral edge A of the glass plate G may be used.
  • it may be 0 mm from the outer peripheral end A, that is, when there is no portion protruding in the out-of-plane direction from the mold 104 in plan view.
  • the edge G1 shall be formed in the outer peripheral end A (namely, end surface) and the extreme surface layer of an end surface.
  • a broken line C is a line connecting the inner 50 m portion from the outer peripheral edge A of the glass plate G, and a region G2 connected by the alternate long and short dash line B and the broken line C indicates a peripheral region.
  • the peripheral region G2 is adjacent to the inner peripheral side of the edge, has a predetermined width, and is formed with an I / T.
  • the peripheral region G2 is a region where an I / T peak (maximum value) is formed, and refers to a portion placed on the mold 104 in plan view and a slightly inner surface thereof.
  • an in-plane region G3 surrounded by a broken line C and occupying the inner peripheral side of the peripheral region G2 is a cooling region G4 surrounded by a dotted line D and a blown up region G5 surrounded by a two-dot chain line E (claimed) Corresponding to the “predetermined region” in the term.
  • the in-plane region G3 is not easily broken by a stepping stone or the like in normal times, but is required to break and absorb an impact when an abnormality occurs such as a person colliding.
  • This characteristic may be the entire in-plane region G3 or only the cooling region G4 and / or the blown-up region G5 included in the in-plane region G3. Even in the latter case, the effect of the present application that strength and safety are compatible in that portion can be obtained.
  • the cooling region G4 is a region where the cooling means of the cooling device 106 and the glass plate G face each other.
  • the cooling region G4 is preferably provided so as not to overlap with the peripheral region G2, and is preferentially cooled by the cooling device 106.
  • the cooling region G4 is desirably a region including the center of gravity of the glass plate G.
  • the shape of the cooling region G4 is shown as a circle as the shape of the cooling unit facing the duct, but is not limited to the present embodiment, and may take various forms depending on the shape of the cooling unit. .
  • the blown up region G5 is a region where the blowing means of the blowing device 107 faces. For example, when viewed in a cross-sectional view as shown in FIG. 3, it is a region facing a duct that is a jetting unit of the blowing device 107, for example, a region surrounded by a contour line on the inner periphery of the duct.
  • the region G5 to be blown up is provided so as not to overlap with the peripheral region G2 and is formed in the cooling region G4. Further, it is preferable that the glass plate G is provided in a region 130 mm or more away from the outer peripheral end A of the glass plate G, more preferably in a region 150 mm or more away from the outer peripheral end A of the glass plate G. With such a configuration, the I / T can be sufficiently reduced.
  • the region G5 to be blown up is simply illustrated as the region surrounded by the outline of the inner periphery of the duct, but when the distance between the blowing device 107 and the glass plate G is long, the region G5 was ejected from the duct. It is good also as the area
  • the region G5 to be blown up is desirably a region including the center of gravity of the glass plate G in order to blow up the glass plate G suitably and to make it blown up. Further, as shown in FIG. 4, when the blowing device 107 includes a plurality of blowing means and there are a plurality of blown up regions G5, all of the plurality of blown up regions G5 are provided so as not to overlap with the peripheral region G2. It is desirable to form the region G4.
  • the center of gravity of the glass plate G is disposed so as to be surrounded by the plurality of regions G5 to be blown up in order to suitably blow up the glass plate G. Is desirable.
  • the region G5 blown up is a circular shape of ⁇ 700 mm, but may be an ellipse, a polygon, or a similar shape of the glass plate G according to the shape of the glass plate G.
  • the distance from any side of the edge G1 of the glass plate G to the blown up region G5 can be increased, and preferential cooling of the blown up region G5 described later. It is suitable for.
  • the region G5 to be blown up has a length ⁇ width of 300 mm ⁇ 300 mm or more and 800 mm ⁇ 1200 mm or less, and is versatile and stable.
  • the glass plate G is blown up.
  • the area is 400 mm ⁇ 400 mm or more, more preferably 500 mm ⁇ 500 mm or more, an area for supporting the glass plate for blowing up can be secured sufficiently, and a wide area can be blown up as the area G5 so that an in-plane area is obtained. It is desirable because surface compressive stress can be formed in a wider area.
  • the cooling region G4 and the blown up region G5 indicate the same region.
  • the glass plate G is heated to the vicinity of the softening point in the heating furnace 101 and formed.
  • a flat plate glass g before bending is placed on a ring-shaped forming die 104 having a desired curved surface placed on a carriage 105 and carried into the heating furnace 101 by an arbitrary conveying means.
  • the flat sheet glass g before bending is heated by a heater (not shown) to the vicinity of the softening point (580 ° C. to 700 ° C.) while passing through the heating furnace 101.
  • the heated glass sheet g curves along the shape of the shaping
  • the flat plate glass g is formed into a glass plate G having a desired curved surface.
  • the bending method of the sheet glass g is not limited to the above-described bending molding by its own weight, and various known forming methods such as press-molding the sheet glass g with a molding mold can be applied.
  • press molding is performed with a molding mold
  • the glass plate G is then transferred to the ring-shaped molding die 104 and conveyed.
  • the mold 104 does not pass through the heating furnace 101 and may only reciprocate between the position of the mold and the slow cooling zone 102.
  • the glass sheet G bent by the heating furnace 101 is carried into the slow cooling zone 102 from the heating furnace 101 by the conveying means together with the forming die 104 in a high temperature state. At this time, it is desirable that the glass plate G is preferably heated to an annealing point + 32 ° C. (582 ° C.) or higher.
  • the glass plate G is carried into the slow cooling zone 102, so that the outer peripheral edge A and the edge G1 of the glass plate G are cooled earlier than the peripheral region G2.
  • the temperature of the outer peripheral edge A is the temperature of the end surface portion of the glass plate G
  • the temperature of the outer peripheral edge A is the temperature of the portion 10 mm inward from the outer peripheral edge A.
  • Such temperature control can be formed by preferentially cooling the outer peripheral edge A by moving the glass plate G from the heating furnace 101 to the slow cooling zone 102, for example.
  • E / C can be obtained by forming a predetermined temperature difference while the outer peripheral end A and the inner 10 mm from the outer peripheral end A are cooled to the annealing point.
  • the temperature of the region G5 blown up by the cooling device 106 with the glass plate G carried into the slow cooling zone 102 from the heating furnace 101 placed on the forming die 104 is set at a strain point (510 ° C. )
  • the region G5 to be blown up is preferentially cooled so that the temperature is higher and lower than the annealing point (550 ° C.) and the temperature of the peripheral region G2 is equal to or higher than the strain point (in this embodiment, the region is blown up with the cooling region G4). Since it is the same as the region G5, the following description will be made assuming that the region G5 blown up by the cooling device 106 is cooled).
  • the temperature of the blown-up region G5 is the annealing point ⁇ 20 ° C. (530 ° C.) or more and the annealing point or less, more preferably the annealing point ⁇ 10 ° C. (540 ° C.) or more and the annealing or less and the temperature of the peripheral region G2. It is desirable to cool so that the temperature becomes a strain point or higher.
  • the cooling rate in the step before blowing up the temperature of the region G5 blown up by the cooling device 106 is 7 ° C./sec or more and 50 ° C./sec or less, preferably 10 ° C./sec or more and 40 ° C./sec or less, The temperature is preferably 15 ° C./sec or more and 35 ° C./sec or less.
  • the time from the start of cooling using the cooling device 106 to the blowing up is 1.4 seconds or more and 16 seconds or less, more preferably 1.7.
  • the time may be from 2 seconds to 11 seconds, more preferably from 2.0 seconds to 7.4 seconds.
  • cooling refers to cooling without positive cooling.
  • the surface of the region G5 blown up of the glass plate G is 5 MPa or more and 35 MPa or less, more preferably 7 MPa or more and 30 MPa or less, Preferably, a surface compressive stress of 10 MPa or more and 30 MPa or less can be formed. Accordingly, it is possible to obtain a glass plate that is not easily broken by a stepping stone or the like in normal times but can be broken in an abnormal situation such as a person colliding.
  • the temperature of the blown up region G5 is higher than the strain point and lower than the annealing point.
  • the temperature of the peripheral region G2 is preferably as high as possible above the strain point, and the I / T can be further reduced.
  • the cooling means that cools the glass plate G by blowing the cooling gas according to the present embodiment the cooling speed of the blown region G5 is high, while the cooling gas collides with the region G5 where the glass plate G is blown up. After that, the glass plate G extends in the out-of-plane direction, and the peripheral region G2 and the edge G1 may be cooled.
  • the inventors have found a condition that the I / T can be sufficiently reduced even when the peripheral region G2 and the edge G1 are cooled together with the region G5 to be blown up. Specifically, when the temperature of the blown up region G5 is higher than the strain point and lower than the annealing point, cooling may be performed so that the temperature of the peripheral region G2 becomes higher than the strain point. This could be realized by the configuration of the cooling device 106 as described above and the positional relationship with the glass plate G. If such a condition can be realized, the blown up region G5 may be cooled, and the peripheral region G2 and the edge G1 may be cooled.
  • the blown up region G5 is preferentially cooled over the peripheral region G2 and the edge G1.
  • the cooling rate of the peripheral region G2 slower than the region G5 that can be blown up, the temperature of the peripheral region G2 can be kept high, sufficient stress relaxation can be expected, and I / T can be reduced.
  • a blowing apparatus in which the glass plate G in which the region G5 blown up by the pre-blowing step is higher than the strain point and lower than the annealing point and the peripheral region G2 is higher than the strain point is provided below the glass plate G. Blow up by 107.
  • gas ejection is started from the ejection means of the blowing device 107 toward the region G5 where the glass plate G is blown up, and the glass plate G is pressed by the pressure of the gas. Is gradually cooled while being separated from the mold 104.
  • the lower cooling device 106B is switched to the blowing device 107 by adjusting the output of the blower. Further, when the blowing device 107 is blowing up the glass plate G, it is desirable that the upper cooling device 106A is stopped.
  • the temperature of the blown up region G5 is the annealing point ⁇ 20 ° C. or more and the annealing point or less
  • the temperature of the peripheral region G2 is the strain point or more, more preferably the annealing point ⁇ 10 ° C. or more and the annealing or less. It is desirable to start gas ejection in a state where the temperature of the peripheral region G2 is equal to or higher than the strain point.
  • region G5 where the glass plate G is blown up is higher than the natural cooling and radiation cooling in a general slow cooling zone.
  • Surface compressive stress can be formed.
  • the surface of the blown up region G5 is 5 MPa or more and 35 MPa or less, more preferably 7 MPa or more and 30 MPa or less, and further preferably 10 MPa or more and 30 MPa. It is desirable that the following surface compressive stress be formed.
  • the blowing process is effective for obtaining a high E / C.
  • a high E / C when the temperature of the outer peripheral edge A is a strain point, a state where the temperature of the outer peripheral edge A is lower by, for example, 8 ° C. than the temperature of the portion 10 mm inside the outer peripheral edge A is formed. desirable. More preferably, when the outer peripheral end A is a slow cooling point, it is desirable to form a state in which the outer peripheral end A is lower than the portion 10 mm inside the outer peripheral end A by 8 ° C. or more, for example.
  • the temperature of the outer peripheral edge A is between the strain point and ⁇ 10 ° C.
  • a state where the temperature of the outer peripheral edge A is 8 ° C. or more lower than the temperature of the inner 10 mm portion of the outer peripheral edge A can be maintained for several seconds to several tens of seconds, and a desired stress distribution can be formed.
  • the glass sheet G is blown up, so that it becomes easy to make a temperature difference between the outer peripheral edge A and the inner 10 mm portion of the outer peripheral edge A at the strain point.
  • Higher E / C can be obtained.
  • the temperature difference between the outer peripheral edge A and the inner 10 mm portion of the outer peripheral edge A tends to occur at the moment when the glass sheet enters the slow cooling zone 102, and the glass sheet G is blown up.
  • the temperature difference between the outer peripheral edge A and the portion 10 mm inside the outer peripheral edge A is already 8 ° C. or higher. In that case, it is necessary to maintain the temperature difference between the outer peripheral edge A and the portion 10 mm inside the outer peripheral edge A up to the strain point by blowing up. If it is not blown up, the temperature of the mold 104 is unlikely to decrease, so the temperature of the outer peripheral end A located in the vicinity of the mold 104 or in contact with the mold 104 is also difficult to decrease. The temperature difference becomes smaller.
  • the temperature of the mold 104 is higher than that of the glass plate G. Low.
  • the inner 10 mm portion of the outer peripheral end A is cooled quickly by the mold 104, and a temperature difference of 30 ° C. or more from the outer peripheral end A may be attached.
  • a temperature difference is formed on the inner side than the inner 10 mm of the outer peripheral end A.
  • the temperature difference is, for example, 30 ° C. or less, more preferably 25 ° C. or less.
  • the state where the temperature difference between the outer peripheral end A and the outer peripheral end A 10 mm is 8 ° C. or higher and 30 ° C. (25 ° C.) or lower may be achieved in any of the pre-blow-up step, the blow-up step, and the blow-up holding step. .
  • blowing-up holding process the gas is continuously blown out from the blowing means of the blowing device 107, the glass plate G blown up by the blowing-up process is brought into contact with the contact member 108 by the gas pressure, and the glass plate G The blown-up state is maintained and cooled slowly for a predetermined time.
  • FIG. 5 shows a schematic side view of the glass plate from the pre-blow-up process to the blow-up holding process
  • FIG. 6 shows an example of the positional relationship between the blowing device 107, the glass plate G, and the contact member 108 in the blowing-up holding process. It is a perspective view.
  • the glass plate G is maintained in the state where the glass plate G is blown up by pressing the glass plate G against the contact member 108 from below with the gas pressure.
  • this embodiment shows a mode in which gas is continuously ejected from the ejection means, the present invention is not limited to this.
  • the gas may be intermittently ejected as long as sufficient pressure is obtained to bring the blown glass plate G into contact with the contact member 108.
  • the glass plate G is gradually cooled by the blowing and holding process until the temperature of the peripheral region G2 of the glass plate G becomes equal to or lower than the strain point ⁇ 10 ° C. determined by the values of E / C and I / T. Is stopped, and a glass plate is placed on the mold 104.
  • the cooling rate of the glass plate G in the blowing and holding step is 5 ° C./sec or more and 30 ° C./sec or less, preferably 7 ° C./sec or more and 20 ° C./sec or less.
  • the glass plate G is blown up by the blowing device 107 and then 0.3 seconds or more and 10.0 seconds or less, preferably 0.5 seconds or more and 7.2 seconds.
  • the gas ejection can be stopped as follows.
  • the surface of the region G5 blown up by the glass sheet G is generally cooled slowly. Higher surface compressive stress can be formed than cooling in the zone or radiation cooling.
  • the glass plate G is then taken out of the slow cooling zone 102 and allowed to cool. By passing through a slow cooling process, the flat plate glass G is manufactured to the curved glass plate G for laminated glasses.
  • the glass plate G to be manufactured by the laminated glass glass plate manufacturing apparatus 103 is described as an example of an automotive windshield having a single plate thickness of 1.5 mm to 3.5 mm. It is not limited to the windshield. That is, the glass plate G may be a bent glass plate having a curvature in a plurality of directions and having a large curvature, such as a windshield, or a bent glass having a curvature in only one direction and a small curvature. May be.
  • the glass plate and the slow cooling method of the present invention may be applied to both of the two glass plates constituting the laminated glass, or may be applied to only one of them. Even when applied to only one of them, there is an effect of improving productivity and achieving both strength and safety.
  • one glass plate G is placed on the ring-shaped mold 104 and heated and bent by the weight of the glass plate G, but the two glass plates G are stacked. It may be placed on the mold 104 and heated to bend the glass plate G by its own weight.
  • Various conditions in the case where the two glass plates G are placed on the mold 104 and heated and bent by the self weight of the glass plate are the same as in the case of the single glass plate G described above. Various conditions can be employed.
  • the temperature of the blown region G5 is higher than the strain point and lower than the annealing point, and the upper glass plate G.
  • the temperature of the region G5 where the glass plate G is blown up is gradually higher than the strain point before the glass plate G is blown up. It is not necessary to cool until the temperature of the upper peripheral area G2 is equal to or lower than the cold spot and the temperature of the upper peripheral area G2 is equal to or higher than the strain point.
  • a glass plate having a thickness of 2 mm is placed on the forming die 104 so as to support the peripheral region of the glass plate G through a release agent, and a heating furnace 101 was passed and bent by its own weight.
  • the molded glass plate G was carried into the slow cooling zone 102, and the region G ⁇ b> 5 where the glass plate G was blown up was cooled by the cooling device 106 as shown in FIG. 2.
  • the region G5 where the glass plate G was blown up was blown up, and the glass plate G was separated from the mold 104 and gradually cooled.
  • the glass plate G was brought into contact with the contact member by continuing to blow out the gas from the blowing means of the blowing device 107, and the glass plate G was kept blown up and cooled gradually for a predetermined time. Thereafter, the glass plate was taken out of the slow cooling zone 102 and allowed to cool.
  • the area G5 to be blown up was an area 200 mm away from the outer peripheral end A inward of the surface, and the blowing device 107 having an elliptical duct of 500 mm ⁇ 800 mm in length ⁇ width as a jetting means was used.
  • the glass plate G used in this example was soda lime glass, and had a softening point (molding temperature) of 620 ° C., an annealing point of 550 ° C., and a strain point of 510 ° C. Further, in this example, the atmospheric temperature in the slow cooling zone 102 was about 400 ° C., and the cooling rate of the region G5 blown up during the cooling in the slow cooling zone 102 was 6 ° C./sec.
  • Table 1 shows the slow cooling conditions and the maximum value of I / T for each of Examples 1 to 4.
  • the center temperature during blowing indicates the temperature of the central portion of the region G5 where the glass G is blown up when the blowing device 107 is operated.
  • the cooling time is after the cooling is started using the cooling device 106 so that the temperature of the region G5 where the glass sheet G heated to near the softening point is blown up is higher than the strain point and lower than the annealing point. Indicates the time to blow up.
  • the cooling rate indicates a rate of cooling the region G5 where the cooling device 106 is blown up in the pre-blow-up process. In Examples 1 to 4, the temperature of the peripheral region G2 when blowing up was all above the strain point.
  • the surface compressive stress of the region G5 blown up was 10 to 30 MPa.
  • FIG. 7 also shows the center temperature and time when the glass sheet G is gradually cooled by the slow cooling method in one embodiment of the present application and when the glass sheet G is gradually cooled under conventional slow cooling conditions as a comparative example. Shows the relationship.
  • the center temperature is the temperature of the center portion of the blown up region G5, and the temperature of the surface of the glass plate was measured.
  • the preparation procedure of the sample glass plate G, the size of the area G5 to be blown up, the type of the blowing device 107 and the glass plate to be used are the same as those in Examples 1 to 4 in Table 1, and the cooling rate is 17 ° C. / sec.
  • the slow cooling conditions in the comparative example were the slow cooling conditions when the glass sheet G was slowly cooled by the slow cooling method disclosed in JP 2011-096446 A which was cited as the prior art.
  • the slow cooling conditions of the present embodiment can shorten the time to complete the slow cooling compared to the conventional case, and the productivity is improved.
  • the glass plate G can be separated from the mold 104 and gradually cooled, and the glass plate This can be achieved by preferentially cooling a region 50 mm or more away from the outer peripheral edge of G to the inner surface.
  • the preparation procedure of the sample glass plate G, the size of the area G5 to be blown up, the type of the blowing device 107 and the glass plate to be used are the same as in Examples 1 to 4 in Table 1, and the cooling rate is 28 ° C. / sec.
  • the temperature of the region G5 where the glass plate G is blown up in a short time (about 3 to 5 seconds from the start of cooling) by cooling by the cooling device 106 is higher than the strain point and lower than the annealing point, and the glass plate G. It has been found that the temperature of the peripheral region G2 of the above becomes the state of the strain point or higher.
  • the present invention relates to a method for producing a glass plate having high productivity, no distortion in the glass plate surface and having a small I / T, and a glass plate having a low I / T and having both strength and safety.
  • the production method and glass plate of the present invention are optimal as a glass plate used when producing laminated glass, and are useful as laminated glass for automobiles and other vehicles.

Abstract

 ガラス板の徐冷方法は、曲げ成形され、軟化点付近の高温のガラス板をリング状の成形型に載置させた状態で冷却する吹上前工程と、前記ガラス板を、前記ガラス板の下方に設けられ、前記ガラス板に向けて気体を噴出する噴出手段を備える吹上装置によって吹き上げて、前記成形型から離間させながら徐冷する吹上工程と、前記ガラス板を前記成形型から離間させた状態を、前記ガラス板の上方に空間を隔てて設けられた当接部材に当接させることで保持しながら徐冷する吹上保持工程と、を備え、前記吹上前工程は、前記噴出手段と対向する所定の領域の温度を徐冷点以下まで冷却し、前記吹上工程は、前記所定の領域の温度が歪点より高く徐冷点以下、かつ周縁領域の温度が歪点以上で前記噴出手段から前記気体の噴出を開始し、前記気体の圧力によって前記ガラス板を吹き上げ、前記吹上保持工程は、前記気体の圧力によって前記ガラス板が吹き上げられた状態を保持する。

Description

ガラス板の徐冷方法及びガラス板
 本発明はガラス板の徐冷方法及びガラス板に係り、特に合わせガラスを構成するガラス板の徐冷方法及びガラス板に関する。
 合わせガラスは、2枚のガラス板をPVB(ポリビニルブチラール)製等のプラスチック中間膜を介在させて相互に接合させた積層ガラスであり、自動車のフロントガラスの他、ドアガラスとしても利用されている。この種の合わせガラスは、自動車のボディラインやデザイン状の要請によって、湾曲状に製造されている。
 合わせガラスに使用されるガラス板の曲げ成形方法としては、所望の湾曲面に対応する曲げ成形面を有する成形型に、平面状のガラス板を載置し、この状態で成形型を加熱炉内に搬入し、加熱炉内でガラス板をガラス軟化温度付近まで加熱する方法がある。この成形方法によれば、ガラス板は、軟化に伴い自重によって成形型の曲げ成形面に沿って湾曲するため、所望の湾曲面を有するガラス板に製造される。また、他の曲げ成形方法として、加熱したガラス板を成形型に載置した状態で上方よりプレス手段によって押圧して曲げ成形する方法も知られている。
 車両用の合わせガラスは、車両のフレームに嵌め込まれて固定されるが、この際に合わせガラスが破損しないように、ガラス板のエッジには平面圧縮応力(以下、本明細書においてガラス板のエッジに形成された平面圧縮応力をエッジコンプレッションといい、以下、E/Cと記す)が形成されている。残留応力が形成されたガラス板には、ガラス板の断面方向において表面に表面圧縮応力、内部に内部引張応力がそれぞれ形成される。E/Cは以下のように定義される。ガラス板のガラスエッジでの断面方向の圧縮応力と引張応力の積分値において、圧縮応力の方が大きくなった場合にE/Cとなる。E/Cの領域に隣接するすぐ内側の領域は、E/Cとバランスをとるように内部引張応力の方が大きくなった平面引張応力(以下、本明細書においてガラス板のエッジのすぐ内側に形成された平面引張応力をインナーテンションといい、以下、I/Tと記す)の領域となる。つまり、E/Cとバランスをとるようにエッジのすぐ内側にはエッジに沿ってI/Tが形成される。このI/Tは、ガラス板の外周端からガラス板の面内側に向かって約50mmの範囲内の周縁領域にピークがある。E/Cが大きければ、当然にI/Tも大きい。I/Tが大きいということは、その部分のガラス板の断面方向の表面圧縮応力層が薄いことを意味しているため、周縁領域は、エッジや面内に比べると破損しやすい部分となる。
 従来の合わせガラスは、樹脂製のモールなどで、ガラス板のエッジ及び周縁領域を被覆していたため、ある程度大きなI/Tが形成されていても問題はなかった。しかしながら、自動車のデザインとして求められているフラッシュマウント方式(すなわち、車体面とガラス面とがほぼ面一となるようにして合わせガラスを取り付ける方式)では、周縁領域が車外に露出するため、I/Tを小さくすることが求められている。
 このように小さいI/Tを形成できる例として、特許文献1に記載の技術が知られている。特許文献1では、曲げ成形されリング状の成形型に載置された、歪点以上の高温のガラス板を、突き上げ部材により突き上げて前記成形型から離間させて徐冷するガラス板の徐冷方法において、少なくとも前記突き上げ部材が前記ガラス板を突き上げるときに当接する位置を含む領域(以下「突き上げられる領域」という)は、前記ガラス板のエッジから面内側に50mm以上離れた領域であり、前記突き上げられる領域の温度を前記ガラス板のエッジより早く歪点より低い温度まで冷却した後に、前記突き上げ部材により前記ガラス板を突き上げることを特徴とするガラス板の徐冷方法が開示されている。
特表2011-096446号公報
 しかしながら、特許文献1の徐冷方法では、突き上げ部材によってガラス板に歪が生じることを防ぐため及びエッジに高いE/Cを形成するために、突き上げられる領域の温度をエッジより早く歪点より低い温度まで冷却した後に突き上げなければならなかった。すなわち、突き上げられる領域の温度が歪点以上のときには、突き上げ部材との接触によって歪が生じてしまうため、突き上げることができなかった。そのため、突き上げられる領域を冷却する充分な時間が必要であり、生産性が低いという問題があった。
 ところで、車両用合わせガラスとしては、周縁領域のI/Tが小さいということに加えて、ガラス面内においては、平常時には飛び石などに強く割れにくいが、人が衝突するなどの異常時には割れることで衝撃を吸収するといった、強度と安全性を両立することも求められている。
 本発明は、このような事情に鑑みてなされたもので、ガラス板に形成されるI/Tを小さくし、かつ生産性が高いガラス板の徐冷方法及びガラス板を提供することを目的とする。
 また、本発明の別の目的として、I/Tが小さく、かつ強度と安全性を両立したガラス板を提供する。
 一つの形態によれば、曲げ成形され、軟化点付近の高温のガラス板の徐冷方法において、
 前記ガラス板をリング状の成形型に載置させた状態で冷却する吹上前工程と、
 前記ガラス板を、前記ガラス板の下方に設けられ、前記ガラス板に向けて気体を噴出する噴出手段を備える吹上装置によって吹き上げて、前記成形型から離間させながら徐冷する吹上工程と、
 前記ガラス板を前記成形型から離間させた状態を、前記ガラス板の上方に空間を隔てて設けられた当接部材に当接させることで保持しながら徐冷する吹上保持工程と、
を備え、
 前記ガラス板は、前記ガラス板の外周端から面内側50mm未満の周縁領域と、前記ガラス板の外周端から面内側に50mm以上離れた平面視で前記噴出手段と対向する所定の領域と、を有し、
 前記吹上前工程は、前記所定の領域の温度を徐冷点以下まで冷却し、
 前記吹上工程は、前記所定の領域の温度が歪点より高く徐冷点以下、かつ前記周縁領域の温度が歪点以上で前記噴出手段から前記気体の噴出を開始し、前記気体の圧力によって前記ガラス板を吹き上げ、
 前記吹上保持工程は、前記気体の圧力によって前記ガラス板が吹き上げられた状態を保持することを特徴とする。
 本発明によれば、ガラス板に形成されるI/Tを小さくし、かつ生産性が高いガラス板の徐冷方法及びその装置を提供する。
本実施形態におけるガラス板徐冷装置を備えた合わせガラス用ガラス板の製造装置図面である。 本実施形態におけるガラス板の領域分けを示す平面図である。 本実施形態におけるガラス板の吹き上げられる領域を示す断面図である。 他の実施形態におけるガラス板の領域分けを示す平面図である。 吹上前工程から吹上保持工程に至ったガラス板の側面図である。 吹上保持工程におけるガラス板と当接部材の位置関係を示す斜視図である。 実施例と比較例におけるガラス板の中心温度と時間との関係を示した図である。 ガラス板の外周端Aからの距離とその位置における温度を示した図である。 ガラス板の外周端Aから吹き上げられる領域G5までの距離とI/Tの最大値との関係を示した図である。
 以下、図面を参照して、本発明に係るガラス板の徐冷方法及びその装置の好ましい実施形態について説明する。なお、形態を説明するための図面において、方向について特に記載のない場合には図面上での方向をいうものとし、各図面の基準の方向は、記号、数字の方向に対応する。また、本実施形態ではガラスの軟化点、徐冷点、歪点等の特性について説明する上で、ガラス板の種類としてソーダライムガラスの場合を一例として述べる。しかし、以下の本明細書内で述べられるガラスの種類に由来する特性は、本実施形態に限定されず、ガラスの種類に応じて適宜変更されるものである。
 (徐冷装置について)
 図1は、本実施形態の一態様におけるガラス板徐冷装置を備えた合わせガラス用ガラス板の製造装置図面であり、(A)はその側面の概略を示した側面図、(B)はその平面の概略を示した平面図である。
 合わせガラス用ガラス板の製造装置103は、板ガラスgの加熱及び成形を行う加熱炉101と、加熱炉101の後段に設けられ、本実施形態の徐冷装置を備えた徐冷ゾーン102とを備える。
 加熱炉101は、曲げ成形前の平板状の板ガラスgを加熱し、曲げ成形する。加熱炉101は、台車105と台車105上に載置された所望の湾曲面を有するリング状の成形型104を備え、加熱炉101の内部は不図示のヒータによって、板ガラスgを所望の湾曲面を有するガラス板Gに成形する温度(580℃~700℃)に加熱される。成形型104及び台車105は、加熱炉101のガラス板成形温度に耐え得る程度の耐熱材で構成されている。台車105は不図示の任意の搬送装置によって加熱炉101内を移動する。
 徐冷ゾーン102は、所望の湾曲面を有するように曲げ成形されたガラス板Gを徐冷する。なお、図1では徐冷ゾーン102は、加熱炉外に設けられた壁面で囲まれた空間を指しているが、本実施形態に限定されず、例えば、壁面で囲まれていない開放された空間でも良い。徐冷ゾーン102は、ガラス板Gが載置された成形型104を搬送する搬送装置に加え、ガラス板Gが成形型104に載置された状態で、ガラス板Gを徐冷する冷却装置106と、気体を噴出して成形型104からガラス板Gを離間させ、吹き上げる吹上装置107と、吹き上げられたガラス板Gと当接する当接部材108とを有する徐冷装置を備える。
 冷却装置106は、ガラス板Gの上方に設けられる上部冷却装置106Aとガラス板の下方に設けられる下部冷却装置106Bとを有し(以後、上部冷却装置106Aと下部冷却装置106Bを区別しないときは、単に冷却装置106という)、ガラス板Gに向けて冷却用気体を吹き付ける冷却手段を備える。本実施形態では、冷却装置106の冷却手段は冷却用気体供給装置である不図示のブロアから供給される冷却用気体をガラス板Gに吹き付けて冷却するダクト(吹き口)を有する構成である。
 ここで、本明細書でいう「冷却用気体」とは、空気、不活性ガス等が好適に利用できる。また、冷却能力を向上させるために、冷却用気体の温度や露点を制御しても良く、冷却用気体に気体以外の冷却媒体(例えば霧状の液体や粉体等)を含有させても良い。また本明細書において「吹き付け」とは、冷却装置106から冷却用気体をガラス板Gに向けて送り出すことを指す。
 なお、本実施形態では、冷却装置106は冷却手段から冷却用気体をガラス板Gに向けて吹き付ける構成であるが、これに限定されない。冷却装置106は、輻射による冷却や固体を接触させて冷却する等その他の冷却手段を備える構成でも良い。また、本実施形態では上部冷却装置106Aと下部冷却装置106Bの両方を上下に備える態様を示したが、両方が必須ということはなく、いずれか一方のみを備える態様でも良い。
 吹上装置107は、ガラス板Gの下方に設けられ、ガラス板Gに向けて気体を噴出する噴出手段を備える。本実施形態では、吹上装置107の噴出手段は、気体供給装置である不図示のブロアから供給される気体をガラス板Gに向けて噴出するダクト(吹き口)を有する構成である。ここで、本明細書でいう「気体」とは、空気、不活性ガス等が好適に利用できる。また、気体の温度や露点を制御しても良く、気体以外の冷却媒体(例えば霧状の液体や粉体等)を含有させても良い。また、本明細書において「噴出」とは吹上装置107から気体をガラス板に向けて送り出すことを指す。
 また、噴出手段は、ガラス板Gが成形型104に載置された状態で、ガラス板Gの外周端から面内側に50mm以上離れた領域の一部に対向して設けられる。また好ましくは、噴出手段はガラス板Gの外周端から面内側に130mm以上離れた領域、さらに好ましくはガラス板Gの外周端から面内側に150mm以上離れた領域に設けられる。このように設けることで、ガラス板Gに形成されるI/Tを小さくすることができる。I/Tの最大値は、10.5MPa以下が好ましく、より好ましくは8MPa以下、さらに好ましくは5MPa以下である。
 ところで、本実施形態では、下部冷却装置106Bは吹上装置107を兼ねており、それらは同一の気体(冷却用気体)をガラス板Gに吹き付けもしくは噴出させる。このようにすることで、下部冷却装置106Bと吹上装置107の取り扱いが容易となり望ましい。
 下部冷却装置106Bと吹上装置107と兼用したした場合、気体の圧力をガラス板Gが吹き上がらない値に設定すれば下部冷却装置106Bとして働き、気体の圧力をガラス板Gが吹き上がる値に設定すれば吹上装置107として働く。気体の圧力の調整は、任意の制御装置によってブロアの出力(流速、流量等)を調整することで行われる。
 しかし、下部冷却装置106Bと吹上装置107の構成は、本実施形態に限定されない。下部冷却装置106Bと吹上装置107とを兼ねた構成であっても、同一の気体を用いなくても良い。例えば下部冷却装置106として働くときは温度制御を行った冷却用気体を用い、吹上装置107として働くときは温度制御されていない気体であっても良い。また、下部冷却装置106Bと吹上装置107とがそれぞれ独立した装置であっても良い。
 当接部材108は、ガラス板Gの上方に空間を隔てて設けられ、吹上装置107によって吹き上げられたガラス板Gと気体の圧力によって当接する。当接部材108は、吹き上げられたガラス板Gを制御できる構成であれば良く、本実施形態では、ガラス板の上方に空間を隔てて二本の棒を設ける構成である。また、当接部材108は、徐冷ゾーン102の天井から設けられることが好ましいが、必要により、成形型104又は台車105に一体的に設けても良い。
 本実施形態において、ガラス板Gが吹上装置107により吹き上げられ、当接部材108と当接するまでの間に、ガラス板Gの当接部材108と当接する領域の温度が歪点より低い温度となる構成とすることができる。このような構成は、当接部材108の配置位置、吹上装置107がガラス板Gを吹き上げる速度等により制御することができる。例えば、当接部材108は、吹上装置107がガラス板Gを吹き上げる速度に応じて、ガラス板Gが吹上装置107により吹き上げられた後当接部材108と当接するまでの間に、ガラス板Gの当接部材108と当接する領域の温度が歪点より低い温度となるのに充分な距離に配置することができる。また、例えば、吹上装置107は、ガラス板Gを吹き上げた後、ガラス板Gが当接部材108に接する前に、ガラス板Gの当接部材108と当接する領域の温度が歪点より低い温度となるのに充分な時間ガラス板Gを吹き上げた状態を保ち、その後にガラス板Gが当接部材108に当接するようにガラス板Gを吹き上げる力や速度を制御することができる。このような構成により、本実施態様の徐冷条件は従来に比べて徐冷完了までの時間を短くすることができるとともに、ガラス板Gへの歪の発生を防ぐことができる。
 (ガラス板Gの領域について)
 本実施形態において、徐冷ゾーン102に搬入された直後のガラス板Gは次のような領域に分けられる。図2において、Aはガラス板Gの外周端、すなわちガラス板Gの外縁の辺を示しており、一点鎖線Bは、ガラス板Gの外周端Aから内側10mmの部分を結んだ線である。この外周端Aと一点鎖線Bとで囲まれる領域G1がガラス板Gのエッジを示している。エッジG1は、ガラス板の周囲に沿って一定の幅を有し、かつE/Cが形成された領域である。平面視において成形型104よりも面外方向に突出する部分であり、冷却時に放熱効果が高いため、E/Cが形成される部分である。
 なお、本実施形態では、一点鎖線Bはガラス板Gの外周端Aから内側10mmの部分を結んだ線とするが、これに限定されない。ガラス板Gの外周端Aから内側5mm~25mmのいずれかの部分を結んだ線としても良い。またさらに、外周端Aから0mm、すなわち平面視において成形型104よりも面外方向に突出する部分がない場合でもよい。その場合、エッジG1は外周端A(すなわち端面)及び端面の極表層に形成されるものとする。
 また、破線Cは、ガラス板Gの外周端Aから内側50mの部分を結んだ線であり、一点鎖線Bと破線Cで結ばれた領域G2は周縁領域を示している。周縁領域G2は、エッジの内周側に隣接するととともに所定の幅を有し、かつI/Tが形成される。通常、この周縁領域G2は、I/Tのピーク(最大値)が形成される領域であり、平面視で成形型104に載置されている部分及びそのやや面内側を指す。
 また、破線Cで囲まれた、周縁領域G2の内周側を占有する面内領域G3は、点線Dで囲まれた冷却領域G4と、二点鎖線Eで囲まれた吹き上げられる領域G5(請求項における「所定の領域」に対応する)とを含んでいる。なお、面内領域G3は、平常時には飛び石などに強く割れにくいが、人が衝突するなどの異常時には割れて衝撃を吸収することが求められる。
 なお、この特性は面内領域G3全域であってもよく、面内領域G3に含まれる冷却領域G4及び/又は吹き上げられる領域G5のみであってもよい。後者の場合であっても、その部分において強度と安全性は両立するという本願の効果は得られる。
 冷却領域G4とは、冷却装置106の冷却手段とガラス板Gが対向する領域である。冷却領域G4は、周縁領域G2と重複せずに設けられ、冷却装置106によって優先的に冷却されることが望ましい。また、冷却領域G4は、ガラス板Gの重心を含む領域であることが望ましい。なお、本実施形態では冷却領域G4の形状は、冷却手段であるダクトが対向する形状として円形で示されているが、本実施形態に限定されず、冷却手段の形状によって様々な形態を取り得る。
 吹き上げられる領域G5とは、吹上装置107の噴出手段が対向する領域である。例えば、図3のように断面視で見た場合、吹上装置107の噴出手段であるダクトと対向する領域であり、例えばダクトの内周の輪郭線で囲まれた領域を示す。
 吹き上げられる領域G5は、周縁領域G2と重複せずに設けられ、また冷却領域G4内に形成されることが望ましい。また好ましくは、ガラス板Gの外周端Aから面内側に130mm以上離れた領域内、さらに好ましくはガラス板Gの外周端Aから面内側に150mm以上離れた領域内に設けられることが望ましい。このような構成とすることで、I/Tを充分に小さくできる。
 なお、図2では単純に、吹き上げられる領域G5をダクトの内周の輪郭線で囲まれた領域と例示したが、吹上装置107とガラス板Gとの距離が離れている場合、ダクトから噴出した気体がダクト先端から所定の角度で広がることを考慮して吹き上げられる領域G5としても良い。
 吹き上げられる領域G5は、ガラス板Gを好適に吹き上げて、吹き上げられた状態とするために、ガラス板Gの重心を含む領域であることが望ましい。また、図4のように吹上装置107が噴出手段を複数備え、吹き上げられる領域G5が複数存在する場合、それら複数の吹き上げられる領域G5の全てが周縁領域G2と重複せずに設けられ、また冷却領域G4内に形成されることが望ましい。
 また、吹き上げられる領域G5が複数存在する場合には、ガラス板Gを好適に吹き上げて吹き上げられた状態とするために、ガラス板Gの重心を複数の吹き上げられる領域G5で囲むように配置することが望ましい。
 なお、本実施形態では吹き上げられる領域G5はφ700mmの円形とするが、ガラス板Gの形状に合わせて楕円形、多角形、ガラス板Gの相似形であっても良い。特に吹き上げられる領域G5を楕円形とすることで、ガラス板GのエッジG1のいずれの辺からも、吹き上げられる領域G5までの距離を遠ざけることができ、後述する吹き上げられる領域G5の優先的な冷却に好適である。
 また、吹き上げられる領域G5は縦×横の長さが300mm×300mm以上800mm×1200mm以下の範囲であれば、通常の自動車用のフロントガラス用ガラス板の場合には、汎用性があり、安定してガラス板Gを吹き上げられる。また好ましくは、400mm×400mm以上、より好ましくは、500mm×500mm以上であれば、吹き上げるためにガラス板を支える面積を充分確保できるとともに、広い領域を吹き上げられる領域G5とすることで、面内領域内のより広い領域において、表面圧縮応力を形成できるため望ましい。一方、好ましくは800mm×1000mm以下、より好ましくは750mm×750mm以下であれば、ガラスの外周端から充分距離をあけることができ、結果としてI/Tを小さくできるため望ましい。
 ところで、本実施形態においては、前述の通り、下部冷却装置106Bと吹上装置107は同一の装置としているため、冷却領域G4と吹き上げられる領域G5は同一の領域を指す。
 (徐冷方法について)
 以下、本実施形態におけるガラス板Gの徐冷方法について説明する。
 <加熱成形工程>
 加熱成形工程は、ガラス板Gを加熱炉101において軟化点付近まで加熱して成形する。まず、曲げ成形前の平板状の板ガラスgは、台車105上に載置された所望の湾曲面を有するリング状の成形型104に載置され、任意の搬送手段によって加熱炉101に搬入される。次に、曲げ成形前の平板状の板ガラスgは、この加熱炉101を通過中に軟化点付近(580℃~700℃)まで不図示のヒータにより加熱される。そして、加熱された板ガラスgは、加熱による軟化に伴って、自重により、所定の曲げ形状に成形された成形型104の形状に沿って湾曲する。これによって、平板状の板ガラスgが所望の湾曲面を有するガラス板Gに成形される。
 また、板ガラスgの曲げ成形方法は、上記の自重による曲げ成形に限らず、板ガラスgを成形モールドでプレス成形するなど、公知の様々な成形方法を適用できる。例えば、成形モールドでプレス成形された場合、ガラス板Gは、その後リング状の成形型104に移載され搬送される。この場合、成形型104は、加熱炉101を通過せず、成形モールドの位置と徐冷ゾーン102の往復のみでも良い。
 加熱炉101によって曲げ成形されたガラス板Gは、高温状態のまま成形型104と共に搬送手段によって、加熱炉101から徐冷ゾーン102に搬入される。この際、好ましくはガラス板Gを徐冷点+32℃(582℃)以上に加熱された状態であることが望ましい。
 また、ガラス板Gは徐冷ゾーン102に搬入されることで、ガラス板Gの外周端A及びエッジG1は周縁領域G2より早く冷却される。その過程において、外周端Aの温度(ガラス板Gの端面部分の温度)が徐冷点+20℃(570℃)のときに、外周端Aの温度が、外周端Aから内側10mmの部分の温度より、例えば3℃低い状態を形成させることが好ましい。このような温度制御は、例えば、ガラス板Gを加熱炉101から徐冷ゾーン102に移動させることで、外周端Aが優先的に冷却されることで形成できる。又は徐冷ゾーン102の雰囲気温度をコントロールすることで実現できる。外周端Aと外周端Aから内側10mmの部分とが徐冷点まで冷却される間に、所定の温度差を形成しておくことで、充分なE/Cを得ることができる。
 <吹上前工程>
 吹上前工程は、加熱炉101から徐冷ゾーン102に搬入されたガラス板Gを、成形型104に載置された状態で、冷却装置106によって、吹き上げられる領域G5の温度が歪点(510℃)より高く徐冷点(550℃)以下、かつ周縁領域G2の温度が歪点以上の状態となるように、吹き上げられる領域G5を優先的に冷却する(本実施形態では冷却領域G4と吹き上げられる領域G5とは同一であるので、以下、冷却装置106で吹き上げられる領域G5を冷却する、として説明する)。より好ましくは、吹き上げられる領域G5の温度が徐冷点-20℃(530℃)以上徐冷点以下、さらに好ましくは徐冷点-10℃(540℃)以上徐冷以下かつ周縁領域G2の温度が歪点以上の状態となるように冷却することが望ましい。
 この際、冷却装置106による吹き上げられる領域G5の温度の吹上前工程での冷却速度は、7℃/sec以上50℃/sec以下であり、好ましくは10℃/sec以上40℃/sec以下、さらに好ましくは15℃/sec以上35℃/sec以下であることが望ましい。
 上記のような吹き上げられる領域G5の冷却速度であれば、例えば、冷却装置106を用いて冷却を開始させてから吹き上げるまでの時間を、1.4秒以上16秒以下、より好ましくは1.7秒以上11秒以下、さらに好ましくは2.0秒以上7.4秒以下とすることができる。
 すなわち、上記のような冷却速度で冷却することで、一般的な徐冷ゾーンでの放冷や輻射冷却よりも速く、吹き上げられる領域G5の温度を歪点より高く徐冷点以下とすることができ、高い生産性を実現できる。なお、本明細書において「放冷」とは、積極的な冷却をせずに冷却することを指す。
 またさらに、徐冷点以上の高温状態から上記のような早い冷却速度で冷却するため、ガラス板Gの吹き上げられる領域G5の表面には、5MPa以上35MPa以下、より好ましくは7MPa以上30MPa以下、さらに好ましくは、10MPa以上30MPa以下の表面圧縮応力が形成できる。したがって、平常時には飛び石などに強く割れにくいが、人が衝突するなどの異常時には割れるガラス板が得られる。
 ところで、吹上前工程において、理想的には、冷却装置106によって、ガラス板Gの吹き上げられる領域G5のみを局所的に冷却し、吹き上げられる領域G5の温度が歪点より高く徐冷点以下のときに、周縁領域G2の温度は歪点以上でなるべく高い温度であることが好ましく、よりI/Tを小さくすることができる。
 しかし、前述の冷却速度の範囲で、かつ吹き上げられる領域G5のみを局所的に冷却することは極めて難しい。例えば、本実施形態である、冷却用気体をガラス板Gに吹き付けて冷却する冷却手段では、吹き上げられる領域G5の冷却速度が速い一方で、冷却用気体がガラス板Gの吹き上げられる領域G5に衝突した後、そのガラス板Gの面外方向に広がり、周縁領域G2及びエッジG1も冷却するおそれがある。
 そこで本実施形態では、吹き上げられる領域G5と共に周縁領域G2及びエッジG1を冷却しても、充分I/Tを小さくすることができる条件を見出した。具体的には、吹き上げられる領域G5の温度が歪点より高く徐冷点以下のときに、周縁領域G2の温度が歪点以上となるように冷却すれば良い。これは、上記のような冷却装置106の構成、及びガラス板Gとの位置関係によって実現できた。なお、このような条件を実現できれば、吹き上げられる領域G5を冷却すると共に、周縁領域G2及びエッジG1を冷却しても良い。
 ここで、好ましくは、吹き上げられる領域G5は、周縁領域G2及びエッジG1よりも優先的に冷却されることが望ましい。周縁領域G2の冷却速度を吹き上げられる領域G5よりも遅くすることで周縁領域G2の温度が高く保たれ、充分な応力緩和が期待でき、I/Tを小さくすることができる。
 <吹上工程>
 吹上工程は、吹上前工程によって吹き上げられる領域G5が歪点より高く徐冷点以下、かつ周縁領域G2が歪点以上の状態となったガラス板Gを、ガラス板Gの下方に設けられる吹上装置107によって吹き上げる。
 具体的には、上記の状態となったガラス板に対して、吹上装置107の噴出手段からガラス板Gの吹き上げられる領域G5に向けて気体の噴出を開始し、その気体の圧力でガラス板Gを成形型104から離間させながら徐冷する。この際、前述の通り、ブロアの出力の調整によって、下部冷却装置106Bが吹上装置107へと切り替わる。また、吹上装置107がガラス板Gを吹き上げているとき、上部冷却装置106Aは、は停止することが望ましい。
 吹上工程において、好ましくは、吹き上げられる領域G5の温度が徐冷点-20℃以上徐冷点以下かつ周縁領域G2の温度が歪点以上、さらに好ましくは徐冷点-10℃以上徐冷以下かつ周縁領域G2の温度が歪点以上の状態で気体の噴出を開始することが望ましい。このように、周縁領域G2の温度が歪点より高いときに吹き上げることで、充分な応力緩和が期待でき、I/Tを小さくすることができる。また、より好ましくは、周縁領域G2の温度が徐冷点よりも高温のときに、吹き上げることで、より充分な応力緩和が期待でき、I/Tを小さくすることができる。
 このような工程で徐冷を行うと、ガラス面内に接触するものが気体であるため、ガラス板Gの吹き上げられる領域が歪点より高くても、気体の接触によるガラス面内への歪は生じにくくすることができる。その結果、ガラス面内の温度が歪点よりも高い温度域で、ガラス板Gを成形型104から離間させて徐冷することができるため、ガラス板に形成されるI/Tを小さくでき、かつ高い生産性を実現できる。
 また、徐冷点以上の高温状態から上記のような早い冷却速度で冷却するため、ガラス板Gの吹き上げられる領域G5の表面には、一般的な徐冷ゾーンでの放冷や輻射冷却よりも高い表面圧縮応力が形成できる。
 本実施形態においては、冷却領域G4と吹き上げられる領域G5が同一の場合のため、吹き上げられる領域G5の表面には、5MPa以上35MPa以下、より好ましくは7MPa以上30MPa以下、さらに好ましくは、10MPa以上30MPa以下の表面圧縮応力が形成されることが望ましい。
 また、吹上工程は高いE/Cを得ることにも効果がある。高いE/Cを得るためには、外周端Aの温度が歪点のとき、外周端Aの温度が外周端Aの内側10mmの部分の温度より、例えば8℃以上低い状態を形成させることが望ましい。さらに好ましくは、外周端Aが徐冷点のときに、外周端Aが外周端Aの内側10mmの部分より温度が例えば8℃以上低い状態を形成することが望ましい。
 外周端Aの温度が歪点-10℃(500℃)よりも高温のときに、ガラス板Gを吹き上げれば、外周端Aの温度が歪点までの間、又は歪点-10℃までの間に外周端Aの温度が外周端Aの内側10mmの部分の温度より8℃以上低い状態を、数秒から数十秒の間保持でき、所望の応力分布を形成することができる。
 なお、外周端Aの温度が歪点よりも高温の時点で、ガラス板Gを吹き上げることにより、歪点のときに外周端Aと外周端Aの内側10mmの部分との温度差をつけ易くなり、さらに高いE/Cを得ることができる。さらに好ましくは、外周端Aの温度が徐冷点よりも高温のときに、ガラス板Gを吹き上げることが望ましい。これにより、より確実に徐冷点で外周端Aと外周端Aの内側10mmの部分とに温度差を8℃以上形成することができ、さらに高いE/Cを得ることができる。
 ガラス板Gを吹き上げることにより、吹上時に外周端Aと外周端Aの内側10mmの部分とで温度差が8℃未満だった場合、吹き上げにより外周端Aの冷却を促進して歪点までに外周端Aと外周端Aの内側10mmの部分とに温度差を8℃以上つけることができる。ガラス板Gを吹き上げなければ、成形型104の熱容量が大きく、成形型104の温度が下がりにくいため、成形型104の近傍に位置するもしくは成形型104と接している外周端Aと外周端Aの内側10mmの部分は冷却が遅くなり、かつ温度差が8℃以上にならない。
 また、徐冷ゾーン102の雰囲気温度が低いため、ガラス板が徐冷ゾーン102に入った瞬間に外周端Aと外周端Aの内側10mmの部分との温度差がつきやすく、ガラス板Gの吹上時に外周端Aと外周端Aの内側10mmの部分との温度差が既に8℃以上のときもある。その場合は、吹き上げにより、歪点まで外周端Aと外周端Aの内側10mmの部分との温度差を維持する必要がある。吹き上げなければ、成形型104の温度は下がりにくいため、成形型104の近傍に位置するもしくは成形型104と接している外周端Aの温度も下がりにくくなり、外周端Aの内側10mmの部分との温度差が小さくなる。
 また、例えばプレス成形のように、成形型104が必ずしも加熱炉101を通過せず、成形モールドの位置と徐冷ゾーン102の往復のみである場合、成形型104の温度はガラス板Gに比べて低い。このような場合は、外周端Aの内側10mmの部分は成形型104によって冷却が早まり、外周端Aと30℃以上の温度差が付くことがある。このように外周端Aとの温度差が30℃以上となると、外周端Aの内側10mmよりもさらに内側に大きなI/Tが形成されるため、外周端Aと外周端Aの内側10mmの部分との温度差は、例えば30℃以下、より好ましくは25℃以下とすることが望ましい。このようにすることで、充分なE/Cを得られ、かつI/Tを小さくすることができる。
 なお、この外周端Aと外周端A10mmの部分とに温度差が8℃以上30℃(25℃)以下の状態は、吹上前工程、吹上工程、吹上保持工程のいずれで達成されていても良い。
 <吹上保持工程>
 吹上保持工程は、吹上装置107の噴出手段から気体を噴出させ続け、吹上工程によって吹き上げられたガラス板Gを、気体の圧力によって当接部材108にガラス板Gを当接させ、ガラス板Gが吹き上げられた状態を保持し、所定時間徐冷する。
 図5は、吹上前工程から吹上保持工程に至ったガラス板の概略側面図を示し、図6は吹上保持工程における吹上装置107、ガラス板G及び当接部材108の位置関係の一例を示した斜視図である。このように、ガラス板Gを気体の圧力によって、当接部材108に下方から押し当てることによって、ガラス板Gの吹き上げられた状態を維持する。このとき、本実施形態では噴出手段から気体を噴出させ続ける態様を示すが、これに限定されない。例えば、吹き上げられたガラス板Gを当接部材108に当接させる充分な圧力が得られれば、断続的に気体を噴出していても良い。
 吹上保持工程によるガラス板Gの徐冷は、ガラス板Gの周縁領域G2の温度が、E/C、I/Tの値が決定する歪点-10℃以下となるまで行われ、その後噴出手段からの気体の噴出を停止させ、成形型104にガラス板を載置させる。
 この際、吹上保持工程でのガラス板Gの冷却速度は、5℃/sec以上30℃/sec以下であり、好ましくは7℃/sec以上20℃/sec以下であることが望ましい。
 上記のような冷却速度で吹上保持工程を行えば、例えば、吹上装置107でガラス板Gを吹き上げてから、0.3秒以上10.0秒以下、好ましくは0.5秒以上7.2秒以下で気体の噴出を停止させることができる。
 また、歪点以上徐冷点以下の温度から歪点―10℃以下まで、上記のような早い冷却速度で冷却するため、ガラス板Gの吹き上げられる領域G5の表面には、一般的な徐冷ゾーンでの放冷や輻射冷却よりも高い表面圧縮応力が形成できる。
 なお、その後ガラス板Gは、徐冷ゾーン102から外部に搬出されて放冷される。徐冷工程を経ることによって、平板状の板ガラスGが合わせガラス用の湾曲したガラス板Gに製造される。
 なお、本実施形態では、合わせガラス用ガラス板の製造装置103による製造対象のガラス板Gは、単板の板厚が1.5mm~3.5mmの自動車用フロントガラスを例として説明したが、フロントガラスに限定されるものではない。すなわち、ガラス板Gは、フロントガラスのように複数の方向に曲率を有する曲率の大きな曲げ形状のガラス板であっても、また、一方向のみに曲率を有する曲率の小さな曲げ形状のサイドガラスであっても良い。
 また、本発明のガラス板及び徐冷方法を、合わせガラスを構成する2枚のガラス板の両方に適用してもよく、いずれか片方のみに適用してもよい。片方のみに適用した場合でも、生産性の向上及び強度と安全性の両立の効果はある。
 また、本実施形態では1枚のガラス板Gをリング状の成形型104に載置して加熱してガラス板Gの自重により曲げ成形したが、2枚のガラス板Gを重ねた状態で成形型104に載置して加熱してガラス板Gの自重により曲げ成形してもよい。2枚のガラス板Gを重ね合わせた状態で成形型104に載置して加熱してガラス板の自重により曲げ成形する場合の各種条件も、前述した1枚のガラス板Gの場合と同様の各種条件を採用することができる。
 なお、2枚のガラス板Gを重ねた状態で成形型104に載置されたガラス板Gの吹き上げられる領域G5を吹上装置107により吹き上げる場合においては、吹上装置から噴出される気体が接触する側、即ち下側のガラス板Gの吹き上げられる領域G5の温度を歪点より高く徐冷点以下、かつ下側のガラス板Gの周縁領域G2の温度を歪点以上の状態となるまで冷却した後に、吹き上げることが必要である。このとき、載置された2枚のガラス板Gのうち、上側のガラス板の吹き上げられる領域G5においても、吹き上げられる領域G5の温度を歪点より高く徐冷点以下、かつ上側のガラス板Gの周縁領域G2の温度を歪点以上の状態となるまで冷却することが好ましいが、上側のガラス板においては、必ずしも吹き上げられる前にガラス板Gの吹き上げられる領域G5の温度を歪点より高く徐冷点以下、かつ上周縁領域G2の温度を歪点以上の状態となるまで冷却しなくてもよい。
 図1に示す合わせガラス用ガラス板の製造装置103において、離型剤を介して板厚2mmのガラス板を、ガラス板Gの周縁領域を支持するように成形型104に載置し、加熱炉101を通過させて、自重により曲げ成形した。続いて、成形したガラス板Gを徐冷ゾーン102に搬入し、図2に示すように、ガラス板Gの吹き上げられる領域G5を冷却装置106によって冷却した。次に、下部冷却装置106Bのブロアの出力を調整し、吹上装置107として働かせることで、ガラス板Gの吹き上げられる領域G5を吹き上げて、ガラス板Gを成形型104から離間して徐冷した。次に、吹上装置107の噴出手段から気体を噴出し続けることで、当接部材にガラス板Gを当接させ、ガラス板Gが吹き上げられた状態を保持し、所定時間徐冷した。この後、ガラス板を徐冷ゾーン102外に搬出して放冷した。
 この際、吹き上げられる領域G5は、外周端Aから面内側に200mm離れた領域とし、吹上装置107として縦×横が500mm×800mmの楕円形状のダクトを噴出手段として有するものを用いた。
 なお、本実施例で用いたガラス板Gは、ソーダライムガラスであり、軟化点(成形温度)が620℃、徐冷点が550℃、歪点が510℃であった。また、本実施例では徐冷ゾーン102の雰囲気温度は約400℃であり、徐冷ゾーン102内における放冷時の吹き上げられる領域G5の冷却速度は6℃/secであった。
 以上のようにして成形されたガラス板Gを、表1に示す例1~例4の条件で徐冷した。表1には、例1~例4それぞれの徐冷条件とI/Tの最大値を示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、吹上時中心温度とは、吹上装置107を働かせたときのガラスGの吹き上げられる領域G5の中心部分の温度を示す。また、冷却時間とは、軟化点付近まで加熱させたガラス板Gの吹き上げられる領域G5の温度が歪点より高く徐冷点以下となるように、冷却装置106を用いて冷却を開始させてから吹き上げるまでの時間を示す。また、冷却速度とは、吹上前工程において冷却装置106が吹き上げられる領域G5を冷却する速度を示す。また、例1~例4において、吹き上げる際の周縁領域G2の温度は、いずれも歪点以上であった。
 表1の結果から、吹き上げられる領域G5の温度が歪点より高く徐冷点以下、かつ周縁領域G2の温度が歪点以上のときに吹き上げることで、充分な応力緩和ができ、I/Tを小さくすることができた。また、例1~例4の全ての場合において、ガラス板Gの面内に歪は発生しなかった。
 また、例1~例4において、吹き上げられる領域G5の表面圧縮応力は、いずれも10~30MPaであった。
 また、図7には、本願の一実施形態における徐冷方法でガラス板Gを徐冷した場合と、比較例として従来の徐冷条件でガラス板Gを徐冷した場合の、中心温度と時間との関係を示す。
 ここで、中心温度とは、吹き上げられる領域G5の中心部分の温度とし、ガラス板の表面の温度を測定した。この際、サンプルとなるガラス板Gの作成手順、吹き上げられる領域G5の大きさ、吹上装置107及び用いるガラス板の種類は、表1の例1~例4と同様とし、冷却速度は17℃/secとした。比較例の徐冷条件は先行技術として挙げた特表2011-096446号公報の徐冷方法でガラス板Gを徐冷した場合の徐冷条件を用いた。
 図7から、比較例である徐冷方法で徐冷した場合、軟化点から、成形型104から離間させる温度である歪点(510℃)まで冷却するのに約100秒を要し、E/C、I/Tの値が決定する温度である歪点-10℃(500℃)まで冷却するのに約110℃を要する。
 それに対して、本願の一実施形態における徐冷方法で徐冷した場合、軟化点から、成形型104から離間させる温度(535℃)まで冷却するのに5秒であり、E/C、I/Tの値が決定する歪点-10℃(500℃)まで徐冷するのに10秒であった。
 以上の結果より、本実施態様の徐冷条件は従来に比べて徐冷完了までの時間を短くすることが可能になり生産性が向上する。
 これは、比較例よりもガラス面内の温度が高い温度域(510℃~550℃)であっても、ガラス板Gを成形型104から離間させて徐冷することができること、及び、ガラス板Gの外周端から面内側に50mm以上離れた領域を優先的に冷却することによって達成できた。
 また、以下図8を用いて、本願の一実施形態における徐冷方法でガラス板Gを徐冷したときの、ガラス板Gのある断面において、外周端Aから距離とその位置におけるガラス板Gの温度の関係を示す。
 この際、サンプルとなるガラス板Gの作成手順、吹き上げられる領域G5の大きさ、吹上装置107及び用いるガラス板の種類は、表1の例1~例4と同様とし、冷却速度は28℃/secとした。
 図8中の凡例である0sec、2sec、4secは、それぞれ冷却装置106が作動してからの時間を示す。
 図8より、冷却装置106による冷却によって、短時間(冷却を開始して約3~5秒)でガラス板Gの吹き上げられる領域G5の温度が歪点より高く徐冷点以下、かつガラス板Gの周縁領域G2の温度が歪点以上の状態となることが分かった。
 また、以下図9を用いて、例1の徐冷方法でガラス板Gを徐冷したときの、外周端Aから吹き上げられる領域G5までの距離とそのときに発生するI/Tの最大値との関係を示す。
 図9より、外周端Aから吹き上げられる領域G3までの距離が130mm以上、より好ましくは150mm以上とすることでI/Tを小さくすることができた。
 本発明は、生産性が高く、ガラス板面内に歪が発生せず、かつI/Tが小さいガラス板の製造方法及びI/Tが小さく、かつ強度と安全性を両立したガラス板に関する。本発明の製造方法及びガラス板は、合わせガラスを製造する際に使用するガラス板として最適であり、自動車、その他車両の合わせガラスとして有用である。
 本国際出願は2014年2月25日に出願された日本国特許出願2014-034494号に基づく優先権を主張するものであり、その全内容をここに援用する。
 101  加熱炉
 102  徐冷ゾーン
 103  合わせガラス用ガラス板の製造装置
 104  成形型
 105  台車
 106A,106B  冷却装置
 107  吹上装置
 108  当接部材
 A    外周端
 B    一点鎖線
 C    破線
 D    点線
 E    二点鎖線
 F    幅
 g    板ガラス
 G    ガラス板
 G1   エッジ
 G2   周縁領域
 G3   面内領域
 G4   冷却領域
 G5   吹き上げられる領域

Claims (14)

  1.  曲げ成形され、軟化点付近の高温のガラス板の徐冷方法において、
     前記ガラス板をリング状の成形型に載置させた状態で冷却する吹上前工程と、
     前記ガラス板を、前記ガラス板の下方に設けられ、前記ガラス板に向けて気体を噴出する噴出手段を備える吹上装置によって吹き上げて、前記成形型から離間させながら徐冷する吹上工程と、
     前記ガラス板を前記成形型から離間させた状態を、前記ガラス板の上方に空間を隔てて設けられた当接部材に当接させることで保持しながら徐冷する吹上保持工程と、
    を備え、
     前記ガラス板は、前記ガラス板の外周端から面内側50mm未満の周縁領域と、前記ガラス板の外周端から面内側に50mm以上離れた平面視で前記噴出手段と対向する所定の領域と、を有し、
     前記吹上前工程は、前記所定の領域の温度を徐冷点以下まで冷却し、
     前記吹上工程は、前記所定の領域の温度が歪点より高く徐冷点以下、かつ前記周縁領域の温度が歪点以上で前記噴出手段から前記気体の噴出を開始し、前記気体の圧力によって前記ガラス板を吹き上げ、
     前記吹上保持工程は、前記気体の圧力によって前記ガラス板が吹き上げられた状態を保持することを特徴とするガラス板の徐冷方法。
  2.  前記吹上工程は、前記所定の領域の温度が徐冷点-20℃以上徐冷点以下、かつ前記周縁領域の温度が歪点以上の状態で、前記気体の噴出を開始する請求項1に記載のガラス板の徐冷方法。
  3.  前記吹上前工程において、前記ガラス板の冷却速度が、7℃/sec以上50℃/sec以下である請求項1又は2に記載のガラス板の徐冷方法。
  4.  前記所定の領域は、前記ガラス板の外周端から面内側に130mm以上離れた領域内に設けられる請求項1から3のいずれかに記載のガラス板の徐冷方法。
  5.  前記所定の領域は、前記吹上前工程において気体を吹き付けられることによって冷却される請求項1から4のいずれかに記載のガラス板の徐冷方法。
  6.  前記吹上前工程と前記吹上工程とが、同位置で行われる請求項1から5のいずれかに記載のガラス板の徐冷方法。
  7.  前記吹上前工程の前に、前記ガラス板を加熱炉内で軟化点付近に加熱して成形する加熱成形工程を有し、前記吹上前工程と前記吹上工程と前記吹上保持工程とが、前記加熱炉外で行われる請求項1から6のいずれかに記載のガラス板の徐冷方法。
  8.  前記ガラス板は、プレス成形によって曲げ成形されたガラス板である請求項1から7のいずれかに記載のガラス板の徐冷方法。
  9.  ガラス板の周囲に沿って一定の幅を有し、かつエッジコンプレッションが形成されたエッジと、前記エッジの内周側に隣接するととともに所定の幅を有し、かつインナーテンションが形成された周縁領域と、前記周縁領域の内周側を占有する面内領域とを備えたガラス板において、
     前記周縁領域内のインナーテンションの最大値が10.5MPa以下であり、
     前記ガラス板は、前記面内領域内に所定の領域を有し、
     前記所定の領域は、5MPa以上35MPa以下の表面圧縮応力を有することを特徴とするガラス板。
  10.  前記所定の領域は、10MPa以上30MPa以下の表面圧縮応力を有する請求項9に記載のガラス板。
  11.  前記周縁領域内のインナーテンションの最大値が8MPa以下である請求項9又は請求項10に記載のガラス板。
  12.  前記所定の領域は、縦×横の長さが300mm×300mm以上800mm×1200mm以下の範囲内である請求項9から11のいずれか一項に記載のガラス板。
  13.  前記所定の領域は、縦×横の長さが400mm×400mm以上800mm×1000mm以下の範囲内である請求項9から12のいずれか一項に記載のガラス板。
  14.  前記所定の領域は、前記ガラス板の外周端から面内側に130mm以上離れた領域内にある請求項9又は10に記載のガラス板。
PCT/JP2015/054963 2014-02-25 2015-02-23 ガラス板の徐冷方法及びガラス板 WO2015129605A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014034494A JP2017077973A (ja) 2014-02-25 2014-02-25 ガラス板の徐冷方法及びその装置
JP2014-034494 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129605A1 true WO2015129605A1 (ja) 2015-09-03

Family

ID=54008925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054963 WO2015129605A1 (ja) 2014-02-25 2015-02-23 ガラス板の徐冷方法及びガラス板

Country Status (2)

Country Link
JP (1) JP2017077973A (ja)
WO (1) WO2015129605A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154247A1 (fr) * 2017-02-27 2018-08-30 Saint-Gobain Glass France Vitrage a contrainte d'extension reduite
JP2020007194A (ja) * 2018-07-10 2020-01-16 Agc株式会社 ガラス板の製造方法
JP2020521715A (ja) * 2017-06-01 2020-07-27 ピルキントン グループ リミテッド ガラスシートの成形方法および装置
WO2022224910A1 (ja) * 2021-04-20 2022-10-27 Agc株式会社 自動車窓用合わせガラス、自動車、及び自動車窓用合わせガラスの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947216A (zh) * 2018-06-26 2018-12-07 同济大学 一种高能x射线天文望远镜用大曲率超薄反射镜制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157939U (ja) * 1986-03-28 1987-10-07
JPH06144858A (ja) * 1992-10-30 1994-05-24 Asahi Glass Co Ltd ガラス板の曲げ成形方法および曲げ成形装置
JPH0789739A (ja) * 1993-07-30 1995-04-04 Asahi Glass Co Ltd ガラス板の急冷強化方法および装置
WO2011096446A1 (ja) * 2010-02-03 2011-08-11 旭硝子株式会社 ガラス板の徐冷方法及びその装置
WO2011096447A1 (ja) * 2010-02-03 2011-08-11 旭硝子株式会社 ガラス板及びガラス板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157939U (ja) * 1986-03-28 1987-10-07
JPH06144858A (ja) * 1992-10-30 1994-05-24 Asahi Glass Co Ltd ガラス板の曲げ成形方法および曲げ成形装置
JPH0789739A (ja) * 1993-07-30 1995-04-04 Asahi Glass Co Ltd ガラス板の急冷強化方法および装置
WO2011096446A1 (ja) * 2010-02-03 2011-08-11 旭硝子株式会社 ガラス板の徐冷方法及びその装置
WO2011096447A1 (ja) * 2010-02-03 2011-08-11 旭硝子株式会社 ガラス板及びガラス板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154247A1 (fr) * 2017-02-27 2018-08-30 Saint-Gobain Glass France Vitrage a contrainte d'extension reduite
FR3063287A1 (fr) * 2017-02-27 2018-08-31 Saint-Gobain Glass France Vitrage a contrainte d'extension reduite
JP2020508282A (ja) * 2017-02-27 2020-03-19 サン−ゴバン グラス フランス 減少した引張応力を有するガラスペイン
RU2764111C2 (ru) * 2017-02-27 2022-01-13 Сэн-Гобэн Гласс Франс Оконное стекло с уменьшенным растягивающим напряжением
JP2020521715A (ja) * 2017-06-01 2020-07-27 ピルキントン グループ リミテッド ガラスシートの成形方法および装置
JP7158419B2 (ja) 2017-06-01 2022-10-21 ピルキントン グループ リミテッド ガラスシートの成形方法および装置
JP2020007194A (ja) * 2018-07-10 2020-01-16 Agc株式会社 ガラス板の製造方法
WO2022224910A1 (ja) * 2021-04-20 2022-10-27 Agc株式会社 自動車窓用合わせガラス、自動車、及び自動車窓用合わせガラスの製造方法

Also Published As

Publication number Publication date
JP2017077973A (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2015129605A1 (ja) ガラス板の徐冷方法及びガラス板
JP5641255B2 (ja) ガラス板及びガラス板の製造方法
JP5641254B2 (ja) ガラス板の徐冷方法及びその装置
US10252930B2 (en) Bent glass plate for optical use and fabrication method thereof
JP5808724B2 (ja) アルミニウム合金材のダイクエンチ装置およびダイクエンチ方法
US20180134601A1 (en) Glass sheet forming and annealing system providing edge stress control
JP4206039B2 (ja) ガラスシートプレス曲げステーションおよびガラスシートプレス曲げ作業切換え方法
JP4817113B2 (ja) ガラス板の曲げ成形方法及びその装置
JP2017528406A (ja) ガラスシートから成形ガラス物品を成形する方法
KR20170068592A (ko) 가열된 유리 시트를 성형하기 위한 장치 및 방법
CN111566057A (zh) 一种具有锐利弯曲部分的汽车玻璃以及折弯的方法
EA032544B1 (ru) Инструмент для процесса моллирования стекла
KR20160124117A (ko) 교축 곡률을 가진 고온 유리판을 성형하기 위한 성형기 및 방법
JPH04119931A (ja) ガラス板の曲げ成形方法
JP2005343720A (ja) 彎曲ガラス板の製法とその装置
CN112424137B (zh) 汽车的前挡风玻璃用夹层玻璃及其制造方法
JP5206042B2 (ja) 金属板のプレス成形装置
JP5638843B2 (ja) 発泡ポリエチレンテレフタレートシート成形品の製造方法及び発泡ポリエチレンテレフタレートシート成形品
KR102270583B1 (ko) 초고장력강 강판 성형 방법
KR102350482B1 (ko) 자동차용 도어 임팩트 빔 성형 방법
JP2011235606A (ja) 発泡ポリエチレンテレフタレートシート成形品の製造方法
KR20170109605A (ko) 평탄 중공 슬리브 생산을 위한 맨드릴 상의 드로잉 성형법으로 유리 튜빙을 재형성하기 위한 방법 및 장치
JP2004277203A (ja) ガラス板の曲げ成形方法及びその装置
JP6018469B2 (ja) ステンレス鋼箔の温間加工方法
JP4673340B2 (ja) 板ガラスの複合曲げ成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP