WO2015083515A1 - 軸ずれ判定装置 - Google Patents

軸ずれ判定装置 Download PDF

Info

Publication number
WO2015083515A1
WO2015083515A1 PCT/JP2014/080036 JP2014080036W WO2015083515A1 WO 2015083515 A1 WO2015083515 A1 WO 2015083515A1 JP 2014080036 W JP2014080036 W JP 2014080036W WO 2015083515 A1 WO2015083515 A1 WO 2015083515A1
Authority
WO
WIPO (PCT)
Prior art keywords
difference
value
axis
deviation
detection
Prior art date
Application number
PCT/JP2014/080036
Other languages
English (en)
French (fr)
Inventor
後藤 健次
正伸 行松
隆雅 安藤
信行 寺田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/100,955 priority Critical patent/US10830870B2/en
Publication of WO2015083515A1 publication Critical patent/WO2015083515A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the present invention relates to a technique for determining an axis deviation of a radar device mounted on a vehicle.
  • a radar device that detects a target existing around the vehicle by transmitting and receiving radar waves such as laser light, ultrasonic waves, and millimeter waves has been used. ing.
  • the radar device is mounted at a predetermined mounting position of the vehicle so that radar waves are irradiated to a predetermined irradiation range. For this reason, if a deviation occurs in the mounting position of the radar device due to some factor, the radar wave is not irradiated to a predetermined irradiation range, so that the detection accuracy of the target is lowered and the driving safety of the vehicle is improved. There may be a problem that the accuracy of various controls is lowered.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-228688 uses a detection value of an acceleration sensor provided in a radar device and a detection value of an acceleration sensor provided in a vehicle body to detect the axis deviation of the radar device in a direction perpendicular to the traveling surface of the vehicle. The structure which determines this is disclosed.
  • the detection value of the acceleration sensor provided in the radar device and the detection value of the acceleration sensor provided in the vehicle main body may vary. For this reason, there is a possibility that erroneous determination may occur in the determination of the axis deviation of the radar device.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an axis misalignment determination apparatus having a technique for accurately determining the axis misalignment of a radar apparatus mounted on a vehicle.
  • An axis deviation determination apparatus includes a first detection value acquisition unit, a second detection value acquisition unit, a difference calculation unit, an average difference value calculation unit, a deviation calculation unit, A determination unit.
  • the first detection value acquisition unit is a detection value detected by a first acceleration sensor provided at a first position in the vehicle, and is a first detection representing acceleration applied to a radar device mounted on the vehicle. Get the value.
  • the second detection value acquisition unit is a detection value detected by a second acceleration sensor provided at a second position different from the first position in the vehicle, and represents the acceleration applied to the vehicle body. 2 detection values are acquired.
  • the difference calculation unit calculates a detection difference value that is a difference between the first detection value and the second detection value for each first period.
  • the average difference value calculation unit is an average difference value that is an average value of a plurality of detected difference values calculated by the difference calculation unit within an acquisition period that is a period of a length including a plurality of first periods. Is calculated.
  • the deviation calculation unit calculates a difference standard deviation which is a standard deviation for a plurality of detected difference values calculated by the difference calculation unit within the acquisition period.
  • the determination unit determines an axis deviation generated in the radar apparatus based on the average difference value and the difference standard deviation.
  • an average difference value that is an average value for a plurality of detection difference values within the acquisition period and a difference standard deviation that represents a variation of the plurality of detection difference values within the acquisition period. Based on this, the axis deviation generated in the radar apparatus is determined. Therefore, it is possible to accurately determine the axis deviation of the radar apparatus as compared with the configuration in which the axis deviation generated in the radar apparatus is simply determined based on the detection difference value.
  • FIG. 3A is a diagram illustrating an example of a detection angle by the YG sensor and the G sensor in the initial mounting state (before shipment)
  • FIG. 3B is a diagram illustrating the YG sensor after the initial mounting state (after shipment).
  • FIG. 7 is a diagram illustrating an example of a distribution of a plurality of initial difference values D 0 and a distribution of a plurality of detected difference values D.
  • It is a flowchart of the axis deviation determination process which the axis deviation determination apparatus which concerns on 1st Embodiment performs. It is a figure explaining the calculation method of the moving average of the detection difference value D. It is a figure explaining the calculation method of the moving average of the detection difference value D in case an update period is equal to a detection period (q 1). It is a flowchart of the difference calculation process which the axis deviation determination apparatus which concerns on 1st Embodiment performs. It is a figure which shows an example of distribution of several detection difference value D calculated in the past acquisition period Ts, and distribution of several detection difference value D calculated in the present acquisition period Ts.
  • a vehicle 1 shown in FIG. 1 is equipped with a radar device 2 that radiates a radar wave in the traveling direction of the vehicle 1 at the front (right side in FIG. 1) end (bumper).
  • the radar device 2 includes the axis deviation determination device according to the first embodiment.
  • the center axis (radio wave axis) of a detection range of a radar sensor 20 to be described later has a vehicle 1 longitudinal direction (the longitudinal direction of the vehicle 1 and the x-axis direction shown in FIG. 1) and a vertical direction (x-axis). The vertical direction perpendicular to the direction and the vehicle width direction and the z-axis direction shown in FIG.
  • the radar apparatus 2 includes a radar sensor 20, an acceleration sensor (hereinafter referred to as a G sensor) 21, a temperature sensor 22, a control unit 23, and a storage unit 24.
  • the radar sensor 20 observes the target by transmitting and receiving radar waves, and outputs observation data for calculating the distance to the target reflecting the radar wave, the relative speed with the target, and the like to the control unit 23. .
  • the G sensor 21 detects the acceleration acting on the detection axis at every detection cycle (first cycle) Tt, and outputs the detection result to the control unit 23.
  • the G sensor 21 is built in the housing of the radar apparatus 2 (see FIG. 1). Therefore, if the radar apparatus 2 is displaced in a direction different from the original direction due to some factor (such as a collision), the direction of the detection axis of the G sensor 21 is similarly shifted. That is, when an axis shift occurs in the radar device 2 (specifically, the radio wave axis of the radar sensor 20), the detection axis of the G sensor 21 is similarly shifted.
  • the G sensor 21 includes at least one detection axis, and is arranged to detect the inclination of the radar device 2 (the detection axis of the G sensor 21) with respect to the front-rear direction (x axis) of the vehicle 1 using the detection axis.
  • the temperature sensor 22 detects the temperature of the radar device 2 and outputs the detection result to the control unit 23.
  • the temperature sensor 22 is built in the casing of the radar apparatus 2.
  • the control unit 23 is configured by a known microcomputer mainly including a CPU 51, a ROM 52, and a RAM 53.
  • the CPU 51 calculates a distance to the target reflecting the radar wave based on observation data from the radar sensor 20, a relative speed with respect to the target, etc., according to a program stored in the storage unit 24, and At least axis misalignment determination processing for determining the axis misalignment of the radar apparatus 2 is executed.
  • an acceleration sensor (hereinafter referred to as a YG sensor) 31 provided as a part of the yaw rate sensor and a notification device 32 are mounted on the vehicle body 3 in the vehicle 1. Similar to the G sensor 21, the YG sensor 31 (yaw rate sensor) detects the acceleration acting on the detection axis for each detection cycle Tt, and outputs the detection result to the control unit 23. In the present embodiment, the YG sensor 31 is installed below the center of the vehicle body 3 (see FIG. 1). The YG sensor 31 includes at least one detection axis, and is arranged so as to detect acceleration acting in the front-rear direction (x-axis) of the vehicle 1 by the detection axis.
  • the notification device 32 is provided on the instrument panel in the passenger compartment and performs notification by display. Specifically, the notification device 32 determines that the position of the radar device 2 with respect to the vehicle main body 3 has changed, that is, that the axis deviation has occurred in the radar device 2 according to the control signal from the control unit 23. To the driver and crew).
  • FIG. 3A shows the detection by the YG sensor 31 and the G sensor 21 when vertical acceleration (gravitational acceleration g) acts on the vehicle 1 in the initial mounting state in which the radar device 2 is mounted on the vehicle 1. It is a figure explaining a value.
  • the initial mounting state means a state in which no axis deviation occurs in the radar device 2 (for example, a state when the vehicle 1 is shipped).
  • a dotted line shown in FIG. 3A indicates an acceleration detection axis in each sensor.
  • the YG sensor 31 detects a detection value YG 0 obtained by projecting the gravitational acceleration g onto the detection axis, and similarly, the G sensor 21 detects a detection value obtained by projecting the gravitational acceleration g onto the detection axis. G 0 is detected.
  • FIG. 3B shows that the gravitational acceleration g is applied to the vehicle 1 in a state where the radar apparatus 2 is shifted in a direction different from the original direction due to some factor (for example, bumper bump, bumper dent, etc.). It is a figure explaining the detected value by YG sensor 31 and G sensor 21 at the time.
  • a state in which the orientation of the radar device 2 is deviated that is, a state in which the inclination of the radio wave axis of the radar device 2 with respect to the x-axis is deviated from a predetermined value is a state in which the radar device 2 is misaligned, Then, the inclination with respect to the x-axis of the detection axis of the G sensor 21 is deviated from the inclination in the initial mounting state.
  • a dotted line shown in FIG. 3B indicates an acceleration detection axis in each sensor in a state in which the radar apparatus 2 is displaced. As shown in FIG.
  • the YG sensor 31 detects a detection value YG obtained by projecting the gravitational acceleration g onto the detection axis, and similarly, the G sensor 21 detects a detection value G obtained by projecting the gravitational acceleration g onto the detection axis. Is detected.
  • a detection difference value D (D G ⁇ YG), which is the difference between the detection value of the G sensor 21 and the detection value of the YG sensor 31, is detected by the G sensor 21 with respect to the x axis in the state shown in FIG. This is a value corresponding to the difference between the inclination ⁇ G of the axis and the inclination ⁇ YG of the detection axis of the YG sensor 31 with respect to the x axis.
  • the radar device 2 is displaced with respect to the initial mounting state based on the calculated difference (G sensor). 21) that the inclination of the detection axis 21 is different from the initial state.
  • the detection values of the YG sensor 31 and the G sensor 21 vary, and as a result, the initial difference value D 0 and the detection difference value D may vary.
  • a plurality of detection difference values D are distributed with a standard deviation ⁇ 1 .
  • the difference (hereinafter referred to as difference difference according to the description) is X 0 shown in the figure.
  • the difference difference X 0 that is to be detected is significantly smaller.
  • the difference of the difference x1 (x1 ⁇ X 0) can be detected.
  • a difference difference x 2 (x 2 >> X) that is significantly larger than the difference difference X 0 to be originally detected. 0 ) can be detected.
  • the axis deviation determination apparatus executes an axis deviation determination process for determining the axis deviation of the radar apparatus 2 in consideration of variations occurring in the initial difference value D 0 and the detection difference value D. That is, in the shaft misalignment determining apparatus according to the present embodiment, a plurality of predetermined initial difference values D 0 are acquired in the state shown in FIG. 3A (initial mounting state), and the plurality of initial difference values D are obtained. calculating a reference difference value Avg 0 is an average value of 0. Further, in the state shown in FIG. 3B, a plurality (p) of detection difference values D are acquired in advance, and an average difference value Avg that is an average value of the plurality of detection difference values D is calculated. . Then, the magnitude of the difference between the average difference value Avg and the reference difference value Avg 0 is evaluated. Furthermore, the axis deviation of the radar apparatus 2 is determined in consideration of variations in the detection difference value D and the initial difference value D 0 .
  • the temperature Th of the radar apparatus 2 in the current acquisition period Ts detected by the temperature sensor 22 is acquired.
  • a temperature Th of the radar device 2 in the current acquisition period Ts, initial in mounted state (when calculating the reference difference value Avg 0) difference between the temperature Th 0 of the radar device 2 (the absolute value of the difference) is It is determined whether or not the temperature is equal to or higher than the temperature threshold Tb.
  • the temperature Th 0 of the radar apparatus 2 in the initial mounting state is stored in the storage unit 24 in advance.
  • the process returns to S100.
  • the process proceeds to S120.
  • the difference calculation process is a process for calculating the moving average A and the standard deviation S of the detected difference value D.
  • the moving average will be described with reference to FIG.
  • the detection difference value D is simply referred to as data.
  • one piece of data is acquired for each detection cycle Tt of the G sensor 21 and the YG sensor 31, and p pieces of predetermined data (p is a positive integer of p ⁇ 2) are obtained.
  • Ts update period
  • Tk update period
  • the moving average is a well-known technique for setting an acquisition period Ts for each update period Tk and calculating an average value of the number (p) of data acquired in the acquisition period Ts.
  • the data acquisition number q is set to 1 as shown in FIG.
  • the detection cycle Tt and the update cycle Tk are equal. That is, first, data is acquired for each detection cycle Tt, stored in the storage unit 24, and the average value for the p pieces of data is calculated in a state where the latest (latest) p pieces of data are stored. .
  • the difference calculation process of S120 is executed every update cycle Tk.
  • the moving average A calculated in S120 is substituted for the average difference value Avg, and the standard deviation S is substituted for the difference standard deviation ⁇ .
  • the reference difference value Avg 0 and the reference standard deviation ⁇ 0 stored in advance in the storage unit 24 are read from the storage unit 24.
  • the difference between the average difference value Avg and the reference difference value Avg 0 is calculated, and it is determined whether or not the calculated difference is equal to or greater than the difference threshold value X.
  • the calculated difference is less than the difference threshold value X, it is determined that no axis deviation has occurred, and the process proceeds to S100.
  • the calculated difference is greater than or equal to the difference threshold value X, it is determined that there is a high possibility that an axis deviation has occurred, and the process proceeds to S160.
  • the process proceeds to S100. That is, in a state where the standard deviation ⁇ d exceeds the deviation threshold value, that is, in a state where the variation of the detection difference value D and the initial difference value D 0 is large, the detected value is low in reliability and the axis deviation occurs. Do not make the determination.
  • the process proceeds to S180 assuming that the detected value has high reliability.
  • a control signal for performing display notification is output to the notification device 32, and the user (driver and occupant) is notified via the notification device 32 that an axis shift has occurred in the radar device 2.
  • the detection value G of the G sensor 21 is acquired, and in the subsequent S220, the detection value YG of the YG sensor 31 is acquired.
  • a detection difference value D that is a difference between the detection value G of the G sensor 21 and the detection value YG of the YG sensor 31 is calculated.
  • the detection difference value D calculated in S230 is stored in the storage unit 24.
  • the storage unit 24 stores the latest (latest) past p detection difference values D, and the previous values are erased by overwriting or the like.
  • the average difference value Avg which is an average value for the plurality of detection difference values D within the acquisition period Ts, and the variation of the plurality of detection difference values D within the acquisition period Ts are calculated. Based on the expressed difference standard deviation ⁇ , the axis deviation generated in the radar apparatus 2 is determined. Therefore, it is possible to accurately determine the axis deviation of the radar apparatus 2 as compared with the configuration in which the axis deviation generated in the radar apparatus 2 is determined based simply on the detection difference value D.
  • the axis deviation of the radar device 2 can be determined based on a change from the initial mounting state. Therefore, not only when the axis deviation of the radar apparatus 2 suddenly occurs but also when it occurs gently (stepwise), it can be easily determined that the axis deviation has occurred.
  • a shaft misalignment occurs when the difference between the temperature Th of the radar apparatus 2 in the acquisition period Ts and the temperature Th 0 of the radar apparatus 2 in the initial attachment state is large. Therefore, it is possible to suppress erroneous determination that an axis deviation has occurred despite the low reliability of the detected value.
  • the deviation threshold for the standard deviation ⁇ d is set as the difference between the average difference value Avg and the reference difference value Avg 0 in S170, that is, the angle of the radar apparatus 2 from the initial mounting state. It is set to a value (X / ⁇ ) that varies depending on the difference threshold X for the difference.
  • the difference threshold value X is set to a smaller value when it is desired to detect the angular deviation from the initial mounting state with higher accuracy
  • the deviation threshold value X / ⁇ with respect to the standard deviation ⁇ d is set to a smaller value. That is, it is set so that the axis deviation determination is performed when there is less variation.
  • control unit 23 corresponds to an example of an axis deviation determination device
  • the G sensor 21 corresponds to an example of a first acceleration sensor
  • the YG sensor 31 corresponds to an example of a second acceleration sensor. To do.
  • an average difference value Avg that is an average value of a plurality of detection difference values D (G ⁇ YG) acquired within the acquisition period Ts is acquired in the initial mounting state.
  • the difference from the reference difference value Avg 0 that is an average value of the plurality of initial difference values D 0 (G 0 -YG 0 ) is less than the difference threshold value X, it is determined that an axis deviation has occurred.
  • the axial displacement detecting device instead of the reference difference value Avg 0, in that use of the average difference value Avg calculated in a past acquisition period Ts, different from the first embodiment To do. Specifically, the contents of the axis deviation determination process executed by the CPU 51 are different.
  • the detection difference value D acquired in the past acquisition period Ts is distributed with the standard deviation ⁇ base
  • the detection difference value D acquired in the current acquisition period Ts is distributed with the standard deviation ⁇ . It shall be.
  • the axis deviation of the radar apparatus 2 is determined in consideration of variations that occur in the detection difference value D acquired in the past acquisition period Ts and the detection difference value D acquired in the current acquisition period Ts. .
  • the value of the temperature Th acquired in the acquisition period (hereinafter referred to as the previous acquisition period) T s-1 in which the update period Tk is one cycle before is set as the temperature Th n-1 and stored in the storage unit 24.
  • the temperature Th in the current acquisition period Ts of the radar device 2 detected by the temperature sensor 22 is acquired as the temperature Th n and stored in the storage unit 24.
  • the difference calculation process (FIG. 8) similar to 1st Embodiment is performed.
  • the moving average A calculated in S365 is substituted for the average difference value Avg, and the standard deviation S is substituted for the difference standard deviation ⁇ .
  • the average differential value to calculate the difference between the Avg n-1 in the average differential value Avg n and the previous acquisition period T s-1 in the current acquisition period Ts is the difference threshold X or more It is determined whether or not there is.
  • the calculated difference is less than the difference threshold value X, it is determined that no axis deviation has occurred, and the process proceeds to S300.
  • the calculated difference is greater than or equal to the difference threshold value X, the process proceeds to S330 on the assumption that there is a high possibility that an axis deviation has occurred.
  • the standard deviation ⁇ acquired in the difference calculation process of the current acquisition period Ts and the standard deviation ⁇ n-1 acquired in the difference calculation process of the previous acquisition period T s-1 Is calculated as a standard deviation ⁇ d representing the magnitude of variation in the detection difference value D in the current acquisition period Ts and the detection difference value D in the previous acquisition period T s ⁇ 1 .
  • an average difference value the value of Avg n-1 of the previously obtained time T s-1 is substituted into the reference difference value Avg base, reference standard values of the previous acquisition period T s-1 standard deviation sigma n-1
  • the deviation ⁇ base is substituted, and the value of the temperature Th n-1 of the previous acquisition period T s-1 is substituted for the reference temperature Th base .
  • a time counter that counts 30 seconds is started. Note that the time counted by the time counter is not limited to 30 seconds, and may be set as appropriate.
  • S350 it is determined whether or not the measurement time by the time counter has passed 30 seconds. If it is determined that 30 seconds have elapsed, the process proceeds to S400.
  • S400 the notification process similar to S180 of 1st Embodiment is performed, and it transfers to S300 after that. On the other hand, if it is determined that the measurement time by the time counter has not passed 30 seconds, the process proceeds to S355.
  • the process proceeds to S390, the time counter is reset, and then the process proceeds to S300. That is, in a state where the temperature of the radar device 2 is greatly deviated from the temperature of the radar device 2 acquired in the past acquisition period Ts, the reliability of the detection values by the G sensor 21 and the YG sensor 31 is low. As a result, the subsequent processing is not executed.
  • the process proceeds to S365.
  • S365 a difference calculation process (see FIG. 8) is executed to calculate the moving average A and the standard deviation S of the detected difference value D.
  • S370 the moving average A calculated in S365 is substituted for the average difference value Avg, and the standard deviation S is substituted for the difference standard deviation ⁇ .
  • the difference between the average difference value Avg and the reference difference value Avg base is calculated, and it is determined whether or not the calculated difference is equal to or greater than the difference threshold value X.
  • the calculated difference is less than the difference threshold value X, it is determined that no axis deviation has occurred, and the process proceeds to S390, the time counter is reset, and then the process proceeds to S300.
  • the calculated difference is greater than or equal to the difference threshold value X, it is determined that there is a high possibility that an axis deviation has occurred, and the process proceeds to S380.
  • the shaft misalignment determination device In addition to the effects [1A], [1B], and [1G] obtained by the above-described shaft misalignment determination device according to the first embodiment, the shaft misalignment determination device according to the second embodiment described above in detail is as follows. Effects [2A], [2B] and [2C] are obtained.
  • the axis misalignment determination apparatus can determine the axis misalignment of the radar apparatus 2 based on a change with respect to the past acquisition period Ts (T s-1 etc.). Therefore, for example, the axial deviation of the radar apparatus 2 is determined based on a change with respect to the most recent acquisition period Ts. It becomes possible to judge.
  • the temperature Th of the radar device 2 within the acquisition period Ts and the temperature (Th base ) of the radar device 2 during the past acquisition period Ts (T s-1 etc.) If the difference between the two is large, it is not determined that the axis deviation has occurred (S360), so that it is possible to suppress erroneous determination that the axis deviation has occurred despite the low reliability of the detected value.
  • S300 to S305, S315 to S360, and S370 to S400 correspond to an example of processing as determination means.
  • S300 to S305, S315 to S360, and S370 to S400 correspond to an example of processing as determination means.
  • the value calculated as the square root of the sum of the square of the difference standard deviation and the square of the standard standard deviation is equal to or less than a predetermined deviation threshold (X / ⁇ ).
  • a predetermined deviation threshold X / ⁇
  • the value used as a determination criterion for the occurrence of the axis deviation is not limited to this.
  • a configuration may be adopted in which it is determined that an axis deviation has occurred on condition that the difference standard deviation ⁇ calculated in S120 is equal to or less than a predetermined deviation threshold value (X / ⁇ ).
  • the flowchart of the axis misalignment determination process is configured such that S160 in the flowchart shown in FIG.
  • the difference threshold value X2 is set to a value larger than the difference threshold value X1 (X1 ⁇ X2), and the constant value ⁇ 2 of the deviation threshold value (X / ⁇ ) is set to a value larger than the constant value ⁇ 1 ( ⁇ 1 ⁇ 2). That is, it is set so that the axis deviation determination is not performed as the difference between the temperature Th of the radar apparatus 2 in the acquisition period Ts and the temperature Th 0 of the radar apparatus 2 in the initial attachment state is larger.
  • the determination criterion for determining the axis deviation is changed according to the difference between the temperature Th of the radar apparatus 2 in the acquisition period Ts and the temperature Th 0 of the radar apparatus 2 in the initial attachment state. It is possible to suppress erroneous determination that an axis deviation has occurred despite the low value reliability.
  • the temperature Th of the radar apparatus 2 within the acquisition period Ts and the reference temperature Th base of the radar apparatus 2 in the past acquisition period Ts may be changed according to the difference between the two.
  • the same processing content as the above-described S113 is added, and after the negative determination is made, the same processing content as the above-described S111 is added. It is good also as a structure.
  • the criterion for determining the axis deviation is changed according to the difference between the temperature of the radar apparatus 2 within the acquisition period Ts and the temperature of the radar apparatus 2 during the past acquisition period Ts (T s-1 etc.). Therefore, similarly, it is possible to suppress erroneous determination that the axis deviation has occurred despite the low reliability of the detection value.
  • the update cycle Tk may be a cycle longer than the detection cycle Tt and shorter than the length of the acquisition period Ts, and the acquisition period Ts may be set for each update cycle Tk. That is, for each update period Tk, the current period is such that the acquisition period Ts (T s-1 etc.) and the part of the period (part of the plurality of detection difference values) overlap by one update period Tk.
  • a period acquisition period Ts is set. For example, if the update cycle Tk is set to a cycle longer than the detection cycle Tt, it is possible to improve the accuracy of determining the axis deviation when the data changes slowly.
  • the deviation threshold for the standard deviation ⁇ d is set as a difference between the average difference value Avg and the reference difference value Avg 0, that is, a difference with respect to the angle difference of the radar apparatus 2 from the initial mounting state.
  • the deviation threshold value X / ⁇ may be set to a large value.
  • the deviation threshold for the standard deviation ⁇ d may be set to an arbitrary value that does not depend on the difference threshold X ( ⁇ may be set to an arbitrary value).
  • the moving average A is calculated in the difference calculation process, but it is only necessary to calculate an average value, and the average value is not limited to the average value.
  • the average value is not limited to the average value.
  • a median value a value that is located in the center when values are arranged in order of magnitude
  • a mode value a value with the highest frequency
  • the temperature Th in the acquisition period Ts is compared with the reference temperature (Th 0 or Th base ), and the shaft misalignment determination is not performed when the difference is large. Was composed.
  • the temperature Th itself in the acquisition period Ts is within a predetermined temperature range (for example, extremely low temperature or extremely high temperature), the axis deviation may not be determined.
  • the G sensor 21 is built in the housing of the radar apparatus 2, but the mounting position (first position) of the G sensor 21 is not limited to this. .
  • the G sensor 21 may be installed, for example, on the outer shell of the casing of the radar device 2.
  • an attachment position is not restricted to this.
  • the mounting position of the radar apparatus 2 may be, for example, an arbitrary position in the front part of the vehicle, or may be the rear part of the vehicle.
  • the YG sensor 31 is installed below the central portion of the vehicle body 3, but the mounting position (second position) of the YG sensor 31 is not limited to this. .
  • the YG sensor 31 is preferably installed at a position away from the radar device 2 in the longitudinal direction (longitudinal direction) of the vehicle.
  • the YG sensor 31 was comprised as an acceleration sensor provided as a part of yaw rate sensor, not only this but the single acceleration sensor similar to the G sensor 21 may be sufficient. Good.
  • the G sensor 21 and the YG sensor 31 detect the projection of the downward acceleration in the vertical direction (gravity acceleration g) in the radio wave axis direction.
  • the direction of acceleration detected by the YG sensor 31 is not limited to the radio wave axis direction.
  • the direction of acceleration detected by the G sensor 21 and the YG sensor 31 may be any direction.
  • an acceleration sensor that detects the inclination of the vehicle 1 with respect to the front-rear direction (x-axis), that is, detects one axis.
  • a sensor that detects the inclination with respect to the (x-axis) and the vertical direction (Z-axis), that is, an acceleration sensor that detects two axes may be used.
  • an acceleration sensor that detects three axes in which the vehicle width direction (y-axis) is added to the longitudinal direction (x-axis) and the vertical direction (z-axis) of the vehicle 1 may be used. Thereby, detection accuracy can be improved more.
  • the functions of one component in the axis misalignment determination device according to the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. . Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate
  • the present invention includes a system including the control unit 23 as a component, a program for causing the control unit 23 to execute, a medium on which the program is recorded, an axis misalignment determination method, etc. It can be realized in various forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 レーダ装置に加わる加速度を検出するGセンサから出力された第1の検出値を取得する第1の検出値取得部と、車両本体に加わる加速度を検出するYGセンサから出力された第2の検出値を取得する第2の検出値取得部と、第1の検出値と第2の検出値との差分である検出差分値を第1の周期毎に算出する差分算出部と、第1の周期を複数含む長さの期間である取得期間内に差分算出部により算出された複数の検出差分値についての平均的な値である平均的差分値を算出する平均的差分値算出部と、取得期間内に差分算出部により算出された複数の検出差分値についての標準偏差である差分標準偏差を算出する偏差算出部と、平均的差分値及び差分標準偏差に基づいて、レーダ装置に生じた軸ずれを判定する判定部とを備える軸ずれ判定装置。

Description

軸ずれ判定装置
 本発明は、車両に搭載されるレーダ装置の軸ずれを判定する技術に関する。
 従来、車両の走行安全性を向上させる各種制御を行うために、レーザ光、超音波、ミリ波等のレーダ波を送受信することによって、車両周辺に存在する物標を検知するレーダ装置が用いられている。
 レーダ装置は、予め定められた照射範囲にレーダ波が照射されるように、車両の予め定められた取付位置に取り付けられている。このため、何らかの要因によってレーダ装置の取付位置にずれが生じると、所定の照射範囲にレーダ波が照射されなくなることにより、物標の検出精度が低下し、車両の走行安全性を向上させるための各種制御の精度が低下するという問題が生じ得る。
 そこで、レーダ装置の軸ずれを検出するための技術が提案されている(特許文献1参照)。特許文献1には、レーダ装置に設けられた加速度センサの検出値と、車両本体に設けられた加速度センサの検出値とを用いて、車両の走行面に垂直な方向について、レーダ装置の軸ずれを判定する構成が開示されている。
特開2004-85258号公報
 しかしながら、例えば、凹凸が多いような路面状態が良好ではない道路を走行する場合、レーダ装置に設けられた加速度センサの検出値、および車両本体に設けられた加速度センサの検出値にばらつきが生じ得るため、レーダ装置の軸ずれの判定に誤判定が生じるおそれがあった。
 本発明は、こうした問題に鑑みてなされたものであり、車両に搭載されるレーダ装置の軸ずれを精度よく判定する技術を備えた軸ずれ判定装置を提供することを目的としている。
 本発明の一実施例に係る軸ずれ判定装置は、第1の検出値取得部と、第2の検出値取得部と、差分算出部と、平均的差分値算出部と、偏差算出部と、判定部とを備える。第1の検出値取得部は、車両における第1の位置に設けられた第1の加速度センサにより検出される検出値であって、車両に搭載されたレーダ装置に加わる加速度を表す第1の検出値を取得する。第2の検出値取得部は、車両における前記第1の位置とは異なる第2の位置に設けられた第2の加速度センサにより検出される検出値であって、車両本体に加わる加速度を表す第2の検出値を取得する。
 差分算出部は、第1の検出値と第2の検出値との差分である検出差分値を第1の周期毎に算出する。平均的差分値算出部は、第1の周期を複数含む長さの期間である取得期間内に、差分算出部により算出された複数の検出差分値についての平均的な値である平均的差分値を算出する。偏差算出部は、取得期間内に差分算出部により算出された複数の検出差分値についての標準偏差である差分標準偏差を算出する。判定部は、平均的差分値及び差分標準偏差に基づいて、レーダ装置に生じた軸ずれを判定する。
 このような構成によれば、取得期間内における複数の検出差分値についての平均的な値である平均的差分値と、当該取得期間内における複数の検出差分値のばらつきを表す差分標準偏差とに基づいて、レーダ装置に生じた軸ずれが判定される。したがって、単に検出差分値に基づいてレーダ装置に生じた軸ずれを判定する構成と比較して、レーダ装置の軸ずれを精度よく判定することが可能となる。
 なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的各部との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
車両におけるGセンサ及びYGセンサの位置関係を示す図である。 第1実施形態に係る軸ずれ判定装置を備えたレーダ装置の電気的な接続を示すブロック図である。 図3(a)は、初期取付状態(出荷前)のYGセンサ及びGセンサによる検出角の一例を示す図であり、図3(b)は初期取付状態の後(出荷後)のYGセンサ及びGセンサによる検出角の一例を示す図である。 複数の初期差分値D0の分布、及び複数の検出差分値Dの分布の一例を示す図である。 第1実施形態に係る軸ずれ判定装置が実行する軸ずれ判定処理のフローチャートである。 検出差分値Dの移動平均の算出方法を説明する図である。 更新周期が検出周期に等しい場合(q=1)における検出差分値Dの移動平均の算出方法を説明する図である。 第1実施形態に係る軸ずれ判定装置が実行する差分算出処理のフローチャートである。 過去の取得期間Tsにおいて算出された複数の検出差分値Dの分布、及び現取得期間Tsにおいて算出された複数の検出差分値Dの分布の一例を示す図である。 第2実施形態に係る軸ずれ判定装置が実行する軸ずれ判定処理のフローチャートである。 第1実施形態の軸ずれ判定装置の変更例3Aに係る軸ずれ判定処理のフローチャートである。 第1実施形態の軸ずれ判定装置の変更例3Bに係る軸ずれ判定処理のフローチャートである。
 以下、本発明が適用された実施形態について、図面を用いて説明する。[第1実施形態][1-1.構成]図1に示す車両1には、前側(図1でいう右側)の端部(バンパ)に、車両1の進行方向にレーダ波を照射するレーダ装置2が搭載されている。レーダ装置2は、第1実施形態に係る軸ずれ判定装置を備えている。レーダ装置2は、後述するレーダセンサ20の検出範囲の中心軸(電波軸)が、車両1の前後方向(車両1の長手方向であって図1に示すx軸方向)及び上下方向(x軸方向及び車幅方向と直交する鉛直方向であって図1に示すz軸方向)に対して所定角度となるように取り付けられている。
 図2に示すように、レーダ装置2は、レーダセンサ20、加速度センサ(以下、Gセンサという)21、温度センサ22、制御部23、及び記憶部24を備える。レーダセンサ20は、レーダ波を送受信することによって物標を観測し、レーダ波を反射した物標までの距離、物標との相対速度等を算出するための観測データを制御部23へ出力する。
 Gセンサ21は、検出軸に作用する加速度を検出周期(第1の周期)Ttごとに検出し、検出結果を制御部23へ出力する。本実施形態では、Gセンサ21は、レーダ装置2の筐体に内蔵されている(図1参照)。したがって、仮にレーダ装置2が何らかの要因(衝突等)で本来の向きとは異なる向きにずれた場合、Gセンサ21の検出軸の向きも同様にずれる。つまり、レーダ装置2(具体的にはレーダセンサ20の電波軸)に軸ずれが生じると、Gセンサ21の検出軸も同様にずれる関係にある。Gセンサ21は、少なくとも1つの検出軸を備え、該検出軸によって車両1の前後方向(x軸)に対するレーダ装置2(Gセンサ21の検出軸)の傾きを検出するように配置されている。
 温度センサ22は、レーダ装置2の温度を検出し、検出結果を制御部23へ出力する。本実施形態では、温度センサ22は、レーダ装置2の筐体に内蔵されている。制御部23は、CPU51、ROM52、RAM53を中心とする周知のマイクロコンピュータによって構成されている。CPU51は、記憶部24に記憶されたプログラムに従って、レーダセンサ20からの観測データに基づいてレーダ波を反射した物標までの距離、物標との相対速度等を算出する物標算出処理、及びレーダ装置2の軸ずれを判定する軸ずれ判定処理を少なくとも実行する。
 一方、車両1には、ヨーレートセンサの一部として設けられている加速度センサ(以下、YGセンサという)31と、報知装置32とが、車両本体3に搭載されている。YGセンサ31(ヨーレートセンサ)は、Gセンサ21と同様、検出軸に作用する加速度を検出周期Ttごとに検出し、検出結果を制御部23へ出力する。本実施形態では、YGセンサ31は、車両本体3の中央部下方に設置されている(図1参照)。YGセンサ31は、少なくとも1つの検出軸を備え、該検出軸によって車両1の前後方向(x軸)に作用する加速度を検出するように配置されている。
 報知装置32は、車室内のインストルメントパネルに設けられ、表示による報知を行う。具体的には、報知装置32は、制御部23からの制御信号に従い、車両本体3を基準とするレーダ装置2の位置が変化したこと、つまりレーダ装置2に軸ずれが生じたことをユーザ(運転者及び乗員)に報知する。
 [1-2.軸ずれ判定方法の概要]次に、Gセンサ21とYGセンサ31とを用いてレーダ装置2の軸ずれを判定する方法の概要について説明する。この判定方法は、第1実施形態に係る軸ずれ判定装置が実行する。図3(a)は、車両1にレーダ装置2が取り付けられた初期取付状態において、車両1に鉛直方向下向きの加速度(重力加速度g)が作用したときの、YGセンサ31及びGセンサ21による検出値を説明する図である。初期取付状態とは、レーダ装置2に軸ずれが生じていない状態(例えば車両1の出荷時の状態)を意味する。図3(a)に示す点線は、それぞれのセンサにおける加速度の検出軸を示す。図3(a)に示すように、YGセンサ31は重力加速度gを検出軸に投影した検出値YG0を検出し、同様に、Gセンサ21は、重力加速度gを検出軸に投影した検出値G0を検出する。
 そして、Gセンサ21の検出値とYGセンサ31の検出値との差分である初期差分値D0(D0=G0-YG0)は、図3(a)に示す状態(初期取付状態)におけるx軸に対するGセンサ21の検出軸の傾きθG0とx軸に対するYGセンサ31の検出軸の傾きθYG0との差に応じた値となる。
 一方、図3(b)は、何らかの要因(例えばバンパへの衝突、バンパの凹み等)によってレーダ装置2が本来の向きとは異なる向きにずれた状態において、車両1に重力加速度gが作用したときの、YGセンサ31及びGセンサ21による検出値を説明する図である。レーダ装置2の向きがずれた状態、つまりレーダ装置2の電波軸のx軸に対する傾きが所定値からずれた状態が、レーダ装置2に軸ずれが生じた状態であり、軸ずれが生じた状態では、Gセンサ21の検出軸のx軸に対する傾きは初期取付状態での傾きからずれている。図3(b)に示す点線は、レーダ装置2に軸ずれが生じた状態での、それぞれのセンサにおける加速度の検出軸を示す。図3(b)に示すように、YGセンサ31は重力加速度gを検出軸に投影した検出値YGを検出し、同様に、Gセンサ21は、重力加速度gを検出軸に投影した検出値Gを検出する。
 そして、Gセンサ21の検出値とYGセンサ31の検出値との差分である検出差分値D(D=G-YG)は、図3(b)に示す状態におけるx軸に対するGセンサ21の検出軸の傾きθとx軸に対するYGセンサ31の検出軸の傾きθYGとの差に応じた値となる。
 したがって、検出差分値Dと初期差分値D0との差分を算出すれば、算出された差分の大きさに基づいて、初期取付状態に対してレーダ装置2に変位が生じていること(Gセンサ21の検出軸の傾きが初期状態と異なっていること)が検出可能となる。
 ただし、例えば凹凸が多いような路面状態が良好ではない道路を車両1が走行する場合、YGセンサ31及びGセンサ21の検出値にばらつきが生じ、その結果、初期差分値D0や検出差分値Dにばらつきが生じ得る。
 例えば図4に示すように、初期差分値D0を複数個取得した場合に、複数の初期差分値D0が基準標準偏差σ0で分布し、同様に、検出差分値Dを複数個取得した場合に、複数の検出差分値Dが標準偏差σで分布するものとする。なお、初期差分値D0及び検出差分値Dにばらつきの生じない理想的な状況であると仮定すると、理想的な検出差分値Avg(mG)と理想的な初期差分値Avg0(mG)との差分(以下では、説明に応じて差分の差という)は、図中に示すX0となる。
 しかしながら、ばらつきの生じる実際の状況では、例えば、初期差分値としてD0_1が検出され、検出差分値DとしてD_1が検出された場合、本来検出されるべき差分の差X0よりも大幅に小さい差分の差x1(x1<<X0)が検出され得る。この場合、実際には軸ずれが生じているにもかかわらず、軸ずれが生じていないと誤判定され得る。また例えば、初期差分値としてD0_2が検出され、検出差分値DとしてD_2が検出された場合、本来検出されるべき差分の差X0よりも大幅に大きい差分の差x2(x2>>X0)が検出され得る。この場合、実際には軸ずれが生じていないにもかかわらず、軸ずれが生じていると誤判定され得る。このように、検出差分値Dと初期差分値D0との差分の大きさを単純に評価する判定では、レーダ装置2の軸ずれの判定に誤判定が生じるおそれがあった。
 そこで、本実施形態に係る軸ずれ判定装置では、初期差分値D0及び検出差分値Dに生じるばらつきを考慮してレーダ装置2の軸ずれを判定する軸ずれ判定処理を実行する。すなわち、本実施形態に係る軸ずれ判定装置では、図3(a)に示す状態(初期取付状態)において、初期差分値D0を予め定められた複数個取得し、これら複数の初期差分値D0の平均値である基準差分値Avg0を算出する。また、図3(b)に示す状態において、検出差分値Dを予め定められた複数個(p個)取得し、これら複数の検出差分値Dの平均値である平均的差分値Avgを算出する。そして、平均的差分値Avgと基準差分値Avg0との差分の大きさを評価する。さらに、検出差分値D及び初期差分値D0のばらつきを加味した上で、レーダ装置2の軸ずれを判定する。
 [1-3.処理]次に、本実施形態に係る軸ずれ判定装置の制御部23が実行する軸ずれ判定処理の具体的処理手順について、図5に示すフローチャートを用いて説明する。なお、図5に示す処理は、エンジン作動中に実行される。
 まずS100(Sはステップを表す)では、温度センサ22によって検出された、現取得期間Tsにおけるレーダ装置2の温度Thを取得する。続くS110では、現取得期間Tsにおけるレーダ装置2の温度Thと、初期取付状態における(基準差分値Avg0を算出したときの)レーダ装置2の温度Th0との差分(差の絶対値)が、温度閾値Tb以上であるか否かを判定する。なお、初期取付状態におけるレーダ装置2の温度Th0は、予め記憶部24に記憶されている。ここで、温度Thと温度Th0との差分が温度閾値Tb以上である場合はS100に戻る。つまり、本軸ずれ判定処理を実行するときのレーダ装置2の温度が初期取付状態の温度に対して大きくずれているような状態では、Gセンサ21及びYGセンサ31による検出値の信頼性が低いものとして、以降の処理を実行しないようにする。一方、温度Thと温度Th0との差分が温度閾値Tb未満である場合、S120に移行する。
 S120では、後述する差分算出処理を実行する。差分算出処理は、検出差分値Dの移動平均A及び標準偏差Sを算出する処理である。ここで、図6を用いて、移動平均について説明する。なお、ここでは簡単のため、検出差分値Dを単にデータという。
 図6に示すように、Gセンサ21及びYGセンサ31の検出周期Tt毎に1個のデータを取得するものとし、予め定めたp個(pは、p≧2の正の整数)のデータを取得する期間を取得期間Tsという(Ts=Tt×p)。そして、検出周期Tt以上の長さであって、予め定めたq個(qは、q≧1の正の整数)のデータを取得するように設定された、取得期間Tsよりも短い予め定められた期間(第2の周期)を更新周期Tkという(Tk=Tt×q)。
 移動平均とは、図6に示すように、更新周期Tkごとに取得期間Tsを設定し、該取得期間Ts内に取得した数(p個)のデータの平均値を算出する周知の手法である。本実施形態では特に、図7に示すように、データ取得数qを1に設定する。この場合、検出周期Ttと更新周期Tkとが等しくなる。つまり、まず、検出周期Ttごとにデータを取得して記憶部24に記憶し、直近(最新)のp個のデータが記憶されている状態で、それらp個のデータについての平均値を算出する。その後は、データ1個(q=1の場合)を取得するために要する期間(更新周期Tk)だけ取得期間Tsをずらして次のp個のデータについての平均値を算出する、という作業を繰り返す。このようにして算出した取得期間Ts毎の平均値を、ここでは移動平均Aという。また、取得期間Ts内に取得したp個のデータについての標準偏差を標準偏差Sという。
 このように、本実施形態では、S120の差分算出処理が、更新周期Tk毎に実行される。次にS130では、S120で算出した移動平均Aを平均的差分値Avgに代入し、標準偏差Sを差分標準偏差σに代入する。
 続くS140では、予め記憶部24に記憶されている基準差分値Avg0及び基準標準偏差σ0を記憶部24から読み出す。次にS150では、平均的差分値Avgと基準差分値Avg0との差分を算出し、算出した差分が、差分閾値X以上であるか否かを判定する。ここで、算出した差分が差分閾値X未満である場合、軸ずれが生じていないものとして、S100へ移行する。一方、算出した差分が差分閾値X以上である場合、軸ずれが生じている可能性が高いものとしてS160へ移行する。
 S160では、(1)式に示すように、差分標準偏差σと基準標準偏差σ0との二乗和平方根を、検出差分値D及び初期差分値D0のばらつきの大きさを表す標準偏差σdとして算出する。
Figure JPOXMLDOC01-appb-M000001
 次にS170では、標準偏差σdが、偏差閾値X/α以下であるか否かを判定する(本実施形態ではα=3である)。ここで、標準偏差σdが偏差閾値X/αを超えている場合、S100へ移行する。つまり、標準偏差σdが偏差閾値を越えるような状態、すなわち検出差分値D及び初期差分値D0のばらつきが大きいような状態では、検出値の信頼性が低いものとして、軸ずれが生じているとの判定を行わないようにする。一方、標準偏差σdが偏差閾値以下である場合、検出値の信頼性が高いものとして、S180へ移行する。
 S180では、表示による報知を行わせる制御信号を報知装置32へ出力し、レーダ装置2に軸ずれが生じたことを、報知装置32を介してユーザ(運転者及び乗員)に報知する。次に、軸ずれ判定処理のS120にて実行する差分算出処理について、図8に示すフローチャートを用いて説明する。差分算出処理は、前述のように、更新周期Tk毎に繰り返し実行される。なお、本実施形態ではq=1に設定されている。
 S200では、カウンタqcの初期化(qc=0)を行う。次にS210ではGセンサ21の検出値Gを取得し、続くS220ではYGセンサ31の検出値YGを取得する。次にS230では、Gセンサ21の検出値GとYGセンサ31の検出値YGとの差分である検出差分値Dを算出する。続くS240では、S230にて算出した検出差分値Dを記憶部24に記憶する。記憶部24には、直近(最新)の過去p個の検出差分値Dが記憶され、それ以前の値は上書き等により消去される。次にS250では、カウンタqcをインクリメントする(qc+1→qc)。続くS260では、カウンタqcがq(q=1)未満である場合S210へ戻り、q(q=1)に等しい場合はS270に移行する。
 次にS270では、差分G-YGについて、記憶部24に記憶されている過去p個のデータを取得する。続くS280では、p個の検出差分値Dの平均値(移動平均)Aを算出する。次にS290では、p個の検出差分値Dの標準偏差Sを算出し、本差分算出処理を終了する。
 なお、S270において、差分G-YGについて、記憶部24から過去p個のデータを取得できない場合、つまり記憶部24にまだp個のデータが記憶されていない場合は、S280およびS290の処理を実行せずに本差分算出処理を終了し、軸ずれ判定処理(図5)のS100に移行する。
 [1-4.効果]以上詳述した第1実施形態に係る軸ずれ検出装置によれば、以下の効果[1A]~[1G]が得られる。[1A]第1実施形態では、取得期間Ts内における複数の検出差分値Dについての平均的な値である平均的差分値Avgと、当該取得期間Ts内における複数の検出差分値Dのばらつきを表す差分標準偏差σと、に基づいて、レーダ装置2に生じた軸ずれが判定される。したがって、単に検出差分値Dに基づいてレーダ装置2に生じた軸ずれが判定される構成と比較して、レーダ装置2の軸ずれを精度よく判定することが可能となる。
 [1B]第1実施形態に係る軸ずれ検出装置では、平均的差分値Avgと基準差分値Avg0との差分が差分閾値X未満である場合には軸ずれが生じたと判定されないため(S150)、検出誤差等に起因する平均的差分値の僅かな変化などにより軸ずれが生じたと誤判定されてしまうことを抑制することができる。
 [1C]第1実施形態に係る軸ずれ検出装置では、初期取付状態からの変化に基づいてレーダ装置2の軸ずれを判定することができる。したがって、レーダ装置2の軸ずれが急激に生じた場合だけでなく緩やかに(段階的に)生じた場合にも、軸ずれと判定されやすくすることができる。
 [1D]第1実施形態に係る軸ずれ検出装置では、取得期間Ts内における複数の検出差分値Dのばらつきが大きい場合には軸ずれが生じたと判定されないため(S170)、検出値の信頼性が低いにもかかわらず軸ずれが生じたと誤判定されてしまうことを抑制することができる。特に、初期取付状態での標準偏差(基準標準偏差σ0)も加味されるため、判定精度を高くすることができる。
 [1E]第1実施形態に係る軸ずれ検出装置では、取得期間Ts内におけるレーダ装置2の温度Thと初期取付状態におけるレーダ装置2の温度Th0との差分が大きい場合には軸ずれが生じたと判定されないため、検出値の信頼性が低いにもかかわらず軸ずれが生じたと誤判定されてしまうことを抑制することができる。
 [1F]第1実施形態に係る軸ずれ検出装置では、レーダ装置2に軸ずれが生じていると判定された場合に、レーダ装置2に軸ずれが生じていることを車両1の乗員に認識させることができる(S180)。
 [1G]第1実施形態に係る軸ずれ検出装置では、S170において標準偏差σdに対する偏差閾値を、平均的差分値Avgと基準差分値Avg0との差分すなわち初期取付状態からのレーダ装置2の角度差に対する差分閾値Xによって変わる値(X/α)に設定している。これにより、初期取付状態からの角度ずれをより精度よく検出したい場合に差分閾値Xをより小さい値に設定すると、標準偏差σdに対する偏差閾値X/αがより小さい値に設定される。つまり、よりばらつきの少ない場合に軸ずれ判定を行うように設定される。
 なお、第1実施形態では、制御部23が軸ずれ判定装置の一例に相当し、Gセンサ21が第1の加速度センサの一例に相当し、YGセンサ31が第2の加速度センサの一例に相当する。
 [2.第2実施形態][2-1.第1実施形態との相違点]第2実施形態に係る軸ずれ検出装置は、基本的な構成は第1実施形態のものと同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
 前述した第1実施形態に係る軸ずれ検出装置では、取得期間Ts内に取得された複数の検出差分値D(G-YG)の平均値である平均的差分値Avgと、初期取付状態において取得された複数の初期差分値D0(G0-YG0)の平均値である基準差分値Avg0との差分が差分閾値X未満である場合に、軸ずれが生じているとの判定を行わないように構成されていた。これに対し、第2実施形態に係る軸ずれ検出装置では、基準差分値Avg0に代えて、過去の取得期間Tsにおいて算出された平均的差分値Avgを用いる点で、第1実施形態と相違する。具体的には、CPU51が実行する軸ずれ判定処理の内容が相違する。
 例えば図9に示すように、過去の取得期間Tsにおいて取得された検出差分値Dが標準偏差σbaseで分布し、現取得期間Tsにおいて取得された検出差分値Dが標準偏差σで分布しているものとする。本実施形態では、過去の取得期間Tsにおいて取得された検出差分値D、及び、現取得期間Tsにおいて取得された検出差分値Dに生じるばらつきを考慮して、レーダ装置2の軸ずれを判定する。
 [2-2.処理]次に、第1実施形態 に係る軸ずれ検出装置が実施する軸ずれ判定処理(図5)に代えて、第2実施形態
に係る軸ずれ判定装置としての制御部23が実行する軸ずれ判定処理の具体的処理手順について、図10に示すフローチャートを用いて説明する。なお、図10に示す処理は、第1実施形態と同様、エンジン作動中に実行される。
 まずS300では、更新周期Tkが1周期前の(過去の)取得期間(以下、前回取得期間という)Ts-1で取得した温度Thの値を温度Thn-1とし、記憶部24に記憶する。次にS305では、温度センサ22によって検出されたレーダ装置2の現取得期間Tsにおける温度Thを温度Thnとして取得し、記憶部24に記憶する。続くS310では、第1実施形態と同様の差分算出処理(図8)を実行する。データ取得数qは第1実施形態と同様に1に設定される(q=1)。次にS370では、S365で算出した移動平均Aを平均的差分値Avgに代入し、標準偏差Sを差分標準偏差σに代入する。
 次にS315では、予め記憶部24に記憶されていたAvgnの値をAvgn-1に代入し、σnの値をσn-1に代入する。続くS320では、現取得期間Tsにおいて、S310にて算出した移動平均Aを平均的差分値Avgnに代入し、標準偏差Sを差分標準偏差σn-1に代入する。
 次にS325では、現取得期間Tsにおける平均的差分値Avgnと前回取得期間Ts-1における平均的差分値Avgn-1との差分を算出し、算出した差分が、差分閾値X以上であるか否かを判定する。ここで、算出した差分が差分閾値X未満である場合、軸ずれが生じていないものとして、S300に移行する。一方、算出した差分が差分閾値X以上である場合、軸ずれが生じている可能性が高いものとしてS330へ移行する。
 S330では、(2)式に示すように、現取得期間Tsの差分算出処理で取得した標準偏差σと、前回取得期間Ts-1の差分算出処理内で取得した標準偏差σn-1との二乗和平方根を、現取得期間Tsでの検出差分値D及び前回取得期間Ts-1での検出差分値Dのばらつきの大きさを表す標準偏差σdとして算出する。
Figure JPOXMLDOC01-appb-M000002
 次にS335では、標準偏差σdが、偏差閾値X/α以下であるか否かを判定する(α=3)。ここで、標準偏差σdが偏差閾値X/αを超えている場合、S300へ移行する。つまり、標準偏差σdが偏差閾値を越えるような状態、すなわち現取得期間Tsにおける検出差分値D及び前回取得期間Ts-1における検出差分値Dのばらつきが大きいような状態では、検出値の信頼性が低いものとして、軸ずれが生じているとの判定を行わないようにする。一方、標準偏差σdが偏差閾値以下である場合、検出値の信頼性が高いものとして、S340へ移行する。
 S340では、前回取得期間Ts-1の平均的差分値Avgn-1の値を基準差分値Avgbaseに代入し、前回取得期間Ts-1の標準偏差σn-1の値を基準標準偏差σbaseに代入し、前回取得期間Ts-1の温度Thn-1の値を基準温度Thbaseに代入する。
 次にS345では、30秒をカウントする計時カウンタをスタートさせる。なお、計時カウンタによりカウントされる時間は30秒に限るものではなく、適宜設定されてよい。続くS350では、計時カウンタによる計測時間が30秒を経過したか否かを判定する。ここで、30秒を経過したと判定した場合、S400へ移行する。S400では、第1実施形態のS180と同様の報知処理を実行し、その後S300へ移行する。一方、計時カウンタによる計測時間が30秒を経過していないと判定した場合、S355へ移行する。
 S355では、温度センサ22によって検出されたレーダ装置2の現取得期間Tsにおける温度Thを取得する。続くS360では、現取得期間Tsにおける温度Thと基準温度Thbaseとの差分が、温度閾値Tb以上であるか否かを判定する。ここで、温度Thと基準温度Thbaseとの差分が温度閾値Tb以上である場合は、S390に移行して計時カウンタをリセットした後にS300へ移行する。つまり、レーダ装置2の温度が過去の取得期間Tsにて取得したレーダ装置2の温度に対して大きくずれているような状態では、Gセンサ21及びYGセンサ31による検出値の信頼性が低いものとして、以降の処理を実行しないようにする。一方、温度Thと基準温度Thbaseとの差分が温度閾値Tb未満である場合、S365に移行する。
 S365では、差分算出処理(図8参照)を実行し、検出差分値Dの移動平均A及び標準偏差Sを算出する。次にS370では、S365で算出した移動平均Aを平均的差分値Avgに代入し、標準偏差Sを差分標準偏差σに代入する。
 続くS375では、平均的差分値Avgと基準差分値Avgbaseとの差分を算出し、算出した差分が、差分閾値X以上であるか否かを判定する。ここで、算出した差分が差分閾値X未満である場合、軸ずれが生じていないものとして、S390へ移行して計時カウンタをリセットした後にS300へ移行する。一方、算出した差分が差分閾値X以上である場合、軸ずれが生じている可能性が高いものとしてS380へ移行する。
 S380では、(3)式に示すように、差分標準偏差σと基準標準偏差σbaseとの二乗和平方根を、標準偏差σdとして算出する。
Figure JPOXMLDOC01-appb-M000003
 次にS385では、標準偏差σdが、偏差閾値X/α以下であるか否かを判定する(α=3)。ここで、標準偏差σdが偏差閾値X/αを超えている場合、S390へ移行して計時カウンタをリセットした後にS300へ移行する。一方、標準偏差σdが偏差閾値以下である場合、検出値の信頼性が高いものとして、S350へ移行する。こうして、S350からS385までの一連の処理を繰り返す。
 つまり、第2実施形態に係る軸ずれ判定装置の軸ずれ判定処理では、まず、現取得期間Tsにおいて前回取得期間Ts-1に対する変化に基づいてレーダ装置2に軸ずれの可能性があるか否かを判定する(S325、S335)。ここで、軸ずれの可能性が高いと判定された場合(S335:YES)、次の取得期間Ts以降においては、この前回取得期間Ts-1に対する変化に基づいてレーダ装置2に軸ずれの可能性があるか否かを判定する(S355からS385まで)。そして、レーダ装置2に軸ずれの可能性があるとする判定結果が30秒継続した場合に(S350:YES)、レーダ装置2に軸ずれが生じたことをユーザ(運転者及び乗員)に報知する(S400)。
 以上詳述した第2実施形態に係る軸ずれ判定装置によれば、前述した第1実施形態に係る軸ずれ判定装置で得られる効果[1A]、[1B]及び[1G]に加え、以下の効果[2A]、[2B]及び[2C]が得られる。
 [2A]第2実施形態に係る軸ずれ判定装置では、過去の取得期間Ts(Ts-1等)に対する変化に基づいてレーダ装置2の軸ずれを判定することができる。したがって、例えば直近の取得期間Tsに対する変化に基づいてレーダ装置2の軸ずれを判定するといったように、温度等の環境条件が近い状態(環境条件の変化が影響しにくい状態)で、軸ずれを判定することが可能となる。
 [2B]第2実施形態に係る軸ずれ判定装置では、取得期間Ts内における複数の検出差分値のばらつきが大きい場合には軸ずれが生じたと判定されないため(S335、S385)、検出値の信頼性が低いにもかかわらず軸ずれが生じたと誤判定されてしまうことを抑制することができる。特に、過去の取得期間Ts-1における標準偏差も加味されるため、判定精度を高くすることができる。
 [2C]第2実施形態に係る軸ずれ判定装置では、取得期間Ts内におけるレーダ装置2の温度Thと過去の取得期間Ts(Ts-1等)におけるレーダ装置2の温度(Thbase)との差分が大きい場合には軸ずれが生じたと判定されないため(S360)、検出値の信頼性が低いにもかかわらず軸ずれが生じたと誤判定されてしまうことを抑制することができる。
 なお、第2実施形態に係る軸ずれ判定装置では、S300-S305、S315-S360、S370-S400が判定手段としての処理の一例に相当する。[3.他の実施形態]以上、本発明の実施形態に係る軸ずれ判定装置について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
 [3A]上記実施形態(第1実施形態)のS170では、差分標準偏差の二乗と基準標準偏差の二乗との和の平方根として算出した値が、所定の偏差閾値(X/α)以下であることを条件として、軸ずれが生じたと判定したが、軸ずれが生じたことの判定基準とする値はこれに限るものではない。例えば、S120にて算出した差分標準偏差σが、所定の偏差閾値(X/α)以下であることを条件として、軸ずれが生じたと判定するように構成してもよい。この場合、軸ずれ判定処理のフローチャートは、図11に示すように、図5に示すフローチャートのS160を削除し、S170をS175に置換したものとして構成される。これによっても、上記実施形態と同様に、取得期間Ts内における複数の検出差分値のばらつきが大きい場合には軸ずれが生じたと判定されないため、検出値の信頼性が低いにもかかわらず軸ずれが生じたと誤判定されてしまうことを抑制することができる。
 なお、第2実施形態においても同様に、S330を削除してS335の処理内容をσn≦X/αに置換し、S380を削除してS385の処理内容をσ≦X/αに置換してもよい。これにより、同様に、取得期間Ts内における複数の検出差分値のばらつきが大きい場合には軸ずれが生じたと判定されないため、検出値の信頼性が低いにもかかわらず軸ずれが生じたと誤判定されてしまうことを抑制することができる。
 [3B]上記実施形態で(第1実施形態)のS110では、取得期間Tsにおけるレーダ装置2の温度Thと、初期取付状態におけるレーダ装置2の温度Th0との差分が、所定の温度閾値Tb以上である場合には、軸ずれを判定しないように構成されていた。これに対し、取得期間Tsにおけるレーダ装置2の温度Thと、初期取付状態におけるレーダ装置2の温度Th0との差分に応じて、軸ずれを判定するための判定基準を変更するように構成してもよい。この場合、軸ずれ判定処理のフローチャートは、図12に示すように、図5に示すS110の判定処理の後に、S111及びS113の処置を追加して構成される。すなわち、図12において、S110にて温度の差分が温度閾値Tb未満である場合(S110:NO)にS111へ移行し、差分閾値XをX1に設定し、偏差閾値(X/α)の一定値αをα1に設定する。一方、S110にて温度の差分が温度閾値Tb以上である場合(S110:YES)S113へ移行し、差分閾値XをX2に設定し、偏差閾値(X/α)の一定値αをα2に設定する。ここで、差分閾値X2は差分閾値X1より大きい値に設定され(X1<X2)、偏差閾値(X/α)の一定値α2は一定値α1より大きい値に設定される(α1<α2)。つまり、取得期間Tsにおけるレーダ装置2の温度Thと、初期取付状態におけるレーダ装置2の温度Th0との差分が大きいほど、軸ずれ判定が行われないように設定される。このように、取得期間Ts内におけるレーダ装置2の温度Thと初期取付状態におけるレーダ装置2の温度Th0との差分に応じて、軸ずれを判定するための判定基準が変更されるため、検出値の信頼性が低いにもかかわらず軸ずれが生じたと誤判定されてしまうことを抑制することができる。
 なお、第2実施形態に係る軸ずれ判定装置においても同様に、取得期間Ts内におけるレーダ装置2の温度Thと過去の取得期間Ts(Ts-1等)におけるレーダ装置2の基準温度Thbaseとの差分に応じて、軸ずれを判定するための判定基準が変更される構成であってもよい。この場合、例えば、図10のフローチャートにおいて、S360の判定処理において肯定判定された後に前述のS113と同様の処理内容を追加し、否定判定された後に、前述のS111と同様の処理内容を追加した構成としてもよい。これにより、取得期間Ts内におけるレーダ装置2の温度と過去の取得期間Ts(Ts-1等)におけるレーダ装置2の温度との差分に応じて、軸ずれを判定するための判定基準が変更されるため、同様に、検出値の信頼性が低いにもかかわらず軸ずれが生じたと誤判定されてしまうことを抑制することができる。
 [3C]上記実施形態に係る軸ずれ判定装置では、更新周期Tkを検出周期Ttとを同じ周期(q=1)として設定していたが、これに限るものではない。更新周期Tkは、検出周期Tt以上の長さであって取得期間Tsの長さよりも短い周期であればよく、この更新周期Tk毎に取得期間Tsが設定されればよい。つまり、更新周期Tk毎に、更新周期Tkが1周期前の取得期間Ts(Ts-1等)と期間の一部(複数の検出差分値のうちの一部)が重複するように、現周期の取得期間Tsが設定される。例えば、更新周期Tkを検出周期Ttよりも長い周期に設定すれば、データが緩やかに変化する場合に、軸ずれの判定精度を向上させることができる。
 [3D]上記実施形態に係る軸ずれ判定装置では、標準偏差σdに対する偏差閾値を、平均的差分値Avgと基準差分値Avg0との差分すなわち初期取付状態からのレーダ装置2の角度差に対する差分閾値Xによって変わる値(X/α)に設定していた(αは固定値(α=3)で、正の整数。)が、これに限るものではない。例えば、平均的差分値Avgと基準差分値Avg0との差分に応じて、該差分が相対的に大きい場合に、偏差閾値X/αが大きな値となるように設定してもよい。また、標準偏差σdに対する偏差閾値を、差分閾値Xによらない任意の値に設定してもよい(αを任意の値に設定してよい)。
 [3E]上記実施形態に係る軸ずれ判定装置では、差分算出処理において移動平均Aを算出したが、平均的な値が算出されればよく、単に平均値に限定されない。例えば、平均値(値の総和/値の個数)に代えて、中央値(値を大きさ順に並べたときに中央に位置する値)や、最頻値(もっとも度数の多い値)を算出するようにしてもよい。また例えば、最大値及び最小値を除いた残りの平均値を算出するようにしてもよい。
 [3F]上記実施形態に係る軸ずれ判定装置では、取得期間Tsにおける温度Thと基準となる温度(Th0又はThbase)とを比較し、差分が大きい場合に軸ずれ判定を行わないように構成されていた。これに対し、取得期間Tsにおける温度Th自体が所定の温度範囲(例えば、極端に低温又は極端に高温など)であれば軸ずれを判定しないようにしてもよい。
 [3G]上記実施形態に係る軸ずれ判定装置では、Gセンサ21は、レーダ装置2の筐体に内蔵されていたが、Gセンサ21の取付位置(第1の位置)は、これに限らない。Gセンサ21は、例えばレーダ装置2の筐体の外殻に設置されていてもよい。また、上記実施形態では、レーダ装置2は車両の進行方向前側(バンパ)に取り付けられていたが、取付位置はこれに限るものではない。レーダ装置2の取付位置は、例えば、車両の前部における任意の位置であってよく、また、車両の後部であってもよい。
 [3H]上記実施形態に係る軸ずれ判定装置では、YGセンサ31は車両本体3の中央部下方に設置されていたが、YGセンサ31の取付位置(第2の位置)は、これに限らない。ただし、YGセンサ31は、車両の前後方向(長手方向)において、レーダ装置2から離れた位置に設置されていることが好ましい。また、YGセンサ31は、上記実施形態では、ヨーレートセンサの一部として設けられている加速度センサとして構成されていたが、これに限らず、Gセンサ21と同様の単体の加速度センサであってもよい。
 [3I]上記実施形態に係る軸ずれ判定装置では、Gセンサ21及びYGセンサ31によって、鉛直方向下向きの加速度(重力加速度g)の電波軸方向への投影が検出されていたが、Gセンサ21及びYGセンサ31によって検出される加速度の方向は、電波軸方向に限らない。Gセンサ21及びYGセンサ31によって検出される加速度の方向は、どの方向であってもよい。
 [3J]上記実施形態に係る軸ずれ判定装置では、車両1の前後方向(x軸)に対する傾きを検出する、つまり1軸を検出する加速度センサを用いているが、例えば、車両1の前後方向(x軸)及び上下方向(Z軸)に対する傾きを検出するセンサ、つまり2軸を検出する加速度センサを用いてもよい。また例えば、車両1の前後方向(x軸)及び上下方向(z軸)に車幅方向(y軸)を加えた、3軸を検出する加速度センサを用いてもよい。これにより、より検出精度を向上させることができる。
 [3K]上記実施形態に係る軸ずれ判定装置における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を、課題を解決できる限りにおいて省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。
 [3L]本発明は、前述した制御部23の他、当該制御部23を構成要素とするシステム、当該制御部23に実行させるためのプログラム、このプログラムを記録した媒体、軸ずれ判定方法など、種々の形態で実現することができる。
 1…車両 2…レーダ装置 3…車両本体 20…レーダセンサ 21…Gセンサ 22…温度センサ 23…制御部 24…記憶部 31…YGセンサ 32…報知装置 51…CPU 52…ROM 53…RAM。

Claims (14)

  1.  車両(1)における第1の位置に設けられた第1の加速度センサ(21)により検出され出力される検出値であって前記車両に搭載されたレーダ装置(2)に加わる加速度を表す第1の検出値を取得する第1の検出値取得部(51、S210)と、
     前記車両における前記第1の位置とは異なる第2の位置に設けられた第2の加速度センサ(31)により検出され出力される検出値であって車両本体(3)に加わる加速度を表す第2の検出値を取得する第2の検出値取得部(51、S220)と、
     前記第1の検出値と前記第2の検出値との差分である検出差分値を第1の周期毎に算出する差分算出部(51、S230)と、
     前記第1の周期を複数含む長さの期間である取得期間内に前記差分算出部により算出された複数の前記検出差分値についての平均的な値である平均的差分値を算出する平均的差分値算出部(51、S280)と、
     前記取得期間内に前記差分算出部により算出された複数の前記検出差分値についての標準偏差である差分標準偏差を算出する偏差算出部(51、S290)と、
     前記平均的差分値及び前記差分標準偏差に基づいて、前記レーダ装置に生じた軸ずれを判定する判定部(51、S100-S113、S130~S180、S300~S305、S315~S360、S370~S400)と、を備えることを特徴とする軸ずれ判定装置(23)。
  2.  請求項1に記載の軸ずれ判定装置であって、前記判定部(51、S150、S325、S375)は、前記平均的差分値と所定の基準差分値との差分が、所定の差分閾値以上であることを条件として、前記軸ずれが生じたと判定すること、を特徴とする軸ずれ判定装置。
  3.  請求項2に記載の軸ずれ判定装置であって、前記基準差分値とは、前記レーダ装置に前記軸ずれが生じていない初期取付状態において複数取得された前記第1の検出値と前記第2の検出値との差分についての前記平均的な値であること、を特徴とする軸ずれ判定装置。
  4.  請求項3に記載の軸ずれ判定装置であって、前記判定部(51、S170)は、前記差分標準偏差の二乗と所定の基準標準偏差の二乗との和の平方根として算出した値が、所定の偏差閾値以下であることを条件として、前記軸ずれが生じたと判定し、前記基準標準偏差とは、前記初期取付状態において複数取得された前記第1の検出値と前記第2の検出値との差分についての標準偏差であること、を特徴とする軸ずれ判定装置。
  5.  請求項3に記載の軸ずれ判定装置であって、前記判定部(51、S175)は、前記差分標準偏差が、所定の偏差閾値以下であることを条件として、前記軸ずれが生じたと判定すること、を特徴とする軸ずれ判定装置。
  6.  請求項3から請求項5までのいずれか1項に記載の軸ずれ判定装置であって、前記判定部(51、S110)は、前記取得期間における前記レーダ装置の温度と、前記初期取付状態における前記レーダ装置の温度との差分が、所定の温度閾値以上である場合には、前記軸ずれを判定しないこと、を特徴とする軸ずれ判定装置。
  7.  請求項3から請求項5までのいずれか1項に記載の軸ずれ判定装置であって、前記判定部(51、S111、S113)は、前記取得期間における前記レーダ装置の温度と、前記初期取付状態における前記レーダ装置の温度との差分に応じて、前記軸ずれを判定するための判定基準を変更すること、を特徴とする軸ずれ判定装置。
  8.  請求項2に記載の軸ずれ判定装置であって、前記基準差分値とは、前記平均的差分値算出部(51、S280)によって過去の前記取得期間において算出された前記平均的差分値であること、を特徴とする軸ずれ判定装置。
  9.  請求項8に記載の軸ずれ判定装置であって、前記判定部(51、S335、S385)は、前記差分標準偏差の二乗と所定の基準標準偏差の二乗との和の平方根として算出した値が、所定の偏差閾値以下であることを条件として、前記軸ずれが生じたと判定し、前記基準標準偏差とは、前記偏差算出部によって前記過去の周期において算出された前記差分標準偏差であること、を特徴とする軸ずれ判定装置。
  10.  請求項8に記載の軸ずれ判定装置であって、前記判定部(51、S335、S385)は、前記差分標準偏差が所定の偏差閾値以下であることを条件として、前記軸ずれが生じたと判定すること、を特徴とする軸ずれ判定装置。
  11.  請求項8から請求項10までのいずれか1項に記載の軸ずれ判定装置であって、前記判定部(51、S360)は、前記取得期間における前記レーダ装置の温度と、前記過去の周期における前記レーダ装置の温度との差分が、所定の温度閾値以上である場合には、前記軸ずれを判定しないこと、を特徴とする軸ずれ判定装置。
  12.  請求項8から請求項10までのいずれか1項に記載の軸ずれ判定装置であって、前記判定部(51、S335、S385)は、前記取得期間における前記レーダ装置の温度と、前記過去の周期における前記レーダ装置の温度との差分に応じて、前記軸ずれを判定するための判定基準を変更すること、を特徴とする軸ずれ判定装置。
  13.  請求項1から請求項12までのいずれか1項に記載の軸ずれ判定装置であって、前記平均的差分値算出部(51、S280)及び前記偏差算出部(51、S290)は、前記第1の周期以上の長さであって前記取得期間の長さよりも短い第2の周期毎に、前記取得期間を設定すること、を特徴とする軸ずれ判定装置。
  14.  請求項1から請求項13までのいずれか1項に記載の軸ずれ判定装置であって、前記判定部(51、S180、S400)は、前記軸ずれが生じたと判定された場合に、前記車両の乗員に対する報知処理を行うこと、を特徴とする軸ずれ判定装置。
PCT/JP2014/080036 2013-12-02 2014-11-13 軸ずれ判定装置 WO2015083515A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/100,955 US10830870B2 (en) 2013-12-02 2014-11-13 Axial displacement judgment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013249333A JP6146285B2 (ja) 2013-12-02 2013-12-02 軸ずれ判定装置
JP2013-249333 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015083515A1 true WO2015083515A1 (ja) 2015-06-11

Family

ID=53273284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080036 WO2015083515A1 (ja) 2013-12-02 2014-11-13 軸ずれ判定装置

Country Status (3)

Country Link
US (1) US10830870B2 (ja)
JP (1) JP6146285B2 (ja)
WO (1) WO2015083515A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211336A (ja) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 レーダ装置および起動タイミング決定方法
JP6658413B2 (ja) 2016-09-07 2020-03-04 株式会社デンソー 物体検出装置
JP2018059783A (ja) * 2016-10-04 2018-04-12 株式会社デンソー 物体検出センサの軸ずれ判定方法
US10408921B2 (en) * 2016-10-28 2019-09-10 Ford Global Technologies, Llc Vehicle detection of external objects
EP3566221B1 (en) * 2017-01-06 2021-12-08 Aurora Flight Sciences Corporation Collision-avoidance system and method for unmanned aircraft
EP3388801B1 (en) * 2017-04-11 2020-06-10 NXP USA, Inc. Temperature sensor system, radar device and method therefor
JP2019052880A (ja) * 2017-09-13 2019-04-04 ヴィオニア スウェーデン エービー センサモジュールパッケージ、センサモジュールアッセンブリ及びセンサモジュールの軸ズレ検知方法
WO2019082699A1 (ja) * 2017-10-26 2019-05-02 パイオニア株式会社 制御装置、制御方法、プログラム及び記憶媒体
CN108088407B (zh) * 2017-12-15 2020-11-10 成都光明光电股份有限公司 光学玻璃制品形貌偏差校正方法及系统
JP7243398B2 (ja) * 2019-04-03 2023-03-22 株式会社Soken 車両用障害物検知装置
CN111537143B (zh) * 2020-05-26 2022-02-25 荣成歌尔电子科技有限公司 压力传感器的性能测试方法、测试装置及存储介质
CN111678641B (zh) * 2020-05-26 2022-04-22 荣成歌尔电子科技有限公司 压力传感器的性能测试方法、装置以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236659A (ja) * 1995-12-27 1997-09-09 Denso Corp 車両用障害物検出装置の中心軸偏向量算出装置,中心軸偏向量補正装置,および車間制御装置
JP2004085258A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd レーダ装置
JP2010519545A (ja) * 2007-02-21 2010-06-03 オートリブ エー・エス・ピー・インク センサのミスアラインメント検知および測定システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675741B2 (ja) 2001-07-24 2005-07-27 株式会社日立製作所 電波レーダ装置及びそれを装着した車両
JP4698087B2 (ja) 2001-08-15 2011-06-08 富士通テン株式会社 レーダの水平方向軸ずれ発生検出装置、軸ずれ量決定装置、および軸ずれ補正装置
US20050119036A1 (en) * 2003-10-03 2005-06-02 Amro Albanna Input system and method
JP2006047140A (ja) 2004-08-05 2006-02-16 Fujitsu Ten Ltd レーダ装置の軸ずれ検知方法および検知装置
JP2006064628A (ja) 2004-08-30 2006-03-09 Fujitsu Ten Ltd レーダ装置およびレーダ装置のアンテナ指向性調整方法
JP2006240453A (ja) 2005-03-02 2006-09-14 Daihatsu Motor Co Ltd センサ異常検出装置及びセンサ異常検出方法
JP5055169B2 (ja) 2008-03-05 2012-10-24 本田技研工業株式会社 車両用走行安全装置
JP2008261887A (ja) 2008-08-04 2008-10-30 Fujitsu Ten Ltd 車両用レーダ装置の軸ずれ検出装置および方法
JP2010127743A (ja) 2008-11-27 2010-06-10 Fujitsu Ten Ltd レーダシステム、及び移動体
JP2010243219A (ja) 2009-04-01 2010-10-28 Fujitsu Ten Ltd レーダ装置およびレーダ調整方法
EP2452156B1 (en) * 2009-07-10 2021-09-01 Webfleet Solutions B.V. Accelerometer system, method and computer program product
JP5648425B2 (ja) 2010-11-01 2015-01-07 株式会社デンソー 異常検出装置、および異常検出プログラム
JP2012194169A (ja) 2011-03-17 2012-10-11 Hyundai Mobis Co Ltd 車両レーダーのアライメント方法及びシステム
US9524268B2 (en) * 2011-10-31 2016-12-20 University of Floria Research Foundation, Inc. Vestibular dynamic inclinometer
US8957807B2 (en) * 2011-12-14 2015-02-17 Ford Global Technologies, Llc Internal multi-axis G sensing used to align an automotive forward radar to the vehicle's thrust axis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236659A (ja) * 1995-12-27 1997-09-09 Denso Corp 車両用障害物検出装置の中心軸偏向量算出装置,中心軸偏向量補正装置,および車間制御装置
JP2004085258A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd レーダ装置
JP2010519545A (ja) * 2007-02-21 2010-06-03 オートリブ エー・エス・ピー・インク センサのミスアラインメント検知および測定システム

Also Published As

Publication number Publication date
US10830870B2 (en) 2020-11-10
JP2015105918A (ja) 2015-06-08
JP6146285B2 (ja) 2017-06-14
US20160291132A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6146285B2 (ja) 軸ずれ判定装置
CN107867288B (zh) 用于检测前向碰撞的方法
JP6387786B2 (ja) 超音波式物体検知装置
JP6123133B2 (ja) 車両用障害物検知装置および、車両用障害物検知システム
EP3035077A1 (en) Radar apparatus and radar state estimation method
US20140032078A1 (en) Apparatus and method for calculating inter-vehicle distance
JP2009042181A (ja) 推定装置
JP6432423B2 (ja) 物体検知装置、及び物体検知方法
JP6292097B2 (ja) 側方測距センサ診断装置
KR101469561B1 (ko) 차량의 센서 오류 보정장치 및 보정방법
CN113167890A (zh) 物体检测装置以及物体检测方法
WO2021070916A1 (ja) 軸ずれ推定装置
JP2013029992A (ja) 通信装置及び通信方法
JP6169146B2 (ja) 物体認識統合装置および物体認識統合方法
JP2007003461A (ja) 移動局の横滑角計測装置
JP4289272B2 (ja) タイヤ空気圧検出装置
US10114108B2 (en) Positioning apparatus
JP6169119B2 (ja) 測距装置及び測距装置の性能低下検知方法
JP6333437B1 (ja) 物体認識処理装置、物体認識処理方法および車両制御システム
JPWO2017046852A1 (ja) 速度制御装置
KR101982916B1 (ko) V2v 통신장치 및 그의 제어방법
JP2017516068A (ja) 間隔値を補正するための、及び/或いは、相対速度を補正するための装置、車両、並びに、方法
JP2012198086A (ja) 車載機
CN112219132B (zh) 位置检测装置
JPH04295787A (ja) 車間距離検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867576

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15100955

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867576

Country of ref document: EP

Kind code of ref document: A1