WO2015083395A1 - ネガ型フォトレジスト用樹脂組成物、硬化膜及び電子装置 - Google Patents

ネガ型フォトレジスト用樹脂組成物、硬化膜及び電子装置 Download PDF

Info

Publication number
WO2015083395A1
WO2015083395A1 PCT/JP2014/068113 JP2014068113W WO2015083395A1 WO 2015083395 A1 WO2015083395 A1 WO 2015083395A1 JP 2014068113 W JP2014068113 W JP 2014068113W WO 2015083395 A1 WO2015083395 A1 WO 2015083395A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
negative photoresist
film
group
polymer
Prior art date
Application number
PCT/JP2014/068113
Other languages
English (en)
French (fr)
Inventor
大西 治
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2015551402A priority Critical patent/JP6477492B2/ja
Publication of WO2015083395A1 publication Critical patent/WO2015083395A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/508Amines heterocyclic containing only nitrogen as a heteroatom having three nitrogen atoms in the ring
    • C08G59/5086Triazines; Melamines; Guanamines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means

Definitions

  • the present invention relates to a chemically amplified negative-type photoresist resin composition, a cured film, and an electronic device.
  • a protective film for preventing deterioration and damage, a flattening film for flattening the surface of an element, and insulation between wirings arranged in layers are insulated.
  • a photosensitive resin composition hereinafter also referred to as “photoresist resin composition”.
  • the interlayer insulating film used for improving the display quality of the FPD is not only insulative but also transparent, and the resistance to discoloration due to heat and chemical treatment during the process is also important. Furthermore, high resolution and high sensitivity are also required in order to meet demands for high resolution and high definition.
  • a conventional interlayer insulating film uses a positive photosensitive resin composition composed of a binder resin, a photosensitive agent, a solvent, and the like, and an acrylic resin has been mainly used as the binder resin (see, for example, Patent Document 1). .
  • an acrylic resin coloring was observed by heat treatment, and a problem remained from the viewpoint of transmittance.
  • a negative photosensitive resin composition containing a polyfunctional acrylic compound having an ethylenically unsaturated bond is used as an overcoat resist resin or a color filter resist resin as a protective film (for example, Patent Document 2).
  • An object of the present invention is to provide a negative photoresist resin composition suitable as a resin composition used for an interlayer insulating film, an overcoat resist, and a color filter resist.
  • a chemically amplified negative photoresist resin composition comprising a copolymer represented by the following formula (1), a photoacid generator, and a crosslinking agent: And a negative photoresist resin composition comprising a compound having a hetero ring as a reactive group.
  • l and m represent the molar content in the polymer, l + m ⁇ 1, n is 0, 1 or 2, and R 1 , R 2 , R 3 and R 4 are independent of each other. Hydrogen or an organic group having 1 to 30 carbon atoms, and A is a structural unit represented by the following formula (2a), (2b), (2c) or (2d))
  • R 5 , R 6 and R 7 are each independently an organic group having 1 to 18 carbon atoms
  • a cured film obtained by curing the above-mentioned negative photoresist resin composition.
  • an electronic device including the cured film is provided.
  • a negative photoresist resin composition capable of forming a resist film having high sensitivity and excellent balance of various properties required for a resist film.
  • the chemically amplified negative photoresist resin composition according to the present embodiment includes a polymer composed of a copolymer represented by the following formula (1), a photoacid generator, and a crosslinking agent,
  • the cross-linking agent includes a compound having a hetero ring as a reactive group.
  • Such a negative photoresist resin composition is suitable as a resin composition used for an interlayer insulating film, an overcoat resist, and a color filter resist.
  • l and m represent the molar content in the polymer, l + m ⁇ 1, n is 0, 1 or 2, and R 1 , R 2 , R 3 and R 4 are independent of each other. Hydrogen or an organic group having 1 to 30 carbon atoms, and A is a structural unit represented by the following formula (2a), (2b), (2c) or (2d))
  • R 5 , R 6 and R 7 are each independently an organic group having 1 to 18 carbon atoms
  • the negative photoresist resin composition may further contain other materials such as additives.
  • additives such as additives.
  • the polymer according to the present embodiment is a copolymer represented by the following formula (1).
  • l and m represent molar contents (mol%) in the polymer, and l + m ⁇ 1, 0.1 ⁇ l ⁇ 0.9, and 0.1 ⁇ m ⁇ 0.9.
  • n is 0, 1 or 2.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms. R 1 , R 2 , R 3 and R 4 may be the same or different from each other.
  • A is a structural unit represented by the following formula (2a), (2b), (2c) or (2d).
  • the copolymer represented by the above formula (1) includes one or more structural units A selected from the following formulas (2a), (2b), (2c) and (2d). In this embodiment, it is preferable that at least one or more structural units A selected from the following formulas (2a), (2b) and (2c) are included.
  • the polymer may contain other structural units other than the structural unit shown by the said Formula (1).
  • R 5 , R 6 and R 7 are each independently an organic group having 1 to 18 carbon atoms.
  • the organic group having 1 to 30 carbon atoms constituting R 1 , R 2 , R 3 and R 4 may contain one or more selected from O, N, S, P and Si in the structure. Moreover, the organic group which comprises R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > and R ⁇ 4 > does not have any acidic functional group. Thereby, control of the acid value in a polymer can be made easy.
  • examples of the organic group constituting R 1 , R 2 , R 3 and R 4 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, a cycloalkyl group, And a heterocyclic group.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned.
  • alkenyl group examples include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
  • an alkyl group as R 1 , R 2 , R 3 or R 4 it is possible to improve the film forming property of a film made of a negative photoresist resin composition containing a polymer.
  • an aryl group as R 1 , R 2 , R 3, or R 4 a film made of a resin composition for a negative photoresist containing a polymer is subjected to development using an alkaline developer in a lithography process. Film loss can be suppressed.
  • one or more hydrogen atoms may be substituted with halogen atoms.
  • the halogen atom include fluorine, chlorine, bromine, and iodine.
  • a haloalkyl group in which one or more hydrogen atoms of the alkyl group are substituted with a halogen atom is preferable.
  • any of R 1 , R 2 , R 3 and R 4 is preferably hydrogen, and in particular, R 1 , R 2 , R It is preferred that all 3 and R 4 are hydrogen.
  • the organic group having 1 to 18 carbon atoms constituting R 5 , R 6 and R 7 may contain any one or more of O, N, S, P and Si in the structure.
  • the organic group constituting R 5, R 6 and R 7, can be made free of acid functionality. Thereby, control of the acid value in a polymer can be made easy.
  • examples of the organic group constituting R 5 , R 6 and R 7 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, a cycloalkyl group, and a heterocyclic ring. Groups.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, and a heptyl group.
  • alkenyl group examples include allyl group, pentenyl group, and vinyl group.
  • An ethynyl group is mentioned as an alkynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
  • one or more hydrogen atoms may be substituted with halogen atoms.
  • the halogen atom include fluorine, chlorine, bromine, and iodine.
  • a haloalkyl group in which one or more hydrogen atoms of the alkyl group are substituted with a halogen atom is preferable.
  • the copolymer represented by the above formula (1) includes, for example, a repeating unit derived from a norbornene type monomer represented by the following formula (3), a repeating unit derived from maleic anhydride represented by the following formula (4), and It is preferable that is an alternating copolymer in which are alternately arranged.
  • the copolymer represented by the above formula (1) may be a random copolymer or a block copolymer.
  • the repeating unit derived from maleic anhydride shown in the following formula (4) is a structural unit represented by A in the above formula (1).
  • the polymer may contain the monomer shown by following formula (3) and (4) as a low molecular weight component.
  • n 0, 1 or 2
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms.
  • the polymer in this embodiment has an acid value of, for example, 15 mgKOH / g polymer or more and 65 mgKOH / g polymer or less.
  • the acid value of the polymer is an index of the amount of carboxyl groups derived from the structural unit represented by the formula (2a). That is, the amount of carboxyl groups in the polymer can be adjusted by controlling the acid value of the polymer. Therefore, by controlling the acid value of the polymer, it is possible to adjust the dissolution rate of the polymer in the alkaline solution that varies due to the amount of the carboxyl group. In the photolithography process, it is important to adjust the dissolution rate in an alkali developer in order to achieve desired patterning performance. By setting the acid value of the polymer in the above range, it is possible to realize an alkali dissolution rate of a negative photoresist resin composition particularly suitable for patterning a permanent film.
  • the polymer in this embodiment has a peak area of 1% or less of the total molecular weight of 1000 or less.
  • the present inventor has found that, by reducing the amount of the low molecular weight component in the polymer, the deformation of the pattern during curing can be suppressed for the film formed from the polymer. For this reason, the ratio of the peak area at a molecular weight of 1000 or less in the molecular weight distribution curve obtained by GPC is within the above range, whereby the pattern shape of a film made of a negative photoresist resin composition containing a polymer is improved. be able to.
  • the operation reliability can be improved.
  • the minimum of the quantity of the low molecular weight component in a polymer is not specifically limited.
  • the polymer in the present embodiment allows a case where the peak area at a molecular weight of 1000 or less is 0.01% or more of the entire molecular weight distribution curve obtained by GPC.
  • the polymer in the present embodiment has, for example, Mw (weight average molecular weight) / Mn (number average molecular weight) of 1.5 or more and 2.5 or less.
  • Mw / Mn is a degree of dispersion indicating the width of the molecular weight distribution.
  • the present inventor has found that, by controlling the molecular weight distribution in a polymer within a certain range, the deformation of the pattern during curing can be suppressed for a film formed from the polymer. For this reason, the pattern shape of the film
  • the polymer Mw (weight average molecular weight) is, for example, 5,000 or more and 30,000 or less.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • a polystyrene conversion value obtained from a standard polystyrene (PS) calibration curve obtained by GPC measurement is used.
  • the measurement conditions are, for example, as follows.
  • Tosoh gel permeation chromatography device HLC-8320GPC Column: Tosoh TSK-GEL Supermultipore HZ-M Detector: RI detector for liquid chromatogram Measurement temperature: 40 ° C
  • Solvent THF Sample concentration: 2.0 mg / milliliter
  • the amount of low molecular weight components in the polymer is based on the data on the molecular weight obtained by GPC measurement, for example. It is calculated from the ratio.
  • the polymer in this embodiment contains an alkali metal, for example.
  • the concentration of the alkali metal in the polymer is, for example, 10 ppm or less (here, ppm means mass ppm).
  • concentration of the alkali metal in the polymer is, for example, 10 ppm or less (here, ppm means mass ppm).
  • the alkali metal concentration in the polymer is determined by measuring the alkali metal concentration with respect to the solid content of the polymer diluted with N-methylpyrrolidone, if necessary, using a flameless atomic absorption photometer. Obtained.
  • an alkali metal contained in the polymer in this embodiment Na, K, or Li is mentioned, for example.
  • These alkali metals are caused by the aqueous alkali solution in the ring-opening step (treatment S2) for opening the anhydride ring in the structural unit derived from maleic anhydride described later, for example.
  • the alkali dissolution rate of the polymer in this embodiment is, for example, not less than 500 ⁇ / second and not more than 20,000 ⁇ / second.
  • the alkali dissolution rate of the polymer is, for example, by dissolving the polymer in propylene glycol monomethyl ether acetate and applying a polymer solution adjusted to a solid content of 20% by mass on a silicon wafer by a spin method, and then soft baking at 110 ° C. for 100 seconds.
  • the polymer film thus obtained is impregnated with a 2.38% tetramethylammonium hydroxide aqueous solution at 23 ° C., and the time until the polymer film is visually erased is calculated.
  • the alkali dissolution rate of the polymer By setting the alkali dissolution rate of the polymer to 500 kg / second or more, it is possible to improve the throughput in the development step using an alkali developer. Moreover, the residual film rate after the image development process by an alkali developing solution can be improved by making the alkali dissolution rate of a polymer into 20,000 kg / sec or less. For this reason, it is possible to suppress film loss due to the lithography process.
  • the polymer according to this embodiment is manufactured as follows, for example.
  • n and R 1 to R 4 can be the same as those in the above formula (1).
  • norbornene-type monomer represented by the formula (3) include bicyclo [2.2.1] -hept-2-ene (common name: 2-norbornene), which further has an alkyl group.
  • 2-norbornene common name: 2-norbornene
  • alkenyl group such as 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-hexyl-2-norbornene, 5-decyl-2-norbornene, etc.
  • 5-ethynyl-2 having an alkynyl group such as 5-allyl-2-norbornene, 5- (2-propenyl) -2-norbornene, 5- (1-methyl-4-pentenyl) -2-norbornene, etc.
  • alkynyl group such as 5-allyl-2-norbornene, 5- (2-propenyl) -2-norbornene, 5- (1-methyl-4-pentenyl) -2-norbornene, etc.
  • a haloalkyl group 5-perfluorobutyl-2-norbornene, etc. 5- (2-hydroxy-2,2-Vist reflow Oro methyl) ethyl-2-norbornene.
  • any one or more of these can be used as the norbornene-type monomer.
  • bicyclo [2.2.1] -hept-2-ene (common name: 2-norbornene) is preferably used from the viewpoint of light transmittance of the polymer.
  • the norbornene type monomer represented by the formula (3) and maleic anhydride are subjected to addition polymerization.
  • a copolymer (copolymer 1) of the norbornene type monomer represented by the formula (3) and maleic anhydride is formed by radical polymerization.
  • the molar ratio of the norbornene-type monomer represented by the formula (3) to maleic anhydride (mole number of the compound represented by formula (3): mole number of maleic anhydride) is 0.5: 1 to 1: 0. .5 is preferable.
  • the number of moles of the norbornene monomer represented by the formula (3): the number of moles of maleic anhydride 1: 1.
  • the norbornene type monomer represented by the formula (3), the maleic anhydride, and the polymerization initiator are dissolved in a solvent, and then heated for a predetermined time, whereby the norbornene type monomer represented by the formula (3) and the maleic anhydride Solution polymerization is performed with an acid.
  • the heating temperature is 50 to 80 ° C., for example, and the heating time is 10 to 20 hours.
  • the solvent for example, one or more of diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone and the like can be used.
  • the polymerization initiator any one or more of an azo compound and an organic peroxide can be used.
  • the azo compound include azobisisobutyronitrile (AIBN), dimethyl 2,2′-azobis (2-methylpropionate), 1,1′-azobis (cyclohexanecarbonitrile) (ABCN), Any one or more of these can be used.
  • organic peroxide examples include hydrogen peroxide, ditertiary butyl peroxide (DTBP), benzoyl peroxide (benzoyl peroxide, BPO), and methyl ethyl ketone peroxide (MEKP). Any one or more of them can be used.
  • DTBP ditertiary butyl peroxide
  • BPO benzoyl peroxide
  • MEKP methyl ethyl ketone peroxide
  • the amount (number of moles) of the polymerization initiator is preferably 1% to 10% of the total number of moles of the norbornene-type monomer represented by the formula (3) and maleic anhydride.
  • the weight average molecular weight (Mw) of the resulting polymer can be adjusted to 5000-30000 by appropriately setting the amount of the polymerization initiator within the above range and appropriately setting the reaction temperature and reaction time.
  • the copolymer 1 having a repeating unit represented by the following formula (5) and a repeating unit represented by the following formula (6) can be polymerized.
  • R 1 in the structure of the formula (6) is preferably common to each repeating unit, but may be different for each repeating unit. The same applies to R 2 to R 4 .
  • n and R 1 to R 4 are the same as the above formula (1). In other words, n is 0, 1, or 2.
  • R 1 to R 4 are each independently Or an organic group having 1 to 30 carbon atoms, wherein in formula (6), R 1 to R 4 may be the same or different.
  • the repeating unit represented by the formula (5) and the repeating unit represented by the formula (6) may be randomly arranged, or may be alternately arranged. There may be. Moreover, the norbornene-type monomer shown by Formula (3) and maleic anhydride may be block copolymerized. However, from the viewpoint of ensuring the uniformity of solubility of the negative photoresist resin composition using the polymer produced in this embodiment, the repeating unit represented by the formula (5) and the formula (6) A structure in which the repeating units shown are alternately arranged is preferable. That is, it is preferable that the copolymer 1 has the following repeating units.
  • n and R 1 to R 4 are the same as the above formula (1), that is, n is 0, 1, or 2.
  • R 1 to R 4 are hydrogen or An organic group having 1 to 30 carbon atoms, R 1 to R 4 may be the same or different, and a is an integer of 10 or more and 200 or less.
  • R 1 in the structure of the formula (7) is preferably common to each repeating unit, but may be different for each repeating unit. The same applies to R 2 to R 4 .
  • the ring-opening rate of the repeating unit derived from maleic anhydride can be measured as follows.
  • the IR absorption intensity (A1) of (C ⁇ O) in the acid anhydride structure of copolymer 1 before ring opening was measured, and the IR absorption intensity (A2) of (C ⁇ O) in the acid anhydride structure after ring opening (A2) )
  • Ring-opening rate (%) ((A1-A2) / A1) ⁇ 100 Acetonitrile is used as an internal standard substance.
  • (B) Alcohol or hydroxide of alkali metal as base is added to the reaction solution in which the copolymer 1 is polymerized in the polymerization step, and methyl ethyl ketone.
  • An organic solvent such as (MEK) is further added and stirred at 40 to 50 ° C. for 1 to 5 hours to obtain a reaction liquid L1.
  • the reaction liquid L1 the anhydride ring of the repeating unit derived from maleic anhydride of the copolymer 1 is opened, and the terminal formed by the ring opening is esterified. The remaining terminals have a metal salt structure.
  • the number of moles of metal alkoxide or alkali metal hydroxide is preferably 100% or more of the number of moles of maleic anhydride used in the polymerization step.
  • the number of moles of the metal alkoxide or alkali metal hydroxide is preferably 100% or more and 120% or less of the number of moles of maleic anhydride used in the polymerization step.
  • metal alkoxide those represented by M (OR 5 ) (M is a monovalent metal and R 5 is an organic group having 1 to 18 carbon atoms) are preferable.
  • the metal M include alkali metals, and sodium is preferable from the viewpoint of handleability.
  • the R 5, are the same as those for R 5 in example above formula (2a) or Formula (2a). Two or more different metal alkoxides may be used. However, from the viewpoint of production stability, it is preferable to use one kind of metal alkoxide.
  • the maleic anhydride-derived structure of the copolymer 1 may be ring-opened in the presence of (B) an alcohol and an alkali metal hydroxide as a base.
  • an alcohol As the alkali metal hydroxide, sodium hydroxide is preferable from the viewpoint of handleability.
  • the alcohol monovalent alcohol (R 5 OH) is preferable.
  • R 5 which is an organic group, those described above can be used.
  • R 5 preferably has 10 or less carbon atoms.
  • the repeating unit derived from maleic anhydride opened in this ring-opening step (treatment S2) has a structure represented by the following formula (8), and has a structure having a carboxyl group salt moiety. What has this structure of Formula (8) is called the copolymer 2.
  • R 5 is the same as R 5 described above, and is derived from the alcohol or metal alkoxide described above).
  • the ring-opened maleic anhydride-derived repeating unit represented by the formula (8) is represented by the following formula (11). It becomes a structure, and one terminal becomes a carboxyl group.
  • R 5 is the same as R 5 described above.
  • the structure has a structure represented by the following formula (12).
  • the copolymer 3 obtained by acid-treating the copolymer 2 is represented by the above-described repeating unit represented by the formula (6), the repeating unit represented by the formula (5), and the formula (11). It has a repeating unit and, optionally, a structure of formula (9) and a structure of formula (12).
  • the structure has the following formulas (13) and (14) as repeating units, and a structure derived from a norbornene-type monomer and a structure derived from a maleic anhydride monomer are alternately arranged. .
  • n and R 1 to R 4 are the same as those in the above formula (1). That is, n is 0, 1, or 2.
  • R 1 to R 4 are hydrogen or an organic group having 1 to 30 carbon atoms. R 1 to R 4 may be the same or different.
  • Z represents either one of —O—H and —O—R 5
  • W represents a structure that represents one of the other, although slightly, Z and Any structure in which W is —O—R 5 is included.
  • R 5 is the same as R 5 described above.
  • the repeating unit represented by the formula (14) may include a structure in which both Z and W are —O—H.
  • R 1 is preferably common to each repeating unit, but may be different for each repeating unit. The same applies to R 2 to R 4 .
  • R 1 is preferably common to each repeating unit, but may be different for each repeating unit. The same applies to R 2 to R 4 , W, and Z.
  • the low molecular weight component removing step (processing S4), it is preferable to repeat the extraction operation until the content of low nuclei having a molecular weight of 1000 or less in the copolymer 3 is 1% or less. Thereby, the amount of the low molecular weight component in the polymer can be reduced to a degree sufficient to suppress the deformation of the film pattern during curing.
  • the said organic layer containing the copolymer 3, the residual monomer, and the oligomer is made into methanol, water, hexane, for example. Wash with mixture to remove organic layer.
  • Heating step (Process S5)
  • the main heating step processing S5
  • the dissolution rate of the polymer in the alkaline developer is further adjusted by heating the copolymer 3.
  • a heating process (process S5) is performed as follows. Methanol is evaporated from the liquid from which the organic layer has been removed in the low molecular weight component removing step, and then heated at 120 to 140 ° C. for 0.5 to 10 hours.
  • the product (polymer) which uses the copolymer 4 as a main product can be obtained.
  • the copolymer 4 preferably has a structure in which a structure derived from a norbornene monomer and a structure derived from a maleic anhydride monomer are alternately arranged. And it is preferable that the copolymer 4 has a structure shown by Formula (16) in addition to Formula (13), (14) mentioned above.
  • n and R 1 to R 4 are the same as in the above formula (1). That is, n is 0, 1, or 2.
  • R 1 to R 4 are hydrogen or an organic group having 1 to 30 carbon atoms. R 1 to R 4 may be the same or different.
  • X represents one of —O—R 6 and —O—R 7
  • Y represents the other.
  • R 6, R 7 is the same as R 6 and R 7 in the formula (2b), comprising a structure which is independent organic group having 1 to 18 carbon atoms.
  • the proportion of the polymer in the negative photoresist resin composition is preferably 30% by mass to 70% when the total solid content of the negative photoresist resin composition (that is, the component excluding the solvent) is 100% by mass. % By mass, more preferably 40% by mass to 60% by mass.
  • the negative photoresist resin composition of the present invention contains a photoacid generator that generates an acid upon irradiation with actinic rays such as ultraviolet rays.
  • the photoacid generator include onium salt compounds, such as sulfonium salts and iodonium salts. From the viewpoints of solubility in organic solvents, activity, and storage stability, sulfonium salts are exemplified. Is more preferable.
  • sulfonium salts examples include triarylsulfonium salts, trialkylsulfonium salts, dialkylphenacylsulfonium salts, dialkyl-4-hydroxyphenylsulfonium salts, and the like. Of these, triarylsulfonium salts are preferred.
  • iodonium salt a diaryl iodonium salt is preferable.
  • a photo-acid generator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of commercially available photoacid generators include CPI-100P, CPI-101A, CPI-200K, CPI-210S, CPI-110B (manufactured by San Apro).
  • the ratio of the photoacid generator in the negative photoresist resin composition is preferably 0.1 to 40 mass% when the total solid content of the negative photoresist resin composition is 100 mass%, From the point that a high resolution pattern film can be formed, the content is more preferably 1 to 30% by mass.
  • the negative photoresist resin composition of the present invention can crosslink the above-described polymer using the acid generated from the photoacid generator as a catalyst, and further increases the crosslinking of the above-mentioned polymer by applying heat.
  • a crosslinking agent capable of As a crosslinking agent that exhibits such effects a compound having a heterocycle as a reactive group is preferable, and a compound having a glycidyl group or an oxetanyl group is particularly preferable.
  • a compound having a glycidyl group is more preferable from the viewpoint of reactivity with a functional group having an active hydrogen such as a carboxyl group or a hydroxyl group.
  • Examples of the compound having a glycidyl group include epoxy compounds, and there are no particular limitations from low molecular to high molecular compounds.
  • low molecular types include n-butyl glycidyl ether, 2-ethoxyhexyl glycidyl ether.
  • Glycidyl such as phenyl glycidyl ether, allyl glycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerol polyglycidyl ether, sorbitol polyglycidyl ether, glycidyl ether of bisphenol A (or F)
  • Glycidyl esters such as ether, adipic acid diglycidyl ester, o-phthalic acid diglycidyl ester, 3,4-epoxycyclohexylmethyl (3,4-ethylene Xycyclohexane) carboxylate, 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy-6-methylcyclohexane) carboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, dicycl
  • Epicoat 1001, 1002, 1003, 1004, 1007, 1007, 1009, 1010, and 828 (trade name; manufactured by Yuka Shell Epoxy Co., Ltd.), Epolite 4000MF (Kyoeisha Chemical) Bisphenol A type epoxy resin such as Epicoat 807 (trade name; manufactured by Yuka Shell Epoxy Co., Ltd.), etc., Epicoat 152 and 154 (trade name; manufactured by Yuka Shell Epoxy Co., Ltd.) ), EPPN201, 202 (trade name; manufactured by Nippon Kayaku Co., Ltd.), etc.
  • Creozo such as Epicoat 180S75 (trade name; manufactured by Yuka Shell Epoxy Co., Ltd.) Novolac type epoxy resin, CY-175, 177, 179, Aldarite CY-182, 192, 184 (trade name; manufactured by Ciba-Geigy), ERL-4234, 4299, 4221, 4206 (trade name) Manufactured by U.C.C.), Shodyne 509 (trade name; manufactured by Showa Denko KK), Epicron 200, 400 (trade name; manufactured by Dainippon Ink Co., Ltd.), Epicoat 871, 872 (product) Name: Cycloaliphatic epoxy resin such as Yuka Shell Epoxy Co., Ltd., ED-5661, 5562 (trade name; Celanese Coating Co., Ltd.), Epolite 100MF (manufactured by Kyoeisha Oil Chemical Co., Ltd.) And aliphatic polyglycidyl ethers such as Epiol TMP (manufactured
  • the epoxy compound can include a compound represented by the following formula (17).
  • An example of such a compound is Techmore VG3101L (manufactured by Printec Co., Ltd.).
  • aliphatic polyglycidyl ether is particularly preferable.
  • examples of the aliphatic polyglycidyl ether include trimethylolpropane triglycidyl ether.
  • the epoxy compound is preferably 20% by mass or more and 100% by mass or less of the entire crosslinking agent. Especially, it is preferable to make this epoxy compound into the range of 20-70 mass parts with respect to 100 mass parts of above-mentioned polymers.
  • any of the following can be used, for example.
  • a crosslinking agent can contain one or both of a melamine type crosslinking agent and a urea type crosslinking agent with the compound which has a heterocyclic ring as a reactive group, for example. Thereby, it becomes easier to improve the balance of various characteristics in the negative photoresist resin composition.
  • the melamine-based cross-linking agent can include, for example, one or more selected from hexamethoxymethyl melamine, hexaethoxymethyl melamine, hexapropoxymethyl melamine, hexabutoxybutyl melamine, and includes hexamethoxymethyl melamine. It is preferable.
  • hexamethoxymethylmelamine examples include Mw-390 (manufactured by Sanwa Chemical Co., Ltd.).
  • the urea-based cross-linking agent can include, for example, one or more selected from methylated urea resin, bismethoxymethylurea, bisethoxymethylurea, bispropoxymethylurea, and bisbutoxymethylurea. It is preferable to contain a fluorinated urea resin.
  • examples of commercially available methylated urea resins include MX-270, MX-280, MX-290 (manufactured by Sanwa Chemical Co., Ltd.) and the like.
  • the total content of the melamine crosslinking agent and the urea crosslinking agent should be 50% by mass or less with respect to the entire crosslinking agent, or the melamine crosslinking agent and the urea system. It is also possible to adopt a mode in which the total content of the crosslinking agent is 30% by mass or less with respect to the entire crosslinking agent, and no melamine-based crosslinking agent and urea-based crosslinking agent are included.
  • the ratio of the crosslinking agent in the negative photoresist resin composition is preferably 5 to 60% by mass when the total solid content of the negative photoresist resin composition is 100% by mass. Therefore, the content is more preferably 20 to 50% by mass.
  • additives such as antioxidant, a filler, surfactant, and a sensitizer, to the resin composition for negative photoresists as needed.
  • antioxidant 1 or more types selected from the group of a phenolic antioxidant, a phosphorus antioxidant, and a thioether antioxidant can be used.
  • Antioxidants can suppress oxidation during curing and film oxidation in subsequent processes.
  • phenolic antioxidants include pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 3,9-bis ⁇ 2- [3- (3-t -Butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl ⁇ 2,4,8,10-tetraoxaspiro [5,5] undecane, octadecyl-3- (3,5- Di-t-butyl-4-hydroxyphenyl) propionate, 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 1,3,5-trimethyl -2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 2,6-di-t-butyl-4-methylphenol, 2,6-di- -Butyl-4
  • Phosphorus antioxidants include bis- (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, tris (2,4-di-t-butylphenylphosphite), tetrakis ( 2,4-di-t-butyl-5-methylphenyl) -4,4′-biphenylenediphosphonite, 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, bis- (2,6- Dicumylphenyl) pentaerythritol diphosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, tris (mixed mono and di-nonylphenyl phosphite), bis (2,4 -Di-t-butylphenyl)
  • Thioether antioxidants include dilauryl 3,3′-thiodipropionate, bis (2-methyl-4- (3-n-dodecyl) thiopropionyloxy) -5-t-butylphenyl) sulfide, distearyl- 3,3′-thiodipropionate, pentaerythritol-tetrakis (3-lauryl) thiopropionate, and the like.
  • the antioxidant may be 0.1 to 5% by mass based on the entire negative photoresist resin composition.
  • the resin composition for negative photoresists described above may contain polyphenols.
  • polyphenols include phenol novolak, o-cresol novolak, p-cresol novolak, pt-butylphenol novolak, hydroxynaphthalene novolak, bisphenol A novolak, bisphenol F novolak, terpene modified novolak, dicyclopentadiene modified novolak, para
  • examples include xylene-modified novolak and polybutadiene-modified phenol, and any one or more of them can be used.
  • phenolic compounds can also be used. o-cresol, m-cresol, p-cresol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, bisphenol A, B, C, E, F and G, 4,4 ', 4 " -Methylidinetrisphenol, 2,6-bis [(2-hydroxy-5-methylphenyl) methyl] -4-methylphenol, 4,4 '-[1- [4- [1- (4-hydroxyphenyl)] -1-methylethyl] phenyl] ethylidene] bisphenol, 4,4 '-[1- [4- [2- (4-hydroxyphenyl) -2-propyl] phenyl] ethylidene] bisphenol, 4,4', 4 " Ethylidine trisphenol, 4- [bis (4-hydroxyphenyl) methyl] -2-ethoxyphenol, 4,4 ′-[(2-hydroxyphenyl) methyl
  • the content of polyphenols is preferably 0% by mass to 30% by mass, for example, 3% by mass when the solid content excluding the solvent is 100% by mass. The above is preferable.
  • the above negative photoresist resin composition may contain a solvent.
  • the solvent include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate, methyl isobutyl carbinol (MIBC), gamma butyrolactone (GBL), N-methylpyrrolidone (NMP), methyl n -Amyl ketone (MAK), diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, or mixtures thereof can be employed. In addition, it is not limited to what was illustrated here.
  • the preparation method of the negative photoresist resin composition is not particularly limited, and can be generally produced by a known method. For example, the following method is mentioned.
  • a negative photoresist resin composition can be obtained by blending a polymer, a photoacid generator, a cross-linking agent, and, if necessary, other additives and a solvent, and mixing them uniformly.
  • Examples of the resist pattern forming method using the negative photoresist resin composition include the following methods.
  • a negative photoresist resin composition is applied to a support such as a silicon wafer.
  • a method of applying the negative photoresist resin composition to the support application methods such as spin coating, roll coating, flow coating, dip coating, spray coating, and doctor coating can be used.
  • spin coating is preferable, and the rotation speed is preferably 1000 to 3000 rpm.
  • the support is heated at an appropriate temperature and time to remove almost all the solvent in the negative photoresist resin composition, thereby forming a coating film.
  • the heating temperature and time are, for example, 60 to 130 ° C. for 1 to 5 minutes, preferably 80 to 120 ° C. for 1 to 3 minutes.
  • the thickness of the coating film of the negative photoresist resin composition is preferably 1.0 to 5.0 ⁇ m.
  • Pattern formation on the coating film is performed by irradiating actinic rays or the like using a mask for forming a target pattern. Then, heating is carried out at 80 to 140 ° C. for 1 to 5 minutes, preferably 90 to 130 ° C. for 1 to 3 minutes to promote curing.
  • the curing conditions are not limited to the above.
  • the target resist pattern can be obtained by heating.
  • the development method include a shower development method, a spray development method, and an immersion development method.
  • the development condition is usually about 1 to 10 minutes at 23 ° C.
  • the developer examples include alkaline aqueous solutions having a concentration of about 0.1 to 10% by mass, such as tetramethylammonium hydroxide, sodium hydroxide, potassium hydroxide and the like.
  • the film can be further baked at 150 to 300 ° C. for 30 to 120 minutes and sufficiently cured to obtain a desired pattern.
  • the curing conditions are not limited to the above.
  • At least one of the following characteristics can be obtained by appropriately adjusting and combining the polymer, the photoacid generator, and the crosslinking agent within the above-described range. Can be realized. Note that, as shown in the following examples, these characteristics are realized even when the negative photoresist resin composition contains other additives.
  • the thickness of the first layer formed by pre-baking with a hot plate is changed to the first thickness (first thickness).
  • first thickness The film thickness is 2.0 ⁇ m or more and 15 ⁇ m or less).
  • the first layer is further post-exposure baked with a hot plate and then developed with a developer.
  • the film thickness of the second layer is defined as the second film thickness. At this time, ⁇ (second film thickness) / (first film thickness) ⁇ ⁇ 100 ⁇ 70 (%) is satisfied.
  • the film thickness of the third layer after the second layer is post-baked in an oven is defined as the third film thickness. At this time, ⁇ (third film thickness) / (first film thickness) ⁇ ⁇ 100 ⁇ 65 (%) is satisfied.
  • the negative photoresist resin composition of the present invention having such a characteristic 1, since the change in the film thickness due to the development process and the baking process is small, the film thickness after these processes is accurately controlled. It becomes possible.
  • the negative photoresist resin composition of the present invention is not only used for forming a film that exists for a predetermined period of time and is removed when it is no longer needed, as in a photoresist. It can also be used to form a permanent film that remains in the product without being removed. Such a permanent film needs to be controlled to a film thickness according to the design, but the negative photoresist resin composition of the present invention can accurately control the film thickness as described above. preferable.
  • the relative dielectric constant of the film formed using the negative photoresist resin composition of the present invention is 4.0 or less.
  • the lower limit value of the relative dielectric constant is not particularly limited, but is, for example, 2.5.
  • the relative dielectric constant is measured at an appropriate frequency at room temperature (25 ° C.), for example.
  • the measurement frequency can be 10 kHz or 1 MHz, for example.
  • the relative dielectric constant can be measured as follows.
  • the negative photoresist resin composition of the present invention is spin-coated on an aluminum substrate (rotation speed: 1000 to 3000 rpm) and prebaked on a hot plate. Thereafter, exposure is performed with an optimum exposure amount using a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc., and post exposure baking is performed using a hot plate. After that, it is post-baked in an oven to form a film to be measured. Thereafter, a gold electrode is formed on this film, and the relative dielectric constant is measured at room temperature (25 ° C.) under an appropriate frequency condition.
  • the transmittance of light having a wavelength of 400 nm in the layer thickness direction of the cured film obtained by curing the resin composition for negative photoresist of the present invention is 80% or more in terms of a film thickness of 3 ⁇ m.
  • permeability is 90% or more in conversion of a film thickness of 3 micrometers.
  • the upper limit of the transmittance is not particularly limited, for example, it is 99% in terms of a film thickness of 3 ⁇ m.
  • the transmittance of light having a wavelength of 400 nm in the layer thickness direction of a cured film obtained by curing the negative photoresist resin composition of the present invention is more preferably 80% or more in terms of a film thickness of 10 ⁇ m. 90% or more is particularly preferable.
  • the upper limit of the transmittance in terms of a film thickness of 10 ⁇ m is not particularly limited, but can be set to 100%, for example.
  • the transmittance can be measured as follows.
  • the negative photoresist resin composition of the present invention is spin-coated on a glass substrate (rotation speed: 1000 to 3000 rpm) and prebaked on a hot plate. Exposure is performed with an optimum exposure amount corresponding to the film thickness using a Canon g + h + i line mask aligner (PLA-501F), and post exposure baking is performed using a hot plate. Thereafter, the film is post-baked in an oven to obtain a film to be measured.
  • the transmittance of this film at a wavelength of 400 nm is measured using an ultraviolet-visible light spectrophotometer, and the obtained value is converted into the transmittance at a film thickness of 3 ⁇ m or 10 ⁇ m to obtain a measured value.
  • the negative photoresist resin composition of the present invention is spin-coated on a glass substrate (rotation speed: 1000 to 3000 rpm) and prebaked on a hot plate. Further, exposure is performed at 300 mJ / cm 2 using a Canon g + h + i line mask aligner (PLA-501F), and post-exposure baking is performed using a hot plate. Thereafter, post baking is performed in an oven to obtain a first film.
  • PPA-501F Canon g + h + i line mask aligner
  • the film thickness of the first film is the first film thickness and the film thickness after immersing the first film in N-methylpyrrolidone for 10 minutes at room temperature is the second film thickness, [ ⁇ (second Film thickness) ⁇ (first film thickness) ⁇ / (first film thickness)] ⁇ 100 ⁇ 5 (%).
  • the negative photoresist resin composition of the present invention having such a characteristic 4, even when immersed in N-methylpyrrolidone in the manufacturing process after film formation, the film thickness hardly changes. For this reason, it becomes possible to manufacture a film having a predetermined design thickness with high accuracy.
  • the negative photoresist resin composition of the present invention is spin-coated on a glass substrate (rotation speed: 1000 to 3000 rpm) and prebaked on a hot plate. Further, exposure is performed with an optimum exposure amount at which the line and space width is 1: 1 with a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc., and post exposure baking is performed with a hot plate. Then, it develops using a developing solution. Thereafter, it is post-baked in an oven to obtain a cured film. In the cross-sectional shape before and after thermosetting observed with the SEM, the shape of the line portion is maintained, and the dimensions of the line and space are maintained.
  • the negative photoresist resin composition of the present invention is spin-coated on a glass substrate (rotation speed: 1000 to 3000 rpm) and prebaked on a hot plate. Further, exposure is performed with an optimum exposure amount corresponding to the film thickness with a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc., and post-exposure baking is performed with a hot plate. Thereafter, it is post-baked in an oven to obtain a cured film. The cured film was scraped off and the 5% weight loss temperature was measured by TGDTA under a nitrogen stream at a heating rate of 10 ° C./min. All are over 250 degreeC and are excellent in low outgassing property.
  • PDA-501F g + h + i line mask aligner
  • the negative photoresist resin composition of the present invention is not only used for forming a film that exists only for a predetermined period of time as in the case of a photoresist and is removed when it is no longer needed. It can also be used to form a permanent film (cured film) that remains in the product without being lost.
  • FIG. 1 it can be used as a planarizing film covering a transistor.
  • FIG. 2 it can also be used as an interlayer insulating film covering the rewiring layer of the semiconductor device.
  • it can be applied to color filter resists and inter-layer insulation films for displays that are blended with pigments and dyes, taking advantage of good transparency, heat discoloration, and insulation.
  • the negative photoresist resin composition of the present invention may be used as a microlens array.
  • the negative photoresist resin composition of the present invention can be filled in a mold for a microlens array, and then photocured and, if necessary, heat cured, to form a microlens array.
  • the microlens array thus manufactured can be used for a liquid crystal display device, a plasma display, a field emission display, an electroluminescence display, and the like.
  • an example of an electronic device having a film formed using the negative photoresist resin composition of the present invention will be described.
  • ⁇ Electronic device> 1 and 2 are cross-sectional views showing examples of the electronic device 100 according to the present embodiment. In any case, a part of the electronic device 100 including the insulating film 20 is shown.
  • the electronic device 100 according to the present embodiment includes an insulating film 20 that is a permanent film formed of, for example, the negative photoresist resin composition of the present invention.
  • the electronic device 100 according to the present embodiment is shown in FIG.
  • the electronic device 100 according to the present embodiment is not limited to the liquid crystal display device, and includes other electronic devices including a permanent film made of the negative photoresist resin composition of the present invention.
  • an electronic device 100 that is a liquid crystal display device includes, for example, a substrate 10, a transistor 30 provided on the substrate 10, and an insulating film 20 provided on the substrate 10 so as to cover the transistor 30. And a wiring 40 provided on the insulating film 20.
  • the substrate 10 is, for example, a glass substrate.
  • the transistor 30 is a thin film transistor that constitutes a switching element of a liquid crystal display device, for example. On the substrate 10, for example, a plurality of transistors 30 are arranged in an array.
  • the transistor 30 according to the present embodiment includes, for example, a gate electrode 31, a source electrode 32, a drain electrode 33, a gate insulating film 34, and a semiconductor layer 35.
  • the gate electrode 31 is provided on the substrate 10, for example.
  • the gate insulating film 34 is provided on the substrate 10 so as to cover the gate electrode 31.
  • the semiconductor layer 35 is provided on the gate insulating film 34.
  • the semiconductor layer 35 is, for example, a silicon layer.
  • the source electrode 32 is provided on the substrate 10 so that a part thereof is in contact with the semiconductor layer 35.
  • the drain electrode 33 is provided on the substrate 10 so as to be separated from the source electrode 32 and partially in contact with the semiconductor layer 35.
  • the insulating film 20 functions as a planarization film for eliminating a step due to the transistor 30 and the like and forming a flat surface on the substrate 10. Moreover, the insulating film 20 is comprised with the hardened
  • the insulating film 20 is provided with an opening 22 that penetrates the insulating film 20 so as to be connected to the drain electrode 33.
  • a wiring 40 connected to the drain electrode 33 is formed on the insulating film 20 and in the opening 22.
  • the wiring 40 functions as a pixel electrode that constitutes a pixel together with the liquid crystal.
  • An alignment film 90 is provided on the insulating film 20 so as to cover the wiring 40.
  • a counter substrate 12 is disposed above one surface of the substrate 10 where the transistor 30 is provided so as to face the substrate 10.
  • a wiring 42 is provided on one surface of the counter substrate 12 facing the substrate 10. The wiring 42 is provided at a position facing the wiring 40.
  • An alignment film 92 is provided on the one surface of the counter substrate 12 so as to cover the wiring 42.
  • the liquid crystal constituting the liquid crystal layer 14 is filled between the substrate 10 and the counter substrate 12.
  • the electronic device 100 shown in FIG. 1 is formed as follows, for example. First, the transistor 30 is formed over the substrate 10. Next, the negative photoresist resin composition of the present invention is applied to one surface of the substrate 10 on which the transistor 30 is provided by a printing method or a spin coating method to form the insulating film 20 that covers the transistor 30. Thus, a planarization film that covers the transistor 30 provided over the substrate 10 is formed. Next, the insulating film 20 is exposed and developed to form an opening 22 in a part of the insulating film 20. At this time, the unexposed portion is dissolved in the developer, and the exposed portion remains. This also applies to each example of the electronic device 100 described later. Next, the insulating film 20 is heated and cured.
  • a wiring 40 connected to the drain electrode 33 is formed in the opening 22 of the insulating film 20.
  • the counter substrate 12 is disposed on the insulating film 20, and liquid crystal is filled between the counter substrate 12 and the insulating film 20 to form the liquid crystal layer 14.
  • the electronic device 100 shown in FIG. 1 is formed.
  • FIG. 2 shows a semiconductor device in which the rewiring layer 80 is constituted by a permanent film made of the negative photoresist resin composition of the present invention.
  • An electronic device 100 shown in FIG. 2 includes a semiconductor substrate provided with a semiconductor element such as a transistor, and a multilayer wiring layer provided on the semiconductor substrate (not shown).
  • An insulating film 50 that is an interlayer insulating film and an uppermost layer wiring 72 provided on the insulating film 50 are provided in the uppermost layer of the multilayer wiring layer.
  • the uppermost layer wiring 72 is made of Al, for example.
  • a rewiring layer 80 is provided on the insulating film 50.
  • the rewiring layer 80 includes an insulating film 52 provided on the insulating film 50 so as to cover the uppermost wiring 72, a rewiring 70 provided on the insulating film 52, and on the insulating film 52 and the rewiring 70. And an insulating film 54 provided.
  • An opening 24 connected to the uppermost layer wiring 72 is formed in the insulating film 52.
  • the rewiring 70 is formed on the insulating film 52 and in the opening 24 and is connected to the uppermost layer wiring 72.
  • the insulating film 54 is provided with an opening 26 connected to the rewiring 70.
  • the insulating film 52 and the insulating film 54 are constituted by permanent films made of the negative photoresist resin composition of the present invention.
  • the insulating film 52 is obtained, for example, by forming the opening 24 by performing exposure and development on the negative photoresist resin composition of the present invention applied on the insulating film 50, and then heat-curing the opening 24.
  • the insulating film 54 is formed by, for example, forming an opening 26 by exposing and developing the negative photoresist resin composition of the present invention applied on the insulating film 52, and then heat-curing the opening 26. can get.
  • bumps 74 are formed.
  • the electronic device 100 is connected to a wiring board or the like via bumps 74, for example.
  • the electronic device 100 may be an optical device in which a microlens is configured by a permanent film made of the negative photoresist resin composition of the present invention.
  • the optical device include a liquid crystal display device, a plasma display, a field emission display, and an electroluminescence display.
  • MEK (320 g) was added to the solution, and this was added with sodium hydroxide (12.5 g, 0.31 mol), butanol (463.1 g, 6.25 mol), toluene (480 g). Added to the suspension and mixed at 45 ° C. for 3 hours. The mixture is cooled to 40 ° C., treated with formic acid (88% by weight aqueous solution, 49.0 g, 0.94 mol), protonated, and then MEK and water are added to separate the aqueous layer. Inorganic residues were removed. Subsequently, methanol and hexane were added and the organic layer was separated to remove unreacted monomers.
  • the obtained polymer is a copolymer of the formula (1), and includes a structural unit represented by the formula (2a) and a structural unit represented by the formula (2c).
  • the obtained polymer is a copolymer of the formula (1) and contains a structural unit represented by the formula (2c).
  • the obtained polymer is a copolymer of the formula (1), and includes a structural unit represented by the formula (2a) and a structural unit represented by the formula (2c).
  • the obtained polymer is a copolymer of the formula (1), and includes a structural unit represented by the formula (2a) and a structural unit represented by the formula (2c).
  • Acid value Titration (ml) ⁇ KOH factor f ⁇ 0.1 ⁇ 56.1 / Amount of polymer (solid)
  • the acid values of the polymers synthesized in Synthesis Examples 1, 2, 3, and 4 were 49 mgKOH / g, 11 mgKOH / g, 36 mgKOH / g, and 33 mgKOH / g, respectively.
  • Alkali dissolution rate The obtained polymer solution adjusted to 20% by mass was applied onto a wafer by a spin method, and this was soft baked at 110 ° C. for 100 seconds to form a polymer film having a thickness of about 3 ⁇ m.
  • the wafer was developed by impregnating it with a 2.38%, 23 ° C. tetramethylammonium hydroxide aqueous solution.
  • the alkali dissolution rate ( ⁇ / sec) was measured by visually measuring the time until the polymer film was erased.
  • the alkali dissolution rates of the polymers synthesized in Synthesis Examples 1, 2, 3, and 4 were 8,000 K / sec, 1,340 K / sec, 2,200 K / sec, and 5,500 K / sec, respectively.
  • Example 1 50 g of a 20% propylene glycol monomethyl ether acetate (PGMEA) solution of the polymer synthesized in Synthesis Example 1, 0.5 g of a triarylsulfonium salt (CPI-210S, manufactured by San Apro) as a photoacid generator, and tri 5.0 g of methylolpropane triglycidyl ether (Epolite 100MF, manufactured by Kyoeisha Chemical), 3-glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Silicone Co., Ltd.) as a silane coupling agent to improve adhesion to the substrate 1.0g) and 0.2g of F-557 (manufactured by DIC) were dissolved in an appropriate amount of PGMEA and stirred to prevent radial striations formed on the resist film during spin coating. And then filter through a 0.2 ⁇ m filter to prepare a resin composition. .
  • PGMEA propylene glycol mono
  • the obtained resin composition was spin-coated on a 4-inch silicon wafer and baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film A having a thickness of about 3.0 ⁇ m.
  • a g + h + i line mask aligner (PLA-501F) manufactured by Canon Co., Ltd. was used.
  • the film was baked on a hot plate at 120 ° C. for 120 seconds, and then developed with a 0.5 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 60 seconds.
  • a thin film B with 1 line & space pattern was obtained.
  • the post-baking process was performed by heating at 230 degreeC for 60 minute (s) in oven, and the thin film C with a pattern of about 2.5 micrometer thickness was obtained.
  • ⁇ Development evaluation> A 10 ⁇ m pattern of thin film B described in “Evaluation of remaining film ratio after development and after baking” was observed with a SEM (scanning electron microscope. When the film was not seen, the developability was evaluated as ⁇ , and when the exposed thin film A was completely dissolved by the development process, the evaluation was performed as x.
  • the obtained resin composition was spin-coated on an aluminum substrate and baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film having a thickness of about 3.0 ⁇ m, and a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc.
  • the film was exposed to a cumulative exposure amount of 500 mJ / cm 2 and further baked on a hot plate at 120 ° C. for 120 seconds.
  • post-baking was performed by heating at 230 ° C. for 60 minutes in an oven to obtain a thin film having no pattern with a thickness of about 2.5 ⁇ m.
  • a gold electrode was formed on this thin film, and the dielectric constant was calculated from the capacitance obtained using a Hewlett Packard LCR meter (4282A) under conditions of room temperature (25 ° C.) and 1 MHz.
  • the obtained resin composition was spin-coated on a 4-inch silicon wafer treated with HMDS (Hexamethyldisilazane) and baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film A having a thickness of about 3.0 ⁇ m.
  • the thin film A was exposed with a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc. using a mask having a 10 ⁇ m line and a space width of 1: 1.
  • PPA-501F g + h + i line mask aligner
  • Example 2 The procedure was carried out except that the crosslinking agent in Example 1 was changed to 5.0 g of alicyclic epoxy compound: 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (Celoxide 2021P, manufactured by Daicel Corporation). The composition was prepared in the same manner as in Example 1 and evaluated under the same conditions as in Example 1. [Example 3] The composition was prepared in the same manner as in Example 1 except that the crosslinking agent in Example 1 was changed to 5.0 g of hydrogenated bisphenol A diglycidyl ether (Epolite 4000MF, manufactured by Kyoeisha Chemical Co., Ltd.), and evaluated under the same conditions as in Example 1. did.
  • Epolite 4000MF hydrogenated bisphenol A diglycidyl ether
  • Example 4 The cross-linking agent of Example 1 was alicyclic epoxy resin: 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (EHPE3150, manufactured by Daicel Corporation) ) A composition was prepared in the same manner as in Example 1 except that the amount was changed to 5.0 g, and evaluated under the same conditions as in Example 1. [Example 5] A composition was prepared in the same manner as in Example 1 except that the crosslinking agent in Example 1 was changed to 5.0 g of oxetane compound: xylylene bisoxetane (OXT-121, manufactured by Toagosei Co., Ltd.).
  • Example 6 A composition was prepared in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 2 was used, and evaluated under the same conditions as in Example 1.
  • Example 7 A composition was prepared in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 3 was used, and evaluation was performed under the same conditions as in Example 1.
  • Example 8 A composition was prepared in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 4 was used, and evaluation was performed under the same conditions as in Example 1.
  • Comparative Example 2 Comparative Example 1 except that the photoacid generator (CPI-210S, manufactured by San Apro) was changed to 1.0 g and the crosslinking agent (glycoluril-based crosslinking agent (Mx-270, manufactured by Sanwa Chemical Co.) was changed to 6.0 g. It adjusted similarly and evaluated on the same conditions as Example 1.
  • the photoacid generator CPI-210S, manufactured by San Apro
  • the crosslinking agent glycoluril-based crosslinking agent (Mx-270, manufactured by Sanwa Chemical Co.
  • Example 9 50 g of a 20% propylene glycol monomethyl ether acetate (PGMEA) solution of the polymer synthesized in Synthesis Example 1, 0.5 g of a triarylsonium salt (CPI-110B, manufactured by San Apro) as a photoacid generator, and 2 as a crosslinking agent -[4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4-([2,3-epoxypropoxy] phenyl) ethyl] phenyl] propane (VG-3101L, 2.5g of Printec) and 0.5g of 3-glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Silicone) as a silane coupling agent to improve adhesion to the substrate.
  • PKI-110B triarylsonium salt
  • Example 10 50 g of a 20% propylene glycol monomethyl ether acetate (PGMEA) solution of the polymer synthesized in Synthesis Example 1, 0.5 g of a triarylsonium salt (CPI-110B, manufactured by San Apro) as a photoacid generator, and 2 as a crosslinking agent -[4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4-([2,3-epoxypropoxy] phenyl) ethyl] phenyl] propane (VG-3101L, Printtech) 2.5g, ⁇ -caprolactone modified 3 ', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Celoxide 2081, manufactured by Daicel) 1.0g, improved adhesion to the substrate As a silane coupling agent, 3-glycidoxypropyltrimethoxysilane (KBM-40
  • the obtained resin composition was spin-coated on a 4-inch silicon wafer and baked on a hot plate at 80 ° C. for 300 seconds to obtain a thin film A having a thickness of about 10 ⁇ m.
  • a g + h + i line mask aligner (PLA-501F) manufactured by Canon Co., Ltd. was used, and a 20 ⁇ m line and space width of 1: 1 mask were used, and a pattern dimension of 20 ⁇ m line and space width was 1: 1.
  • the film was baked on a hot plate at 120 ° C. for 120 seconds, and then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C.
  • Residual film ratio after development (%) ⁇ (film thickness of thin film B ( ⁇ m)) / (film thickness of thin film A ( ⁇ m)) ⁇ ⁇ 100
  • Residual film ratio after baking (%) ⁇ (film thickness of thin film C ( ⁇ m) / (film thickness of thin film A ( ⁇ m))) ⁇ 100
  • ⁇ Development evaluation> A 20 ⁇ m pattern of thin film B described in “Evaluation of remaining film ratio after development and after baking” was observed with an SEM (scanning electron microscope). The developability was evaluated as x when a residue was found inside the hole and ⁇ when no residue was found.
  • the obtained resin composition was spin-coated on an aluminum substrate and baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film having a thickness of about 3.0 ⁇ m, and a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc.
  • the film was exposed to a cumulative exposure amount of 500 mJ / cm 2 and further baked on a hot plate at 120 ° C. for 120 seconds.
  • post-baking was performed by heating at 230 ° C. for 60 minutes in an oven to obtain a thin film having no pattern with a thickness of about 2.5 ⁇ m.
  • a gold electrode was formed on this thin film, and the dielectric constant was calculated from the capacitance obtained using a Hewlett Packard LCR meter (4282A) under conditions of room temperature (25 ° C.) and 1 MHz.
  • the obtained resin composition was spin-coated on a 4-inch silicon wafer treated with HMDS (Hexamethyldisilazane) and baked on a hot plate at 80 ° C. for 300 seconds to obtain a thin film A having a thickness of about 10 ⁇ m.
  • the thin film A was exposed with a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc. using a mask with 20 ⁇ m line and space width of 1: 1.
  • PPA-501F g + h + i line mask aligner
  • Example 11 25 g of a 20% propylene glycol monomethyl ether acetate (PGMEA) solution of the polymer synthesized in Synthesis Example 1, CPI-210S as a photoacid generator, 1 g from San Apro, epoxy resin (EHPE-3150, 2.0 g of Daicel Chemical Industries, Ltd., 1.0 g of urea-based crosslinking agent (Mx-270, manufactured by Sanwa Chemical Co., Ltd.) as the second crosslinking agent, and a silane coupling agent to improve adhesion to the substrate (KBM-303, manufactured by Shin-Etsu Silicone Co., Ltd.) 0.1 g, and in order to prevent radial striations formed on the resist film during spin coating, F-557 (manufactured by DIC) 100 ppm, respectively, in an appropriate amount After dissolving in PGMEA and stirring, it was filtered through a 0.2 ⁇ m filter to prepare a resin composition.
  • PGMEA propylene glycol mono
  • Example 12 A resin composition was prepared in the same manner as in Example 11 except that the second crosslinking agent was changed to 1.0 g of melamine-based crosslinking agent (Mw-390, manufactured by Sanwa Chemical Co., Ltd.).
  • the obtained resin composition was spin-coated on a 4-inch silicon wafer treated with HMDS (Hexamethyldisilazane) and baked on a hot plate at 90 ° C. for 120 seconds to obtain a thin film A having a thickness of about 3.0 ⁇ m.
  • HMDS Hexamethyldisilazane
  • a g + h + i line mask aligner PPA-501F manufactured by Canon Co., Ltd. was used, and a 10 ⁇ m line and space width of 1: 1 mask were used.
  • the film was baked on a hot plate at 110 ° C. for 120 seconds, and then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C.
  • Residual film ratio after development (%) ⁇ (film thickness of thin film B ( ⁇ m)) / (film thickness of thin film A ( ⁇ m)) ⁇ ⁇ 100
  • Residual film ratio after baking (%) ⁇ (film thickness of thin film C ( ⁇ m) / (film thickness of thin film A ( ⁇ m))) ⁇ 100
  • ⁇ Development evaluation> A 10 ⁇ m pattern of thin film B described in “Evaluation of remaining film ratio after development and after baking” was observed with an SEM (scanning electron microscope). The developability was evaluated as x when a residue was found inside the hole and ⁇ when no residue was found.
  • the obtained resin composition was spin-coated on an aluminum substrate and baked on a hot plate at 90 ° C. for 120 seconds to obtain a thin film having a thickness of about 3.0 ⁇ m.
  • the film was exposed to a cumulative exposure amount of 300 mJ / cm 2 and further baked on a hot plate at 110 ° C. for 120 seconds.
  • post-baking was performed by heating at 230 ° C. for 60 minutes in an oven to obtain a thin film having no pattern having a thickness of about 2.0 ⁇ m.
  • a gold electrode was formed on this thin film, and the dielectric constant was calculated from the capacitance obtained using a Hewlett Packard LCR meter (4282A) under conditions of room temperature (25 ° C.) and 10 kHz.
  • the obtained resin composition was spin-coated on a 4-inch silicon wafer treated with HMDS (Hexamethyldisilazane) and baked on a hot plate at 90 ° C. for 120 seconds to obtain a thin film A having a thickness of about 3.0 ⁇ m.
  • the thin film A was exposed with a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc. using a mask having a 10 ⁇ m line and a space width of 1: 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明の化学増幅型のネガ型フォトレジスト用樹脂組成物は、下記式(1)で示される共重合体で構成されるポリマーと、光酸発生剤と、架橋剤とを含み、上記架橋剤は反応性基としてヘテロ環を有する化合物を含む。(式(1)中、l及びmはポリマー中におけるモル含有率を示し、 l+m≦1であり、 nは0、1又は2であり、 R、R、R及びRはそれぞれ独立して水素又は炭素数1~30の有機基であり、 Aは下記式(2a)、(2b)、(2c)又は(2d)により示される構造単位である)(式(2a)及び式(2b)中、R、R及びRは、それぞれ独立して炭素数1~18の有機基である)

Description

ネガ型フォトレジスト用樹脂組成物、硬化膜及び電子装置
 本発明は、化学増幅型のネガ型フォトレジスト用樹脂組成物、硬化膜及び電子装置に関する。
 一般に半導体集積回路やフラットパネルディスプレイ(FPD)等の電子部品には劣化や損傷を防止するための保護膜、素子表面を平坦化するための平坦化膜、層状に配置される配線間を絶縁するための層間絶縁膜が設けられ、その形成には感光性樹脂組成物(以下、「フォトレジスト用樹脂組成物」とも称す。)が用いられてきた。中でもFPDの表示品位向上のために使用される層間絶縁膜には絶縁性のみならず、透明性も重要であり、プロセス中でかかる熱や化学処理により変色しない耐性も重要となる。更に高解像度、高精細度等の要求に対応するために高解像、高感度であることも必要となる。
 従来の層間絶縁膜はバインダー樹脂、感光剤、溶媒などからなるポジ型の感光性樹脂組成物が用いられ、バインダー樹脂としてはアクリル樹脂が主に使用されてきた(例えば、特許文献1参照。)。しかしアクリル樹脂の場合、加熱処理によって着色がみられ、透過率の観点から課題を残していた。また保護膜としてのオーバーコート用レジスト樹脂やカラーフィルター用レジスト樹脂にはエチレン性不飽和結合を有する多官能アクリル化合物を含むネガ型の感光性樹脂組成物が使用されている(例えば、特許文献2参照。)が硬化後の熱収縮が大きいばかりか、解像度や感度に改良の余地があった。
特開2003-076012号公報 再表2011/129210号公報
 本発明の目的は、層間絶縁膜、オーバーコート用レジスト、カラーフィルター用レジストに用いる樹脂組成物として好適なネガ型フォトレジスト用樹脂組成物を提供することである。
 本発明者らは、下記式(1)で示される共重合体で構成されるポリマーと、熱をかけることによりポリマーを架橋できる架橋剤を含むネガ型フォトレジスト用樹脂組成物を用いることにより、ネガ型感光性絶縁膜に要求される種々の特性のバランスに優れたネガ型感光性絶縁膜を形成できることを見出し、本発明に到達した。
 すなわち、本発明によれば、化学増幅型のネガ型フォトレジスト用樹脂組成物であって、下記式(1)で示される共重合体で構成されるポリマーと、光酸発生剤と、架橋剤とを含み、上記架橋剤は反応性基としてヘテロ環を有する化合物を含む、ネガ型フォトレジスト用樹脂組成物が提供される。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、l及びmはポリマー中におけるモル含有率を示し、l+m≦1であり、nは0、1又は2であり、R、R、R及びRはそれぞれ独立して水素又は炭素数1~30の有機基であり、Aは下記式(2a)、(2b)、(2c)又は(2d)により示される構造単位である)
Figure JPOXMLDOC01-appb-C000005
(式(2a)及び式(2b)中、R、R及びRは、それぞれ独立して炭素数1~18の有機基である)
 さらに、本発明によれば、上記ネガ型フォトレジスト用樹脂組成物を硬化させて得られる硬化膜が提供される。
 さらに、本発明によれば、上記硬化膜を備える電子装置が提供される。
 本発明によれば、高感度であり、かつ、レジスト膜に要求される種々の特性のバランスに優れたレジスト膜を形成できるネガ型フォトレジスト用樹脂組成物を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態に係る電子装置の一例を示す断面図である。 本実施形態に係る電子装置の一例を示す断面図である。
 以下、実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、「~」はとくに断りがなければ、以上から以下を表す。
<ネガ型フォトレジスト用樹脂組成物>
 本実施形態に係る化学増幅型のネガ型フォトレジスト用樹脂組成物は、下記式(1)で示される共重合体で構成されるポリマーと、光酸発生剤と、架橋剤とを含み、上記架橋剤は反応性基としてヘテロ環を有する化合物を含む。これにより、高感度であり、かつ、レジスト膜に要求される種々の特性のバランスに優れたネガ型フォトレジスト用樹脂組成物が実現される。このようなネガ型フォトレジスト用樹脂組成物は、層間絶縁膜、オーバーコート用レジスト、カラーフィルター用レジストに用いる樹脂組成物として好適なものである。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、l及びmはポリマー中におけるモル含有率を示し、l+m≦1であり、nは0、1又は2であり、R、R、R及びRはそれぞれ独立して水素又は炭素数1~30の有機基であり、Aは下記式(2a)、(2b)、(2c)又は(2d)により示される構造単位である)
Figure JPOXMLDOC01-appb-C000007
(式(2a)及び式(2b)中、R、R及びRは、それぞれ独立して炭素数1~18の有機基である)
 ネガ型フォトレジスト用樹脂組成物は、さらに、添加剤等のその他の材料を含んでもよい。以下、各成分について説明する。
<ポリマー>
 本実施形態に係るポリマーは、下記式(1)で示される共重合体である。
Figure JPOXMLDOC01-appb-C000008
 式(1)中、l及びmはのポリマー中におけるモル含有率(mol%)を示し、l+m≦1、0.1≦l≦0.9、0.1≦m≦0.9である。nは0、1又は2である。
 R、R、R及びRはそれぞれ独立して水素又は炭素数1~30の有機基である。R、R、R及びRは、互いに同一であってもよく、また互いに異なっていてもよい。
 Aは下記式(2a)、(2b)、(2c)又は(2d)により示される構造単位である。上記式(1)により示される共重合体には、下記式(2a)、(2b)、(2c)及び(2d)から選択される1種又は2種以上の構造単位Aが含まれる。本実施形態においては、少なくとも下記式(2a)、(2b)及び(2c)から選択される1種又は2種以上の構造単位Aが含まれることが好ましい。なお、ポリマーは、上記式(1)に示される構造単位以外の他の構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000009
 式(2a)及び式(2b)中、R、R及びRは、それぞれ独立して炭素数1~18の有機基である。
 R、R、R及びRを構成する炭素数1~30の有機基は、その構造中にO、N、S、P及びSiから選択される1以上を含んでいてもよい。また、R、R、R及びRを構成する有機基は、いずれも酸性官能基を有しないものとすることができる。これにより、ポリマー中における酸価の制御を容易とすることができる。
 本実施形態において、R、R、R及びRを構成する有機基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、及びヘテロ環基が挙げられる。
 アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、及びデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、及びビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、及びエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、ナフチル基、及びアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、及びフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基が挙げられる。ヘテロ環基としては、たとえばエポキシ基、及びオキセタニル基が挙げられる。
 なお、R、R、R又はRとしてアルキル基を含むことにより、ポリマーを含むネガ型フォトレジスト用樹脂組成物からなる膜の製膜性を向上させることができる。また、R、R、R又はRとしてアリール基を含むことにより、ポリマーを含むネガ型フォトレジスト用樹脂組成物からなる膜について、リソグラフィ工程におけるアルカリ現像液を用いた現像の際の膜減りを抑えることができる。
 さらに、前述したアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、及びヘテロ環基は、1以上の水素原子が、ハロゲン原子により置換されていてもよい。ハロゲン原子としては、フッ素、塩素、臭素、及びヨウ素が挙げられる。なかでもアルキル基の1以上の水素原子が、ハロゲン原子に置換されたハロアルキル基が好ましい。R、R、R及びRの少なくともいずれか1つをハロアルキル基とすることで、ポリマーを使用してネガ型フォトレジスト用樹脂組成物を構成した際、このネガ型フォトレジスト用樹脂組成物の現像性を向上させることができる。
 なお、ポリマーを含んで構成される膜の光透過性を高める観点から、R、R、R及びRのいずれかが水素であることが好ましく、特に、R、R、R及びRすべてが水素であることが好ましい。
 R、R及びRを構成する炭素数1~18の有機基は、その構造中にO,N,S,P,Siのいずれか1以上を含んでいてもよい。また、R、R及びRを構成する有機基は、酸性官能基を含まないものとすることができる。これにより、ポリマー中における酸価の制御を容易とすることができる。
 本実施形態において、R、R及びRを構成する有機基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、及びヘテロ環基が挙げられる。ここでアルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、及びデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、及びビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、及びエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、ナフチル基、及びアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、及びフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基が挙げられる。ヘテロ環基としては、たとえばエポキシ基、及びオキセタニル基が挙げられる。
 さらに、前述したアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、及びヘテロ環基は、1以上の水素原子が、ハロゲン原子により置換されていてもよい。ハロゲン原子としては、フッ素、塩素、臭素、及びヨウ素が挙げられる。なかでもアルキル基の1以上の水素原子が、ハロゲン原子に置換されたハロアルキル基が好ましい。
 上記式(1)に示される共重合体は、たとえば下記式(3)で表されるノルボルネン型モノマーに由来した繰り返し単位と、下記式(4)に示す無水マレイン酸に由来した繰り返し単位と、が交互に配列されてなる交互共重合体であることが好ましい。なお、上記式(1)に示される共重合体は、ランダム共重合体やブロック共重合体であってもよい。
 下記式(4)に示す無水マレイン酸に由来した繰り返し単位とは、上記式(1)中のAにより表される構造単位である。なお、ポリマーは、低分子量成分として下記式(3)及び(4)により示されるモノマーを含んでいてもよい。
Figure JPOXMLDOC01-appb-C000010
 式(3)中、nは0、1又は2であり、R、R、R及びRはそれぞれ独立して水素又は炭素数1~30の有機基である。
 本実施形態におけるポリマーは、たとえば酸価が15mgKOH/gポリマー以上65mgKOH/gポリマー以下である。
 ポリマーの酸価の測定は、たとえばJIS K 2501に準じて次のように行われる。まず、合成したポリマーを溶かした滴定溶剤に対し、N/10KOH水溶液を用いてpH=7.0となるよう滴定を行う。そして、この滴定に要したKOH量を基に、下記の式を用いてポリマーの酸価(樹脂1gに対するKOHのmg数)が算出される。
酸価=滴定量(ml)×KOHのファクターf×0.1×56.1/ポリマー量(固形)
 本実施形態において、ポリマーの酸価は、式(2a)により表される構造単位に由来するカルボキシル基の量の指標となる。すなわち、ポリマーの酸価を制御することにより、ポリマー中におけるカルボキシル基の量を調整することができる。したがって、ポリマーの酸価を制御することにより、カルボキシル基の量に起因して変動するポリマーのアルカリ溶液に対する溶解速度を調整することが可能となる。
 フォトリソグラフィ工程においては、所望のパターニング性能を実現するために、アルカリ現像液への溶解速度を調整することが重要となる。ポリマーの酸価を上記範囲とすることにより、特に永久膜のパターニングに適した、ネガ型フォトレジスト用樹脂組成物のアルカリ溶解速度を実現することが可能となる。
 本実施形態におけるポリマーは、たとえばGPC(Gel Permeation Chromatography)により得られる分子量分布曲線において、分子量1000以下におけるピーク面積が、全体の1%以下である。
 本発明者は、ポリマーにおける低分子量成分の量を低減することにより、当該ポリマーにより形成される膜について、硬化時におけるパターンの変形を抑制できることを見出した。このため、GPCにより得られる分子量分布曲線の分子量1000以下におけるピーク面積の比率を上記範囲とすることにより、ポリマーを含むネガ型フォトレジスト用樹脂組成物からなる膜のパターン形状を良好なものとすることができる。当該膜を永久膜として備える電子装置については、その動作信頼性を向上させることが可能となる。
 なお、ポリマーにおける低分子量成分の量の下限は、特に限定されない。しかし、本実施形態におけるポリマーは、GPCにより得られる分子量分布曲線において分子量1000以下におけるピーク面積が全体の0.01%以上である場合を許容するものである。
 本実施形態におけるポリマーは、たとえばMw(重量平均分子量)/Mn(数平均分子量)が1.5以上2.5以下である。なお、Mw/Mnは、分子量分布の幅を示す分散度である。
 本発明者は、ポリマーにおける分子量分布を一定の範囲に制御することにより、当該ポリマーにより形成される膜について、硬化時におけるパターンの変形を抑制できることを見出した。このため、ポリマーのMw/Mnを上記範囲とすることにより、ポリマーを含むネガ型フォトレジスト用樹脂組成物からなる膜のパターン形状を良好なものとすることができる。なお、このような効果は、同時に上述のようにポリマーの低分子量成分を低減する場合において特に顕著に表れる。
 また、ポリマーのMw(重量平均分子量)は、たとえば5,000以上30,000以下である。
 なお、重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)は、たとえばGPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、ポリスチレン換算値を用いる。測定条件は、たとえば以下の通りである。
東ソー社製ゲルパーミエーションクロマトグラフィー装置HLC-8320GPC
カラム:東ソー社製TSK-GEL Supermultipore HZ-M
検出器:液体クロマトグラム用RI検出器
測定温度:40℃
溶媒:THF
試料濃度:2.0mg/ミリリットル
 また、ポリマー中における低分子量成分量は、たとえばGPC測定により得られた分子量に関するデータに基づき、分子量分布全体の面積に占める、分子量1000以下に該当する成分の面積総和の割合から算出される。
 本実施形態におけるポリマーは、たとえばアルカリ金属を含有している。当該ポリマー中におけるアルカリ金属の濃度は、たとえば10ppm以下である(ここでは、ppmは質量ppmを意味する)。
 ポリマー中におけるアルカリ金属の濃度を当該範囲とすることにより、永久膜を含む電子装置の動作信頼性を向上させることができる。また、上記範囲内であればアルカリ金属がポリマー中に含有されることを許容できる。すなわち、後述する無水マレイン酸由来の構造単位における無水環を開環する工程を、アルカリ水溶液を用いた処理により行うことが可能となる。この場合、短時間で、かつ温和な条件により当該工程を行うことができる。また、酸触媒を用いて無水環を開環する工程と比較して、ポリマーにおける開環率の制御が容易となる。
 なお、ポリマー中におけるアルカリ金属濃度の下限は、特に限定されないが、本実施形態はポリマー中におけるアルカリ金属濃度が0.01ppm以上である場合を許容するものである。
 本実施形態において、ポリマー中におけるアルカリ金属の濃度は、フレームレス原子吸光光度計を用いて、必要に応じてN-メチルピロリドンにより希釈したポリマー固形分に対してのアルカリ金属濃度を測定することにより得た。
 また、本実施形態におけるポリマー中に含まれるアルカリ金属としては、たとえばNa、K又はLiが挙げられる。これらのアルカリ金属は、たとえば後述する無水マレイン酸由来の構造単位における無水環を開環する開環工程(処理S2)におけるアルカリ水溶液に起因するものである。
 本実施形態におけるポリマーのアルカリ溶解速度は、たとえば500Å/秒以上20,000Å/秒以下である。ポリマーのアルカリ溶解速度は、たとえばポリマーをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分20質量%に調整したポリマー溶液を、シリコンウェハ上にスピン方式で塗布し、これを110℃で100秒間ソフトベークして得られるポリマー膜を、23℃で2.38%のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的に前記ポリマー膜が消去するまでの時間を測定することにより算出される。
 ポリマーのアルカリ溶解速度を500Å/秒以上とすることにより、アルカリ現像液による現像工程におけるスループットを良好なものとすることができる。また、ポリマーのアルカリ溶解速度を20,000Å/秒以下とすることにより、アルカリ現像液による現像工程後における残膜率を向上させることができる。このため、リソグラフィ工程による膜減りを抑えることが可能となる。
 本実施形態に係るポリマーは、たとえば以下のように製造される。
(重合工程(処理S1))
 はじめに式(3)で示されるノルボルネン型モノマーと、モノマーとなる無水マレイン酸とを用意する。式(3)で示されるノルボルネン型モノマーにおいて、n、R~Rは、上記式(1)のものと同様とすることができる。
 式(3)で示されるノルボルネン型モノマーとしては、具体的には、ビシクロ〔2.2.1〕-ヘプト-2-エン(慣用名:2-ノルボルネン)があげられ、さらに、アルキル基を有するものとして、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-デシル-2-ノルボルネンなど、アルケニル基を有するものとして、5-アリル-2-ノルボルネン、5-(2-プロペニル)-2-ノルボルネン、5-(1-メチル-4-ペンテニル)-2-ノルボルネンなど、アルキニル基を有するものとして、5-エチニル-2-ノルボルネンなど、アラルキル基を有するものとして、5-ベンジル-2-ノルボルネン、5-フェネチル-2-ノルボルネンなど、ハロアルキル基を有するものとして、5-パーフルオロブチル-2-ノルボルネン、5-(2-ヒドロキシ-2,2-ビストリフロオロメチル)エチル-2-ノルボルネンなどがあげられる。
 ノルボルネン型モノマーとしては、これらのうち、いずれか1種以上を使用できる。なかでも、ポリマーの光透過性の観点から、ビシクロ〔2.2.1〕-ヘプト-2-エン(慣用名:2-ノルボルネン)を使用することが好ましい。
 次いで、式(3)で示されるノルボルネン型モノマーと、無水マレイン酸とを付加重合する。ここでは、ラジカル重合により、式(3)で示されるノルボルネン型モノマーと、無水マレイン酸との共重合体(共重合体1)を形成する。
 式(3)で示されるノルボルネン型モノマーと、無水マレイン酸とのモル比(式(3)で示される化合物のモル数:無水マレイン酸のモル数)は、0.5:1~1:0.5であることが好ましい。なかでも、分子構造制御の観点から、式(3)で示されるノルボルネン型モノマーのモル数:無水マレイン酸のモル数=1:1であることが好ましい。
 式(3)で示されるノルボルネン型モノマーと、無水マレイン酸と、重合開始剤とを溶媒に溶解し、その後、所定時間加熱することで、式(3)で示されるノルボルネン型モノマーと、無水マレイン酸とを溶液重合する。加熱温度は、たとえば、50~80℃であり、加熱時間は10~20時間である。
 溶媒としては、たとえばジエチルエーテル、テトラヒドロフラン、トルエン、メチルエチルケトン等のうち、いずれか1種以上を使用することができる。
 重合開始剤としては、アゾ化合物及び有機過酸化物のうちのいずれか1種以上を使用できる。
 アゾ化合物としては、たとえばアゾビスイソブチロニトリル(AIBN)、ジメチル2,2'-アゾビス(2-メチルプロピオネート)、1,1'-アゾビス(シクロヘキサンカルボニトリル)(ABCN)があげられ、これらのうち、いずれか1種以上を使用できる。
 また、有機過酸化物としては、たとえば過酸化水素、ジターシャリブチルパーオキサイド(DTBP)、過酸化ベンゾイル(ベンゾイルパーオキサイド,BPO)及び、メチルエチルケトンパーオキサイド(MEKP)を挙げることができ、これらのうち、いずれか1種以上を使用できる。
 重合開始剤の量(モル数)は、式(3)で示されるノルボルネン型モノマーと、無水マレイン酸との合計モル数の1%~10%とすることが好ましい。重合開始剤の量を前記範囲内で適宜設定し、かつ、反応温度、反応時間を適宜設定することで、得られるポリマーの重量平均分子量(Mw)を5000~30000に調整することができる。
 この重合工程(処理S1)により、以下の式(5)で示される繰り返し単位と、以下の式(6)で示される繰り返し単位とを有する共重合体1を重合することができる。
 ただし、共重合体1において、式(6)の構造のRは、各繰り返し単位において共通であることが好ましいが、それぞれの繰り返し単位ごとに異なっていてもよい。R~Rにおいても同様である。
Figure JPOXMLDOC01-appb-C000011
(式(6)において、n、R~Rは、上記式(1)と同じである。すなわち、nは0、1,2のいずれかである。R~Rは、それぞれ独立した水素又は炭素数1~30の有機基である。式(6)において、R~Rは、同一のものであっても異なっていてもよい)
 共重合体1は、式(5)で示される繰り返し単位と、式(6)で示される繰り返し単位とが、ランダムに配置されたものであってもよく、また、交互に配置されたものであってもよい。また、式(3)で示されるノルボルネン型モノマーと、無水マレイン酸とがブロック共重合したものであってもよい。ただし、本実施形態で製造されるポリマーを用いたネガ型フォトレジスト用樹脂組成物の溶解性の均一性を確保する観点からは、式(5)で示される繰り返し単位と、式(6)で示される繰り返し単位とが交互に配置された構造であることが好ましい。すなわち、共重合体1は、以下の繰り返し単位を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(7)において、n、R~Rは、上記式(1)と同じである。すなわち、nは0、1,2のいずれかである。R~Rは、水素又は炭素数1~30の有機基である。R~Rは、同一のものであっても異なっていてもよい。また、aは10以上、200以下の整数である)
 ここで、式(7)の構造のRは、各繰り返し単位において共通であることが好ましいが、それぞれの繰り返し単位ごとに異なっていてもよい。R~Rにおいても同様である。
(開環工程(処理S2))
 次に、得られた共重合体1の無水マレイン酸に由来する環状構造の繰り返し単位を開環する。
 ここで、無水マレイン酸由来の繰り返し単位の開環率は以下のようにして計測することができる。
 開環前の共重合体1の酸無水物構造における(C=O)のIR吸収強度(A1)を測定し、開環後の酸無水物構造における(C=O)のIR吸収強度(A2)より以下式にて開環率を算出する。
開環率(%)=((A1-A2)/A1)×100
 なお、内部標準物質としてアセトニトリルを用いる。
 具体的には、
(A)塩基としての金属アルコキシド
(B)アルコール及び塩基としてのアルカリ金属の水酸化物
 のいずれか一方を、前記重合工程において、前記共重合体1が重合された反応液に添加するとともに、メチルエチルケトン(MEK)等の有機溶媒をさらに添加し、40~50℃で1~5時間攪拌して、反応液L1を得る。反応液L1中では、共重合体1の無水マレイン酸由来の繰り返し単位の無水環が開環するとともに、開環することで形成された末端がエステル化される。なお、残りの末端は、金属塩構造となる。
 本実施形態において、金属アルコキシド又はアルカリ金属の水酸化物のモル数は、重合工程で使用した無水マレイン酸のモル数の100%以上とすることが好ましい。なかでも、金属アルコキシド又はアルカリ金属の水酸化物のモル数は、重合工程で使用した無水マレイン酸のモル数の100%以上、120%以下とすることが好ましい。このようにすることで、無水環を完全に開環することができ、また過剰な金属アルコキシド又はアルカリ金属のコンタミネーションを抑止し、このポリマーを使用したデバイスを形成した際に、金属イオンのマイグレートを抑制することができる。
 前述した金属アルコキシドとしては、M(OR)で示されるもの(Mは1価の金属、Rは炭素数1~18の有機基である。)が好ましい。金属Mとしては、アルカリ金属があげられ、なかでも、取り扱い性の観点からナトリウムが好ましい。Rとしては、たとえば上記式(2a)又は式(2a)におけるRと同様のものが挙げられる。
 なお、金属アルコキシドとしては、異なるものを2種以上使用してもよい。ただし、製造安定性の観点からは、1種の金属アルコキシドを使用することが好ましい。
 一方で、前述したように、共重合体1の無水マレイン酸由来の構造体を(B)アルコール及び塩基としてのアルカリ金属の水酸化物の存在下で開環してもよい。
 アルカリ金属の水酸化物としては、取り扱い性の観点から水酸化ナトリウムが好ましい。
 アルコールとしては、1価のアルコール(ROH)が好ましい。有機基であるRは、前述したものを使用できる。なお、Rは炭素数10以下であることが好ましい。
 この開環工程(処理S2)で開環した無水マレイン酸由来の繰り返し単位は、以下の式(8)で示す構造となり、カルボキシル基の塩部分を有する構造となる。この式(8)の構造を有するものを、共重合体2とよぶ。
Figure JPOXMLDOC01-appb-C000013
(式(8)において、Rは、前述したRと同様であり、前述したアルコール又は金属アルコキシド由来のものである)
 なお、共重合体2において、わずかではあるが、以下の式(9)で示す構造体が形成されることもある。
Figure JPOXMLDOC01-appb-C000014
 また、共重合体2において、わずかではあるが、以下の式(10)で示す構造体が形成されることもある。
Figure JPOXMLDOC01-appb-C000015
 次いで、反応液L1に、塩酸又は蟻酸等の水溶液を加えて、共重合体2を酸処理して、金属イオン(Na+)をプロトン(H+)と置換する。これにより、共重合体2を酸処理することで得られた共重合体3においては、式(8)で示される開環した無水マレイン酸由来の繰り返し単位は、下記式(11)のような構造となり、一方の末端がカルボキシル基となる。
Figure JPOXMLDOC01-appb-C000016
(式(11)において、Rは、前述したRと同様である)
 なお、共重合体2において、式(10)で示す構造体を有する場合には、当該構造体は、下記式(12)のような構造となる。
Figure JPOXMLDOC01-appb-C000017
 共重合体2を酸処理することで得られた共重合体3は、前述した式(6)で示される繰り返し単位と、式(5)で示される繰り返し単位と、式(11)で示される繰り返し単位と、場合により式(9)の構造体及び式(12)の構造体を有するものとなる。
 なかでも、以下の式(13)及び(14)を繰り返し単位として有し、ノルボルネン型モノマー由来の構造体と、無水マレイン酸モノマー由来の構造体とが交互に配置された構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(13)及び式(14)において、n、R~Rは、上記式(1)と同じである。すなわち、nは0,1,2のいずれかである。R~Rは、水素又は炭素数1~30の有機基である。R~Rは、同一のものであっても異なっていてもよい。また、式(14)の構造には、Zが-O―H及び-O-Rのうちのいずれか一方を示し、Wは、いずれか他方を示す構造と、わずかではあるが、Z及びWがいずれも、-O-Rである構造とが含まれる。Rは、前述したRと同様である。
 また、わずかではあるが、式(14)で示される繰り返し単位には、Z及びWがいずれも、-O-Hである構造も含まれる場合がある。
 また、式(13)が繰り返し単位となる場合には、Rは、各繰り返し単位において共通であることが好ましいが、それぞれの繰り返し単位ごとに異なっていてもよい。R~Rにおいても同様である。
 同様に、式(14)が繰り返し単位となる場合には、Rは、各繰り返し単位において共通であることが好ましいが、それぞれの繰り返し単位ごとに異なっていてもよい。R~R、W、Zにおいても同様である。
(洗浄工程(処理S3))
 次に、以上の工程により得られた共重合体3を含む溶液を、水と有機溶媒(たとえば、MEK)との混合物で洗浄して、残留金属成分を除去する。共重合体3、残留モノマー及びオリゴマーは、有機層に移動する。その後、水層を除去する(第一の洗浄)。
 その後、再度、有機層に、水と有機溶媒(たとえば、MEK)との混合物を加えて、洗浄する(第二の洗浄)。
 本実施形態においては、以上のような洗浄工程(処理S3)をたとえば5回以上、より好ましくは10回繰り返す。これにより、共重合体3中におけるアルカリ金属の濃度を、十分に低減することができる。本実施形態においては、共重合体3中のアルカリ金属濃度が10ppm以下、好ましくは5ppm以下となるように洗浄工程(処理S3)を繰り返し行うことが好ましい。
(低分子量成分除去工程(処理S4))
 次に、共重合体3と、残留モノマー及びオリゴマー等の低分子量成分とが含まれた前記有機層を、濃縮した後、THF等の有機溶媒に再度溶解させる。そして、この溶液に、ヘキサン及びメタノールを加えて、共重合体3を含むポリマーを凝固沈殿させる。ここで、低分子量成分としては、残留モノマー、オリゴマー、さらには、重合開始剤等が含まれる。次いで、ろ過を行い、得られた凝固物を、乾燥させる。これにより、低分子量成分が除去された共重合体3を主成分(主生成物)とするポリマーを得ることができる。
 本実施形態においては、当該低分子量成分除去工程(処理S4)において、共重合体3中における分子量1000以下の低核体含有率が1%以下になるまで抽出操作を繰り返すことが好ましい。これにより、ポリマー中における低分子量成分の量を、硬化時における膜のパターン変形を抑制するために十分な程度に低減することができる。
 なお、後述する加熱工程を実施する場合には、この低分子量成分除去工程(処理S4)では、たとえば共重合体3、残留モノマー及びオリゴマーが含まれた前記有機層を、メタノール、水、ヘキサンの混合液で洗浄して、有機層を除去する。
(加熱工程(処理S5))
 本実施形態では、厳密に溶解速度を調整する必要がある場合には本加熱工程(処理S5)を実施することが好ましい。この加熱工程(処理S5)では、共重合体3を加熱することでポリマーのアルカリ現像液に対する溶解速度をさらに調整する。
 加熱工程(処理S5)は、次のように行われる。
 低分子量成分除去工程において有機層を除去した液からメタノールを蒸発させた後、120~140℃で0.5~10時間加熱する。
 この加熱工程(処理S5)では、共重合体3の一部の無水マレイン酸由来の構造体の開環構造が脱水して、再度閉環することとなる。
 これにより、共重合体4を主生成物とする生成物(ポリマー)を得ることができる。
 この共重合体4においても、共重合体3と同様、ノルボルネン型モノマー由来の構造体と、無水マレイン酸モノマー由来の構造体とが交互に配置された構造であることが好ましい。そして、共重合体4は、前述した式(13)、(14)に加えて式(16)で示される構造体を有することが好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(16)において、n、R~Rは、上記式(1)と同じである。すなわち、nは0、1、2のいずれかである。R~Rは、水素又は炭素数1~30の有機基である。R~Rは、同一のものであっても異なっていてもよい。Xは、-O―R及び-O-Rのうちのいずれか一方を示し、Yは、いずれか他方を示す。R、Rは、上記式(2b)におけるR及びRと同様であり、独立した炭素数1~18の有機基である構造を含む。
 以上の工程を経ることにより、上記式(1)に示す本実施形態に係るポリマーが得られることとなる。
 ネガ型フォトレジスト用樹脂組成物中のポリマーの割合は、ネガ型フォトレジスト用樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100質量%としたとき、好ましくは30質量%~70質量%であり、より好ましくは40質量%~60質量%である。
<光酸発生剤>
 本発明のネガ型フォトレジスト用樹脂組成物は、紫外線等の活性光線の照射により酸を発生する光酸発生剤を含有する。光酸発生剤として、オニウム塩化合物を挙げることができ、例えば、スルホニウム塩、ヨードニウム塩などを挙げることができるが、有機溶媒への溶解性、活性度及び貯蔵安定性の観点からは、スルホニウム塩がより好ましい。
 スルホニウム塩としては、例えば、トリアリールスルホニウム塩、トリアルキルスルホニウム塩、ジアルキルフェナシルスルホニウム塩、ジアルキル-4-ヒドロキシフェニルスルホニウム塩等が挙げられる。これらの中でもトリアリールスルホニウム塩が好ましい。
 ヨードニウム塩としては、ジアリールヨードニウム塩が好ましい。
 光酸発生剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 光酸発生剤の市販品として、例えば、CPI-100P、CPI-101A、CPI-200K、CPI-210S、CPI-110B(サンアプロ社製)などが挙げられる。
 ネガ型フォトレジスト用樹脂組成物中の光酸発生剤の割合は、ネガ型フォトレジスト用樹脂組成物の全固形分を100質量%としたとき、好ましくは0.1~40質量%であり、高解像度のパターン膜を形成することができる点から、より好ましくは1~30質量%である。
<架橋剤>
 本発明のネガ型フォトレジスト用樹脂組成物は、上記光酸発生剤より発生した酸を触媒として上述したポリマーを架橋することができるとともに、さらに熱をかけることにより上述したポリマーの架橋を高めることができる架橋剤を含有する。このような作用効果を奏する架橋剤としては、反応性基として、ヘテロ環を有する化合物が好ましく、なかでも、グリシジル基又はオキセタニル基を有する化合物が好ましい。これらのうち、カルボキシル基や水酸基等の活性水素を持つ官能基との反応性の観点からは、グリシジル基を有する化合物がより好ましい。グリシジル基を有する化合物としては、エポキシ系化合物があげられ、低分子のものから高分子のものまで特に制限はなく、例えば、低分子型としては、n-ブチルグリシジルエーテル、2-エトキシヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ビスフェノールA(又はF)のグリシジルエーテル等のグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル等のグリシジルエステル、3,4-エポキシシクロヘキシルメチル(3,4-エポキシシクロヘキサン)カルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル(3,4-エポキシ-6-メチルシクロヘキサン)カルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジシクロペンタンジエンオキサイド、ビス(2,3-エポキシシクロペンチル)エーテルや、ダイセル化学工業(株)製のEHPE3150、セロキサイド2021P、エポリードGT300、エポリードGT403などの脂環式エポキシ等が挙げられる。
 また、高分子型としては、エピコート1001、同1002、同1003、同1004、同1007、同1009、同1010、同828(商品名;油化シェルエポキシ(株)製)、エポライト4000MF(共栄社化学製)などのビスフェノールA型エポキシ樹脂、エピコート807(商品名;油化シェルエポキシ(株)製)などのビスフェノールF型エポキシ樹脂、エピコート152、同154(商品名;油化シェルエポキシ(株)製)、EPPN201、同202(商品名;日本化薬(株)製)などのフェノールノボラック型エポキシ樹脂、EOCN102、同103S、同104S、1020、1025、1027(商品名;日本化薬(株)製)、エピコート180S75(商品名;油化シェルエポキシ(株)製)などのクレゾールノボラック型エポキシ樹脂、CY-175、同177、同179、アルダライトCY-182、同192、184(商品名;チバ-ガイギー(株)製)、ERL-4234、4299、4221、4206(商品名;U.C.C社製)、ショーダイン509(商品名;昭和電工(株)製)、エピクロン200、同400(商品名;大日本インキ(株)製)、エピコート871、同872(商品名;油化シェルエポキシ(株)製)、ED-5661、同5662(商品名;セラニーズコーティング(株)製)などの環状脂肪族エポキシ樹脂、エポライト100MF(共栄社油脂化学工業(株)製)、エピオールTMP(日本油脂(株)製)などの脂肪族ポリグリシジルエーテルなどが挙げられるが、これらに限定されない。これらは単独でも複数組み合わせて用いてもよい。
 また、エポキシ系化合物は、以下の式(17)に示す化合物を含むことができる。このような化合物としては、たとえばTechmore VG3101L((株)プリンテック製)が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 ネガ型フォトレジスト組成物の耐熱変色性、現像性の観点から、脂肪族ポリグリシジルエーテルが特に好ましい。脂肪族ポリグリシジルエーテルとしては、たとえばトリメチロールプロパントリグリシジルエーテルである。このエポキシ系化合物を架橋剤全体の20質量%以上、100質量%以下とすることが好ましい。なかでも、このエポキシ系化合物を、上述のポリマー100質量部に対して20から70質量部の範囲内とすることが好ましい。
 また、オキセタニル基を有するオキセタン系化合物としては、たとえば、以下のいずれかを使用することができる。
 例えば1,4-ビス{[(3-エチルー3-オキセタニル)メトキシ]メチル}ベンゼン、ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、4,4′-ビス(3-エチル-3-オキセタニルメトキシ)ビフェニル、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)ジフェノエート、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ポリ[[3-[(3-エチル-3-オキセタニル)メトキシ]プロピル]シラセスキオキサン]誘導体、オキセタニルシリケート、フェノールノボラック型オキセタン、1,3-ビス[(3-エチルオキセタンー3-イル)メトキシ]ベンゼン、キシリレンビスオキセタン等が挙げられるが、これらに限定されない。これらは単独でも複数組み合わせて用いてもよい。
 架橋剤は、たとえば反応性基としてヘテロ環を有する化合物とともに、メラミン系架橋剤および尿素系架橋剤のうちの一方または双方を含むことができる。これにより、ネガ型フォトレジスト用樹脂組成物における諸特性のバランスを向上させることがより容易となる。メラミン系架橋剤は、たとえば、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシブチルメラミンから選択される一種または二種以上を含むことができ、なかでもヘキサメトキシメチルメラミンを含むことが好ましい。ヘキサメトキシメチルメラミンの市販品として、例えば、Mw-390(三和ケミカル社製)などが挙げられる。尿素系架橋剤は、たとえば、メチル化尿素樹脂、ビスメトキシメチル尿素、ビスエトキシメチル尿素、ビスプロポキシメチル尿素、ビスブトキシメチル尿素から選択される一種または二種以上を含むことができ、なかでもメチル化尿素樹脂を含むことが好ましい。メチル化尿素樹脂の市販品として、例えば、MX-270、MX-280、MX-290(三和ケミカル社製)などが挙げられる。
 なお、低コスト化や解像力を向上させる観点から、メラミン系架橋剤および尿素系架橋剤の合計の含有量を架橋剤全体に対して50質量%以下とすることや、メラミン系架橋剤および尿素系架橋剤の合計の含有量を架橋剤全体に対して30質量%以下とすること、メラミン系架橋剤および尿素系架橋剤を含まない態様を採用することも可能である。
 ネガ型フォトレジスト用樹脂組成物中の架橋剤の割合は、ネガ型フォトレジスト用樹脂組成物の全固形分を100質量%としたとき、好ましくは5~60質量%であり、現像性の点から、より好ましくは20~50質量%である。
<他の添加剤>
 また、ネガ型フォトレジスト用樹脂組成物には、必要に応じて酸化防止剤、フィラー、界面活性剤、増感剤等の添加剤を添加してもよい。
 酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤及びチオエーテル系酸化防止剤の群から選択される1種以上を使用できる。酸化防止剤は、硬化の際の酸化、及びその後のプロセスにおける膜の酸化を抑えることができる。
 フェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル}2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、2,6-ジ-t-ブチル-4―メチルフェノール、2,6-ジ-t-ブチル-4―エチルフェノール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、チオジエチレングリコールビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、4,4´-チオビス(6-t-ブチル-m-クレゾール)、2-オクチルチオ-4,6-ジ(3,5-ジ-t-ブチル-4-ヒドロキシフェノキシ)-s-トリアジン、2,2´-メチレンビス(4-メチル-6-t-ブチル-6-ブチルフェノール)、2,-2´-メチレンビス(4-エチル-6-t-ブチルフェノール)、ビス〔3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド〕グリコールエステル、4,4´-ブチリデンビス(6-t-ブチル-m-クレゾール)、2,2´-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2´-エチリデンビス(4-s-ブチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ビス〔2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、2-t-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-t-ブチル-5-メチルベンジル)フェノール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4-8,10-テトラオキサスピロ[5,5]ウンデカン-ビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、トリエチレングリコールビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、1,1'-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2'-メチレンビス(4-メチルー6-t-ブチルフェノール)、2,2'―メチレンビス(4-エチルー6-t-ブチルフェノール)、2,2'―メチレンビス(6-(1-メチルシクロヘキシル)―4-メチルフェノール)、4,4'―ブチリデンビス(3-メチルー6-t-ブチルフェノール)、3,9-ビス(2-(3-t-ブチルー4-ヒドロキシー5-メチルフェニルプロピオニロキシ)1,1―ジメチルエチル)―2,4,8,10―テトラオキサスピロ(5,5)ウンデカン、4,4'-チオビス(3-メチルー6-t-ブチルフェノール)、4,4'―ビス(3,5―ジーt-ブチルー4-ヒドロキシベンジル)サルファイド、4,4'―チオビス(6-t-ブチルー2-メチルフェノール)、2,5-ジーt-ブチルヒドロキノン、2,5-ジーt-アミルヒドロキノン、2-t-ブチルー6-(3-t-ブチルー2-ヒドロキシー5-メチルベンジル)―4-メチルフェニルアクリレート、2,4-ジメチルー6-(1-メチルシクロヘキシル、スチレネイティッドフェノール、2,4-ビス((オクチルチオ)メチル)-5-メチルフェノール、などが挙げられる。これらの中では、ヒンダードフェノール系酸化防止剤が好ましい。
 リン系酸化防止剤としては、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニルホスファイト)、テトラキス(2,4-ジーt-ブチルー5-メチルフェニル)―4,4'―ビフェニレンジホスホナイト、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、ビス-(2,6-ジクミルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、トリス(ミックスドモノandジ-ノニルフェニルホスファイト)、 ビス(2,4-ジ-t-ブチルフェニル)ペンタペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メトキシカルボニルエチル-フェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-オクタデシルオキシカルボニルエチル-フェニル)ペンタエリスリトールジホスファイトなどが挙げられる。これらの中では、ホスファイト及びホスフェートが好ましい。
 チオエーテル系酸化防止剤としては、ジラウリル3,3'-チオジプロピオネート、ビス(2-メチルー4-(3-n-ドデシル)チオプロピオニルオキシ)―5-t-ブチルフェニル)スルフィド、ジステアリル-3,3'-チオジプロピオネート、ペンタエリスリトール-テトラキス(3-ラウリル)チオプロピオネートなどが挙げられる。
 酸化防止剤は、ネガ型フォトレジスト用樹脂組成物全体の0.1~5質量%とすることができる。
 また、前述したネガ型フォトレジスト用樹脂組成物は、ポリフェノール類を含んでいてもよい。
 ポリフェノール類としては、例えば、フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、p-t-ブチルフェノールノボラック、ヒドロキシナフタレンノボラック、ビスフェノールAノボラック、ビスフェノールFノボラック、テルペン変性ノボラック、ジシクロペンタジエン変性ノボラック、パラキシレン変性ノボラック、ポリブタジエン変性フェノール等が例示され、いずれか1種以上を使用できる。
 また以下のフェノール性化合物も使用できる。
 o-クレゾール、m-クレゾール、p-クレゾール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、ビスフェノールA、B、C、E、F及びG、4,4',4"-メチリジントリスフェノール、2,6-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-4-メチルフェノール、4,4'-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、4,4'-[1-[4-[2-(4-ヒドロキシフェニル)-2-プロピル]フェニル]エチリデン]ビスフェノール、4,4',4"-エチリジントリスフェノール、4-[ビス(4-ヒドロキシフェニル)メチル]-2-エトキシフェノール、4,4'-[(2-ヒドロキシフェニル)メチレン]ビス[2,3-ジメチルフェノール]、4,4'-[(3-ヒドロキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、4,4'-[(4-ヒドロキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、2,2'-[(2-ヒドロキシフェニル)メチレン]ビス[3,5-ジメチルフェノール]、2,2'-[(4-ヒドロキシフェニル)メチレン]ビス[3,5-ジメチルフェノール]、4,4'-[(3,4-ジヒドロキシフェニル)メチレン]ビス[2,3,6-トリメチルフェノール]、4-[ビス(3-シクロヘキシル-4-ヒドロキシ-6-メチルフェニル)メチル]-1,2-ベンゼンジオール、4,6-ビス[(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-1,2,3-ベンゼントリオール、4,4'-[(2-ヒドロキシフェニル)メチレン]ビス[3-メチルフェノール]、4,4',4"-(3-メチル-1-プロパニル-3-イリジン)トリスフェノール、4,4',4",4'''-(1,4-フェニレンジメチリジン)テトラキスフェノール、2,4,6-トリス「(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-1,3-ベンゼンジオール、2,4,6-トリス[(3,5-ジメチル-2-ヒドロキシフェニル)メチル]-1,3-ベンゼンジオール、4,4'-[1-[4-[1-[4-ヒドロキシ-3,5-ビス[(ヒドロキシ-3-メチルフェニル)メチル]フェニル]-1-メチルエチル]フェニル]エチリデン]ビス[2,6-ビス(ヒドロキシ-3-メチルフェニル)メチル]フェノール等が挙げられる。
 これらの化合物のうち、4,4',4"-メチリジントリスフェノール、2,6-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-4-メチルフェノール、4,4'-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、4,4'-[1-[4-[2-(4-ヒドロキシフェニル)-2-プロピル]フェニル]エチリデン]ビスフェノール、4,4',4"-エチリジントリスフェノール等が好ましい。これらのうちいずれか1種以上を使用できる。
 特に好ましくは、以下の化合物のいずれか1種以上である。
Figure JPOXMLDOC01-appb-C000021
 ネガ型フォトレジスト用樹脂組成物において、ポリフェノール類の含有量は、溶媒を除く固形分を100質量%とした場合、例えば0質量%~30質量%であることが好ましく、なかでも、3質量%以上であることが好ましい。
<溶媒>
 以上のネガ型フォトレジスト用樹脂組成物は溶媒を含んでいてもよい。溶媒としては、例えば、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル、メチルイソブチルカルビノール(MIBC)、ガンマブチロラクトン(GBL)、N-メチルピロリドン(NMP)、メチルn-アミルケトン(MAK)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、又は、これらの混合物を採用することができる。なお、ここで例示したものに限定されない。
<ネガ型フォトレジスト用樹脂組成物の調製方法>
 ネガ型フォトレジスト用樹脂組成物の調製方法は特に限定されず、一般的に公知の方法により製造することができる。例えば、以下の方法が挙げられる。ポリマー、光酸発生剤、架橋剤、必要に応じて前述したその他の添加剤、溶媒を配合して均一に混合することにより、ネガ型フォトレジスト用樹脂組成物が得られる。
<レジストパターンの形成方法>
 また、ネガ型フォトレジスト用樹脂組成物を用いたレジストパターンの形成方法は、例えば、以下の方法が挙げられる。
 はじめに、ネガ型フォトレジスト用樹脂組成物をシリコンウエハー等の支持体に塗布する。ネガ型フォトレジスト用樹脂組成物を支持体に塗布する方法としては、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の塗布方法を用いることができる。これらの中でもスピンコートが好ましく、その回転数は1000~3000rpmが好ましい。
 次いで、ネガ型フォトレジスト用樹脂組成物中の溶媒をほぼ全て除去するのに適切な温度及び時間で支持体を加熱し、塗膜を形成する。加熱温度及び時間は、例えば、60~130℃で1~5分間、好ましくは80~120℃で1~3分間である。また、ネガ型フォトレジスト用樹脂組成物の塗膜の厚みは、1.0~5.0μmが好ましい。
 その後、目的のパターンを形成するためのマスクを介して露光し、加熱する。
 塗膜上へのパターン形成は、目的のパターンを形成するためのマスクを用いて、活性光線等を照射して行う。そして、80~140℃で1~5分間、好ましくは90~130℃で1~3分間加熱し、硬化を促進させる。なお、硬化条件は上記に限定されるものではない。
 その後、アルカリ性現像液により現像して、未露光部を溶解、除去し、さらに加熱することにより、目的のレジストパターンを得ることができる。
 現像方法としては、例えば、シャワー現像法、スプレー現像法、浸漬現像法等を挙げることができる。現像条件としては通常、23℃で1~10分程度である。
 現像液としては、例えば、水酸化テトラメチルアンモニウム、水酸化ナトリウム、水酸化カリウム等の0.1~10質量%程度の濃度のアルカリ水溶液を挙げることができる。現像後は、さらに、150~300℃で30~120分間ベークし、十分に硬化させて、目的のパターンを得ることができる。なお、硬化条件は上記に限定されるものではない。
<特性>
 以上説明したネガ型フォトレジスト用樹脂組成物によれば、ポリマー、光酸発生剤、架橋剤を上述した範囲内で適切に調整して組み合わせることで、少なくとも以下に挙げる特性のうち少なくとも1つの特性を備えるレジスト膜を実現することができる。なお、以下の実施例で示す通り、ネガ型フォトレジスト用樹脂組成物がその他の添加剤を含んだ場合であっても、これらの特性は実現される。
<特性1:高残膜率>
 スピンコート法により本発明のネガ型フォトレジスト用樹脂組成物をシリコンウェハ上に成膜後、ホットプレートでプリベークすることで形成した第1の層の膜厚を第1の膜厚(第1の膜厚は、2.0μm以上15μm以下)とする。次いで、露光装置でラインとスペースの幅が1:1となる最適露光量で露光し、第1の層に対して、さらに、ホットプレートにてポストエクスポージャーベーク後、現像液を用いて現像した後の第2の層の膜厚を第2の膜厚とする。このとき、{(第2の膜厚)/(第1の膜厚)}×100≧70(%)を満たす。
 また、第2の層をオーブン中でポストベーク処理を行った後の第3の層の膜厚を第3の膜厚とする。このとき、{(第3の膜厚)/(第1の膜厚)}×100≧65(%)を満たす。
 このような特性1を備える本発明のネガ型フォトレジスト用樹脂組成物によれば、現像処理やベーク処理による膜厚の変化が少ないので、これらの処理を経た後の膜厚を精度よくコントロールすることが可能となる。
 ところで、本発明のネガ型フォトレジスト用樹脂組成物は、フォトレジストのように、所定の間だけ存在し、不要になったら除去される膜の成膜に使用されるのみならず、成膜後、除去されることなく製品中に残存し続ける永久膜の成膜にも使用することができる。このような永久膜は、設計に従った膜厚に制御される必要があるが、本発明のネガ型フォトレジスト用樹脂組成物は、上述の通り膜厚を精度よくコントロールすることができるので、好ましい。
<特性2:低比誘電率>
 本発明のネガ型フォトレジスト用樹脂組成物を用いて形成される膜の比誘電率は、4.0以下となる。比誘電率の下限値は特に限定されないが、たとえば、2.5である。なお、比誘電率の測定は、たとえば室温(25℃)で適切な周波数により行われる。測定周波数は、たとえば10kHzや1MHzとすることができる。
 比誘電率は、以下のようにして計測できる。
 本発明のネガ型フォトレジスト用樹脂組成物をアルミニウム基板上に回転塗布(回転数1000~3000rpm)し、ホットプレートにてプリベークする。その後、キヤノン社製g+h+i線マスクアライナー(PLA-501F)にて最適露光量により露光し、さらに、ホットプレートにてポストエクスポージャーベークを行う。その後、オーブン中でポストベークし、測定対象となる膜とする。
 その後、この膜上に金電極を形成し、室温(25℃)、適切な周波数条件で比誘電率を計測する。
<特性3:高透過率>
 本発明のネガ型フォトレジスト用樹脂組成物を硬化させて得られる硬化膜の層厚方向における波長400nmの光の透過率は膜厚3μm換算で80%以上となる。なかでも、上記透過率は、膜厚3μm換算で90%以上であることが好ましい。透過率の上限値は特に限定されないが、たとえば、膜厚3μm換算で99%である。
 また、本発明のネガ型フォトレジスト用樹脂組成物を硬化させて得られる硬化膜の層厚方向における波長400nmの光の透過率は、膜厚10μm換算で80%以上であることがより好ましく、90%以上であることがとくに好ましい。膜厚10μm換算における透過率の上限値は特に限定されないが、たとえば100%とすることができる。
 透過率は以下のようにして計測できる。
 本発明のネガ型フォトレジスト用樹脂組成物をガラス基板上に回転塗布(回転数1000~3000rpm)し、ホットプレートにてプリベークする。キヤノン社製g+h+i線マスクアライナー(PLA-501F)にて膜厚に応じた最適露光量により露光し、更に、ホットプレートにてポストエクスポージャーベークを行う。その後、オーブン中でポストベークし、測定対象となる膜を得る。
 この膜について光の波長400nmにおける透過率を、紫外-可視光分光光度計を用いて測定し、得られた値を膜厚3μmまたは10μmでの透過率に換算して測定値とする。
<特性4:高溶剤耐性>
 本発明のネガ型フォトレジスト用樹脂組成物をガラス基板上に回転塗布(回転数1000~3000rpm)し、ホットプレートにてプリベークする。さらに、キヤノン社製g+h+i線マスクアライナー(PLA-501F)にて300mJ/cm露光し、ホットプレートにてポストエクスポージャーベークを行う。その後、オーブン中でポストベークし、第1の膜を得る。第1の膜の膜厚を第1の膜厚とし、第1の膜をN-メチルピロリドンに10分間室温で浸漬した後の膜厚を第2の膜厚とした場合、[{(第2の膜厚)-(第1の膜厚)}/(第1の膜厚)]×100≦5(%)を満たす。
 このような特性4を備える本発明のネガ型フォトレジスト用樹脂組成物によれば、成膜後の製造工程において、N-メチルピロリドンに浸されても、膜厚がほとんど変化しない。このため、所定の設計厚さの膜を精度よく製造することが可能となる。
<特性5:寸法安定性>
 本発明のネガ型フォトレジスト用樹脂組成物をガラス基板上に回転塗布(回転数1000~3000rpm)し、ホットプレートにてプリベークする。さらに、キヤノン社製g+h+i線マスクアライナー(PLA-501F)にてラインとスペースの幅が1:1となる最適露光量で露光し、ホットプレートにてポストエクスポージャーベークを行う。その後、現像液を用いて現像する。その後、オーブン中でポストベークし、硬化膜を得る。SEMにて観察した熱硬化前後の断面形状において、ライン部分の形状が保持され、かつラインとスペースの寸法が維持されている。
<特性6:低熱重量減少>
 本発明のネガ型フォトレジスト用樹脂組成物をガラス基板上に回転塗布(回転数1000~3000rpm)し、ホットプレートにてプリベークする。さらに、キヤノン社製g+h+i線マスクアライナー(PLA-501F)にて膜厚に応じた最適露光量により露光し、ホットプレートにてポストエクスポージャーベークを行う。その後、オーブン中でポストベークし硬化膜を得る。硬化膜を削り取りTGDTAにより、窒素気流下、昇温速度10℃/minで5%重量減少温度を測定した。いずれも250℃を超えており、低アウトガス性に優れている。
<用途>
 次に、本発明のネガ型フォトレジスト用樹脂組成物の用途について説明する。
 本発明のネガ型フォトレジスト用樹脂組成物は、フォトレジストのように所定の間だけ存在し、不要になったら除去される膜の成膜に使用されるのみならず、成膜後、除去されることなく製品中に残存し続ける永久膜(硬化膜)の成膜にも使用することができる。
 たとえば、図1に示すように、トランジスタを覆う平坦化膜として使用できる。
 また、図2に示すように、半導体装置の再配線層を被覆する層間絶縁膜としても使用できる。
 さらに良好な透明性、耐熱変色性、絶縁性を活かして、顔料や色素と配合したカラーフィルターレジストやディスプレイ用層間絶縁膜などへも応用が可能である。
 さらに、本発明のネガ型フォトレジスト用樹脂組成物をマイクロレンズアレイとしてもよい。たとえば、本発明のネガ型フォトレジスト用樹脂組成物を、マイクロレンズアレイ用の型に充填し、その後、光硬化及び必要に応じて熱硬化させて、マイクロレンズアレイを形成することができる。
 このようにして製造されたマイクロレンズアレイは、液晶表示装置、プラズマディスプレイ、電界放出型ディスプレイ、エレクトロルミネセンスディスプレイ等に使用することができる。
 以下、本発明のネガ型フォトレジスト用樹脂組成物を用いて形成された膜を有する電子装置の一例を説明する。
 <電子装置>
 図1及び図2は、それぞれ本実施形態に係る電子装置100の一例を示す断面図である。いずれにおいても、電子装置100のうちの絶縁膜20を含む一部が示されている。
 本実施形態に係る電子装置100は、たとえば本発明のネガ型フォトレジスト用樹脂組成物により形成される永久膜である絶縁膜20を備えている。
 本実施形態に係る電子装置100の一例として、図1では液晶表示装置が示されている。しかしながら、本実施形態に係る電子装置100は、液晶表示装置に限定されず、本発明のネガ型フォトレジスト用樹脂組成物からなる永久膜を備える他の電子装置を含むものである。
 図1に示すように、液晶表示装置である電子装置100は、たとえば基板10と、基板10上に設けられたトランジスタ30と、トランジスタ30を覆うように基板10上に設けられた絶縁膜20と、絶縁膜20上に設けられた配線40と、を備えている。
 基板10は、たとえばガラス基板である。
 トランジスタ30は、たとえば液晶表示装置のスイッチング素子を構成する薄膜トランジスタである。基板10上には、たとえば複数のトランジスタ30がアレイ状に配列されている。本実施形態に係るトランジスタ30は、たとえばゲート電極31と、ソース電極32と、ドレイン電極33と、ゲート絶縁膜34と、半導体層35と、により構成される。ゲート電極31は、たとえば基板10上に設けられている。ゲート絶縁膜34は、ゲート電極31を覆うように基板10上に設けられる。半導体層35は、ゲート絶縁膜34上に設けられている。また、半導体層35は、たとえばシリコン層である。ソース電極32は、一部が半導体層35と接触するよう基板10上に設けられる。ドレイン電極33は、ソース電極32と離間し、かつ一部が半導体層35と接触するよう基板10上に設けられる。
 絶縁膜20は、トランジスタ30等に起因する段差をなくし、基板10上に平坦な表面を形成するための平坦化膜として機能する。また、絶縁膜20は、本発明のネガ型フォトレジスト用樹脂組成物の硬化物により構成される。絶縁膜20には、ドレイン電極33に接続するよう絶縁膜20を貫通する開口22が設けられている。
 絶縁膜20上及び開口22内には、ドレイン電極33と接続する配線40が形成されている。配線40は、液晶とともに画素を構成する画素電極として機能する。
 また、絶縁膜20上には、配線40を覆うように配向膜90が設けられている。
 基板10のうちトランジスタ30が設けられている一面の上方には、基板10と対向するよう対向基板12が配置される。対向基板12のうち基板10と対向する一面には、配線42が設けられている。配線42は、配線40と対向する位置に設けられる。また、対向基板12の上記一面上には、配線42を覆うように配向膜92が設けられている。
 基板10と当該対向基板12との間には、液晶層14を構成する液晶が充填される。
 図1に示す電子装置100は、たとえば次のように形成される。
 まず、基板10上にトランジスタ30を形成する。次いで、基板10のうちトランジスタ30が設けられた一面上に、印刷法又はスピンコート法により本発明のネガ型フォトレジスト用樹脂組成物を塗布し、トランジスタ30を覆う絶縁膜20を形成する。これにより、基板10上に設けられたトランジスタ30を覆う平坦化膜が形成される。
 次いで、絶縁膜20を露光現像して、絶縁膜20の一部に開口22を形成する。このとき、未露光部分が現像液に溶解し、露光部分が残ることとなる。この点は、後述する電子装置100の各例においても同様である。
 次いで、絶縁膜20を加熱硬化させる。そして、絶縁膜20の開口22内に、ドレイン電極33に接続された配線40を形成する。その後、絶縁膜20上に対向基板12を配置し、対向基板12と絶縁膜20との間に液晶を充填し、液晶層14を形成する。
 これにより、図1に示す電子装置100が形成されることとなる。
 また、本実施形態に係る電子装置100の一例として、図2では本発明のネガ型フォトレジスト用樹脂組成物からなる永久膜により再配線層80が構成される半導体装置が示されている。
 図2に示す電子装置100は、トランジスタ等の半導体素子が設けられた半導体基板と、半導体基板上に設けられた多層配線層と、を備えている(図示せず)。多層配線層のうち最上層には、層間絶縁膜である絶縁膜50と、絶縁膜50上に設けられた最上層配線72が設けられている。最上層配線72は、たとえばAlにより構成される。
 また、絶縁膜50上には、再配線層80が設けられている。再配線層80は、最上層配線72を覆うように絶縁膜50上に設けられた絶縁膜52と、絶縁膜52上に設けられた再配線70と、絶縁膜52上及び再配線70上に設けられた絶縁膜54と、を有する。
 絶縁膜52には、最上層配線72に接続する開口24が形成されている。再配線70は、絶縁膜52上及び開口24内に形成され、最上層配線72に接続されている。絶縁膜54には、再配線70に接続する開口26が設けられている。
 これらの絶縁膜52及び絶縁膜54は、本発明のネガ型フォトレジスト用樹脂組成物からなる永久膜により構成される。絶縁膜52は、たとえば絶縁膜50上に塗布された本発明のネガ型フォトレジスト用樹脂組成物に対し露光・現像を行うことにより開口24を形成した後、これを加熱硬化することにより得られる。また、絶縁膜54は、たとえば絶縁膜52上に塗布された本発明のネガ型フォトレジスト用樹脂組成物に対し露光・現像を行うことにより開口26を形成した後、これを加熱硬化することにより得られる。
 開口26内には、たとえばバンプ74が形成される。電子装置100は、たとえばバンプ74を介して配線基板等に接続されることとなる。
 さらに、本実施形態に係る電子装置100は、本発明のネガ型フォトレジスト用樹脂組成物からなる永久膜によりマイクロレンズを構成する光デバイスであってもよい。光デバイスとしては、たとえば液晶表示装置、プラズマディスプレイ、電界放出型ディスプレイ又はエレクトロルミネセンスディスプレイが挙げられる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
 以下、本発明を実施例及び比較例により説明するが、本発明はこれらに限定されるものではない。
 <ポリマーの合成>
 <ポリマーの合成例1>
 撹拌機,冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(MA,122.4g、1.25mol)、2-ノルボルネン(NB,117.6g、1.25mol)及びジメチル2,2'-アゾビス(2-メチルプロピオネート)(11.5g、50.0mmol)を計量し、メチルエチルケトン(MEK,150.8g)及びトルエン(77.7g)に溶解させた。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ60℃、16時間、加熱した。その後、この溶解液に対して、MEK(320g)を加えた後、これを、水酸化ナトリウム(12.5g、0.31mol),ブタノール(463.1g、6.25mol),トルエン(480g)の懸濁液に加え、45℃で3時間混合した。そして、この混合液を40℃まで冷却し、ギ酸(88質量%水溶液,49.0g、0.94mol)で処理してプロトン付加し、その後、MEK及び水を加え、水層を分離することで、無機残留物を除去した。次いで、メタノール,ヘキサンを加え有機層を分離することで未反応モノマーを除去した。さらにPGMEAを添加し、系内のメタノール及びブタノールを残留量1%未満となるまで減圧留去した。その後、反応溶液を125℃まで加熱し、アルカリ溶解時間が最適範囲となるまで反応させた。
 これにより、20質量%のポリマー溶液1107.7gを得た(GPC Mw=13,700、Mn=7,400)。得られたポリマーは、式(1)の共重合体であり、式(2a)により示される構造単位、及び式(2c)により示される構造単位を含んでいる。
 <ポリマーの合成例2>
 撹拌機,冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(4.9g、50mmol)、5-(2-ヒドロキシ-2,2-ビストリフロオロメチル)エチル-2-ノルボルネン(13.7g、50mmol)及びジメチル2,2'-アゾビス(2-メチルプロピオネート)(1.15g、5mmol)を計量し、メチルエチルケトン(MEK,2.7g)及びトルエン(8.0g)に溶解させた。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ60℃、16時間、加熱した。その後、この溶解液に対して、MEK(35g)を加えた後、大量のメタノール中に注ぎ、ポリマーを析出させた。ポリマーを濾取しメタノールにてさらに洗浄した後、30℃16時間真空乾燥させ、5.3gの白色固体を得た(GPC Mw=10,560、Mn=6,910)。得られたポリマーは、式(1)の共重合体であり、式(2c)により示される構造単位を含んでいる。
 <ポリマーの合成例3>
  撹拌機,冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(4.9g、50mmol)、5-フェニルエチル-2-ノルボルネン(7.5g、50mmol)及びジメチル2,2'-アゾビス(2-メチルプロピオネート)(1.15g、5mmol)を計量し、メチルエチルケトン(5.5g)及びトルエン(1.8g)に溶解させた。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ60℃、16時間、加熱した。その後、この溶解液に対して、MEK(24g)を加えた後、大量のメタノール中に注ぎ、ポリマーを析出させた。ポリマーを濾取しメタノールにてさらに洗浄した後、30℃16時間真空乾燥させ、5.7gの白色固体を得た(GPC Mw=9,920、Mn=6,100)。このポリマー5.0gをTHF20gに溶解させ、そこへナトリウムメトキシド1.2gを2.5gのメタノールに溶解させた溶液を添加した。60℃で3時間反応させた後、ギ酸3.5gで中和し、水洗を3回行い中和塩を除去した。その後この反応液を大量のヘキサン中へ注ぎ、ポリマーを析出させた。ポリマーを濾取しヘキサンでさらに洗浄した後、30℃16時間真空乾燥させ、5.5gを得た(GPC Mw=10,460、Mn=6,600)。得られたポリマーは、式(1)の共重合体であり、式(2a)により示される構造単位、及び、式(2c)により示される構造単位を含んでいる。
 <ポリマーの合成例4:5-ブチル-2-ノルボルネン/無水マレイン酸>
 撹拌機,冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(4.9g、50mmol)、5-ブチル-2-ノルボルネン(9.9g、50mmol)及びジメチル2,2'-アゾビス(2-メチルプロピオネート)(1.15g、5mmol)を計量し、メチルエチルケトン(MEK,6.4g)及びトルエン(2.1g)に溶解させた。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ60℃、16時間、加熱した。その後、この溶解液に対して、MEK(29g)を加えた後、大量のメタノール中に注ぎ、ポリマーを析出させた。ポリマーを濾取しメタノールにてさらに洗浄した後、30℃16時間真空乾燥させ、8.0gの白色固体を得た(GPC Mw=10,300、Mn=6,000)。このポリマー5.0gをTHF20gに溶解させ、そこへナトリウムメトキシド1.0gを2.5gのメタノールに溶解させた溶液を添加した。60℃で3時間反応させた後、ギ酸2.8gで中和し、水洗を3回行い中和塩を除去した。その後この反応液を大量のヘキサン中へ注ぎ、ポリマーを析出させた。ポリマーを濾取しヘキサンでさらに洗浄した後、30℃16時間真空乾燥させ、5.0gを得た(GPC Mw=10,470、Mn=6,100)。得られたポリマーは、式(1)の共重合体であり、式(2a)により示される構造単位、及び、式(2c)により示される構造単位を含んでいる。
(酸価)
 合成したポリマー(約20質量%ポリマー溶液)を約2.0g採取し、メタノール50mlを加えて混合した。この混合液に対し、N/10KOH水溶液を用いてpH=7.0となるよう滴定を行った。この滴定に要したKOH量を使って、下記の式を用いてポリマーの酸価(ポリマー1gに対するKOHのmg数)を算出した。
 酸価=滴定量(ml)×KOHのファクターf×0.1×56.1/ポリマー量(固形)
 合成例1、2、3、4で合成したポリマーの酸価は、それぞれ、49mgKOH/g、11mgKOH/g、36mgKOH/g、33mgKOH/gであった。
(アルカリ溶解速度)
 得られた20質量%に調整したポリマー溶液を、ウェハ上にスピン方式で塗布し、これを110℃で100秒間ソフトベークして、厚み約3μmのポリマー膜を形成した。このウェハを、2.38%、23℃のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させて、現像を行った。視覚的にポリマー膜が消去するまでの時間を測定することにより、アルカリ溶解速度(Å/秒)を測定した。
 合成例1、2、3、4で合成したポリマーのアルカリ溶解速度は、それぞれ、8,000Å/秒、1,340Å/秒、2,200Å/秒、5,500Å/秒であった。
[実施例1]
 合成例1で合成したポリマーの20%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を50g、光酸発生剤としてトリアリールスホニウム塩(CPI-210S、サンアプロ社製)を0.5g、架橋剤としてトリメチロールプロパントリグリシジルエーテル(エポライト100MF、共栄社化学製)を5.0g、基板との密着性を改善するためにシランカップリング剤として3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越シリコーン社製)を1.0g、回転塗布の際にレジスト膜上にできる放射線状のストリエーションを防止するためにF-557(DIC社製)を0.2g、をそれぞれ適量のPGMEAに溶解させて攪拌した後、0.2μmのフィルターで濾過して、樹脂組成物を調製した。
<現像後、及び、ベーク後残膜率の評価>
 得られた樹脂組成物を4インチシリコンウエハー上に回転塗布し、100℃、120秒間ホットプレートにてベーク後、約3.0μm厚の薄膜Aを得た。この薄膜Aにキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて10μmのラインとスペースの幅が1:1のマスクを使用し、パターン寸法が10μmのラインとスペースの幅が1:1となる最適露光量で露光し、さらに、120℃、120秒間ホットプレートにてベーク後、0.5質量%水酸化テトラメチルアンモニウム水溶液で23℃、60秒間現像することで、ラインとスペース幅が1:1のライン&スペースパターンつき薄膜Bを得た。その後、オーブン中で230℃、60分間加熱することによりポストベーク処理を行い、約2.5μm厚のパターン付き薄膜Cを得た。
 上記の手法にて得られた薄膜A、薄膜B及び薄膜Cの膜厚から、以下の式より残膜率を算出した。
 現像後残膜率(%)={(薄膜Bの膜厚(μm))/(薄膜Aの膜厚(μm))}×100
 ベーク後残膜率(%)={(薄膜Cの膜厚(μm)/(薄膜Aの膜厚(μm)))×100
<現像性の評価>
 「現像後、及び、ベーク後残膜率の評価」で説明した薄膜Bの、10μmのパターンをSEM(走査型電子顕微鏡にて観察した。ホール内部に残渣が見られた場合は×、残渣が見られない場合には○として現像性を評価した。また、現像処理によって露光後の薄膜Aが全て溶解してしまった場合についても×として評価を行った。
<誘電率の評価>
 得られた樹脂組成物をアルミニウム基板上に回転塗布し、100℃、120秒間ホットプレートにてベークして得た約3.0μm厚の薄膜に、キヤノン社製g+h+i線マスクアライナー(PLA-501F)にて積算露光量が500mJ/cmとなるよう露光し、さらに120℃、120秒間ホットプレートにてベークした。その後、オーブン中で230℃、60分間加熱することによりポストベーク処理を行い、約2.5μm厚のパターンのない薄膜を得た。この薄膜上に金電極を形成し、室温(25℃)、1MHzにおける条件で、Hewlett Packard社製LCRメータ(4282A)を用いて得られた静電容量から誘電率を算出した。
<透過率の評価>
 縦100mm、横100mmサイズのコーニング社製1737ガラス基板を用い、テストパターンを露光しない以外は「現像後、及び、ベーク後残膜率の評価」で説明したものと同様の操作を行うことにより、パターンのない薄膜をガラス基板上に得た。
 この薄膜について光の波長400nmにおける透過率を、紫外-可視光分光光度計を用いて測定し、得られた値を膜厚3μmでの透過率に換算して測定値とした。
<耐溶剤性の評価>
 「透過率の評価」と同様の操作を行うことで得た薄膜つきガラス基板を、N-メチルピロリドン(関東化学)中に室温(25℃)、10分間浸漬した後、純水リンスを行った。以下の演算式で定義される膜厚変化率が5%以下の場合には○、5%を超えるものは×として評価した。
 膜厚変化率(%)=[{(溶剤浸漬後の膜厚)-(溶剤浸漬前の膜厚)}/(溶剤浸漬前の膜厚)]×100
<感度の評価>
 得られた樹脂組成物をHMDS(Hexamethyldisilazane)処理した4インチシリコンウエハー上に回転塗布し、100℃、120秒間ホットプレートにてベーク後、約3.0μm厚の薄膜Aを得た。この薄膜Aにキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて10μmのラインとスペースの幅が1:1のマスクを使用し露光した。次いで、120℃、120秒間ホットプレートにてベーク後、0.5質量%水酸化テトラメチルアンモニウム水溶液で23℃、60秒間現像することで形成されたレジストパターンが、10μmのライン幅:スペース幅=1:1のときの露光量(mJ/cm)を感度とした。
<寸法、形状安定性の評価>
 現像後、及び、ベーク後残膜率の評価にて作成したパターン付きウエハーの熱硬化前後での断面形状をSEMにて観察した。パターンの変形がなく、ラインとスペースの寸法が維持されているものを○、著しい形状変化がみられるものは×とした。
<重量減少の評価>
 PLA-501Fにてテストパターンを露光しない点以外は「現像後、及び、ベーク後残膜率の評価」で説明したものと同様の操作を行うことにより、パターンのない、2.5μm厚の薄膜を得た。この薄膜を削り取り、TGAにて5%重量減少温度を測定した。
 以上の評価結果をまとめて表1に示す。
[実施例2]
 実施例1の架橋剤を脂環式エポキシ系化合物:3',4'-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(セロキサイド2021P,ダイセル株式会社製)5.0gに変更した以外は実施例1と同様に組成物を調整し、実施例1と同じ条件で評価した。
[実施例3]
  実施例1の架橋剤を水添ビスフェノールAジグリシジルエーテル(エポライト4000MF、共栄社化学製)5.0gに変更した以外は実施例1と同様に組成物を調整し、実施例1と同じ条件で評価した。
[実施例4]
  実施例1の架橋剤を脂環式エポキシ樹脂:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(EHPE3150、ダイセル株式会社製)5.0gに変更した以外は実施例1と同様に組成物を調整し、実施例1と同じ条件で評価した。
[実施例5]
  実施例1の架橋剤をオキセタン系化合物:キシリレンビスオキセタン(OXT-121、東亜合成製)5.0gに変更した以外は実施例1と同様に組成物を調整し、実施例1と同じ条件で評価した。
[実施例6]
 ポリマーを合成例2で得られたものを使用した以外は実施例1と同様に組成物を調整し、実施例1と同じ条件で評価した。
[実施例7]
 ポリマーを合成例3で得られたものを使用した以外は実施例1と同様に組成物を調整し、実施例1と同じ条件で評価した。
[実施例8]
 ポリマーを合成例4で得られたものを使用した以外は実施例1と同様に組成物を調整し、実施例1と同じ条件で評価した。
 [比較例1]
 合成例1で合成したポリマーの20%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を50g、光酸発生剤(CPI-210S、サンアプロ社製)を0.2g、架橋剤(グリコールウリル系架橋剤Mx-270、三和ケミカル社製)を3.0g、基板との密着性を改善するためにシランカップリング剤(KBM-403、信越シリコーン社製)を1.0g、回転塗布の際にレジスト膜上にできる放射線状のストリエーションを防止するためにF-557(DIC社製)を0.2g、をそれぞれ適量のPGMEAに溶解させて攪拌した後、0.2μmのフィルターで濾過して、樹脂組成物を調製し、実施例1と同じ条件で評価した。
[比較例2]
光酸発生剤(CPI-210S、サンアプロ社製)を1.0g、架橋剤(グリコールウリル系架橋剤(Mx-270、三和ケミカル社製)を6.0gに変更した以外は比較例1と同様に調整し、実施例1と同じ条件で評価した。
[比較例3]
 合成例1で合成したポリマーの20%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を50g、架橋剤(エポライト100MF、共栄社化学製)を5.0g、基板との密着性を改善するためにシランカップリング剤(KBM-403、信越シリコーン社製)を1.0g、回転塗布の際にレジスト膜上にできる放射線状のストリエーションを防止するためにF-557(DIC社製)を0.2g、をそれぞれ適量のPGMEAに溶解させて攪拌した後、0.2μmのフィルターで濾過して、樹脂組成物を調製し、実施例1と同じ条件で評価した。
Figure JPOXMLDOC01-appb-T000022
[実施例9]
 合成例1で合成したポリマーの20%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を50g、光酸発生剤としてトリアリールスホニウム塩(CPI-110B、サンアプロ社製)を0.5g、架橋剤として2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-([2,3-エポキシプロポキシ]フェニル)エチル]フェニル]プロパン(VG-3101L、プリンテック社製)を2.5g、基板との密着性を改善するためにシランカップリング剤として3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越シリコーン社製)を0.5g、回転塗布の際にレジスト膜上にできる放射線状のストリエーションを防止するためにF-557(DIC社製)を0.1g、をそれぞれ適量のPGMEAに溶解させて攪拌した後、0.2μmのPTFE製フィルターで濾過して、樹脂組成物を調製した。
[実施例10]
 合成例1で合成したポリマーの20%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を50g、光酸発生剤としてトリアリールスホニウム塩(CPI-110B、サンアプロ社製)を0.5g、架橋剤として2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-([2,3-エポキシプロポキシ]フェニル)エチル]フェニル]プロパン(VG-3101L、プリンテック社製)を2.5g、ε-カプロラクトン変性3',4'-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート(セロキサイド2081、ダイセル製)を1.0g、基板との密着性を改善するためにシランカップリング剤として3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越シリコーン社製)を1.25g、回転塗布の際にレジスト膜上にできる放射線状のストリエーションを防止するためにF-557(DIC社製)を0.1g、をそれぞれ適量のPGMEAに溶解させて攪拌した後、0.2μmのPTFE製フィルターで濾過して、樹脂組成物を調製した。
 実施例9、10については、以下のようにして各評価を行った。
<現像後、及び、ベーク後残膜率の評価>
 得られた樹脂組成物を4インチシリコンウエハー上に回転塗布し、80℃、300秒間ホットプレートにてベーク後、約10μm厚の薄膜Aを得た。この薄膜Aにキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて20μmのラインとスペースの幅が1:1のマスクを使用し、パターン寸法が20μmのラインとスペースの幅が1:1となる最適露光量で露光し、さらに、120℃、120秒間ホットプレートにてベーク後、2.38質量%水酸化テトラメチルアンモニウム水溶液で23℃、120秒間現像することで、ラインとスペース幅が1:1のライン&スペースパターンつき薄膜Bを得た。その後、オーブン中で200℃、90分間加熱することによりポストベーク処理を行い、約10μm厚のパターン付き薄膜Cを得た。
 上記の手法にて得られた薄膜A、薄膜B及び薄膜Cの膜厚から、以下の式より残膜率を算出した。
 現像後残膜率(%)={(薄膜Bの膜厚(μm))/(薄膜Aの膜厚(μm))}×100
 ベーク後残膜率(%)={(薄膜Cの膜厚(μm)/(薄膜Aの膜厚(μm)))×100
<現像性の評価>
 「現像後、及び、ベーク後残膜率の評価」で説明した薄膜Bの、20μmのパターンをSEM(走査型電子顕微鏡)にて観察した。ホール内部に残渣が見られた場合は×、残渣が見られない場合には○として現像性を評価した。
<誘電率の評価>
 得られた樹脂組成物をアルミニウム基板上に回転塗布し、100℃、120秒間ホットプレートにてベークして得た約3.0μm厚の薄膜に、キヤノン社製g+h+i線マスクアライナー(PLA-501F)にて積算露光量が500mJ/cmとなるよう露光し、さらに120℃、120秒間ホットプレートにてベークした。その後、オーブン中で230℃、60分間加熱することによりポストベーク処理を行い、約2.5μm厚のパターンのない薄膜を得た。この薄膜上に金電極を形成し、室温(25℃)、1MHzにおける条件で、Hewlett Packard社製LCRメータ(4282A)を用いて得られた静電容量から誘電率を算出した。
<透過率の評価>
 縦100mm、横100mmサイズのコーニング社製1737ガラス基板を用い、テストパターンを露光しない以外は「現像後、及び、ベーク後残膜率の評価」で説明したものと同様の操作を行うことにより、パターンのない薄膜をガラス基板上に得た。
 この薄膜について光の波長400nmにおける透過率を、紫外-可視光分光光度計を用いて測定し、得られた値を膜厚10μmでの透過率に換算して測定値とした。
<耐溶剤性の評価>
 「透過率の評価」と同様の操作を行うことで得た薄膜つきガラス基板を、N-メチルピロリドン(関東化学)中に室温(25℃)、10分間浸漬した後、純水リンスを行った。以下の演算式で定義される膜厚変化率が5%以下の場合には○、5%を超えるものは×として評価した。
 膜厚変化率(%)=[{(溶剤浸漬後の膜厚)-(溶剤浸漬前の膜厚)}/(溶剤浸漬前の膜厚)]×100
<感度の評価>
 得られた樹脂組成物をHMDS(Hexamethyldisilazane)処理した4インチシリコンウエハー上に回転塗布し、80℃,300秒間ホットプレートにてベーク後、約10μm厚の薄膜Aを得た。この薄膜Aにキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて20μmのラインとスペースの幅が1:1のマスクを使用し露光した。次いで、120℃、120秒間ホットプレートにてベーク後、2.38質量%水酸化テトラメチルアンモニウム水溶液で23℃、120秒間現像することで形成されたレジストパターンが、20μmのライン幅:スペース幅=1:1のときの露光量(mJ/cm)を感度とした。
<寸法、形状安定性の評価>
 現像後、及び、ベーク後残膜率の評価にて作成したパターン付きウエハーの熱硬化前後での断面形状をSEMにて観察した。パターンの変形がなく、ラインとスペースの寸法が維持されているものを○、著しい形状変化がみられるものは×とした。
<重量減少の評価>
 PLA-501Fにてテストパターンを露光しない点以外は「現像後、及び、ベーク後残膜率の評価」で説明したものと同様の操作を行うことにより、パターンのない、3μm厚の薄膜を得た。この薄膜を削り取り、TGAにて5%重量減少温度を測定した。
 以上の評価結果をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000023
[実施例11]
 合成例1で合成したポリマーの20%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を25g、光酸発生剤として、CPI-210S、サンアプロ社製を1g、第一架橋剤としてエポキシ樹脂(EHPE-3150、ダイセル化学工業社製)を2.0g、第二架橋剤として尿素系架橋剤(Mx-270、三和ケミカル社製)を1.0g、基板との密着性を改善するためにシランカップリング剤(KBM-303、信越シリコーン社製)を0.1g、回転塗布の際にレジスト膜上にできる放射線状のストリエーションを防止するためにF-557(DIC社製)を100ppm、をそれぞれ適量のPGMEAに溶解させて攪拌した後、0.2μmのフィルターで濾過して、樹脂組成物を調製した。
[実施例12]
 第二架橋剤をメラミン系架橋剤(Mw-390、三和ケミカル社製)1.0gに変更した以外は、実施例11と同様にして樹脂組成物を調製した。
 実施例11、12については、以下のようにして各評価を行った。
<現像後、及び、ベーク後残膜率の評価>
 得られた樹脂組成物をHMDS(Hexamethyldisilazane)処理した4インチシリコンウエハー上に回転塗布し、90℃、120秒間ホットプレートにてベーク後、約3.0μm厚の薄膜Aを得た。この薄膜Aにキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて10μmのラインとスペースの幅が1:1のマスクを使用し、パターン寸法が10μmのラインとスペースの幅が1:1となる最適露光量で露光し、さらに、110℃、120秒間ホットプレートにてベーク後、2.38質量%水酸化テトラメチルアンモニウム水溶液で23℃、60秒間現像することで、ラインとスペース幅が1:1のライン&スペースパターンつき薄膜Bを得た。その後、オーブン中で230℃、60分間加熱することによりポストベーク処理を行い、約2.0μm厚のパターン付き薄膜Cを得た。
 上記の手法にて得られた薄膜A、薄膜B及び薄膜Cの膜厚から、以下の式より残膜率を算出した。
 現像後残膜率(%)={(薄膜Bの膜厚(μm))/(薄膜Aの膜厚(μm))}×100
 ベーク後残膜率(%)={(薄膜Cの膜厚(μm)/(薄膜Aの膜厚(μm)))×100
<現像性の評価>
 「現像後、及び、ベーク後残膜率の評価」で説明した薄膜Bの、10μmのパターンをSEM(走査型電子顕微鏡)にて観察した。ホール内部に残渣が見られた場合は×、残渣が見られない場合には○として現像性を評価した。
<誘電率の評価>
 得られた樹脂組成物をアルミニウム基板上に回転塗布し、90℃、120秒間ホットプレートにてベークして得た約3.0μm厚の薄膜に、キヤノン社製g+h+i線マスクアライナー(PLA-501F)にて積算露光量が300mJ/cmとなるよう露光し、さらに110℃、120秒間ホットプレートにてベークした。その後、オーブン中で230℃、60分間加熱することによりポストベーク処理を行い、約2.0μm厚のパターンのない薄膜を得た。この薄膜上に金電極を形成し、室温(25℃)、10kHzにおける条件で、Hewlett Packard社製LCRメータ(4282A)を用いて得られた静電容量から誘電率を算出した。
<透過率の評価>
 縦100mm、横100mmサイズのコーニング社製1737ガラス基板を用い、テストパターンを露光しない以外は「現像後、及び、ベーク後残膜率の評価」で説明したものと同様の操作を行うことにより、パターンのない薄膜をガラス基板上に得た。
 この薄膜について光の波長400nmにおける透過率を、紫外-可視光分光光度計を用いて測定し、得られた値を膜厚3μmでの透過率に換算して測定値とした。
<耐溶剤性の評価>
 「透過率の評価」と同様の操作を行うことで得た薄膜つきガラス基板を、N-メチルピロリドン(関東化学)中に室温(25℃)、10分間浸漬した後、純水リンスを行った。以下の演算式で定義される膜厚変化率が5%以下の場合には○、5%を超えるものは×として評価した。
 膜厚変化率(%)=[{(溶剤浸漬後の膜厚)-(溶剤浸漬前の膜厚)}/(溶剤浸漬前の膜厚)]×100
<感度の評価>
 得られた樹脂組成物をHMDS(Hexamethyldisilazane)処理した4インチシリコンウエハー上に回転塗布し、90℃、120秒間ホットプレートにてベーク後、約3.0μm厚の薄膜Aを得た。この薄膜Aにキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて10μmのラインとスペースの幅が1:1のマスクを使用し露光した。次いで、110℃、120秒間ホットプレートにてベーク後、2.38質量%水酸化テトラメチルアンモニウム水溶液で23℃、60秒間現像することで形成されたレジストパターンが、10μmのライン幅:スペース幅=1:1のときの露光量(mJ/cm)を感度とした。
Figure JPOXMLDOC01-appb-T000024
 この出願は、2013年12月3日に出願された日本出願特願2013-250121を基礎とする優先権を主張し、その開示の総てをここに取り込む。

Claims (11)

  1.  化学増幅型のネガ型フォトレジスト用樹脂組成物であって、
     下記式(1)で示される共重合体で構成されるポリマーと、
     光酸発生剤と、
     架橋剤とを含み、
     前記架橋剤は反応性基としてヘテロ環を有する化合物を含む、
    ネガ型フォトレジスト用樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
    (式(1)中、l及びmはポリマー中におけるモル含有率を示し、
    l+m≦1であり、
    nは0、1又は2であり、
    、R、R及びRはそれぞれ独立して水素又は炭素数1~30の有機基であり、
    Aは下記式(2a)、(2b)、(2c)又は(2d)により示される構造単位である)
    Figure JPOXMLDOC01-appb-I000002
    (式(2a)及び式(2b)中、R、R及びRは、それぞれ独立して炭素数1~18の有機基である)
  2.  請求項1に記載のネガ型フォトレジスト用樹脂組成物において、
     前記反応性基としてヘテロ環を有する化合物はエポキシ系化合物及びオキセタン系化合物からなる群から選択される1種又は2種以上である、ネガ型フォトレジスト用樹脂組成物。
  3.  請求項1又は2に記載のネガ型フォトレジスト用樹脂組成物において、
     前記反応性基としてヘテロ環を有する化合物はエポキシ系化合物である、ネガ型フォトレジスト用樹脂組成物。
  4.  請求項1から3のいずれか一項に記載のネガ型フォトレジスト用樹脂組成物において、
     前記反応性基としてヘテロ環を有する化合物は脂肪族ポリグリシジルエーテルである、ネガ型フォトレジスト用樹脂組成物。
  5.  請求項1から4のいずれか一項に記載のネガ型フォトレジスト用樹脂組成物において、
     前記反応性基としてヘテロ環を有する化合物は以下の式(17)で示されるものを含む、ネガ型フォトレジスト用樹脂組成物。
    Figure JPOXMLDOC01-appb-I000003
  6.  請求項1から5のいずれか一項に記載のネガ型フォトレジスト用樹脂組成物において、
     前記架橋剤はメラミン系架橋剤および尿素系架橋剤のうちの一方または双方を含む、ネガ型フォトレジスト用樹脂組成物。
  7.  請求項1から6のいずれか一項に記載のネガ型フォトレジスト用樹脂組成物において、
     前記光酸発生剤はスルホニウム塩を含む、ネガ型フォトレジスト用樹脂組成物。
  8.  請求項1から7のいずれか一項に記載のネガ型フォトレジスト用樹脂組成物において、
     当該ネガ型フォトレジスト用樹脂組成物を硬化させて得られる硬化膜の層厚方向における波長400nmの光の透過率が膜厚3μm換算で80%以上である、ネガ型フォトレジスト用樹脂組成物。
  9.  請求項1から8のいずれか一項に記載のネガ型フォトレジスト用樹脂組成物を硬化させて得られる硬化膜。
  10.  請求項9に記載の硬化膜を備える電子装置。
  11.  前記硬化膜が、保護膜、層間絶縁膜、又は平坦化膜である請求項10に記載の電子装置。
PCT/JP2014/068113 2013-12-03 2014-07-08 ネガ型フォトレジスト用樹脂組成物、硬化膜及び電子装置 WO2015083395A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551402A JP6477492B2 (ja) 2013-12-03 2014-07-08 ネガ型フォトレジスト用樹脂組成物、硬化膜及び電子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013250121 2013-12-03
JP2013-250121 2013-12-03

Publications (1)

Publication Number Publication Date
WO2015083395A1 true WO2015083395A1 (ja) 2015-06-11

Family

ID=53273173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068113 WO2015083395A1 (ja) 2013-12-03 2014-07-08 ネガ型フォトレジスト用樹脂組成物、硬化膜及び電子装置

Country Status (3)

Country Link
JP (1) JP6477492B2 (ja)
TW (1) TW201523151A (ja)
WO (1) WO2015083395A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171748A (ja) * 2016-03-22 2017-09-28 Jsr株式会社 硬化膜、表示素子、硬化膜形成用材料及び硬化膜の形成方法
CN114450318A (zh) * 2019-09-26 2022-05-06 住友电木株式会社 聚合物、感光性树脂组合物、树脂膜和电子装置
CN114874658A (zh) * 2021-12-03 2022-08-09 佛山市西伦化工有限公司 一种抗蚀刻的uv油墨及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732111B (zh) * 2017-03-28 2021-07-01 日商住友電木股份有限公司 感光性組成物、彩色濾光片及由其衍生之微透鏡

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343748A (ja) * 2000-03-28 2001-12-14 Fujitsu Ltd ネガ型レジスト組成物、レジストパターンの形成方法及び半導体装置の製造方法
JP2005004004A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd パターン形成方法
JP2012068628A (ja) * 2010-08-27 2012-04-05 Fujifilm Corp パターン形成方法及び該方法で用いられるリンス液
JP2014137424A (ja) * 2013-01-15 2014-07-28 Sumitomo Bakelite Co Ltd 化学増幅型のネガ型フォトレジスト用樹脂組成物、硬化物および電子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005011017D1 (de) * 2004-07-07 2008-12-24 Promerus Llc Lichtempfindliche dielektrische harzzusammensetzungen und ihre verwendungen
CN102782579A (zh) * 2010-02-25 2012-11-14 日立化成工业株式会社 负型感光性树脂组合物、层间绝缘膜及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343748A (ja) * 2000-03-28 2001-12-14 Fujitsu Ltd ネガ型レジスト組成物、レジストパターンの形成方法及び半導体装置の製造方法
JP2005004004A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd パターン形成方法
JP2012068628A (ja) * 2010-08-27 2012-04-05 Fujifilm Corp パターン形成方法及び該方法で用いられるリンス液
JP2014137424A (ja) * 2013-01-15 2014-07-28 Sumitomo Bakelite Co Ltd 化学増幅型のネガ型フォトレジスト用樹脂組成物、硬化物および電子装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171748A (ja) * 2016-03-22 2017-09-28 Jsr株式会社 硬化膜、表示素子、硬化膜形成用材料及び硬化膜の形成方法
CN114450318A (zh) * 2019-09-26 2022-05-06 住友电木株式会社 聚合物、感光性树脂组合物、树脂膜和电子装置
CN114874658A (zh) * 2021-12-03 2022-08-09 佛山市西伦化工有限公司 一种抗蚀刻的uv油墨及其制备方法

Also Published As

Publication number Publication date
JP6477492B2 (ja) 2019-03-06
TW201523151A (zh) 2015-06-16
JPWO2015083395A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
KR102262620B1 (ko) 감광성 수지 조성물 및 전자 장치
TWI636330B (zh) 負型感光性樹脂組成物、電子裝置及聚合物
JP2015007770A (ja) 感光性樹脂組成物および電子装置
JP6477492B2 (ja) ネガ型フォトレジスト用樹脂組成物、硬化膜及び電子装置
JP6123302B2 (ja) 化学増幅型のネガ型フォトレジスト用樹脂組成物、硬化物および電子装置
JP2014137426A (ja) 感光性組成物
JP6624049B2 (ja) ポリマー、感光性樹脂組成物および電子装置
KR102256145B1 (ko) 네거티브형 감광성 수지 조성물, 경화막, 전자 장치 및 폴리머
JP6874401B2 (ja) 感光性樹脂組成物とそれにより生成される樹脂膜及び樹脂膜を備える電子装置
JP6075071B2 (ja) 感光性樹脂組成物および電子装置
JP6414237B2 (ja) ポリマー、ポリマーの製造方法、感光性樹脂組成物および電子装置
JP6094229B2 (ja) 感光性樹脂組成物
JP6241038B2 (ja) ポリマーの製造方法
JP6075072B2 (ja) ポリマー、感光性樹脂組成物および電子装置
JP6065749B2 (ja) 感光性樹脂組成物および電子装置
JP6459192B2 (ja) 感光性樹脂組成物
JP6094228B2 (ja) 感光性樹脂組成物
WO2015141525A1 (ja) 感光性樹脂組成物、および電子装置
JP6558479B2 (ja) ポリマー、および感光性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867737

Country of ref document: EP

Kind code of ref document: A1