WO2015079961A1 - 弁開閉時期制御装置 - Google Patents

弁開閉時期制御装置 Download PDF

Info

Publication number
WO2015079961A1
WO2015079961A1 PCT/JP2014/080422 JP2014080422W WO2015079961A1 WO 2015079961 A1 WO2015079961 A1 WO 2015079961A1 JP 2014080422 W JP2014080422 W JP 2014080422W WO 2015079961 A1 WO2015079961 A1 WO 2015079961A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral member
outer peripheral
channel
inner peripheral
advance
Prior art date
Application number
PCT/JP2014/080422
Other languages
English (en)
French (fr)
Inventor
朝日丈雄
野口祐司
池田憲治
濱崎弘之
井口佳亮
梶田知宏
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to US15/034,387 priority Critical patent/US9850787B2/en
Priority to EP14865391.8A priority patent/EP3075971B1/en
Priority to CN201480062915.3A priority patent/CN105745405B/zh
Publication of WO2015079961A1 publication Critical patent/WO2015079961A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Definitions

  • the present invention relates to a valve opening / closing timing control device including a driving side rotating body that rotates in synchronization with a crankshaft of an internal combustion engine, and a driven side rotating body that rotates in synchronization with a valve shaft of the internal combustion engine.
  • Patent Document 1 in order to reduce the weight while securing the strength of the driven-side rotating body, a cylindrical outer peripheral member made of a lightweight aluminum-based material constituting the outer peripheral side, and a strength higher than that of the aluminum-based material is disclosed.
  • a valve opening / closing timing control device including a driven side rotating body integrally formed concentrically with a cylindrical inner circumferential member made of an iron-based material constituting the inner circumferential side.
  • the outer peripheral member integrally has a partition portion that partitions the fluid pressure chamber into the advance chamber and the retard chamber, and the inner peripheral member protrudes radially outward.
  • the projecting portion is embedded in the outer peripheral member across the inside of the partition portion to prevent relative rotation between the outer peripheral member and the inner peripheral member.
  • the advance flow passage for supplying pressurized fluid that communicates with the advance chamber and the retard flow passage for supplying pressurized fluid that communicates with the retard chamber are formed so as to penetrate the driven-side rotating body in the radial direction thereof. It is.
  • the conventional valve opening / closing timing control device includes the driven-side rotating body integrally formed by concentric with the outer peripheral member and the inner peripheral member, so that the inner peripheral surface of the outer peripheral member and the outer peripheral surface of the inner peripheral member There may be a gap between them.
  • the driven-side rotating body integrally formed by concentric with the outer peripheral member and the inner peripheral member, so that the inner peripheral surface of the outer peripheral member and the outer peripheral surface of the inner peripheral member There may be a gap between them.
  • the materials of the outer peripheral member and the inner peripheral member are different from each other, there is a high possibility that such a gap is generated due to a difference in the coefficient of thermal expansion of the material.
  • the present invention has been made in view of the above circumstances, and even when the advance flow path and the retard flow path are continuously formed in the radial direction across the outer peripheral member and the inner peripheral member, the drive side It is an object of the present invention to provide a valve opening / closing timing control device that can easily control the rotation phase of the driven-side rotator with respect to the rotator with good timing.
  • the valve opening / closing timing control device is characterized in that a drive-side rotator that rotates synchronously with a crankshaft of an internal combustion engine, and the same rotation as the rotation axis of the drive-side rotator on the inner peripheral side of the drive-side rotator
  • at least one advance channel and at least one retard channel formed in the driven side rotating body, and through the advance channel or the retard channel to the advance chamber or the retard chamber By supplying a pressurized fluid, the driving side rotation A phase control unit that controls a rotational phase of the driven-side
  • a center line of the advance channel in the longitudinal direction of the advance channel and a center line of the retard channel in the longitudinal direction of the retard channel form a predetermined angle.
  • the advance channel and the retard channel are arranged, and between all the advance channels and the retard channels, the inner peripheral surface of the outer peripheral member and the inner peripheral member A groove is formed on one of the outer peripheral surfaces, and a protrusion is formed at a position corresponding to the other groove of the inner peripheral surface of the outer peripheral member and the outer peripheral surface of the inner peripheral member.
  • a labyrinth seal portion having a function of reducing the fluid leakage pressure can be provided.
  • valve opening / closing timing control device of this configuration even if the advance and retard flow paths are continuously formed in the radial direction across the outer peripheral member and the inner peripheral member, Since the labyrinth seal part can suppress the leakage of the pressurized fluid over the advance flow path and the retard flow path through the interface with the inner peripheral member, the rotational phase of the driven side rotary body with respect to the drive side rotary body is timely Easy to control.
  • the advance channel and the retard channel are arranged at different positions along a rotation direction of the driven-side rotating body, and the groove and the projecting portion are rotated. It exists in the point extended along the direction of an axial center.
  • the rotation direction means a direction of rotating around the rotation axis along a virtual plane orthogonal to the rotation axis.
  • the labyrinth seal portion is provided at the interface between the advance channel and the retard channel, and the protrusion is inserted into the groove extending along the direction of the rotation axis to Relative rotation between the member and the inner peripheral member can be prevented.
  • the advance channel and the retard channel adjacent to each other are arranged at different positions along the rotation axis, and the groove and the protrusion are configured to rotate the driven side. It is in the point extended along the rotation direction of the body.
  • the groove portion is formed on the outer peripheral surface of the inner peripheral member, and a protruding portion in which one end portion of the groove portion rises from the other portion is formed on the outer peripheral surface of the inner peripheral member.
  • the outer peripheral portion of the inner peripheral member is cast by the outer peripheral member.
  • the groove is formed by a forging process in which the outer peripheral member or the inner peripheral member is pressurized from a direction along the rotation axis.
  • a groove part can be formed, raising the intensity
  • Another feature of the present invention is that the advance channel and the retard channel pass through the bottom surface of the groove formed in the inner peripheral member.
  • valve opening / closing timing control device includes: a driving side rotating body that rotates synchronously with a crankshaft of an internal combustion engine; and a rotation axis of the driving side rotating body on an inner peripheral side of the driving side rotating body. It is arranged between a driven side rotating body, a driving side rotating body, and a driven side rotating body that are arranged on the same rotating shaft core so as to be relatively rotatable and rotate synchronously with a camshaft for opening and closing the valve of the internal combustion engine.
  • An advance chamber and a retard chamber formed by partitioning the fluid pressure chamber with a partition provided on the outer peripheral side of the driven rotor, and a radial direction of the driven rotor.
  • At least one advance channel and at least one retard channel formed in the driven-side rotating body so as to penetrate, and the advance chamber or the retard through the advance channel or the retard channel The drive by supplying pressurized fluid to the chamber
  • a phase control unit that controls a rotation phase of the driven-side rotating body with respect to the rotating body, and the driven-side rotating body includes a cylindrical outer peripheral member provided with the partition portion, and a radial direction relative to the outer peripheral member.
  • a cylindrical inner peripheral member disposed on the inner side, the outer peripheral member and the inner peripheral member are integrally formed concentrically, and a columnar shape having a height at which a front end surface is exposed to the outer peripheral surface of the outer peripheral member A portion extending from the outer peripheral surface of the inner peripheral member and integrally formed with the inner peripheral member, and the outer peripheral portion of the inner peripheral member is cast by the outer peripheral member, whereby the outer peripheral member and the inner peripheral member A member is joined, and the advance channel and the retard channel extend to the same surface as the tip surface of the columnar part and penetrate the inner peripheral member.
  • a columnar portion having a height at which a tip surface is exposed to the outer peripheral surface of the outer peripheral member extends from the outer peripheral surface of the inner peripheral member and is integrally formed with the inner peripheral member.
  • the outer peripheral member of the inner peripheral member is cast by the outer peripheral member, so that the outer peripheral member and the inner peripheral member are joined together, and the advance channel and the retard channel are formed of the columnar part. It extends to the same surface as the tip surface and penetrates the inner peripheral member.
  • the advance channel and the retard channel can be formed so that the interface between the outer peripheral member and the inner peripheral member does not face in the middle of the channel.
  • valve opening / closing timing control device of this configuration even if the advance and retard flow paths are continuously formed in the radial direction across the outer peripheral member and the inner peripheral member, There is no possibility that the pressurized fluid leaks through the advance channel and the retard channel through the interface with the inner peripheral member, and it is easy to control the rotation phase of the driven side rotating body with respect to the driving side rotating body with good timing.
  • valve opening / closing timing control device includes: a driving side rotating body that rotates synchronously with a crankshaft of an internal combustion engine; and a rotation axis of the driving side rotating body on an inner peripheral side of the driving side rotating body. It is arranged between a driven side rotating body, a driving side rotating body, and a driven side rotating body that are arranged on the same rotating shaft core so as to be relatively rotatable and rotate synchronously with a camshaft for opening and closing the valve of the internal combustion engine.
  • An advance chamber and a retard chamber formed by partitioning the fluid pressure chamber with a partition provided on the outer peripheral side of the driven rotor, and a radial direction of the driven rotor.
  • At least one advance channel and at least one retard channel formed in the driven-side rotating body so as to penetrate, and the advance chamber or the retard through the advance channel or the retard channel The drive by supplying pressurized fluid to the chamber
  • a phase control unit that controls a rotation phase of the driven-side rotating body with respect to the rotating body, and the driven-side rotating body includes a cylindrical outer peripheral member provided with the partition portion, and a radial direction relative to the outer peripheral member.
  • a cylindrical inner peripheral member disposed on the inner side, the outer peripheral member and the inner peripheral member are integrally formed in a concentric shape, and a through-hole penetrating in the radial direction of the driven rotating body is formed in the inner peripheral member Formed in the member, the outer peripheral member of the inner peripheral member is cast by the outer peripheral member, the outer peripheral member and the inner peripheral member are joined so that the portion of the outer peripheral member enters the through hole, The advance channel and the retard channel pass through the portion of the outer peripheral member filled in the through hole.
  • a through-hole penetrating in the radial direction of the driven-side rotating body is formed in the inner peripheral member, and an outer peripheral portion of the inner peripheral member is cast by the outer peripheral member.
  • the outer peripheral member and the inner peripheral member are joined so that a portion of the outer peripheral member enters the through-hole, and the advance channel and the retard channel are filled in the through-hole. It penetrates the part.
  • the advance channel and the retard channel can be formed so that the interface between the outer peripheral member and the inner peripheral member does not face in the middle of the channel.
  • valve opening / closing timing control device of this configuration even if the advance and retard flow paths are continuously formed in the radial direction across the outer peripheral member and the inner peripheral member, There is no possibility that the pressurized fluid leaks through the advance channel and the retard channel through the interface with the inner peripheral member, and it is easy to control the rotation phase of the driven side rotating body with respect to the driving side rotating body with good timing.
  • the inner peripheral member is made of an iron-based material.
  • the outer peripheral member is formed of a material that is lighter than an iron-based material.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is a perspective view of the internal rotor (driven side rotary body) in 1st Embodiment. It is a perspective view of the inner peripheral member in a 1st embodiment. It is a cross-sectional view of the internal rotor in the second embodiment.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5. It is a perspective view of the inner peripheral member in a 2nd embodiment. It is a longitudinal cross-sectional view of the internal rotor in 3rd Embodiment.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 12.
  • FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 15.
  • FIG. 18 is a cross-sectional view taken along line XVIII-XVIII in FIG.
  • FIGS. 1 and 2 show a valve opening / closing timing control device A according to the present invention, which is installed in an automobile gasoline engine (internal combustion engine) E.
  • FIG. As shown in FIGS. 1 and 2, the valve opening / closing timing control device A includes a housing 1 as a “drive-side rotating body” that rotates synchronously with the crankshaft E1 of the engine E, and a housing 1 on the inner peripheral side of the housing 1.
  • a fixed shaft portion 4 that rotatably supports the peripheral side around the rotation axis X, a fluid pressure chamber 5 formed between the housing 1 and the internal rotor 3, and an outer peripheral side of the internal rotor 3 are provided integrally.
  • phase controller 7 for controlling the rotational phase of the inner rotor 3.
  • the camshaft 2 is rotatably mounted on a cylinder head (not shown) of the engine E.
  • the fixed shaft portion 4 is fixed to a stationary member such as a front cover of the engine E.
  • the housing 1 includes an outer rotor 1a having a cylindrical outer periphery, a front plate 1b disposed on the front side of the outer rotor 1a, and a rear plate 1c disposed on the rear side of the outer rotor 1a. It is fixed integrally.
  • the outer rotor 1a and the front plate 1b are made of an aluminum-based material such as an aluminum alloy that is lighter than an iron-based material.
  • the rear plate 1c is integrally provided with a sprocket 1e on the outer peripheral side, and is formed of an iron-based material such as steel.
  • a power transmission member E2 such as a timing chain or a timing belt is wound around the sprocket 1e and the sprocket attached to the crankshaft E1, and the housing 1 is driven in the direction indicated by the arrow S in FIG. Rotate to.
  • the internal rotor 3 is fixed to the distal end portion of the camshaft 2 provided with a cam (not shown) that controls opening and closing of the intake valve or exhaust valve of the engine E.
  • the internal rotor 3 is driven to rotate in the direction indicated by the arrow S as the housing 1 rotates.
  • the inner rotor 3 is provided with a recess 8 having a cylindrical inner peripheral surface 8a concentric with the rotation axis X.
  • the internal rotor 3 and the camshaft 2 are integrally fixed to each other by screwing a bolt 10 inserted through the bottom plate portion 8b of the recess 8 into the camshaft 2 in a concentric shape.
  • a torsion coil spring 18 that biases the rotational phase of the inner rotor 3 relative to the housing 1 toward the advance side is mounted across the inner rotor 3 and the rear plate 1c.
  • a plurality of (four in this embodiment) protruding portions 9 protruding inward in the radial direction are integrally formed at positions separated from each other in the rotational direction.
  • Each projecting portion 9 is provided such that the projecting end portion is slidably moved with respect to the outer peripheral surface of the inner rotor 3 via the seal member 9a.
  • Positions where a plurality of (four in this embodiment) partitioning portions 6 projecting outward in the radial direction are separated from each other in the rotational direction at locations facing the fluid pressure chambers 5 on the outer peripheral side of the inner rotor 3. are integrally formed.
  • Each partition portion 6 is provided such that the protruding end portion is slidably moved with respect to the inner peripheral surface of the external rotor 1a via the seal member 6a.
  • Each fluid pressure chamber 5 is partitioned by these partition portions 6 into an advance chamber 5a and a retard chamber 5b that are adjacent in the rotational direction.
  • the inner rotor 3 includes a circular cross-section advance passage 11a communicating with the advance chamber 5a and a circular cross-section retard passage 11b communicating with the retard chamber 5b.
  • a through-hole is formed in the rotational radial direction so as to communicate with the recess 8.
  • the hydraulic oil is supplied to and discharged from the advance chamber 5a through the advance passage 11a, and is supplied to and discharged from the retard chamber 5b through the retard passage 11b.
  • the advance channel 11a and the retard channel 11b are shifted from each other in the direction of the rotation axis X between the adjacent partition portions 6 in the rotation direction, and The phase around the rotation axis X is shifted from each other.
  • the advance channel 11a is formed close to the partition 6 on the side of the advance direction S1, which will be described later, between the partitions 6 adjacent in the rotation direction, and the retard channel 11b is formed in the rotation direction. It is formed close to the partition 6 on the side of the retarding direction S2, which will be described later, between the adjacent partitions 6. Therefore, when the adjacent advance channel 11a and retard channel 11b are viewed in the direction along the rotation axis X, the center line and the retard channel of the advance channel 11a in the longitudinal direction of the advance channel 11a. They are arranged at different positions along the rotational direction of the internal rotor 3 so that the center line of the retarded flow path 11b in the longitudinal direction of 11b forms a predetermined angle.
  • the advance channel 11a communicates with the recess 8 at a position facing the space between the fixed shaft portion 4 and the bottom plate portion 8b on the side of the rear plate 1c.
  • the channel 11b communicates with the recess 8 at a position facing the outer peripheral surface of the fixed shaft portion 4 on the front plate 1b side with respect to the advance channel 11a. Therefore, the adjacent advance angle channel 11a and retard angle channel 11b are arranged at different positions along the rotation axis X in the direction perpendicular to the rotation axis X.
  • the fixed shaft portion 4 includes an advance side supply channel 12a as a fluid channel that can communicate with the advance channel 11a and a retard side supply channel 12b as a fluid channel that can communicate with the retard channel 11b. And have.
  • the advance side supply flow path 12 a communicates with the space between the fixed shaft part 4 and the bottom plate part 8 b from one axial end side of the fixed shaft part 4, and the retard side supply flow path 12 b is connected to the fixed shaft part 4. It communicates with an annular circumferential groove 13 formed on the outer peripheral surface. Seal rings 14 that close the gap between the outer peripheral surface of the fixed shaft portion 4 and the inner peripheral surface 8a of the concave portion 8 are mounted on both sides of the annular peripheral groove 13 and one axial end side of the fixed shaft portion 4, respectively.
  • a lock mechanism 15 is provided across the inner rotor 3 and the housing 1 so that the rotation phase of the inner rotor 3 with respect to the housing 1 can be switched between a locked state in which the rotational phase is restricted to the most retarded position and an unlocked state in which the restriction is released.
  • the lock mechanism 15 is a lock provided with one of the partitioning portions 6 of the inner rotor 3 having a tip portion that can be moved back and forth in the direction along the rotation axis X with respect to a recess (not shown) formed in the rear plate 1c.
  • the member 15a is mounted.
  • the lock mechanism 15 is switched to a locked state when the distal end portion of the lock member 15a enters the recess by an urging force of an urging member (not shown) such as a compression spring, and the lock oil passage 11c communicates with the annular circumferential groove 13. Due to the pressure of the hydraulic oil supplied through the urging member, the urging force of the urging member is resisted against the urging force so as to come out from the recess toward the inner rotor 3 to switch to the unlocked state.
  • an urging member such as a compression spring
  • the phase controller 7 supplies and discharges hydraulic oil to and from the hydraulic pump P that sucks and discharges hydraulic oil from the oil pan 17 and the advance-side supply channel 12a and the retard-side supply channel 12b, and shuts off the supply and discharge.
  • a fluid control valve OCV to be performed and an electronic control unit ECU for controlling the operation of the fluid control valve OCV are provided.
  • the rotational phase of the inner rotor 3 with respect to the housing 1 is indicated by the advance direction indicated by arrow S1 (the direction in which the volume of the advance chamber 5a increases) or the retard angle direction indicated by arrow S2. It is displaced in the direction in which the volume of the retarding chamber 5b increases, and is held at an arbitrary phase by the operation of shutting off and discharging hydraulic oil.
  • the lock mechanism 15 is switched from the locked state to the unlocked state when the hydraulic oil is supplied through the lock oil passage 11c in the operation of supplying the hydraulic oil to the advance chamber 5a.
  • the internal rotor 3 includes a cylindrical outer peripheral member 3 a in which the partition portions 6 are integrally provided on the outer peripheral side, and a cylinder disposed radially inward of the outer peripheral member 3 a.
  • the outer peripheral member 3a and the inner peripheral member 3b are integrally formed with the rotating shaft X in a concentric manner.
  • the inner peripheral member 3b is composed of, for example, a high-strength sintered product or forged product formed of an iron-based material.
  • the outer peripheral member 3a is formed of a material that is lighter than the iron-based material forming the inner peripheral member 3b, for example, an aluminum-based material such as an aluminum alloy.
  • the outer peripheral portion of the inner peripheral member 3b is cast by the outer peripheral member 3a.
  • the outer peripheral member 3 a includes a cylindrical inner peripheral surface 20, and the inner peripheral member 3 b includes a cylindrical outer peripheral surface 21 that fits inside the inner peripheral surface 20.
  • a recess 8 is formed in the inner peripheral member 3b, and the inner peripheral member 3b and the camshaft 2 are integrally connected and fixed by a bolt 10.
  • the inner rotor 3 prevents the inner peripheral surface 20 of the outer peripheral member 3a and the outer peripheral surface 21 of the inner peripheral member 3b from rotating by casting the outer peripheral portion of the inner peripheral member 3b with an aluminum-based material constituting the outer peripheral member 3a. In the state, it is joined concentrically.
  • the inner peripheral surface of the outer peripheral member 3a is located between all the advance flow channels 11a and the retard flow channels 11b.
  • 20 and the outer peripheral surface 21 of the inner peripheral member 3b are formed with a groove 23 at a position corresponding to the other groove 23 between the inner peripheral surface 20 of the outer peripheral member 3a and the outer peripheral surface 21 of the inner peripheral member 3b.
  • a protruding portion 24 is formed.
  • the groove 23 and the protrusion 24 that are fitted to each other from the rotational radial direction are distributed to the inner peripheral surface 20 of the outer peripheral member 3a and the outer peripheral surface 21 of the inner peripheral member 3b, and the adjacent advance channel 11a. It arrange
  • a plurality of sets of combinations with the axial ridges 24a (24) formed in a shape are extended along the direction of the rotation axis X, which is a direction intersecting the rotation direction, at equal intervals in the rotation direction. is there.
  • the plurality of axial grooves 23a are formed by casting the outer peripheral portion of the inner peripheral member 3b formed with the axial ridges 24a with an aluminum-based material constituting the outer peripheral member 3a, so that the inner peripheral surface 20 of the outer peripheral member 3a. Formed.
  • a labyrinth seal portion is provided by disposing at least one pair of the combination with the axial ridge portion 24a away from the advance channel 11a and the retard channel 11b.
  • the axial groove 23a and the axial protrusion 24a are formed in a rectangular cross-sectional shape with dimensions that do not enter the interior of the partition 6 at an intermediate position between the front plate 1b and the rear plate 1c. For this reason, the thickness in the rotation direction of the partition part 6 can be reduced, and the length in the rotation direction of the fluid pressure chamber 5 can be set long, and it is easy to ensure a large angle range in which the relative phase can be changed.
  • the fitting of the axial groove 23a and the axial protrusion 24a the relative movement in the rotational direction and the relative movement in the direction of the rotational axis X between the outer peripheral member 3a and the inner peripheral member 3b are prevented.
  • [Second Embodiment] 5 to 7 show another embodiment of the present invention.
  • the structure of the junction part 22 of the inner peripheral surface 20 of the outer peripheral member 3a and the outer peripheral surface 21 of the inner peripheral member 3b differs from 1st Embodiment. That is, the joint portion 22 is formed on the outer peripheral surface 21 of the inner peripheral member 3b by the forging, sintering molding or cutting, and the inner peripheral surface 20 of the outer peripheral member 3a so as to be fitted to the groove portion 23. A plurality of sets of combinations with the projected ridges 24 are provided.
  • the combination of the groove 23 and the protrusion 24 fitted in the groove 23 includes an axial groove 23a (23) extending in the direction along the rotation axis X and a shaft fitted in the axial groove 23a.
  • a plurality of combinations of combinations of the axial groove 23a and the axial ridges 24a fitted in the axial groove 23a are arranged at equal intervals in the rotation direction. Then, at all positions between the advance channel 11a and the retard channel 11b adjacent to each other in the rotational direction when viewed along the rotation axis X, at least one of these combinations is defined as the advance channel 11a.
  • a labyrinth seal portion is provided so as to be separated from the retarded flow path 11b.
  • the axial groove 23a is provided so that one end side is located in the middle between the front plate 1b and the rear plate 1c, and the other end side is opened to the end surface on the front plate 1b side.
  • the circumferential groove portion 23b and the circumferential ridge portion 24b fitted to the circumferential groove portion 23b are adjacent to each other in the direction of the rotation axis X while intersecting the axial groove portion 23a and the axial ridge portion 24a at a right angle.
  • a series of annular shapes are provided so as to be spaced apart from the advance channel 11a and the retard channel 11b. The relative movement in the direction of the rotation axis X between the outer peripheral member 3a and the inner peripheral member 3b is prevented by the fitting of the circumferential groove 23b and the circumferential protrusion 24b.
  • Each of the axial ridges 24a and the circumferential ridges 24b is formed by casting the outer peripheral portion of the inner peripheral member 3b in which the groove portions 23a and 23b are formed with an aluminum-based material constituting the outer peripheral member 3a. It is formed on the inner peripheral surface 20 of 3a.
  • an annular labyrinth configured by fitting the circumferential groove portion 23b and the circumferential ridge portion 24b. A seal is provided.
  • the structure of the junction part 22 of the inner peripheral surface 20 of the outer peripheral member 3a and the outer peripheral surface 21 of the inner peripheral member 3b differs from 1st Embodiment. That is, the joining portion 22 includes an axial groove portion 23a (23) formed by forging on the outer peripheral surface 21 of the inner peripheral member 3b, and the inner peripheral surface 20 of the outer peripheral member 3a so as to be fitted to the axial groove portion 23a. A plurality of sets of combinations with the axial ridges 24a (24) formed in is provided at equal intervals in the rotation direction.
  • a labyrinth seal portion is provided so as to be separated from the retarded flow path 11b.
  • Each axial groove 23a is formed by forging that pressurizes the outer peripheral surface 21 of the inner peripheral member 3b from the direction along the rotation axis X. Further, a protrusion 25 is formed on the outer peripheral surface 21 of the inner peripheral member 3b so that one end portion of the axial groove portion 23a swells higher than the other portions due to the surplus generated with the forging of the axial groove portion 23a. Yes.
  • the axial groove 23a is provided so that one end side is located in the middle between the front plate 1b and the rear plate 1c, and the other end side is opened to the end surface on the front plate 1b side.
  • a recess 26 that fits into the portion 24a and the protrusion 25 is formed on the inner peripheral surface 20 of the outer peripheral member 3a.
  • FIG. 10 shows a modification of the first or third embodiment of the present invention.
  • the axial groove 23a is formed on the outer peripheral surface 21 of the inner peripheral member 3b, and the axial ridge 24a that fits into the axial groove 23a is formed on the inner peripheral surface 20 of the outer peripheral member 3a.
  • the advance channel 11a and the retard channel 11b are formed so as to penetrate the bottom surface of the axial groove 23a.
  • Other configurations are the same as those in the first or third embodiment.
  • FIG. 11 shows a modification of the second embodiment of the present invention.
  • the circumferential groove 23b is formed on the outer circumferential surface 21 of the inner circumferential member 3b, and the circumferential ridge 24b that fits into the circumferential groove 23b is formed on the inner circumferential surface 20 of the outer circumferential member 3a.
  • the advance channel 11a and the retard channel 11b are formed so as to penetrate the bottom surface of the circumferential groove 23b.
  • Other configurations are the same as those of the second embodiment.
  • the joint portion 22 between the inner peripheral surface 20 of the outer peripheral member 3a and the outer peripheral surface 21 of the inner peripheral member 3b is a groove portion 23 arranged in a mesh shape on the outer peripheral surface 21 of the inner peripheral member 3b by knurling, And a ridge portion 24 formed on the inner peripheral surface 20 of the outer peripheral member 3a so as to be fitted into the groove portions 23.
  • the groove portions 23 are formed in a mesh shape by rolling, and the protrusions 24 fitted into these groove portions 23 constitute the outer peripheral member 3a on the outer peripheral side of the inner peripheral member 3b in which the groove portions 23 are formed.
  • the outer peripheral member 3a is formed in a mesh shape on the inner peripheral surface 20 thereof.
  • the groove 23 and the protrusion 24 fitted into the groove 23 are provided at all positions between the advance channel 11a and the retard channel 11b adjacent to each other in the rotational direction when viewed along the rotation axis X.
  • the groove 23 and the ridge 24 are crossed with respect to the rotation direction and along the rotation direction so that at least one of the combinations is arranged away from the advance channel 11a and the retard channel 11b.
  • the labyrinth seal portion is extended in a mesh shape. Other configurations are the same as those of the first embodiment.
  • FIG. 15 and 16 show another embodiment of the present invention.
  • a columnar portion 28 having a height at which the front end surface 27 is flush with the outer peripheral surface 21 of the outer peripheral member 3a extends from the outer peripheral surface 21 of the inner peripheral member 3b and is integrally formed with the inner peripheral member 3b.
  • the inner rotor 3 is configured by joining the inner peripheral member 3b in a non-rotating state.
  • the columnar portion 28 is embedded in the outer peripheral member 3a, and relative movement in the rotational direction between the outer peripheral member 3a and the inner peripheral member 3b and relative movement in the direction of the rotation axis X are prevented.
  • All of the advance channel 11a and the retard channel 11b extend to the same surface as the tip surface 27 of the cylindrical portion 28 and penetrate the inner peripheral member 3b.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 17 and 18 show another embodiment of the present invention.
  • a through hole 29 having a circular cross section penetrating in the radial direction is formed in the inner peripheral member 3b. Then, by casting the outer peripheral portion of the inner peripheral member 3b in which the through hole 29 is formed with the aluminum-based material forming the outer peripheral member 3a, the aluminum-based material extends over the inner peripheral surface side of the inner peripheral member 3b.
  • the inner rotor 3 is configured by joining the outer peripheral member 3 a and the inner peripheral member 3 b so as to enter the through hole 29.
  • the aluminum-based material is filled in the through-hole 29, and relative movement in the rotation direction between the outer peripheral member 3a and the inner peripheral member 3b and relative movement in the direction of the rotation axis X are prevented.
  • the advance channel 11 a and the retard channel 11 b all penetrate the portion 30 of the outer peripheral member 3 a in which the through hole 29 is filled.
  • Other configurations are the same as those of the first embodiment.
  • the valve opening / closing timing control device does not form grooves and protrusions at positions intersecting the advance flow path or the retard flow path, and does not form any groove between adjacent advance flow paths and retard flow paths. Only in this position, the groove portion and the ridge portion, which are included in the labyrinth seal portion and are fitted to each other, may be formed by being divided into the inner peripheral surface of the outer peripheral member and the outer peripheral surface of the inner peripheral member. 2.
  • the valve opening / closing timing control device according to the present invention alternately forms grooves on the inner peripheral surface of the outer peripheral member and the outer peripheral surface of the inner peripheral member, and sets the protrusions that fit into the alternately formed grooves on the outer peripheral member.
  • the valve opening / closing timing control device is a direction in which the groove and the ridge are crossed obliquely with respect to the rotation direction at all or a part of the positions between the adjacent advance and retard flow paths. You may extend along. 4).
  • the outer peripheral member may be formed of a resin material that is lighter than an iron-based material, instead of an aluminum-based material. 5.
  • the outer peripheral member or the inner peripheral member may be formed of a forged product.
  • the axial direction groove part may be formed by the forge process which pressurizes an outer peripheral member or an inner peripheral member from the direction along a rotating shaft core. 6).
  • the valve opening / closing timing control apparatus according to the present invention may be provided in various internal combustion engines other than those for automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

駆動側回転体(1)に対する従動側回転体(3)の回転位相をタイミング良く制御し易い弁開閉時期制御装置を提供する。駆動側回転体(1)と、従動側回転体(3)と、駆動側回転体(1)と従動側回転体(3)との間の流体圧室を区画して形成される進角室(5a)および遅角室(5b)と、従動側回転体(3)に貫通形成された進角流路(11a)または遅角流路(11b)を通して進角室(5a)または遅角室(5b)に加圧流体を供給する位相制御部とを備え、従動側回転体(3)は外周部材(3a)と内周部材(3b)を同芯状に一体形成してあり、進角流路(11a)と遅角流路(11b)とが所定角度をなすように配置され、全ての進角流路(11a)と遅角流路(11b)との間において、外周部材(3a)の内周面と内周部材(3b)の外周面とのいずれか一方に溝部(23)が形成され、他方の溝部(23)に対応する位置に突条部(24)が形成されている。

Description

弁開閉時期制御装置
 本発明は、内燃機関のクランクシャフトと同期回転する駆動側回転体と、前記内燃機関の弁開閉用のカムシャフトと同期回転する従動側回転体とを備える弁開閉時期制御装置に関する。
 特許文献1には、従動側回転体の強度を確保しながら軽量化を図るために、外周側を構成する軽量なアルミニウム系材料からなる筒状の外周部材と、アルミニウム系材料よりも高強度の内周側を構成する鉄系材料からなる筒状の内周部材とで同芯状に一体に構成された従動側回転体を備えた弁開閉時期制御装置が開示されている。
 この弁開閉時期制御装置が備える従動側回転体は、外周部材が流体圧室を進角室と遅角室とに仕切る仕切部を一体に有し、内周部材が径方向外方に延びる突出部を一体に有し、その突出部を仕切部の内部に亘って外周部材に埋設して、外周部材と内周部材との相対回転を阻止してある。
 進角室に連通する加圧流体供給用の進角流路および遅角室に連通する加圧流体供給用の遅角流路は、従動側回転体にその径方向に貫通するように形成してある。
特開2000-161028号公報
 上記従来の弁開閉時期制御装置は、外周部材と内周部材とで同芯状に一体に構成された従動側回転体を備えているので、外周部材の内周面と内周部材の外周面との間に隙間が生じる可能性がある。
 特に、外周部材と内周部材の材料が互いに異なる場合は、材料の熱膨張率の違いなどに起因して、そのような隙間が生じる可能性が高くなる。
 このため、進角流路および遅角流路を外周部材と内周部材とに亘って径方向に一連に貫通形成してある場合は、外周部材の内周面と内周部材の外周面との間に生じた隙間を介して、加圧流体が進角流路と遅角流路とに亘って漏れる可能性があり、駆動側回転体に対する従動側回転体の回転位相をタイミング良く制御できないおそれがある。
 本発明は上記実情に鑑みてなされたものであって、進角流路および遅角流路を外周部材と内周部材とに亘って径方向に一連に貫通形成してある場合でも、駆動側回転体に対する従動側回転体の回転位相をタイミング良く制御し易い弁開閉時期制御装置を提供することを目的とする。
 本発明による弁開閉時期制御装置の特徴構成は、内燃機関のクランクシャフトと同期回転する駆動側回転体と、前記駆動側回転体の内周側に前記駆動側回転体の回転軸芯と同一回転軸芯上に相対回転可能に配置され、前記内燃機関の弁開閉用のカムシャフトと同期回転する従動側回転体と、前記駆動側回転体と前記従動側回転体との間に形成された流体圧室と、前記従動側回転体の外周側に設けられた仕切部で前記流体圧室を仕切ることにより形成される進角室および遅角室と、前記従動側回転体の径方向に貫通するように前記従動側回転体に形成された少なくとも一つの進角流路および少なくとも一つの遅角流路と、前記進角流路または前記遅角流路を通して前記進角室または前記遅角室に加圧流体を供給することにより、前記駆動側回転体に対する前記従動側回転体の回転位相を制御する位相制御部と、を備え、前記従動側回転体は、前記仕切部が設けられた筒状の外周部材と、前記外周部材よりも径方向内側に配置される筒状の内周部材とを有し、前記外周部材および前記内周部材は同芯状に一体形成され、前記進角流路の長手方向における前記進角流路の中心線と前記遅角流路の長手方向における前記遅角流路の中心線とが所定角度をなすように、前記進角流路および前記遅角流路が配置され、全ての前記進角流路と前記遅角流路との間において、前記外周部材の内周面と前記内周部材の外周面のいずれか一方に溝部が形成され、前記外周部材の内周面と前記内周部材の外周面の他方の前記溝部に対応する位置に突条部が形成されている点にある。
 本構成の弁開閉時期制御装置は、前記進角流路の長手方向における前記進角流路の中心線と前記遅角流路の長手方向における前記遅角流路の中心線とが所定角度をなすように、前記進角流路および前記遅角流路が配置され、全ての前記進角流路と前記遅角流路との間において、前記外周部材の内周面と前記内周部材の外周面とのいずれか一方に溝部が形成され、前記外周部材の内周面と前記内周部材の外周面との他方の前記溝部に対応する位置に突条部が形成されている。
 このため、進角流路と遅角流路との間の全ての位置において、外周部材の内周面と内周部材の外周面との界面に、溝部とその溝部に入り込む突条部とにより流体の漏れ圧を低下させる機能を有するラビリンスシール部を設けることができる。
 したがって、本構成の弁開閉時期制御装置であれば、進角流路および遅角流路を外周部材と内周部材とに亘って径方向に一連に貫通形成してある場合でも、外周部材と内周部材との界面を介した進角流路と遅角流路とに亘る加圧流体の漏れをラビリンスシール部により抑制できるので、駆動側回転体に対する従動側回転体の回転位相をタイミング良く制御し易い。
 本発明の他の特徴構成は、前記進角流路と前記遅角流路は、前記従動側回転体の回転方向に沿って異なる位置に配置され、前記溝部と前記突条部は、前記回転軸芯の方向に沿って延設されている点にある。
 なお、回転方向とは、回転軸芯に直交する仮想の平面に沿って回転軸芯の周りを回転する方向を意味する。
 本構成であれば、進角流路と遅角流路との界面にラビリンスシール部を設けながら、回転軸芯の方向に沿って延設されている溝部に突条部を入り込ませて、外周部材と内周部材との相対回転を防止することができる。
 本発明の他の特徴構成は、隣り合う前記進角流路と前記遅角流路は、前記回転軸芯に沿って異なる位置に配置され、前記溝部と前記突条部は、前記従動側回転体の回転方向に沿って延設されている点にある。
 本構成であれば、進角流路と遅角流路との界面にラビリンスシール部を設けながら、回転方向に沿って延設されている溝部に突条部を入り込ませて、外周部材と内周部材との回転軸芯方向での相対変位を防止することができる。
 本発明の他の特徴構成は、前記内周部材の外周面に前記溝部が形成され、且つ当該溝部の一端部が他の部分よりも盛り上がる突部が前記内周部材の外周面に形成され、前記内周部材の外周部は前記外周部材により鋳ぐるまれている点にある。
 本構成であれば、内周部材の外周部を外周部材により鋳ぐるむことにより、内周部材の外周面に形成された溝部に入り込む突条部を外周部材の内周面に形成することができる。
 また、内周部材の外周部を外周部材により鋳ぐるむことにより、内周部材の外周面に形成された突部を外周部材の内周面に埋め込んで、外周部材と内周部材との回転方向および回転軸芯方向の相対変位を防止することができる。
 本発明の他の特徴構成は、前記溝部は、前記外周部材又は前記内周部材を前記回転軸芯に沿った方向から加圧する鍛造加工により形成されている点にある。
 本構成であれば、鍛造加工により外周部材又は内周部材の強度を高めながら溝部を形成できる。
 本発明の他の特徴構成は、前記進角流路および前記遅角流路は、前記内周部材に形成された前記溝部の底面を貫通している点にある。
 本構成であれば、進角流路および遅角流路を従動側回転体に貫通形成するための内周部材に対する加工量を少なくして、加工能率の向上を図ることができる。
 本発明による弁開閉時期制御装置の他の特徴構成は、内燃機関のクランクシャフトと同期回転する駆動側回転体と、前記駆動側回転体の内周側に前記駆動側回転体の回転軸芯と同一回転軸芯上に相対回転可能に配置され、前記内燃機関の弁開閉用のカムシャフトと同期回転する従動側回転体と、前記駆動側回転体と前記従動側回転体との間に形成された流体圧室と、前記従動側回転体の外周側に設けられた仕切部で前記流体圧室を仕切ることにより形成される進角室および遅角室と、前記従動側回転体の径方向に貫通するように前記従動側回転体に形成された少なくとも一つの進角流路および少なくとも一つの遅角流路と、前記進角流路または前記遅角流路を通して前記進角室または前記遅角室に加圧流体を供給することにより、前記駆動側回転体に対する前記従動側回転体の回転位相を制御する位相制御部と、を備え、前記従動側回転体は、前記仕切部が設けられた筒状の外周部材と、前記外周部材よりも径方向内側に配置される筒状の内周部材とを有し、前記外周部材および前記内周部材は同芯状に一体形成され、先端面が前記外周部材の外周面に露出する高さを有する柱状部が、前記内周部材の外周面から延びて前記内周部材に一体形成されると共に、前記内周部材の外周部が前記外周部材により鋳ぐるまれることにより、前記外周部材と前記内周部材とが接合され、前記進角流路および前記遅角流路は、前記柱状部の前記先端面と同一の面まで延び、且つ前記内周部材を貫通している点にある。
 本構成の弁開閉時期制御装置は、先端面が前記外周部材の外周面に露出する高さを有する柱状部が、前記内周部材の外周面から延びて前記内周部材に一体形成されると共に、前記内周部材の外周部が前記外周部材により鋳ぐるまれることにより、前記外周部材と前記内周部材とが接合され、前記進角流路および前記遅角流路は、前記柱状部の前記先端面と同一の面まで延び、且つ前記内周部材を貫通している。
 このため、進角流路および遅角流路を、その途中箇所に外周部材と内周部材との界面が臨まないように形成することができる。
 したがって、本構成の弁開閉時期制御装置であれば、進角流路および遅角流路を外周部材と内周部材とに亘って径方向に一連に貫通形成してある場合でも、外周部材と内周部材との界面を介して加圧流体が進角流路と遅角流路とに亘って漏れるおそれがなく、駆動側回転体に対する従動側回転体の回転位相をタイミング良く制御し易い。
 本発明による弁開閉時期制御装置の他の特徴構成は、内燃機関のクランクシャフトと同期回転する駆動側回転体と、前記駆動側回転体の内周側に前記駆動側回転体の回転軸芯と同一回転軸芯上に相対回転可能に配置され、前記内燃機関の弁開閉用のカムシャフトと同期回転する従動側回転体と、前記駆動側回転体と前記従動側回転体との間に形成された流体圧室と、前記従動側回転体の外周側に設けられた仕切部で前記流体圧室を仕切ることにより形成される進角室および遅角室と、前記従動側回転体の径方向に貫通するように前記従動側回転体に形成された少なくとも一つの進角流路および少なくとも一つの遅角流路と、前記進角流路または前記遅角流路を通して前記進角室または前記遅角室に加圧流体を供給することにより、前記駆動側回転体に対する前記従動側回転体の回転位相を制御する位相制御部と、を備え、前記従動側回転体は、前記仕切部が設けられた筒状の外周部材と、前記外周部材よりも径方向内側に配置される筒状の内周部材とを有し、前記外周部材および前記内周部材は同芯状に一体形成され、前記従動側回転体の径方向に貫通する貫通孔が前記内周部材に形成され、前記内周部材の外周部が前記外周部材により鋳ぐるまれることにより、前記外周部材の部分が前記貫通孔に入り込むように前記外周部材と前記内周部材とが接合され、前記進角流路および前記遅角流路は、前記貫通孔に充填された前記外周部材の部分に貫通している点にある。
 本構成の弁開閉時期制御装置は、前記従動側回転体の径方向に貫通する貫通孔が前記内周部材に形成され、前記内周部材の外周部が前記外周部材により鋳ぐるまれることにより、前記外周部材の部分が前記貫通孔に入り込むように前記外周部材と前記内周部材とが接合され、前記進角流路および前記遅角流路は、前記貫通孔に充填された前記外周部材の部分に貫通している。
 このため、進角流路および遅角流路を、その途中箇所に外周部材と内周部材との界面が臨まないように形成することができる。
 したがって、本構成の弁開閉時期制御装置であれば、進角流路および遅角流路を外周部材と内周部材とに亘って径方向に一連に貫通形成してある場合でも、外周部材と内周部材との界面を介して加圧流体が進角流路と遅角流路とに亘って漏れるおそれがなく、駆動側回転体に対する従動側回転体の回転位相をタイミング良く制御し易い。
 本発明の他の特徴構成は、前記内周部材は、鉄系材料により形成されている点にある。
 本構成であれば、従動側回転体の強度を内周部材によって確保し易い。
 本発明の他の特徴構成は、前記外周部材は、鉄系材料よりも軽量の材料より形成されている点にある。
 本構成であれば、従動側回転体の重量の軽減を外周部材によって図り易い。
第1実施形態における弁開閉時期制御装置の内部を示す正面図である。 図1のII-II線矢視断面図である。 第1実施形態における内部ロータ(従動側回転体)の斜視図である。 第1実施形態における内周部材の斜視図である。 第2実施形態における内部ロータの横断面図である。 図5のVI-VI線矢視断面図である。 第2実施形態における内周部材の斜視図である。 第3実施形態における内部ロータの縦断面図である。 第3実施形態における内周部材の斜視図である。 第4実施形態における内部ロータの要部を示す横断面図である。 第5実施形態における内部ロータの要部を示す横断面図である。 第6実施形態における内部ロータの横断面図である。 図12のXIII-XIII線矢視断面図である。 第6実施形態における内周部材の斜視図である。 第7実施形態における内部ロータの横断面図である。 図15のXVI-XVI線矢視断面図である。 第8実施形態における内部ロータの横断面図である。 図17のXVIII-XVIII線矢視断面図である。
 以下に本発明の実施の形態を図面に基づいて説明する。
〔第1実施形態〕
 図1~図4は、自動車用ガソリンエンジン(内燃機関)Eに装備される本発明による弁開閉時期制御装置Aを示す。
 弁開閉時期制御装置Aは、図1,図2に示すように、エンジンEのクランクシャフトE1と同期回転する「駆動側回転体」としてのハウジング1と、ハウジング1の内周側にハウジング1の回転軸芯Xと同一回転軸芯上に相対回転可能に配置され、エンジンEの弁開閉用のカムシャフト2と同期回転する「従動側回転体」としての内部ロータ3と、内部ロータ3の内周側を回転軸芯Xの周りで回転自在に支持する固定軸部4と、ハウジング1と内部ロータ3との間に形成された流体圧室5と、内部ロータ3の外周側に一体に設けられた仕切部6で流体圧室5を仕切ることにより形成される進角室5aおよび遅角室5bと、進角室5aまたは遅角室5bに「加圧流体」としての作動油(エンジンオイル)を供給することにより、ハウジング1に対する内部ロータ3の回転位相を制御する位相制御部7とを備えている。
 カムシャフト2は、エンジンEのシリンダヘッド(図示せず)に回転自在に組み付けてある。固定軸部4は、エンジンEのフロントカバー等の静止部材に固定してある。
 ハウジング1は、外周形状が円筒形の外部ロータ1aと、外部ロータ1aの前方側に配置したフロントプレート1bと、外部ロータ1aの後方側に配置したリアプレート1cとを備え、連結ボルト1dで互いに一体に固定してある。
外部ロータ1aおよびフロントプレート1bは、鉄系材料よりも軽量のアルミニウム合金などのアルミニウム系材料で形成してある。
 リアプレート1cは、スプロケット1eを外周側に一体に備え、鋼などの鉄系材料で形成してある。
 スプロケット1eとクランクシャフトE1に取り付けたスプロケットとに亘って、タイミングチェーンやタイミングベルト等の動力伝達部材E2を巻き掛けてあり、エンジンEの駆動により、ハウジング1は図1中の矢印Sで示す方向に回転する。
 内部ロータ3は、エンジンEの吸気弁または排気弁の開閉を制御するカム(図示せず)を備えたカムシャフト2の先端部に固定してある。
 内部ロータ3は、ハウジング1の回転に伴って、矢印Sで示す方向に従動回転する。
 内部ロータ3には回転軸芯Xと同芯の円筒形状の内周面8aを備えた凹部8を設けてある。内部ロータ3とカムシャフト2は、凹部8の底板部8bに挿通したボルト10をカムシャフト2に同芯状にねじ込んで互いに一体に固定してある。
 内部ロータ3のハウジング1に対する回転位相を進角側に付勢する捩りコイルバネ18を、内部ロータ3とリアプレート1cとに亘って装着してある。
 外部ロータ1aの内周側には、径方向内方に向けて突出する複数(本実施形態では四つ)の突出部9を回転方向で互いに離間する位置に一体形成してある。
 各突出部9は、突出端部がシール部材9aを介して内部ロータ3の外周面に対して摺接移動するように設けてある。
 回転方向で隣り合う突出部9どうしの間であって外部ロータ1aと内部ロータ3との間に四つの流体圧室5が形成されている。
 連結ボルト1dは、各突出部9に挿通して、外部ロータ1aとフロントプレート1bとリアプレート1cとを一体に固定している。
 内部ロータ3の外周側の各流体圧室5に対面する箇所の夫々に、径方向外方に向けて突出する複数(本実施形態では四つ)の仕切部6が回転方向で互いに離間する位置に一体形成されている。
 各仕切部6は、突出端部がシール部材6aを介して外部ロータ1aの内周面に対して摺接移動するように設けてある。
 各流体圧室5は、これらの仕切部6によって、回転方向で隣り合う進角室5aと遅角室5bとに仕切られている。
 内部ロータ3には、進角室5aに連通する円形断面の進角流路11aと遅角室5bに連通する円形断面の遅角流路11bとを、内部ロータ3の内周側、つまり、凹部8に連通するように回転径方向に貫通形成してある。
 作動油は進角流路11aを通して進角室5aに給排され、遅角流路11bを通して遅角室5bに給排される。
 図1,図3に示すように、進角流路11aと遅角流路11bは、回転方向で隣り合う仕切部6の間毎に、回転軸芯Xの方向で互いに位置をずらせて、かつ、回転軸芯Xの周りで互いに位相をずらせて形成してある。
 進角流路11aは、回転方向で隣り合う仕切部6の間のうちの後述する進角方向S1の側の仕切部6に寄せて形成してあり、遅角流路11bは、回転方向で隣り合う仕切部6の間のうちの後述する遅角方向S2の側の仕切部6に寄せて形成してある。
 したがって、隣り合う進角流路11aと遅角流路11bとを、回転軸芯Xに沿う方向視において、進角流路11aの長手方向における進角流路11aの中心線と遅角流路11bの長手方向における遅角流路11bの中心線とが所定角度をなすように、内部ロータ3の回転方向に沿って異なる位置に配置してある。
 また、図2,図3に示すように、進角流路11aは、リアプレート1cの側において固定軸部4と底板部8bとの間の空間に臨む位置で凹部8に連通し、遅角流路11bは、進角流路11aよりもフロントプレート1bの側において固定軸部4の外周面に臨む位置で凹部8に連通している。
 したがって、隣り合う進角流路11aと遅角流路11bとを、回転軸芯Xに直交する方向視において、回転軸芯Xに沿って異なる位置に配置してある。
 固定軸部4は、進角流路11aに連通可能な流体流路としての進角側供給流路12aと、遅角流路11bに連通可能な流体流路としての遅角側供給流路12bとを有する。
 進角側供給流路12aは、固定軸部4の軸方向一端側から固定軸部4と底板部8bとの間の空間に連通し、遅角側供給流路12bは、固定軸部4の外周面に形成した環状周溝13に連通している。
 環状周溝13の両側と固定軸部4の軸方向一端側との夫々に、固定軸部4の外周面と凹部8の内周面8aとの隙間を塞ぐシールリング14を装着してある。
 内部ロータ3とハウジング1とに亘って、内部ロータ3のハウジング1に対する回転位相を最遅角位置に拘束するロック状態と拘束を解除するロック解除状態とに切り換え可能なロック機構15を設けてある。
 ロック機構15は、内部ロータ3の仕切部6の一つに、リアプレート1cに形成した凹部(図示せず)に対して回転軸芯Xに沿う方向に出退自在な先端部を備えたロック部材15aを装着して構成してある。
 ロック機構15は、圧縮バネなどの付勢部材(図示せず)の付勢力により、ロック部材15aの先端部が凹部に入り込むことによってロック状態に切り換え、環状周溝13に連通するロック油路11cを通して供給される作動油の圧力により、付勢部材の付勢力に抗して凹部から内部ロータ3の側に抜け出ることによってロック解除状態に切り換える。
 位相制御部7は、オイルパン17の作動油を吸引・吐出するオイルポンプPと、進角側供給流路12aおよび遅角側供給流路12bに対する作動油の給排およびその給排の遮断を行なう流体制御弁OCVと、流体制御弁OCVの作動を制御する電子制御ユニットECUとを備えている。
 位相制御部7による作動油の給排動作で、内部ロータ3のハウジング1に対する回転位相を矢印S1で示す進角方向(進角室5aの容積が増大する方向)または矢印S2で示す遅角方向(遅角室5bの容積が増大する方向)へ変位させて、作動油の給排の遮断動作で任意の位相に保持する。
 ロック機構15は、進角室5aに作動油を供給する動作でロック油路11cを通して作動油が供給されて、ロック状態からロック解除状態に切り換わる。
 内部ロータ3は、図3,図4にも示すように、各仕切部6が外周側に一体に設けられた円筒状の外周部材3aと、外周部材3aよりも径方向内側に配置される円筒状の内周部材3bとを有し、外周部材3aおよび内周部材3bは、回転軸芯Xと同芯状に一体形成されている。
 内周部材3bは、例えば鉄系材料により形成された高強度の焼結品や鍛造品で構成されている。外周部材3aは、内周部材3bを形成する鉄系材料よりも軽量の材料、例えばアルミニウム合金などのアルミニウム系材料により形成されている。内周部材3bの外周部は外周部材3aにより鋳ぐるまれている。
 外周部材3aは円筒状の内周面20を備え、内周部材3bはその内周面20に内嵌する円筒状の外周面21を備えている。
 内周部材3bに凹部8を形成し、内周部材3bとカムシャフト2とをボルト10で一体に接続固定してある。
 内部ロータ3は、内周部材3bの外周部を外周部材3aを構成するアルミニウム系材料で鋳ぐるむことにより、外周部材3aの内周面20と内周部材3bの外周面21とを回り止め状態で同芯状に接合してある。
 外周部材3aの内周面20と内周部材3bの外周面21との接合部22には、全ての進角流路11aと遅角流路11bとの間において、外周部材3aの内周面20と内周部材3bの外周面21とのいずれか一方に溝部23が形成され、外周部材3aの内周面20と内周部材3bの外周面21との他方の溝部23に対応する位置に突条部24が形成されている。
 つまり、回転径方向から互いに嵌合する溝部23と突条部24とが、外周部材3aの内周面20と内周部材3bの外周面21とに振り分けて、隣り合う進角流路11aと遅角流路11bとの間の全ての位置に配置されている。
 具体的には、外周部材3aの内周面20に形成された軸方向溝部23a(23)と、その軸方向溝部23aに嵌合するように内周部材3bの外周面21に鍛造や焼結成形により形成された軸方向突条部24a(24)との組み合わせの複数組を、回転方向に等間隔で、回転方向に交差する方向である回転軸芯Xの方向に沿って延設してある。
 複数の軸方向溝部23aは、軸方向突条部24aが形成された内周部材3bの外周部を外周部材3aを構成するアルミニウム系材料で鋳ぐるむことにより、外周部材3aの内周面20に形成される。
 そして、回転軸芯Xに沿う方向視で回転方向に隣り合う進角流路11aと遅角流路11bとの間の全ての位置において、軸方向溝部23aとその軸方向溝部23aに嵌合する軸方向突条部24aとの組み合わせの少なくとも一組をそれらの進角流路11aと遅角流路11bから離して配置して、ラビリンスシール部を設けてある。
 軸方向溝部23aおよび軸方向突条部24aは、フロントプレート1bとリアプレート1cとの間の中間位置において仕切部6の内部に入り込まない寸法で矩形の断面形状に形成してある。
 このため、仕切部6の回転方向での厚さを薄くして、流体圧室5の回転方向での長さを長く設定することができ、相対位相を変更できる角度範囲を大きく確保し易い。
軸方向溝部23aと軸方向突条部24aとの嵌合により、外周部材3aと内周部材3bとの回転方向での相対移動および回転軸芯Xの方向での相対移動が阻止されている。
〔第2実施形態〕
 図5~図7は、本発明の別実施形態を示す。
本実施形態では、外周部材3aの内周面20と内周部材3bの外周面21との接合部22の構成が第1実施形態と異なる。
 すなわち、接合部22は、内周部材3bの外周面21に鍛造や焼結成形または切削により形成された溝部23と、その溝部23に嵌合するように外周部材3aの内周面20に形成された突条部24との組み合わせの複数組を備えている。
 溝部23とその溝部23に嵌合する突条部24との組み合わせは、回転軸芯Xに沿う方向に延設してある軸方向溝部23a(23)とその軸方向溝部23aに嵌合する軸方向突条部24a(24)との組み合わせの複数組と、回転方向に沿って一連の環状に延設された周方向溝部23b(23)とその周方向溝部23bに一連に嵌合する周方向突条部24b(24)との組み合わせの一組とからなる。
 図5に示すように、軸方向溝部23aとその軸方向溝部23aに嵌合する軸方向突条部24aとの組み合わせの複数組は回転方向に等間隔で配置してある。
 そして、回転軸芯Xに沿う方向視で回転方向に隣り合う進角流路11aと遅角流路11bとの間の全ての位置において、それらの組み合わせの少なくとも一組を進角流路11aと遅角流路11bから離して配置して、ラビリンスシール部を設けてある。
軸方向溝部23aは、一端側がフロントプレート1bとリアプレート1cとの間の中間に位置し、他端側がフロントプレート1bの側の端面に開口するように設けてある。
 周方向溝部23bとその周方向溝部23bに嵌合する周方向突条部24bは、軸方向溝部23aや軸方向突条部24aと直角に交差する状態で、回転軸芯Xの方向で隣り合う進角流路11aと遅角流路11bとの間の位置において、それらの進角流路11aと遅角流路11bから離して配置されるように一連の環状に設けてある。
 周方向溝部23bと周方向突条部24bとの嵌合により、外周部材3aと内周部材3bとの回転軸芯Xの方向での相対移動が阻止されている。
 各軸方向突条部24aおよび周方向突条部24bは、溝部23a,23bが形成された内周部材3bの外周部を外周部材3aを構成するアルミニウム系材料で鋳ぐるむことにより、外周部材3aの内周面20に形成される。
 したがって、軸方向溝部23aと軸方向突条部24aとの嵌合により構成されるラビリンスシール部に加えて、周方向溝部23bと周方向突条部24bとの嵌合により構成される環状のラビリンスシール部を設けてある。
 軸方向溝部23aとその軸方向溝部23aに嵌合する軸方向突条部24aとの組み合わせの全部を省略し、周方向溝部23bとその周方向溝部23bに嵌合する周方向突条部24bとの組み合わせのみを設けてあってもよい。
 その他の構成は第1実施形態と同様である。
〔第3実施形態〕
 図8,図9は、本発明の別実施形態を示す。
 本実施形態では、外周部材3aの内周面20と内周部材3bの外周面21との接合部22の構成が第1実施形態と異なる。
 すなわち、接合部22は、内周部材3bの外周面21に鍛造加工により形成された軸方向溝部23a(23)と、その軸方向溝部23aに嵌合するように外周部材3aの内周面20に形成された軸方向突条部24a(24)との組み合わせの複数組を回転方向に等間隔で備えている。
 そして、回転軸芯Xに沿う方向視で回転方向に隣り合う進角流路11aと遅角流路11bとの間の全ての位置において、それらの組み合わせの少なくとも一組を進角流路11aと遅角流路11bから離して配置して、ラビリンスシール部を設けてある。
 各軸方向溝部23aは、内周部材3bの外周面21を回転軸芯Xに沿う方向から加圧する鍛造加工により形成されている。
 また、内周部材3bの外周面21には、軸方向溝部23aの一端部が当該軸方向溝部23aの鍛造加工に伴って生じた余肉により他の部分よりも盛り上がる突部25が形成されている。
 軸方向溝部23aは、一端側がフロントプレート1bとリアプレート1cとの間の中間に位置し、他端側がフロントプレート1bの側の端面に開口するように設けてある。
 これらの軸方向溝部23aおよび突部25が形成された内周部材3bの外周部を外周部材3aを構成するアルミニウム系材料で鋳ぐるむことにより、軸方向溝部23aに嵌合する軸方向突条部24aおよび突部25に嵌合する凹部26が外周部材3aの内周面20に形成される。
 突部25と凹部26との嵌合により、外周部材3aと内周部材3bとの回転軸芯Xの方向での相対移動が阻止されている。
 その他の構成は第1実施形態と同様である。
〔第4実施形態〕
 図10は、本発明の第1又は第3実施形態の変形例を示す。
本実施形態では、軸方向溝部23aを内周部材3bの外周面21に形成し、軸方向溝部23aに嵌合する軸方向突条部24aを外周部材3aの内周面20に形成してある。
そして、軸方向溝部23aの底面を貫通するように、進角流路11aおよび遅角流路11bを形成してある。
 その他の構成は第1又は第3実施形態と同様である。
〔第5実施形態〕
 図11は、本発明の第2実施形態の変形例を示す。
本実施形態では、周方向溝部23bを内周部材3bの外周面21に形成し、周方向溝部23bに嵌合する周方向突条部24bを外周部材3aの内周面20に形成してある。
そして、周方向溝部23bの底面を貫通するように、進角流路11aおよび遅角流路11bを形成してある。
 その他の構成は第2実施形態と同様である。
〔第6実施形態〕
 図12~図14は、本発明の別実施形態を示す。
本実施形態では、外周部材3aの内周面20と内周部材3bの外周面21との接合部22が、内周部材3bの外周面21にローレット加工により網目状に配置した溝部23と、それらの溝部23に嵌合するように外周部材3aの内周面20に形成した突条部24とを備えている。
 溝部23は転造加工により網目状に配置して形成され、これらの溝部23に嵌合する突条部24は、溝部23が形成された内周部材3bの外周側を外周部材3aを構成するアルミニウム系材料で鋳ぐるむことにより、外周部材3aの内周面20に網目状に配置して形成される。
 この網目状に配置した溝部23と突条部24との嵌合により、外周部材3aと内周部材3bとの回転方向での相対移動および回転軸芯Xの方向での相対移動が阻止されている。
 そして、回転軸芯Xに沿う方向視で回転方向に隣り合う進角流路11aと遅角流路11bとの間の全ての位置において、溝部23とその溝部23に嵌合する突条部24との組み合わせの少なくとも一組が進角流路11aと遅角流路11bから離して配置されるように、溝部23および突条部24を回転方向に対して交差する方向および回転方向に沿って延設して、ラビリンスシール部を網目状に配置してある。
 その他の構成は第1実施形態と同様である。
〔第7実施形態〕
 図15,図16は、本発明の別実施形態を示す。
本実施形態では、先端面27が外周部材3aの外周面21に面一で露出する高さを有する円柱状部28が、内周部材3bの外周面21から延びて内周部材3bに一体形成されている。
 そして、この内周部材3bの外周部を外周部材3aを形成するアルミニウム系材料で鋳ぐるむことにより、円柱状部28の先端面27が外周部材3aの外周面に臨むように外周部材3aと内周部材3bとを回り止め状態で接合して内部ロータ3を構成してある。
 これにより、円柱状部28が外周部材3aに埋設され、外周部材3aと内周部材3bとの回転方向での相対移動および回転軸芯Xの方向での相対移動が阻止されている。
 進角流路11aおよび遅角流路11bは、その全部が円柱状部28の先端面27と同一の面まで延び、かつ内周部材3bを貫通している。
 その他の構成は第1実施形態と同様である。
〔第8実施形態〕
 図17,図18は、本発明の別実施形態を示す。
本実施形態では、回転径方向に貫通する断面円形の貫通孔29が内周部材3bに形成されている。
 そして、この貫通孔29が形成された内周部材3bの外周部を外周部材3aを形成するアルミニウム系材料で鋳ぐるむことにより、アルミニウム系材料が内周部材3bの内周面側に亘って貫通孔29に入り込むように外周部材3aと内周部材3bとを接合して内部ロータ3を構成してある。
 これにより、アルミニウム系材料が貫通孔29に充填され、外周部材3aと内周部材3bとの回転方向での相対移動および回転軸芯Xの方向での相対移動が阻止されている。
 進角流路11aおよび遅角流路11bは、その全部が貫通孔29に充填された外周部材3aの部分30に貫通している。
 その他の構成は第1実施形態と同様である。
〔その他の実施形態〕
1.本発明による弁開閉時期制御装置は、進角流路や遅角流路に交差する位置において溝部および突条部を形成せず、隣り合う進角流路と遅角流路との間の全ての位置においてのみ、ラビリンスシール部を構成する互いに嵌合する溝部と突条部とが外周部材の内周面と内周部材の外周面とに振り分けて形成されていてもよい。
2.本発明による弁開閉時期制御装置は、溝部を外周部材の内周面と内周部材の外周面とに交互に形成し、それらの交互に形成した溝部に嵌合する突条部を外周部材の内周面と内周部材の外周面とに交互に形成してあってもよい。
3.本発明による弁開閉時期制御装置は、隣り合う進角流路と遅角流路との間の全部または一部の位置において、溝部と突条部とを回転方向に対して斜めに交差する方向に沿って延設してあってもよい。
4.本発明による弁開閉時期制御装置は、アルミニウム系材料に代えて、鉄系材料よりも軽量の樹脂材料などで外周部材を形成してあってもよい。
5.本発明による弁開閉時期制御装置は、外周部材または内周部材を鍛造品で構成してあってもよい。
 この場合、軸方向溝部は、外周部材または内周部材を回転軸芯に沿った方向から加圧する鍛造加工により形成されていてもよい。
6.本発明による弁開閉時期制御装置は、自動車用以外の各種内燃機関に装備されるものであってもよい。
1 駆動側回転体
2 カムシャフト
3 従動側回転体
3a  外周部材
3b  内周部材
5 流体圧室
5a 進角室
5b 遅角室
6 仕切部
7 位相制御部
11a 進角流路
11b 遅角流路
20  外周部材の内周面
21  内周部材の外周面
23  溝部
24  突条部
25  突部
28 柱状部
29  貫通孔
30  アルミニウム系材料部分
E  内燃機関
E1 クランクシャフト
X 回転軸芯

Claims (10)

  1.  内燃機関のクランクシャフトと同期回転する駆動側回転体と、
     前記駆動側回転体の内周側に前記駆動側回転体の回転軸芯と同一回転軸芯上に相対回転可能に配置され、前記内燃機関の弁開閉用のカムシャフトと同期回転する従動側回転体と、
     前記駆動側回転体と前記従動側回転体との間に形成された流体圧室と、
     前記従動側回転体の外周側に設けられた仕切部で前記流体圧室を仕切ることにより形成される進角室および遅角室と、前記従動側回転体の径方向に貫通するように前記従動側回転体に形成された少なくとも一つの進角流路および少なくとも一つの遅角流路と、
     前記進角流路または前記遅角流路を通して前記進角室または前記遅角室に加圧流体を供給することにより、前記駆動側回転体に対する前記従動側回転体の回転位相を制御する位相制御部と、を備え、
     前記従動側回転体は、前記仕切部が設けられた筒状の外周部材と、前記外周部材よりも径方向内側に配置される筒状の内周部材とを有し、前記外周部材および前記内周部材は同芯状に一体形成され、
     前記進角流路の長手方向における前記進角流路の中心線と前記遅角流路の長手方向における前記遅角流路の中心線とが所定角度をなすように、前記進角流路および前記遅角流路が配置され、
     全ての前記進角流路と前記遅角流路との間において、前記外周部材の内周面と前記内周部材の外周面とのいずれか一方に溝部が形成され、前記外周部材の内周面と前記内周部材の外周面との他方の前記溝部に対応する位置に突条部が形成されている弁開閉時期制御装置。
  2.  前記進角流路と前記遅角流路は、前記従動側回転体の回転方向に沿って異なる位置に配置され、
     前記溝部と前記突条部は、前記回転軸芯の方向に沿って延設されている請求項1記載の弁開閉時期制御装置。
  3.  隣り合う前記進角流路と前記遅角流路は、前記回転軸芯に沿って異なる位置に配置され、
     前記溝部と前記突条部は、前記従動側回転体の回転方向に沿って延設されている請求項1記載の弁開閉時期制御装置。
  4.  前記内周部材の外周面に前記溝部が形成され、且つ当該溝部の一端部が他の部分よりも盛り上がる突部が前記内周部材の外周面に形成され、
     前記内周部材の外周部は前記外周部材により鋳ぐるまれている請求項2記載の弁開閉時期制御装置。
  5.  前記溝部は、前記外周部材又は前記内周部材を前記回転軸芯に沿った方向から加圧する鍛造加工により形成されている請求項1~4のいずれか1項記載の弁開閉時期制御装置。
  6.  前記進角流路および前記遅角流路は、前記内周部材に形成された前記溝部の底面を貫通している請求項1~5のいずれか1項記載の弁開閉時期制御装置。
  7.  内燃機関のクランクシャフトと同期回転する駆動側回転体と、
     前記駆動側回転体の内周側に前記駆動側回転体の回転軸芯と同一回転軸芯上に相対回転可能に配置され、前記内燃機関の弁開閉用のカムシャフトと同期回転する従動側回転体と、
     前記駆動側回転体と前記従動側回転体との間に形成された流体圧室と、
     前記従動側回転体の外周側に設けられた仕切部で前記流体圧室を仕切ることにより形成される進角室および遅角室と、前記従動側回転体の径方向に貫通するように前記従動側回転体に形成された少なくとも一つの進角流路および少なくとも一つの遅角流路と、
     前記進角流路または前記遅角流路を通して前記進角室または前記遅角室に加圧流体を供給することにより、前記駆動側回転体に対する前記従動側回転体の回転位相を制御する位相制御部と、を備え、
     前記従動側回転体は、前記仕切部が設けられた筒状の外周部材と、前記外周部材よりも径方向内側に配置される筒状の内周部材とを有し、前記外周部材および前記内周部材は同芯状に一体形成され、
     先端面が前記外周部材の外周面に露出する高さを有する柱状部が、前記内周部材の外周面から延びて前記内周部材に一体形成されると共に、前記内周部材の外周部が前記外周部材により鋳ぐるまれることにより、前記外周部材と前記内周部材とが接合され、
     前記進角流路および前記遅角流路は、前記柱状部の前記先端面と同一の面まで延び、且つ前記内周部材を貫通している弁開閉時期制御装置。
  8.  内燃機関のクランクシャフトと同期回転する駆動側回転体と、
     前記駆動側回転体の内周側に前記駆動側回転体の回転軸芯と同一回転軸芯上に相対回転可能に配置され、前記内燃機関の弁開閉用のカムシャフトと同期回転する従動側回転体と、
     前記駆動側回転体と前記従動側回転体との間に形成された流体圧室と、
     前記従動側回転体の外周側に設けられた仕切部で前記流体圧室を仕切ることにより形成される進角室および遅角室と、前記従動側回転体の径方向に貫通するように前記従動側回転体に形成された少なくとも一つの進角流路および少なくとも一つの遅角流路と、
     前記進角流路または前記遅角流路を通して前記進角室または前記遅角室に加圧流体を供給することにより、前記駆動側回転体に対する前記従動側回転体の回転位相を制御する位相制御部と、を備え、
     前記従動側回転体は、前記仕切部が設けられた筒状の外周部材と、前記外周部材よりも径方向内側に配置される筒状の内周部材とを有し、前記外周部材および前記内周部材は同芯状に一体形成され、前記従動側回転体の径方向に貫通する貫通孔が前記内周部材に形成され、前記内周部材の外周部が前記外周部材により鋳ぐるまれることにより、前記外周部材の部分が前記貫通孔に入り込むように前記外周部材と前記内周部材とが接合され、前記進角流路および前記遅角流路は、前記貫通孔に充填された前記外周部材の部分に貫通している弁開閉時期制御装置。
  9.  前記内周部材は、鉄系材料により形成されている請求項1~8のいずれか1項記載の弁開閉時期制御装置。
  10.  前記外周部材は、鉄系材料よりも軽量の材料より形成されている請求項1~8のいずれか1項記載の弁開閉時期制御装置。
PCT/JP2014/080422 2013-11-29 2014-11-18 弁開閉時期制御装置 WO2015079961A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/034,387 US9850787B2 (en) 2013-11-29 2014-11-18 Valve opening/closing timing control device
EP14865391.8A EP3075971B1 (en) 2013-11-29 2014-11-18 Valve opening/closing timing control device
CN201480062915.3A CN105745405B (zh) 2013-11-29 2014-11-18 阀正时控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013248163A JP6187203B2 (ja) 2013-11-29 2013-11-29 弁開閉時期制御装置
JP2013-248163 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015079961A1 true WO2015079961A1 (ja) 2015-06-04

Family

ID=53198906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080422 WO2015079961A1 (ja) 2013-11-29 2014-11-18 弁開閉時期制御装置

Country Status (5)

Country Link
US (1) US9850787B2 (ja)
EP (1) EP3075971B1 (ja)
JP (1) JP6187203B2 (ja)
CN (1) CN105745405B (ja)
WO (1) WO2015079961A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170002696A1 (en) * 2015-06-30 2017-01-05 Borgwarner Inc. Rotor assembly with inner diameter divider pattern
EP3176411A1 (en) * 2015-12-02 2017-06-07 Aisin Seiki Kabushiki Kaisha Valve opening and closing timing control device
WO2018101059A1 (ja) * 2016-11-29 2018-06-07 株式会社デンソー バルブタイミング調整装置、およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161028A (ja) 1998-11-26 2000-06-13 Denso Corp バルブタイミング調整装置
JP2012057578A (ja) * 2010-09-10 2012-03-22 Aisin Seiki Co Ltd 弁開閉時期制御装置
WO2012111388A1 (ja) * 2011-02-18 2012-08-23 アイシン精機株式会社 弁開閉時期制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134320A1 (de) * 2001-07-14 2003-01-23 Ina Schaeffler Kg Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine, insbesondere Rotationskolben-Verstelleinrichtung zur Drehwinkelverstellung einer Nockenwelle gegenüber einer Kurbelwelle
JP2007125677A (ja) * 2005-11-07 2007-05-24 Toyota Motor Corp ギヤの製造方法
JP4368394B2 (ja) 2007-08-10 2009-11-18 愛知機械工業株式会社 クラッチギヤ製造装置およびクラッチギヤ製造方法
US8857390B2 (en) 2009-05-04 2014-10-14 Gkn Sinter Metals, Llc Adhesive joining for powder metal components
JP5503468B2 (ja) * 2010-09-03 2014-05-28 本田技研工業株式会社 可変バルブタイミング動弁装置
JP5739168B2 (ja) * 2011-01-12 2015-06-24 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
JP5321926B2 (ja) 2011-02-18 2013-10-23 アイシン精機株式会社 弁開閉時期制御装置
US8915221B2 (en) * 2012-10-16 2014-12-23 Hitachi Automotive Systems Americas Inc. Valve timing control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161028A (ja) 1998-11-26 2000-06-13 Denso Corp バルブタイミング調整装置
JP2012057578A (ja) * 2010-09-10 2012-03-22 Aisin Seiki Co Ltd 弁開閉時期制御装置
WO2012111388A1 (ja) * 2011-02-18 2012-08-23 アイシン精機株式会社 弁開閉時期制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3075971A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170002696A1 (en) * 2015-06-30 2017-01-05 Borgwarner Inc. Rotor assembly with inner diameter divider pattern
CN106321180A (zh) * 2015-06-30 2017-01-11 博格华纳公司 具有内径隔离体图案的转子组件
US10273833B2 (en) * 2015-06-30 2019-04-30 Borgwarner Inc. Rotor assembly with inner diameter divider pattern
EP3176411A1 (en) * 2015-12-02 2017-06-07 Aisin Seiki Kabushiki Kaisha Valve opening and closing timing control device
CN106939806A (zh) * 2015-12-02 2017-07-11 爱信精机株式会社 阀开闭定时控制装置
US10280846B2 (en) 2015-12-02 2019-05-07 Aisin Seiki Kabushiki Kaisha Valve opening and closing timing control device
WO2018101059A1 (ja) * 2016-11-29 2018-06-07 株式会社デンソー バルブタイミング調整装置、およびその製造方法

Also Published As

Publication number Publication date
CN105745405B (zh) 2018-04-06
US20160290180A1 (en) 2016-10-06
EP3075971A4 (en) 2016-11-23
JP6187203B2 (ja) 2017-08-30
EP3075971B1 (en) 2017-10-11
US9850787B2 (en) 2017-12-26
JP2015105608A (ja) 2015-06-08
CN105745405A (zh) 2016-07-06
EP3075971A1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
US20120235518A1 (en) Oscillating Motor Adjuster
JP2010196698A (ja) 弁開閉時期制御装置
WO2014038267A1 (ja) 弁開閉時期制御装置
JP6292083B2 (ja) 弁開閉時期制御装置
WO2015079961A1 (ja) 弁開閉時期制御装置
JP5279749B2 (ja) 内燃機関のバルブタイミング制御装置
JP5928158B2 (ja) 弁開閉時期制御装置
JP5358499B2 (ja) 内燃機関のバルブタイミング制御装置及びその製造方法
JP5276040B2 (ja) 内燃機関のバルブタイミング制御装置
JP6273801B2 (ja) 弁開閉時期制御装置
JPWO2013108544A1 (ja) 弁開閉時期制御装置
JP6374055B2 (ja) 内燃機関のバルブタイミング制御装置
JP6221694B2 (ja) 弁開閉時期制御装置
JP2009209821A (ja) バルブタイミング調整装置
JP5793115B2 (ja) 内燃機関の可変動弁装置
JP2019044602A (ja) 内燃機関のバルブタイミング制御装置
WO2021125072A1 (ja) 内燃機関のバルブタイミング制御装置
JP6131665B2 (ja) 弁開閉時期制御装置
JP2020204282A (ja) バルブタイミング調整装置
JP2017089517A (ja) 弁開閉時期制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865391

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014865391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15034387

Country of ref document: US

Ref document number: 2014865391

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE