WO2015079716A1 - 振動アクチュエータ - Google Patents

振動アクチュエータ Download PDF

Info

Publication number
WO2015079716A1
WO2015079716A1 PCT/JP2014/053969 JP2014053969W WO2015079716A1 WO 2015079716 A1 WO2015079716 A1 WO 2015079716A1 JP 2014053969 W JP2014053969 W JP 2014053969W WO 2015079716 A1 WO2015079716 A1 WO 2015079716A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
vibration
electrodes
vibrator
vibration actuator
Prior art date
Application number
PCT/JP2014/053969
Other languages
English (en)
French (fr)
Inventor
徳和 佐藤
久郷 智之
貴之 越川
千尋 岡本
大志 山崎
絵理 福島
隆文 淺田
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to JP2015550575A priority Critical patent/JP6351620B2/ja
Priority to US14/373,009 priority patent/US20160380178A1/en
Publication of WO2015079716A1 publication Critical patent/WO2015079716A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0095Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing combined linear and rotary motion, e.g. multi-direction positioners
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present invention relates to a vibration actuator that rotates and linearly moves by giving a vibration wave to an output shaft by vibration of a vibrator (including a piezoelectric element and an electrostrictive element).
  • a male screw shaft (120) is slidably inserted into a female threaded nut member (110), and a clearance (697b) is provided between the nut member (110) and the male screw shaft (120). Then, a voltage is sequentially applied to the piezoelectric elements (132a to 132d) attached to the four surfaces of the nut member (110), and rotational vibration is applied to the nut member (110), thereby rotating the male screw shaft (120).
  • a linear motor system (100) for parallel translation in the axial direction is shown.
  • the male screw shaft is slidably combined with the nut member with the female screw, and the clearance is provided between the nut member and the male screw shaft.
  • the transmission efficiency was low and sufficient driving force could not be obtained.
  • vibration was absorbed by the tube, and a sufficient driving force could not be obtained for the male screw shaft.
  • the piezoelectric element (2, 3, 4, 5) is directly attached to the rectangular cylindrical elastic body 1, and the driver (7) is attached to the inner peripheral surface of the rectangular cylindrical elastic body (1).
  • Ultrasonic linear that is pressed by the spring (8), a voltage is applied to the piezoelectric element (2, 3, 4, 5), and the shaft and the shaft are displaced in the axial direction when the rectangular cylindrical elastic body vibrates.
  • a motor is shown.
  • a shaft-like actuator (12) is inserted into a hole in a prismatic stator (11), and voltage is sequentially applied to a plurality of piezoelectric elements (13) attached to the stator (11).
  • An ultrasonic scanning device is shown in which an axial actuator is rotated or moved in the axial direction by applying a vibration wave when applied.
  • the present invention has been made in view of the above-described conventional circumstances, and the problem to be solved is that it is small in size and has sufficient driving force, and vibration waves are not absorbed or inhibited even when incorporated in a tube such as an endoscope.
  • An object of the present invention is to provide a vibration actuator capable of obtaining stable performance.
  • One means for solving the above problem is that in a vibration actuator in which an output shaft moves due to vibration, a hole is provided on a substantially central axis of a substantially polygonal columnar vibrator, and a radial force is generated to generate a spring force in the hole. An extending slit is provided, and the output shaft is inserted through the hole. Then, the first and second vibrators having patterned electrodes are attached to one surface of the outer periphery of the vibration element parallel to the output shaft of the vibration element and the opposite surface, and electrode patterns of these pattern electrodes A progressive wave is generated in the vibration element by sequentially applying a voltage to the output shaft, and rotation and axial displacement are applied to the output shaft.
  • a compact vibration actuator that can be used for both linear motion and rotational motion is obtained, and even if incorporated in a cylindrical tube for an endoscope, vibration is not hindered, so that a stable output can be obtained.
  • the first feature of the vibration actuator according to the present embodiment is that the substantially polygonal column-shaped vibrating element has a hole on the substantially central axis, has a slit portion extending radially in the hole, and the output shaft in the hole. Is inserted, and the first vibrator is attached to at least one of the outer peripheral surfaces of the vibration element in parallel with the output shaft, and the first vibrator is attached.
  • a second vibrator is affixed to a surface opposite to the first face, and each of the first vibrator and the second vibrator has a pattern electrode. By sequentially applying a voltage to the electrode pattern, a traveling wave is generated in the vibration element, and a displacement that gives rotation and axial displacement is applied to the output shaft. With this configuration, it is possible to obtain a vibration actuator that can generate a stable force by allowing the traveling wave generated by the vibration element to rotate and linearly move to the output shaft and perform the rotation and linear motion.
  • a third vibrator having a pattern electrode is attached to a side surface of the vibration element having the hole, and the first vibrator, the second vibrator, and the By sequentially applying a voltage to the electrode pattern of the pattern electrode of the third vibrator, a traveling wave is generated in the vibration element, and rotation and axial displacement are applied to the output shaft. According to this configuration, a large traveling wave can be generated by the compact vibration element, and stable rotation and linear motion can be given to the output shaft.
  • the vibrator is a piezoelectric element or an electrostrictive element. According to this configuration, a large traveling wave can be generated by a compact vibrator due to the piezoelectric effect or the electrostrictive effect, and a stable rotation and linear motion can be given to the output shaft with a large force.
  • FIG. 1 is a perspective view of a vibration actuator according to an embodiment of the present invention.
  • the substantially polygonal column-shaped vibrating element 8 (a quadrangular column in FIG. 1) has a sliding hole 8a penetrating on the substantially central axis thereof, and the sliding hole 8a has a slit portion 8b extending radially, and this sliding
  • the output shaft 3 is inserted into the moving hole 8a, and at least one surface 8c on the outer periphery of the vibrating element 8 parallel to the output shaft 8a and the first and second electrodes 10 having pattern electrodes 10 on the opposing surface 8d.
  • the piezoelectric element 9 is affixed. Each piezoelectric element 9 is provided with a patterned electrode 10 by a noble metal sputtering method or a conductive ink printing method.
  • N electrodes A1 to An and N electrodes B1 to Bn are arranged in the axial direction.
  • N electrodes C1 to Cn are similarly arranged in the axial direction.
  • N electrodes from D1 to Dn and N electrodes from E1 to En are arranged on the opposing outer peripheral surface 8d.
  • N electrodes F1 to Fn are similarly arranged in the axial direction.
  • the slit portion 8a is provided substantially radially from the output shaft 3 or at a plurality of locations (two locations in FIG. 1), generates a spring property in the vibrating element 8, and is stable between the output shaft 3 and the sliding hole 8a.
  • a frictional force (for example, a force of about 1 Newton) is generated.
  • a hole 3a is formed in the approximate center of the output shaft 3, and an optical fiber or an operation wire for an endoscope is inserted into the hole 3a as necessary.
  • a substantially sinusoidal voltage is sequentially applied to the pattern-like electrode 10 in FIG. 1 through the electric wires 11a and 11b in FIG. 5.
  • the output shaft 3 moves in the linear motion direction (arrow in the figure). M) or in the direction of rotation (arrow P in the figure).
  • the voltage is firstly set to D1 (not shown) at a position facing the electrodes A1, B1, C1, and C1, and at a position facing B1.
  • E1 (not shown) and F1 (not shown) at positions facing A1 are applied to a total of six electrodes.
  • D2 (not shown) at a position facing the electrodes A2, B2, C2, and C2, E2 (not shown) at a position facing the B2, and F2 (not shown) at a position facing the A2. Applied to a total of 6 electrodes.
  • D3 at a position facing the electrodes A3, B3, C3, and C3, E3 (not shown) at a position facing the B3, and F3 (not shown) at a position facing the A3. Applied to a total of 6 electrodes.
  • the fourth is applied to a total of six electrodes A4, B4, C4, D4, E4, and F4.
  • it is applied again to a total of six electrodes A1, B1, C1, D1, E1, and F1 applied first, and this is repeated.
  • the output shaft 3 slides in the direction of arrow M.
  • the vibration actuator 12 of the present invention has a simple structure, it is possible to provide the thickness and volume of the piezoelectric element 9 much larger than the general weight as compared with the weight and volume of the vibration element 8. A greater force can be generated.
  • the thickness of the piezoelectric element 9 in FIG. 1 is t1
  • the thickness of the re-thinned portion near the output shaft 3 of the vibration element 8 is t2
  • the maximum output is obtained under the condition of t1 ⁇ t2. I was able to.
  • the vibration part 8 Since the vibration part 8 is provided with the slit portion 8b, the spring force is generated and the output shaft is pressed with a stable force. Therefore, the generated force of the output 3 is stable with little change.
  • 5 to 7 are application examples of the vibration actuator according to the first embodiment of the present invention, and are diagrams of an optical imaging probe of the OCT endoscope apparatus.
  • the output shaft 3 is supported by two bearings 7a and 7b so as to be rotatable and slidable.
  • the vibration actuator 12 is weakly supported in the tube 6 by a leaf spring, soft rubber or the like as necessary, and is fixed so that the vibration of the vibration actuator 12 is not hindered.
  • near-infrared rays emitted from an endoscope apparatus main body are guided to the optical fiber 1 shown in FIG. 5, emitted forward from the condenser lens 2, and substantially perpendicular to the optical path changing means 4a.
  • the radiation angle is converted to.
  • the optical path changing means 4 is rotated by the vibration actuator 12, the light beam is radiated in the entire 360 direction including the direction 13a in the figure.
  • the light beam passes through the translucent part 16 and is irradiated to a non-specimen such as an affected part of the human body, and the reflected light from the non-specimen is in a direction opposite to the direction in which the light beam is guided, in the optical path changing means 4 and the condenser lens. 2.
  • the vibration actuator 12 continues to operate as follows to start capturing a three-dimensional image.
  • FIG. 6 shows the range of light rays emitted from the optical path changing means 4.
  • d2 means a range in which near-infrared rays are transmitted, but it has a diameter of about 4 to 20 mm (millimeters).
  • d1 means the outer diameter of the tube 6, and the diameter is about 2 mm (millimeter).
  • Ls is the travel distance of the output shaft 3 but is about 2 to 10 mm (millimeters), and the light beam 13a in FIG. 1 is slightly refracted by the translucent part 16 and spreads and radiates at an angle of ⁇ 1 and ⁇ 2.
  • three-dimensional observation of the OCT endoscope is performed within a range indicated by La in FIG.
  • FIG. 7 shows a timing chart of the optical imaging probe of the present invention.
  • the upper waveform shows ON-OFF when the voltage is applied to the pattern electrode 10 in the direction in which the output shaft 3 rotates, and the middle waveform applies voltage in the direction in which the output shaft 3 moves linearly.
  • the ON-OFF state is shown, and the positive displacement is expressed as positive, and the reverse displacement is expressed as negative.
  • the lower waveform is an output waveform of the fixed sensors 14a and 14b shown in FIG.
  • the endoscope apparatus When the user (doctor or the like) of the endoscope apparatus operates the switch by operation, the endoscope apparatus is caused to generate a start pulse.
  • the output shaft 3 is first shown in FIG. Rotation is started at a slow speed of about 60 to 120 [rotation / min] in the direction indicated by the arrow P, and secondly, a pulse is emitted from the rotation detection sensor 14d until the output shaft 3 rotates once.
  • the power supply is temporarily stopped, the rotation of the vibration actuator is stopped, and thirdly, the output shaft 3 slides in the positive direction within a certain period of time (for example, 0.01 [seconds]). Move 20 ⁇ m (micrometer).
  • the output shaft 3 rotates again in the direction indicated by the arrow P in FIG. 3 at a speed of about 60 to 120 [rotations / minute], and the first, second, and third operations are repeated in this way.
  • the output shaft 3 reverses at high speed
  • the start position output is detected from the fixed side sensor 14b, the reverse movement is terminated, the energization is stopped, and the output shaft stops both rotation and linear motion.
  • the stop position of the output shaft 3 is a standby position, waiting for the next start pulse.
  • the optical imaging probe using the vibration actuator can change the direction of light emission to the direction of rotation and linear motion, scan three-dimensionally, and receive, for example, near infrared rays reflected from the affected part of the human body.
  • the configuration of the present invention there is no uneven rotation speed of the vibration actuator 12 and the optical path conversion means 4 built in the vicinity of the tip of the tube 6, and the light reflected from the subject such as a human body and incident on the tip side is optical path conversion means.
  • a high spatial resolution of 10 ⁇ m can be obtained.
  • FIG. 2 is a perspective view of a vibration actuator according to the second embodiment of the present invention.
  • the substantially polygonal column-shaped vibrating element 18 has a sliding hole 18a penetrating on the substantially central axis thereof, the sliding hole 18a has a radially extending slit portion 18b, and the output shaft 3 is placed in the sliding hole 18a.
  • a total of four piezoelectric elements 9 having patterned electrodes 10 are attached to the outer peripheral surfaces 18c, 18d, 18e, and 18f of the vibration element 18 that are inserted or lightly press-fitted and parallel to the output shaft 3. .
  • Each piezoelectric element 9 is provided with a pattern-like electrode 10 such as a grid.
  • N electrodes A1 to An and N electrodes B1 to Bn are attached to the surface of the piezoelectric element 9 attached to the outer peripheral surface 18c of the vibration element 18 in the axial direction.
  • the adjacent outer peripheral surface 8d is provided with N electrodes C1 to Cn and N electrodes D1 to Dn arranged in an array.
  • the piezoelectric element 9 having electrodes E1 to En and F1 to Fn is attached to the outer peripheral face 18e, and the piezoelectric element 9 having electrodes G1 to Gn and H1 to Hn attached to the outer peripheral face 18f. Attached.
  • the slit portion 18a is provided at least at one location (two locations in FIG. 2) substantially radially from the output shaft 3, and generates a spring property in the vibrating element 18, so that stable friction is generated between the output shaft 3 and the sliding hole 8a. Generate power.
  • the voltage generated in a substantially sinusoidal shape is sequentially applied to the electrode 10 having the pattern shape.
  • the output shaft 3 moves in the linear direction (arrow M in the figure and the opposite direction thereof), or It can operate in the direction of rotation (arrow P in the figure and its reverse direction).
  • a voltage is first applied to a total of four electrodes A1, B1, C1, and D1, and second, an electrode A2 , B2, C2, D2 applied to a total of four electrodes, the third applied to a total of four electrodes A3, B3, C3, D3, and the fourth applied to electrodes A4, B4, Applied to a total of four electrodes, C4 and D4.
  • the voltage is again applied to a total of four electrodes A2, B2, C2, and D2 applied first, and this is repeated.
  • a traveling wave in the linear motion direction is generated in the direction of the arrow M on the vibration element 18, and this traveling wave slides the output shaft 3 in the direction of the arrow M.
  • the voltage is first applied to a total of eight electrodes A1 to A4 and E1 to E4, and secondly, the electrodes B1 to B4 and F1 are applied.
  • F4 a total of 8 electrodes C1 to C4 and G1 to G4, and a fourth to electrodes C1 to C4 and G1 to G4.
  • traveling waves are generated in the vibration element 8 in the directions of arrows N and O in the figure, and the output shaft 3 rotates in the direction of arrow P by these two traveling waves.
  • the piezoelectric element 9 is attached to all the outer peripheral surfaces of the vibration element 8, and a strong traveling wave can be generated by a large number of piezoelectric elements.
  • thick piezoelectric elements are difficult to apply due to the construction, and therefore, a large operating force is generated by applying a large number of thin piezoelectric elements.
  • the force of the traveling wave generated from the piezoelectric element 9 is proportional to the number or area of the pasted piezoelectric elements 9 and is also proportional to the thickness of the piezoelectric elements 9, and this principle is taken into consideration.
  • the shape and size of the piezoelectric element 9 and the design of the electrode pattern 10 are performed. However, if the piezoelectric element 9 is designed to be thick, the voltage to be applied must be increased in proportion to the thickness. Therefore, the piezoelectric element 9 has design limitations in both thickness and area.
  • a compact vibration actuator that performs rotation and linear motion on the output shaft by a single unit can be obtained, and a stable thrust can be generated.
  • FIG. 3 is a perspective view of a vibration actuator according to the third embodiment of the present invention.
  • the substantially polygonal column-shaped vibration element 28 has a sliding hole 28a on a substantially central axis thereof.
  • the sliding hole 28a has slits 28b extending radially, and the output shaft 3 is inserted into the sliding hole 28a.
  • the spring 28 is made springy, and a stable frictional force is generated between the output shaft 3 and the sliding hole 28a.
  • a total of four piezoelectric elements 9 having patterned electrodes 10 are attached to the outer peripheral surfaces 28c, 28d, 28e, 28f of the vibration element 28 parallel to the output shaft 3, and the sliding holes 28a
  • the piezoelectric element 9 having the pattern electrode 10 is also attached to the two side surfaces 28g and 28h having the same.
  • An electrode indicated by symbol B2 in the figure is provided on the outer peripheral surface 28c of the vibration element 28, electrodes C2 and D2 are provided on the outer peripheral surface 28d, electrodes indicated by E2 are provided on the outer peripheral surface 28e, and F2 and A2 are provided on the outer peripheral surface 28f. Electrodes are formed on the surface of each piezoelectric element 9. Further, B1 and E1 electrodes are formed on the side surface 28g, and B3 and E3 electrodes are formed on the surface of each piezoelectric element 9 on the side surface 28h, and all these electrodes are combined to form a set of electrode patterns. Yes.
  • a voltage generated in a substantially sine wave shape is sequentially applied to the electrode 10 having the pattern shape.
  • the output shaft 3 moves in the linear motion direction (arrow M in the figure and the opposite direction), Or it can operate in the direction of rotation (arrow P in the figure and its reverse direction).
  • the piezoelectric elements 9 are attached to all the outer peripheral surfaces and side surfaces of the vibration element 8, and a strong traveling wave can be generated by a large number of piezoelectric elements.
  • the vibration transmission efficiency is high, and even if incorporated in a cylindrical tube for an endoscope, the vibration is not inhibited and a stable output can be obtained.
  • the diameter of the hole 3a of the output shaft 3 is 0.2 to 0.5 mm (millimeters), which is sufficiently larger than the diameter of the optical fiber 1, so that the optical fiber 1 does not contact the hole 3a, but is lightly contacted. However, it is not so much that abrasion powder is generated. Further, there is no problem that the rotational friction torque varies.
  • the output shaft 3 shown in FIG. 1 is made of metal or ceramics, and is formed into a hollow shape by drawing molten metal with a mold or extruding ceramic material before firing with a mold, and polishing after hardening treatment. Finished by the method of processing.
  • the vibration element 8 since it is desired that the vibration element 8 has a spring property and that the difference in linear expansion coefficient from the piezoelectric element 9 is not large, it is processed by stainless steel, zirconia ceramics, or the like.
  • the vibrating element 8 having the slit portion 8b does not necessarily have an integral structure, and may be configured by laminating a large number of thin steel plates, for example.
  • the actuator since one vibration actuator performs rotation and linear motion, the actuator is compact and the generated force can be stabilized.
  • the optical fiber does not rotate relative to the catheter of an endoscope apparatus or the like, there is no friction and there is no rotation transmission delay or torque fluctuation, and a good three-dimensional image of the endoscope can be obtained.
  • the vibration actuator of the present invention is small in size and can sufficiently obtain operating force in the rotational and linear motion directions in a three-dimensional scanning optical imaging probe or the like used in an OCT endoscope system that has rapidly advanced in recent years. .
  • vibrations are not absorbed or inhibited, so that stable performance can be provided.
  • it can be incorporated in an industrial microrobot hand or the like to obtain a small and large driving force.
  • Optical fiber 2 Condensing lens 3 Output shaft 3a Hole 4a, 4b, 4c, 4d optical path changing means 5a, 5b Optical fiber clamp 6 Tube (catheter) 7a, 7b Bearing 8, 18 Vibrator 8a Sliding hole 8b, 18a Slit DESCRIPTION OF SYMBOLS 9 Piezoelectric element 10 Pattern electrode 11a, 11b Electric wire 12 Actuator 13a, 13b Light beam 14a, 14b Fixed side sensor 14c Movement side sensor 16 Translucent part

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Endoscopes (AREA)

Abstract

【課題】 回転及び直動駆動が共に行え、駆動力を安定して得られる振動アクチュエータを提供する。 【解決手段】 振動により出力軸が運動する振動アクチュエータにおいて、略多角形状の可振子に出力軸を挿通する穴と、この穴から放射状に伸びるスリット部を設ける。このスリット部が可振子と出力軸の間にバネ力を発生し、出力軸を付勢して保持する。可振子の外周面の少なくとも1つの面と、その対向面には、パターン電極を有する振動子が貼り付けられている。このパターン電極の電極パターンに順次電圧を印加する事で可振子に進行波を発生し、振動により、出力軸に、回転および軸方向の運動をさせるようにした。

Description

振動アクチュエータ
 本発明は、振動子(圧電素子、電歪素子を含む)の振動により出力軸に振動波を与えて回転及び直動運動を行う振動アクチュエータに関するものである。
 医療機器の進歩は急速であり、画像診断技術(光イメージング技術)を用いた内視鏡装置が広く研究され活用されているが、この画像診断の方式として、一般的なカメラ観察や超音波診断装置に替わり、近年、微細な断層画像や3次元断層画像を撮影する事が可能な光の干渉性を利用したOCT(光干渉断層撮影)による3次元断層画像が得られる内視鏡装置が着目されている。その中で、3次元走査を行うために必要な駆動源としては、電磁モータ、圧電モータ、形状記憶合金式等の各種駆動原理の中で、小径でも大きい駆動力が得られる圧電素子または電歪素子による振動アクチュエータが有望視されている。
 例えば、特許文献1においては、雌ねじ付きナット部材(110)に雄ねじシャフト(120)が摺動自在に挿入され、ナット部材(110)と雄ねじシャフト(120)の間にはクリヤランス(697b)が設けられ、ナット部材(110)の4面に貼り付けられた圧電素子(132a~132d)に電圧を順次印加し、ナット部材(110)に回転振動を与えることで、雄ねじシャフト(120)を回転させると同時に軸方向に平行移動させるリニアモータシステム(100)が示されている。
 しかしながら、特許文献1に示すリニアモータシステムにおいては、雌ねじ付きナット部材に雄ねじシャフトが摺動自在に組合せされて接触しており、ナット部材と雄ねじ軸の間にクリヤランスが設けられているため、振動の伝達効率が低く、十分な駆動力が得られなかった。また、ナット部材を内視鏡等のチューブに挿入固定すると、振動がチューブに吸収されて雄ねじシャフトに十分な駆動力が得られなかった。
 特許文献2においては、角筒状弾性体1に直接に圧電素子(2,3,4,5)が貼付けられ、角筒状弾性体(1)の内周面に駆動子(7)が板バネ(8)で押圧されており、圧電素子(2,3,4,5)に電圧が印加され、角筒状弾性体が振動する事により駆動子と共にシャフトが軸方向に変位する超音波リニアモータが示されている。
 しかしながら、特許文献2に示す超音波リニアモータでは、角筒状弾性体が圧電素子によって励振されるが、内視鏡等のチューブに本超音波リニアモータを挿入固定すると、振動がチューブに吸収されてシャフト十分な駆動力が得られなかった。
 また、特許文献3においては、軸状の作動子(12)が角柱状のステータ(11)の穴に挿入され、ステータ(11)に貼り付けられた複数の圧電素子(13)に電圧が順次印加され振動波を生じることで軸状の作動子を回転または軸方向に移動させる超音波走査装置が示されている。
 しかしながら、特許文献3に示す超音波走査装置では、軸状の作動子(12)がステータ(11)の穴に挿入される場合に、この挿入に隙間が生じた場合には、ステータの振動波が作動子に伝わらなくなり作動できず、一方、隙間が無く圧入された場合には、摩擦力が大き過ぎて作動子が作動できなかった。また作動子を内視鏡等のチューブに挿入固定すると、ステータの振動がチューブに吸収されて作動子に十分な駆動力が得られなかった。
米国特許2010/0039715 A1 特許第3213568号公報 WO 2008/038817 A1
 本発明は上記従来事情に鑑みてなされたものであり、その課題とする処は、小型で駆動力が十分にあり、かつ、内視鏡等のチューブに組込んでも振動波が吸収または阻害されない安定した性能が得られる振動アクチュエータを提供することにある。
 上記課題を解決するための一手段は、振動により出力軸が運動する振動アクチュエータにおいて、略多角柱状の可振子の略中心軸上に穴を設け、その穴にバネ力を発生するための放射状に伸びるスリット部を設け、その穴に出力軸が挿通さている。そして、可振子の出力軸に平行な前記可振子外周の1つの面と、その対向面に、パターン状の電極を有する第1および第2の振動子を貼り付け、これらのパターン電極の電極パターンに順次電圧を印加する事で可振子に進行波を発生し、出力軸に回転および軸方向の変位を与えることを特徴としている。
 本発明によれば、直動及び回転動作が兼用できるコンパクトな振動アクチュエータが得られ、また、内視鏡用の円筒状チューブ内等に組み込んでも振動が阻害されないので、安定した出力が得られる。
本発明の第1の実施形態に係る振動アクチュエータの斜視図 本発明の第2の実施例の形態に係わる振動アクチュエータの斜視図 本発明の第3の実施例の形態に係わる振動アクチュエータの斜視図 同振動アクチュエータの動作説明図 本発明の応用例の光イメージング用プローブの断面図 同光イメージング用プローブの走査範囲説明図 同光イメージング用プローブの動作タイミングチャート
 本実施の形態の振動アクチュエータの第一の特徴は、略多角柱状の可振子はその略中心軸上に穴を設け、前記穴に放射状に伸びるスリット部を有し、そして前記穴に前記出力軸が挿通され、前記可振子の外周面のなかで、前記出力軸と平行な面の少なくとも1つの面に、第1の振動子が貼り付けられており、前記第1の振動子が貼り付けられている面の対向面に、第2の振動子が貼り付けられており、前記第1の振動子と、前記第2の振動子とは、各々パターン電極を有しており、前記パターン電極の電極パターンに順次電圧を印加する事で可振子に進行波を発生し、前記出力軸に、回転および軸方向の変位を与える変位を与えるように構成している。
 この構成により、可振子発生した進行波が前記出力軸に、回転および、直動運動を与え、回転及び直動が行え、安定した力を発生する振動アクチュエータを得ることができる。
 第二の特徴としては、前記可振子の前記穴の有る側面にも、パターン電極を有する第3の振動子が貼り付けられており、前記第1の振動子及び前記第2の振動子及び前記第3の振動子の前記パターン電極の電極パターンに順次電圧を印加する事で可振子に進行波を発生し、前記出力軸に、回転および軸方向の変位を与えるように構成している。
 この構成によれば、コンパクトな可振子により大きな進行波を発生し、前記出力軸に、安定した回転および直動運動を与えることができる。
 第三の特徴としては、前記振動子を、圧電素子又は電歪素子とした。
 この構成によれば、圧電効果又は電歪効果によって、コンパクトな可振子により大きな進行波を発生し、大きな力で、前記出力軸に安定した回転および直動運動を与えることができる。
 次に本発明の好適な実施形態について図面を参照しながら説明する。
 本発明の第1の実施形態の振動アクチュエータの構成について、図1を用いて説明する。
 図1は本発明の実施形態に係わる振動アクチュエータの斜視図である。
 略多角柱状の可振子8(図1では四角柱)はその略中心軸上に貫通する摺動穴8aを有し、この摺動穴8aには放射状に伸びるスリット部8bを有し、この摺動穴8aに出力軸3が挿通され、少なくともこの出力軸8aに平行な前記可振子8の外周の1つの面8cと、その対向面8dに、パターン状の電極10を有する第1および第2の圧電素子9を貼り付けている。圧電素子9には1枚毎にそれぞれパターン状の電極10が貴金属のスパッタリング法や、導電性インクの印刷工法により設けられている。
 外周面8cには軸方向にA1~AnまでのN個の電極が配列と、B1~BnまでのN個の電極が配列されている。好ましくはさらに、C1~CnまでのN個の電極が同様に軸方向に配列して設けられている。対向する外周面8dには、D1~DnまでのN個の電極とE1~EnまでのN個の電極が配列されている。また好ましくはさらに、F1~FnまでのN個の電極が同様に軸方向に配列して設けられている。
 スリット部8aは出力軸3から略放射状に1箇所、又は複数箇所(図1では2カ所)設けられ、可振子8にバネ性を発生させ、出力軸3と摺動穴8aの間に安定した摩擦力(例えば約1ニュートンの力)を発生する。
 また、好ましくは出力軸3の略中央には穴3aが空けられ、穴3aは必要に応じて光ファイバーや内視鏡用の作動ワイヤーが挿通されるものである。
 図1の振動アクチュエータについてその動作を説明する。略正弦波状の電圧が図5の電線11a、11bを通して図1の前記パターン状の電極10に順次印加されるが、印加される順序を変えることにより、出力軸3は直動方向(図中矢印M)に、または回転方向(図中矢印P)に動作させることができる。
 出力軸3に図1中の記号M方向に直動させる場合は、電圧を先ず第1に、電極A1、B1、C1、C1に対向する位置にあるD1(図示しない)、B1に対向する位置にあるE1(図示しない)、A1に対向する位置にあるF1(図示しない)の計6個の電極に印加する。
 次に第2には、電極A2、B2、C2、C2に対向する位置にあるD2(図示しない)、B2に対向する位置にあるE2(図示しない)、A2に対向する位置にあるF2(図示しない)の計6個の電極に印加する。
 次に第3には、電極A3、B3、C3、C3に対向する位置にあるD3(図示しない)、B3に対向する位置にあるE3(図示しない)、A3に対向する位置にあるF3(図示しない)の計6個の電極に印加する。
 次に第4には、電極A4、B4、C4、D4、E4、F4の計6個の電極に印加する。
 その次に再び第1に印加したA1、B1、C1、D1、E1、F1の計6個の電極に印加し、これを繰り返す。これにより出力軸3は矢印M方向に摺動する。
 これら電圧の繰り返し印加する方向を逆にすると、出力軸3は図1中矢印Mとは反対方向に摺動する。
 次に、出力軸3を回転させる場合は、電圧を先ず第1に、電極A1~A4と、D1~D4の計8個の電極に印加し、次に第2には、電極B1~B4と、E1~E4の計8個の電極に印加し、次に第3には、電極C1~C4と、F1~F4の計8個の電極に印加し、その次に再び第1に印加した計8個の電極に印加し、これを繰り返す。これにより可振子8に図中矢印N及び矢印~Oに進行波が発生し、出力軸3は矢印P方向に回転する。
 これら電圧の繰り返し印加する方向を逆にすると、出力軸3は図1中矢印Pとは反対方向に回転する。
 本発明の振動アクチュエータ12は、シンプルな構造であるため、可振子8の重量と体積に比較して、圧電素子9の厚さと体積を一般よりはるかに大きく設ける事が可能で有り、出力軸により一層大きい力を発生させることができる。本実施例においては、図1の圧電素子9の厚さをt1、可振子8の出力軸3近傍の再薄部分の厚さをt2としたとき、t1≧t2の条件で最大出力を得ることができた。
 可振子8にスリット部8bが設けられる事で、バネ力を発生し出力軸を安定した力で押圧しているため、出力3の発生力は変化が少なく安定し大きな力を得ている。
 図5から図7は本発明の第1の実施の形態に係る振動アクチュエータの応用事例であり、OCT内視鏡装置の光イメージング用プローブの図である。
 図5において、出力軸3は2つの軸受7a、7bにより回転及び摺動自在に支えられている。また振動アクチュエータ12はチューブ6内で、必要に応じて板バネや、軟質のゴム等で弱く支えられ、振動アクチュエータ12の振動が阻害されないように固定されている。
 内視鏡装置本体(図示しない。)から発光された例えば近赤外光線は、図5に示す光ファイバー1に導光され、集光レンズ2から前方に放射され、光路変換手段4aにより略直角方向に放射角が変換される。また、光路変換手段4は振動アクチュエータ12により回転させられるため、光線は図中13aの方向を含む360全周方向に放射される。光線は透光部16を通過し、人体の患部等の非検体に照射され、非検体からの反射光は、光線が導光された方向とは反対方向に、光路変換手段4、集光レンズ2、光ファイバー1を通って、内視鏡装置本体戻っていく。これにより360度全周の2次元の画像を取り込むことができる。尚、引き続き振動アクチュエータ12が以下の様に動作する事で3次元画像の取り込みを始める。
 図5に示す振動アクチュエータ12の出力軸3が直動すると、出力軸3がチューブ6の中の光ファイバー1を押し引きすると同時に集光レンズ2と光路変換手段4と先端側近傍の光ファイバー1とを軸方向に一体的に変位させることにより、光線の放射を軸方向にも変位させる。これにより内視鏡装置本体に3次元の画像データの蓄積が行なわれる。
 図6は光路変換手段4から放射される光線の範囲を示している。図中、d2は近赤外光線が透過する範囲を意味するが、その直径約4~20mm(ミリメートル)の範囲である。d1はチューブ6の外径を意味しており、その直径は約2mm(ミリメートル)である。図中Lsは出力軸3移動距離であるがおよそ2~10mm(ミリメートル)であり、図1の光線13aが透光部16により僅かに屈折し、θ1とθ2の角度に広がって放射されるため、軸方向には、図6のLaに示す範囲でOCT内視鏡の3次元観察が行われる。
 図7は、本発明光イメージング用プローブのタイミングチャートを示している。上段の波形は出力軸3が回転する方向にパターン電極10に電圧が印加されている状態をON-OFFとして表示しており、中段の波形は出力軸3が直動する方向に電圧を印加するON-OFFの状態を示し、正方向の変位をプラスに、逆方向の変位をマイナスで表している。また、下段の波形は振動アクチュエータ12に軸方向の始終端位置を検出する図5に示す固定側センサー14a、14bの出力波形である。
 内視鏡装置の使用者(医者等)が操作により、スイッチを操作すると、内視鏡装置はスタートパルスを発生させられ、図7のタイミングチャートにおいて、まず第1に出力軸3は図1の矢印Pに示す方向に約60~120[回転/分]程度のゆっくりした速度で回転を始め、第2に出力軸3が1回転するまでの間に回転検出センサー14dからパルスが1回出されると通電は一旦停止し、振動アクチュエータの回転は停止し、第3に今後は出力軸3が一定の時間内(例えば0.01[秒])正方向に摺動し、出力軸はこの時約20μm(マイクロメートル)移動する。
 次に再び出力軸3は図3の矢印Pに示す方向に約60~120[回転/分]程度の速度で回転を行い、このように第1→第2→第3の動作を繰り返す。
 やがて出力軸が終端まで移動すると、第4に固定側センサー14aに移動側センサー14cが近接する事で出力を発生するので、この終端信号を検出して出力軸3は停止する。
 引き続き第5に出力軸3は高速で後進を行い、第6に固定側センサー14bから始端位置出力を検出して後進を終了し通電は止められ出力軸は回転及び直動共に停止する。この時の出力軸3の停止位置はスタンバイ位置であり次のスタートパルスを待つ状態になっている。
 これにより振動アクチュエータを用いた光イメージング用プローブは光線放射方向を回転及び直動方向に変化させ、3次元的に走査し、例えば人体患部から反射した近赤外線を受光する事ができる。本発明の構成によれば、チューブ6の先端近傍に内蔵された振動アクチュエータ12と光路変換手段4の回転速度ムラがなく、人体等の被検体から反射し先端側に入射した光を光路変換手段4が高精度な走査を行い後方側光ファイバー1へ導く事により、10μm(ミクロン)の高い空間分解能が得られる。
 次に本発明の第2の実施形態の振動アクチュエータの構成について、図2を用いて説明する。図2は本発明第2の実施形態に係わる振動アクチュエータの斜視図である。
 略多角柱状の可振子18はその略中心軸上に貫通する摺動穴18aを有し、この摺動穴18aには放射状に伸びるスリット部18bを有し、摺動穴18aに出力軸3が挿通又は軽圧入され、この出力軸3に平行な前記可振子18の外周面18c、18d、18e、18fのそれぞれに、パターン状の電極10を有する計4枚の圧電素子9を貼り付けている。圧電素子9には1枚毎に例えば碁盤目状等のパターン状の電極10が設けられている。
 可振子18の外周面18cに貼り付けられた圧電素子9の表面には軸方向にA1~AnまでのN個の電極と、B1~BnまでのN個の電極が貼り付けられている。隣接する外周面8dには、C1~CnまでのN個の電極と、D1~DnまでのN個の電極が配列して設けられている。また、外周面18eには電極E1~En、F1~Fnを有する圧電素子9が貼り付けられ、外周面18fには電極G1~Gn、H1~Hnの電極が貼り付けられた圧電素子9が貼り付けられる。
 スリット部18aは出力軸3から略放射状に少なくとも1箇所(図2では2カ所)に設けられ、可振子18にバネ性を発生させ、出力軸3と摺動穴8aとの間に安定した摩擦力を発生する。
 以下に振動アクチュエータ12の回転及び直動動作について説明する。
 略正弦波状に発生した電圧が前記パターン状の電極10に順次印加されるが、印加される順序を変えることにより、出力軸3は直動方向(図中矢印Mおよびその逆方向)に、または回転方向(図中矢印P及びその逆回転方向)に動作することができる。
 出力軸3に図2中の記号M方向に直動させる場合は、電圧を先ず第1に、電極A1、B1、C1、D1の計4個の電極に印加し、第2には、電極A2、B2、C2、D2の計4個の電極に印加し、第3には、電極A3、B3、C3、D3の計4個の電極に印加し、さらに第4には、電極A4、B4、C4、D4の計4個の電極に印加する。その次に再び第1に印加したA2、B2、C2、D2の計4個の電極に印加し、これを繰り返す。これにより可振子18に矢印M方向に直動方向の進行波が発生し、この進行波は出力軸3を矢印M方向に摺動させる。
 次に、これら電圧の繰り返し印加する方向を逆にし、具体的には、第4→第3→第2→第1→第4の方向にすると、出力軸3は図2中矢印Mとは逆方向に摺動する。
 次に、出力軸3を回転させる場合は、電圧を先ず第1に、電極A1~A4と、E1~E4の計8個の電極に印加し、第2には、電極B1~B4と、F1~F4の計8個の電極に印加し、第3には、電極C1~C4と、G1~G4の計8個の電極に印加し、第4には、電極C1~C4と、G1~G4の計8個の電極に印加し、その次に再び第1に印加したA1~A4と、E1~E4の計8個の電極に印加し、これを繰り返す。これにより可振子8には図中矢印Nと矢印O方向に進行波が発生し、この2つの進行波により出力軸3は矢印P方向に回転する。
 これら電圧の繰り返し印加する方向を逆にすると、出力軸3は図2中矢印Pとは反対方向に回転する。
 この実施形態2においては、圧電素子9が可振子8の外周の全ての面に貼り付けられており、多数枚の圧電素子で強い進行波が発生できる。但し、図1の第1の実施形態に比べて、厚い圧電素子は構成上貼りにくい難点があるため、薄い圧電素子を多数枚貼ることで大きい作動力を発生するよう設計されている。
 尚、圧電素子9から発生する進行波の力は、貼り付けられた圧電素子9の枚数または面積に比例すると共に、圧電素子9の厚さにも比例するものであり、この原理を考慮して圧電素子9の形状や大きさ、及び電極パターン10の設計が行われる。但し、圧電素子9を厚く設計すると厚さに比例して印加する電圧を上げなければならないため、圧電素子9は厚さ及び面積のそれぞれに設計上の限界がある。
 本発明によれば出力軸に回転および直動運動を1個で行うコンパクトな振動アクチュエータが得られ、安定した推力を発生させることができる。
 次に本発明の第3の実施形態の振動アクチュエータの構成について、図3~図4を用いて説明する。
 図3は本発明第3の実施形態に係わる振動アクチュエータの斜視図である。
 略多角柱状の可振子28はその略中心軸上に摺動穴28aを有し、この摺動穴28aには放射状に伸びるスリット部28bを有し、摺動穴28aに出力軸3が挿通又は軽圧入され、可振子28にバネ性を発生させ、出力軸3と摺動穴28aの間に安定した摩擦力を発生する。
 出力軸3に平行な前記可振子28の外周面28c、28d、28e、28fのそれぞれに、パターン状の電極10を有する計4枚の圧電素子9を貼り付けており、また、摺動穴28aを有する2つの側面28g、28hにもパターン電極10を有する圧電素子9が貼り付けられている。
 可振子28の外周面28cには図中記号B2に示す電極が、外周面28dにはC2とD2の電極が、外周面28eにはE2に示す電極が、外周面28fにはF2とA2の電極がそれぞれの圧電素子9の表面に形成されている。また、側面28gにはB1とE1の電極が、側面28hにはB3とE3の電極がそれぞれの圧電素子9の表面に形成され、これら全ての電極を合わせて1組の電極パターンを形成している。
 以下に振動アクチュエータ12の回転及び直動動作について説明する。
 略正弦波状に発生した電圧が、前記パターン状の電極10に順次印加されるが、印加される順序を変えることにより、出力軸3は直動方向(図中矢印Mおよびその逆方向)に、または回転方向(図中矢印P及びその逆回転方向)に動作することができる。
 出力軸3に図3及び図4中の記号M方向に直動させる場合は、電圧を先ず第1に、電極B1、E1の2個の電極に印加し、第2には、電極B2、E2の2個の電極に印加し、第3には、電極B3、E3の2個の電極に印加する。その次に再び第1に印加したB1、E1の2個の電極に印加し、これを繰り返す。これにより可振子28に矢印N及び矢印O方向に回転進行波が発生し、この2つの回転進行波が出力軸3に矢印M方向に直動させる。
 次に、これら電圧の繰り返し印加する方向を逆にし、具体的には、第3→第2→第1→第3の方向にすると、出力軸3は図4中矢印Mとは逆方向に直動する。
 次に、出力軸3を回転させる場合は、電圧を先ず第1に、電極A2、D2の2個の電極に印加し、第2には、電極B2、E2の2個の電極に印加し、第3には、電極C2、F2の2個の電極に印加し、その次に再び第1に印加したA2とD2の2個の電極に印加し、これを繰り返す。これにより可振子28には図中矢印Aと矢印Bの進行波が発生し、この進行波により出力軸3は矢印P方向に回転する。
 これら電圧の繰り返し印加する方向を逆にすると、出力軸3は図4中矢印Pとは反対方向に回転する。
 この実施形態3においては、圧電素子9が可振子8の全ての外周面及び側面にも貼り付けられており、多数枚の圧電素子で強い進行波が発生できる。
 本発明によれば、出力軸に回転および直動運動を1個で行うコンパクトなアクチュエータが得られる。また、振動伝達効率が高く、また内視鏡用の円筒状チューブ内等に組み込んでも振動が阻害されず安定した出力が得られる。
 尚、出力軸3の穴3aの直径は0.2~0.5mm(ミリメートル)あり、光ファイバー1の直径より十分大きくしているため、光ファイバー1が穴3aに接触することはなく、仮に軽く接触しても摩耗粉が発生するほどではない。また、回転摩擦トルクが変動する問題もない。
 尚、図1に示される出力軸3は、金属またはセラミックスからなり、溶融金属を金型による引き抜き加工か、または焼成前のセラミックス材料を金型による押し出し加工で中空に成形され、硬化処理後に研磨加工する方法等により仕上げ加工される。
 尚、可振子8はバネ性を有し、かつ圧電素子9との線膨張係数の差が大きくない事が望まれるため、ステンレス鋼、またはジルコ二アセラミックス等により加工される。
 尚、スリット部8bを有する可振子8は必ずしも一体構造である必要はなく、例えば鋼の薄板を多数枚積層して構成しても良い。
 本発明によれば回転及び直動運動を1つの振動アクチュエータが行うので、コンパクトであり、発生する力が安定化することができる。また、内視鏡装置等のカテーテル内で光ファイバーが相対的な回転をさせないので擦れる事がなく、回転伝達遅れやトルクの変動が無く、内視鏡の良好な3次元画像が得られる。
 本発明の振動アクチュエータは,近年急速に進歩する、OCT式内視鏡システムに用いられる3次元走査型光イメージング用プローブ等において、小型でありかつ回転および直動方向の動作力が十分に得られる。特に内視鏡等のチューブに組込んでも振動が吸収または阻害されないので安定した性能を提供することができる。また、内視鏡以外にも工業用マイクロロボットのハンド等に組み込む事で,小型で大きい駆動力を得ることができる。
1 光ファイバー
2 集光レンズ
3 出力軸
3a 穴 
4a、4b、4c、4d 光路変換手段 
5a、5b 光ファイバークランプ
6 チューブ(カテーテル)
7a、7b 軸受
8、18 可振子
8a 摺動穴
8b、18a スリット部 
9 圧電素子
10 パターン電極
11a、11b 電線
12 アクチュエータ
13a、13b 光線
14a、14b 固定側センサー
14c  移動側センサー 
16 透光部

Claims (3)

  1.  振動により出力軸が運動する振動アクチュエータにおいて、
     略多角柱状の可振子はその略中心軸上に穴を有し、
     前記穴に放射状に伸びるスリット部を有し、
     前記穴に前記出力軸が挿通され、
     前記可振子の外周面のなかで、前記出力軸と平行な面の少なくとも1つの面に、第1の振動子が貼り付けられており、
     前記第1の振動子が貼り付けられている面の対向面に、第2の振動子が貼り付けられており、
     前記第1の振動子と、前記第2の振動子とは、各々パターン電極を有しており、
     前記パターン電極の電極パターンに順次電圧を印加する事で可振子に進行波を発生し、前記出力軸に、回転および軸方向の変位を与えることを特徴とする振動アクチュエータ。
  2.  前記可振子の前記穴の有る側面に、パターン電極を有する第3の振動子が貼り付けられており、前記第1の振動子及び前記第2の振動子及び前記第3の振動子の前記パターン電極の電極パターンに順次電圧を印加する事で可振子に進行波を発生し、前記出力軸に、回転および軸方向の変位を与えることを特徴とする請求項1記載の振動アクチュエータ。
  3.  前記振動子は、圧電素子又は電歪素子であることを特徴とする請求項1又は請求項2記載の振動アクチュエータ。
PCT/JP2014/053969 2013-11-26 2014-02-20 振動アクチュエータ WO2015079716A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015550575A JP6351620B2 (ja) 2013-11-26 2014-02-20 振動アクチュエータ
US14/373,009 US20160380178A1 (en) 2013-11-26 2014-02-20 Vibration actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-244213 2013-11-26
JP2013244213 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015079716A1 true WO2015079716A1 (ja) 2015-06-04

Family

ID=53198676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053969 WO2015079716A1 (ja) 2013-11-26 2014-02-20 振動アクチュエータ

Country Status (3)

Country Link
US (1) US20160380178A1 (ja)
JP (1) JP6351620B2 (ja)
WO (1) WO2015079716A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009880A (ja) * 2017-06-22 2019-01-17 国立大学法人東京農工大学 超音波モータ、ロボットアーム、およびメッシュロボット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253681A (ja) * 1999-02-26 2000-09-14 Honda Electronic Co Ltd 超音波モータ
JP2009219281A (ja) * 2008-03-11 2009-09-24 Fukoku Co Ltd 圧電アクチュエータ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038585B2 (ja) * 1991-08-21 2000-05-08 日本ピストンリング株式会社 カルダン形自在軸継手
US5718667A (en) * 1993-05-27 1998-02-17 Sunstar Kabushikigaisha Oral hygiene instrument
JP2000316268A (ja) * 1999-03-03 2000-11-14 Tokin Corp 振動アクチュエータ
US7170214B2 (en) * 2003-09-08 2007-01-30 New Scale Technologies, Inc. Mechanism comprised of ultrasonic lead screw motor
US7309943B2 (en) * 2003-09-08 2007-12-18 New Scale Technologies, Inc. Mechanism comprised of ultrasonic lead screw motor
US6940209B2 (en) * 2003-09-08 2005-09-06 New Scale Technologies Ultrasonic lead screw motor
KR100704990B1 (ko) * 2005-08-08 2007-04-10 삼성전기주식회사 고정자 및 이를 이용한 세라믹스 튜브형 초음파 모터
CN100438307C (zh) * 2005-11-18 2008-11-26 清华大学 螺纹驱动多面体超声电机
WO2008038817A1 (en) * 2006-09-25 2008-04-03 National University Corporation Tokyo University Of Agriculture And Technology Ultrasonic operation device and microtube inside system
JP2009226573A (ja) * 2008-03-21 2009-10-08 Kazumasa Onishi 超音波ローラーを用いた超音波ワイヤソー装置
US20100019621A1 (en) * 2008-07-14 2010-01-28 Olympus Corporation Ultrasonic motor and ultrasonic motor apparatus retaining the same
US8217553B2 (en) * 2008-08-18 2012-07-10 New Scale Technologies Reduced-voltage, linear motor systems and methods thereof
US8698374B2 (en) * 2009-05-15 2014-04-15 New Scale Technologies Automated drive frequency control for resonant actuator systems and methods thereof
JP2011061894A (ja) * 2009-09-07 2011-03-24 Olympus Corp 超音波モータ
JP5914355B2 (ja) * 2010-11-30 2016-05-11 オリンパス株式会社 圧電アクチュエータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253681A (ja) * 1999-02-26 2000-09-14 Honda Electronic Co Ltd 超音波モータ
JP2009219281A (ja) * 2008-03-11 2009-09-24 Fukoku Co Ltd 圧電アクチュエータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009880A (ja) * 2017-06-22 2019-01-17 国立大学法人東京農工大学 超音波モータ、ロボットアーム、およびメッシュロボット

Also Published As

Publication number Publication date
US20160380178A1 (en) 2016-12-29
JP6351620B2 (ja) 2018-07-04
JPWO2015079716A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
US9574870B2 (en) Probe for optical imaging
EP1665336B1 (en) Ultrasonic lead screw motor
US9869821B2 (en) Probe for optical imaging
US7170214B2 (en) Mechanism comprised of ultrasonic lead screw motor
WO2008038817A1 (en) Ultrasonic operation device and microtube inside system
CN102636434A (zh) 便携式三维可视化光声成像系统
JP6351620B2 (ja) 振動アクチュエータ
JP4896020B2 (ja) 超音波リードスクリューモータを含む機構
JP2015008995A (ja) 光イメージング用プローブ
JP6439098B2 (ja) 光イメージング用プローブ
JP6281059B2 (ja) 光イメージング用プローブ
Zhou et al. A cylindrical rod ultrasonic motor with 1 mm diameter and its application in endoscopic OCT
JP2015100569A (ja) 光イメージング用プローブ
KR101667675B1 (ko) 2차원 스캔 구동을 위한 광 모듈
Bernstein et al. Scanning OCT endoscope with 2-axis magnetic micromirror
JPH06186485A (ja) 急速変形圧電アクチュエータ
WO2021119847A1 (en) Micromotor-integrated endoscopic side-viewing probe
WO2016063406A1 (ja) 光イメージング用プローブ
JP2016077056A (ja) 振動アクチュエータ
Liu Photoacoustic Microscopy System with PZT Scanner
JP2004304910A (ja) 超音波モータ及び超音波モータ付電子機器
Ito et al. Development of a laser processing head to inspect and repair the damage inside of a half-inch pipe
JPH0399650A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14373009

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14865526

Country of ref document: EP

Kind code of ref document: A1