WO2015079684A1 - 環状部材の製造方法 - Google Patents

環状部材の製造方法 Download PDF

Info

Publication number
WO2015079684A1
WO2015079684A1 PCT/JP2014/005915 JP2014005915W WO2015079684A1 WO 2015079684 A1 WO2015079684 A1 WO 2015079684A1 JP 2014005915 W JP2014005915 W JP 2014005915W WO 2015079684 A1 WO2015079684 A1 WO 2015079684A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical member
cutting
peripheral surface
annular
outer peripheral
Prior art date
Application number
PCT/JP2014/005915
Other languages
English (en)
French (fr)
Inventor
小林 一登
裕 安田
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201480059817.4A priority Critical patent/CN105682838B/zh
Priority to EP14866645.6A priority patent/EP3075478B1/en
Priority to US15/035,270 priority patent/US10471555B2/en
Priority to JP2015550565A priority patent/JP6225996B2/ja
Publication of WO2015079684A1 publication Critical patent/WO2015079684A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/003Making specific metal objects by operations not covered by a single other subclass or a group in this subclass bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length
    • B21H1/12Making articles shaped as bodies of revolution rings of restricted axial length rings for ball or roller bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H7/00Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons
    • B21H7/18Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons grooved pins; Rolling grooves, e.g. oil grooves, in articles
    • B21H7/182Rolling annular grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D21/00Machines or devices for shearing or cutting tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length

Definitions

  • the present invention relates to a method for manufacturing an annular member, for example, a method for manufacturing an annular member applied to an inner ring and an outer ring such as a rolling bearing.
  • FIGS. 20 (a) to 20 (e) processes shown in FIGS. 20 (a) to 20 (e) can be given.
  • the cutting billet 102 shown in FIG. 20B is manufactured by any one of press cutting, saw cutting, and cut-off using the round bar member 101 shown in FIG.
  • the cutting billet 102 is cut out by press cutting, since the surface roughness of the cut surface is not good, cracks are likely to occur, and the perpendicularity of the cut surface with respect to the axial direction is bad. Or, end face correction is performed.
  • FIG. 20B is manufactured by any one of press cutting, saw cutting, and cut-off using the round bar member 101 shown in FIG.
  • the cutting billet 102 is extruded backward to form a rear extruded billet 103 having a cylindrical shape with an open bottom.
  • the bottom 103 a of the rear extrusion billet 103 is punched to form a cylindrical member (pipe-like member) 104.
  • a plurality of annular members (ring-shaped members) 105 are manufactured by shearing, cutting off, or sawing (cutting) the cylindrical member 104 along the axial direction thereof.
  • Patent Document 1 and Patent Document 2 As a technique related to shear cutting, which is cited as a technique for cutting the cylindrical member 104 along its axial direction and cutting it into a plurality of annular members, it is disclosed in Patent Document 1 and Patent Document 2.
  • the techniques disclosed in Patent Literature 1 and Patent Literature 2 use a tapered wedge, and a core metal is brought into close contact with the inner peripheral surface of a cylindrical member (pipe-like member) to shear the cylindrical member (pipe-like member).
  • Patent Document 3 As a technique for cutting a cylindrical member (pipe-like member) along its axial direction and dividing it into a plurality of annular members.
  • the method of obtaining the annular member from the cylindrical member by shear cutting has a good yield, but deformation of the obtained annular member cannot be avoided.
  • the techniques described in Patent Document 1 and Patent Document 2 firmly restrain the inner peripheral surface of the cylindrical member.
  • the shearing is performed in one direction, the cylindrical member is greatly uneven. A force was applied, and the cylindrical member sometimes became an ellipse.
  • the method of obtaining an annular member from a cylindrical member by shear cutting has room for examination on the occurrence of shape sag and burrs (see the s portion in FIG. 20 (e)).
  • the annular member does not have to be deformed, but the remaining portion as a result of cutting the annular member may be wasted.
  • the technique described in patent document 3 expands a cylindrical member, there existed a problem that a dimension and a shape were not stabilized. That is, there is room for study on a technique for obtaining a plurality of annular members by cutting a cylindrical member with high yield and high dimensional accuracy. Therefore, the present invention has been made paying attention to the above-described problems, and an object of the present invention is to provide a method for manufacturing an annular member with high yield and high dimensional accuracy.
  • a certain aspect of the manufacturing method of the annular member for achieving the above object includes a cylindrical member forming step of forming an annular cylindrical member from a round bar material, The plurality of constraining dies provided along the axial direction of the cylindrical member and shifted in the center of rotation are rotated in the axial direction while urging at least the outer peripheral surface of the cylindrical member. And a cutting and separating step of cutting and separating into a plurality of annular members in the axial direction by a shearing force generated by the constraining mold.
  • the other aspect of the manufacturing method of an annular member includes a cylindrical member forming step of forming an annular cylindrical member from a round bar material, A notch forming step of forming a notch on at least one of the inner peripheral surface or the outer peripheral surface of the cylindrical member; The cylindrical member is rotated to urge the outer peripheral surface of the cylindrical member among a plurality of constraining molds provided on the inner peripheral surface side and the outer peripheral surface side of the cylindrical member along the axial direction of the cylindrical member. The cylindrical member is caused to concentrate in the axial direction by causing the cylindrical member to have a stress concentration at a location where the notch is formed by a shearing force obtained by a constraining die and a constraining die provided with a gap on the outer peripheral surface of the cylindrical member. A cutting and separating step of cutting and separating to obtain a plurality of annular members.
  • a groove forming step of simultaneously forming grooves on the inner peripheral surface or the outer peripheral surface of the cylindrical member by one rolling molding may be included.
  • the cross-sectional shape of the bottom part of the said notch may be U shape.
  • the cross-sectional shape of the bottom part of the said notch may be a rectangular shape.
  • V-shaped may be sufficient as the cross-sectional shape of the bottom part of the said notch.
  • FIGS. 1A to 1E are sectional views showing an outline of processing of an annular member in the first embodiment of the manufacturing method of the annular member.
  • the manufacturing method of the annular member of the present embodiment includes a cylindrical member forming step and a cutting / separating step. This embodiment has special technical features in this cutting and separating step.
  • the cylindrical member forming step is a step of forming an annular cylindrical member from a round bar material.
  • the cutting billet 2 shown in FIG. 1B is manufactured by any one of press cutting, saw cutting, and cut-off using the round bar member 1 shown in FIG.
  • the cutting billet 2 is cut out by press cutting, since the surface roughness of the cut surface is not good, cracks are likely to occur and the perpendicularity of the cut surface with respect to the axial direction is bad. Or, end face correction is performed.
  • the cutting billet 2 is obtained by saw cutting or parting off, since the roughness of the cutting surface and the perpendicularity of the cutting surface with respect to the billet axis direction are good, it is not necessary to perform upsetting and end surface correction.
  • discharging billet 2 is backward-extruded and the back extrusion billet 3 which makes
  • the bottom 3 a of the rear extrusion billet 3 is punched to form a cylindrical member (pipe-like member) 4.
  • the cutting and separating step is a step of obtaining a plurality of annular members (ring-shaped members) 5 by cutting the cylindrical member 4 along its axial direction, as shown in FIG. Specifically, the outer periphery of the cylindrical member 4 is rotated among the constraining molds provided on the inner peripheral surface side and the outer peripheral surface side of the cylindrical member along the axial direction of the cylindrical member 4 by rotating the cylindrical member 4. The cylindrical member 4 is cut and separated in the axial direction by a shearing force obtained by a constraining die that urges the surface and a constraining die that is provided with a gap on the outer peripheral surface of the cylindrical member 4. , 5B, 5C.
  • This cutting / separating step is performed by using the cutting / separating apparatus 10 shown in FIGS. 2 (a), 2 (b) and FIG.
  • the cutting / separating device 10 includes a first roll 11, a second roll 12, and a mandrel 13.
  • a mode in which the cylindrical member 4 that is a processing target (workpiece) is divided into three in the axial direction will be described.
  • the first roll 11, the mandrel 13, and the second roll 12 have a predetermined interval so that the rotation shafts 11 a, 13 a, and 12 a are aligned on the installation axis A, and each of them can be actively rotated or passively In this order, they are rotatably provided.
  • at least one of the first roll 11 and the second roll 12 has a rotation drive source.
  • at least one of the first roll 11 and the second roll 12 has a translational motion on the installation axis A in which at least one of the rotation shaft 11 a of the first roll 11 and the rotation shaft 12 a of the second roll 12. It is installed as possible.
  • both the first roll 11 and the second roll 12 have their own drive sources and can be actively rotated, and the mandrel 13 is in contact with the first roll 11 and can be rotated passively. It is assumed that it is installed. Moreover, in this embodiment, only the rotating shaft 12a of the 2nd roll 12 is installed so that translational movement is possible on the installation axis A, and the rotating shaft 11a of the 1st roll 11 and the rotating shaft 13a of the mandrel 13 are fixed. Explain that it is.
  • constraining molds 14 for constraining the outer peripheral surface of the cylindrical member 4 that is an object to be processed (work) are provided in an annular shape.
  • These constraining molds 14 are composed of a plurality of constraining molds 14 determined by how many cylindrical members 4 are divided in the axial direction. For example, as shown in FIGS. 2B and 3, when the cylindrical member 4 is divided into three in the axial direction, the constraining molds 14a, 14b, and 14c have different radial thicknesses. Is provided.
  • constraining molds 15 for constraining the inner peripheral surface of the cylindrical member 4 are respectively provided in an annular shape on the inner peripheral surface side of the cylindrical member 4. ing. Similar to the constraint mold 14, these constraint molds 15 are composed of a plurality of constraint molds 15 determined by how many cylindrical members 4 are divided in the axial direction. For example, the constraining molds 15a, 15b, and 15c are provided so as to contact the inner peripheral surface of the cylindrical member 4 at axial heights corresponding to the constraining molds 14a, 14b, and 14c, respectively. In addition, the constraining molds 15a, 15b, and 15c are not only provided with different radial widths, but one of them (for example, the constraining mold 15b) is fitted to the mandrel 13. Preferably it is.
  • the first roll 11 fixed on the installation shaft A has a columnar shape attached to the disk-shaped limiting portions 11b 1 and 11b 2 for fixing the cylindrical member 4 and the constraining molds 14a, 14b and 14c.
  • the urging portion 11 b 3 is provided coaxially with the first roll 11.
  • the restricting portion 11b 1 is provided so as to abut on the upper end surface of the cylindrical member 4 and restrict the upward movement of the cylindrical member 4.
  • the restricting portion 11b 2 is provided so as to abut the lower end surface of the cylindrical member 4 and restrict the downward movement of the cylindrical member 4.
  • the urging portion 11b 3 is provided between the restricting portion 11b 1 and the restricting portion 11b 2 and is provided so as to urge the restraining die 14b.
  • the diameters of the restricting portions 11b 1 and 11b 2 are set larger than the diameter of the urging portion 11b 3 .
  • the second roll 12 that is movable along the installation axis A has disk-shaped limiting portions 12b 1 and 12b 2 for fixing the cylindrical member 4 and a disk shape that urges the restraining molds 14a and 14c.
  • the urging portions 12 b 3 and 12 b 4 are provided coaxially with the second roll 12.
  • the restricting portion 12b 1 is provided so as to abut on the upper end surface of the cylindrical member 4 and restrict the upward movement of the cylindrical member 4. Further, the restricting portion 12b 2 is provided so as to abut the lower end surface of the cylindrical member 4 and restrict the downward movement of the cylindrical member 4.
  • the urging portion 12b 3 is provided to urge the restraining mold 14a.
  • the urging portion 12b 4 is provided to urge the restraining mold 14c.
  • a buffer portion 12b 5 is provided between the biasing portion 12b 3 and the biasing portion 12b 4 with a predetermined gap from the restraining mold 14b.
  • the diameter of the restriction portion 12b 1, 12b 2 are set larger than the diameter of the biasing portion 12b 3, 12b 4, the diameter of the biasing portion 12b 3, 12b 4, rather than the diameter of the buffer section 12b 5 Set to large.
  • the cylindrical member 4 in the present embodiment forms a pair corresponding to the number of annular members (ring-shaped members) 5 to be finally obtained on the inner peripheral surface and the outer peripheral surface. Restrained by the restraining molds 14 and 15. However, when the deformation of the cylindrical member 4 can be sufficiently suppressed, as shown in FIG. 4, the mandrel 13 may be provided with an annular convex portion 13b having a function similar to that of the constraining mold 15b.
  • the cylindrical member 4 to be processed is installed so that the mandrel 13 is inserted through the inner peripheral surface thereof, and the constraining mold 15 a, between the cylindrical member 4 and the mandrel 13, 15b and 15c are installed.
  • the constraining mold 15 b is installed so that the mandrel 13 is fitted to the inner circumferential surface thereof and the outer circumferential surface thereof is fitted to the inner circumferential surface of the cylindrical member 4.
  • the constraining molds 14 a, 14 b, and 14 c are installed on the outer peripheral surface side of the cylindrical member 4.
  • the constraining die 14 b is installed such that its inner peripheral surface abuts on the outer peripheral surface of the cylindrical member 4 and its outer peripheral surface abuts on the outer peripheral surface of the urging portion 11 b 3 of the first roll 11.
  • constrained molds 14a, 14b, of 14c, the restraining die 14b has to abut against the cylindrical member 4 and the urging portion 11b 3, in the second roll 12, the buffer section 12b 5 is constrained mold This is because it is provided with a predetermined gap from 14b.
  • the cylindrical member 4 installed in this manner rotates with the mandrel 13 as the first roll 11 rotates (the direction of rotation is illustrated in FIG. 2A), and the second roll 12 that rotates in the same manner is installed on the installation shaft.
  • Translate along A when the second roll 12 is moved on the installation axis A to reduce the distance between the rotary shaft 11a and the rotary shaft 12a, the cylindrical member 4 is brought into contact with and attached to the constraining dies 14b and 15b.
  • a force (shearing force) f is applied so that the biased portion 4B (portion that becomes the annular member 5B) shifts.
  • “F” is a force applied from the mandrel 13 to the restraining dies 14 a and 14 c.
  • FIG. 6A As an image of the shearing force acting on the cylindrical member 4, the movement is as shown in FIGS. 6 and 7. As shown in FIG. 6A, the fact that the shape seen from the side does not change despite the rotation of the cylindrical member 4 means that the shear deformation is continuously repeated during the rotation. .
  • the position B2 moves to the outside of the position B1 as shown in FIG. 7B.
  • the position B1 and the position B2 are again shown in FIG. 7C.
  • the point B2 moves inward from the point B1 as shown in FIG. 7 (d).
  • the manufacturing method of the annular member of the present embodiment can provide a manufacturing method of the annular member with high yield and high dimensional accuracy. Specifically, in a state where the inner peripheral surface and the outer peripheral surface of the cylindrical member 4 are constrained, by cutting and separating by applying a shearing force while rotating, scrap is not generated at the time of separation, and the yield is good. In addition, since the shearing force is applied while rotating while the inner peripheral surface and the outer peripheral surface of the cylindrical member 4 are constrained, the fatigue change is utilized, and the cutting is repeated with a small force, so the dimensional change is also reduced. be able to.
  • the same force is repeatedly applied to the entire circumference of a part of the cylindrical member 4 (for example, a partial region indicated by 4B) in a state where the inner peripheral surface and the outer peripheral surface of the cylindrical member 4 are constrained by a constraining mold. It is over.
  • This applied force is considerably weaker than cutting with one shear cutting. Therefore, it is possible to minimize the fact that the cylindrical member 4 to be cut becomes an ellipse or greatly deforms in one direction.
  • the cylindrical member 4 can be cut
  • FIG. 8 is sectional drawing which shows the process outline
  • the modification of 1st Embodiment is an aspect which divides
  • the cutting / separating apparatus 10 includes a first roll 11, a mandrel 13, and a second roll 12, and rotation shafts 11a, 13a, and 12a are set to an installation axis A (see FIG. 2). They are arranged in this order so that they have a predetermined interval so as to be lined up, and can be rotated actively or passively.
  • at least one of the first roll 11 and the second roll 12 has a rotation drive source.
  • at least one of the first roll 11 and the second roll 12 has a translational motion on the installation axis A in which at least one of the rotation shaft 11 a of the first roll 11 and the rotation shaft 12 a of the second roll 12.
  • both the first roll 11 and the second roll 12 have their own drive sources and can be actively rotated, and the mandrel 13 is in contact with the first roll 11 and can be rotated passively. It is assumed that it is installed. Moreover, in this embodiment, only the rotating shaft 12a of the 2nd roll 12 is installed so that translational movement is possible on the installation axis A, and the rotating shaft 11a of the 1st roll 11 and the rotating shaft 13a of the mandrel 13 are fixed. Explain that it is.
  • constraining molds 14 for constraining the outer peripheral surface of the cylindrical member 4 that is an object to be processed (work) are provided in an annular shape.
  • the constraint molds 14 are provided so that the constraint molds 14a and 14b have different thicknesses in the radial direction. It has been.
  • constraining molds 15 for constraining the inner peripheral surface of the cylindrical member 4 are respectively provided in an annular shape on the inner peripheral surface side of the cylindrical member 4.
  • these constraint molds 15 are composed of a plurality of constraint molds 15 determined by how many cylindrical members 4 are divided in the axial direction.
  • the constraining dies 15a and 15b are provided so as to contact the inner peripheral surface of the cylindrical member 4 at an axial height corresponding to each of the constraining dies 14a and 14b.
  • the constraining molds 15a and 15b are not only provided with different radial widths, but one of them (for example, the constraining mold 15b) is fitted to the mandrel 13. Is preferred.
  • the first roll 11 fixed on the installation shaft A includes disc-shaped limiting portions 11b 1 and 11b 2 for fixing the cylindrical member 4, and a columnar biasing portion for biasing the constraining molds 14a and 14b.
  • 11 b 3 is provided coaxially with the first roll 11.
  • the restricting portion 11b 1 is provided so as to abut on the upper end surface of the cylindrical member 4 and restrict the upward movement of the cylindrical member 4.
  • the restricting portion 11b 2 is provided so as to abut the lower end surface of the cylindrical member 4 and restrict the downward movement of the cylindrical member 4.
  • the urging portion 11b 3 is provided between the restricting portion 11b 1 and the restricting portion 11b 2 and is provided so as to urge the restraining die 14b.
  • the diameters of the restricting portions 11b 1 and 11b 2 are set larger than the diameter of the urging portion 11b 3 .
  • the second roll 12 that is movable along the installation axis A includes disk-shaped limiting portions 12b 1 and 12b 2 for fixing the cylindrical member 4 and a disk shape that biases the constraining molds 14a and 14b.
  • the urging portions 12 b 3 and 12 b 4 are provided coaxially with the second roll 12.
  • the restricting portion 12b 1 is provided so as to abut on the upper end surface of the cylindrical member 4 and restrict the upward movement of the cylindrical member 4.
  • the restricting portion 12b 2 is provided so as to abut the lower end surface of the cylindrical member 4 and restrict the downward movement of the cylindrical member 4.
  • the urging portion 12b 3 is provided to urge the restraining mold 14a.
  • the urging portion 12b 4 is provided to urge the restraining mold 14b.
  • the diameters of the restricting portions 12b 1 and 12b 2 are set larger than the diameters of the urging portions 12b 3 and 12b 4 .
  • the cylindrical member 4 as a bisecting, along with constituting the biasing portion 12 from the biasing portion 12b 3, 12b 4, it was possible to construct a constrained mold 14 two captive die 14a, from 14b Thus, a moment for tilting the mandrel 13 is applied, but the cylindrical member 4 can be separated without tilting the mandrel 13 by manufacturing the cutting and separating device 10 so as to withstand the moment.
  • FIGS. 9A to 9F are sectional views showing an outline of processing of the annular member in the second embodiment of the manufacturing method of the annular member.
  • the manufacturing method of the annular member of the present embodiment includes a cylindrical member forming step, a notch forming step, and a cutting / separating step.
  • This embodiment has special technical features in the notch forming process and the cutting and separating process. Therefore, in the description of the present embodiment, the description will be made with reference to FIG. 9 and FIGS. 2 to 7 common to the above-described first embodiment.
  • the cylindrical member forming step is a step of forming an annular cylindrical member from a round bar material.
  • the cutting billet 2 shown in FIG. 9B is manufactured by any one of press cutting, saw cutting, and cut-off using the round bar member 1 shown in FIG. 9A.
  • end face correction is performed.
  • the cutting billet 2 is obtained by saw cutting or parting off, since the roughness of the cutting surface and the perpendicularity of the cutting surface with respect to the billet axis direction are good, it is not necessary to perform upsetting and end surface correction.
  • discharging billet 2 is extruded backward, and the back extrusion billet 3 which makes
  • the bottom 3 a of the rear extrusion billet 3 is punched to form a cylindrical member (pipe-like member) 4.
  • notches 16 and 17 are formed on the inner and outer diameter surfaces of the cylindrical member 4.
  • the notches 16 and 17 are groove-shaped depressions that are formed over the entire circumference at a location where the cylindrical member 4 is cut. It is formed by plastic working. It is desirable that the notches 16 and 17 have a shape that causes stress concentration when a shearing force is applied in a cutting and separating step described later.
  • the bottoms of the notches 16 and 17 are formed in a U shape as shown in FIG.
  • the shape of the bottom of the notch is not particularly limited as long as stress concentration easily occurs, and may be, for example, a rectangular shape as shown in FIG. 11A or a V shape as shown in FIG.
  • the notches 16 and 17 are preferably formed on both the inner diameter surface and the outer diameter surface of the cylindrical member 4 as in the present embodiment, but are formed only on either the inner diameter surface or the outer diameter surface. Also good.
  • the cutting / separating step is a step of obtaining a plurality of annular members (ring-shaped members) 5 by cutting the cylindrical member 4 along its axial direction, as shown in FIG. Specifically, the outer periphery of the cylindrical member 4 is rotated among the constraining molds provided on the inner peripheral surface side and the outer peripheral surface side of the cylindrical member along the axial direction of the cylindrical member 4 by rotating the cylindrical member 4. The cylindrical member 4 is cut and separated in the axial direction by a shearing force obtained by a constraining die that urges the surface and a constraining die that is provided with a gap on the outer peripheral surface of the cylindrical member 4. , 5B, 5C.
  • This cutting / separating step is performed by using the cutting / separating apparatus 10 shown in FIGS. 2 (a), 2 (b) and FIG.
  • the cutting / separating device 10 includes a first roll 11, a second roll 12, and a mandrel 13.
  • a mode in which the cylindrical member 4 that is a processing target (workpiece) is divided into three in the axial direction will be described.
  • the first roll 11, the mandrel 13, and the second roll 12 have a predetermined interval so that the rotation shafts 11 a, 13 a, and 12 a are aligned on the installation axis A, and each of them can be actively rotated or passively In this order, they are rotatably provided.
  • at least one of the first roll 11 and the second roll 12 has a rotation drive source.
  • at least one of the first roll 11 and the second roll 12 has a translational motion on the installation axis A in which at least one of the rotation shaft 11 a of the first roll 11 and the rotation shaft 12 a of the second roll 12. It is installed as possible.
  • both the first roll 11 and the second roll 12 have their own drive sources and can be actively rotated, and the mandrel 13 is in contact with the first roll 11 and can be rotated passively. It is assumed that it is installed. Moreover, in this embodiment, only the rotating shaft 12a of the 2nd roll 12 is installed so that translational movement is possible on the installation axis A, and the rotating shaft 11a of the 1st roll 11 and the rotating shaft 13a of the mandrel 13 are fixed. Explain that it is.
  • constraining molds 14 for constraining the outer peripheral surface of the cylindrical member 4 that is an object to be processed (work) are provided in an annular shape.
  • These constraining molds 14 are composed of a plurality of constraining molds 14 determined by how many cylindrical members 4 are divided in the axial direction. For example, as shown in FIGS. 2B and 3, when the cylindrical member 4 is divided into three in the axial direction, the constraining molds 14a, 14b, and 14c have different radial thicknesses. Is provided.
  • constraining molds 15 for constraining the inner peripheral surface of the cylindrical member 4 are respectively provided in an annular shape on the inner peripheral surface side of the cylindrical member 4. ing. Similar to the constraint mold 14, these constraint molds 15 are composed of a plurality of constraint molds 15 determined by how many cylindrical members 4 are divided in the axial direction. For example, the constraining molds 15a, 15b, and 15c are provided so as to contact the inner peripheral surface of the cylindrical member 4 at axial heights corresponding to the constraining molds 14a, 14b, and 14c, respectively. In addition, the constraining molds 15a, 15b, and 15c are not only provided with different radial widths, but one of them (for example, the constraining mold 15b) is fitted to the mandrel 13. Preferably it is.
  • the first roll 11 fixed on the installation shaft A has a columnar shape attached to the disk-shaped limiting portions 11b 1 and 11b 2 for fixing the cylindrical member 4 and the constraining molds 14a, 14b and 14c.
  • the urging portion 11 b 3 is provided coaxially with the first roll 11.
  • the restricting portion 11b 1 is provided so as to abut on the upper end surface of the cylindrical member 4 and restrict the upward movement of the cylindrical member 4.
  • the restricting portion 11b 2 is provided so as to abut the lower end surface of the cylindrical member 4 and restrict the downward movement of the cylindrical member 4.
  • the urging portion 11b 3 is provided between the restricting portion 11b 1 and the restricting portion 11b 2 and is provided so as to urge the restraining die 14b.
  • the diameters of the restricting portions 11b 1 and 11b 2 are set larger than the diameter of the urging portion 11b 3 .
  • the second roll 12 that is movable along the installation axis A has disk-shaped limiting portions 12b 1 and 12b 2 for fixing the cylindrical member 4 and a disk shape that urges the restraining molds 14a and 14c.
  • the urging portions 12 b 1 to 12 b 4 are provided coaxially with the second roll 12.
  • the restricting portion 12b 1 is provided so as to abut on the upper end surface of the cylindrical member 4 and restrict the upward movement of the cylindrical member 4. Further, the restricting portion 12b 2 is provided so as to abut the lower end surface of the cylindrical member 4 and restrict the downward movement of the cylindrical member 4.
  • the urging portion 12b 3 is provided to urge the restraining mold 14a.
  • the urging portion 12b 4 is provided to urge the restraining mold 14c.
  • a buffer portion 12b 5 is provided between the biasing portion 12b 3 and the biasing portion 12b 4 with a predetermined gap from the restraining mold 14b.
  • the diameter of the restriction portion 12b 1, 12b 2 are set larger than the diameter of the biasing portion 12b 3, 12b 4, the diameter of the biasing portion 12b 3, 12b 4, rather than the diameter of the buffer section 12b 5 Set to large.
  • the cylindrical member 4 in the present embodiment forms a pair corresponding to the number of annular members (ring-shaped members) 5 to be finally obtained on the inner peripheral surface and the outer peripheral surface. Restrained by the restraining molds 14 and 15. However, when the deformation of the cylindrical member 4 can be sufficiently suppressed, as shown in FIG. 4, the mandrel 13 may be provided with an annular convex portion 13b having a function similar to that of the constraining mold 15b.
  • the cylindrical member 4 to be processed is installed so that the mandrel 13 is inserted through the inner peripheral surface thereof, and the constraining mold 15 a, between the cylindrical member 4 and the mandrel 13, 15b and 15c are installed.
  • the constraining mold 15 b is installed so that the mandrel 13 is fitted to the inner circumferential surface thereof and the outer circumferential surface thereof is fitted to the inner circumferential surface of the cylindrical member 4.
  • the constraining molds 14 a, 14 b, and 14 c are installed on the outer peripheral surface side of the cylindrical member 4.
  • the constraining die 14 b is installed such that its inner peripheral surface abuts on the outer peripheral surface of the cylindrical member 4 and its outer peripheral surface abuts on the outer peripheral surface of the urging portion 11 b 3 of the first roll 11.
  • constrained molds 14a, 14b, of 14c, the restraining die 14b has to abut against the cylindrical member 4 and the urging portion 11b 3, in the second roll 12, the buffer section 12b 5 is constrained mold This is because it is provided with a predetermined gap from 14b.
  • the cylindrical member 4 installed in this manner rotates with the mandrel 13 as the first roll 11 rotates (the direction of rotation is illustrated in FIG. 2A), and the second roll 12 that rotates in the same manner is installed on the installation shaft.
  • Translate along A when the second roll 12 is moved on the installation axis A to reduce the distance between the rotary shaft 11a and the rotary shaft 12a, the cylindrical member 4 is brought into contact with and attached to the constraining dies 14b and 15b.
  • a force (shearing force) f is applied so that the biased portion 4B (portion that becomes the annular member 5B) shifts.
  • “F” is a force applied from the mandrel 13 to the restraining dies 14 a and 14 c.
  • FIG. 6A As an image of the shearing force acting on the cylindrical member 4, the movement is as shown in FIGS. 6 and 7. As shown in FIG. 6A, the fact that the shape seen from the side does not change despite the rotation of the cylindrical member 4 means that the shear deformation is continuously repeated during the rotation. .
  • the position B2 moves to the outside of the position B1 as shown in FIG. 7B.
  • the position B1 and the position B2 are again shown in FIG. 7C.
  • the point B2 moves inward from the point B1 as shown in FIG. 7 (d).
  • the manufacturing method of the annular member of the present embodiment can provide a manufacturing method of the annular member with high yield and high dimensional accuracy. Specifically, in a state where the inner peripheral surface and the outer peripheral surface of the cylindrical member 4 are constrained, by cutting and separating by applying a shearing force while rotating, scrap is not generated at the time of separation, and the yield is good. In addition, since the shearing force is applied while rotating while the inner peripheral surface and the outer peripheral surface of the cylindrical member 4 are constrained, the fatigue change is utilized, and the cutting is repeated with a small force, so the dimensional change is also reduced. be able to.
  • the same force is repeatedly applied to the entire circumference of a part of the cylindrical member 4 (for example, a partial region indicated by 4B) in a state where the inner peripheral surface and the outer peripheral surface of the cylindrical member 4 are constrained by a constraining mold. It is over.
  • This applied force is considerably weaker than cutting with one shear cutting. Therefore, it is possible to minimize the fact that the cylindrical member 4 to be cut becomes an ellipse or greatly deforms in one direction.
  • the cylindrical member 4 can be cut
  • the extruded billet 3 is formed by opening the cut billet 2 backward and forming a cylindrical shape with an open bottom.
  • the bottom 3 a of the rear extrusion billet 3 is punched to form a cylindrical member (pipe-like member) 4.
  • the cylindrical member (pipe-like member) 4 from which the bottom 3 a is punched is rolled to expand the diameter. Note that this rolling step may be either cold or hot. By performing this rolling step before the cutting and separating step, that is, at the end of the cylindrical member forming step, it is possible to make the punched residue in the punching of the bottom portion 3a shown in FIG. 12 (d) smaller and improve the yield. .
  • a plurality of annular members (ring-shaped members) 5 are manufactured by cutting the cylindrical member 4 along the axial direction, as shown in FIG.
  • FIGS. 13A to 13F are sectional views showing an outline of processing of the annular member in the fourth embodiment of the manufacturing method of the annular member.
  • the rolling step FIG. 13E
  • the cutting billet 2 shown in FIG. 13B is manufactured by any one of press cutting, saw cutting, and cut-off using the round bar member 1 shown in FIG.
  • discharging billet 2 is backward extruded and the back extrusion billet 3 which makes
  • the bottom 3 a of the rear extrusion billet 3 is punched to form a cylindrical member (pipe-like member) 4.
  • the cylindrical member (pipe-like member) 4 punched from the bottom 3a is rolled to increase the diameter, and notches 16 and 17 are formed. Note that this rolling step may be either cold or hot.
  • the punched residue in the punching of the bottom 3a shown in FIG. 13 (d) can be made smaller, and the yield is improved.
  • the cylindrical member 4 is cut along the axial direction to produce a plurality of annular members (ring-shaped members) 5.
  • FIGS. 14A to 14F are sectional views showing an outline of processing of the annular member in the fifth embodiment of the manufacturing method of the annular member.
  • the groove forming step is performed during the rolling step (FIG. 14E).
  • the cutting billet 2 shown in FIG. 14B is manufactured by any one of press cutting, saw cutting, and cut-off using the round bar member 1 shown in FIG.
  • the cutting billet 2 is extruded backward to form a back extruded billet 3 having a cylindrical shape with a lid.
  • the bottom 3 a of the rear extrusion billet 3 is punched to form a cylindrical member (pipe-like member) 4.
  • the rolling process the cylindrical member 4 punched from the bottom 3a is rolled to expand its diameter, and as the groove forming process, the inner peripheral surface of the cylindrical member 4 An annular groove 6 is formed along the peripheral surface.
  • the groove 6 is a rolling groove when the cylindrical member 4 is applied as an outer ring of a ball bearing, for example.
  • the rolling process and the groove forming process may be either cold or hot.
  • channel 6 can be formed in many (here 3 pieces) annular members 5 by one rolling shaping
  • a plurality of annular members (ring-shaped members) 5 are manufactured by cutting the cylindrical member 4 along the axial direction, as shown in FIG. 14 (f).
  • Rotational shear acting on the cylindrical member 4 in this embodiment is in the form shown in FIG. 16 (corresponding to FIG. 3 in the first embodiment), but the portions other than the groove 6 in the cylindrical member 4 are constrained molds 14 and 15. Therefore, it is possible to perform cutting and separation without any problem in this embodiment.
  • 15B is manufactured by any one of press cutting, saw cutting, and cut-off using the round bar member 1 shown in FIG.
  • the cutting billet 2 is cut out by press cutting, since the surface roughness of the cut surface is not good, cracks are likely to occur and the perpendicularity of the cut surface with respect to the axial direction is bad. Or, end face correction is performed.
  • the cutting billet 2 is obtained by saw cutting or parting off, since the roughness of the cutting surface and the perpendicularity of the cutting surface with respect to the billet axis direction are good, it is not necessary to perform upsetting and end surface correction.
  • the extruded billet 3 is formed by opening the cutting billet 2 backward and forming a cylindrical shape with an open bottom.
  • the bottom 3 a of the rear extrusion billet 3 is punched to form a cylindrical member (pipe-like member) 4.
  • the cylindrical member 4 punched from the bottom 3 a is rolled to expand its diameter, and notches 16 and 17 are formed.
  • channel 6 which makes a ring along the internal peripheral surface is formed in the internal peripheral surface of the cylindrical member 4 as a groove
  • the groove 6 is a rolling groove when the cylindrical member 4 is applied as an outer ring of a ball bearing, for example.
  • the rolling process and the groove forming process may be either cold or hot.
  • channel 6 can be formed in many (here 3 pieces) annular members 5 by one rolling shaping
  • a plurality of annular members (ring-shaped members) 5 are manufactured by cutting the cylindrical member 4 along the axial direction thereof as shown in FIG.
  • Rotational shear acting on the cylindrical member 4 in this embodiment is in the form shown in FIG. 16 (corresponding to FIG. 3 in the first embodiment), but the portions other than the groove 6 in the cylindrical member 4 are constrained molds 14 and 15. Therefore, it is possible to perform cutting and separation without any problem in this embodiment.
  • FIGS. 17A to 17F are sectional views showing an outline of processing of the annular member in the seventh embodiment of the manufacturing method of the annular member.
  • FIG. 18 is a principal part enlarged view which shows the processing state in 7th Embodiment of the manufacturing method of an annular member.
  • the groove forming step is performed during the rolling step (FIG. 17E). First, the cutting billet 2 shown in FIG.
  • 17B is manufactured by any one of press cutting, saw cutting, and cut-off using the round bar member 1 shown in FIG.
  • the cutting billet 2 is cut out by press cutting, since the surface roughness of the cut surface is not good, cracks are likely to occur and the perpendicularity of the cut surface with respect to the axial direction is bad. Or, end face correction is performed.
  • the cutting billet 2 is obtained by saw cutting or parting off, since the roughness of the cutting surface and the perpendicularity of the cutting surface with respect to the billet axis direction are good, it is not necessary to perform upsetting and end surface correction.
  • the rear extrusion billet 3 having a cylindrical shape with an open bottom is formed by rearward extrusion of the cutting billet 2.
  • the bottom 3 a of the rear extrusion billet 3 is punched to form a cylindrical member (pipe-like member) 4.
  • the rolling step the cylindrical member 4 punched from the bottom 3a is rolled to increase the diameter, and as the groove forming step, the outer peripheral surface An annular groove 7 is formed along This groove 7 is a rolling groove when the cylindrical member 4 is applied as an inner ring of a ball bearing, for example.
  • the rolling process and the groove forming process may be either cold or hot.
  • channel 7 can be formed in many (here 3 pieces) annular members 5 by one rolling shaping
  • a plurality of annular members (ring-shaped members) 5 are manufactured by cutting the cylindrical member 4 along its axial direction, as in the above-described cutting and separating step.
  • the rotational shear acting on the cylindrical member 4 in the present embodiment is in the form shown in FIG. 18 (corresponding to FIG. 3 in the first embodiment), but the portions other than the groove 7 in the cylindrical member 4 are constrained molds 14 and 15. Therefore, it is possible to perform cutting and separation without any problem in this embodiment.
  • FIGS. 19A to 19F are sectional views showing an outline of processing of the annular member in the fourth embodiment of the manufacturing method of the annular member.
  • the groove forming step is performed during the rolling step (FIG. 19E).
  • the cutting billet 2 shown in FIG. 19B is manufactured by any one of press cutting, saw cutting and cut-off using the round bar member 1 shown in FIG. 19A.
  • the cutting billet 2 is extruded backward to form a rear extruded billet 3 having a cylindrical shape with a lid.
  • the bottom 3 a of the rear extrusion billet 3 is punched to form a cylindrical member (pipe-like member) 4.
  • the cylindrical member 4 punched from the bottom 3 a is rolled to increase the diameter, and notches 16 and 17 are formed.
  • channel 7 which makes a ring along the outer peripheral surface is formed in the outer peripheral surface of the cylindrical member 4 as a groove
  • This groove 7 is a rolling groove when the cylindrical member 4 is applied as an inner ring of a ball bearing, for example.
  • the rolling process and the groove forming process may be either cold or hot.
  • channel 7 can be formed in many (here 3 pieces) annular members 5 by one rolling shaping
  • FIG. 19 (f) the cylindrical member 4 is cut along its axial direction to produce a plurality of annular members (ring-shaped members) 5.
  • the rotational shear acting on the cylindrical member 4 in the present embodiment is in the form shown in FIG. 18 (corresponding to FIG. 3 in the first embodiment), but the portions other than the groove 7 in the cylindrical member 4 are constrained molds 14 and 15. Therefore, it is possible to perform cutting and separation without any problem in this embodiment.
  • the cylindrical member 4 is divided into three in the axial direction to obtain the annular member 5, but the number of the annular member 5 is not limited to three as long as the function as the annular member 5 is not impaired. It is preferable to obtain the member 5.
  • a process other than the above-described cylindrical member forming process may be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Rolling Contact Bearings (AREA)
  • Forging (AREA)
  • Friction Gearing (AREA)

Abstract

 歩留り良く、かつ寸法精度の高い環状部材の製造方法を提供する。そのために、丸棒材料(1)から円環形状の円筒部材(4)を形成する円筒部材形成工程と、円筒部材(4)を回転させて、円筒部材(4)の軸方向に沿って円筒部材(4)の内周面側及び外周面側に複数設けられた拘束金型(14,15)のうち、円筒部材(4)の外周面に付勢する拘束金型(14a,14c)と、円筒部材(4)の外周面に間隙を有して設けられる拘束金型(14b)とで得られる剪断力によって円筒部材(4)を軸方向に切断分離して複数の環状部材(5)を得る切断分離工程とを含む。

Description

環状部材の製造方法
 本発明は、環状部材の製造方法に関し、例えば、転がり軸受等の内輪や外輪に適用される環状部材の製造方法に関する。
 従来より、転がり軸受等の内輪や外輪に適用される環状部材の製造方法としては、図20(a)~(e)に示すプロセスが挙げられる。まず、図20(a)に示す丸棒部材101を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図20(b)に示す切断ビレット102を製作する。このとき、プレス切断により切断ビレット102を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット102に対して据込み又は端面矯正を行う。
 次に、図20(c)に示すように、切断ビレット102を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット103を成形する。
 次に、図20(d)に示すように、後方押出しビレット103の底部103aを打抜き、円筒部材(パイプ状部材)104を成形する。
 次に、図20(e)に示すように、円筒部材104をその軸方向に沿ってシャー切断、突っ切りや鋸切断(切削)により複数の環状部材(リング状部材)105を製作する。
 ここで、円筒部材104をその軸方向に沿って切断して複数の環状部材に切り分ける技術として挙げたシャー切断に関する技術としては、特許文献1及び特許文献2に開示されている。特許文献1及び特許文献2に開示された技術は、テーパー状のくさびを利用し、円筒部材(パイプ状部材)の内周面に芯金を密着させ、円筒部材(パイプ状部材)を剪断する技術である。また、円筒部材(パイプ状部材)をその軸方向に沿って切断して複数の環状部材に切り分ける技術として、拡開刃を用いて円筒部材を切断する技術方法が特許文献3に開示されている。
特開昭49-22022号公報 特開平4-210318号公報 特開2004-209565号公報
 しかしながら、シャー切断によって円筒部材から環状部材を得る方法は、歩留りはよいが、得られる環状部材の変形が避けられなかった。具体的には、特許文献1及び特許文献2に記載の技術は、円筒部材の内周面をしっかりと拘束しているが、一方向への運動で剪断させるため、円筒部材に大きく不均等な力がかかり、円筒部材が楕円になってしまうことがあった。また、シャー切断によって円筒部材から環状部材を得る方法は、形状ダレやバリ(図20(e)のs部分参照)の発生について検討の余地があった。
 一方、上記突っ切りや鋸切断によって環状部材を得る方法は、環状部材が変形しないで済むが、環状部材を削った結果残る部分が無駄となってしまうことがあった。
 また、特許文献3に記載された技術は、円筒部材を拡径してしまうため、寸法や形状が安定しないという問題があった。
 すなわち、円筒部材を歩留り良く、かつ高い寸法精度で切断して複数の環状部材を得る技術については検討の余地があった。
 そこで、本発明は上記課題に着目してなされたものであり、その目的は、歩留り良く、かつ寸法精度の高い環状部材の製造方法を提供することにある。
 上記目的を達成するための環状部材の製造方法のある態様は、丸棒材料から円環形状の円筒部材を形成する円筒部材形成工程と、
 前記円筒部材の軸方向に沿って設けられ、回転中心をずらした複数の拘束金型によって、少なくとも前記円筒部材の外周面に付勢させながら前記円筒部材をその軸方向に回転させて、前記複数の拘束金型による剪断力によって軸方向に複数の環状部材に切断分離する切断分離工程とを含む。
 また、環状部材の製造方法の他の態様は、丸棒材料から円環形状の円筒部材を形成する円筒部材形成工程と、
 前記円筒部材の内周面又は外周面の少なくとも一方に、ノッチを形成するノッチ形成工程と、
 前記円筒部材を回転させて、前記円筒部材の軸方向に沿って前記円筒部材の内周面側及び外周面側に複数設けられた拘束金型のうち、前記円筒部材の外周面に付勢する拘束金型と、前記円筒部材の外周面に間隙を有して設けられる拘束金型とで得られる剪断力によって前記円筒部材を前記ノッチが形成された箇所に応力集中を生じさせて軸方向に切断分離して複数の環状部材を得る切断分離工程とを含む。
 ここで、上記環状部材の製造方法においては、上記円筒部材形成工程と上記切断分離工程との間に、
 1回のローリング成形にて上記円筒部材の内周面又は外周面に溝を同時に形成する溝形成工程を含んでもよい。
 また、上記環状部材の製造方法においては、上記ノッチの底部の断面形状が、U字状であってもよい。
 また、上記環状部材の製造方法においては、上記ノッチの底部の断面形状が、矩形形状であってもよい。
 また、上記環状部材の製造方法においては、上記ノッチの底部の断面形状が、V字状であってもよい。
 本発明の一態様によれば、歩留り良く、かつ寸法精度の高い環状部材の製造方法を提供することができる。
環状部材の製造方法の第1実施形態における環状部材の加工概要を示す断面図である。 環状部材の製造方法の第1実施形態における加工装置の構成を示す図であり、(a)は平面図、(b)は側面部分断面図である。 環状部材の製造方法の第1実施形態における加工状態を示す要部拡大図である。 環状部材の製造方法の他の実施形態における加工状態を示す要部拡大図である。 環状部材の製造方法の第1実施形態における加工状態を示す要部拡大図である。 環状部材の製造方法の第1実施形態における円筒部材の回転剪断による変形状態を示す概念図である。 環状部材の製造方法の第1実施形態における円筒部材の回転剪断による変形状態を示す概念図である。 環状部材の製造方法の第1実施形態の変形例における加工装置の構成を示す側面部分断面図である。 環状部材の製造方法の第2実施形態における環状部材の加工概要を示す断面図である。 第2実施形態において形成されるノッチを示す図である。 ノッチの断面形状の例を示す図である。 環状部材の製造方法の第3実施形態における環状部材の加工概要を示す断面図である。 環状部材の製造方法の第4実施形態における環状部材の加工概要を示す断面図である。 環状部材の製造方法の第5実施形態における環状部材の加工概要を示す断面図である。 環状部材の製造方法の第6実施形態における環状部材の加工概要を示す断面図である。 環状部材の製造方法の第5実施形態及び第6実施形態における加工状態を示す要部拡大図である。 環状部材の製造方法の第7実施形態における環状部材の加工概要を示す断面図である。 環状部材の製造方法の第7実施形態における加工状態を示す要部拡大図である。 環状部材の製造方法の第8実施形態における環状部材の加工概要を示す断面図である。 従来の環状部材の製造方法における環状部材の加工概要を示す断面図である。
 以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
 以下、本発明に係る環状部材の製造方法の実施形態について図面を参照して説明する。
(第1実施形態)
 図1(a)~(e)は、環状部材の製造方法の第1実施形態における環状部材の加工概要を示す断面図である。
 本実施形態の環状部材の製造方法は、円筒部材形成工程と、切断分離工程とを含む。本実施形態は、この切断分離工程に特別な技術的特徴を有する。
<円筒部材形成工程>
 円筒部材形成工程は、丸棒材料から円環形状の円筒部材を形成する工程である。
 まず、図1(a)に示す丸棒部材1を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図1(b)に示す切断ビレット2を製作する。このとき、プレス切断により切断ビレット2を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット2に対して据込み又は端面矯正を行う。なお、鋸切断、又は突っ切りにより切断ビレット2を得た場合、切断面の粗さや、切断面のビレット軸方向に対する直角度が良いので、据込み、端面矯正は行わなくても良い。
 次に、図1(c)に示すように、切断ビレット2を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット3を成形する。この後方押出しは、掛かる荷重や面圧が高いため、変形抵抗を下げ、荷重低減と低面圧で成形を行う。
 次に、図1(d)に示すように、後方押出しビレット3の底部3aを打抜き、円筒部材(パイプ状部材)4を成形する。
<切断分離工程>
 切断分離工程は、図1(e)に示すように、円筒部材4をその軸方向に沿って切断して複数の環状部材(リング状部材)5を得る工程である。具体的には、円筒部材4を回転させて、円筒部材4の軸方向に沿って前記円筒部材の内周面側及び外周面側に複数設けられた拘束金型のうち、円筒部材4の外周面に付勢する拘束金型と、円筒部材4の外周面に間隙を有して設けられる拘束金型とで得られる剪断力によって円筒部材4を軸方向に切断分離して複数の環状部材5A,5B,5Cを得る工程である。
 この切断分離工程は、図2(a),(b)及び図3に示す切断分離装置10を用いて実施される。切断分離装置10は、第1ロール11と、第2ロール12と、マンドレル13とを有する。以下の説明では、加工対象(ワーク)である円筒部材4を、その軸方向に3分割する態様について説明する。
[全体の構成]
 第1ロール11、マンドレル13、及び第2ロール12は、それぞれの回転軸11a,13a,12aが設置軸A上に並ぶように所定の間隔を有し、それぞれが能動的に回転可能、もしくは受動的に回転可能にこの順で設けられている。ここで、第1ロール11及び第2ロール12の少なくともいずれか一方は、回転の駆動源を有するものとする。また、第1ロール11及び第2ロール12の少なくともいずれか一方は、第1ロール11の回転軸11a、及び第2ロール12の回転軸12aの少なくともいずれか一方が設置軸A上で並進運動が可能なように設置されている。
 本実施形態では、第1ロール11及び第2ロール12がいずれも固有の駆動源を有して能動的に回転可能とされ、マンドレル13が第1ロール11に当接して受動的に回転可能に設置されているものとして説明する。また、本実施形態では、第2ロール12の回転軸12aのみが設置軸A上で並進運動が可能なように設置され、第1ロール11の回転軸11a及びマンドレル13の回転軸13aが固定されているものとして説明する。
[拘束金型]
 また、円筒部材4の外周面側には、加工対象(ワーク)である円筒部材4の外周面を拘束する拘束金型14がそれぞれ円環形状をなして設けられている。これらの拘束金型14は、円筒部材4を軸方向に何分割するかによって決められた複数個の拘束金型14からなる。例えば、図2(b)及び図3に示すように、円筒部材4をその軸方向に3つに分割する場合には、拘束金型14a,14b,14cがそれぞれ径方向の厚さを異ならせて設けられている。
 また、円筒部材4の内周面側には、図2(b)及び図3に示すように、円筒部材4の内周面を拘束する拘束金型15がそれぞれ円環形状をなして設けられている。これらの拘束金型15は、拘束金型14と同様、円筒部材4を軸方向に何分割するかによって決められた複数個の拘束金型15からなる。例えば、拘束金型15a,15b,15cは、拘束金型14a,14b,14cのそれぞれに対応する軸方向の高さで円筒部材4の内周面に当接するように設けられる。
 また、拘束金型15a,15b,15cは、それぞれ径方向の幅を異ならせて設けられているだけでなく、それらのうち1つ(例えば拘束金型15b)は、マンドレル13に嵌合されていることが好ましい。
[制限部及び付勢部]
 また、設置軸Aにおいて固定される第1ロール11には、円筒部材4を固定する円盤形状の制限部11b1,11b2と、拘束金型14a,14b,14cに付勢する円柱形状の付勢部11b3が第1ロール11と同軸に設けられている。制限部11b1は、円筒部材4の上端面に当接して円筒部材4の上の向きへの動きを制限するように設けられる。
 また、制限部11b2は、円筒部材4の下端面に当接して円筒部材4の下の向きへの動きを制限するように設けられる。また、付勢部11b3は、制限部11b1と制限部11b2との間に設けられ、拘束金型14bに付勢するように設けられる。ここで、制限部11b1,11b2のそれぞれの径は、付勢部11b3の径よりも大に設定される。
 また、設置軸Aに沿って移動可能とされた第2ロール12には、円筒部材4を固定する円盤形状の制限部12b1,12b2と、拘束金型14a,14cに付勢する円盤形状の付勢部12b3,12b4が第2ロール12と同軸に設けられている。制限部12b1は、円筒部材4の上端面に当接して円筒部材4の上の向きへの動きを制限するように設けられる。また、制限部12b2は、円筒部材4の下端面に当接して円筒部材4の下の向きへの動きを制限するように設けられる。
 また、付勢部12b3は、拘束金型14aに付勢するように設けられる。また、付勢部12b4は、拘束金型14cに付勢するように設けられる。さらに、付勢部12b3と付勢部12b4との間には、拘束金型14bと所定の間隙を有して緩衝部12b5が設けられる。ここで、制限部12b1,12b2の径は、付勢部12b3,12b4の径より大に設定され、付勢部12b3,12b4の径は、緩衝部12b5の径よりも大に設定される。
 ここで、本実施形態における円筒部材4は、図3に示すように、その内周面及び外周面のそれぞれを、最終的に得たい環状部材(リング状部材)5の個数分の対をなす拘束金型14,15で拘束している。しかし、円筒部材4の変形が十分に抑制できる場合には、図4に示すように、マンドレル13に、拘束金型15bと同様の機能を有する環状の凸部13bを設けても良い。
 次に、図2(a),(b)及び図3に示す切断分離装置10によって行われる切断分離工程について具体的に説明する。
 まず、図3に示すように、加工対象である円筒部材4を、その内周面側にマンドレル13が挿通されるように設置し、円筒部材4とマンドレル13との間に拘束金型15a,15b,15cを設置する。この際、拘束金型15bは、その内周面にマンドレル13が嵌合し、その外周面は円筒部材4の内周面に嵌合するように設置される。
 次に、図3に示すように、円筒部材4の外周面側に拘束金型14a,14b,14cを設置する。この際、拘束金型14bは、その内周面が円筒部材4の外周面に当接すると共に、その外周面が第1ロール11の付勢部11b3の外周面に当接するように設置される。なお、拘束金型14a,14b,14cのうち、拘束金型14bが円筒部材4及び付勢部11b3に当接するようにしたのは、第2ロール12において、緩衝部12b5が拘束金型14bと所定の間隙を有して設けられるようにしたからである。
 このように設置された円筒部材4は、第1ロール11の回転に伴ってマンドレル13と共に回転し(回転の向きは図2(a)に例示)、同様に回転する第2ロール12を設置軸Aに沿って並進運動させる。
 そして、図5に示すように第2ロール12を設置軸A上で移動させて回転軸11aと回転軸12aとの距離を小さくすると、円筒部材4において拘束金型14b,15bに当接及び付勢されている部分4B(環状部材5Bとなる部分)がずれるような力(剪断力)fがかかる。なお、図5中、「F」はマンドレル13から拘束金型14a,14cに加わる力である。
 このようにして、円筒部材4は、剪断力fがかかった状態で第2ロール12の回転に連れ回りさせられる。すなわち、円筒部材4が回転しても、これらの剪断力f及び拘束金型14a,14cに加わる力Fが必ずかかった状熊を保つようになる。
 そして、第1ロール11と第2ロール12との間の距離を増減することによって、円筒部材4に作用する剪断力をコントロールすることが可能となる。この円筒部材4に作用する剪断力のイメージとしては、図6及び図7に示すような動きとなる。図6(a)に示すように、円筒部材4が回転しているにも関わらず、側面から見た形状に変化がないということは、回転中に絶えず剪断変形をくり返しているということになる。すなわち、図6(a)に示す円筒部材4の平面状態から、円筒部材4が90°回転しても図6(c)のようにはならず、図6(b)のように、環状部材5Aとなる部分4A及び環状部材5Cとなる部分4Cと、環状部材5Cとなる部分4Bとが平面視で同じ姿勢を保つということは、円筒部材4が回転するにつれて剪断変形が円筒部材4に加わることを意味している。
 具体的には、図7(a)に示すように、環状部材5Aとなる部分4A及び環状部材5Cとなる部分4Cにおける任意の位置B1と、環状部材5Bとなる部分4Bの任意の位置B2とが同軸上に位置している状態から、円筒部材4が回転することによって、図7(b)に示すように、位置B2は位置B1点より外側に移勤する。また、図7(b)に示す位置B2が位置B1点より外側に位置している状態から、円筒部材4が回転することによって、図7(c)に示すように、再び位置B1と位置B2とが同軸上に位置する。そして更に、この状態から円筒部材4が回転することによって、図7(d)に示すように、B2点はB1点より内側に移動する。
 従って、第1ロール11及び第2ロール12を回転させ続ける(円筒部材4も回転し続ける)ことで、円筒部材4の疲労を促進させ、最終的に疲労破壊させることによって円筒部材4を切断分離し、環状部材5A,5B,5Cが得られる。
 以上説明したように、本実施形態の環状部材の製造方法は、歩留り良く、かつ寸法精度の高い環状部材の製造方法を提供することができる。具体的には、円筒部材4の内周面及び外周面を拘束した状態で、回転させながら剪断力を加えることにより切断分離させることで、分離の際にスクラップが出ず、歩留りが良い。また、円筒部材4の内周面及び外周面を拘束した状態で、回転させながら剪断力を加えていることから、疲労破壊を利用し、小さい力の繰り返しで切断するため、寸法変化も小さくすることができる。
 特に、本実施形態では、円筒部材4の内周面及び外周面を拘束金型で拘束した状態で円筒部材4の一部(例えば、4Bで示す一部領域)の全周に同じ力を繰り返しかけている。このかけている力は1回のシャー切断で切るのに比べるとかなり弱い力である。よって、切断対象の円筒部材4が楕円になってしまったり、一方向に大きく変形してしまうというのを、極力小さくすることができる。
 また、円筒部材4の疲労破壊を利用して環状部材5を得る方法であるので、スクラップを生じることなく円筒部材4を切断することができる。
 さらに、回転剪断をする前の円筒部材4を複数個取りできるので、円筒部材4を作る工程を削滅できる。また、円筒部材4を3分割して3つの環状部材5を得る場合、環状部材3個に対して1個の穴抜きスクラップで済むため、歩留りが良い。
(第1実施形態の変形例)
 図8は、環状部材の製造方法の第1実施形態の変形例における環状部材の加工概要を示す断面図である。
 図8に示すように、第1実施形態の変形例は、切断分離工程において、第1実施形態のように、円筒部材4をその軸方向に3分割する態様ではなく2分割する態様である。
[全体の構成]
 図8に示すように、本変形例の切断分離装置10は、第1ロール11、マンドレル13、及び第2ロール12が、それぞれの回転軸11a,13a,12aが設置軸A(図2参照)上に並ぶように所定の間隔を有し、それぞれが能動的に回転可能、もしくは受動的に回転可能にこの順で設けられている。ここで、第1ロール11及び第2ロール12の少なくともいずれか一方は、回転の駆動源を有するものとする。また、第1ロール11及び第2ロール12の少なくともいずれか一方は、第1ロール11の回転軸11a、及び第2ロール12の回転軸12aの少なくともいずれか一方が設置軸A上で並進運動が可能なように設置されている。
 本変形例では、第1ロール11及び第2ロール12がいずれも固有の駆動源を有して能動的に回転可能とされ、マンドレル13が第1ロール11に当接して受動的に回転可能に設置されているものとして説明する。また、本実施形態では、第2ロール12の回転軸12aのみが設置軸A上で並進運動が可能なように設置され、第1ロール11の回転軸11a及びマンドレル13の回転軸13aが固定されているものとして説明する。
[拘束金型]
 また、円筒部材4の外周面側には、加工対象(ワーク)である円筒部材4の外周面を拘束する拘束金型14がそれぞれ円環形状をなして設けられている。これらの拘束金型14は、本変形例のように、円筒部材4をその軸方向に2つに分割する場合には、拘束金型14a,14bがそれぞれ径方向の厚さを異ならせて設けられている。
 また、円筒部材4の内周面側には、図8に示すように、円筒部材4の内周面を拘束する拘束金型15がそれぞれ円環形状をなして設けられている。これらの拘束金型15は、拘束金型14と同様、円筒部材4を軸方向に何分割するかによって決められた複数個の拘束金型15からなる。例えば、拘束金型15a,15bは、拘束金型14a,14bのそれぞれに対応する軸方向の高さで円筒部材4の内周面に当接するように設けられる。
 また、拘束金型15a,15bは、それぞれ径方向の幅を異ならせて設けられているだけでなく、それらのうち1つ(例えば拘束金型15b)は、マンドレル13に嵌合されていることが好ましい。
[制限部及び付勢部]
 また、設置軸Aにおいて固定される第1ロール11には、円筒部材4を固定する円盤形状の制限部11b1,11b2と、拘束金型14a,14bに付勢する円柱形状の付勢部11b3が第1ロール11と同軸に設けられている。制限部11b1は、円筒部材4の上端面に当接して円筒部材4の上の向きへの動きを制限するように設けられる。
 また、制限部11b2は、円筒部材4の下端面に当接して円筒部材4の下の向きへの動きを制限するように設けられる。また、付勢部11b3は、制限部11b1と制限部11b2との間に設けられ、拘束金型14bに付勢するように設けられる。ここで、制限部11b1,11b2のそれぞれの径は、付勢部11b3の径よりも大に設定される。
 また、設置軸Aに沿って移動可能とされた第2ロール12には、円筒部材4を固定する円盤形状の制限部12b1,12b2と、拘束金型14a,14bに付勢する円盤形状の付勢部12b3,12b4が第2ロール12と同軸に設けられている。制限部12b1は、円筒部材4の上端面に当接して円筒部材4の上の向きへの動きを制限するように設けられる。また、制限部12b2は、円筒部材4の下端面に当接して円筒部材4の下の向きへの動きを制限するように設けられる。
 また、付勢部12b3は、拘束金型14aに付勢するように設けられる。また、付勢部12b4は、拘束金型14bに付勢するように設けられる。ここで、制限部12b1,12b2の径は、付勢部12b3,12b4の径より大に設定される。なお、円筒部材4を2分割する構成として、付勢部12を付勢部12b3,12b4から構成すると共に、拘束金型14を2つの拘束金型14a,14bから構成することとしたことで、マンドレル13を傾けようとするモーメントが加わるが、それに耐えうるように切断分離装置10を作製することでマンドレル13を傾かせることなく円筒部材4の分離は可能である。
(第2実施形態)
 図9(a)~(f)は、環状部材の製造方法の第2実施形態における環状部材の加工概要を示す断面図である。
 本実施形態の環状部材の製造方法は、円筒部材形成工程と、ノッチ形成工程と、切断分離工程とを含む。本実施形態は、ノッチ形成工程及び切断分離工程に特別な技術的特徴を有する。従って、本実施形態の説明では、図9並びに、上述した第1実施形態と共通する図2~図7を用いて説明する。
<円筒部材形成工程>
 円筒部材形成工程は、丸棒材料から円環形状の円筒部材を形成する工程である。
 まず、図9(a)に示す丸棒部材1を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図9(b)に示す切断ビレット2を製作する。このとき、プレス切断により切断ビレット2を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット2に対して据込み又は端面矯正を行う。なお、鋸切断、又は突っ切りにより切断ビレット2を得た場合、切断面の粗さや、切断面のビレット軸方向に対する直角度が良いので、据込み、端面矯正は行わなくても良い。
 次に、図9(c)に示すように、切断ビレット2を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット3を成形する。この後方押出しは、掛かる荷重や面圧が高いため、変形抵抗を下げ、荷重低減と低面圧で成形を行う。
 次に、図9(d)に示すように、後方押出しビレット3の底部3aを打抜き、円筒部材(パイプ状部材)4を成形する。
<ノッチ形成工程>
 次に、図9(e)に示すように、円筒部材4の内径面及び外径面に、ノッチ16、17を形成する。ノッチ16、17は図10(a)、(b)に示すように円筒部材4を切断する箇所に全周に亘って、形成される溝状のくぼみであり、切削加工や、ローリング加工等の塑性加工により形成される。ノッチ16、17は、後述する切断分離工程において、形状は剪断力をかけた際に応力集中を生じる形状であることが望ましい。例えば、本実施例では、ノッチ16、17の底部形状が、図10(b)に示すようなU字形状に形成される。
 なお、ノッチの底部形状は、応力集中を生じやすい形状であれば良く、例えば、図11(a)に示すような矩形形状や、図11(b)に示すようなV字形状でもよい。
 また、ノッチ16、17は、本実施形態のように、円筒部材4の内径面、外径面の両方に形成するのが望ましいが、内径面、外径面の何れか一方のみに形成されてもよい。
<切断分離工程>
 切断分離工程は、図9(f)に示すように、円筒部材4をその軸方向に沿って切断して複数の環状部材(リング状部材)5を得る工程である。具体的には、円筒部材4を回転させて、円筒部材4の軸方向に沿って前記円筒部材の内周面側及び外周面側に複数設けられた拘束金型のうち、円筒部材4の外周面に付勢する拘束金型と、円筒部材4の外周面に間隙を有して設けられる拘束金型とで得られる剪断力によって円筒部材4を軸方向に切断分離して複数の環状部材5A,5B,5Cを得る工程である。
 この切断分離工程は、図2(a),(b)及び図3に示す切断分離装置10を用いて実施される。切断分離装置10は、第1ロール11と、第2ロール12と、マンドレル13とを有する。以下の説明では、加工対象(ワーク)である円筒部材4を、その軸方向に3分割する態様について説明する。
[全体の構成]
 第1ロール11、マンドレル13、及び第2ロール12は、それぞれの回転軸11a,13a,12aが設置軸A上に並ぶように所定の間隔を有し、それぞれが能動的に回転可能、もしくは受動的に回転可能にこの順で設けられている。ここで、第1ロール11及び第2ロール12の少なくともいずれか一方は、回転の駆動源を有するものとする。また、第1ロール11及び第2ロール12の少なくともいずれか一方は、第1ロール11の回転軸11a、及び第2ロール12の回転軸12aの少なくともいずれか一方が設置軸A上で並進運動が可能なように設置されている。
 本実施形態では、第1ロール11及び第2ロール12がいずれも固有の駆動源を有して能動的に回転可能とされ、マンドレル13が第1ロール11に当接して受動的に回転可能に設置されているものとして説明する。また、本実施形態では、第2ロール12の回転軸12aのみが設置軸A上で並進運動が可能なように設置され、第1ロール11の回転軸11a及びマンドレル13の回転軸13aが固定されているものとして説明する。
[拘束金型]
 また、円筒部材4の外周面側には、加工対象(ワーク)である円筒部材4の外周面を拘束する拘束金型14がそれぞれ円環形状をなして設けられている。これらの拘束金型14は、円筒部材4を軸方向に何分割するかによって決められた複数個の拘束金型14からなる。例えば、図2(b)及び図3に示すように、円筒部材4をその軸方向に3つに分割する場合には、拘束金型14a,14b,14cがそれぞれ径方向の厚さを異ならせて設けられている。
 また、円筒部材4の内周面側には、図2(b)及び図3に示すように、円筒部材4の内周面を拘束する拘束金型15がそれぞれ円環形状をなして設けられている。これらの拘束金型15は、拘束金型14と同様、円筒部材4を軸方向に何分割するかによって決められた複数個の拘束金型15からなる。例えば、拘束金型15a,15b,15cは、拘束金型14a,14b,14cのそれぞれに対応する軸方向の高さで円筒部材4の内周面に当接するように設けられる。
 また、拘束金型15a,15b,15cは、それぞれ径方向の幅を異ならせて設けられているだけでなく、それらのうち1つ(例えば拘束金型15b)は、マンドレル13に嵌合されていることが好ましい。
[制限部及び付勢部]
 また、設置軸Aにおいて固定される第1ロール11には、円筒部材4を固定する円盤形状の制限部11b1,11b2と、拘束金型14a,14b,14cに付勢する円柱形状の付勢部11b3が第1ロール11と同軸に設けられている。制限部11b1は、円筒部材4の上端面に当接して円筒部材4の上の向きへの動きを制限するように設けられる。
 また、制限部11b2は、円筒部材4の下端面に当接して円筒部材4の下の向きへの動きを制限するように設けられる。また、付勢部11b3は、制限部11b1と制限部11b2との間に設けられ、拘束金型14bに付勢するように設けられる。ここで、制限部11b1,11b2のそれぞれの径は、付勢部11b3の径よりも大に設定される。
 また、設置軸Aに沿って移動可能とされた第2ロール12には、円筒部材4を固定する円盤形状の制限部12b1,12b2と、拘束金型14a,14cに付勢する円盤形状の付勢部12b1~12b4が第2ロール12と同軸に設けられている。制限部12b1は、円筒部材4の上端面に当接して円筒部材4の上の向きへの動きを制限するように設けられる。また、制限部12b2は、円筒部材4の下端面に当接して円筒部材4の下の向きへの動きを制限するように設けられる。
 また、付勢部12b3は、拘束金型14aに付勢するように設けられる。また、付勢部12b4は、拘束金型14cに付勢するように設けられる。さらに、付勢部12b3と付勢部12b4との間には、拘束金型14bと所定の間隙を有して緩衝部12b5が設けられる。ここで、制限部12b1,12b2の径は、付勢部12b3,12b4の径より大に設定され、付勢部12b3,12b4の径は、緩衝部12b5の径よりも大に設定される。
 ここで、本実施形態における円筒部材4は、図3に示すように、その内周面及び外周面のそれぞれを、最終的に得たい環状部材(リング状部材)5の個数分の対をなす拘束金型14,15で拘束している。しかし、円筒部材4の変形が十分に抑制できる場合には、図4に示すように、マンドレル13に、拘束金型15bと同様の機能を有する環状の凸部13bを設けても良い。
 次に、図2(a),(b)及び図3に示す切断分離装置10によって行われる切断分離工程について具体的に説明する。
 まず、図3に示すように、加工対象である円筒部材4を、その内周面側にマンドレル13が挿通されるように設置し、円筒部材4とマンドレル13との間に拘束金型15a,15b,15cを設置する。この際、拘束金型15bは、その内周面にマンドレル13が嵌合し、その外周面は円筒部材4の内周面に嵌合するように設置される。
 次に、図3に示すように、円筒部材4の外周面側に拘束金型14a,14b,14cを設置する。この際、拘束金型14bは、その内周面が円筒部材4の外周面に当接すると共に、その外周面が第1ロール11の付勢部11b3の外周面に当接するように設置される。なお、拘束金型14a,14b,14cのうち、拘束金型14bが円筒部材4及び付勢部11b3に当接するようにしたのは、第2ロール12において、緩衝部12b5が拘束金型14bと所定の間隙を有して設けられるようにしたからである。
 このように設置された円筒部材4は、第1ロール11の回転に伴ってマンドレル13と共に回転し(回転の向きは図2(a)に例示)、同様に回転する第2ロール12を設置軸Aに沿って並進運動させる。
 そして、図5に示すように第2ロール12を設置軸A上で移動させて回転軸11aと回転軸12aとの距離を小さくすると、円筒部材4において拘束金型14b,15bに当接及び付勢されている部分4B(環状部材5Bとなる部分)がずれるような力(剪断力)fがかかる。なお、図5中、「F」はマンドレル13から拘束金型14a,14cに加わる力である。
 このようにして、円筒部材4は、剪断力fがかかった状態で第2ロール12の回転に連れ回りさせられる。すなわち、円筒部材4が回転しても、これらの剪断力f及び拘束金型14a,14cに加わる力Fが必ずかかった状熊を保つようになる。
 そして、第1ロール11と第2ロール12との間の距離を増減することによって、円筒部材4に作用する剪断力をコントロールすることが可能となる。この円筒部材4に作用する剪断力のイメージとしては、図6及び図7に示すような動きとなる。図6(a)に示すように、円筒部材4が回転しているにも関わらず、側面から見た形状に変化がないということは、回転中に絶えず剪断変形をくり返しているということになる。すなわち、図6(a)に示す円筒部材4の平面状態から、円筒部材4が90°回転しても図6(c)のようにはならず、図6(b)のように、環状部材5Aとなる部分4A及び環状部材5Cとなる部分4Cと、環状部材5Cとなる部分4Bとが平面視で同じ姿勢を保つということは、円筒部材4が回転するにつれて剪断変形が円筒部材4に加わることを意味している。
 具体的には、図7(a)に示すように、環状部材5Aとなる部分4A及び環状部材5Cとなる部分4Cにおける任意の位置B1と、環状部材5Bとなる部分4Bの任意の位置B2とが同軸上に位置している状態から、円筒部材4が回転することによって、図7(b)に示すように、位置B2は位置B1点より外側に移勤する。また、図7(b)に示す位置B2が位置B1点より外側に位置している状態から、円筒部材4が回転することによって、図7(c)に示すように、再び位置B1と位置B2とが同軸上に位置する。そして更に、この状態から円筒部材4が回転することによって、図7(d)に示すように、B2点はB1点より内側に移動する。
 従って、第1ロール11及び第2ロール12を回転させ続ける(円筒部材4も回転し続ける)ことで、円筒部材4の疲労を促進させ、最終的に疲労破壊させることによって円筒部材4を切断分離し、環状部材5A,5B,5Cが得られる。
 以上説明したように、本実施形態の環状部材の製造方法は、歩留り良く、かつ寸法精度の高い環状部材の製造方法を提供することができる。具体的には、円筒部材4の内周面及び外周面を拘束した状態で、回転させながら剪断力を加えることにより切断分離させることで、分離の際にスクラップが出ず、歩留りが良い。また、円筒部材4の内周面及び外周面を拘束した状態で、回転させながら剪断力を加えていることから、疲労破壊を利用し、小さい力の繰り返しで切断するため、寸法変化も小さくすることができる。
 特に、本実施形態では、円筒部材4の内周面及び外周面を拘束金型で拘束した状態で円筒部材4の一部(例えば、4Bで示す一部領域)の全周に同じ力を繰り返しかけている。このかけている力は1回のシャー切断で切るのに比べるとかなり弱い力である。よって、切断対象の円筒部材4が楕円になってしまったり、一方向に大きく変形してしまうというのを、極力小さくすることができる。
 また、円筒部材4の疲労破壊を利用して環状部材5を得る方法であるので、スクラップを生じることなく円筒部材4を切断することができる。
 さらに、回転剪断をする前の円筒部材4を複数個取りできるので、円筒部材4を作る工程を削滅できる。また、円筒部材4を3分割して3つの環状部材5を得る場合、環状部材3個に対して1個の穴抜きスクラップで済むため、歩留りが良い。
 また、円筒部材4にノッチ部16、17を設けることにより、回転剪断時にノッチ16、17に応力集中が生じ、より低荷重で切断分離ができ、切断面形状がきれいになり、形状が安定すると共に、ワークの変形をより小さく抑えることができ、寸法精度が良くなる。
 また、短時間での切断分離ができ、加工時間を短縮できるという効果を奏する。
 すなわち、上記円筒部材の内周面又は外周面の少なくとも一方にノッチを設けることにより、切断分離のための亀裂が従来技術よりも低い荷重で発生するので、従来技術よりも短時間かつ低コストで環状部材を得ることができる。
(第3実施形態)
 次に、環状部材の製造方法の第3実施形態について図面を参照して説明する。なお、本実施形態は、ローリング工程を加えた点が第1実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。図12(a)~(f)は、環状部材の製造方法の第3実施形態における環状部材の加工概要を示す断面図である。
 図12(a)~(f)に示すように、本実施形態では、ローリング工程(図12(e))を切断分離工程前に含む。まず、図12(a)に示す丸棒部材1を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図12(b)に示す切断ビレット2を製作する。このとき、プレス切断により切断ビレット2を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット2に対して据込み又は端面矯正を行う。なお、鋸切断、又は突っ切りにより切断ビレット2を得た場合、切断面の粗さや、切断面のビレット軸方向に対する直角度が良いので、据込み、端面矯正は行わなくても良い。
 次に、図12(c)に示すように、切断ビレット2を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット3を成形する。
 次に、図12(d)に示すように、後方押出しビレット3の底部3aを打抜き、円筒部材(パイプ状部材)4を成形する。
 次に、図12(e)に示すように、ローリング工程として、底部3aを打抜いた円筒部材(パイプ状部材)4をローリングして拡径する。なお、このローリング工程は、冷間、熱間のいずれでもよい。このローリング工程を切断分離工程の前、すなわち円筒部材形成工程の最後に行うことによって、図12(d)に示す底部3aの打抜きにおける抜きカスをより小さい物とすることができ、歩留りが向上する。
 次に、上述の切断分離工程と同様に、図12(f)に示すように、円筒部材4をその軸方向に沿って切断して複数の環状部材(リング状部材)5を製作する。
(第4実施形態)
 次に、環状部材の製造方法の第4実施形態について図面を参照して説明する。なお、本実施形態は、ローリング工程を加えた点が第2実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。図13(a)~(f)は、環状部材の製造方法の第4実施形態における環状部材の加工概要を示す断面図である。
 図13(a)~(f)に示すように、本実施形態では、ローリング工程(図13(e))を切断分離工程前に含む。まず、図13(a)に示す丸棒部材1を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図13(b)に示す切断ビレット2を製作する。このとき、プレス切断により切断ビレット2を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット2に対して据込み又は端面矯正を行う。なお、鋸切断、又は突っ切りにより切断ビレット2を得た場合、切断面の粗さや、切断面のビレット軸方向に対する直角度が良いので、据込み、端面矯正は行わなくても良い。
 次に、図13(c)に示すように、切断ビレット2を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット3を成形する。
 次に、図13(d)に示すように、後方押出しビレット3の底部3aを打抜き、円筒部材(パイプ状部材)4を成形する。
 次に、図13(e)に示すように、ローリング工程として、底部3aを打抜いた円筒部材(パイプ状部材)4をローリングして拡径すると共に、ノッチ16、17を形成する。なお、このローリング工程は、冷間、熱間のいずれでもよい。このローリング工程を切断分離工程の前、すなわち円筒部材形成工程の最後に行うことによって、図13(d)に示す底部3aの打抜きにおける抜きカスをより小さい物とすることができ、歩留りが向上する。
 次に、上述の切断分離工程と同様に、図13(f)に示すように、円筒部材4をその軸方向に沿って切断して複数の環状部材(リング状部材)5を製作する。
(第5実施形態)
 次に、環状部材の製造方法の第5実施形態について図面を参照して説明する。なお、本実施形態は、溝形成工程を加えた点が第3実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。図14(a)~(f)は、環状部材の製造方法の第5実施形態における環状部材の加工概要を示す断面図である。
 図14(a)~(f)に示すように、本実施形態では、ローリング工程(図14(e))の際に溝形成工程を行う。まず、図14(a)に示す丸棒部材1を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図14(b)に示す切断ビレット2を製作する。このとき、プレス切断により切断ビレット2を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット2に対して据込み又は端面矯正を行う。なお、鋸切断、又は突っ切りにより切断ビレット2を得た場合、切断面の粗さや、切断面のビレット軸方向に対する直角度が良いので、据込み、端面矯正は行わなくても良い。
 次に、図14(c)に示すように、切断ビレット2を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット3を成形する。
 次に、図14(d)に示すように、後方押出しビレット3の底部3aを打抜き、円筒部材(パイプ状部材)4を成形する。
 次に、図14(e)に示すように、ローリング工程として、底部3aを打抜いた円筒部材4をローリングして拡径すると共に、溝形成工程として円筒部材4の内周面に、その内周面に沿って環状をなす溝6を形成する。この溝6は、円筒部材4が例えば玉軸受の外輪として適用される際の転動溝である。なお、このローリング工程及び溝形成工程は、冷間、熱間のいずれでもよい。このように、一回のローリング成形で多数個(ここでは3個)の環状部材5に溝6を形成することができるため、工程数が少なく、後の切削取り代を削減することができるという効果を奏する。
 次に、上述の切断分離工程と同様に、図14(f)に示すように、円筒部材4をその軸方向に沿って切断して複数の環状部材(リング状部材)5を製作する。
 本実施形態における円筒部材4に作用する回転剪断は、図16(第1実施形態における図3に対応)に示す態様になるが、円筒部材4における溝6以外の部分を拘束金型14,15で付勢することができるので、本実施形態でも間題なく切断分離が可能である。
(第6実施形態)
 次に、環状部材の製造方法の第6実施形態について図面を参照して説明する。なお、本実施形態は、溝形成工程を加えた点が第4実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。図15(a)~(f)は、環状部材の製造方法の第3実施形態における環状部材の加工概要を示す断面図である。
 図15(a)~(f)に示すように、本実施形態では、ローリング工程(図15(e))の際に溝形成工程を行う。まず、図15(a)に示す丸棒部材1を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図15(b)に示す切断ビレット2を製作する。このとき、プレス切断により切断ビレット2を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット2に対して据込み又は端面矯正を行う。なお、鋸切断、又は突っ切りにより切断ビレット2を得た場合、切断面の粗さや、切断面のビレット軸方向に対する直角度が良いので、据込み、端面矯正は行わなくても良い。
 次に、図15(c)に示すように、切断ビレット2を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット3を成形する。
 次に、図15(d)に示すように、後方押出しビレット3の底部3aを打抜き、円筒部材(パイプ状部材)4を成形する。
 次に、図15(e)に示すように、ローリング工程として、底部3aを打抜いた円筒部材4をローリングして拡径すると共に、ノッチ16、17を形成する。また、溝形成工程として円筒部材4の内周面に、その内周面に沿って環状をなす溝6を形成する。この溝6は、円筒部材4が例えば玉軸受の外輪として適用される際の転動溝である。なお、このローリング工程及び溝形成工程は、冷間、熱間のいずれでもよい。このように、一回のローリング成形で多数個(ここでは3個)の環状部材5に溝6を形成することができるため、工程数が少なく、後の切削取り代を削減することができるという効果を奏する。
 次に、上述の切断分離工程と同様に、図15(f)に示すように、円筒部材4をその軸方向に沿って切断して複数の環状部材(リング状部材)5を製作する。
 本実施形態における円筒部材4に作用する回転剪断は、図16(第1実施形態における図3に対応)に示す態様になるが、円筒部材4における溝6以外の部分を拘束金型14,15で付勢することができるので、本実施形態でも間題なく切断分離が可能である。
(第7実施形態)
 次に、環状部材の製造方法の第7実施形態について図面を参照して説明する。なお、本実施形態は、溝形成工程の内容が第5実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。図17(a)~(f)は、環状部材の製造方法の第7実施形態における環状部材の加工概要を示す断面図である。また、図18は、環状部材の製造方法の第7実施形態における加工状態を示す要部拡大図である。
 図17(a)~(f)に示すように、本実施形態では、ローリング工程(図17(e))の際に溝形成工程を行う。まず、図17(a)に示す丸棒部材1を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図17(b)に示す切断ビレット2を製作する。このとき、プレス切断により切断ビレット2を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット2に対して据込み又は端面矯正を行う。なお、鋸切断、又は突っ切りにより切断ビレット2を得た場合、切断面の粗さや、切断面のビレット軸方向に対する直角度が良いので、据込み、端面矯正は行わなくても良い。
 次に、図17(c)に示すように、切断ビレット2を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット3を成形する。
 次に、図17(d)に示すように、後方押出しビレット3の底部3aを打抜き、円筒部材(パイプ状部材)4を成形する。
 次に、図17(e)に示すように、ローリング工程として、底部3aを打抜いた円筒部材4をローリングして拡径すると共に、溝形成工程として円筒部材4の外周面に、その外周面に沿って環状をなす溝7を形成する。この溝7は、円筒部材4が例えば玉軸受の内輪として適用される際の転動溝である。なお、このローリング工程及び溝形成工程は、冷間、熱間のいずれでもよい。このように、一回のローリング成形で多数個(ここでは3個)の環状部材5に溝7を形成することができるため、工程数が少なく、後の切削取り代を削減することができるという効果を奏する。
 次に、上述の切断分離工程と同様に、図17(f)に示すように、円筒部材4をその軸方向に沿って切断して複数の環状部材(リング状部材)5を製作する。
 本実施形態における円筒部材4に作用する回転剪断は、図18(第1実施形態における図3に対応)に示す態様になるが、円筒部材4における溝7以外の部分を拘束金型14,15で付勢することができるので、本実施形態でも間題なく切断分離が可能である。
(第8実施形態)
 次に、環状部材の製造方法の第8実施形態について図面を参照して説明する。なお、本実施形態は、溝形成工程の内容が第6実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。図19(a)~(f)は、環状部材の製造方法の第4実施形態における環状部材の加工概要を示す断面図である。
 図19(a)~(f)に示すように、本実施形態では、ローリング工程(図19(e))の際に溝形成工程を行う。まず、図19(a)に示す丸棒部材1を用いてプレス切断、鋸切断、突っ切りのいずれかの方法により、図19(b)に示す切断ビレット2を製作する。このとき、プレス切断により切断ビレット2を切り出した場合、切断面の面粗さが良くないため、割れが生じやすく、切断面の軸方向に対する直角度が悪いので、切断ビレット2に対して据込み又は端面矯正を行う。なお、鋸切断、又は突っ切りにより切断ビレット2を得た場合、切断面の粗さや、切断面のビレット軸方向に対する直角度が良いので、据込み、端面矯正は行わなくても良い。
 次に、図19(c)に示すように、切断ビレット2を後方押出しで無蓋有底の円筒形状をなす後方押し出しビレット3を成形する。
 次に、図19(d)に示すように、後方押出しビレット3の底部3aを打抜き、円筒部材(パイプ状部材)4を成形する。
 次に、図19(e)に示すように、ローリング工程として、底部3aを打抜いた円筒部材4をローリングして拡径すると共に、ノッチ16、17を形成する。また、溝形成工程として円筒部材4の外周面に、その外周面に沿って環状をなす溝7を形成する。この溝7は、円筒部材4が例えば玉軸受の内輪として適用される際の転動溝である。なお、このローリング工程及び溝形成工程は、冷間、熱間のいずれでもよい。このように、一回のローリング成形で多数個(ここでは3個)の環状部材5に溝7を形成することができるため、工程数が少なく、後の切削取り代を削減することができるという効果を奏する。
 次に、上述の切断分離工程と同様に、図19(f)に示すように、円筒部材4をその軸方向に沿って切断して複数の環状部材(リング状部材)5を製作する。
 本実施形態における円筒部材4に作用する回転剪断は、図18(第1実施形態における図3に対応)に示す態様になるが、円筒部材4における溝7以外の部分を拘束金型14,15で付勢することができるので、本実施形態でも間題なく切断分離が可能である。
 以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである。例えば、上述の実施形態では、円筒部材4をその軸方向に3分割して環状部材5を得ているが、環状部材5としての機能を損なわない限り、3つに限らず、より多くの環状部材5を得ることが好ましい。また、円筒部材4の形成にあっては、上述の円筒部材形成工程以外の工程を経ても良い。
 1 丸棒部材
 2 切断ビレット
 3 後方押し出しビレット
 4 円筒部材
 5 環状部材
 10 切断分離装置
 11 第1ロール
 12 第2ロール
 13 マンドレル
 14 拘束金型
 15 拘束金型
 16 ノッチ(外径面側)
 17 ノッチ(内径面側)

Claims (6)

  1.  丸棒材料から円環形状の円筒部材を形成する円筒部材形成工程と、
     前記円筒部材を回転させて、前記円筒部材の軸方向に沿って前記円筒部材の内周面側及び外周面側に複数設けられた拘束金型のうち、前記円筒部材の外周面に付勢する拘束金型と、前記円筒部材の外周面に間隙を有して設けられる拘束金型とで得られる剪断力によって前記円筒部材を軸方向に切断分離して複数の環状部材を得る切断分離工程とを含むことを特微とする環状部材の製造方法。
  2.  丸棒材料から円環形状の円筒部材を形成する円筒部材形成工程と、
     前記円筒部材の内周面又は外周面の少なくとも一方に、ノッチを形成するノッチ形成工程と、
     前記円筒部材を回転させて、前記円筒部材の軸方向に沿って前記円筒部材の内周面側及び外周面側に複数設けられた拘束金型のうち、前記円筒部材の外周面に付勢する拘束金型と、前記円筒部材の外周面に間隙を有して設けられる拘束金型とで得られる剪断力によって前記円筒部材を前記ノッチが形成された箇所に応力集中を生じさせて軸方向に切断分離して複数の環状部材を得る切断分離工程とを含むことを特微とする環状部材の製造方法。
  3.  前記円筒部材形成工程と前記切断分離工程との間に、
     1回のローリング成形にて前記円筒部材の内周面又は外周面に溝を同時に形成する溝形成工程を含む請求項1に記載の環状部材の製造方法。
  4.  前記ノッチの底部の断面形状が、U字状である請求項2又は3に記載の環状部材の製造方法。
  5.  前記ノッチの底部の断面形状が、矩形形状である請求項2又は3に記載の環状部材の製造方法。
  6.  前記ノッチの底部の断面形状が、V字状である請求項2又は3に記載の環状部材の製造方法。
PCT/JP2014/005915 2013-11-28 2014-11-26 環状部材の製造方法 WO2015079684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480059817.4A CN105682838B (zh) 2013-11-28 2014-11-26 环状部件的制造方法
EP14866645.6A EP3075478B1 (en) 2013-11-28 2014-11-26 Method for manufacturing annular member
US15/035,270 US10471555B2 (en) 2013-11-28 2014-11-26 Method for manufacturing annular member
JP2015550565A JP6225996B2 (ja) 2013-11-28 2014-11-26 環状部材の製造方法及び転がり軸受の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013246344 2013-11-28
JP2013-246344 2013-11-28
JP2014-052976 2014-03-17
JP2014052976 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015079684A1 true WO2015079684A1 (ja) 2015-06-04

Family

ID=53198649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005915 WO2015079684A1 (ja) 2013-11-28 2014-11-26 環状部材の製造方法

Country Status (5)

Country Link
US (1) US10471555B2 (ja)
EP (1) EP3075478B1 (ja)
JP (1) JP6225996B2 (ja)
CN (1) CN105682838B (ja)
WO (1) WO2015079684A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108555197A (zh) * 2018-05-03 2018-09-21 江苏翔能科技发展有限公司 单片制坯多片组合成型工艺及适用其的制坯装置和成型模具
CN112453432B (zh) * 2020-11-30 2023-12-19 江苏太平洋齿轮传动有限公司 车用齿圈坯料套切方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US771752A (en) * 1903-06-08 1904-10-04 Stafford Ring Company Tube-cutting machine.
JPS4922022A (ja) 1972-06-19 1974-02-27
JPS5019082A (ja) * 1973-02-23 1975-02-28
JPS5882617A (ja) * 1981-11-09 1983-05-18 Tokai Rika Co Ltd せん断加工方法
JPH03120318U (ja) * 1990-03-22 1991-12-11
JPH04210318A (ja) 1990-12-14 1992-07-31 Masao Murakawa パイプ材の精密せん断加工法
JPH09512487A (ja) * 1994-04-29 1997-12-16 マンネスマン・アクチエンゲゼルシャフト 管状加工物を連続的にかつ切削屑無しに個々のリングに分離する方法及び装置
JPH1133818A (ja) * 1997-07-17 1999-02-09 Asahi Rashi Seisakusho:Kk 長尺材料の切断方法および装置
JPH11197951A (ja) * 1997-10-21 1999-07-27 Pierangelo Girardello 金属加工方法およびその方法で得られた製品
JP2004209565A (ja) 2002-12-27 2004-07-29 Dip:Kk パイプ切断装置及び切断方法
JP2009082930A (ja) * 2007-09-27 2009-04-23 Hayashi Tekkosho:Kk 管材の成形方法および成形装置
JP2011131251A (ja) * 2009-12-25 2011-07-07 Nsk Ltd リング素材の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922022B1 (ja) 1969-06-23 1974-06-05
CN87201447U (zh) 1987-03-31 1988-09-14 倪继恕 异形薄壁金属管冲切器
CN1010289B (zh) 1988-12-12 1990-11-07 西安交通大学 低应力冲击剪切法
JPH1119745A (ja) 1997-06-30 1999-01-26 Aisin Seiki Co Ltd リング製造方法およびリング製造装置
JP4118528B2 (ja) 2001-04-20 2008-07-16 株式会社メタルアート クロスグルーブジョイント用外輪の製造方法
CN201235417Y (zh) * 2008-06-27 2009-05-13 郭贵良 管料切断装置
JP2010082710A (ja) * 2008-09-29 2010-04-15 Toyota Motor Corp 円筒素材の切断装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US771752A (en) * 1903-06-08 1904-10-04 Stafford Ring Company Tube-cutting machine.
JPS4922022A (ja) 1972-06-19 1974-02-27
JPS5019082A (ja) * 1973-02-23 1975-02-28
JPS5882617A (ja) * 1981-11-09 1983-05-18 Tokai Rika Co Ltd せん断加工方法
JPH03120318U (ja) * 1990-03-22 1991-12-11
JPH04210318A (ja) 1990-12-14 1992-07-31 Masao Murakawa パイプ材の精密せん断加工法
JPH09512487A (ja) * 1994-04-29 1997-12-16 マンネスマン・アクチエンゲゼルシャフト 管状加工物を連続的にかつ切削屑無しに個々のリングに分離する方法及び装置
JPH1133818A (ja) * 1997-07-17 1999-02-09 Asahi Rashi Seisakusho:Kk 長尺材料の切断方法および装置
JPH11197951A (ja) * 1997-10-21 1999-07-27 Pierangelo Girardello 金属加工方法およびその方法で得られた製品
JP2004209565A (ja) 2002-12-27 2004-07-29 Dip:Kk パイプ切断装置及び切断方法
JP2009082930A (ja) * 2007-09-27 2009-04-23 Hayashi Tekkosho:Kk 管材の成形方法および成形装置
JP2011131251A (ja) * 2009-12-25 2011-07-07 Nsk Ltd リング素材の製造方法

Also Published As

Publication number Publication date
EP3075478A1 (en) 2016-10-05
CN105682838A (zh) 2016-06-15
EP3075478A4 (en) 2017-01-04
US20160288273A1 (en) 2016-10-06
JPWO2015079684A1 (ja) 2017-03-16
CN105682838B (zh) 2018-01-02
JP6225996B2 (ja) 2017-11-08
EP3075478B1 (en) 2019-07-31
US10471555B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2018016488A1 (ja) 円筒状リング部材、軸受、クラッチ、車両、及び機械の製造方法
JP2009279627A (ja) 転がり軸受の内外輪の製造方法
JP2008196690A (ja) 軸受外輪の製造方法
JP2012166229A (ja) 転がり軸受の軌道輪用粗形材の製造方法
JP2011110599A (ja) リング素材の製造方法
JP6225996B2 (ja) 環状部材の製造方法及び転がり軸受の製造方法
JP2018530432A (ja) リング状成形品の製造方法および製造設備
WO2016027871A1 (ja) リング状部材の製造方法および製造装置
JP4483365B2 (ja) スラスト円筒ころ軸受用保持器とその製造方法
JP2006181638A (ja) ラジアル玉軸受用軌道輪及びその製造方法
JP2006320927A (ja) テーパベアリングの製造方法およびその製造装置
JP2006123003A (ja) 高精度リングの製造方法及び製造装置
JP5446785B2 (ja) リング素材の製造方法
JP5309834B2 (ja) 円盤状部品加工装置
JP4869098B2 (ja) 拡管切断装置及び拡管切断方法
JP6123917B2 (ja) 環状部材の製造方法
JP6287792B2 (ja) リング状部材の製造方法及び製造装置、ラジアル転がり軸受の製造方法及び製造装置、並びに、回転機器の製造方法
JP6245112B2 (ja) リング状部材の製造方法及び製造装置、ラジアル転がり軸受の製造方法及び製造装置、回転機器の製造方法
JP5919746B2 (ja) 軸受軌道輪の製造方法
JP6458854B2 (ja) リング状部材の製造装置及び製造方法、ラジアル転がり軸受の製造方法及び製造装置、並びに、回転機器の製造方法
JP6402847B1 (ja) 円柱状転動体製造用の金型装置、並びに、円柱状転動体の製造方法、転がり軸受の製造方法、車両の製造方法、および、機械装置の製造方法
JP2006341255A (ja) 高精度リングの製造方法
WO2017047327A1 (ja) 円すいころ軸受用保持器及びその製造方法
JP2016107325A5 (ja)
JP5056189B2 (ja) 転がり軸受用軌道輪の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866645

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014866645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866645

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015550565

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15035270

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE