WO2015078674A1 - Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène. - Google Patents

Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène. Download PDF

Info

Publication number
WO2015078674A1
WO2015078674A1 PCT/EP2014/073907 EP2014073907W WO2015078674A1 WO 2015078674 A1 WO2015078674 A1 WO 2015078674A1 EP 2014073907 W EP2014073907 W EP 2014073907W WO 2015078674 A1 WO2015078674 A1 WO 2015078674A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fraction
stream
enriched
reaction zone
Prior art date
Application number
PCT/EP2014/073907
Other languages
English (en)
Inventor
Frederic Bazer-Bachi
Luis PEREIRA DE OLIVEIRA
Matthieu DREILLARD
Anne Claire Lucquin
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to CA2929144A priority Critical patent/CA2929144A1/fr
Priority to CN201480065067.1A priority patent/CN105793396A/zh
Priority to EP14802334.4A priority patent/EP3074485A1/fr
Priority to US15/039,878 priority patent/US10072221B2/en
Priority to RU2016125275A priority patent/RU2666589C1/ru
Publication of WO2015078674A1 publication Critical patent/WO2015078674A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • C10G65/16Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • C10G70/04Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
    • C10G70/06Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes by gas-liquid contact

Definitions

  • the present invention relates to the field of hydrocarbon feed hydrotreatment processes, preferably of diesel type.
  • the objective of the process is the production of a hydrocarbon stream, preferably of diesel, desulfurized.
  • the purpose of the hydrotreatment process is to transform a hydrocarbon feedstock, in particular a gas oil fraction, in order to improve its characteristics with regard to the presence of sulfur or other heteroatoms such as nitrogen but also by decreasing the content of aromatic hydrocarbon compounds by hydrogenation and thus improving the cetane number.
  • the hydrotreating process of hydrocarbon cuts is intended to eliminate the sulfur or nitrogen compounds contained therein in order, for example, to bring a petroleum product to the required specifications (sulfur content, aromatic content, etc.). for a given application (automotive fuel, gasoline or diesel, heating oil, jet fuel).
  • the tightening of automobile pollution standards in the European Community has forced refiners to drastically reduce the sulfur content in diesel fuels and gasoline (up to 10 parts per million weight (ppm) of sulfur as of 1 January 2009, compared to 50 ppm as of January 1, 2005).
  • the desulphurized gas oil is produced by a conventional method comprising heating the diesel fuel charge with hydrogen in an oven, and then the feed is introduced into a hydrodesulfurization unit containing a catalyst so hydrodesulphurize the charge.
  • the document US Pat. No. 5,409,599 describes an improved hydrodesulphurization process, similar to the diagram represented by FIG. 6.
  • the charge 201 is fractionated in the column C2 into a light fraction 202 and a heavy fraction 203.
  • the heavy fraction 203 is introduced into a first reactor R1, then the effluent of the first reactor R1 and the light fraction 202 are mixed and introduced into a second reactor R2.
  • the present invention proposes to optimize the process described by the document
  • the present invention proposes to extract H 2 S and NH 3 contained in the effluent from the first reactor and to maximize the flow rate of pure hydrogen introduced into the reactor. the second reactor to improve the hydrodesulphurization performance in the second reactor.
  • the invention describes a process for the hydrotreatment of a hydrocarbon feedstock comprising sulfur and nitrogen compounds, in which the following steps are carried out:
  • a) the hydrocarbon feedstock is separated into a fraction enriched in heavy hydrocarbon compounds and a fraction enriched in light hydrocarbon compounds
  • a first hydrotreatment step is carried out by contacting the fraction enriched with heavy hydrocarbon compounds and a gaseous flow comprising hydrogen with a first hydrotreatment catalyst in a first reaction zone to produce a first desulfurized effluent comprising hydrogen, H 2 S and NH 3 ,
  • the first gaseous fraction is purified to produce a hydrogen-enriched stream
  • the enriched fraction of light hydrocarbon compounds is mixed with the first liquid fraction obtained in step c) to produce a mixture
  • a second step of hydrotreating by contacting the mixture obtained in step e) and at least a portion of the hydrogen-enriched stream produced in step d) with a second hydrotreatment catalyst in a second reaction zone Z2 to produce a second desulfurized effluent comprising hydrogen, NH 3 and H 2 S,
  • steps b) f) g) and h) can be carried out in a reactor, the first reaction zone and the second reaction zone being disposed in said reactor, the reaction zone being separated from the reaction zone. reaction by a liquid-tight and gas-permeable tray, the second liquid fraction being collected by said tray, the second gaseous fraction flowing from the first zone to the second zone through said tray.
  • Hydrogen can be supplemented so as to perform the second hydrotreating step in the presence of said hydrogen booster, said hydrogen booster comprising at least 95% by volume of hydrogen.
  • the first reaction zone can be implemented under the following conditions:
  • Step d) may carry out an amine wash step to produce said hydrogen enriched stream.
  • the first effluent can be separated into a first liquid stream and a first gas stream, said first gas stream can be partially condensed by cooling and the first partially condensed stream can be separated into a second liquid stream and a second one.
  • second gaseous stream and in step d) the first and second gaseous streams can be brought into contact with an absorbent solution comprising amines to produce said hydrogen-enriched stream.
  • said hydrogen-enriched stream Prior to performing step e), said hydrogen-enriched stream can be contacted with a capture mass to reduce the water content of said hydrogen-enriched stream.
  • Step a) can be carried out in a distillation column.
  • the first catalyst and the second catalyst may be independently selected from catalysts composed of a porous mineral carrier, at least one metal element selected from group VI B and a metal element selected from group VIII.
  • the first and second catalysts may be independently selected from a catalyst composed of cobalt and molybdenum deposited on a porous support based on alumina and a catalyst composed of nickel and molybdenum deposited on a porous carrier based on alumina.
  • the hydrocarbon feed may be composed of a slice whose initial boiling point is between 100 ° C and 250 ° C and the final boiling point is between 300 ° C and 450 ° C.
  • FIG. 1 schematizes the principle of the method according to the invention
  • FIGS. 2, 3 and 4 show three embodiments of the method according to the invention
  • FIG. 5 represents a conventional hydrodesulfurization process
  • FIG. 6 represents a hydrodesulfurization scheme similar to the process described in the document US Pat. No. 5,409,599.
  • the hydrocarbon feedstock to be treated arrives via line 1.
  • the hydrocarbon feed may be a kerosene and / or a diesel fuel.
  • the hydrocarbon feed may be a cut whose initial boiling point is between 100 ° C. and 250 ° C., preferably between 100 ° C. and 200 ° C.
  • the final boiling point is between 300 ° C. and 450 ° C. C, preferably between 50 ° C and 450 ° C.
  • the hydrocarbon feedstock may be chosen from an atmospheric distillation cut, a cut produced by vacuum distillation, a cut resulting from catalytic cracking (commonly known as "LCO cut” for Light Cycle Oil according to the Anglo-Saxon terminology) or a cut resulting from a heavy charge conversion process, for example a coking, visbreaking, and residue hydro-conversion process.
  • the feedstock comprises sulfur compounds, generally at a content of at least 1000 ppm by weight of sulfur, or even more than 5000 ppm by weight of sulfur.
  • the feedstock also comprises nitrogen compounds, for example the feedstock comprises at least 50 ppm by weight of nitrogen, or at least 100 ppm by weight of nitrogen.
  • the feedstock is split into two sections in the SEP unit to produce a light fraction discharged through line 2 and a heavy fraction discharged through line 3.
  • the SEP unit may use a distillation column, a fractionation balloon between a gaseous phase and a liquid phase, a stripping column.
  • the heavy fraction has a higher boiling point than the light fraction.
  • the heavy fraction arriving via line 3 is mixed with a stream comprising hydrogen arriving via line 8.
  • the heavy fraction may optionally be heated before it is introduced into reaction zone Z1. Then the mixture is introduced into the reactor zone Z1.
  • the reaction zone Z1 comprises at least one hydrotreatment catalyst. If necessary, before introduction into Z1, the mixture can be heated and / or relaxed.
  • the mixture of the heavy fraction and hydrogen is introduced into the reaction zone Z1 to be brought into contact with a hydrotreatment catalyst.
  • the hydrotreatment reaction makes it possible to decompose the impurities, in particular the impurities containing sulfur or nitrogen, and possibly to partially remove the aromatic hydrocarbon compounds and more particularly the polyaromatic hydrocarbon compounds.
  • the destruction of impurities leads to the production of a hydrorefined hydrocarbon product and an acid gas rich in H 2 S and NH 3 , gases known to be inhibitors and even in some cases poisons hydrotreatment catalysts.
  • This hydrotreatment reaction also makes it possible to partially or completely hydrogenate the olefins, and partially the aromatic nuclei. This makes it possible to reach a content of low polyaromatic hydrocarbon compounds, for example a content of less than 8% by weight in the treated gas oil.
  • the reaction zone Z1 can operate with the following operating conditions:
  • the liquid velocity in the reaction zone Z1 may be at least 2 mm / s
  • the operating conditions of the reaction zone Z1 and the catalyst contained in zone Z1 can be chosen to reduce the sulfur content so that the sulfur content in the effluent from zone Z1 is lowered to a content of between between 50 and 500 ppm by weight.
  • the hydrogenation reactions of sulfur compounds that are easiest to perform are carried out in zone Z1.
  • the effluent from the reaction zone Z1 via the conduit 4 is introduced into the separation device D1 in order to separate a liquid fraction containing the hydrocarbons from the heavy fraction and a gaseous fraction rich in hydrogen, H 2 S and NH 3 .
  • the separating device D1 can implement one or more separation tanks between gas and liquid, possibly with heat exchangers for partially condensing the gas flows.
  • the liquid fraction is removed from D1 via line 6.
  • the gaseous fraction is removed from D1 via line 5.
  • at least a portion of the effluent from the zone Z1 can be brought into contact with the water injected via line 26 into the device D1. In this case, an aqueous liquid fraction containing NH 3 of the device D1 is discharged via the conduit 6b.
  • D1 contains the sulfur compounds of the heavy fraction most refractory to hydrogenation reactions.
  • the hydrocarbon liquid fraction is sent via line 6 to zone Z2 in order to hydrogenate the sulfur compounds that are the most refractory to the hydrogenation reactions.
  • the gaseous fraction rich in H 2 S and NH 3 circulating in line 5 is introduced into an LA amine washing unit.
  • the gas fraction rich in H 2 S and NH 3 and containing hydrogen is contacted with an absorbent solution containing amines.
  • the acid gases are absorbed by the amines, which makes it possible to produce a stream enriched in hydrogen.
  • FR2907024 and FR2897066 disclose amine scrubbing processes which can be implemented in the LA amine washing unit.
  • the stream enriched with hydrogen may optionally be brought into contact with adsorbents to remove the water in particular.
  • the gas enriched in hydrogen may comprise at least 95% by volume, or even more than 99% by volume, or even more than 99.5% by volume of hydrogen.
  • the hydrogen-enriched gas is discharged from the unit LA via the pipe 10, possibly compressed by a compressor and recycled to the reaction zone Z2 by being mixed with the light fraction arriving via the pipe 2.
  • the hydrogen mixture and the light fraction arriving via line 2 can be made in the reaction zone Z2.
  • the hydrogen-enriched gas discharged from unit LA via line 10a is recycled to the separation unit SEP in order to promote stripping separation: the flow of hydrogen entrains the light compounds of charge 1.
  • a large portion, more than 70% or even more than 95% by volume, of the hydrogen arriving via line 10a is found in the light fraction circulating in line 2.
  • a refill in fresh hydrogen can be provided by the conduit 1 1.
  • the conduit 1 1 makes it possible to introduce hydrogen into the light fraction circulating in the duct 2.
  • the flow of hydrogen arriving via the duct 11 can be produced by a process commonly known as "steam reforming of natural gas” or “ steam methane reforming "to produce a flow of hydrogen from water vapor and natural gas.
  • the flow of hydrogen 11 may contain at least 95%, or even more than 98% by volume, or even more than 99% by volume of hydrogen.
  • the hydrogen stream can be compressed to be at the operating pressure of the reaction zone Z2.
  • the flow of hydrogen 1 1 comes from a source external to the process, that is to say that it is not composed of a part of an effluent produced by the process.
  • the fresh hydrogen filling can be provided by the conduit
  • the hydrogen flow causes the light compounds of the charge 1.
  • a large portion, more than 70% or even more than 95% by volume, of the hydrogen arriving via line 11a is found in the light fraction circulating in line 2.
  • the light fraction comprising hydrogen arriving via line 2 is optionally heated and then mixed with the hydrocarbon liquid fraction arriving via line 6.
  • the pressure of the hydrocarbon liquid fraction discharged from Z1 via line 6 can be raised by means of the P1 pump to be at the operating pressure of the reaction zone Z2. Then the mixture is introduced into the zone of Z2 reaction.
  • the reaction zone Z2 comprises at least one hydrotreatment catalyst. If necessary, before introduction into the reaction zone Z2, the mixture can be heated and / or expanded.
  • the mixture of the light fraction and the hydrocarbon liquid fraction is introduced into the reaction zone Z2 to be contacted with a hydrotreatment catalyst.
  • the hydrotreatment reaction makes it possible to decompose the impurities, in particular the impurities containing sulfur or nitrogen, and possibly to partially remove the aromatic hydrocarbon compounds and more particularly the polyaromatic hydrocarbon compounds.
  • the destruction of the impurities leads in particular to the production of a hydrorefined hydrocarbon product and an acid gas rich in H 2 S and NH 3 .
  • the fact of sending purified hydrogen, that is to say without or without inhibiting compounds, in particular H 2 S and NH 3 , of the hydrogenation reaction in zone Z2 makes it possible to maximize the partial pressure of hydrogen in zone Z2 in order to carry out the most difficult hydrogenation reactions there.
  • the flow of purified hydrogen comes from the LA amine washing unit and optionally the hydrogen filling arriving via the conduit 1 1.
  • the entire stream from the LA amine washing unit is introduced into zone Z2.
  • the hydrogen present in zone Z2 comes solely and directly from the hydrogen-rich stream coming from the unit LA and from the hydrogen booster arriving via line 11.
  • the reaction zone Z2 can operate with the following operating conditions:
  • the pressure of Z2 is greater than the pressure of Z1, for example the pressure of Z2 is 0.5 bar, or even 1 bar less than the pressure of Z1, preferably the pressure of Z2 is greater than a value of between 0.5 bar and 5 bar, preferably between 1 bar and 3 bar with respect to the pressure of Z1,
  • the effluent from the reaction zone Z2 via the conduit 7 is introduced into the separation device D2 in order to separate a liquid fraction containing the hydrocarbons and a gaseous fraction rich in hydrogen, H 2 S and NH 3 .
  • the separation device D2 can implement one or more separation flasks, possibly with heat exchangers for condensing the gas flows.
  • the liquid fraction is removed from D2 through line 9.
  • This liquid fraction is the product of the process according to the invention, for example the gas oil depleted of sulfur, nitrogen and aromatic compounds.
  • the gaseous fraction is removed from D2 via line 8.
  • the gaseous fraction is recycled via line 8 to be mixed with the heavy fraction circulating in line 3.
  • the separation device D2 performs a single separation step between gas and liquid of the effluent arriving via line 7.
  • D2 implements only a separation device between gases and liquid.
  • the gaseous fraction resulting from the separation in D2 is sent directly to zone Z1, preferably without undergoing purification treatment and without cooling.
  • the gaseous fraction from D2 contains hydrogen but also H 2 S and NH 3 .
  • the fact of sending these compounds H 2 S and NH 3 in zone Z1 does not impair the process according to the invention because the simplest hydrogenation reactions take place in zone Z1.
  • the entire gaseous fraction from the separation device D2 is directly introduced into the zone Z1.
  • the method according to the invention has the advantage of being able to integrate the reaction zones Z1 and Z2, as well as the separation device D2, in the same reactor as described with reference to FIGS. 2, 3 and 4.
  • the process according to the invention makes it possible to adapt the separation step in the SEP unit, for example the cutting point in the case of a distillation, during the cycle and thus to reduce the liquid fraction treated in the unit. the reaction zone Z1 while using the same hydrogen flow rates which will have a beneficial effect on the hydrogenation reactions.
  • This flexibility makes it possible to adapt the flow rate treated between the reaction zone Z1 and the reaction zone Z2 as a function of the aging of the catalyst and, therefore, of the decrease in performance of the catalyst.
  • the operating temperature of the reaction zone Z1 can be selected independently of the operating temperature of the reaction zone Z2.
  • the pressure in the reaction zone Z2 may be greater than that of the reaction zone Z1, which is favorable to the hydrotreatment reactions and therefore positive since it is in this zone Z2 that the most active compounds are treated. refractory to hydrotreatment reactions.
  • the reaction zones Z1 and Z2 may contain catalysts of identical compositions or catalysts of different compositions.
  • one or more catalyst beds of identical composition can be arranged, or several catalyst beds, the composition of the catalysts being different from one bed to another.
  • a catalytic bed may optionally be composed of different catalyst layers.
  • the catalysts employed in reaction zones Z1 and Z2 may generally comprise a porous mineral support, at least one metal or metal compound of group VIII of the periodic table of elements (this group especially comprising cobalt, nickel, iron, etc.) and at least one metal or metal compound of group VIB of said periodic classification (this group including in particular molybdenum, tungsten, etc.).
  • the sum of metals or metal compounds, expressed as weight of metal relative to the total weight of the finished catalyst is often between 0.5 and 50% by weight.
  • the sum of metals or compounds of metals of group VI II, expressed in weight of metal relative to the weight of the finished catalyst is often between 0.5 and 15% by weight, preferably between 1 and 10% by weight.
  • the sum of the metals or compounds of Group VIB metals, expressed in weight of metal relative to the weight of the finished catalyst is often between 2 and 50% by weight, preferably between 5 and 40% by weight.
  • the porous inorganic support may comprise, without limitation, one of the following compounds: alumina, silica, zirconia, titanium oxide, magnesia, or two compounds chosen from the preceding compounds, for example silica-alumina or alumina-zirconia, or alumina-titanium oxide, or alumina-magnesia, or three or more compounds selected from the foregoing compounds, for example silica-alumina-zirconia or silica-alumina-magnesia.
  • the support may also comprise, in part or in whole, a zeolite.
  • the catalyst preferably comprises a support composed of alumina, or a support composed mainly of alumina (for example from 80 to 99.99% by weight of alumina).
  • the porous support may also comprise one or more other promoter elements or compounds, based for example on phosphorus, magnesium, boron, silicon, or comprising a halogen.
  • the support may, for example, comprise from 0.01 to 20% by weight of B 2 0 3 , or of SiO 2 , or of P 2 O 5 , or of a halogen (for example chlorine or fluorine), or 0, 01 to 20% by weight of an association of several of these promoters.
  • Common catalysts are, for example, catalysts based on cobalt and molybdenum, or on nickel and molybdenum, or on nickel and tungsten, on an alumina support, this support may comprise one or more promoters as previously mentioned.
  • the catalyst may be in oxide form, that is to say that it has undergone a calcination step after impregnation of the metals on the support.
  • the catalyst may be in an additivated dried form, that is to say that the catalyst has not undergone a calcination step after impregnation of the metals and an organic compound on the support.
  • FIGS. 2, 3 and 4 describe three embodiments of the method generally described with reference to FIG. 1, in which the reaction zones Z1 and Z2, as well as the separation device D2, are grouped together in the same reactor R1.
  • the reactor R1 may be of cylindrical shape whose axis is vertical.
  • the reaction zone Z1 is located below the zone Z2 in the reactor R1.
  • the separating device D2 of FIG. 1 takes the form of the plate P in FIGS. 2, 3 and 4.
  • a separating plate P is arranged between the zone Z2 and the zone Z1.
  • the plate P allows to circulate the gas from the zone Z2 in the zone Z1.
  • the plate P is liquid-tight.
  • the liquid circulating in the zone Z2 is collected by the plate P to be discharged from the reactor R1 through line 9.
  • the feedstock arriving via line 1 is fractionated in two sections in distillation column C.
  • effluent is discharged through line 20.
  • the bottom of column C is provided with a reboiler R which makes it possible to vaporize a portion of the effluent discharged at the bottom of the column C through the conduit 20 and to reintroduce this portion in vapor form at the bottom of the column C via the conduit 21.
  • the other part of the effluent 20 is discharged through line 3.
  • the effluent discharged at the top of column C is cooled in heat exchanger E1 to be condensed. Part of the condensate 22 is recycled to the top of column C as reflux.
  • the other part of the effluent condensed by the exchanger E1 is discharged through line 2.
  • distillation column C makes it possible to produce a light fraction discharged through line 2 and a heavy fraction discharged through line 3.
  • Distillation column C can be operated to make a cut at a cutting point of between 260.degree. 350 ° C, that is to say that the light fractionreporte compounds vaporizing at a temperature below the temperature of the cutting point and the heavy fraction comprises compounds vaporizing at a temperature above the temperature of the cutting point.
  • the heavy fraction arriving via the pipe 3 is introduced into the lower part of the reactor R comprising the reaction zone Z1 after being optionally heated in an exchanger or in an oven.
  • the heavy fraction is introduced into the reactor R between the plate P and the zone Z1.
  • the heavy fraction is mixed with a stream of hydrogen, H 2 S and NH 3 arriving from the zone Z2 via the separating plate P. Then the mixture passes through the reaction zone Z1.
  • the effluent from zone Z1 is discharged from the reactor via line 4 to be introduced into separator tank B1.
  • the flask B1 makes it possible to separate a first hydrocarbon liquid fraction discharged via the duct 23 and a first gaseous fraction discharged through the duct 24.
  • the first gaseous fraction flowing in the duct 24 is cooled by the heat exchanger E2 so as to be partially condensed.
  • the exchanger E2 condenses the majority of the hydrocarbons contained in the effluent 24 and retains the majority of hydrogen, NH 3 and H 2 S in gaseous form.
  • the partially condensed stream from E2 is introduced into separator tank B2 in order to separate a second liquid fraction containing hydrocarbons and a second gaseous fraction rich in hydrogen, NH 3 and H 2 S.
  • the hydrocarbon liquid fraction is removed from B2.
  • the gas fraction is discharged from B2 via line 5.
  • the hydrocarbon-rich liquid fractions discharged through lines 23 and 25 are combined, pumped by pump P1 to be sent via line 6 to zone Z2.
  • a stream of water may be added through line 26 to the gas fraction circulating in line 24 to allow the NH 3 present in the gaseous fraction to dissolve in an aqueous fraction.
  • the aqueous fraction containing the dissolved NH 3 is also separated in the flask B2, the aqueous fraction being evacuated via the duct 6b.
  • part or all of the hydrocarbon liquid fraction from B2 via line 25 is removed from the process via line 25b as a desulfurized cut, for example as a desulphurized gas oil cut.
  • this hydrocarbon liquid fraction may be specifications in terms of sulfur, nitrogen and content of aromatic hydrocarbon compounds.
  • the flow of hydrogen and acid gas flowing in the conduit 5 is introduced into the LA amine washing unit.
  • the hydrogen-rich stream discharged from LA through line 10 is compressed by compressor K1 to be introduced into reactor R at the top of reaction zone Z2.
  • a booster of hydrogen may be added to the process via line 11 to improve the reaction in zone Z2.
  • the hydrogen filling is introduced via the pipe 1 1 to the flows of hydrogen circulating in the duct 10.
  • the light fraction arriving via line 2 is mixed with the hydrocarbon stream arriving via line 6 after having been optionally heated in a heat exchanger and / or in an oven.
  • the mixture is introduced into the reactor R at the top of the reaction zone Z2.
  • the hydrocarbons arriving via line 6 mix with the hydrogen arriving via line 10.
  • the mixture of hydrocarbons and hydrogen passes through reaction zone Z2.
  • the gas and the liquid composing the effluent leaving the reaction zone Z2 are separated by the plate P: the gas flows through the plate P to arrive in the reaction zone Z1, the liquid collected by the plate P is evacuated the reactor R through the conduit 9.
  • it can implement a separator plate provided with orifices which are extended upwards by tube portions. The upper part of the tube portions are covered by hats.
  • the descending liquid is collected by the tray, the tubular portion preventing the liquid from passing through the holes.
  • a conduit passing through the wall of the reactor R1 makes it possible to evacuate the liquid collected on the plate.
  • the descending gas passes through the tubes and orifices of zone Z2 to zone Z1.
  • FIG. 3 proposes a variant of the method according to the invention with respect to the embodiment of FIG. 2.
  • the modification relates to the step of fractionation of the feedstock into a heavy fraction and a light fraction.
  • the references of FIG. 3 identical to the references of FIG. 2 denote identical elements.
  • charge is introduced via line 1 at the top of distillation column C and the makeup flow of hydrogen is introduced via line 11 at the bottom of column C.
  • To modify the conditions of the column C it is possible in particular to modify the flow rate and / or the temperature of the reboil flow produced by the reboiler R, and / or the temperature of the feedstock introduced via the duct can be modified. 1 in column C.
  • the distillation column C makes it possible to produce a light fraction discharged through line 2 and a heavy fraction discharged through line 3. In this embodiment, a large portion, more than 70%, or even more than 95 % volumic, hydrogen arriving via the conduit 1 1 is found in the light fraction flowing in the conduit 2.
  • FIG. 4 proposes a variant of the method according to the invention with respect to the embodiment of FIG. 2.
  • the modification relates to the step of fractionation of the feedstock into a heavy fraction and a light fraction.
  • the references of FIG. 4 identical to the references of FIG. 2 denote identical elements.
  • charge is introduced via line 1 at the top of separation column C and at least part of the hydrogen flow produced by the LA amine washing unit is introduced through lines 10 and 10a at the bottom of column C.
  • the remaining fraction of the hydrogen arriving via line 10 is introduced via line 10b to the outgoing flow at the top of the column flowing in line 2.
  • the column C may be devoid of reboiler.
  • the process of FIG. 5 corresponds to the conventional process in which all the diesel fuel is treated in a single reactor.
  • the charge arriving via line 101 is mixed with hydrogen arriving via line 102.
  • the mixture is heated in heat exchanger E101, and then it is introduced into reactor R101 for be contacted with a hydrotreatment catalyst.
  • the effluent from the reactor R101 is cooled by the heat exchanger E102 to be partially condensed, before being introduced into the separator tank B101.
  • the liquid hydrocarbons are discharged at the bottom of the flask B101 via the duct 103.
  • the acid gas containing hydrogen, H 2 S and NH 3 is discharged at the top of the flask E101 via the duct 104 to be introduced into the flask.
  • LA1 amine wash unit The hydrogen-rich stream obtained from unit LA1 is compressed and then recycled via line 102 to exchanger E101.
  • the conduit 105 makes it possible to introduce a hydrogen filling into the conduit 102.
  • the reactor R101 operates with a CoMo catalyst on an alumina support of the commercial reference HR626 of the company Axens.
  • the operating conditions of the reactor R101 are as follows:
  • FIG. 2 The diagram of FIG. 2 is implemented according to the following operating conditions:
  • the fractionation in column C is ensured at a temperature of 280 ° C., so two thirds of the weight of the feed forms the heavy fraction which is sent into Z1,
  • the zones of reactions Z1 and Z2 comprise CoMo catalyst on alumina support of the commercial reference HR626 of the company Axens
  • the feed treated by the two processes is composed of 80% by weight of GOSR (that is to say a gas oil resulting from an atmospheric distillation) and 20% by weight of LCO. (that is, a cut from catalytic cracking).
  • the filler is characterized by a density at 15 ° C of 865 kg / rrf and contains 9000 ppm by weight of sulfur and 300 ppm by weight of nitrogen.
  • the feedstock arriving via line 201 is introduced into separation column C2 to produce a heavy fraction discharged through line 203 and a light fraction discharged through line 202.
  • the heavy fraction circulating in line 203 is mixed with hydrogen arriving via the conduit 204 and is compressed to be introduced into the reactor R1 containing a hydrotreatment catalyst.
  • the hydrotreated effluent is mixed with the light fraction circulating in the conduit 202. Then the mixture is introduced into the reactor R2 containing a hydrotreatment catalyst.
  • the hydrotreated effluent from R2 is separated in the device D202 into a hydrogen-rich stream discharged through line 204 and a hydrotreated hydrocarbon stream discharged through line 205.
  • FIG. 6 The diagram of FIG. 6 is implemented according to the following operating conditions:
  • the reactors R1 and R2 comprise CoMo catalyst on an alumina support of the commercial reference HR626 of the company Axens
  • FIG. 2 The diagram of FIG. 2 is implemented according to the following operating conditions:
  • the fractionation in column C is ensured at a temperature of 280 ° C., so two thirds of the weight of the feed forms the heavy fraction which is sent into Z1,
  • the zones of reactions Z1 and Z2 comprise CoMo catalyst on alumina support of the commercial reference HR626 of the company Axens
  • the feedstock treated by the two processes is composed of 80% by weight of GOSR (that is to say a gas oil derived from an atmospheric distillation) and 20% by weight of LCO (that is to say cut after catalytic cracking).
  • the filler is characterized by a density at 15 ° C of 865 kg / rrf and contains 9000 ppm by weight of sulfur and 300 ppm by weight of nitrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Le procédé d'hydrotraitement d'une charge hydrocarbonée comportant des composés soufrés et azotés, comporte les étapes suivantes : a) on sépare la charge hydrocarbonée en une fraction lourde et une fraction légère, b) on effectue une première étape d'hydrotraitement en mettant en contact la fraction lourde et un flux d'hydrogène avec un premier catalyseur d'hydrotraitement Z1 pour produire un premier effluent désulfuré comportant de l'hydrogène, de l'H2S et du NH3, c) on sépare le premier effluent en une première fraction gazeuse comportant de l'hydrogène, de l'H2S et du NH3, et une première fraction liquide, d) on purifie la première fraction gazeuse pour produire un flux enrichi en hydrogène, e) on mélange la fraction légère avec la première fraction liquide obtenue à l'étape c) pour produire un mélange, f) on effectue une deuxième étape d'hydrotraitement en mettant en contact le mélange obtenu à l'étape e) et le flux enrichi en hydrogène produit à l'étape d) avec un deuxième catalyseur d'hydrotraitement Z2 pour produire un deuxième effluent désulfuré comportant de l'hydrogène, du NH3 et de l'H2S, g) on sépare le deuxième effluent en une deuxième fraction gazeuse comportant de l'hydrogène, de l'H2S et du NH3 et une deuxième fraction liquide, h) on recycle au moins une partie de la deuxième fraction gazeuse à l'étape b) en tant que flux d'hydrogène.

Description

PROCÉDÉ D'HYDROTRAITEMENT D'UN GAZOLE DANS DES RÉACTEURS EN SÉRIE AVEC RECYCLAGE D'HYDROGÈNE
La présente invention se rapporte au domaine des procédés d'hydrotraitement de charge hydrocarbonée, de préférence de type gazole. L'objectif du procédé est la production d'un flux hydrocarboné, de préférence de gazole, désulfuré.
De façon générale, le procédé d'hydrotraitement a pour but de transformer une charge d'hydrocarbures, notamment une coupe gazole, dans le but d'améliorer ses caractéristiques en ce qui concerne la présence de soufre ou d'autres hétéroatomes comme l'azote, mais aussi en diminuant la teneur en composés hydrocarbures aromatiques par hydrogénation et ainsi en améliorant l'indice de cétane. En particulier, le procédé d'hydrotraitement de coupes hydrocarbonées a pour but d'éliminer les composés soufrés ou azotés contenus dans celles-ci afin de mettre par exemple un produit pétrolier aux spécifications requises (teneur en soufre, teneur en aromatiques etc..) pour une application donnée (carburant automobile, essence ou gazole, fioul domestique, carburéacteur). Le durcissement des normes de pollution automobile dans la communauté européenne a contraint les raffineurs à réduire très fortement la teneur en soufre dans les carburants diesel et les essences (au maximum 10 parties par million poids (ppm) de soufre au 1 er janvier 2009, contre 50 ppm au 1 er janvier 2005).
Comme présenté par la figure 5, le gazole désulfuré est produit par un procédé conventionnel comprenant le chauffage de la charge de type gazole avec de l'hydrogène dans un four, puis la charge est introduite dans une unité de d'hydrodésulfuration contenant un catalyseur afin d'hydrodésulfurer la charge.
Le document US5,409,599 décrit un procédé perfectionné d'hydrodésulfuration, proche du schéma représenté par la figure 6. En référence à la figure 6, la charge 201 est fractionnée dans la colonne C2 en une fraction légère 202 et une fraction lourde 203. La fraction lourde 203 est introduite dans un premier réacteur R1 , puis l'effluent du premier réacteur R1 et la fraction légère 202 sont mélangées et introduites dans un deuxième réacteur R2.
La présente invention propose d'optimiser le procédé décrit par le document
US5,409,599 pour notamment baisser la teneur en soufre et en azote dans la charge traitée.
La présente invention propose d'extraire de l'H2S et du NH3 contenus dans l'effluent issu du premier réacteur et de maximiser le débit d'hydrogène pur introduit dans le deuxième réacteur afin d'améliorer les performances d'hydrodésulfuration dans le deuxième réacteur.
De manière générale, l'invention décrit un procédé d'hydrotraitement d'une charge hydrocarbonée comportant des composés soufrés et azotés, dans lequel on effectue les étapes suivantes :
a) on sépare la charge hydrocarbonée en une fraction enrichie en composés hydrocarbures lourds et une fraction enrichie en composés hydrocarbures légers, b) on effectue une première étape d'hydrotraitement en mettant en contact la fraction enrichie en composés hydrocarbures lourds et un flux gazeux comportant de l'hydrogène avec un premier catalyseur d'hydrotraitement dans une première zone de réaction pour produire un premier effluent désulfuré comportant de l'hydrogène, de l'H2S et du NH3,
c) on sépare le premier effluent en une première fraction gazeuse comportant de l'hydrogène, de l'H2S et du NH3, et une première fraction liquide,
d) on purifie la première fraction gazeuse pour produire un flux enrichi en hydrogène, e) on mélange la fraction enrichie en composés hydrocarbures légers avec la première fraction liquide obtenue à l'étape c) pour produire un mélange, f) on effectue une deuxième étape d'hydrotraitement en mettant en contact le mélange obtenu à l'étape e) et au moins une partie du flux enrichi en hydrogène produit à l'étape d) avec un deuxième catalyseur d'hydrotraitement dans une deuxième zone de réaction Z2 pour produire un deuxième effluent désulfuré comportant de l'hydrogène, du NH3 et de l'H2S,
g) on sépare le deuxième effluent en une deuxième fraction gazeuse comportant de l'hydrogène, de l'H2S et du NH3 et une deuxième fraction liquide,
h) on recycle au moins une partie de la deuxième fraction gazeuse comportant de l'hydrogène, de l'H2S et du NH3 à l'étape b) en tant que flux gazeux comportant de l'hydrogène. Selon l'invention, les étapes b) f) g) et h) peuvent être réalisées dans un réacteur, la première zone de réaction et la deuxième zone de réaction étant disposées dans ledit réacteur, la zone de réaction étant séparée de la zone de réaction par un plateau étanche au liquide et perméable au gaz, la deuxième fraction liquide étant recueillie par ledit plateau, la deuxième fraction gazeuse circulant de la première zone à la deuxième zone à travers ledit plateau. On peut effectuer un appoint en hydrogène de manière à réaliser la deuxième étape d'hydrotraitement en présence dudit appoint en hydrogène, ledit appoint en hydrogène comportant au moins 95% volumique d'hydrogène.
On peut mettre en œuvre la première zone de réaction avec les conditions suivantes :
- température comprise entre 3000 C et 4200 C,
- pression comprise entre 30 et 120 bars,
Vitesse Volumétrique Horaire VVH comprise entre 0,5 et 4 h"1 ,
- rapport entre l'hydrogène et les composés hydrocarbures compris entre 200 et 1000 Nm3/Sm3
et on peut mettre en œuvre la deuxième zone de réaction avec les conditions suivantes :
- température comprise entre 3000 C et 4200 C,
- pression comprise entre 30 et 120 bars,
Vitesse Volumétrique Horaire VVH comprise entre 0,5 et 4 h"
- rapport entre l'hydrogène et les composés hydrocarbures compris entre 200 et 1000 Nm3/Sm3.
L'étape d) peut mettre en œuvre une étape de lavage aux aminés pour produire ledit flux enrichi en hydrogène.
A l'étape c), on peut séparer le premier effluent en un premier flux liquide et un premier flux gazeux, on peut condenser partiellement par refroidissement ledit premier flux gazeux et on peut séparer le premier flux partiellement condensé en un deuxième flux liquide et un deuxième flux gazeux, et à l'étape d) on peut mettre en contact le premier et le deuxième flux gazeux avec une solution absorbante comportant des aminés pour produire ledit flux enrichi en hydrogène.
Avant d'effectuer l'étape e) on peut mettre en contact ledit flux enrichi en hydrogène avec une masse de captation pour réduire la teneur en eau dudit flux enrichi en hydrogène.
On peut effectuer l'étape a) dans une colonne de distillation.
On peut introduire un flux d'hydrogène dans la colonne et on peut évacuer en tête de la colonne la fraction enrichie en composés hydrocarbonés légers et comportant de l'hydrogène, le flux d'hydrogène étant choisi parmi ledit flux enrichi en hydrogène et ledit appoint en hydrogène.
Le premier catalyseur et le deuxième catalyseur peuvent être indépendamment choisis parmi les catalyseurs composés d'un support minéral poreux, d'au moins un élément métallique choisi parmi le groupe VI B et d'un élément métallique choisi parmi le groupe VIII.
Le premier et le deuxième catalyseurs peuvent être indépendamment choisis parmi un catalyseur composé de cobalt et de molybdène déposé sur un support poreux à base d'alumine et un catalyseur composé de nickel et de molybdène déposé sur un support poreux à base d'alumine.
La charge hydrocarbonée peut être composée d'une coupe dont le point initial d'ébullition est compris entre 100°C et 250°C et lepoint final d'ébullition est compris entre 300 °C et 450 °C.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite ci-après en se référant aux dessins parmi lesquels :
- la figure 1 schématise le principe du procédé selon l'invention,
- les figures 2, 3 et 4 représentent trois modes de réalisation du procédé selon l'invention,
- la figure 5 représente un procédé d'hydrodésulfuration conventionnel,
- la figure 6 représente un schéma d'hydrodésulfuration proche du procédé décrit par le document US5,409,599.
En référence à la figure 1 , la charge hydrocarbonée à traiter arrive par le conduit 1 . La charge hydrocarbonée peut être un kérosène et/ou un gazole. La charge hydrocarbonée peut être une coupe dont le point initial d'ébullition est compris entre 100 °C et 250 °C, de préférence entre 100 °C et 200 ° Cet le point final d'ébullition est compris entre 300 °C et 450 °C, de préférence entre S0°C et 450 °C. La charge hydrocarbonée peut être choisie parmi une coupe de distillation atmosphérique, une coupe produite par une distillation sous vide, une coupe issue du craquage catalytique (couramment nommée "coupe LCO" pour Light Cycle Oil selon la terminologie anglo- saxonne) ou une coupe issue d'un procédé de conversion de charge lourde, par exemple un procédé de cokéfaction, de viscoréduction, d'hydro-conversion de résidus. La charge comporte des composés soufrés, en général à une teneur au moins égale à 1000 ppm poids de soufre, voire plus de 5000 ppm poids de soufre. La charge comporte également des composés azotés, par exemple la charge comporte au moins 50 ppm poids d'azote, voir au moins 100 ppm poids d'azote. La charge est fractionnée en deux coupes dans l'unité SEP pour produire une fraction légère évacuée par le conduit 2 et une fraction lourde évacuée par le conduit 3. L'unité SEP peut mettre en œuvre une colonne de distillation, un ballon de fractionnement entre une phase gazeuse et une phase liquide, une colonne de strippage. La fraction lourde a une température d'ébullition plus élevée que la fraction légère.
On peut opérer la séparation dans l'unité SEP pour effectuer une coupe à un point de coupe compris entre 260 °C et 350 °C, c'està-dire que la fraction légère comporte les composés se vaporisant à une température inférieure à la température du point de coupe et que la fraction lourde comporte les composés se vaporisant à une température supérieure à la température du point de coupe. De préférence, on opère l'unité SEP de façon à ce que le débit volumique normé (c'est-à-dire le débit volumique à T=15°C et P=1 bar) de la fraction lourde circulant dans le conduit 3 soit compris entre 30% et 80% du débit volumique normé de la charge arrivant par le conduit 1 .
La fraction lourde arrivant par le conduit 3 est mélangée avec un flux comportant de l'hydrogène arrivant par le conduit 8. La fraction lourde peut éventuellement être chauffée avant son introduction dans la zone de réaction Z1 . Puis le mélange est introduit dans la zone de réacteur Z1 . La zone de réaction Z1 comporte au moins un catalyseur d'hydrotraitement. Si besoin, avant introduction dans Z1 , le mélange peut être chauffé et/ou détendu.
Le mélange de la fraction lourde et d'hydrogène est introduit dans la zone de réaction Z1 pour être mis en contact avec un catalyseur d'hydrotraitement. La réaction d'hydrotraitement permet de décomposer les impuretés, notamment les impuretés comportant du soufre ou de l'azote et éventuellement d'éliminer partiellement les composés hydrocarbures aromatiques et plus particulièrement les composés hydrocarbures polyaromatiques. La destruction des impuretés conduit à la production d'un produit hydrocarboné hydroraffiné et d'un gaz acide riche en H2S et en NH3, gaz connus pour être inhibiteurs et même dans certains cas poisons des catalyseurs d'hydrotraitement. Cette réaction d'hydrotraitement permet également d'hydrogéner, partiellement ou totalement les oléfines, et partiellement les noyaux aromatiques. Cela permet d'atteindre une teneur en composés hydrocarbures polyaromatiques basse, par exemple une teneur inférieure à 8%poids dans le gazole traité.
La zone de réaction Z1 peut fonctionner avec les conditions opératoires suivantes :
- température comprise entre 3000 C et 4200 C,
- pression comprise entre 30 et 120 bars, - Vitesse Volumétrique Horaire VVH (c'est-à-dire le rapport entre le débit volumique de la charge liquide par rapport au volume de catalyseur) comprise entre 0,5 et 2 h"1
- rapport volumique entre l'hydrogène (en Normaux m3 , c'est-à-dire en m3 à 0°C et 1 bar) et les hydrocarbures (en Standard m3, c'est-à-dire en m3 à 15°C et 1 bar) dans le réacteur H2/HC compris entre 200 et 1000 (Nm3/Sm3)
- de préférence, la vitesse liquide dans la zone de réaction Z1 peut être au minimum de 2 mm/s
Les conditions opératoires de la zone de réaction Z1 et le catalyseur contenu dans la zone Z1 peuvent être choisis pour réduire la teneur en soufre de manière à ce que la teneur en soufre dans l'effluent issu de la zone Z1 soit abaissée à une teneur comprise entre 50 et 500 ppm poids. Ainsi, les réactions d'hydrogénation de composés soufrés les plus faciles à réaliser sont exécutées dans la zone Z1 .
L'effluent issu de la zone de réaction Z1 par le conduit 4 est introduit dans le dispositif de séparation D1 afin de séparer une fraction liquide comportant les hydrocarbures de la fraction lourde et une fraction gazeuse riche en hydrogène, en H2S et en NH3. Par exemple, le dispositif de séparation D1 peut mettre en œuvre un ou plusieurs ballons de séparation entre gaz et liquide, avec éventuellement des échangeurs de chaleur pour condenser partiellement les flux gazeux. La fraction liquide est évacuée de D1 par le conduit 6. La fraction gazeuse est évacuée de D1 par le conduit 5. De plus, afin d'améliorer l'extraction du NH3, au moins une partie de l'effluent issu de la zone Z1 peut être mise en contact avec de l'eau injectée par le conduit 26 dans le dispositif D1 . Dans ce cas, on évacue une fraction liquide aqueuse comportant du NH3 du dispositif D1 par le conduit 6b.
Dans le procédé selon l'invention, la fraction liquide hydrocarbonée évacuée de
D1 comporte les composés soufrés de la fraction lourde les plus réfractaires aux réactions d'hydrogénation. Selon l'invention, on envoie la fraction liquide hydrocarbonée par le conduit 6 dans la zone Z2 pour hydrogéner les composés soufrés les plus réfractaires aux réactions d'hydrogénation.
En détail, la fraction gazeuse riche en H2S et NH3 circulant dans le conduit 5 est introduite dans une unité de lavage aux aminés LA. Dans l'unité LA, la fraction gazeuse riche en H2S et NH3 et contenant de l'hydrogène est mise en contact avec une solution absorbante contenant des aminés. Lors de la mise en contact, les gaz acides sont absorbés par les aminés, ce qui permet de produire un flux enrichi en hydrogène. Les documents FR2907024 et FR2897066 décrivent des procédés de lavage aux aminés qui peuvent être mis en œuvre dans l'unité de lavage aux aminés LA. Le flux enrichi en hydrogène peut éventuellement être mis en contact avec des adsorbants pour retirer notamment l'eau. Le gaz enrichi en hydrogène peut comporter au moins 95% volumique, voire plus de 99% volumique, voire plus de 99,5% volumique d'hydrogène. Le gaz enrichi en hydrogène est évacué de l'unité LA par le conduit 10, éventuellement comprimé par un compresseur et recyclé vers la zone de réaction Z2 en étant mélangé avec la fraction légère arrivant par le conduit 2. Alternativement, le mélange d'hydrogène et de la fraction légère arrivant par le conduit 2 peut être réalisé dans la zone de réaction Z2.
Selon une variante, le gaz enrichi en hydrogène évacué de l'unité LA par le conduit 10a est recyclé dans l'unité de séparation SEP afin de favoriser une séparation par strippage : le flux d'hydrogène entraîne les composés légers de la charge 1 . Dans ce mode de réalisation, une portion importante, plus de 70% voire plus de 95% volumique, de l'hydrogène arrivant par le conduit 10a se retrouve dans la fraction légère circulant dans le conduit 2.
De plus un appoint en hydrogène frais peut être apporté par le conduit 1 1 . Le conduit 1 1 permet d'introduire de l'hydrogène dans la fraction légère circulant dans le conduit 2. Le flux d'hydrogène arrivant par le conduit 1 1 peut être produit par un procédé couramment nommé "vaporeformage de gaz naturel" ou de "steam méthane reforming" pour produire un flux d'hydrogène à partir de vapeur d'eau et de gaz naturel. Le flux d'hydrogène 1 1 peut contenir au moins 95%, voire plus de 98% volumique, voire plus de 99% volumique, d'hydrogène. Le flux d'hydrogène peut être comprimé pour être à la pression opératoire de la zone de réaction Z2. De préférence, selon l'invention, le flux d'hydrogène 1 1 provient d'une source extérieure au procédé, c'est-à-dire qu'il n'est pas composé d'une partie d'un effluent produit par le procédé.
Selon une variante, l'appoint en hydrogène frais peut être apporté par le conduit
1 1 a dans l'unité de séparation SEP afin de favoriser une séparation par strippage : le flux d'hydrogène entraîne les composés légers de la charge 1 . Dans ce mode de réalisation, une portion importante, plus de 70% voire plus de 95% volumique, de l'hydrogène arrivant par le conduit 1 1 a se retrouve dans la fraction légère circulant dans le conduit 2.
La fraction légère comportant de l'hydrogène arrivant par le conduit 2 est éventuellement chauffée puis mélangée avec la fraction liquide hydrocarbonée arrivant par le conduit 6. La pression de la fraction liquide hydrocarbonée évacuée de Z1 par le conduit 6 peut être remontée au moyen de la pompe P1 pour être à la pression de fonctionnement de la zone de réaction Z2. Puis le mélange est introduit dans la zone de réaction Z2. La zone de réaction Z2 comporte au moins un catalyseur d'hydrotraitement. Si besoin, avant introduction dans la zone de réaction Z2, le mélange peut être chauffé et/ou détendu.
Le mélange de la fraction légère et de la fraction liquide hydrocarbonée est introduit dans la zone de réaction Z2 pour être mis en contact avec un catalyseur d'hydrotraitement. La réaction d'hydrotraitement permet de décomposer les impuretés, notamment les impuretés comportant du soufre ou de l'azote et éventuellement d'éliminer partiellement les composés hydrocarbures aromatiques et plus particulièrement les composés hydrocarbures polyaromatiques. La destruction des impuretés conduit notamment à la production d'un produit hydrocarboné hydroraffiné et d'un gaz acide riche en H2S et en NH3. Le fait d'envoyer de l'hydrogène purifié, c'est-à-dire sans ou presque sans composés inhibiteurs, notamment H2S et NH3, de la réaction d'hydrogénation dans la zone Z2 permet de maximiser la pression partielle d'hydrogène dans la zone Z2 afin d'y réaliser les réactions d'hydrogénations les plus difficiles. Le flux d'hydrogène purifié provient de l'unité de lavage aux aminés LA et éventuellement de l'appoint en hydrogène arrivant par le conduit 1 1 . De préférence, selon l'invention, l'intégralité du flux issu de l'unité de lavage aux aminés LA est introduite dans la zone Z2. De préférence selon l'invention, l'hydrogène présent dans la zone Z2 provient uniquement et directement du flux riche en hydrogène issu de l'unité LA et de l'appoint en hydrogène arrivant par le conduit 1 1 .
La zone de réaction Z2 peut fonctionner avec les conditions opératoires suivantes :
- température comprise entre 3000 C et 4200 C,
- pression comprise entre 30 et 120 bars,
- de préférence la pression de Z2 est supérieure à la pression de Z1 , par exemple la pression de Z2 est 0,5 bar, voire 1 bar inférieure à la pression de Z1 , de préférence, la pression de Z2 est supérieure d'une valeur comprise entre 0,5 bar et 5 bar, de préférence entre 1 bar et 3 bar par rapport à la pression de Z1 ,
- Vitesse Volumétrique Horaire VVH comprise entre 0,5 et 2 h"1 ,
- rapport entre l'hydrogène et les hydrocarbures H2/HC compris entre 200 et 1000 (Nm3/Sm3).
L'effluent issu de la zone de réaction Z2 par le conduit 7 est introduit dans le dispositif de séparation D2 afin de séparer une fraction liquide comportant les hydrocarbures et une fraction gazeuse riche en hydrogène et en H2S et en NH3. Par exemple, le dispositif de séparation D2 peut mettre en œuvre un ou plusieurs ballons de séparation, avec éventuellement des échangeurs de chaleurs pour condenser les flux gazeux. La fraction liquide est évacuée de D2 par le conduit 9. Cette fraction liquide constitue le produit du procédé selon l'invention, par exemple le gazole appauvri en composés soufrés, azotés et aromatiques. La fraction gazeuse est évacuée de D2 par le conduit 8. La fraction gazeuse est recyclée par le conduit 8 pour être mélangée avec la fraction lourde circulant dans le conduit 3.
De préférence, selon l'invention, le dispositif de séparation D2 effectue une unique étape de séparation entre gaz et liquide de l'effluent arrivant par le conduit 7. En d'autres termes, D2 met en œuvre uniquement un dispositif de séparation entre gaz et liquide. Puis la fraction gazeuse issue de la séparation dans D2 est envoyée directement dans la zone Z1 , de préférence sans subir de traitement de purification et sans refroidissement. Ainsi la fraction gazeuse issue de D2 contient de l'hydrogène mais également de l'H2S et du NH3. Cependant le fait d'envoyer ces composés H2S et NH3 dans la zone Z1 n'handicape pas le procédé selon l'invention car les réactions d'hydrogénation les plus faciles ont lieu dans la zone Z1 . De préférence, l'intégralité de la fraction gazeuse issue du dispositif de séparation D2 est directement introduite dans la zone Z1 .
Le procédé selon l'invention présente l'avantage de pouvoir intégrer les zones de réaction Z1 et Z2, ainsi que le dispositif de séparation D2, dans un même réacteur comme décrit en référence aux figures 2, 3 et 4.
De plus le procédé selon l'invention permet d'adapter l'étape de séparation dans l'unité SEP, par exemple le point de coupe dans le cas d'une distillation, au cours du cycle et ainsi de réduire la fraction liquide traitée dans la zone de réaction Z1 tout en utilisant les mêmes débits d'hydrogène ce qui aura un effet bénéfique sur les réactions d'hydrogénation. Cette souplesse permet d'adapter le débit traité entre la zone de réaction Z1 et la zone de réaction Z2 en fonction du vieillissement du catalyseur et, donc, de la baisse de performance du catalyseur. De plus, on peut choisir la température de fonctionnement de la zone de réaction Z1 indépendamment de la température de fonctionnement de la zone de réaction Z2. De plus, la pression dans la zone de réaction Z2 peut être supérieure à celle de la zone de réaction Z1 , ce qui est favorable aux réactions d'hydrotraitement et donc positif car c'est dans cette zone Z2 que sont traités les composés les plus réfractaires aux réactions d'hydrotraitement. Les zones de réactions Z1 et Z2 peuvent contenir des catalyseurs de compositions identiques ou des catalyseurs de compositions différentes. De plus dans une zone de réaction, on peut disposer un ou plusieurs lits de catalyseur de composition identique, ou bien plusieurs lits de catalyseur, la composition des catalyseurs étant différente d'un lit à l'autre. De plus, un lit catalytique peut éventuellement être composé de couches de catalyseurs différents.
Les catalyseurs mis en œuvre dans les zones de réaction Z1 et Z2 peuvent comporter en général un support minéral poreux, au moins un métal ou composé de métal du groupe VIII de la classification périodique des éléments (ce groupe comprenant notamment le cobalt, le nickel, le fer, etc..) et au moins un métal ou composé de métal du groupe VIB de ladite classification périodique (ce groupe comprenant notamment le molybdène, le tungstène, etc.).
La somme des métaux ou composés métalliques, exprimé en poids de métal par rapport au poids total du catalyseur fini est souvent comprise entre 0,5 et 50 % poids. La somme des métaux ou composés de métaux du groupe VI II, exprimée en poids de métal par rapport au poids du catalyseur fini est souvent comprise entre 0,5 et 15 % poids, de préférence entre 1 et 10%poids. La somme des métaux ou composés de métaux du groupe VIB, exprimée en poids de métal par rapport au poids du catalyseur fini est souvent comprise entre 2 et 50% poids, de préférence entre 5 et 40% poids.
Le support minéral poreux peut comprendre, de façon non limitative, l'un des composés suivants : alumine, silice, zircone, oxyde de titane, magnésie, ou deux composés choisis parmi les composés précédents, par exemple silice-alumine ou alumine-zircone, ou alumine-oxyde de titane, ou alumine-magnésie, ou trois composés ou plus choisis parmi les composés précédents, par exemple silice-alumine-zircone ou silice- alumine-magnésie. Le support peut également comprendre, en partie ou en totalité, une zéolite. De préférence le catalyseur comporte un support composé d'alumine, ou un support composé principalement d'alumine (par exemple de 80 à 99,99% poids d'alumine). Le support poreux peut comprendre également un ou plusieurs autres éléments ou composés promoteurs, à base par exemple de phosphore, de magnésium, de bore, de silicium, ou comprenant un halogène. Le support peut par exemple comprendre de 0,01 à 20% poids de B203, ou de Si02, ou de P205, ou d'un halogène (par exemple du chlore ou du fluor), ou 0,01 à 20% poids d'une association de plusieurs de ces promoteurs. Des catalyseurs courants sont par exemple des catalyseurs à base de cobalt et molybdène, ou bien de nickel et molybdène, ou bien de nickel et tungstène, sur un support alumine, ce support pouvant comprendre un ou plusieurs promoteurs tels que précédemment cités.
Le catalyseur peut être sous forme oxyde, c'est-à-dire qu'il a subi une étape de calcination après imprégnation des métaux sur le support. Alternativement, le catalyseur peut être sous forme séchée additivée, c'est-à-dire que le catalyseur n'a pas subi d'étape de calcination après imprégnation des métaux et d'un composé organique sur le support.
Les figures 2, 3 et 4 décrivent trois modes de réalisation du procédé décrit de manière générale en référence à la figure 1 , dans lesquels les zones de réaction Z1 et Z2, ainsi que le dispositif de séparation D2, sont regroupés dans un même réacteur R1 . Le réacteur R1 peut être de forme cylindrique dont l'axe est vertical. La zone de réaction Z1 est située en-dessous de la zone Z2 dans le réacteur R1 . Le dispositif de séparation D2 de la figure 1 prend la forme du plateau P sur les figures 2, 3 et 4. Un plateau séparateur P est disposé entre la zone Z2 et la zone Z1 . Le plateau P permet de laisser circuler le gaz depuis la zone Z2 dans la zone Z1 . Par contre le plateau P est étanche au liquide. Ainsi le liquide circulant dans la zone Z2 est recueilli par le plateau P pour être évacué du réacteur R1 par le conduit 9. Le fait de regrouper les zones de réaction Z1 et Z2, ainsi que le dispositif de séparation D2 dans un même réacteur permet de mettre en œuvre le procédé selon l'invention dans un dispositif compact et intégré. Les références des figures 2, 3 et 4 identiques à celles de la figure 1 désignent les mêmes éléments.
En référence à la figure 2, la charge arrivant par le conduit 1 est fractionnée en deux coupes dans la colonne de distillation C. En fond de la colonne C, on évacue un effluent par le conduit 20. Le fond de la colonne C est muni d'un rebouilleur R qui permet de vaporiser une partie de l'effluent évacuée en fond de la colonne C par le conduit 20 et de réintroduire cette partie sous forme vapeur en fond de la colonne C par le conduit 21 . L'autre partie de l'effluent 20 est évacuée par le conduit 3. L'effluent évacué en tête de la colonne C est refroidi dans l'échangeur de chaleur E1 pour être condensé. Une partie des condensais 22 est recyclée en tête de la colonne C à titre de reflux. L'autre partie de l'effluent condensée par l'échangeur E1 est évacuée par le conduit 2.
Ainsi la colonne de distillation C permet de produire une fraction légère évacuée par le conduit 2 et une fraction lourde évacuée par le conduit 3. On peut opérer la colonne de distillation C pour effectuer une coupe à un point de coupe compris entre 260 °C et 350 °C, c'est-à-dire que la fraction légèrecomporte les composés se vaporisant à une température inférieure à la température du point de coupe et que la fraction lourde comporte les composés se vaporisant à une température supérieure à la température du point de coupe. De préférence, on opère la colonne de distillation de façon à ce que le débit volumique normé (c'est-à-dire le débit volumique à T=15°C et P=1 bar) de la fraction lourde circulant dans le conduit 3 soit compris entre 30% et 80% du débit volumique normé de la charge arrivant par le conduit 1 . Pour modifier les conditions opératoires de la colonne C, on peut notamment modifier le débit et/ou la température du flux de rebouillage produit par le rebouilleur R, et/ou on peut modifier le débit et/ou la température du reflux arrivant par le conduit 22.
La fraction lourde arrivant par le conduit 3 est introduite dans la partie basse du réacteur R comportant la zone de réaction Z1 après avoir été éventuellement chauffée dans un échangeur ou dans un four. La fraction lourde est introduite dans le réacteur R entre le plateau P et la zone Z1 . Dans l'espace entre le plateau P et la zone Z1 , la fraction lourde est mélangée avec un flux d'hydrogène, d'H2S et de NH3 arrivant de la zone Z2 via le plateau séparateur P. Puis le mélange traverse la zone de réaction Z1 .
L'effluent issu de la zone Z1 est évacué du réacteur par le conduit 4 pour être introduit dans le ballon séparateur B1 . Le ballon B1 permet de séparer une première fraction liquide hydrocarbonée évacuée par le conduit 23 et une première fraction gazeuse évacué par le conduit 24. La première fraction gazeuse circulant dans le conduit 24 est refroidie par l'échangeur de chaleur E2 pour être partiellement condensée. De préférence, l'échangeur E2 condense la majorité des hydrocarbures contenus dans l'effluent 24 et conserve la majorité de l'hydrogène, du NH3 et de l'H2S sous forme gazeuse. Le flux partiellement condensé issu de E2 est introduit dans le ballon séparateur B2 afin de séparer une deuxième fraction liquide comportant les hydrocarbures et une deuxième fraction gazeuse riche en hydrogène, en NH3 et en H2S. La fraction liquide hydrocarbonée est évacuée de B2 par le conduit 25. La fraction gazeuse est évacuée de B2 par le conduit 5. Les fractions liquides riches en hydrocarbures évacuées par les conduits 23 et 25 sont réunies, pompées par la pompe P1 pour être envoyée par le conduit 6 vers la zone Z2. Eventuellement un flux d'eau peut être ajouté par le conduit 26 à la fraction gazeuse circulant dans le conduit 24 pour permettre la dissolution du NH3 présent dans la fraction gazeuse dans une fraction aqueuse. Dans ce cas, on sépare également dans le ballon B2 la fraction aqueuse contenant le NH3 dissolu, la fraction aqueuse étant évacuée par le conduit 6b.
Eventuellement, une partie ou la totalité de la fraction liquide hydrocarbonée issue de B2 par le conduit 25 est évacuée du procédé par le conduit 25b en tant que coupe désulfurée, par exemple en tant que coupe gazole désulfurée. En effet, selon les conditions opératoires de la zone Z1 , cette fraction liquide hydrocarbonée peut être aux spécifications en terme de soufre, d'azote et de teneur en composés hydrocarbures aromatiques.
Le flux d'hydrogène et de gaz acide circulant dans le conduit 5 est introduit dans l'unité de lavage aux aminés LA. Le flux riche en hydrogène évacué de LA par le conduit 10 est comprimé par le compresseur K1 pour être introduit dans le réacteur R en tête de la zone de réaction Z2. Un appoint d'hydrogène peut être apporté au procédé par le conduit 1 1 pour améliorer la réaction dans la zone Z2. En référence à la figure 2, l'appoint en hydrogène est introduit par le conduit 1 1 aux flux d'hydrogène circulant dans le conduit 10.
La fraction légère arrivant par le conduit 2 est mélangée avec le flux d'hydrocarbures arrivant par le conduit 6 après avoir été éventuellement chauffée dans un échangeur de chaleur et/ou dans un four. Le mélange est introduit dans le réacteur R en tête de la zone de réaction Z2. Dans l'espace situé au dessus de la zone de réaction Z2, les hydrocarbures arrivant par le conduit 6 se mélangent avec l'hydrogène arrivant par le conduit 10. Le mélange d'hydrocarbures et d'hydrogène traverse la zone de réaction Z2. Le gaz et le liquide composant l'effluent en sortie de la zone de réaction Z2 sont séparés par le plateau P : le gaz circule à travers le plateau P pour arriver dans la zone de réaction Z1 , le liquide recueilli par le plateau P est évacué du réacteur R par le conduit 9. Par exemple, on peut mettre en œuvre un plateau séparateur muni d'orifices qui sont prolongés vers le haut par des portions de tube. La partie supérieure des portions de tube sont recouvertes par des chapeaux. Ainsi, le liquide descendant est recueilli par le plateau, la portion tubulaire évitant que le liquide passe à travers les trous. Un conduit passant à travers la paroi du réacteur R1 permet d'évacuer le liquide recueilli sur le plateau. Le gaz descendant passe à travers les tubes et orifices de la zone Z2 à la zone Z1 .
Le schéma de la figure 3 propose une variante du procédé selon l'invention par rapport au mode de réalisation de la figure 2. La modification porte sur l'étape de fractionnement de la charge en une fraction lourde et une fraction légère. Les références de la figure 3 identiques aux références de la figure 2 désignent des éléments identiques.
En référence à la figure 3, on introduit la charge par le conduit 1 en tête de la colonne de distillation C et on introduit le flux d'hydrogène d'appoint par le conduit 1 1 en fond de la colonne C. Pour modifier les conditions opératoires de la colonne C, on peut notamment modifier le débit et/ou la température du flux de rebouillage produit par le rebouilleur R, et/ou on peut modifier la température de la charge introduite par le conduit 1 dans la colonne C. La colonne de distillation C permet de produire une fraction légère évacuée par le conduit 2 et une fraction lourde évacuée par le conduit 3. Dans ce mode de réalisation une portion importante, plus de 70%, voire plus de 95% volumique, de l'hydrogène arrivant par le conduit 1 1 se retrouve dans la fraction légère circulant dans le conduit 2.
Le reste du procédé de la figure 3 est identique au procédé décrit en référence à la figure 2.
Le schéma de la figure 4 propose une variante du procédé selon l'invention par rapport au mode de réalisation de la figure 2. La modification porte sur l'étape de fractionnement de la charge en une fraction lourde et une fraction légère. Les références de la figure 4 identiques aux références de la figure 2 désignent des éléments identiques.
En référence à la figure 4, on introduit la charge par le conduit 1 en tête de la colonne de séparation C et on introduit au moins une partie de flux d'hydrogène produit par l'unité de lavage aux aminés LA par les conduits 10 et 10a en fond de la colonne C. La fraction restant de l'hydrogène arrivant par le conduit 10 est introduit par le conduit 10b au flux sortant en tête de la colonne circulant dans le conduit 2. Pour modifier les conditions opératoires de la colonne C, on peut notamment modifier le débit et/ou la température du flux de rebouillage produit par le rebouilleur R, et/ou on peut modifier la température de la charge introduite par le conduit 1 dans la colonne C, et/ou on peut modifier le débit d'hydrogène issu de l'unité de lavage aux aminés LA introduit dans la colonne de séparation C. La colonne C peut être dépourvue de rebouilleur. La colonne C permet de produire une fraction légère évacuée par le conduit 2 et une fraction lourde évacuée par le conduit 3. L'appoint en hydrogène est introduit par le conduit 1 1 dans la fraction légère circulant dans le conduit 2. Dans ce mode de réalisation une portion importante, plus de 70%, voire plus de 95% volumique, de l'hydrogène arrivant par le conduit 10a se retrouve dans la fraction légère circulant dans le conduit 2.
Le reste du procédé de la figure 4 est identique au procédé décrit en référence à la figure 2.
Les exemples présentés ci-après permettent d'illustrer le fonctionnement du procédé selon l'invention et d'en montrer les avantages.
Dans les exemples présentés, les indices de cétane sont déterminés selon la méthode décrite par la norme ASTM D976. Exemple 1 : Comparaison entre le procédé de la figure 2 selon l'invention et le procédé de la figure 5
Le procédé de la figure 5 correspond au procédé classique dans lequel l'intégralité de la charge gazole est traitée dans un unique réacteur. En référence à la figure 5, la charge arrivant par le conduit 101 est mélangée avec de l'hydrogène arrivant par le conduit 102. Puis, le mélange est chauffé dans l'échangeur de chaleur E101 , puis il est introduit dans le réacteur R101 pour être mis en contact avec un catalyseur d'hydrotraitement. L'effluent issu du réacteur R101 est refroidi par l'échangeur de chaleur E102 pour être partiellement condensé, avant d'être introduit dans le ballon séparateur B101 . Les hydrocarbures liquides sont évacués en fond du ballon B101 par le conduit 103. Le gaz acide contenant de l'hydrogène, de l'H2S et du NH3 est évacué en tête du ballon E101 par le conduit 104 pour être introduit dans l'unité de lavage aux aminés LA1 . Le flux riche en hydrogène obtenu de l'unité LA1 est comprimé puis recyclé par le conduit 102 vers l'échangeur E101 . Le conduit 105 permet d'introduire un appoint en hydrogène dans le conduit 102.
Le réacteur R101 fonctionne avec un catalyseur CoMo sur support alumine de la référence commerciale HR626 de la société Axens.
Les conditions opératoires du réacteur R101 sont les suivantes :
- température de fonctionnement : 355 °C
- pression de fonctionnement : 40 bars
Vitesse Volumine Horaire VVH 1 ,1 h"1
- Le rapport H2/HC du mélange introduit dans R101 est H2/HC = 310 Nm3/Sm3
Le schéma de la figure 2 est mis en œuvre selon les conditions opératoires suivantes :
- le fractionnement dans la colonne C est assuré à une température de 280 °C, ainsi deux tiers poids de la charge forment la fraction lourde qui est envoyée dans Z1 ,
- le partage du volume de catalyseur est réalisé afin de conserver dans les zone Z1 et Z2 la même Vitesse Volumique Horaire globale de : VVH= 1 ,1 h"1
- les zones de réactions Z1 et Z2 comportent du catalyseur CoMo sur support alumine de la référence commerciale HR626 de la société Axens
La charge traitée par les deux procédés est composée à 80% poids de GOSR (c'est-à-dire un gazole issu d'une distillation atmosphérique) et de 20% poids de LCO (c'est-à-dire d'une coupe issue de craquage catalytique). La charge est caractérisée par une densité à 15°C de 865kg/rrf et contient 9000 ppm poids de soufre et 300 ppm poids d'azote.
Le tableau ci-après présente les principaux résultats de fonctionnement des deux procédés:
Figure imgf000018_0001
Ce comparatif montre les avantages recensés pour le procédé selon l'invention : - teneur en soufre abaissée de 10ppm à 3 ppm Les taux d'élimination de l'azote et de déaromatisation (HDCa) sont également supérieurs.
Exemple 2 : Comparaison entre le procédé de la figure 2 selon l'invention et le procédé de la figure 6
Le procédé schématisé par la figure 6 est proche du procédé décrit dans le document US5409599.
En référence à la figure 6, la charge arrivant par le conduit 201 est introduite dans la colonne de séparation C2 pour produire une fraction lourde évacuée par le conduit 203 et une fraction légère évacuée par le conduit 202. La fraction lourde circulant dans le conduit 203 est mélangée avec de l'hydrogène arrivant par le conduit 204 puis est comprimé pour être introduite dans le réacteur R1 contenant un catalyseur d'hydrotraitement. L'effluent hydrotraité est mélangé avec la fraction légère circulant dans le conduit 202. Puis le mélange est introduit dans le réacteur R2 contenant un catalyseur d'hydrotraitement. L'effluent hydrotraité issu de R2 est séparé dans le dispositif D202 en un flux riche en hydrogène évacué par le conduit 204 et un flux hydrocarboné hydrotraité évacué par le conduit 205.
Le schéma de la figure 6 est mis en œuvre selon les conditions opératoires suivantes :
- température de fonctionnement des réacteurs R1 et R2 : 355°C
Vitesse Volumique Horaire dans les réacteurs R1 et R2 : VVH 1 ,1 h"1 au global
- pression de fonctionnement du réacteur R1 : 40 bars
- pression de fonctionnement du réacteur R2 : 40 bars
- les réacteurs R1 et R2 comportent du catalyseur CoMo sur support alumine de la référence commerciale HR626 de la société Axens
Le schéma de la figure 2 est mis en œuvre selon les conditions opératoires suivantes :
- le fractionnement dans la colonne C est assuré à une température de 280 °C, ainsi deux tiers poids de la charge forment la fraction lourde qui est envoyée dans Z1 ,
- le partage du volume de catalyseur est réalisé afin de conserver dans les zone Z1 et Z2 la même Vitesse Volumique Horaire globale de : VVH = 1 , 1 h 1
- les zones de réactions Z1 et Z2 comportent du catalyseur CoMo sur support alumine de la référence commerciale HR626 de la société Axens La charge traitée par les deux procédés est composée à 80% poids de GOSR (c'est-à-dire un gazole issu d'une distillation atmosphérique) et de 20% poids de LCO (c'est-à-dire d'une coupe issue de craquage catalytique). La charge est caractérisée par une densité à 15°C de 865kg/rrf et contient 9000 ppm poids de soufre et 300 ppm poids d'azote.
Figure imgf000020_0001
Ce comparatif montre que le procédé de la figure 2 selon l'invention permet d'atteindre de meilleurs taux d'élimination des composés soufrés, azotés et aromatiques pour un même volume de catalyseur.

Claims

REVENDICATIONS
1) Procédé d'hydrotraitement d'une charge hydrocarbonée comportant des composés soufrés et azotés, dans lequel on effectue les étapes suivantes :
a) on sépare (SEP) la charge hydrocarbonée en une fraction enrichie en composés hydrocarbures lourds et une fraction enrichie en composés hydrocarbures légers, b) on effectue une première étape d'hydrotraitement en mettant en contact la fraction enrichie en composés hydrocarbures lourds et un flux gazeux comportant de l'hydrogène avec un premier catalyseur d'hydrotraitement dans une première zone de réaction (Z1 ) pour produire un premier effluent désulfuré comportant de l'hydrogène, de l'H2S et du NH3,
c) on sépare (D1 ) le premier effluent en une première fraction gazeuse comportant de l'hydrogène, de l'H2S et du NH3, et une première fraction liquide,
d) on purifie (LA) la première fraction gazeuse pour produire un flux enrichi en hydrogène,
e) on mélange la fraction enrichie en composés hydrocarbures légers avec la première fraction liquide obtenue à l'étape c) pour produire un mélange, f) on effectue une deuxième étape d'hydrotraitement en mettant en contact le mélange obtenu à l'étape e) et au moins une partie du flux enrichi en hydrogène produit à l'étape d) avec un deuxième catalyseur d'hydrotraitement dans une deuxième zone de réaction (Z2) pour produire un deuxième effluent désulfuré comportant de l'hydrogène, du NH3 et de l'H2S,
g) on sépare (D2) le deuxième effluent en une deuxième fraction gazeuse comportant de l'hydrogène, de l'H2S et du NH3 et une deuxième fraction liquide, h) on recycle au moins une partie de la deuxième fraction gazeuse comportant de l'hydrogène, de l'H2S et du NH3 à l'étape b) en tant que flux gazeux comportant de l'hydrogène.
2) Procédé selon la revendication 1 dans lequel, les étapes b) f) g) et h) sont réalisées dans un réacteur, la première zone de réaction (Z1 ) et la deuxième zone de réaction (Z2) étant disposées dans ledit réacteur, la zone de réaction (Z1 ) étant séparée de la zone de réaction (Z2) par un plateau étanche (P) au liquide et perméable au gaz, la deuxième fraction liquide étant recueillie par ledit plateau (P), la deuxième fraction gazeuse circulant de la première zone (Z1 ) à la deuxième zone (Z2) à travers ledit plateau (P).
3) Procédé selon l'une des revendications 1 et 2, dans lequel on effectue un appoint en hydrogène de manière à réaliser la deuxième étape d'hydrotraitement en présence dudit appoint en hydrogène, ledit appoint en hydrogène comportant au moins 95% volumique d'hydrogène.
4) Procédé selon l'une des revendications 1 à 3, dans lequel on met en œuvre la première zone de réaction (Z1 ) avec les conditions suivantes :
- température comprise entre 3000 C et 4200 C,
- pression comprise entre 30 et 120 bars,
Vitesse Volumétrique Horaire VVH comprise entre 0,5 et 4 h"1 ,
- rapport entre l'hydrogène et les composés hydrocarbures compris entre 200 et 1000 Nm3/Sm3
et on met en œuvre la deuxième zone de réaction (Z2) avec les conditions suivantes :
- température comprise entre 3000 C et 4200 C,
- pression comprise entre 30 et 120 bars,
Vitesse Volumétrique Horaire VVH comprise entre 0,5 et 4 h"
- rapport entre l'hydrogène et les composés hydrocarbures compris entre 200 et 1000 Nm3/Sm3.
5) Procédé selon l'une des revendications 1 à 4, dans lequel l'étape d) met en œuvre une étape de lavage aux aminés (LA) pour produire ledit flux enrichi en hydrogène.
6) Procédé selon l'une des revendications 1 à 4, dans lequel à l'étape c), on sépare le premier effluent en un premier flux liquide et un premier flux gazeux, on condense partiellement par refroidissement ledit premier flux gazeux et on sépare le premier flux partiellement condensé en un deuxième flux liquide et un deuxième flux gazeux, et dans lequel à l'étape d) on met en contact le premier et le deuxième flux gazeux avec une solution absorbante comportant des aminés (LA) pour produire ledit flux enrichi en hydrogène. 7) Procédé selon la revendication 6, dans lequel avant d'effectuer l'étape e) on met en contact ledit flux enrichi en hydrogène avec une masse de captation pour réduire la teneur en eau dudit flux enrichi en hydrogène. 8) Procédé selon l'une des revendications 1 à 7, dans lequel on effectue l'étape a) dans une colonne de distillation (C).
9) Procédé selon la revendication 8, dans lequel on introduit un flux d'hydrogène dans la colonne (C) et on évacue en tête de la colonne la fraction enrichie en composés hydrocarbonés légers et comportant de l'hydrogène, le flux d'hydrogène étant choisi parmi ledit flux enrichi en hydrogène et ledit appoint en hydrogène.
10) Procédé selon l'une des revendications 1 à 9, dans lequel le premier catalyseur et le deuxième catalyseur sont indépendamment choisis parmi les catalyseurs composés d'un support minéral poreux, d'au moins un élément métallique choisi parmi le groupe VI B et d'un élément métallique choisi parmi le groupe VIII.
11) Procédé selon la revendication 10, dans lequel le premier et le deuxième catalyseurs sont indépendamment choisis parmi un catalyseur composé de cobalt et de molybdène déposé sur un support poreux à base d'alumine et un catalyseur composé de nickel et de molybdène déposé sur un support poreux à base d'alumine.
12) Procédé selon l'une des revendications 1 à 1 1 , dans lequel la charge hydrocarbonée est composée d'une coupe dont le point initial d'ébullition est compris entre 100°C et 250 °C et le point final d'ébullition est compris entre 300 °C et 450 °C.
PCT/EP2014/073907 2013-11-28 2014-11-06 Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène. WO2015078674A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2929144A CA2929144A1 (fr) 2013-11-28 2014-11-06 Procede d'hydrotraitement d'un gazole dans des reacteurs en serie avec recyclage d'hydrogene
CN201480065067.1A CN105793396A (zh) 2013-11-28 2014-11-06 具有氢气再循环的用于在一系列反应器中加氢处理瓦斯油的方法
EP14802334.4A EP3074485A1 (fr) 2013-11-28 2014-11-06 Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène.
US15/039,878 US10072221B2 (en) 2013-11-28 2014-11-06 Process for the hydrotreatment of a gas oil in a series of reactors with recycling of hydrogen
RU2016125275A RU2666589C1 (ru) 2013-11-28 2014-11-06 Способ гидроочистки газойля в последовательных реакторах с рециркуляцией водорода

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361803 2013-11-28
FR1361803A FR3013722B1 (fr) 2013-11-28 2013-11-28 Procede d'hydrotraitement d'un gazole dans des reacteurs en serie avec recyclage d'hydrogene.

Publications (1)

Publication Number Publication Date
WO2015078674A1 true WO2015078674A1 (fr) 2015-06-04

Family

ID=50179744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/073907 WO2015078674A1 (fr) 2013-11-28 2014-11-06 Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène.

Country Status (9)

Country Link
US (1) US10072221B2 (fr)
EP (1) EP3074485A1 (fr)
CN (1) CN105793396A (fr)
CA (1) CA2929144A1 (fr)
FR (1) FR3013722B1 (fr)
RU (1) RU2666589C1 (fr)
SA (1) SA516371139B1 (fr)
TW (1) TWI651407B (fr)
WO (1) WO2015078674A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533141B2 (en) 2017-02-12 2020-01-14 Mag{tilde over (e)}mã Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US11028326B2 (en) * 2018-01-30 2021-06-08 Uop Llc Process for hydrotreating a residue stream with hydrogen recycle
AU2021353043A1 (en) 2020-09-30 2023-04-20 Neste Oyj Method for producing renewable fuel
FR3135090A1 (fr) * 2022-04-29 2023-11-03 IFP Energies Nouvelles Procede de traitement d’huile de pyrolyse de plastiques incluant une etape de recyclage d’h2s

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265610A (en) * 1963-12-18 1966-08-09 Inst Francais Du Petrole Combined process for hydrocracking of hydrocarbons
US3902991A (en) * 1973-04-27 1975-09-02 Chevron Res Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
US4116816A (en) * 1977-03-01 1978-09-26 Phillips Petroleum Company Parallel hydrodesulfurization of naphtha and distillate streams with passage of distillate overhead as reflux to the naphtha distillation zone
EP1849850A1 (fr) * 2006-04-24 2007-10-31 Ifp Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637485A (en) * 1969-09-26 1972-01-25 Chevron Res Hydrocarbon feed stripping with gas stripped from the reactor effluent
US4021330A (en) * 1975-09-08 1977-05-03 Continental Oil Company Hydrotreating a high sulfur, aromatic liquid hydrocarbon
US4469590A (en) * 1983-06-17 1984-09-04 Exxon Research And Engineering Co. Process for the hydrogenation of aromatic hydrocarbons
US5409599A (en) * 1992-11-09 1995-04-25 Mobil Oil Corporation Production of low sulfur distillate fuel
US5958218A (en) * 1996-01-22 1999-09-28 The M. W. Kellogg Company Two-stage hydroprocessing reaction scheme with series recycle gas flow
US5705052A (en) * 1996-12-31 1998-01-06 Exxon Research And Engineering Company Multi-stage hydroprocessing in a single reaction vessel
EP1151061B1 (fr) * 1999-01-11 2003-11-26 Texaco Development Corporation Integration de desasphaltage, de gazeification et d'hydrotraitement par solvant
US6183628B1 (en) * 1999-03-19 2001-02-06 Membrane Technology And Research, Inc. Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons
US7247235B2 (en) * 2003-05-30 2007-07-24 Abb Lummus Global Inc, Hydrogenation of middle distillate using a counter-current reactor
CN1261543C (zh) * 2003-06-30 2006-06-28 中国石油化工股份有限公司 一种提高柴油十六烷值同时降低其芳烃的方法
CN100587038C (zh) * 2006-01-27 2010-02-03 中国石油化工股份有限公司 一种生产优质催化裂化原料的加氢方法
CN102041072B (zh) * 2009-10-21 2014-05-21 中国石油化工股份有限公司 一种柴油加氢工艺方法
CN104039932B (zh) * 2011-11-04 2017-02-15 沙特阿拉伯石油公司 具有集成中间氢分离和纯化的加氢裂化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265610A (en) * 1963-12-18 1966-08-09 Inst Francais Du Petrole Combined process for hydrocracking of hydrocarbons
US3902991A (en) * 1973-04-27 1975-09-02 Chevron Res Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
US4116816A (en) * 1977-03-01 1978-09-26 Phillips Petroleum Company Parallel hydrodesulfurization of naphtha and distillate streams with passage of distillate overhead as reflux to the naphtha distillation zone
EP1849850A1 (fr) * 2006-04-24 2007-10-31 Ifp Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533141B2 (en) 2017-02-12 2020-01-14 Mag{tilde over (e)}mã Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US10563132B2 (en) 2017-02-12 2020-02-18 Magēmā Technology, LLC Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization
US10563133B2 (en) 2017-02-12 2020-02-18 Magëmä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US10584287B2 (en) 2017-02-12 2020-03-10 Magēmā Technology LLC Heavy marine fuel oil composition
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US10655074B2 (en) 2017-02-12 2020-05-19 Mag{hacek over (e)}m{hacek over (a)} Technology LLC Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil
US10836966B2 (en) 2017-02-12 2020-11-17 Magēmā Technology LLC Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil
US11136513B2 (en) 2017-02-12 2021-10-05 Magëmä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11203722B2 (en) 2017-02-12 2021-12-21 Magëmä Technology LLC Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization
US11441084B2 (en) 2017-02-12 2022-09-13 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US11447706B2 (en) 2017-02-12 2022-09-20 Magēmā Technology LLC Heavy marine fuel compositions
US11530360B2 (en) 2017-02-12 2022-12-20 Magēmā Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US11795406B2 (en) 2017-02-12 2023-10-24 Magemä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials

Also Published As

Publication number Publication date
FR3013722B1 (fr) 2015-12-04
US10072221B2 (en) 2018-09-11
EP3074485A1 (fr) 2016-10-05
TWI651407B (zh) 2019-02-21
FR3013722A1 (fr) 2015-05-29
RU2666589C1 (ru) 2018-09-18
SA516371139B1 (ar) 2019-04-04
CN105793396A (zh) 2016-07-20
RU2016125275A (ru) 2018-01-10
CA2929144A1 (fr) 2015-06-04
US20170029723A1 (en) 2017-02-02
TW201529827A (zh) 2015-08-01

Similar Documents

Publication Publication Date Title
EP3237578B1 (fr) Procédé et dispositif pour la reduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage
EP3074485A1 (fr) Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène.
EP1451269B1 (fr) Procede d'hydrotraitement de distillats moyens en deux etapes comprenant deux boucles de recyclage d'hydrogene
WO2003044131A1 (fr) Procede d'hydrotraitement d'une charge hydrocarbonee en deux etapes comprenant un fractionnement intermediaire par stripage avec rectification
EP3339400B1 (fr) Procede et dispositif d'hydrocraquage avec reduction des composes polynucleaires aromatiques
FR3067036A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d'un distillat sous vide, une etape d'hydrotraitement de distillat sous vide
EP1666568A1 (fr) Procédé de désulfuration d'une coupe hydrocarbonée en lit mobile simulé
EP1063275B1 (fr) Procédé d'hydrotraitement d'un distillat moyen dans deux zones comprenant une zone intermédiaire de stripage
EP2886629B1 (fr) Procédé d'hydrodesulfuration de coupes d'hydrocarbures
WO2014013154A1 (fr) Procede de desulfuration d'une essence
FR2847260A1 (fr) Procede de desulfuration comprenant une etape d'hydrogenation selective des diolefines et une etape d'extraction des composes soufres
WO2015078675A1 (fr) Procédé d'hydrotraitement d'un gazole dans des réacteurs en parallèle avec recyclage d'hydrogène
WO2016102298A1 (fr) Procede et dispositif de reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
EP3237576B1 (fr) Procédé et dispositif de réduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage
EP3124577A1 (fr) Optimisation de l'utilisation d'hydrogene pour l'hydrotraitement de charges hydrocarbonees
EP1312661B1 (fr) Procédé de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre
WO2015161937A1 (fr) Procédé d'hydrotraitement dans des reacteurs co-courant ascendant presentant un contre-courant d'ensemble
EP4105300A1 (fr) Procédé d hydrocraquage
WO2015161936A1 (fr) Procédé d'hydrotraitement dans des reacteurs co-courant descendant presentant un contre-courant d'ensemble
BE582551A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14802334

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014802334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014802334

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2929144

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15039878

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016125275

Country of ref document: RU

Kind code of ref document: A