EP3237578B1 - Procédé et dispositif pour la reduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage - Google Patents

Procédé et dispositif pour la reduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage Download PDF

Info

Publication number
EP3237578B1
EP3237578B1 EP15817223.9A EP15817223A EP3237578B1 EP 3237578 B1 EP3237578 B1 EP 3237578B1 EP 15817223 A EP15817223 A EP 15817223A EP 3237578 B1 EP3237578 B1 EP 3237578B1
Authority
EP
European Patent Office
Prior art keywords
plate
line
column
withdrawn
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15817223.9A
Other languages
German (de)
English (en)
Other versions
EP3237578A1 (fr
Inventor
Thibault SAUGE
Roberto GONZALEZ LLAMAZARES
Jérôme Bonnardot
Jacinthe Frecon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axens SA
Original Assignee
Axens SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axens SA filed Critical Axens SA
Publication of EP3237578A1 publication Critical patent/EP3237578A1/fr
Application granted granted Critical
Publication of EP3237578B1 publication Critical patent/EP3237578B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/22Non-catalytic cracking in the presence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/006Distillation of hydrocarbon oils of waste oils other than lubricating oils, e.g. PCB's containing oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects

Definitions

  • the invention relates to a method and a device for reducing the concentration of heavy polycyclic aromatic compounds (HPNA) in the recycling loop of the hydrocracking units.
  • HPNA heavy polycyclic aromatic compounds
  • Hydrocracking processes are commonly used in refineries to convert hydrocarbon mixtures into easily recoverable products. These methods can be used to transform light cuts such as, for example, lighter-weighted species (LPG). However, they are usually used instead to convert heavier loads (such as heavy petroleum or synthetic cuts, for example vacuum distillation gas oils or effluents from a Fischer-Tropsch unit) into gasoline or naphtha, kerosene, diesel fuel. . This type of process is also used to produce oils.
  • LPG lighter-weighted species
  • part of the unconverted feed is recycled either to the reaction section in which it has already passed or to an independent reaction section.
  • This induces an undesirable accumulation of the polycyclic aromatic compounds, formed in the reaction section during the cracking reactions, in the recycling loop.
  • These compounds poison the hydrocracking catalyst, which reduces the catalytic activity as well as the cycle time. They can also precipitate or settle in the cold parts of the unit, thus generating malfunctions.
  • HPNA compounds are defined as polycyclic or polynuclear aromatic compounds which thus comprise several fused rings or benzene rings. They are usually called HPA, Heavy Polynuclear Aromatics according to the English terminology, PNA or HPNA.
  • the so-called heavy HPNAs comprise at least 4 or even at least 6 benzene rings in each molecule.
  • Compounds with less than 6 cycles can be more easily hydrogenated and are therefore less likely to poison catalysts.
  • the patent US 4,961,839 discloses a hydrocracking process for increasing pass conversion using high hydrogen flow rates in the reaction zone, vaporizing a large proportion of the hydrocarbons fed to the product separation column and concentrating the polycyclic aromatic compounds in the reaction zone. a small heavy fraction that is extracted from this column. In this process, a heavy fraction is drawn off at a plateau above the feed point and below the diesel distillate withdrawal point; this heavy fraction is recycled to hydrocracking. The bottom of the column (residue) is recycled directly into the fractionation column.
  • This type of technique certainly allows a reduction in the concentration of HPNA in the recycling loop to the reactor, but leads to significant yield losses and significant costs related to the amounts of hydrogen.
  • Patent applications and WO 2012/052042 and WO 2012/052116 (corresponding to US-2013/0220885 ) describe a hydrocracking process in which the bottom of the Fractionation column (residue) is stripped countercurrently in a stripping column.
  • the light fraction obtained after stripping is returned to the fractionation column and the heavy fraction resulting from the stripping is at least partially purged, the other part of this fraction can be recycled to the stripping column.
  • the method of the invention allows not only to concentrate the polycyclic aromatic hydrocarbons in unconverted fractions (residues) in order to eliminate them and to reduce the amount of residue purged to increase the conversion, but also to improve the yield of recoverable products. (For example avoiding over-cracking of diesel) and / or the catalytic cycle time compared to previous methods.
  • the invention also has the advantage of considerably reducing the amount present in hydrocracking of HPNA having at least 6 aromatic rings, which are the most refractory to the reactions involved during hydrocracking.
  • the process according to the invention is based on the introduction of a lateral withdrawal below the feed point of the column.
  • the separation of the liquid preferably takes place by associating a stripper with the fractionation column, which strippes said fraction withdrawn.
  • a part of the flow present at a plateau located below the supply tray and close to said feed tray is withdrawn from the column, and preferably at the level of the plateau closest to the plateau. power.
  • said stream withdrawn can be recycled in the hydrocracking step directly (ie without treatment) or after separation of the gases (for example by adsorption, stripping ...) or after further separation (distillation ).
  • said withdrawn stream is recycled directly to the hydrocracking stage. It will be noted that, according to the invention and preferably, there is no recycling of said stream withdrawn into the column.
  • the separated gaseous effluent is recycled to the column at the level of the plateau closest to the plateau from which said flow has been withdrawn.
  • the stream withdrawn at the plateau (I) or plateau (II) has an HPNA concentration of less than 500 ppm by weight, preferably less than 350 ppm by weight and very preferably less than 200 ppm by weight. It most often has a proportion of at least 70% by weight of unconverted hydrocarbons, preferably of at least 80% by weight of unconverted hydrocarbons and very preferably of at least 90% by weight of unconverted hydrocarbons.
  • the process operates in the presence of a stripping gas injected into the fractionation step.
  • a stripping gas injected into the fractionation step.
  • it is water vapor, preferably at a pressure of between 0.2 and 1.5 MPa.
  • the stripping gas injected into the external stripping step is preferably water vapor, preferably at a pressure of between 0.2 and 1.5 MPa.
  • the hydrocracking step conventionally takes place at a temperature greater than 200 ° C., a pressure greater than 1 MPa, a space velocity of 0.1 to 20 h -1 , and the volume ratio H 2 / hydrocarbons is 80 at 5000NI / I.
  • the invention also relates to an installation which is advantageously used to carry out the method according to the invention.
  • the installation comprises at least one line (18) for recycling all of said stream withdrawn directly into the hydrocracking stage.
  • the line (18) comprises a gas separation unit located before the hydrocracking section. This unit may for example be an adsorber or a stripper or a distillation column.
  • the charges are defined by their boiling point T5 (as explained below).
  • the conversion of the charge is defined with respect to the cut point of the residue.
  • the unconverted fraction is called residue.
  • the converted fraction comprises the desired fractions (objectives) by the refiner.
  • the purged part refers to a part that leaves the process.
  • the figure 1 represents the prior art.
  • the configuration 2c of the figure 2 represents the prior art.
  • the configuration 2d 2d of the figure 2 represents the invention.
  • the Figures 2c and 2d understand each other in combination with the figure 1 , and more specifically with the essential elements of the figure 1 cited in the claims.
  • the figure 1 shows a hydrocracking process scheme according to the prior art. For ease of reading, the description of the implementation conditions is given later in the text.
  • the feed (line 1) composed of hydrocarbons of petroleum origin and / or synthetic hydrocarbons of mineral or biological source is mixed with hydrogen supplied by lines (5) (recycle) and / or (6) ( make-up hydrogen) via the compressor (7) and the line (8).
  • the charge / hydrogen mixture thus produced is sent to the hydrocracking section (2).
  • This section includes one or more reactors in fixed bed or bubbling bed.
  • each reactor may comprise one or more catalyst beds hydrocracking hydrocarbons of the lighter hydrocarbon feedstock.
  • the hydrocracking section comprises one or more bubbling bed reactors, a stream comprising liquid from the solid and gas flows vertically through a reactor containing a catalyst bed. The catalyst in the bed is kept in random motion in the liquid. The gross volume of the catalyst dispersed through the liquid is therefore greater than the volume of the catalyst at standstill.
  • a mixture of hydrocarbon liquid and hydrogen is passed through the bed of catalyst particles at such a rate that the particles are put into operation. random movement and thus suspended in the liquid.
  • the expansion of the catalyst bed in the liquid phase is controlled by the flow of recycle liquid so that in the equilibrium state, most of the catalyst does not exceed a defined level in the reactor.
  • the catalysts are in the form of extrudates or balls, preferably of diameter between 0.8 mm and 6.5 mm in diameter.
  • the reactors used in a bubbling bed process are generally designed with a central vertical recirculation conduit which serves as a flow tube for liquid recycle from the catalyst free zone above the bubbling bed catalyst via a pump. recycle that recycle the liquid in the catalytic zone.
  • the liquid recycle allows both to maintain uniformity of temperature in the reactor and to maintain the catalyst bed in suspension.
  • the hydrocracking section may be preceded or include one or more beds of hydrotreatment catalyst (s).
  • the effluent of the hydrocracking section (2) is sent via line (3) to a separation zone (4) making it possible to recover firstly a gaseous fraction (5) and a liquid fraction (9).
  • the gaseous fraction (5) contains excess hydrogen which has not reacted in the reaction section (2). It is generally combined with fresh hydrogen arriving via the line (6) to be recycled as indicated above.
  • the liquid fraction (9) is heated by any means (10), for example an oven optionally associated with an exchanger (not shown), in order to be at least partially vaporized, before feeding the fractionation section (12) via the line (11).
  • the fractionation section (12) comprises one or more distillation columns equipped with trays and internals for separating different recoverable fractions (distillates) which are withdrawn by means of lines (13) and (14), plus possibly other side rackings. These sections have ranges of boiling points located for example in the range of gasoline, kerosene and gas oil.
  • An injection of stripping gas may be provided via the line (19). This line is located between the hydrocracked effluent feed tray (line 11) and the residue discharge point (line 15a).
  • Part of the residue can be purged via line (16), another portion recycled to the hydrocracking section through lines (2) and (18) and another portion recycled to the fractionation section (line 15b).
  • a part (line 15b) of the residue of the line (15a) is mixed with the feed (line 9) upstream of the furnace (10) of the fractionation section and recycled as a mixture (line 11) with this cut towards the splitting section.
  • the purge (16) allows in particular to eliminate at least partially HPNA compounds which without this purge could accumulate in the recycling loop.
  • Zone E traced on the figure 1 delimits the modified part in the context of the present invention.
  • the fractionation section (12) comprises a single fractionation column. However, the invention could be carried out with several fractionating columns and at least one column would then comprise a zone E according to the invention.
  • a stripping gas is injected into the column (line 19).
  • the injection point is located below the feed tray and above the residue discharge point. It is preferably close to the point of evacuation of the residue at the bottom of the column.
  • the Figure 2c is different from the figure 1 notably in that a lateral withdrawal (line 20) is added at one of the trays of the column.
  • One or more rackings can be set up at the level of the column. It is thus withdrawn part of the flow present at the level of at least one plate (I).
  • This tray may be the feed tray, in a preferred mode.
  • the tray (I) shown is the feed tray.
  • This withdrawal (line 20) is preferably at a plateau near the feed tray, and preferably at the plateau closest to the feed tray.
  • the lateral withdrawal (line 20) is positioned in such a way that the withdrawn stream has a low HPNA concentration of less than 500 ppm by weight, preferably less than 350 ppm by weight and very preferably less than 200 ppm by weight, and most often a significant proportion of hydrocarbons not converted in the hydrocracking section by at least 70% by weight of unconverted hydrocarbon, preferably at least 80% by weight of nonhydrocarbons converted and very preferably at least 90% by weight of unconverted hydrocarbons.
  • racking (line 20) is preferably positioned at the level of the feed tray or below the feed tray, and in the latter case, preferably at the plateau closest to the tray. power.
  • All or part of said withdrawn stream is recycled to the hydrocracking step. It can be recycled directly (i.e. without treatment) or after any gas separation. Preferably, it is recycled directly into the hydrocracking step.
  • the residue is not recycled in the column or in the hydrocracking step. It is completely purged. Note also that the stream withdrawn from the tray (I) is not recycled in the column (12).
  • FIG. 2d represents an embodiment of the invention with the addition of a second lateral withdrawal at a plateau (II) different from the plateau (I).
  • One or more rackings can be set up at the level of the column.
  • This withdrawal (line 21) is preferably close to the feed tray.
  • a portion of the flow present at the upper tray closest to the feed tray is withdrawn from the column.
  • the lateral withdrawal (line 21) is positioned in such a way that the withdrawn stream has a low HPNA concentration of less than 500 ppm by weight, preferably less than 350 ppm by weight and very preferably less than 200 ppm by weight, and most often a significant proportion of unconverted hydrocarbons in the hydrocracking section of at least 70 wt% hydrocarbon unconverted, preferably at least 80% by weight unconverted hydrocarbons and very preferably at least 90% by weight unconverted hydrocarbons.
  • the racking (line 21) is preferably positioned at the level of the feed tray or above the feed tray, and in the latter case, preferably at the plateau closest to the tray. power.
  • All or part of said withdrawn stream is recycled to the column after separation of the liquid.
  • the stream withdrawn (line 21) is stripped in an external stripping step (stripper 25) by a stripping gas (brought by the line 26). All or part of the separated gaseous effluent is recycled (line 22) in the column; according to figure 2d the entire gaseous effluent is recycled.
  • the gaseous effluent is recycled to the column above which the flow has been withdrawn.
  • better performances are obtained when the gaseous effluent is recycled to the column at the level of the plateau closest to the plateau from which the flow has been withdrawn.
  • liquid effluent (line 23) is recycled in the hydrocracking step. It can be recycled directly (i.e. without treatment) or after any gas separation. Preferably, it is recycled directly into the hydrocracking step.
  • Said lateral stripper (25) operates with the injection of a stripping gas (line 26).
  • This gas is preferably steam, preferably low-pressure steam, preferably at a pressure of between 0.2 and 1.5 MPa.
  • the embodiment of the figure 2d leads to better performance than the embodiment of the Figure 2c .
  • fillers can be processed by the hydrocracking processes. Generally they contain at least 10% volume, usually at least 20% volume, and often at least 80% volume of compounds boiling above 340 ° C.
  • the feedstock may be, for example, LCOs (light cycle oil - light gas oils from a catalytic cracking unit), atmospheric distillates, vacuum distillates, for example gas oils derived from the direct distillation of the crude or from conversion units such as FCC, coker or visbreaking, as well as feedstocks from aromatics extraction units of lubricating oil bases or from solvent dewaxing of lubricating oil bases, or process distillates.
  • LCOs light cycle oil - light gas oils from a catalytic cracking unit
  • atmospheric distillates for example gas oils derived from the direct distillation of the crude or from conversion units such as FCC, coker or visbreaking, as well as feedstocks from aromatics extraction units of lubricating oil bases or from solvent dewaxing of lubricating oil bases, or process distillates.
  • RAT atmospheric residues
  • RSV vacuum residues
  • deasphalted oils or the charge can be a deasphalted oil, effluents d a Fisher-Tropsch unit or any mixture of the aforementioned fillers.
  • RAT atmospheric residues
  • RSV vacuum residues
  • deasphalted oils or the charge can be a deasphalted oil, effluents d a Fisher-Tropsch unit or any mixture of the aforementioned fillers.
  • the feeds have a T5 boiling point above 150 ° C (i.e. 95 percent of the compounds present in the feed have a boiling point above 150 ° C).
  • the T5 point is generally about 150 ° C.
  • the T5 is generally greater than 340 ° C., or even greater than 370 ° C.
  • the usable fillers are therefore in a wide range of boiling points. This range generally extends from diesel to VGO, passing through all possible mixtures with other loads, for example the LCO.
  • the nitrogen content of the feedstocks treated in the hydrocracking processes is usually greater than 500 ppm by weight, generally between 500 and 10,000 ppm by weight, more generally between 700 and 4500 ppm by weight and even more generally between 800 and 800 ppm by weight. and 4500 ppm weight.
  • the sulfur content of the feedstocks treated in the hydrocracking processes is usually between 0.01 and 5% by weight, generally between 0.2 and 4% by weight and even more generally between 0.5 and 3%. weight.
  • the charge may optionally contain metals.
  • the cumulative nickel and vanadium content of the feeds treated in the hydrocracking processes is preferably less than 10 ppm by weight, preferably less than 5 ppm by weight and even more preferably less than 2 ppm by weight.
  • the asphaltenes content is generally less than 3000 ppm by weight, preferably less than 1000 ppm by weight, more preferably less than 300 ppm by weight.
  • the feedstock contains resins and / or asphaltenes-type compounds
  • the catalysts or guard beds used are in the form of spheres or extrudates. Any other form can be used. Among the particular forms possible without this list being exhaustive: hollow cylinders, hollow rings, Raschig rings, serrated hollow cylinders, crenellated hollow cylinders, so-called pentaring carts, multi-hole cylinders, etc.
  • These catalysts may have been impregnated with an active phase or not.
  • the catalysts are impregnated with a hydro-dehydrogenation phase.
  • the CoMo or NiMo phase is used.
  • These catalysts may have macroporosity.
  • the hydrocracking / hydroconversion or hydrotreating catalyst is generally brought into contact, in the presence of hydrogen, with the charges described above, at a temperature above 200 ° C., often between 250 and 480 ° C., advantageously between 320 and 450 ° C, preferably between 330 and 435 ° C, under a pressure greater than 1 MPa, often between 2 and 25 MPa, preferably between 3 and 20 MPa, the space velocity being between 0.1 and 20h - 1 and preferably between 0.1 and 6 h -1, more preferably between 0.2 and 3 h -1 and the quantity of hydrogen introduced being such that the volume ratio of liters of hydrogen / liter of hydrocarbon is between 80 and 5000 NI / I and most often between 100 and 3000 NI / I.
  • the main objectives are:
  • hydrocracking / hydroconversion processes using the catalysts according to the invention cover the pressure and conversion ranges from mild hydrocracking to high pressure hydrocracking.
  • mild hydrocracking hydrocracking leading to moderate conversions, generally less than 40 percent, and operating at low pressure, generally between 2 MPa and 9 MPa.
  • the hydrocracking catalyst can be used alone, in one or more fixed bed catalytic beds, in one or more reactors, in a so-called one-step hydrocracking scheme, with or without liquid recycling of the unconverted fraction, optionally in combination with a hydrorefining catalyst located upstream of the hydrocracking catalyst.
  • Hydrocracking can be operated at high pressure (at least 10 MPa).
  • the hydrocracking can be carried out according to a so-called two-step hydrocracking scheme with intermediate separation between the two reaction zones, in a given step, the hydrocracking catalyst can be used in one or in both reactors in association or not with a hydrorefining catalyst located upstream of the hydrocracking catalyst.
  • the hydrocracking can be operated according to a second variant, called in one step.
  • This variant generally comprises in the first place a deep hydrorefining which aims to carry out extensive hydrodenitrogenation and hydrodesulfurization of the feed before it is sent to the hydrocracking catalyst itself, in particular in the case where this it comprises a zeolite.
  • This extensive hydrorefining of the feed results in a limited conversion of this feed into lighter fractions. The conversion, which remains insufficient, must therefore be completed on the more active hydrocracking catalyst.
  • the hydrocracking section may contain one or more identical or different catalyst beds.
  • amorphous basic solids for example alumina or silica-aluminas
  • basic zeolites optionally added with at least one Group VIII hydrogenating metal and preferably also containing at least one Group VIB metal. These basic zeolites are composed of silica, alumina, and one or more exchangeable cations such as sodium, magnesium, calcium or rare earths.
  • the catalyst is generally composed of a crystallized zeolite on which small amounts of a Group VIII metal are deposited, and also more preferably of a Group VIB metal.
  • the zeolites that can be used are natural or synthetic and may be chosen, for example, from X, Y or L zeolites, faujasite, mordenite, erionite or chabasite.
  • the hydrocracking can be carried out in one or more bubbling-bed reactors, with or without liquid recycling of the unconverted fraction, optionally in combination with a hydrorefining catalyst located in a fixed-bed or bubbling-bed reactor upstream of the reactor. hydrocracking catalyst.
  • the bubbling bed operates with removal of spent catalyst and daily addition of new catalyst to maintain stable catalyst activity.
  • the separator separates the liquid and the gas present in the effluent leaving the hydrocracking unit.
  • Any type of separator allowing this separation can be used, for example a flash ball, a stripper, or even a simple distillation column.
  • the fractionation section is generally composed of one or more columns comprising a plurality of trays and / or internal packings which can preferably be operated counter-cyclically. These columns are usually stripped steamed and include a reboiler to facilitate vaporization. It makes it possible to separate the hydrogen sulphide (H2S) and the light components (methane, ethane, propane, butane, etc.) from the effluents, as well as the hydrocarbon cuts having boiling points in the field of gasolines, kerosene, a gasoil and a heavy fraction recovered at the bottom of the column, all or part of which can be recycled to the hydrocracking section.
  • H2S hydrogen sulphide
  • the light components methane, ethane, propane, butane, etc.
  • This example is based on the configuration of the figure 1 .
  • Two samples from an industrial unit in operation, based on the configuration of the figure 1 have been analyzed.
  • the properties are reported in Table 1 below.
  • the splitting of the stream 11 in the column 12 was simulated by programming via the PRO / II software version 8.3.3, marketed by the SimSci company.
  • the physical and analytical properties of the resulting fluxes were simulated and compared with the physical and analytical properties of the actual samples.
  • the simulation PRO / II could establish the properties of the output stream of the fractionation column, in particular the distribution in HPNA could be modeled.
  • Table 3 gives the characteristics of the currents 11, 16 and 18 (identical to 20) in the configuration 2c resulting from the simulation PRO / II.
  • the configuration 2c makes it possible to maximize the amount of HPNA (3962 ppm by weight to be compared with 902 ppm by weight of the configuration 1) in the unconverted fraction which is purged via the line 16. Together the amount of HPNA is minimized in the This stream flows back to the reaction section via line 18 (707 ppm weight compared with 902 ppm weight of configuration 1) which reduces the amount of HPNA by 21.6%.
  • the proportion of heavy refractory and poisonous HPNA (Naphto [8.2.1 abc] + coronene + Ovalene) relative to the amount of total HPNA in the flow that leaves to the reaction section is lower for configuration 2c (27.8%) than for configuration 1 (36.3%). This indicates that not only is there less total HPNA in the stream that returns to the reaction section via line 18 but in addition that the proportion of heavy refractory and poisonous HPNA (Naphto [8.2,1 abc] coronene + Ovalene) is weaker.
  • Table 5 gives the characteristics of currents 11, 16 and 18 in the 2d configuration resulting from simulation PRO / II.
  • the 2d configuration makes it possible to maximize the amount of HPNA (4959 ppm by weight to be compared with 902 ppm by weight of configuration 1) in the unconverted fraction which is purged via line (16).
  • the amount of HPNA is minimized in the stream flowing back to the reaction section via line (18) (644 ppm by weight to be compared with 902 ppm by weight of configuration 1) which reduces the amount of HPNA by 28.6. %.
  • the proportion of heavy refractory and poisonous HPNA (Naphto [8.2,1 abc] coronene + Ovalene) relative to the amount of total HPNA in the flow (18) that returns to the reaction section is higher. weak for configuration 2d (20.7%) than for configuration 1 (36.3%). This indicates that not only is there less total HPNA in the flow that returns to the reaction section via line (18) but in addition that the proportion of heavy refractory and poisoning HPNA (Naphto [8.2.1 abc] coronene + Ovalene) is weaker.
  • this configuration also makes it possible to minimize the amount of diesel that is returned to the reaction section via line 18 since the amount of diesel returned to the reaction section is only 6.8% by weight compared with 10.9% by weight. in configuration 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • L'invention concerne un procédé et un dispositif permettant de réduire la concentration en composés aromatiques polycycliques lourds (HPNA) dans la boucle de recyclage des unités d'hydrocraquage.
  • Les procédés d'hydrocraquage sont couramment utilisés en raffinerie pour transformer des mélanges hydrocarbonés en produits aisément valorisables. Ces procédés peuvent être utilisés pour transformer des coupes légères telles que par exemple des essences en coupes plus légères (LPG). Ils sont toutefois habituellement plutôt utilisés pour convertir des charges plus lourdes (telles que des coupes pétrolières ou synthétiques lourdes, par exemple des gasoils issus de distillation sous vide ou des effluents d'une unité Fischer-Tropsch) en essence ou naphta, kérosène, gasoil. Ce type de procédé est également utilisé pour produire des huiles.
  • Afin d'augmenter la conversion des unités d'hydrocraquage, une partie de la charge non convertie est recyclée soit dans la section réactionnelle dans laquelle elle est déjà passée soit dans une section réactionnelle indépendante. Ceci induit une accumulation indésirable des composés aromatiques polycycliques, formés dans la section réactionnelle durant les réactions de craquage, dans la boucle de recyclage. Ces composés empoisonnent le catalyseur d'hydrocraquage, ce qui réduit l'activité catalytique ainsi que la durée de cycle. Ils peuvent également précipiter ou se déposer dans les parties froides de l'unité, générant ainsi des dysfonctionnements.
  • Il y a donc nécessité d'améliorer le procédé d'hydrocraquage afin de diminuer la formation des composés aromatiques polycycliques, ou de les éliminer sans diminuer le rendement en produits valorisables.
  • Les composés HPNA sont définis comme des composés aromatiques polycycliques ou polynucléaires qui comprennent donc plusieurs noyaux ou cycles benzéniques condensés. On les nomme habituellement HPA, Heavy Polynuclear Aromatics selon la terminologie anglo-saxonne, PNA ou HPNA.
  • Typiquement, les HPNA dits lourds comprennent au moins 4, voire au moins 6 cycles benzéniques dans chaque molécule. Les composés à moins de 6 cycles (dérivés du pyrène par exemple) peuvent être plus facilement hydrogénées et sont donc moins susceptibles d'empoisonner des catalyseurs. En conséquence nous nous sommes plus particulièrement intéressés aux composés les plus représentatifs des familles à 6 cycles aromatiques ou plus comme par exemple le Coronène (composé à 24 carbones), le dibenzo(e,ghi) pérylène (26 carbones), le naphto[8,2,1,abc] coronène (30 carbones) et l'ovaléne (32 carbones), qui sont les composés les plus facilement identifiables et quantifiables par exemple par chromatographie.
  • Le brevet US 7,588,678 de la demanderesse décrit un procédé d'hydrocraquage avec recyclage de la fraction non convertie 380°C+, procédé dans lequel les composés HPNA sont éliminés de la fraction recyclée au moyen d'un adsorbant. D'autres techniques de réduction de la quantité ou d'élimination des HPNA sont décrites dans l'art antérieur de ce brevet, telles que par exemple leur réduction via une hydrogénation ou leur précipitation suivie d'une filtration.
  • Le brevet US 4,961,839 décrit un procédé d'hydrocraquage permettant d'augmenter la conversion par passe en utilisant des débits d'hydrogène élevés dans la zone réactionnelle, en vaporisant une proportion importante des hydrocarbures envoyés dans la colonne de séparation des produits et en concentrant les composés aromatiques polycycliques dans une petite fraction lourde qui est extraite de cette colonne. Dans ce procédé, une fraction lourde est soutirée au niveau d'un plateau situé au-dessus du point d'alimentation et en-dessous du point de soutirage du distillat diesel ; cette fraction lourde est recyclée vers l'hydrocraquage. Le fond de colonne (résidu) est recyclé directement dans la colonne de fractionnement. Ce type de technique permet certes une diminution de la concentration en HPNA dans la boucle de recyclage vers le réacteur, mais conduit à des pertes de rendements significatives et des coûts importants liés aux quantités d'hydrogène.
  • Les demandes de brevet et WO 2012/052042 et WO 2012/052116 (correspondant à US-2013/0220885 ) décrivent un procédé d'hydrocraquage dans lequel le fond de la colonne de fractionnement (résidu) est strippé à contre-courant dans une colonne de stripage. La fraction légère obtenue après stripage est renvoyée à la colonne de fractionnement et la fraction lourde issue du stripage est au moins en partie purgée, l'autre partie de cette fraction pouvant être recyclée à la colonne de stripage.
  • Ces procédés ont apporté des améliorations dans la réduction des HPNA mais souvent au détriment des rendements et des coûts.
  • Les brevets US 2,958,652 , US 4,162,963 , US 4,040,944 , US 2,853,433 , US 3,166,489 , US 3,891,539 , WO 03/004586 et EP 0 143 862 décrivent un procédé d'hydrocraquage.
  • Le procédé de l'invention permet non seulement de concentrer les hydrocarbures aromatiques polycycliques dans des fractions non converties (résidus) afin de les éliminer et de réduire la quantité de résidu purgée pour augmenter la conversion, mais aussi d'améliorer le rendement en produits valorisables (par exemple en évitant le sur-craquage du diesel) et/ou la durée de cycle catalytique par rapport aux procédés antérieurs. L'invention a également pour avantage de réduire considérablement la quantité présente en hydrocraquage de HPNA ayant au moins 6 cycles aromatiques, qui sont les plus réfractaires aux réactions mises en jeu lors de l'hydrocraquage.
  • Le procédé selon l'invention est basé sur la mise en place d'un soutirage latéral en-dessous du point d'alimentation de la colonne La séparation du liquide a lieu de préférence en associant un stripeur à la colonne de fractionnement, qui strippe ladite fraction soutirée.
  • Plus précisément, l'invention concerne un procédé d'hydrocraquage d'une charge pétrolière comprenant au moins 10% volume de composés bouillant au-dessus de 340°C, comprenant une étape d'hydrocraquage, éventuellement suivie d'une séparation des gaz de l'effluent hydrocraqué, puis d'une étape de fractionnement dudit effluent, qui sépare au moins un distillat et un résidu, ladite étape de fractionnement comporte une distillation dans une colonne munie de plateaux, colonne dans laquelle
    • ledit effluent au moins partiellement vaporisé alimente la colonne sur au moins un plateau d'alimentation,
    • ledit distillat est soutiré au niveau d'un plateau de soutirage,
    • ledit résidu est évacué à un point d'évacuation,
    • et un gaz de stripage est injecté à un point d'injection situé en-dessous du plateau d'alimentation, procédé dans lequel
    • il est soutiré de la colonne une partie du flux présent au niveau d'au moins un plateau (I) qui est le plateau d'alimentation ou un plateau situé entre le plateau d'alimentation et ledit point d'injection du gaz de stripage,
    • tout ou partie, et de préférence la totalité, dudit flux soutiré est recyclée dans l'étape d'hydrocraquage,
    • et le résidu est entièrement purgé
    dans lequel il est soutiré de la colonne une partie du flux présent au niveau d'au moins un plateau (II) situé entre le plateau d'alimentation et le plateau de soutirage de la fraction distillat la plus lourde, ledit au moins un plateau (II) étant situé au-dessus dudit plateau d'alimentation,
    dans lequel tout ou partie, et de préférence la totalité, dudit flux soutiré dudit plateau (II) est strippé dans une étape de stripage externe par un gaz de stripage, et tout ou partie, et de préférence la totalité, l'effluent gazeux séparé est recyclé dans la colonne au-dessus du plateau duquel ledit flux a été soutiré, et tout ou partie, et de préférence la totalité, de l'effluent liquide séparé est recyclé dans l'étape d'hydrocraquage.
  • De façon avantageuse, il est soutiré de la colonne une partie du flux présent au niveau d'un plateau situé en-dessous du plateau d'alimentation et proche dudit plateau d'alimentation, et de préférence au niveau du plateau le plus proche du plateau d'alimentation.
  • Avantageusement, ledit flux soutiré peut être recyclé dans l'étape d'hydrocraquage directement (i.e. sans traitement) ou après séparation des gaz (par exemple par adsorption, stripage...) ou après une séparation plus poussée (distillation...).De préférence, ledit flux soutiré est recyclé directement dans l'étape d'hydrocraquage. On notera que, selon l'invention et de façon préférée, il n'y a pas de recyclage dudit flux soutiré dans la colonne.
  • De préférence, l'effluent gazeux séparé est recyclé dans la colonne au niveau du plateau le plus proche du plateau duquel ledit flux a été soutiré.
  • On notera que, selon l'invention et de façon préférée, il n'y a pas de recyclage de la fraction liquide, séparée à l'étape de stripage, vers la colonne de fractionnement. On notera également que selon l'invention, tout le résidu est purgé.
  • Le flux soutiré au niveau du plateau (I) ou du plateau (II) présente une concentration en HPNA inférieure à 500 ppm poids, préférentiellement inférieure à 350 ppm poids et très préférentiellement inférieure à 200ppm poids. Il présente le plus souvent une proportion d'au moins 70%poids en hydrocarbure non convertis, préférentiellement d'au moins 80%poids en hydrocarbures non convertis et très préférentiellement d'au moins 90%poids en hydrocarbures non convertis.
  • De préférence, le procédé opère en présence d'un gaz de stripage injecté dans l'étape de fractionnement. De préférence, c'est de la vapeur d'eau, de préférence à une pression comprise entre 0,2 et 1,5MPa.
  • Le gaz de stripage injecté dans l'étape de stripage externe est de préférence de la vapeur d'eau, de préférence à une pression comprise entre 0,2 et 1,5MPa.
  • L'étape d'hydrocraquage a lieu, de façon classique, à une température supérieure à 200°C, une pression supérieure à 1MPa, une vitesse spatiale de 0,1 à 20h-1, et le rapport volumique H2/hydrocarbures est de 80 à 5000NI/I.
  • L'invention concerne également une installation qui est avantageusement mise en œuvre pour réaliser le procédé selon l'invention.
  • Elle comprend :
    • une section d'hydrocraquage (2) munie d'une ligne (1) d'entrée de la charge et d'une ligne (8) d'entrée de l'hydrogène,
    • éventuellement suivie d'une zone de séparation (4) de l'effluent pour séparer une fraction gazeuse,
    • suivie d'une section de fractionnement (12) comprenant au moins une colonne de distillation munie de plateaux, ladite colonne comportant :
      • au moins une ligne (11) d'entrée de l'effluent hydrocraqué au moins partiellement vaporisé sur au moins un plateau d'alimentation,
      • au moins une ligne (14) pour le soutirage d'au moins un distillat au niveau d'un plateau de soutirage,
      • au moins une ligne (16) d'évacuation sous forme de purge de la totalité du résidu,
    • et comprenant au moins une ligne (19) pour l'injection d'un gaz de stripage, le point d'injection étant situé en-dessous du plateau d'alimentation,
    installation comprenant en outre :
    • au moins une ligne (20) pour le soutirage d'une partie du flux présent au niveau d'au moins un plateau (I) qui est le plateau d'alimentation ou un plateau situé entre le plateau d'alimentation et ledit point d'injection du gaz de stripage,
    • au moins une ligne (18) pour le recyclage de tout ou partie dudit flux soutiré, et de préférence la totalité, dans l'étape d'hydrocraquage,
      • au moins une ligne (21) pour le soutirage d'une partie du flux présent au niveau d'au moins un plateau (II) situé entre le plateau d'alimentation et le plateau de soutirage de la fraction distillat la plus lourde, ledit au moins un plateau (II) étant situé au-dessus dudit plateau d'alimentation,
      • un stripeur (25) externe à la colonne, muni d'une ligne (21) d'entrée dudit flux soutiré, d'une ligne (26) d'injection d'un gaz de stripage, d'une ligne (22) de sortie de la fraction gazeuse, d'une ligne (23) de sortie de la fraction liquide,
      • une ligne (22) de recyclage de tout ou partie, et de préférence de la totalité, de ladite fraction gazeuse dans ladite colonne, la ligne (22) débouchant dans la colonne au-dessus du plateau duquel ledit flux à été soutiré,
      • une ligne (23) de recyclage de tout ou partie, et de préférence de la totalité, de ladite fraction liquide dans l'étape d'hydrocraquage.
  • De préférence, l'installation comprend au moins une ligne (18) pour le recyclage de la totalité dudit flux soutiré directement dans l'étape d'hydrocraquage. Dans une autre disposition, la ligne (18) comporte une unité de séparation des gaz située avant la section d'hydrocraquage. Cette unité peut être par exemple un adsorbeur ou un stripeur ou une colonne à distiller.
  • de la totalité, de ladite fraction liquide dans l'étape d'hydrocraquage.
  • De préférence, il n'y a pas de ligne de recyclage de la fraction liquide, séparée à l'étape de stripage, vers la colonne de fractionnement.
  • L'invention sera mieux comprise à partir de la description des figures.
  • Dans le texte, on définit les charges par leur point d'ébullition T5 (comme cela est expliqué plus loin). La conversion de la charge est définie par rapport au point de coupe du résidu. La fraction non convertie est appelée résidu. La fraction convertie comprend les fractions recherchées (objectifs) par le raffineur.
  • La partie purgée se réfère à une partie qui sort du procédé.
  • La figure 1 représente l'art antérieur. La configuration 2c de la figure 2 représente l'art antérieur. La configuration 2d 2d de la figure 2 représente l'invention. Les figures 2c et 2d se comprennent en combinaison avec la figure 1, et plus précisément avec les éléments essentiels de la figure 1 cités dans les revendications.
  • Le principe sera explicité à partir de la figure 2c.
  • La figure 1 présente un schéma de procédé d'hydrocraquage selon l'art antérieur. Pour faciliter la lecture, on a reporté la description des conditions de mise en œuvre plus loin dans le texte.
  • La charge (ligne 1) composée d'hydrocarbures d'origine pétrolière et/ou d'hydrocarbures synthétiques de source minérale ou biologique est mélangée à de l'hydrogène alimenté par les lignes (5) (recycle) et/ou (6) (hydrogène d'appoint) via le compresseur (7) et la ligne (8). Le mélange charge/hydrogène ainsi réalisé est envoyé dans la section d'hydrocraquage (2). Cette section comporte un ou plusieurs réacteurs en lit fixe ou en lit bouillonnant.
  • Lorsque la section d'hydrocraquage comprend un ou plusieurs réacteurs en lit fixe, chaque réacteur peut comprendre un ou plusieurs lits de catalyseur réalisant l'hydrocraquage des hydrocarbures de la charge en hydrocarbures plus légers. Lorsque la section d'hydrocraquage comprend un ou plusieurs réacteurs en lit bouillonnant, un flux, comprenant du liquide du solide et du gaz, circule verticalement à travers un réacteur contenant un lit de catalyseur. Le catalyseur dans le lit est maintenu en mouvement aléatoire dans le liquide. Le volume brut du catalyseur dispersé à travers le liquide est donc supérieur au volume du catalyseur à l'arrêt. Cette technologie est largement décrite dans la littérature.
  • Un mélange de liquide hydrocarboné et d'hydrogène est passé à travers le lit de particules de catalyseur à une vitesse telle que les particules sont misent en mouvement aléatoire et donc en suspension dans le liquide. L'expansion du lit catalytique dans la phase liquide est contrôlée par le débit de liquide de recyclage de façon à ce que à l'état d'équilibre, la majeure partie du catalyseur ne dépasse pas un niveau définit dans le réacteur. Les catalyseurs sont sous forme d'extrudés ou de billes, de préférence de diamètre compris entre 0,8 mm et 6,5 mm de diamètre.
  • Dans un procédé en lit bouillonnant des quantités importantes de gaz d'hydrogène et de vapeurs d'hydrocarbures légers montent à travers la zone réactionnelle puis dans une zone exempte de catalyseur. Le liquide provenant de la zone catalytique est pour partie recyclé dans le fond du réacteur après séparation d'une fraction gazeuse et pour partie retiré du réacteur en tant que produit, le plus souvent en partie haute du réacteur.
  • Les réacteurs utilisés dans un procédé en lit bouillonnant sont généralement conçus avec un conduit de recyclage vertical central qui sert de tube d'écoulement pour le recyclage de liquide de la zone exempte de catalyseur située au-dessus du catalyseur en lit bouillonnant, via une pompe de recyclage qui permet de recycler le liquide dans la zone catalytique. Le recyclage de liquide permet à la fois de maintenir l'uniformité de la température dans le réacteur et de maintenir le lit de catalyseur en suspension.
  • La section d'hydrocraquage peut être précédée ou inclure un ou plusieurs lits de catalyseur(s) d'hydrotraitement.
  • L'effluent de la section d'hydrocraquage (2) est envoyé par ligne (3) vers une zone de séparation (4) permettant de récupérer d'une part une fraction gazeuse (5) et une fraction liquide (9). La fraction gazeuse (5) contient l'hydrogène en excès qui n'a pas réagi dans la section réactionnelle (2). Elle est généralement combinée avec de l'hydrogène frais arrivant par la ligne (6) afin d'être recyclée comme indiqué ci-avant.
  • La fraction liquide (9) est réchauffée par tout moyen (10), par exemple un four éventuellement associé à un échangeur (non représenté), afin d'être au moins en partie vaporisée, avant d'alimenter la section de fractionnement (12) via la ligne (11). La section de fractionnement (12) comprend une ou plusieurs colonnes de distillation équipées de plateaux et d'internes permettant de séparer différentes coupes (distillats) valorisables qui sont soutirées au moyen des lignes (13) et (14), plus éventuellement d'autres soutirages latéraux. Ces coupes présentent des gammes de points d'ébullition situés par exemple dans la gamme des essences, du kérosène et du gasoil.
  • En fond de colonne on récupère une fraction plus lourde non convertie (résidu) (ligne 15a).
  • Une injection de gaz de stripage peut être prévue via la ligne (19). Cette ligne est située entre le plateau d'alimentation en effluent hydrocraqué (ligne 11) et le point d'évacuation du résidu (ligne 15a).
  • Une partie du résidu peut être purgée via la ligne (16), une autre partie recyclée vers la section d'hydrocraquage par les lignes (2) et (18) et une autre partie recyclée vers la section de fractionnement (ligne 15b).
  • Selon la figure 1, une partie (ligne 15b) du résidu de la ligne (15a) est mélangée avec l'alimentation (ligne 9) en amont du four (10) de la section de fractionnement et recyclée en mélange (ligne 11) avec cette coupe vers la section de fractionnement. La purge (16) permet notamment d'éliminer au moins en partie les composés HPNA qui sans cette purge pourraient s'accumuler dans la boucle de recyclage.
  • La zone E tracée sur la figure 1 délimite la partie modifiée dans le cadre de la présente invention.
  • La figure 2c présente l'art antérieur et la figure 2d présente l'invention.
  • On ne reprendra pas les éléments décrits précédemment. On notera que la ligne (15b) (recyclage du résidu à la colonne de fractionnement) est supprimée dans l'invention. Il en est de même pour le recyclage du résidu à l'hydrocraquage.
  • La section de fractionnement (12) comprend une seule colonne de fractionnement. Toutefois, l'invention pourrait-être réalisée avec plusieurs colonnes de fractionnement et au moins une colonne comprendrait alors une zone E selon l'invention.
  • Selon la figure 2c, la fraction liquide (11) qui a été préalablement au moins en partie vaporisée alimente la section de fractionnement (12).
  • Un gaz de stripage est injecté dans la colonne (ligne 19). Avantageusement, il s'agit de vapeur, de préférence de la vapeur basse pression, de préférence à une pression comprise entre 0,2 et 1,5 MPa (0,1MPa=1bar). Le point d'injection est situé en-dessous du plateau d'alimentation et au-dessus du point d'évacuation du résidu. Il est de préférence proche du point d'évacuation du résidu en fond de la colonne.
  • La figure 2c se distingue de la figure 1 notamment en ce qu'on ajoute un soutirage latéral (ligne 20) au niveau d'un des plateaux de la colonne. On peut mettre en place un ou plusieurs soutirages au niveau de la colonne. Il est ainsi soutiré une partie du flux présent au niveau d'au moins un plateau (I).
  • Ce plateau peut être le plateau d'alimentation, dans un mode préféré. Sur la figure 2c, le plateau (I) représenté est le plateau d'alimentation.
  • Ce peut être aussi un plateau situé entre le plateau d'alimentation et ledit point d'injection du gaz de stripage. Ce soutirage (ligne 20) est de préférence au niveau d'un plateau proche du plateau d'alimentation, et préférentiellement au niveau du plateau le plus proche du plateau d'alimentation.
  • Le soutirage latéral (ligne 20) est positionné de manière à ce que le flux soutiré présente une faible concentration en HPNA inférieure à 500 ppm poids, préférentiellement inférieure à 350 ppm poids et très préférentiellement inférieure à 200 ppm poids, et, le plus souvent, une proportion importante d'hydrocarbures non convertis dans la section d'hydrocraquage d'au moins 70 % poids en hydrocarbure non convertis, préférentiellement d'au moins 80 % poids en hydrocarbures non convertis et très préférentiellement d'au moins 90 % poids en hydrocarbures non convertis.
  • Afin de respecter ces critères, le soutirage (ligne 20) est préférentiellement positionné au niveau du plateau d'alimentation ou bien au-dessous du plateau d'alimentation, et dans ce dernier cas, de préférence au niveau du plateau le plus proche du plateau d'alimentation.
  • Tout ou partie dudit flux soutiré est recyclé dans l'étape d'hydrocraquage. Il peut être recyclé directement (i.e. sans traitement) ou après une éventuelle séparation des gaz. De préférence, il est recyclé directement dans l'étape d'hydrocraquage.
  • Selon l'invention, le résidu n'est pas recyclé dans la colonne ou dans l'étape d'hydrocraquage. Il est entièrement purgé. On notera aussi que le flux soutiré du plateau (I) n'est pas recyclé dans la colonne (12).
  • Pour la description de la figure 2d, on ne décrira pas à nouveau les références des figures 1 et 2c. La figure 2d représente un mode de réalisation de l'invention avec ajout d'un second soutirage latéral au niveau d'un plateau (II) différent du plateau (I).
  • Selon la figure 2d, il est soutiré (ligne 21) de la colonne une partie du flux présent au niveau d'au moins un plateau (II) situé entre le plateau d'alimentation et le plateau de soutirage de la fraction distillat la plus lourde.
  • On peut mettre en place un ou plusieurs soutirages au niveau de la colonne. Ce soutirage (ligne 21) est de préférence proche du plateau d'alimentation. De préférence, il est soutiré de la colonne une partie du flux présent au niveau du plateau supérieur le plus proche du plateau d'alimentation.
  • Le soutirage latéral (ligne 21) est positionné de manière à ce que le flux soutiré présente une faible concentration en HPNA inférieure à 500 ppm poids, préférentiellement inférieure à 350 ppm poids et très préférentiellement inférieure à 200 ppm poids, et, le plus souvent, une proportion importante d'hydrocarbures non convertis dans la section d'hydrocraquage d'au moins 70%poids en hydrocarbure non convertis, préférentiellement d'au moins 80%poids en hydrocarbures non convertis et très préférentiellement d'au moins 90%poids en hydrocarbures non convertis.
  • Afin de respecter ces critères, le soutirage (ligne 21) est préférentiellement positionné au niveau du plateau d'alimentation ou bien au-dessus du plateau d'alimentation, et dans ce dernier cas, de préférence au niveau du plateau le plus proche du plateau d'alimentation.
  • Tout ou partie dudit flux soutiré est recyclé dans la colonne après une séparation du liquide.
  • Le flux soutiré (ligne 21) est strippé dans une étape de stripage externe (stripeur 25) par un gaz de stripage (amené par la ligne 26). Tout ou partie de l'effluent gazeux séparé est recyclé (ligne 22) dans la colonne ; selon la figure 2d, la totalité de l'effluent gazeux est recyclé.
  • L'effluent gazeux est recyclé dans la colonne au-dessus du plateau duquel le flux a été soutiré. De plus, de meilleures performances sont obtenues lorsque l'effluent gazeux est recyclé dans la colonne au niveau du plateau le plus proche du plateau duquel le flux a été soutiré.
  • Tout ou partie de l'effluent liquide (ligne 23) est recyclé dans l'étape d'hydrocraquage. Il peut être recyclé directement (i.e. sans traitement) ou après une éventuelle séparation des gaz. De préférence, il est recyclé directement dans l'étape d'hydrocraquage.
  • Selon la figure 2d, tout l'effluent liquide (ligne 23) est mélangé avec le flux (ligne 20) du soutirage latéral du plateau (I) et le mélange est recyclé (ligne 18) vers l'étape d'hydrocraquage.
  • Ledit stripeur latéral (25) fonctionne avec injection d'un gaz de stripage (ligne 26). Ce gaz est de préférence de la vapeur, préférentiellement de la vapeur basse pression, de préférence à une pression comprise entre 0,2 et 1,5MPa.
  • Ainsi que le montrent les exemples ci-après, le mode de réalisation de la figure 2d conduit à des performances meilleures que le mode de réalisation de la figure 2c.
  • Description des conditions de l'étape d'hydrocraquage (2) et des séparations :
  • Cette description se réfère à des conditions et mises en œuvre classiques, qui s'appliquent aussi bien aux figures 1 et 2c (art antérieur) qu'à l'invention figure 2d).
  • Charges :
  • Des charges très variées peuvent être traitées par les procédés d'hydrocraquage. Généralement elles contiennent au moins 10% volume, généralement au moins 20 % volume, et souvent au moins 80% volume de composés bouillant au-dessus de 340°C.
  • La charge peut être par exemple des LCO (light cycle oil - gazoles légers issus d'une unité de craquage catalytique), des distillats atmosphériques, des distillats sous vide par exemple gazoles issus de la distillation directe du brut ou d'unités de conversion telles que le FCC, le coker ou la viscoréduction, ainsi que des charges provenant d'unités d'extraction d'aromatiques des bases d'huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, ou encore des distillats provenant de procédés de désulfuration ou d'hydroconversion en lit fixe ou en lit bouillonnant de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide) et/ou d'huiles désasphaltées, ou encore la charge peut être une huile désasphaltée, des effluents d'une unité de Fisher-Tropsch ou encore tout mélange des charges précédemment citées. La liste ci- dessus n'est pas limitative.
  • En général, les charges ont un point d'ébullition T5 supérieur à 150°C (c'est-à-dire que 95 pourcent des composés présents dans la charge ont un point d'ébullition supérieur à 150°C). Dans le cas de diesel, le point T5 est généralement d'environ 150°C. Dans le cas de VGO, le T5 est généralement supérieur à 340°C, voire supérieur à 370°C. Les charges utilisables sont donc dans une large gamme de points d'ébullition. Cette gamme s'étend généralement du diesel au VGO, en passant par tous les mélanges possibles avec d'autres charges, par exemple le LCO.
  • La teneur en azote des charges traitées dans les procédés d'hydrocraquage est usuellement supérieure à 500 ppm poids, généralement comprise entre 500 et 10000 ppm poids, de manière plus générale comprise entre 700 et 4500 ppm poids et de manière encore plus générale comprise entre 800 et 4500 ppm poids.
  • La teneur en soufre des charges traitées dans les procédés d'hydrocraquage est usuellement comprise entre 0,01 et 5% poids, de manière générale comprise entre 0,2 et 4% poids et de manière encore plus générale entre 0,5 et 3% poids. La charge peut éventuellement contenir des métaux. La teneur cumulée en nickel et vanadium des charges traitées dans les procédés d'hydrocraquage est de préférence inférieure à 10 ppm poids, de manière préférée inférieure à 5 ppm poids et de manière encore plus préférée inférieure à 2 ppm poids.. La teneur en asphaltènes est généralement inférieure à 3000 ppm poids, de manière préférée inférieure à 1000 ppm poids, de manière encore plus préférée inférieure à 300 ppm poids.
  • Lits de garde :
  • Dans le cas où la charge contient des composés de type résines et/ou asphaltènes, il est avantageux de faire passer au préalable la charge sur un lit de catalyseur ou d'adsorbant différent du catalyseur d'hydrocraquage ou d'hydrotraitement. Les catalyseurs ou lits de garde utilisés ont la forme de sphères ou d'extrudés. Toute autre forme peut être utilisée. Parmi les formes particulières possibles sans que cette liste soit limitative: les cylindres creux, les anneaux creux, les anneaux de Raschig, les cylindres creux dentelés, les cylindres creux crénelés, les roues de charrettes dites pentaring, les cylindres a multiples trous, etc.
  • Ces catalyseurs peuvent avoir été imprégnés par une phase active ou non. De manière préférée, les catalyseurs sont imprégnés par une phase hydro-déshydrogénante. De manière très préférée, la phase CoMo ou NiMo est utilisée. Ces catalyseurs peuvent présenter de la macroporosité.
  • Conditions opératoires :
  • Les conditions opératoires telles que température, pression, taux de recyclage d'hydrogène, vitesse spatiale horaire, pourront être très variables en fonction de la nature de la charge, de la qualité des produits désirés et des installations dont dispose le raffineur. Le catalyseur d'hydrocraquage/hydroconversion ou hydrotraitement est généralement mis en contact, en présence d'hydrogène, avec les charges décrites précédemment, à une température supérieure à 200 °C, souvent comprise entre 250 et 480°C, avantageusement comprise entre 320 et 450°C, de préférence entre 330 et 435°C, sous une pression supérieure à 1 MPa, souvent comprise entre 2 et 25 MPa, de manière préférée entre 3 et 20 MPa, la vitesse spatiale étant comprise entre 0,1 et 20h-1 et de préférence comprise entre 0,1 et 6h-1, de manière plus préférée comprise entre 0,2 et 3h-1, et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène / litre d'hydrocarbure soit compris entre 80 et 5000 NI/I et le plus souvent comprise entre 100 et 3000 NI/I.
  • Ces conditions opératoires utilisées dans les procédés d'hydrocraquage permettent généralement d'atteindre des conversions par passe, en produits convertis (i.e. à points d'ébullition inférieurs au point de coupe résidu) supérieures à 15 % et de manière encore plus préférée comprises entre 20 % et 95 %.
  • Les principaux objectifs :
  • L'invention est utilisable pour tous les hydrocraqueurs, à savoir :
    • hydrocraqueur maxi-naphta avec un point de coupe résidu généralement entre 150°C et 190°C, de préférence entre 160°C et 190°C, et le plus souvent de 170°C-180°C
    • hydrocraqueur maxi-kérosène avec un point de coupe résidu généralement entre 240°C et 290°C, et le plus souvent de 260°C-280°C
    • hydrocraqueur maxi diesel avec un point de coupe résidu généralement entre 340°C et 385°C, et le plus souvent de 360°C-380°C.
    Modes de mise en œuvre :
  • Les procédés d'hydrocraquage/hydroconversion mettant en œuvre les catalyseurs selon l'invention couvrent les domaines de pression et de conversion allant de l'hydrocraquage doux à l'hydrocraquage haute pression.
  • On entend par hydrocraquage doux, un hydrocraquage conduisant à des conversions modérées, généralement inférieures à 40 percent, et fonctionnant à basse pression, généralement entre 2 MPa et 9 MPa. Le catalyseur d'hydrocraquage peut être utilisé seul, en un seul ou plusieurs lits catalytiques en lit fixe, dans un ou plusieurs réacteurs, dans un schéma d'hydrocraquage dit en une étape, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydroraffinage situé en amont du catalyseur d'hydrocraquage.
  • L'hydrocraquage peut être opéré à haute pression (au moins 10MPa).
  • L'hydrocraquage peut selon une première variante être opéré selon un schéma d'hydrocraquage dit en deux étapes avec séparation intermédiaire entre les deux zones réactionnelles, dans une étape donnée, le catalyseur d'hydrocraquage peut être utilisé dans l'un ou dans les deux réacteurs en association ou non avec un catalyseur d'hydroraffinage situé en amont du catalyseur d'hydrocraquage.
  • L'hydrocraquage peut être opéré selon une deuxième variante, dite en une étape. Cette variante comprend généralement en premier lieu un hydroraffinage poussé qui a pour but de réaliser une hydrodéazotation et une hydrodésulfuration poussées de la charge avant que celle-ci ne soit envoyée sur le catalyseur d'hydrocraquage proprement dit, en particulier dans le cas où celui-ci comporte une zéolithe. Cet hydroraffinage poussé de la charge n'entraine qu'une conversion limitée de cette charge en fractions plus légères. La conversion, qui reste insuffisante, doit donc être complétée sur le catalyseur d'hydrocraquage plus actif.
  • La section d'hydrocraquage peut contenir un ou plusieurs lits de catalyseurs identiques ou différents. Lorsque les produits préférés sont les distillats moyens, on utilise des solides basiques amorphes, par exemple de l'alumine ou des silices-alumines ou des zéolithes basiques, éventuellement additionnées d'au moins un métal hydrogénant du groupe VIII et de préférence également additionnées d'au moins un métal du groupe VIB. Ces zéolithes basiques sont composées de silice, d'alumine, et d'un ou plusieurs cations échangeables tels que du sodium, du magnésium, du calcium ou des terres rares.
  • Lorsque l'essence est le produit majoritairement recherché, le catalyseur est généralement composé d'une zéolithe cristallisée sur laquelle on dépose de faibles quantités d'un métal du groupe VIII, et également de manière plus préférée d'un métal du groupe VIB.
  • Les zéolithes utilisables sont naturelles ou synthétiques et peuvent être par exemple choisies parmi les zéolithes X, Y ou L, la faujasite, la mordénite, l'érionite ou la chabasite.
  • L'hydrocraquage peut être opéré dans un seul ou plusieurs réacteurs en lit bouillonnant, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydroraffinage situé dans un réacteur en lit fixe ou en lit bouillonnant en amont du catalyseur d'hydrocraquage. Le lit bouillonnant s'opère avec retrait de catalyseur usé et ajout journalier de catalyseur neuf afin de conserver une activité du catalyseur stable.
  • Séparation liquide/gaz (4) :
  • Le séparateur (4) réalise la séparation du liquide et du gaz présents dans l'effluent sortant de l'unité d'hydrocraquage. Tout type de séparateur permettant cette séparation peut être utilisé, par exemple un ballon de flash, un stripper, voire une simple colonne à distiller.
  • Fractionnement (12)
  • La section de fractionnement est généralement constituée d'une ou plusieurs colonnes comprenant plusieurs plateaux et/ou garnissages internes qui peuvent être opérées de préférence à contrecourant. Ces colonnes sont habituellement strippées à la vapeur et comprennent un rebouilleur afin de faciliter la vaporisation. Elle permet de séparer l'hydrogène sulfuré (H2S) et les composant légers (méthane, éthane, propane, butane...) des effluents, ainsi que les coupes hydrocarbonées présentant des points d'ébullition dans le domaine des essences, du kérosène, du gasoil et une fraction lourde récupérée en fond de colonne dont tout ou partie peut être recyclée à la section d'hydrocraquage.
  • EXEMPLES : Exemple 1 : art antérieur
  • Cet exemple est basé sur la configuration de la figure 1. Deux échantillons provenant d'une unité industrielle en opération, basée sur la configuration de la figure 1 ont été analysés. Les propriétés sont reportées dans le tableau 1 ci-après.
  • Il est à noter que compte tenu de la configuration, les flux 15a, 16, 18 et 23 ont exactement les mêmes propriétés.
  • Le fractionnement du flux 11 dans la colonne 12 a été simulé par programmation via le logiciel PRO/II version 8.3.3, commercialisé par la société SimSci. Les propriétés physiques et analytiques des flux résultants ont été simulées et confrontées aux propriétés physiques et analytiques des échantillons réels.
  • Les conditions opératoires de la colonne utilisées pour la simulation sont reportées dans le tableau 2 ci-après.
  • A partir des propriétés du flux 11 d'entrée de la colonne de fractionnement (voir tableau 1), la simulation PRO/II a pu établir les propriétés du flux 15 de sortie de la colonne de fractionnement, notamment la répartition en HPNA a pu être modélisée.
  • Sur la base de ces résultats, les configurations de l'invention ont été simulées. Les résultats sont exposés ci-après pour chaque configuration 2c ou 2d. Tableau 1 : propriété des flux selon le schéma de la figure 1
    Configuration Flux de la Figure 1
    Numéro de Flux 11 15a 18 16
    Rendement %pds 100 42 39,5 2,5
    Quantité de diesel dans le flux %pds 64,0 10,9 10,9 10,9
    Sp gr 0,805 0,828 0,828 0,828
    HPNA
    Coronène ppm pds 209 497 497 497
    Dibenzo(e,phi)pérylène ppm pds 33 78 78 78
    Naphtho[8.2.1 abc] coronène ppm pds 81 192 192 192
    Ovalene ppm pds 57 135 135 135
    Total HPNA ppm pds 378 902 902 902
    TBP, %pds
    Point d'ébullition Initial °C 128 200 200 200
    10% °C 200 368 368 368
    50% °C 326 402 402 402
    90% °C 440 477 477 477
    Point D'ébullition final °C 524 524 524 524
    1 : Densité relative SG= ρéchantillon à 20°C /ρH20 à 4°C où p est la densité exprimée en g/cm3
    Tableau 2 : Conditions opératoires de la colonne
    Conditions opératoires du fractionnement Figure 1
    Pression haut de colonne barg 1,0
    Pression bas de colonne barg 1,5
    Température Charge entrée °C 377
    Nombre de plateaux théoriques 34
    Débit de vapeur de stripage kg de vapeur/tonne de charge 17
  • Exemple 2 : Configuration 2c
  • Le tableau 3 ci-dessous donne les caractéristiques des courants 11, 16 et 18 (identique à 20) dans la configuration 2c issu de la simulation PRO/II. Les conditions opératoires de la colonne utilisées pour la simulation sont reportées tableau 4 : Tableau 3 : propriété des flux selon le schéma de la figure 2c
    Configuration Flux de la Figure 2c
    Numéro de Flux 11 entrée 18 recyclage Liquide 16 purge
    Rendement 100 39,5 2,5
    Quantité de diesel dans le flux 64,0 16,1 11,1
    Sp gr 0,805 0,8275 0,8284
    HPNA
    Coronène 209 420 2153
    Dibenzo(e,ghi)pérylène 33 91 313
    Naphtho[8.2.1 abc] coronène 81 121 873
    Ovalene 57 76 623
    Total HPNA 378 707 3962
    TBP, %pds
    Point d'ébullition Initial 128 89 207
    10% 200 363 368
    50% 326 399 402
    90% 440 475 478
    Point D'ébullition final 524 524 524
    1 : Densité relative SG= ρéchantillon à 20°C /ρH20 à 4°C ou p est la densité exprimée en g/cm3
    Tableau 4 : conditions opératoires de la colonne
    Conditions opératoires du fractionnement Figure 2c
    Pression haut de colonne barg 1,0
    Pression bas de colonne barg 1,5
    Température Charge entrée °C 377
    Nombre de plateaux théoriques 34
    Débit de vapeur strippant kg de vapeur/ton de charge 17
  • Par rapport à la configuration de la figure 1, la configuration 2c permet de maximiser la quantité d'HPNA (3962 ppm poids à comparer avec 902 ppm poids de la configuration 1) dans la fraction non convertie qui est purgée via la ligne 16. Conjointement la quantité d'HPNA est minimisée dans le courant qui repart à la section réactionnelle via la ligne 18 (707 ppm poids à comparer avec 902 ppm poids de la configuration 1) ce qui réduit la quantité d'HPNA de 21,6 %.
  • D'autre part, la proportion de HPNA lourd réfractaire et empoisonnant (Naphto[8,2,1 abc]+coronène + Ovalène) par rapport à la quantité d'HPNA total dans le flux qui repart à la section réactionnelle est plus faible pour la configuration 2c (27,8%) que pour la configuration 1 (36,3 %). Ce qui indique que non seulement il y a moins d'HPNA total dans le flux qui retourne à la section réactionnelle via la ligne 18 mais en plus que la proportion d'HPNA lourd réfractaire et empoisonnant (Naphto [8,2,1 abc] coronène + Ovalène) est plus faible.
  • Exemple 5 : Configuration 2d
  • Le tableau 5 ci-dessous donne les caractéristiques des courants 11, 16 et 18 dans la configuration 2d issu de la simulation PRO/II. Les conditions opératoires de la colonne utilisées pour la simulation sont reportées tableau 6 : Tableau 5 : propriété des flux selon le schéma de la figure 2d
    Configuration Flux de la figure 2d
    Numéro de Flux 11 entrée 18 recyclage Liquide 16 purge
    Rendement 100 39,5 2,5
    Quantité de diesel dans le flux 64,0 6,8 4,0
    Sp gr 0,805 0,8273 0,8338
    HPNA
    Coronène 209 405 2682
    Dibenzo(e,ghi)pérylène 33 106 379
    Naphtho[8.2.1 abc] coronène 81 87 1106
    Ovalene 57 46 792
    Total HPNA 378 644 4959
    TBP, %pds
    Point d'ébullition Initial 128 78 298
    10% 200 388 388
    50% 326 399 442
    90% 440 474 516
    Point D'ébullition final 524 524 524
    1 : Densité relative SG= ρéchantillon à 20°C /ρH20 à 4°C ou p est la densité exprimée en g/cm3
    Tableau 6 : conditions opératoires de la colonne
    Conditions opératoires du fractionnement Figure 2d
    Pression haut de colonne barg 1,0
    Pression bas de colonne barg 1,5
    Température Charge entrée °C 377
    Nombre de plateaux théoriques 34
    Débit de vapeur strippant kg de vapeur/ton de charge 17
    Conditions opératoires du stripeur latéral
    Pression haut de colonne barg 1,4
    Pression bas de colonne barg 1,5
    Nombre de plateaux théoriques 6
    Débit de vapeur strippant kg de vapeur/ton de charge 28
  • Par rapport à la configuration de la figure 1, la configuration 2d permet de maximiser la quantité d'HPNA (4959 ppm poids à comparer avec 902 ppm poids de la configuration 1) dans la fraction non convertie qui est purgée via la ligne (16).
  • Conjointement la quantité d'HPNA est minimisée dans le courant qui repart à la section réactionnelle via la ligne (18) (644 ppm poids à comparer avec 902 ppm poids de la configuration 1) ce qui réduit la quantité d'HPNA de 28,6 %.
  • D'autre part, la proportion de HPNA lourd réfractaire et empoisonnant (Naphto[8,2,1 abc] coronène + Ovalène) par rapport à la quantité d'HPNA total dans le flux (18) qui repart à la section réactionnelle est plus faible pour la configuration 2d (20,7 %) que pour la configuration 1 (36,3 %). Ce qui indique que non seulement il y a moins d'HPNA total dans le flux qui retourne à la section réactionnelle via la ligne (18) mais en plus que la proportion d'HPNA lourd réfractaire et empoisonnant (Naphto[8,2,1 abc] coronène + Ovalène) est plus faible.
  • De plus, cette configuration permet également de minimiser la quantité de diesel qui est renvoyée à la section réactionnelle via la ligne 18 puisque la quantité de diesel renvoyé à la section réactionnelle est seulement de 6,8 % poids à comparer avec 10,9 % poids dans la configuration 1.

Claims (13)

  1. Procédé d'hydrocraquage d'une charge pétrolière comprenant au moins 10% volume de composés bouillant au-dessus de 340°C, comprenant une étape d'hydrocraquage, éventuellement suivie d'une séparation des gaz de l'effluent hydrocraqué, puis d'une étape de fractionnement dudit effluent, qui sépare au moins un distillat et un résidu, ladite étape de fractionnement comporte une distillation dans une colonne munie de plateaux, colonne dans laquelle
    - ledit effluent au moins partiellement vaporisé alimente la colonne sur un plateau d'alimentation,
    - ledit distillat est soutiré au niveau d'un plateau de soutirage,
    - ledit résidu est évacué à un point d'évacuation,
    - et un gaz de stripage est injecté à un point d'injection situé en-dessous du plateau d'alimentation,
    procédé dans lequel
    - il est soutiré de la colonne une partie du flux présent au niveau d'au moins un plateau (I) qui est le plateau d'alimentation ou un plateau situé entre le plateau d'alimentation et ledit point d'injection du gaz de stripage,
    - tout ou partie dudit flux soutiré est recyclée dans l'étape d'hydrocraquage,
    - et le résidu est entièrement purgé,
    dans lequel il est soutiré de la colonne une partie du flux présent au niveau d'au moins un plateau (II) situé entre le plateau d'alimentation et le plateau de soutirage de la fraction distillat la plus lourde, ledit au moins un plateau (II) étant situé au-dessus dudit plateau d'alimentation,
    dans lequel tout ou partie, et de préférence la totalité, dudit flux soutiré dudit plateau (II) est strippé dans une étape de stripage externe par un gaz de stripage, et tout ou partie, et de préférence la totalité, l'effluent gazeux séparé est recyclé dans la colonne au-dessus du plateau duquel ledit flux a été soutiré, et tout ou partie, et de préférence la totalité, de l'effluent liquide séparé est recyclé dans l'étape d'hydrocraquage.
  2. Procédé selon l'une des revendications précédentes dans lequel ledit flux soutiré au niveau du plateau (I) est soutiré au niveau du plateau d'alimentation ou d'un plateau situé en-dessous du plateau d'alimentation et proche dudit plateau d'alimentation, et de préférence au niveau du plateau le plus proche du plateau d'alimentation.
  3. Procédé selon l'une des revendications précédentes dans lequel ledit flux soutiré est recyclé dans l'étape d'hydrocraquage directement ou après une éventuelle séparation des gaz, et de préférence directement.
  4. Procédé selon l'une des revendications précédentes dans lequel le flux soutiré au niveau du plateau (I) ou du plateau (II) présente une concentration en HPNA inférieure à 500 ppm poids, préférentiellement inférieure à 350 ppm poids
  5. Procédé selon l'une des revendications précédentes dans lequel le flux soutiré au niveau du plateau (I) ou du plateau (II) présente une proportion d'au moins 70 % poids en hydrocarbure non convertis, préférentiellement d'au moins 80 % poids en hydrocarbures non convertis
  6. Procédé selon l'une des revendications précédentes dans lequel tout ou partie, et de préférence la totalité, dudit flux soutiré est strippé dans une étape de stripage externe par un gaz de stripage, et tout ou partie, et de préférence la totalité, de l'effluent gazeux séparé est recyclé dans la colonne au niveau du plateau le plus proche du plateau duquel ledit flux a été soutiré.
  7. Procédé selon l'une des revendications précédentes dans lequel le gaz de stripage injecté dans l'étape de stripage externe est de la vapeur d'eau, de préférence à une pression comprise entre 0,2 et 1,5MPa.
  8. Procédé selon l'une des revendications précédentes dans lequel un gaz de stripage est injecté dans l'étape de fractionnement, de préférence ce gaz est de la vapeur d'eau, de préférence à une pression comprise entre 0,2 et 1,5MPa.
  9. Installation comprenant :
    - une section d'hydrocraquage (2) munie d'une ligne (1) d'entrée de la charge et d'une ligne (8) d'entrée de l'hydrogène,
    - éventuellement suivie d'une zone de séparation (4) de l'effluent pour séparer une fraction gazeuse,
    - suivie d'une section de fractionnement (12) comprenant au moins une colonne de distillation munie de plateaux, ladite colonne comportant :
    - au moins une ligne (11) d'entrée de l'effluent hydrocraqué au moins partiellement vaporisé sur au moins un plateau d'alimentation,
    - au moins une ligne (14) pour le soutirage d'au moins un distillat au niveau d'un plateau de soutirage,
    - au moins une ligne (16) d'évacuation sous forme de purge de la totalité du résidu,
    - et comprenant au moins une ligne (19) pour l'injection d'un gaz de stripage, le point d'injection étant situé en-dessous du plateau d'alimentation,
    installation comprenant en outre :
    - au moins une ligne (20) pour le soutirage d'une partie du flux présent au niveau d'au moins un plateau (I) qui est le plateau d'alimentation ou un plateau situé entre le plateau d'alimentation et ledit point d'injection du gaz de stripage,
    - au moins une ligne (18) pour le recyclage de tout ou partie, de préférence de la totalité dudit flux soutiré dans l'étape d'hydrocraquage,
    - au moins une ligne (21) pour le soutirage d'une partie du flux présent au niveau d'au moins un plateau (II) situé entre le plateau d'alimentation et le plateau de soutirage de la fraction distillat la plus lourde, ledit au moins un plateau (II) étant situé au-dessus dudit plateau d'alimentation,
    - un stripeur (25) externe à la colonne, muni d'une ligne (21) d'entrée dudit flux soutiré, d'une ligne (26) d'injection du gaz de stripage, d'une ligne (22) de sortie de la fraction gazeuse, d'une ligne (23) de sortie de la fraction liquide,
    - une ligne (22) de recyclage de tout ou partie, et de préférence de la totalité, de ladite fraction gazeuse dans ladite colonne, la ligne (22) débouchant dans la colonne au-dessus du plateau duquel ledit flux a été soutiré,
    - une ligne (23) de recyclage de tout ou partie, et de préférence de la totalité, de ladite fraction liquide dans l'étape d'hydrocraquage.
  10. Installation selon la revendication 9 comportant au moins une ligne (18) pour le recyclage de la totalité dudit flux soutiré directement dans l'étape d'hydrocraquage.
  11. Installation selon l'une des revendications 9 ou 10 ne comportant pas de ligne de recyclage de la fraction liquide, séparée à l'étape de stripage, vers la colonne de fractionnement.
  12. Installation selon l'une des revendications 9 à 11 ne comportant pas de ligne de recyclage du résidu dans la colonne.
  13. Installation selon l'une des revendications 9 à 12 comportant une ligne (22) débouchant dans la colonne au-dessus du plateau (II) duquel ledit flux a été soutiré, au niveau du plateau le plus proche.
EP15817223.9A 2014-12-22 2015-12-17 Procédé et dispositif pour la reduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage Not-in-force EP3237578B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1463094A FR3030564B1 (fr) 2014-12-22 2014-12-22 Procede et dispositif pour la reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
PCT/EP2015/080222 WO2016102302A1 (fr) 2014-12-22 2015-12-17 Procede et dispositif pour la reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage

Publications (2)

Publication Number Publication Date
EP3237578A1 EP3237578A1 (fr) 2017-11-01
EP3237578B1 true EP3237578B1 (fr) 2019-11-20

Family

ID=52692855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15817223.9A Not-in-force EP3237578B1 (fr) 2014-12-22 2015-12-17 Procédé et dispositif pour la reduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage

Country Status (10)

Country Link
US (1) US10533142B2 (fr)
EP (1) EP3237578B1 (fr)
KR (1) KR20170099989A (fr)
CN (1) CN107429169B (fr)
AR (1) AR103261A1 (fr)
BR (1) BR112017011864A2 (fr)
DK (1) DK3237578T3 (fr)
FR (1) FR3030564B1 (fr)
MX (1) MX2017007916A (fr)
WO (1) WO2016102302A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030564B1 (fr) 2014-12-22 2018-08-10 Axens Procede et dispositif pour la reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
IT201600109063A1 (it) * 2016-10-28 2018-04-28 Eni Spa Apparato e procedimento per l'idroconversione di prodotti petroliferi pesanti
FR3083797B1 (fr) 2018-07-16 2020-07-17 IFP Energies Nouvelles Procede d'hydrocraquage en deux etapes utilisant une colonne de distillation a cloison
FR3091535B1 (fr) 2019-01-09 2021-01-08 Ifp Energies Now Procede d’hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d’hydrocraquage pour la production de distillats moyens
FR3091534B1 (fr) 2019-01-09 2021-01-08 Ifp Energies Now Procede d’ hydrocraquage en deux etapes pour la production de naphta comprenant une etape d’hydrogenation mise en œuvre en aval de la deuxieme etape d’hydrocraquage
FR3091537A1 (fr) 2019-01-09 2020-07-10 IFP Energies Nouvelles Procede d’hydrocraquage en une etape comprenant une etape d'hydrogenation en amont ou en aval de l’etape d’hydrocraquage pour la production de distillats moyens
FR3091533B1 (fr) 2019-01-09 2021-01-08 Ifp Energies Now Procede d’ hydrocraquage en deux etapes pour la production de naphta comprenant une etape d’hydrogenation mise en œuvre en amont de la deuxieme etape d’hydrocraquage
FR3091538B1 (fr) 2019-01-09 2021-01-08 Ifp Energies Now Procede d’hydrocraquage en deux etapes comprenant une etape d'hydrogenation en amont de la deuxieme etape d’hydrocraquage pour la production de distillats moyens
FR3091536A1 (fr) 2019-01-09 2020-07-10 IFP Energies Nouvelles Procede d’hydrocraquage en une etape comprenant une etape d'hydrogenation en amont ou en aval de l’etape d’hydrocraquage pour la production de naphta
US11286412B2 (en) 2019-11-04 2022-03-29 Saudi Arabian Oil Company Water-based drilling fluid compositions and methods for drilling subterranean wells
US11142704B2 (en) 2019-12-03 2021-10-12 Saudi Arabian Oil Company Methods and systems of steam stripping a hydrocracking feedstock
US11760919B2 (en) 2020-07-07 2023-09-19 Saudi Arabian Oil Company Foams for hydrocarbon recovery, wells including such, and methods for use of such
US11840908B2 (en) 2020-10-01 2023-12-12 Saudi Arabian Oil Company Acidizing fluid and method of improving hydrocarbon recovery using the same utilizing a surfactant consisting of an oil mixture
US11359134B2 (en) 2020-10-19 2022-06-14 Saudi Arabian Oil Company Treatment fluids and methods for recovering hydrocarbons from a subterranean formation
US11326112B1 (en) 2021-01-07 2022-05-10 Saudi Arabian Oil Company Integrated hydrocracking/adsorption and aromatic recovery complex to utilize the aromatic bottoms stream
US11549065B2 (en) 2021-01-07 2023-01-10 Saudi Arabian Oil Company Adsorption systems and processes for recovering PNA and HPNA compounds from petroleum based materials and regenerating adsorbents
FR3127228A1 (fr) 2021-09-21 2023-03-24 IFP Energies Nouvelles Procede d’hydrocraquage

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853433A (en) * 1952-07-16 1958-09-23 Hydrocarbon Research Inc Heavy oil conversion to gasoline
US2958652A (en) * 1958-01-16 1960-11-01 Exxon Research Engineering Co Hydrocracking of shale oils with a platinum-on-eta-alumina catalyst composite
US3166489A (en) * 1961-09-21 1965-01-19 California Research Corp Hydrocracking process
US4040944A (en) * 1968-04-11 1977-08-09 Union Oil Company Of California Manufacture of catalytic cracking charge stocks by hydrocracking
US3494861A (en) * 1968-06-07 1970-02-10 Universal Oil Prod Co Rectification with condensed overhead used as reflux and stripping gas
BE793384A (fr) * 1971-12-27 1973-06-27 Texaco Development Corp Procede d'hydrocracking pour la conversion des hydrocarbures lourds en essence a faible teneur en soufre
US4162963A (en) * 1978-07-21 1979-07-31 Continental Oil Company Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts
EP0143862A1 (fr) * 1983-11-04 1985-06-12 Exxon Research And Engineering Company Procédé de conversion des résidus de pétrole
US4961839A (en) 1988-05-23 1990-10-09 Uop High conversion hydrocracking process
US5447621A (en) * 1994-01-27 1995-09-05 The M. W. Kellogg Company Integrated process for upgrading middle distillate production
FR2826972B1 (fr) * 2001-07-06 2007-03-23 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent produit par le procede fischer-tropsch
FR2883005B1 (fr) 2005-03-09 2007-04-20 Inst Francais Du Petrole Procede d'hydrocraquage avec recyclage comprenant l'adsorption de composes polyaromatiques de la fraction recyclee sur adsorbant a base de silice-alumine a teneur limitee en macropores
US20090065401A1 (en) * 2007-09-12 2009-03-12 Petri John A Atmospheric fractionation for hydrocracking process
US8231775B2 (en) * 2009-06-25 2012-07-31 Uop Llc Pitch composition
ES2551608T3 (es) 2010-10-20 2015-11-20 Haldor Topsøe A/S Procedimiento para hidrocraquear una materia prima de alimentación hidrocarbonada
WO2012052042A1 (fr) 2010-10-20 2012-04-26 Haldor Topsøe A/S Procédé d'hydrocraquage d'une charge hydrocarbonée
FR3030564B1 (fr) 2014-12-22 2018-08-10 Axens Procede et dispositif pour la reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3030564A1 (fr) 2016-06-24
CN107429169A (zh) 2017-12-01
CN107429169B (zh) 2020-09-15
FR3030564B1 (fr) 2018-08-10
AR103261A1 (es) 2017-04-26
MX2017007916A (es) 2017-09-05
DK3237578T3 (da) 2020-02-24
KR20170099989A (ko) 2017-09-01
BR112017011864A2 (pt) 2018-01-02
WO2016102302A1 (fr) 2016-06-30
EP3237578A1 (fr) 2017-11-01
US20170349844A1 (en) 2017-12-07
US10533142B2 (en) 2020-01-14

Similar Documents

Publication Publication Date Title
EP3237578B1 (fr) Procédé et dispositif pour la reduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage
EP3415588B1 (fr) Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement
EP3260520B1 (fr) Procede ameliore d'hydroconversion profonde au moyen d'une extraction des aromatiques et resines avec valorisation de l'extrait a l'hydroconversion et du raffinat aux unites aval
EP3339400B1 (fr) Procede et dispositif d'hydrocraquage avec reduction des composes polynucleaires aromatiques
FR3014110A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif en cascade avec recyclage d'une coupe desasphaltee
FR2964388A1 (fr) Procede de conversion de residu integrant une etape de desasphaltage et une etape d'hydroconversion avec recyclage de l'huile desasphaltee
FR3067037A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d'un distillat sous vide, une etape d'hydrocraquage de distillat sous vide
FR3067036A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d'un distillat sous vide, une etape d'hydrotraitement de distillat sous vide
WO2014096591A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif avec recycle de l'huile desasphaltee
EP3074485A1 (fr) Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène.
EP3237577B1 (fr) Procédé et dispositif de réduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage
WO2019134811A1 (fr) Procede d'hydrocraquage deux etapes comprenant au moins une etape de separation haute pression a chaud
EP0851020A1 (fr) Procédé d'hydrotraitement d'une charge hydrocarbonée et dispositif pour sa mise en oeuvre
EP3999613A1 (fr) Procede de production d'olefines comprenant un hydrotraitement, un desasphaltage, un hydrocraquage et un vapocraquage
EP3237576B1 (fr) Procédé et dispositif de réduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage
FR3076297A1 (fr) Procede integre d’hydrocraquage deux etapes pour maximiser la production de naphta
EP4105300A1 (fr) Procédé d hydrocraquage
EP3824049B1 (fr) Procede d'hydrocraquage en deux etapes utilisant une colonne de distillation a cloison
WO2020144097A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
FR3083243A1 (fr) Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement a circulation d'hydrogene inversee
FR3084372A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte
FR3084371A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, un desasphaltage et un hydrocraquage en lit bouillonnant de l'asphalte
CA2937194A1 (fr) Optimisation de l'utilisation d'hydrogene pour l'hydrotraitement de charges hydrocarbonees
WO2023241930A1 (fr) Procédé d'hydrocraquage avec gestion du recyclage optimisée pour la production de naphta
WO2020249498A1 (fr) Procede de production d'olefines comprenant un hydrotraitement, un desasphaltage, un hydrocraquage et un vapocraquage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180425

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190628

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015042207

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1204193

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191223

Year of fee payment: 5

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20191223

Year of fee payment: 5

Ref country code: FR

Payment date: 20191223

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200227

Year of fee payment: 5

Ref country code: GB

Payment date: 20191226

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1204193

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015042207

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015042207

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151217

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120