EP3415588B1 - Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement - Google Patents

Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement Download PDF

Info

Publication number
EP3415588B1
EP3415588B1 EP18305724.9A EP18305724A EP3415588B1 EP 3415588 B1 EP3415588 B1 EP 3415588B1 EP 18305724 A EP18305724 A EP 18305724A EP 3415588 B1 EP3415588 B1 EP 3415588B1
Authority
EP
European Patent Office
Prior art keywords
stage
hydrocracking
hydrogen
effluent
comprised
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18305724.9A
Other languages
German (de)
English (en)
Other versions
EP3415588A1 (fr
Inventor
Jan Verstraete
Elodie Tellier
Thomas PLENNEVAUX
Emmanuelle Guillon
Anne-Claire PIERRON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3415588A1 publication Critical patent/EP3415588A1/fr
Application granted granted Critical
Publication of EP3415588B1 publication Critical patent/EP3415588B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/36Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/26Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used

Definitions

  • Hydrocracking of heavy petroleum fractions is a key refining process which makes it possible to produce, from excess heavy and little recoverable charges, the lighter fractions such as gasolines, jet fuels and light gas oils that the refiner seeks to adapt its production to the request.
  • Certain hydrocracking processes also make it possible to obtain a highly purified residue which can constitute excellent bases for oils or a feedstock which can be easily upgraded in a catalytic cracking unit for example.
  • One of the effluents particularly targeted by the hydrocracking process is the middle distillate (fraction which contains the diesel cut and the kerosene cut).
  • the hydrocracking process of vacuum distillates or DSV makes it possible to produce light cuts (Diesel, Kerosene, naphthas, ...) more valuable than the DSV itself.
  • This catalytic process does not entirely transform the DSV into light cuts.
  • UCO fraction of unconverted DSV
  • UCO UnConverted Oil according to the English terminology.
  • this unconverted fraction can be recycled at the inlet of the hydrotreating reactor or at the inlet of the hydrocracking reactor.
  • the recycling of the fraction not converted at the inlet of the hydrotreatment reactor or at the inlet of the hydrocracking reactor makes it possible both to increase the conversion, but also makes it possible to increase the selectivity in terms of gas oil and kerosene.
  • Another way to increase the conversion while maintaining the selectivity is to add a conversion or hydrocracking reactor on the recycle loop of the fraction not converted to the high pressure separation section.
  • This reactor and the associated recycle constitutes a second hydrocracking step.
  • This reactor being located downstream of the fractionation section, it operates with little sulfur (H 2 S) and little nitrogen, which makes it possible to use catalysts less sensitive to the presence of sulfur by increasing the selectivity of the process.
  • hydrocracking two stages comprises a first stage which aims, as in the "one stage” process, to carry out the hydrorefining of the feedstock but also to achieve a conversion of the latter of the order in general from 30 to 70%.
  • the effluent from the first stage then undergoes fractionation (distillation), which aims to separate the conversion products from the unconverted fraction.
  • fractionation distillation
  • the second stage of a 2-stage hydrocracking process only the fraction of the feedstock not converted during the first stage, is treated. This separation allows a two-stage hydrocracking process to be more selective in diesel than a one-step process with equivalent overall conversion rate.
  • the intermediate separation of the conversion products avoids their "over-cracking" into naphtha and gas in the second step on the hydrocracking catalyst.
  • the unconverted fraction of the charge treated in the second step generally contains very low contents of NH 3 as well as organic nitrogen compounds, in general less than 20 ppm by weight or even less than 10 ppm by weight.
  • the diesel hydrodesulfurization process makes it possible to reduce the quantity of sulfur contained in a diesel cut while minimizing the conversion of the feedstock into lighter products (gas, naphtha).
  • the hydrodesulfurization charge can consist of straight run diesel according to the English terminology or diesel fuel resulting from the atmospheric fractionation of a crude oil, Light Vacuum Gasoil Oil according to the English terminology or light vacuum distillate, LCO or distillate from a conversion process (FCC, coker, etc.), from a diesel charge resulting from the conversion of biomass (esterification for example), alone or as a mixture, for example.
  • the partial pressure of hydrogen required for this process is lower than the partial pressure of hydrogen in the hydrocracker. It is common for these two processes to be present in the same refinery without being integrated. However, they are based on very similar process diagrams, consisting of a charge furnace, fixed bed reactors, hydrogen recycle compressors, and more or less complex high pressure separation sections.
  • US 2006/131212 A1 describes a hydrocracking process of vacuum distillates in two stages, in which the charge of the vacuum distillate type is introduced into a first hydrocracking stage comprising at least one catalytic bed comprising at least one hydrotreating catalyst in which the reactions hydrotreating takes place followed by at least one catalytic bed comprising at least one hydrocracking catalyst in which the hydrocracking reactions take place.
  • the unconverted effluent from the first hydrocracking step is then sent after several separation steps, in a second hydrocracking step, only in mixture with hydrogen, said second hydrocracking step comprising a first zone Q comprising hydrocracking catalysts, this section operating cocurrently.
  • the second hydrocracking stage also includes a second zone operating against the current so as to create an environment favorable to the saturation of the aromatics and to hydrocracking.
  • the present invention relates to a hydrocracking process in two stages of a hydrocarbon feedstock of the vacuum distillate type in which all of the effluent from the second hydrocracking stage e) is co-treated in a hydrotreatment stage f) located downstream of said second hydrocracking step e), in admixture with a liquid hydrocarbon feed of the gas oil type, distinct from said effluent from the second hydrocracking step e).
  • An advantage of the present invention is to provide a process integrating a hydrocracking process in two stages with a hydrodesulfurization process of gas oils making it possible to limit the cracking of the diesel-type feedstock in the hydrotreatment step and to maximize the selectivity and yields of middle distillates from the process. - reduce the initial investment and the consumption of catalyst in the second hydrocracking stage e).
  • Another advantage of the present invention is to provide a process allowing, by the implementation of a co-treatment of the effluent resulting from the hydrocracking step e) in mixture with a liquid hydrocarbon feedstock of the gas oil type in a hydrotreatment stage f), downstream from the hydrocracking stage e), in addition to desulfurizing the liquid hydrocarbon feedstock of the gas oil type, to convert the unconverted part of the effluent from the hydrocracking stage e), which makes it possible to reduce the amount of catalyst used in said hydrocracking step e), with iso conversion per pass of the step consisting of the combination of the second hydrocracking step e) and of step f ) hydrotreatment,
  • Another advantage of the present invention is to provide a process which, by implementing said co-treatment, makes it possible, in addition to desulfurizing the liquid hydrocarbon feedstock of the gas oil type, to minimize the formation of polyaromatic heavy products (HPNA).
  • HPNA polyaromatic heavy products
  • the HPNA gradually forms during their recycling in the second hydrocracking stage.
  • step f) of hydrotreating downstream of step e) of hydrocracking makes it possible to limit the growth of HPNAs by hydrogenating the precursors of said HPNAs, that is to say HPNAs of low weight. molecular).
  • Another advantage of the present invention is to provide a process which by the integration of two processes allows the reduction of operating costs and the reduction of the consumption of catalyst in the second hydrocracking stage.
  • the method comprises a step a) of hydrocracking said charges operating, in the presence of hydrogen and at least one hydrocracking catalyst, at a temperature between 250 and 480 ° C, under pressure between 2 and 25 MPa, at a space speed between 0.1 and 6 h -1 and at a quantity of hydrogen introduced such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 100 and 2000 L / L.
  • the operating conditions such as temperature, pressure, hydrogen recycling rate, hourly space velocity, may be very variable depending on the nature of the feed, the quality of the desired products and the facilities available to the refiner.
  • hydrocracking step a) operates at a temperature between 320 and 450 ° C, very preferably between 330 and 435 ° C, under a pressure between 3 and 20 MPa, and very preferably between 6 and 20 MPa, at a space speed of between 0.2 and 4 h -1, very preferably between 0.3 and 5 h -1 and with an amount of hydrogen introduced such as the volume ratio liter of hydrogen / liter of hydrocarbon is between 200 and 2000 L / L.
  • step a) of the process according to the invention generally make it possible to achieve conversions by pass, into products having boiling points below 340 ° C, and better still below 370 ° C, greater than 15% by weight and even more preferably between 20 and 95% by weight.
  • the hydrocarbon feedstocks treated in the process according to the invention and sent in step a) are chosen from hydrocarbon feedstocks containing at least 20% by volume and preferably at least 80% by volume of boiling compounds. above 340 ° C and preferably between 370 and 580 ° C (that is to say corresponding to compounds containing at least 15 to 20 carbon atoms).
  • Said hydrocarbon feedstocks can advantageously be chosen from VGOs (Vacuum gas oil) according to Anglo-Saxon terminology or vacuum distillates (DSV) such as for example gas oils obtained from the direct distillation of crude oil or from conversion units such as FCC, coker or visbreaking as well as fillers from aromatic extraction units from lubricating oil bases or from solvent dewaxing of lubricating oil bases, or from distillates from desulfurization or hydroconversion of RAT (atmospheric residues) and / or RSV (vacuum residues), or the feed can advantageously be a deasphalted oil, or fillers from biomass or any mixture of the fillers previously mentioned.
  • said fillers have an initial boiling point greater than 340 ° C, and preferably greater than 370 ° C.
  • Said hydrocarbon feedstocks can contain heteroatoms such as sulfur and nitrogen.
  • the nitrogen content is usually between 1 and 8000 ppm by weight, more generally between 200 and 5000 ppm by weight, and the sulfur content between 0.01 and 6% by weight, more generally between 0.2 and 5% and still more more preferred between 0.5 and 4% by weight.
  • Said charge treated in the method according to the invention and sent in step a) may optionally contain metals.
  • the cumulative nickel and vanadium content of the charges treated in the processes according to the invention is preferably less than 1 ppm by weight.
  • the asphaltenes content is generally less than 3000 ppm by weight, preferably less than 1000 ppm by weight, even more preferably less than 200 ppm by weight.
  • the feed contains compounds of the resins and / or asphaltenes type
  • hydrocracking step a) operates in the presence of at least one hydrocracking catalyst.
  • the hydrocracking catalyst is chosen from the conventional hydrocracking catalysts known to those skilled in the art.
  • the hydrocracking catalysts used in hydrocracking processes are all of the bifunctional type combining an acid function with a hydrogenating function.
  • the acid function is provided by supports of large surfaces (150 to 800 m 2 .g-1 generally) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron oxides and aluminum, amorphous silica-aluminas and zeolites.
  • the hydrogenating function is provided either by one or more metals from group VIII of the periodic table, or by a combination of at least one metal from group VIB of the periodic table and at least one metal from group VIII.
  • the hydrocracking catalyst (s) comprise a hydrogenating function comprising at least one group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum and preferably cobalt and nickel and / or at least one metal from group VIB chosen from chromium, molybdenum and tungsten, alone or as a mixture and preferably from molybdenum and tungsten.
  • group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum and preferably cobalt and nickel and / or at least one metal from group VIB chosen from chromium, molybdenum and tungsten, alone or as a mixture and preferably from molybdenum and tungsten.
  • the content of group VIII metal in the hydrocracking catalyst (s) is advantageously between 0.5 and 15% by weight and preferably between 2 and 10% by weight, the percentages being expressed as percentage by weight of oxides.
  • the content of group VIB metal in the hydrocracking catalyst (s) is advantageously between 5 and 25% by weight and preferably between 15 and 22% by weight, the percentages being expressed as a percentage by weight of oxides.
  • the catalyst (s) can also optionally at least one promoter element deposited on the catalyst and chosen from the group formed by phosphorus, boron and silicon, optionally at least one element from group VIIA (chlorine, fluorine preferred), and optionally at at least one element from group VIIB (preferred manganese), optionally at least one element from group VB (preferred niobium).
  • the hydrocracking catalyst (s) comprise an acid function chosen from alumina, silica alumina and zeolites, preferably chosen from zeolites Y and preferably chosen from silica alumina and zeolites.
  • a preferred catalyst comprises and preferably consists of at least one group VI metal and / or at least one non-noble group VIII metal, and a zeolite Y and an alumina binder.
  • An even more preferred catalyst comprises and preferably consists of nickel, molybdenum, a Y zeolite and alumina.
  • Another preferred catalyst comprises and preferably consists of nickel, tungsten and alumina or silica alumina.
  • step a) of the process according to the invention the conversion, during the first step, into products having boiling points below 340 ° C, and better still below 370 ° C, is greater than 20% and preferably greater than 30% and even more preferably between 30 and 80% and preferably between 40 and 60%.
  • hydrocarbon feedstocks treated in the process according to the invention and sent in step a) can optionally be sent in a hydrotreatment step before being sent in step a) of hydrocracking of said process.
  • said feedstocks are advantageously desulfurized and denitrogenated.
  • said hydrotreatment step is advantageously carried out under conventional hydrorefining conditions and in particular in the presence of hydrogen and a hydrotreatment catalyst and at a temperature between 200 and 400 ° C., under a pressure between 2 and 16 MPa, at a space velocity between 0.2 and 5 h-1 and at a quantity of hydrogen introduced such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 100 and 2000 L / L.
  • Conventional hydrotreatment catalysts can advantageously be used, preferably which contain at least one amorphous support and at least one hydro-dehydrogenating element chosen among at least one element from groups VIB and VIII non-noble, and most often at least one element from group VIB and at least one element from group VIII non-noble.
  • the amorphous support is alumina or silica alumina.
  • Preferred catalysts are chosen from NiMo catalysts on alumina and NiMo or NiW catalysts on alumina silica.
  • the effluent from the hydrotreatment step and entering the hydrocracking step a) comprises a nitrogen content preferably less than 300 ppm by weight and preferably less than 50 ppm by weight.
  • the hydrotreatment step and the hydrocracking step a) can advantageously be carried out in the same reactor or in different reactors.
  • the reactor comprises several catalytic beds, the first catalytic beds comprising the hydrotreatment catalyst (s) and the following catalytic beds comprising the hydrocracking catalyst (s).
  • the method comprises a step b) of gas / liquid separation of the effluent from step a) to produce a liquid effluent and a gaseous effluent comprising at least hydrogen.
  • step b) of gas / liquid separation is implemented in a high pressure high temperature separator operating at a temperature between 50 and 450 ° C, preferably between 100 and 400 ° C, even more preferably between 200 and 300 ° C, and a pressure corresponding to the outlet pressure of a) minus the pressure drops.
  • the method comprises a step c) of sending the gaseous effluent comprising at least hydrogen in a compression step before its recycling in at least step a) of hydrocracking.
  • This step is necessary to allow the gas to be recycled upstream, that is to say in the hydrocracking step a), therefore at higher pressure.
  • the gaseous effluent comprising at least hydrogen can advantageously be mixed with make-up hydrogen before or after its introduction in compression step c), preferably via a make-up hydrogen compressor or make up according to Anglo-Saxon terminology.
  • part of the gaseous effluent comprising at least compressed hydrogen can also advantageously be sent in steps e) of hydrocracking and / or f) of hydrotreatment.
  • the method comprises a step d) of fractionating the liquid effluent from step a) into at least one effluent comprising the converted hydrocarbon products having boiling points below 340 ° C, preferably below 370 ° C and preferably below 380 ° C and an unconverted liquid fraction having a boiling point above 340 ° C, preferably above 370 ° C and preferably higher than 380 ° C also called UCO or "unconverted oil" according to English terminology.
  • said step d) of fractionation comprises a first separation step comprising a separation means such as for example a separator flask or a steam stripper preferably operating at a pressure of between 0.5 and 2 MPa, which aims to achieve a hydrogen sulfide (H 2 S) separation from at least one hydrocarbon effluent produced during step a) of hydrocracking.
  • the hydrocarbon effluent from this first separation can advantageously undergo atmospheric distillation, and in certain cases the combination of atmospheric distillation and vacuum distillation.
  • the purpose of distillation is to separate the converted hydrocarbon products, that is to say generally having boiling points below 340 ° C, preferably below 370 ° C and preferably below 38 ° C and an unconverted liquid fraction (residue) (UCO).
  • the fractionation step consists only of an atmospheric distillation column.
  • the converted hydrocarbon products having boiling points below 340 ° C, preferably below 370 ° C and preferably below 380 ° C are advantageously distilled at atmospheric pressure to obtain several fractions converted to boiling point at most 340 ° C, and preferably a C1-C4 light gas fraction, at least a gasoline fraction and at least a kerosene and diesel middle distillate fraction.
  • the liquid fraction, unconverted residue (UCO) containing products whose boiling point is higher than 340 ° C, preferably higher than 370 ° C and preferably higher than 380 ° C and resulting from distillation is at less in part and preferably in whole introduced into the second hydrocracking step e) of the process according to the invention.
  • a purge can advantageously be carried out on the residual liquid fraction in order to avoid the accumulation of heavy polyaromatic products (HPNA) present in the loop for recycling heavy cuts.
  • HPNA heavy polyaromatic products
  • the HPNA gradually forms during their recycling in the second hydrocracking step and the recycling of these heavy aromatic components in the loop of the second hydrocracking step e) has the consequence of increasing their molecular weight.
  • the presence of HPNA in said recycle loop ultimately leads to a significant pressure drop.
  • a purge is therefore necessary in order to limit the accumulation of these HPNA products.
  • the process comprises a step e) of hydrocracking of said unconverted liquid fraction from step d), optionally purged, operating in the presence of hydrogen and of a hydrocracking catalyst, at a temperature between 250 and 480 ° C, under a pressure between 2 and 25 MPa, at a space speed between 0.1 and 6 h -1 and at a quantity of hydrogen introduced such that the volume ratio of liter of hydrogen / liter of hydrocarbon is between 100 and 2000 L / L.
  • the hydrocracking step e) operates at a temperature between 320 and 450 ° C, very preferably between 330 and 435 ° C, under a pressure between 3 and 20 MPa, and very preferably between 9 and 20 MPa, at a space velocity between 0.2 and 3 h -1, and at a quantity of hydrogen introduced such that the volume ratio of liter of hydrogen / liter of hydrocarbon is between 100 and 2000 L / L.
  • step e) of the process according to the invention generally make it possible to achieve conversions by pass, into products having boiling points below 340 ° C, preferably below 370 ° C and so preferred below 380 ° C, above 15% by weight and even more preferably between 20 and 80% by weight. Nevertheless, the conversion by pass in step e) is kept low in order to maximize the selectivity of the process in product having boiling points between 150 and 370 ° C (middle distillates). Pass conversion is limited by the use of a high recycle rate on the second hydrocracking stage loop. This rate is defined as the ratio between the feed flow rate of step e) and the flow rate of the feed from step a), preferably this ratio is between 0.2 and 4, preferably between 0, 5 and 2.
  • hydrocracking step e) operates in the presence of at least one hydrocracking catalyst.
  • the second stage hydrocracking catalyst is chosen from the conventional hydrocracking catalysts known to those skilled in the art.
  • the hydrocracking catalyst used in said step e) may be the same or different from that used in step a) and preferably different.
  • the hydrocracking catalysts used in hydrocracking processes are all of the bifunctional type combining an acid function with a hydrogenating function.
  • the acid function is provided by supports of large surfaces (150 to 800 m 2 .g-1 generally) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron oxides and aluminum, amorphous silica-aluminas and zeolites.
  • the hydrogenating function is provided either by one or more metals from group VIII of the periodic table, or by a combination of at least one metal from group VIB of the periodic table and at least one metal from group VIII.
  • the hydrocracking catalyst (s) used in step e) comprise a hydrogenating function comprising at least one group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum and preferably cobalt and nickel and / or at least one metal from group VIB chosen from chromium, molybdenum and tungsten, alone or as a mixture and preferably from molybdenum and tungsten.
  • group VIII metal chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum and preferably cobalt and nickel and / or at least one metal from group VIB chosen from chromium, molybdenum and tungsten, alone or as a mixture and preferably from molybdenum and tungsten.
  • the content of group VIII metal in the hydrocracking catalyst (s) is advantageously between 0.5 and 15% by weight and preferably between 2 and 10% by weight, the percentages being expressed as percentage by weight of oxides.
  • the metal content of group VIB in the hydrocracking catalyst (s) is advantageously between 5 and 25% by weight and preferably between 15 and 22% by weight, the percentages being expressed as percentage by weight of oxides.
  • the catalyst (s) used in step e) can also optionally comprise at least one promoter element deposited on the catalyst and chosen from the group formed by phosphorus, boron and silicon, optionally at least one element from group VIIA (chlorine , fluorine preferred), and optionally at least one element from group VIIB (manganese preferred), optionally at least one element from group VB (niobium preferred).
  • the hydrocracking catalyst (s) used in step e) comprise an acid function chosen from alumina, silica alumina and zeolites, preferably chosen from zeolites Y and preferably chosen from silica alumina and zeolites.
  • a preferred catalyst used in step e) preferably comprises at least one group VI metal and / or at least one non-noble group VIII metal, a zeolite Y and alumina.
  • An even more preferred catalyst comprises and preferably consists of nickel, molybdenum, a Y zeolite and alumina.
  • Another preferred catalyst comprises and preferably consists of nickel, tungsten and alumina or silica alumina.
  • the method comprises a step f) of hydrotreating the effluent from step e) in admixture with a liquid hydrocarbon feed comprising at least 95% by weight of boiling compounds at a boiling temperature included between 150 and 400 ° C, preferably between 150 and 380 ° C and preferably between 200 and 380 ° C.
  • Said hydrocarbon-based liquid charge can advantageously be a charge originating from a unit external to said process according to the invention or an internal flow to said process according to the invention, said internal flow being different from said effluent from the second hydrocracking step e).
  • said liquid hydrocarbon feedstock is a feedstock coming from a unit external to said process according to the invention.
  • said liquid hydrocarbon feedstock treated in step f) in admixture with the effluent from step e) is advantageously chosen from liquid hydrocarbon feedstocks resulting from the direct distillation of a crude oil (or straight run according to Anglo-Saxon terminology) and preferably chosen from straight run diesel, Light Vacuum Gasoil Oil (LVGO) according to Anglo-Saxon terminology or light vacuum distillate, and hydrocarbon liquid fillers from a coking unit (coking according to Anglo-Saxon terminology), preferably coker gas oil, a visbreaking unit (visbreaking according to Anglo-Saxon terminology), a steam cracking unit (steam cracking according to Anglo-Saxon terminology) and / or a catalytic cracking unit (Fluid Catalytic Cracking according to English terminology), preferably LCOs (light cycle oil) or light gas oils from a catalytic cracking unit, and a diesel charge resulting from the conversion of biomass (esterification for example), said charges can be taken alone or as a mixture.
  • a coking unit coking according to
  • Said hydrocarbon-based liquid charge can also advantageously be a hydrocarbon-based liquid charge originating from a H-Oil type bubbling bed conversion unit.
  • the proportion of said distinct hydrocarbon liquid charge co-treated with the effluent from step e) in step f) represents between 20% and 80% by weight of the total mass of the total liquid mixture at the inlet of l 'step f) of hydrotreatment, preferably between 30% and 70% by weight and even more preferably between 40% and 60% by weight.
  • the treatment of the effluent from step e) in admixture with said liquid hydrocarbon feedstock in a hydrotreatment step f), downstream from the hydrocracking step e), also makes it possible to desulfurize said liquid hydrocarbon feedstock , to minimize the formation of heavy polyaromatic products (HPNA).
  • HPNA heavy polyaromatic products
  • Minimizing the formation of HPNAs makes it possible to minimize the purging required on the liquid fraction, unconverted residue (UCO) resulting from step d) and therefore to increase the overall conversion of the process.
  • the purge rate corresponding to the ratio between the mass flow rate of the purge flow and the mass flow rate of the hydrocarbon feedstock entering the process according to the invention is advantageously between 0 and 2%.
  • said step f) operates in the presence of hydrogen and at least one hydrotreatment catalyst, at a temperature between 200 and 390 ° C, under a pressure between 2 and 16 MPa, at a space speed between 0.2 and 5 h -1 and at a quantity of hydrogen introduced such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 100 and 2000 L / L.
  • Conventional hydrotreatment catalysts can advantageously be used in said step f), which contain at least one amorphous support and at least one hydro-dehydrogenating element chosen from at least one element from non-noble groups VIB and VIII, and preferably at least a group VIB element and at least one non-noble group VIII element.
  • the amorphous support is alumina or silica alumina.
  • Preferred catalysts are chosen from NiMo or CoMo catalysts on alumina and NiMo or NiW catalysts on alumina silica.
  • the hydrotreatment step f) also allows the conversion of the unconverted part of the effluent from the hydrocracking step e), which makes it possible to reduce the amount of catalyst used in the step e) hydrocracking with iso conversion by pass of the stage constituted by the combination of stage e) of hydrocracking and of stage f) of hydrotreatment Furthermore, the presence of the hydrotreatment stage f ) increases the amount of hydrogen in the recycle of the unconverted liquid fraction having a boiling point above 340 ° C (UCO) towards hydrocracking step e), which facilitates their conversion in said step e) and thus further reduces the amount of catalyst required in said step (at iso-lifetime).
  • UAO unconverted liquid fraction having a boiling point above 340 ° C
  • the hydrocracking step e) and the hydrotreatment step f) can advantageously be carried out in the same reactor or in different reactors. In the case where they are carried out in the same reactor, an intermediate injection of the hydrocarbon-based liquid charge is advantageously implemented between the different catalytic beds.
  • the reactor comprises several catalytic beds, the first catalytic beds comprising the hydrocracking catalyst (s) and the following catalytic beds comprising the hydrotreating catalyst (s).
  • the hydrotreatment stage f) advantageously operates at a pressure higher than the pressure of the effluent from the hydrocracking stage a).
  • At least a portion and preferably all of the effluent from step f) of hydrotreatment can advantageously be recycled in step b) of gas / liquid separation.
  • At least part and preferably all of the effluent from step f) of hydrotreatment can advantageously be sent to a second gas / liquid separation step to produce a liquid effluent and a gaseous effluent comprising at least hydrogen.
  • said second gas / liquid separation step is implemented in a high pressure high temperature separator operating at a pressure and a temperature compatible with the temperature and the outlet pressure of step f).
  • Said second separation step is preferably carried out at a temperature between 200 and 390 ° C, under a pressure between 2 and 16 MPa.
  • liquid effluent from the second separation step can advantageously be recycled in step e) of hydrocracking and / or in step f) of hydrotreatment.
  • the gaseous effluent comprising at least hydrogen coming from the second separation step can advantageously be sent to the compression step c).
  • the process uses two gas / liquid separators and a single compressor on the hydrogen recycle loop, as well as a single make-up hydrogen compressor, which reduces the cost of the installation. .
  • the gaseous effluent comprising at least hydrogen from the second separation step can be sent in a second compression step before its recycling in step e) and / or in step f) .
  • the figure 1 illustrates a particular embodiment of the invention.
  • the DSV or VGO type hydrocarbon feedstock (1) enters a hydrocracking section A of step a) corresponding to the first hydrocracking step.
  • Said section may include one or two hydrocracking reactors R1 and / or R2 (not shown in the figure).
  • the effluent (2) from step a) is sent to a gas / liquid separator B from step b) making it possible to isolate a gas stream comprising hydrogen (7).
  • the gaseous effluent (7) is sent to a recycle compressor C, it is mixed with a hydrogen make-up stream (11) and then recycled to the hydrocracking reactor via the stream (8).
  • the liquid effluent (3) from the separator B feeds a fractionation column D of step d).
  • An effluent comprising light cups (10), a gasoline cup (9), and a middle distillate cup (8) corresponding to diesel and kerosene are separated in the fractionation column.
  • An unconverted liquid fraction cutter called UCO (UnConverted-Oil) (12) is also separated and then sent via the stream (4) to a second hydrocracking section E of step e).
  • Said hydrocracking section E comprises a hydrocracking reactor R3 (not shown in the figure).
  • a purge (13) is carried out on the flow of the unconverted liquid fraction from step d).
  • a liquid hydrocarbon feedstock (12) of the diesel type is injected downstream of the hydrocracking section of the UCO E of step e) and is treated in a hydrodesulfurization section F of step f) in mixture with the effluent from the hydrocracking section E, ie the hydrocracked UCO (5).
  • Example 1a comparison: dedicated processes
  • This example is a comparative base case in which the hydrocracking processes of DSV or VGO and hydrodesulfurization of gas oils (GO) are implemented in two separate dedicated processes.
  • the hydrocracking unit processes a diesel fuel charge under vacuum (VGO) and the HDS diesel fuel unit processes a diesel fuel charge (GO) described in Table 1: Table 1 Type VGO GO Debit t / h 49 51 Density t / m 3 0.92 0.83 PI TBP ° C 300 47 PF TBP ° C 552 416 S wt% 2.18 0.68 NOT wtppm 1800 210
  • the GO charge is injected in a preheating step and then into a hydrotreatment reactor under the following conditions set out in Table 2: Table 2 Reactor HDS GO Temperature ° C 336 Partial pressure H 2 MPa 4 Catalyst CoMo on HR1246 alumina VVH h-1 1.04
  • the catalyst used is a CoMo catalyst on alumina of the HR1246 type sold by the company Axens.
  • the diesel HDS process is then composed of a heat recovery train then of high pressure separation including a recycle compressor and allowing to separate on the one hand the hydrogen, the sulfur and nitrogen compounds and on the other share the desulphurized effluent feeding a steam stripper in order to separate the hydrogen sulphide and the naphtha.
  • the final diesel effluent has the following properties set out in Table 3: Table 3 Type GO Debit t / h 46 Density t / m3 0.82 PI TBP ° C 151 PF TBP ° C 450 S wtppm 10.00 NOT wtppm 2
  • VGO feedstock is injected in a preheating step and then into a hydrotreatment reactor under the following conditions set out in Table 4:
  • the catalyst used is a CoMo catalyst on alumina of the HR1058 type sold by the company Axens.
  • the catalyst used is a metal catalyst on zeolite of the HYK742 type sold by the company Axens.
  • R1 and R2 constitute the first stage of the hydrocracker, the effluent of R2 is then sent in a separation stage composed of a heat recovery train then of high pressure separation including a recycle compressor and making it possible to separate d '' on the one hand hydrogen, hydrogen sulfide and ammonia and on the other hand the effluent feeding a stripper then an atmospheric fractionation column in order to separate flows concentrated in H 2 S, naphtha, kerosene, diesel a the desired specification, and an unconverted heavy flow.
  • This unconverted heavy stream is injected in a preheating step and then into a hydrocracking reactor R3 constituting the second hydrocracking step.
  • This R3 reactor is operated under the following conditions set out in Table 6: Table 6 Reactor R3 Temperature ° C 345 Partial pressure H 2 MPa 12.5 Catalyst Metal on amorphous silica-alumina HDK766 VVH h-1 3
  • the catalyst used is a metal catalyst on amorphous silica-alumina of the HDK766 type sold by the company Axens.
  • the R3 effluent is then injected into the high pressure separation step downstream from the first hydrocracking step and recycled.
  • the mass flow at the inlet of reactor R3 is equal to the mass flow of the VGO charge, a purge corresponding to 2% by mass of the flow of the VGO charge is taken at the bottom of the fractionation on the flow of unconverted oil.
  • the distillate cut produced in the hydrocracker and recovered from the fractionation column complies with the Euro V specifications, in particular it has less than 10 ppm by weight of sulfur.
  • the average distillate yield of this process is 85% by mass, for an overall conversion of 98% by mass of hydrocarbons with a boiling point above 380 ° C.
  • the total volume of catalyst required for this scheme is 147m 3 .
  • Example 1b comparison: co-treatment of a DSV feed and a diesel feed in a two-stage hydrocracking process.
  • This example is a comparative base case in which the hydrocracking reactions of DSV or VGO and hydrodesulfurization of gas oils (GO) are implemented in a single hydrocracking process two stages (co-treatment of the two feeds)
  • the hydrocracking unit processes a distillate charge under vacuum (VGO) in admixture with a diesel charge (GO) identical to those used in Example 1a).
  • VGO distillate charge under vacuum
  • GO diesel charge
  • Table 1 The characteristics of the loads (VGO) and (GO) are given in table 1.
  • the effluent from reactor R1 is then mixed with a stream of hydrogen to be cooled and then is injected into a second so-called hydrocracking reactor R2 operating under conditions identical to those used in Example 1a) and described in table 5:
  • R1 and R2 constitute the first stage of the hydrocracker, the effluent from the reactor R2 is then sent to a separation stage composed of a heat recovery train then of high pressure separation including a recycle compressor and making it possible to separate on the one hand hydrogen, hydrogen sulfide and ammonia and on the other hand the effluent supplying a stripper then an atmospheric fractionation column in order to separate flows concentrated in H 2 S, naphtha, kerosene, diesel has the desired specification, and an unconverted heavy flow.
  • This unconverted heavy stream is injected in a preheating step and then into a hydrocracking reactor R3 constituting the second hydrocracking step.
  • This reactor R3 is operated under the same conditions as those used in Example 1a) and are described in Table 6
  • the effluent from reactor R3 is then injected into the high pressure separation step downstream from the first hydrocracking step and recycled.
  • the mass flow at the inlet of reactor R3 is equal to the mass flow of the VGO charge, a purge corresponding to 2% by mass of the flow of the VGO charge is taken at the bottom of the fractionation on the flow of unconverted oil.
  • the distillate cut produced in the hydrocracker and recovered from the fractionation column complies with the Euro V specifications, in particular it has less than 10 ppm by weight of sulfur.
  • the average distillate yield of this process is 80% by mass, for an overall conversion of 98% by mass of hydrocarbons with a boiling point above 380 ° C.
  • the total volume of catalyst required for this scheme is 110m 3 .
  • This example is a diagram in accordance with the invention in which the hydrodesulfurization of gas oils takes place in co-processing with the effluent from the second hydrocracking stage (therefore with hydrocracked UCO).
  • This scheme therefore consists of a single two-stage hydrocracker (there is no process dedicated to the hydrodesulfurization of diesel).
  • the first step of method a) is exactly the same as the first step according to Example 1.
  • R1 and R2 operate on the same pure VGO or DSV charge described in Table 1 under the same operating conditions set out in Tables 4 and 5.
  • the effluent from reactor R2 is then sent to a separation step b) composed of a heat recovery train and then to high pressure separation including a recycle compressor (step c) and making it possible to separate the hydrogen, hydrogen sulfide and ammonia and on the other hand the effluent supplying a stripper then an atmospheric fractionation column (step d) in order to separate flows concentrated in H 2 S, naphtha, kerosene, diesel fuel with desired specification, and an unconverted heavy liquid fraction (UCO) having a boiling point above 380 ° C.
  • This unconverted heavy stream is injected in a preheating step and then into a hydrocracking reactor R3 constituting the second hydrocracking step e).
  • This reactor is operated under the following conditions set out in Table 7: Table 7 Reactor R3 Temperature ° C 345 Partial pressure H 2 MPa 13 Catalyst Metal on amorphous silica-alumina HDK766 VVH h-1 2.8
  • the catalyst used is a metal catalyst on amorphous silica-alumina of the HDK766 type sold by the company Axens.
  • the effluent from reactor R3 is then mixed with a GO charge identical to that of Example 1 described in Table 1.
  • This GO charge was previously preheated by means known to those skilled in the art, by thermal integration with a other process flow.
  • the effluent mixture from reactor R3 and the feedstock GO is then injected into a hydrotreatment reactor R4 (step f), the target is the desulfurization of the GO charge.
  • the operating conditions of this reactor are the following set out in Table 8: Table 8 Reactor R4 Temperature ° C 385 Partial pressure H 2 MPa 12.5 Catalyst NiMo on HR1058 alumina VVH h-1 5.4
  • the catalyst used is a NiMo catalyst on alumina of the HR1058 type sold by the company Axens.
  • step f The effluent from reactor R4 (step f) is then injected into the high pressure separation step b) downstream from the first hydrocracking step a) and recycled.
  • the mass flow at the inlet of reactor R3 is equal to the mass flow of the VGO charge, a purge corresponding to 1% by mass of the flow of the VGO charge is taken at the bottom of the fractionation on the flow of unconverted oil.
  • the distillate cut produced recovered from the fractionation column complies with the Euro V specification, in particular it has less than 10 ppm by weight of sulfur.
  • the average distillate yield of this process is 85% by mass, for an overall conversion of 99% by mass of hydrocarbons with a boiling point above 380 ° C.
  • the total volume of catalyst required for this scheme is 78m 3 .

Description

  • L'hydrocraquage de coupes pétrolières lourdes est un procédé clé du raffinage qui permet de produire, à partir de charges lourdes excédentaires et peu valorisables, les fractions plus légères telles que essences, carburéacteurs et gazoles légers que recherche le raffineur pour adapter sa production à la demande. Certains procédés d'hydrocraquage permettent d'obtenir également un résidu fortement purifié pouvant constituer d'excellentes bases pour huiles ou une charge valorisable facilement dans une unité de craquage catalytique par exemple. Un des effluents particulièrement ciblé par le procédé d'hydrocraquage est le distillat moyen (fraction qui contient la coupe gazole et la coupe kérosène).
  • Le procédé d'hydrocraquage des distillats sous vide ou DSV permet de produire des coupes légères (Gasoil, Kérosène, naphtas,...) plus valorisables que le DSV lui-même. Ce procédé catalytique ne permet pas de transformer entièrement le DSV en coupes légères. Après fractionnement, il reste donc une proportion plus ou moins importante de fraction de DSV non convertis nommée UCO ou UnConverted Oil selon la terminologie anglo-saxonne. Pour augmenter la conversion, cette fraction non convertie peut être recyclée à l'entrée du réacteur d'hydrotraitement ou à l'entrée du réacteur d'hydrocraquage. Le recyclage de la fraction non convertie à l'entrée du réacteur d'hydrotraitement ou à l'entrée du réacteur d'hydrocraquage permet à la fois d'augmenter la conversion, mais permet aussi d'augmenter la sélectivité en Gasoil et kérosène. Une autre manière d'augmenter la conversion en maintenant la sélectivité est d'ajouter un réacteur de conversion ou d'hydrocraquage sur la boucle de recycle de la fraction non convertie vers la section du séparation haute pression. Ce réacteur et le recycle associé constitue une seconde étape d'hydrocraquage. Ce réacteur étant situé en aval de la section de fractionnement, il opère avec peu de soufre (H2S) et peu d'azote, ce qui permet d'utiliser éventuellement des catalyseurs moins sensibles à la présence de soufre en augmentant la sélectivité du procédé.
  • En effet, l'hydrocraquage deux étapes, comporte une première étape qui a pour objectif, comme dans le procédé "une étape", de réaliser l'hydroraffinage de la charge mais aussi d'atteindre une conversion de cette dernière de l'ordre en général de 30 à 70%. L'effluent issu de la première étape subit ensuite une fractionnement (distillation), qui a pour objectif de séparer les produits de conversion de la fraction non convertie. Dans la deuxième étape d'un procédé d'hydrocraquage 2 étapes, seule la fraction de la charge non convertie lors de la première étape, est traitée. Cette séparation permet à un procédé d'hydrocraquage deux étapes d'être plus sélectif en diesel qu'un procédé en une étape a taux de conversion global équivalent. En effet, la séparation intermédiaire des produits de conversion évite leur "sur-craquage" en naphta et gaz dans la deuxième étape sur le catalyseur d'hydrocraquage. Par ailleurs, il est à noter que la fraction non convertie de la charge traitée dans la deuxième étape contient en général de très faibles teneurs en NH3 ainsi qu'en composés azotés organiques, en général moins de 20 ppm poids voir moins de 10 ppm poids.
  • Le procédé d'hydrodésulfuration des gazoles permet de diminuer la quantité de soufre contenue dans une coupe gazole tout en minimisant la conversion de la charge en produits plus légers (gaz, naphta). La charge de l'hydrodésulfuration peut être constituée de gazole straight run selon la terminologie anglo-saxonne ou gazole issu du fractionnement atmosphérique d'un pétrole brut, de Light Vacuum Gasoil Oil selon la terminologie anglo-saxonne ou distillat sous vide légers, de LCO ou de distillat issus d'un procédé de conversion (FCC, coker...), d'une charge gazole issue de la conversion de biomasse (estérification par exemple), seuls ou en mélange, par exemple. La pression partielle d'hydrogène requise pour ce procédé est plus faible que la pression partielle d'hydrogène dans l'hydrocraqueur. Il est courant que ces deux procédés soient présents dans une même raffinerie sans être intégrés. Cependant, ils reposent sur des schémas de procédé très similaires, constitués d'un four de charge, de réacteurs en lits fixes, de compresseurs de recycle d'hydrogène, et de sections de séparation haute pression plus ou moins complexes.
  • US 2006/131212 A1 décrit un procédé d'hydrocraquage de distillats sous vide en deux étapes, dans lequel la charge de type distillat sous vide est introduite dans une première étape d'hydrocraquage comprenant au moins un lit catalytique comprenant au moins un catalyseur d'hydrotraitement dans lequel les réactions d'hydrotraitement ont lieu suivis d'au moins un lit catalytique comprenant au moins un catalyseur d'hydrocraquage dans lequel les réactions d'hydrocraquage ont lieu. L'effluent non converti issu de la première étape d'hydrocraquage est ensuite envoyé après plusieurs étapes de séparation, dans une deuxième étape d'hydrocraquage, uniquement en mélange avec de l'hydrogène, ladite deuxième étape d'hydrocraquage comprenant une première zone Q comprenant des catalyseurs d'hydrocraquages, cette section opérant à co-courant. La deuxième étape d'hydrocraquage comprend également une deuxième zone opérant à contre-courant de manière à créer un environnement favorable à la saturation des aromatiques et à l'hydrocraquage.
  • L'invention consiste à intégrer un procédé d'hydrocraquage deux étapes avec un procédé d'hydrodésulfuration des gazoles en utilisant au moins une partie du réacteur de la seconde étape d'hydrocraquage pour désulfurer la charge gazole en mélange avec la fraction non convertie ou UCO. Les travaux de recherche du demandeur l'ont conduit à découvrir que le co-traitement du mélange constitué par l'effluent de la seconde étape d'un procédé d'hydrocraquage deux étapes traitant une charge de type DSV, avec une charge de type gazole, dans une étape d'hydrotraitement permet, par rapport au co-traitement d'une charge de type VGO et d'une charge de type gazole, directement en mélange dans un procédé d'hydrocraquage deux étapes, de :
    • limiter le craquage de la charge de type gazole dans l'étape d'hydrotraitement et de maximiser la sélectivité du procédé,
    • limiter la concentration en azote et en soufre dans l'étape d'hydrotraitement de la charge de type gazole en mélange avec l'effluent de la seconde étape d'hydrocraquage, ce qui optimise ladite étape,
    • en plus de désulfurer la charge de type gazole, de minimiser la formation de produits lourds polyaromatiques (HPNA), ce qui permet de limiter la purge de la bouche de seconde étape d'hydrocraquage et donc d'augmenter la conversion du procédé, et
    • en plus de désulfurer la charge de type gazole, de convertir la partie non convertie issue de la deuxième étape d'hydrocraquage e), ce qui permet de réduire la quantité de catalyseur utilisée dans ladite étape e) d'hydrocraquage, à iso conversion par passe de l'étape constituée de la combinaison de la deuxième étape d'hydrocraquage e) et de l'étape f) d'hydrotraitement.
  • Le procédé selon l'invention permet également par rapport aux procédés dédiés d'hydrocraquage deux étape de DVS et d'hydrodésulfuration des gazoles fonctionnant séparément, de :
    • réduire l'investissement initial et la consommation de catalyseur dans la deuxième étape e) d'hydrocraquage.
    Résumé de l'invention
  • La présente invention concerne un procédé d'hydrocraquage en deux étapes d'une charge hydrocarbonée de type distillat sous vide dans lequel la totalité de l'effluent issu de la deuxième étape d'hydrocraquage e) est co-traité dans une étape d'hydrotraitement f) située en aval de ladite deuxième étape d'hydrocraquage e), en mélange avec une charge liquide hydrocarbonée de type gazole, distincte dudit effluent issu de la deuxième étape d'hydrocraquage e).
  • En particulier, la présente invention concerne un procédé d'hydrocraquage de charges hydrocarbonées contenant au moins 20% volume et de préférence au moins 80% volume de composés bouillant au-dessus de 340°C, ledit procédé comprenant au moins les étapes suivantes :
    1. a) L'hydrocraquage desdites charges opérant, en présence d'hydrogène et d'au moins un catalyseur d'hydrocraquage, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L,
    2. b) La séparation gaz/liquide de l'effluent issu de l'étape a) pour produire un effluent liquide et un effluent gazeux comprenant au moins de l'hydrogène,
    3. c) L'envoi de l'effluent gazeux comprenant au moins de l'hydrogène dans une étape de compression avant son recycle dans au moins l'étape a) d'hydrocraquage,
    4. d) Le fractionnement de l'effluent liquide en au moins un effluent comprenant les produits hydrocarbonés convertis ayant des points d'ébullition inférieurs à 340°C et une fraction liquide non convertie ayant un point d'ébullition supérieurs à 340°C,
    5. e) L'hydrocraquage de ladite fraction liquide non convertie issue de l'étape d) opérant, en présence d'hydrogène et d'un catalyseur d'hydrocracquage comprenant une fonction hydrogénante comprenant au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium et le platine et/ou au moins un métal du groupe VIB choisi parmi le chrome, le molybdène et le tungstène, seul ou en mélange, et une fonction acide choisie parmi la silice alumine et les zéolithes, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L,
    6. f) L'hydrotraitement de la totalité de l'effluent issu de l'étape e) en mélange avec une charge liquide hydrocarbonée comprenant au moins 95% poids de composés bouillants à une température d'ébullition comprise entre 150 et 400°C, distincte dudit effluent issu de la deuxième étape d'hydrocraquage e), ladite étape f) d'hydrotraitement opérant en présence d'hydrogène et d'au moins un catalyseur d'hydrotraitement comprenant au moins un support amorphe alumine et au moins un élément hydro-déshydrogénant choisi parmi au moins un élément des groupes VIB et VIII non noble, à une température comprise entre 200 et 390°C, sous une pression comprise entre 2 et 16 MPa, à une vitesse spatiale comprise entre 0,2 et 5 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L.
  • Un avantage de la présente invention est de fournir un procédé intégrant un procédé d'hydrocraquage en deux étapes avec un procédé d'hydrodésulfuration des gazoles permettant de limiter le craquage de la charge de type gazole dans l'étape d'hydrotraitement et de maximiser la sélectivité et les rendements en distillats moyens du procédé. - réduire l'investissement initial et la consommation de catalyseur dans la deuxième étape e) d'hydrocraquage.
  • Un autre avantage de la présente invention est de fournir un procédé permettant par la mise en œuvre d'un co-traitement de l'effluent issu de l'étape d'hydrocraquage e) en mélange avec une charge liquide hydrocarbonée de type gazole dans une étape f) d'hydrotraitement, en aval de l'étape d'hydrocraquage e), permet en plus de désulfurer la charge liquide hydrocarbonée de type gazole, de convertir la partie non convertie de l'effluent issu de l'étape d'hydrocraquage e), ce qui permet de réduire la quantité de catalyseur utilisée dans ladite étape e) d'hydrocraquage, à iso conversion par passe de l'étape constituée de la combinaison de la deuxième étape d'hydrocraquage e) et de l'étape f) d'hydrotraitement,
  • Un autre avantage de la présente invention est de fournir un procédé permettant par la mise en œuvre dudit co-traitement permet en plus de désulfurer la charge liquide hydrocarbonée de type gazole, de minimiser la formation de produits lourds polyaromatiques (HPNA). En effet, les HPNA se forme progressivement lors de leur recycle dans de la seconde étape d'hydrocraquage. La mise en œuvre de l'étape f) d'hydrotraitement en aval de l'étape e) d'hydrocraquage permet de limiter la croissance des HPNA en hydrogénant les précurseurs desdits HPNA, c'est-à-dire des HPNA de faible poids moléculaire).
  • Un autre avantage de la présente invention est de fournir un procédé qui par l'intégration de deux procédés permet la réduction des couts opératoires et la réduction de la consommation de catalyseur dans la deuxième étape d'hydrocraquage.
  • Description détaillée de l'invention
  • Conformément à l'invention, le procédé comprend une étape a) d'hydrocraquage desdites charges opérant, en présence d'hydrogène et d'au moins un catalyseur d'hydrocraquage, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L.
  • Les conditions opératoires telles que température, pression, taux de recyclage d'hydrogène, vitesse spatiale horaire, pourront être très variables en fonction de la nature de la charge, de la qualité des produits désirés et des installations dont dispose le raffineur.
  • De préférence, l'étape a) d'hydrocraquage selon l'invention opère à une température comprise entre 320 et 450°C, de manière très préférée entre 330 et 435°C, sous une pression comprise entre 3 et 20 MPa, et de manière très préférée entre 6 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 4 h-1, de manière très préférée entre 0,3 et 5 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure est compris entre 200 et 2000 L/L.
  • Ces conditions opératoires utilisées dans l'étape a) du procédé selon l'invention permettent généralement d'atteindre des conversions par passe, en produits ayant des points d'ébullition inférieurs à 340°C, et mieux inférieurs à 370°C, supérieures à 15%poids et de manière encore plus préférée comprises entre 20 et 95%poids.
  • Conformément à l'invention, les charges hydrocarbonées traitées dans le procédé selon l'invention et envoyées dans l'étape a) sont choisies parmi les charges hydrocarbonées contenant au moins 20% volume et de préférence au moins 80% volume de composés bouillant au-dessus de 340°C et de préférence entre 370 et 580 °C (c'est-à-dire correspondant à des composés contenant au moins 15 à 20 atomes de carbone).
  • Lesdites charges hydrocarbonées peuvent avantageusement être choisies parmi les VGO (Vacuum gas oil) selon la terminologie anglo-saxonne ou distillats sous vide (DSV) tels que par exemple les gasoil issus de la distillation directe du brut ou d'unités de conversion telles que le FCC, le coker ou la viscoréduction ainsi que des charges provenant d'unités d'extraction d'aromatiques des bases d'huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, ou encore des distillats provenant de désulfuration ou d'hydroconversion de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide), ou encore la charge peut avantageusement être une huile désasphaltée, ou des charges issues de la biomasse ou encore tout mélange des charges précédemment citées. La liste ci-dessus n'est pas limitative. En général, lesdites charges ont un point d'ébullition initial supérieur à 340°C, et de préférence supérieur à 370°C.
  • Lesdites charges hydrocarbonées peuvent contenir des hétéroatomes tels que le soufre et l'azote. La teneur en azote est usuellement comprise entre 1 et 8000 ppm poids, plus généralement entre 200 et 5000 ppm poids, et la teneur en soufre entre 0,01 et 6% poids, plus généralement entre 0,2 et 5% et de manière encore plus préférée entre 0,5 et 4 % poids.
  • Ladite charge traitée dans le procédé selon l'invention et envoyée dans l'étape a) peut éventuellement contenir des métaux. La teneur cumulée en nickel et vanadium des charges traitées dans les procédés selon l'invention est de préférence inférieure à 1 ppm poids.
  • La teneur en asphaltènes est généralement inférieure à 3000 ppm poids, de manière préférée inférieure à 1000 ppm poids, de manière encore plus préférée inférieure à 200 ppm poids.
  • Dans le cas où la charge contient des composés de type résines et/ou asphaltènes, il est avantageux de faire passer au préalable la charge sur un lit de catalyseur ou d'adsorbant différent du catalyseur d'hydrocraquage ou d'hydrotraitement.
  • Conformément à l'invention, l'étape a) d'hydrocraquage opère en présence d'au moins un catalyseur d'hydrocraquage. De préférence, le catalyseur d'hydrocraquage est choisi parmi les catalyseurs classiques d'hydrocraquage connus de l'Homme du métier.
  • Les catalyseurs d'hydrocraquage utilisés dans les procédés d'hydrocraquage sont tous du type bifonctionnel associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (150 à 800 m2.g-1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d'oxydes de bore et d'aluminium, les silice-alumines amorphes et les zéolithes. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, soit par une association d'au moins un métal du groupe VIB de la classification périodique et au moins un métal du groupe VIII.
  • De préférence, le ou les catalyseurs d'hydrocraquage comprennent une fonction hydrogénante comprenant au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium et le platine et de préférence le cobalt et le nickel et/ou au moins un métal du groupe VIB choisi parmi le chrome, le molybdène et le tungstène, seul ou en mélange et de préférence parmi le molybdène et le tungstène.
  • De préférence, la teneur en métal du groupe VIII dans le ou les catalyseurs d'hydrocraquage est avantageusement comprise entre 0,5 et 15% poids et de préférence entre 2 et 10% poids, les pourcentages étant exprimés en pourcentage poids d'oxydes.
  • De préférence, la teneur en métal du groupe VIB dans le ou les catalyseurs d'hydrocraquage est avantageusement comprise entre 5 et 25% poids et de préférence entre 15 et 22% poids, les pourcentages étant exprimés en pourcentage poids d'oxydes.
  • Le ou les catalyseurs peuvent également éventuellement au moins un élément promoteur déposé sur le catalyseur et choisi dans le groupe formé par le phosphore, le bore et le silicium, éventuellement au moins un élément du groupe VIIA (chlore, fluor préférés), et éventuellement au moins un élément du groupe VIIB (manganèse préféré), éventuellement au moins un élément du groupe VB (niobium préféré).
  • De préférence, le ou les catalyseurs d'hydrocraquage comprennent une fonction acide choisie parmi l'alumine, la silice alumine et les zéolithes, de préférence choisies parmi les zéolithes Y et de préférence choisi parmi la silice alumine et les zéolithes.
  • Un catalyseur préféré comprend et de préférence constitué au moins un métal du groupe VI et/ou au moins un métal du groupe VIII non noble, et une zéolithe Y et un liant alumine.
  • Un catalyseur encore plus préféré comprend et est de préférence constitué du nickel, du molybdène, une zéolithe Y et de l'alumine.
  • Un autre catalyseur préféré comprend et de est préférence constitué de nickel, de tungstène et de l'alumine ou de la silice alumine.
  • Dans l'étape a) du procédé selon l'invention, la conversion, durant la première étape, en produits ayant des points d'ébullition inférieurs à 340°C, et mieux inférieurs 370°C, est supérieure à 20% et de préférence supérieure à 30% et de manière encore plus préférée comprise entre 30 et 80% et de préférence entre 40 et 60%.
  • Les charges hydrocarbonées traitées dans le procédé selon l'invention et envoyées dans l'étape a) peuvent éventuellement être envoyées dans une étape d'hydrotraitement avant d'être envoyées dans l'étape a) d'hydrocraquage dudit procédé. Dans l'étape optionnelle d'hydrotraitement, lesdites charges sont avantageusement désulfurées et désazotées.
  • De préférence, ladite étape d'hydrotraitement est avantageusement mise en œuvre dans les conditions classiques d'hydroraffinage et en particulier en présence d'hydrogène et d'un catalyseur d'hydrotraitement et à une température comprise entre 200 et 400°C, sous une pression comprise entre 2 et 16 MPa, à une vitesse spatiale comprise entre 0,2 et 5 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L.
  • Des catalyseurs d'hydrotraitement classiques peuvent avantageusement être utilisés, de préférence qui contiennent au moins un support amorphe et au moins un élément hydro-déshydrogénant choisi parmi au moins un élément des groupes VIB et VIII non noble, et le plus souvent au moins un élément du groupe VIB et au moins un élément du groupe VIII non noble.
  • De préférence, le support amorphe est de l'alumine ou de la silice alumine.
  • Des catalyseurs préférés sont choisis parmi les catalyseurs NiMo sur alumine et NiMo ou NiW sur silice alumine.
  • L'effluent issue de l'étape d'hydrotraitement et entrant dans l'étape a) d'hydrocraquage comprend une teneur en azote de préférence inférieure à 300 ppm poids et de préférence inférieure à 50 ppm poids.
  • Dans le cas où une étape d'hydrotraitement est mise en œuvre, l'étape d'hydrotraitement et l'étape d'hydrocraquage a) peuvent avantageusement être réalisée dans un même réacteur ou dans des réacteurs différents. Dans le cas où elles sont réalisées dans un même réacteur, le réacteur comprend plusieurs lits catalytiques, les premiers lits catalytiques comprenant le ou les catalyseurs d'hydrotraitement et les lits catalytiques suivants comprenant le ou les catalyseurs d'hydrocraquage.
  • Conformément à l'invention, le procédé comprend une étape b) de séparation gaz/liquide de l'effluent issu de l'étape a) pour produire un effluent liquide et un effluent gazeux comprenant au moins de l'hydrogène.
  • De préférence, l'étape b) de séparation gaz/liquide est mise en œuvre dans un séparateur haute température haute pression opérant à une température comprise entre 50 et 450°C, préférentiellement entre 100 et 400°C, encore plus préférentiellement entre 200 et 300°C, et une pression correspondant à la pression de sortie de a) diminuée des pertes de charges.
  • Conformément à l'invention, le procédé comprend une étape c) d'envoi de l'effluent gazeux comprenant au moins de l'hydrogène dans une étape de compression avant son recycle dans au moins l'étape a) d'hydrocraquage. Cette étape est nécessaire pour permettre le recycle du gaz en amont c'est-à-dire dans l'étape a) d'hydrocraquage, donc à pression plus élevée.
  • L'effluent gazeux comprenant au moins de l'hydrogène peut avantageusement être mélangé avec de l'hydrogène d'appoint avant ou après son introduction dans l'étape c) de compression, de préférence via un compresseur d'hydrogène d'appoint ou de make up selon la terminologie anglo-saxonne.
  • Selon une variante, une partie de l'effluent gazeux comprenant au moins de l'hydrogène comprimé peut également avantageusement être envoyé dans les étapes e) d'hydrocraquage et/ou f) d'hydrotraitement.
  • Conformément à l'invention, le procédé comprend une étape d) de fractionnement de l'effluent liquide issu de l'étape a) en au moins un effluent comprenant les produits hydrocarbonés convertis ayant des points d'ébullition inférieurs à 340°C, de préférence inférieur à 370°C et de manière préférée inférieure à 380°C et une fraction liquide non convertie ayant un point d'ébullition supérieurs à 340°C, de préférence supérieur à 370°C et de manière préférée supérieur à 380°C également appelée UCO ou « unconverted oil » selon la terminologie anglo saxonne.
  • De préférence, ladite étape d) de fractionnement comprend une première étape de séparation comprenant un moyen de séparation tel que par exemple un ballon séparateur ou d'un stripper à la vapeur opérant de préférence à une pression comprise entre 0,5 et 2 MPa, qui a pour but de réaliser une séparation l'hydrogène sulfuré (H2S) d'au moins un effluent hydrocarboné produits durant l'étape a) d'hydrocraquage. L'effluent hydrocarboné, issu de cette première séparation peut avantageusement subir une distillation atmosphérique, et dans certains cas l'association d'une distillation atmosphérique et d'une distillation sous vide. La distillation a pour but de réaliser une séparation entre les produits hydrocarbonés convertis, c'est à dire généralement ayant des points d'ébullition inférieurs à 340°C, de préférence inférieurs à 370°C et de manière préférée inférieurs à 38°C et une fraction liquide (résidu) non convertie (UCO).
  • Selon une autre variante, l'étape de fractionnement n'est constituée que d'une colonne de distillation atmosphérique.
  • Les produits hydrocarbonés convertis ayant des points d'ébullition inférieurs à 340°C, de préférence inférieur à 370°C et de manière préférée inférieurs à 380°C sont avantageusement distillés à pression atmosphérique pour obtenir plusieurs fractions converties à point d'ébullition d'au plus 340°C, et de préférence une fraction gaz légers C1-C4, au moins une fraction essence et au moins une fraction distillats moyens kérosène et gazole.
  • La fraction liquide, résidu non convertie, (UCO) contenant des produits dont le point d'ébullition est supérieur à 340°C, de préférence supérieur à 370°C et de manière préférée supérieur à 380°C et issue de la distillation est au moins en partie et de préférence en totalité introduite dans la deuxième étape d'hydrocraquage e) du procédé selon l'invention.
  • Une purge peut avantageusement être réalisée sur la fraction liquide résidu afin d'éviter l'accumulation de produits lourds polyaromatiques (HPNA) présents dans la boucle de recycle des coupes lourdes. En effet, les HPNA se forme progressivement lors de leur recycle dans la seconde étape d'hydrocraquage et le recycle de ces composants aromatiques lourds dans la boucle de la seconde étape d'hydrocraquage e) a pour conséquence d'augmenter leur poids moléculaires. La présence des HPNA dans ladite boucle de recycle entraîne à terme une perte de charge importante. Une purge est donc nécessaire afin de limiter l'accumulation de ces produits HPNA.
  • Conformément à l'invention, le procédé comprend une étape e) d'hydrocraquage de ladite fraction liquide non convertie issue de l'étape d), éventuellement purgée, opérant en présence d'hydrogène et d'un catalyseur d'hydrocraquage, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L.
  • De préférence, l'étape e) d'hydrocraquage selon l'invention opère à une température comprise entre 320 et 450°C, de manière très préférée entre 330 et 435°C, sous une pression comprise entre 3 et 20 MPa, et de manière très préférée entre 9 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 3 h-1, et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure est compris entre 100 et 2000 L/L.
  • Ces conditions opératoires utilisées dans l'étape e) du procédé selon l'invention permettent généralement d'atteindre des conversions par passe, en produits ayant des points d'ébullition inférieurs à 340°C, de préférence inférieurs à 370°C et de manière préférée inférieurs à 380°C, supérieures à 15%poids et de manière encore plus préférée comprises entre 20 et 80%poids. Néanmoins, la conversion par passe dans l'étape e) est maintenue faible afin de maximiser la sélectivité du procédé en produit ayant des points d'ébullitions compris entre 150 et 370°C (distillats moyens). La conversion par passe est limitée par l'utilisation d'un taux de recycle élevé sur la boucle de deuxième étape d'hydrocraquage. Ce taux est défini comme le ratio entre le débit d'alimentation de l'étape e) et le débit de la charge de l'étape a), préférentiellement ce ratio est compris entre 0,2 et 4, de manière préférée entre 0,5 et 2.
  • Conformément à l'invention, l'étape e) d'hydrocraquage opère en présence d'au moins un catalyseur d'hydrocraquage. De préférence, le catalyseur d'hydrocraquage de deuxième étape est choisi parmi les catalyseurs classiques d'hydrocraquage connus de l'Homme du métier. Le catalyseur d'hydrocraquage utilisé dans ladite étape e) peut être identique ou différent de celui utilisé dans l'étape a) et de préférence différent.
  • Les catalyseurs d'hydrocraquage utilisés dans les procédés d'hydrocraquage sont tous du type bifonctionnel associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (150 à 800 m2.g-1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d'oxydes de bore et d'aluminium, les silice-alumines amorphes et les zéolithes. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, soit par une association d'au moins un métal du groupe VIB de la classification périodique et au moins un métal du groupe VIII.
  • Le ou les catalyseurs d'hydrocraquage utilisé dans l'étape e) comprennent une fonction hydrogénante comprenant au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium et le platine et de préférence le cobalt et le nickel et/ou au moins un métal du groupe VIB choisi parmi le chrome, le molybdène et le tungstène, seul ou en mélange et de préférence parmi le molybdène et le tungstène.
  • De préférence, la teneur en métal du groupe VIII dans le ou les catalyseurs d'hydrocraquage est avantageusement comprise entre 0,5 et 15% poids et de préférence entre 2 et 10% poids, les pourcentages étant exprimés en pourcentage poids d'oxydes.
  • De préférence, la teneur en métal du groupe VIB dans le ou les catalyseurs d'hydrocraquage est avantageusement comprise entre 5 et 25% poids et de préférence entre 15 et 22% poids, les pourcentages étant exprimés en pourcentage poids d'oxydes.
  • Le ou les catalyseurs utilisés dans l'étape e) peuvent également éventuellement comprendre au moins un élément promoteur déposé sur le catalyseur et choisi dans le groupe formé par le phosphore, le bore et le silicium, éventuellement au moins un élément du groupe VIIA (chlore, fluor préférés), et éventuellement au moins un élément du groupe VIIB (manganèse préféré), éventuellement au moins un élément du groupe VB (niobium préféré).
  • Le ou les catalyseurs d'hydrocraquage utilisés dans l'étape e) comprennent une fonction acide choisie parmi l'alumine, la silice alumine et les zéolithes, de préférence choisies parmi les zéolithes Y et de préférence choisi parmi la silice alumine et les zéolithes.
  • Un catalyseur préféré utilisé dans l'étape e) comprend et de préférence constitué au moins un métal du groupe VI et/ou au moins un métal du groupe VIII non noble, une zéolithe Y et de l'alumine.
  • Un catalyseur encore plus préféré comprend et est de préférence constitué du nickel, du molybdène, une zéolithe Y et de l'alumine.
  • Un autre catalyseur préféré comprend et de est préférence constitué de nickel, de tungstène et de l'alumine ou de la silice alumine.
  • Conformément à l'invention, le procédé comprend une étape f) d'hydrotraitement de l'effluent issu de l'étape e) en mélange avec une charge liquide hydrocarbonée comprenant au moins 95% poids de composés bouillants à une température d'ébullition comprise entre 150 et 400°C, de préférence entre 150 et 380°C et de manière préférée comprise entre 200 et 380°C.
  • La totalité de l'effluent issu de l'étape e) est donc co-traité dans une étape d'hydrotraitement f) en mélange avec une charge liquide hydrocarbonée distincte dudit effluent issu de la deuxième étape d'hydrocraquage e).
  • Ladite charge liquide hydrocarbonée peut avantageusement être une charge provenant d'une unité externe audit procédé selon l'invention ou un flux interne audit procédé selon l'invention, ledit flux interne étant différent dudit effluent issu de la deuxième étape d'hydrocraquage e). De préférence, ladite charge liquide hydrocarbonée est une charge provenant d'une unité externe audit procédé selon l'invention.
  • De préférence, ladite charge liquide hydrocarbonée traitée dans l'étape f) en mélange avec l'effluent issu de l'étape e) est avantageusement choisie parmi les charges liquides hydrocarbonées issues de la distillation directe d'un pétrole brut (ou straight run selon la terminologie anglo-saxonne) et de préférence choisies parmi le gazole straight run, le Light Vacuum Gasoil Oil (LVGO) selon la terminologie anglo-saxonne ou distillat sous vide légers, et les charges liquides hydrocarbonées issues d'une unité de cokéfaction (coking selon la terminologie anglo-saxonne), de préférence le gazole de coker, d'une unité de viscoréduction (visbreaking selon la terminologie anglo-saxonne), d'une unité de vapocraquage (steam cracking selon la terminologie anglo-saxonne) et/ou d'une unité de craquage catalytique (Fluid Catalytic Cracking selon la terminologie anglo-saxonne), de préférence les LCO (light cycle oil) ou gazoles légers issus d'une unité de craquage catalytique, et une charge gazole issue de la conversion de biomasse (estérification par exemple), lesdites charges peuvent être prises seules ou en mélange.
  • Ladite charge liquide hydrocarbonée peut également avantageusement être une charge liquide hydrocarbonée issu d'une unité de conversion en lit bouillonnant de type H-Oil.
  • La proportion de ladite charge liquide hydrocarbonée distincte co-traitée avec l'effluent issu de l'étape e) dans l'étape f) représente entre 20% et 80% poids de la masse totale du mélange liquide total à l'entrée de l'étape f) d'hydrotraitement, de manière préférentielle entre 30% et 70% poids et de manière encore plus préférentielle entre 40% et 60% poids.
  • Le traitement de l'effluent issu de l'étape e) en mélange avec ladite charge liquide hydrocarbonée dans une étape f) d'hydrotraitement, en aval de l'étape d'hydrocraquage e), permet en plus de désulfurer ladite charge liquide hydrocarbonée, de minimiser la formation de produits lourds polyaromatiques (HPNA). Minimiser la formation des HPNA permet de minimiser la purge requise sur la fraction liquide, résidu non convertie, (UCO) issue de l'étape d) et donc d'augmenter la conversion globale du procédé. Le taux de purge, correspondant au ratio entre le débit massique du flux de purge et le débit massique de la charge hydrocarbonée entrant dans le procédé selon l'invention est avantageusement compris entre 0 et 2%.
  • Conformément à l'invention, ladite étape f) opère en présence d'hydrogène et d'au moins un catalyseur d'hydrotraitement, à une température comprise entre 200 et 390°C, sous une pression comprise entre 2 et 16 MPa, à une vitesse spatiale comprise entre 0,2 et 5 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L.
  • Des catalyseurs d'hydrotraitement classiques peuvent avantageusement être utilisés dans ladite étape f), qui contiennent au moins un support amorphe et au moins un élément hydro-déshydrogénant choisi parmi au moins un élément des groupes VIB et VIII non noble, et de préférence au moins un élément du groupe VIB et au moins un élément du groupe VIII non noble.
  • De préférence, le support amorphe est de l'alumine ou de la silice alumine.
  • Des catalyseurs préférés sont choisis parmi les catalyseurs NiMo ou CoMo sur alumine et NiMo ou NiW sur silice alumine.
  • De manière surprenante, l'étape d'hydrotraitement f) permet également la conversion de la partie non convertie de l'effluent issu de l'étape d'hydrocraquage e), ce qui permet de réduire la quantité de catalyseur utilisée dans l'étape e) d'hydrocraquage à iso conversion par passe de l'étape constituée par la combinaison de l'étape e) d'hydrocraquage et de l'étape f) d'hydrotraitement Par ailleurs, la présence de l'étape d'hydrotraitement f) augmente la quantité d'hydrogène dans le recycle de la fraction liquide non convertie ayant un point d'ébullition supérieur à 340°C (UCO) vers l'étape e) d'hydrocraquage, ce qui facilite leur conversion dans ladite étape e) et diminue encore ainsi la quantité de catalyseur nécessaire dans ladite étape (à iso-durée de vie).
  • L'étape d'hydrocraquage e) et l'étape d'hydrotraitement f) peuvent avantageusement être réalisées dans un même réacteur ou dans des réacteurs différents. Dans le cas où elles sont réalisées dans un même réacteur, une injection intermédiaire de la charge liquide hydrocarbonée est avantageusement mise en œuvre entre les différents lits catalytiques. Dans ce cas, le réacteur comprend plusieurs lits catalytiques, les premiers lits catalytiques comprenant le ou les catalyseurs d'hydrocraquage et les lits catalytiques suivants comprenant le ou les catalyseurs d'hydrotraitement.
  • L'étape f) d'hydrotraitement opère avantageusement à une pression supérieure à la pression de l'effluent issu de l'étape a) d'hydrocraquage.
  • Ainsi, dans un premier mode de réalisation particulier, au moins une partie et de préférence la totalité de l'effluent issu de l'étape f) d'hydrotraitement peut avantageusement être recyclée dans l'étape b) de séparation gaz/liquide.
  • Cette configuration permet l'utilisation d'un seul compresseur sur la boucle de recycle de l'hydrogène. En effet, dans ce cas, le recycle de gaz contenant de l'hydrogène vers l'étape f) est assuré par le même compresseur que le recycle de gaz contenant de l'hydrogène vers l'étape a).
  • Dans un deuxième mode de réalisation particulier, au moins une partie et de préférence la totalité de l'effluent issu de l'étape f) d'hydrotraitement peut avantageusement être envoyée dans une deuxième étape de séparation gaz/liquide pour produire un effluent liquide et un effluent gazeux comprenant au moins de l'hydrogène.
  • De préférence, ladite deuxième étape de séparation gaz/liquide est mise en œuvre dans un séparateur haute température haute pression opérant à une pression et une température compatible avec la température et la pression de sortie de l'étape f). Ladite deuxième étape de séparation est mise en œuvre préférentiellement à une température comprise entre 200 et 390°C, sous une pression comprise entre 2 et 16 MPa.
  • Dans ce cas, l'effluent liquide issu de la deuxième étape de séparation peut avantageusement être recyclé dans l'étape e) d'hydrocraquage et/ou dans l'étape f) d'hydrotraitement.
  • Selon une variante, l'effluent gazeux comprenant au moins de l'hydrogène issu de la deuxième étape de séparation peut avantageusement être envoyé dans l'étape c) de compression. Dans ce cas, le procédé met en œuvre deux séparateurs gaz/liquide et un seul compresseur sur la boucle de recycle de l'hydrogène, ainsi qu'un seul compresseur d'hydrogène d'appoint, ce qui réduit le cout de l'installation.
  • Selon une autre variante, l'effluent gazeux comprenant au moins de l'hydrogène issu de la deuxième étape de séparation peut être envoyé dans une deuxième étape de compression avant son recycle dans l'étape e) et/ou dans l'étape f).
  • Description de la figure
  • La figure 1 illustre un mode de réalisation particulier de l'invention.
  • La charge hydrocarbonée de type DSV ou VGO (1) entre dans une section d'hydrocraquage A de l'étape a) correspondant à la première étape d'hydrocraquage. Ladite section peut comprendre un ou deux réacteurs d'hydrocraquage R1 et/ou R2 (non représentés sur la figure). L'effluent (2) issu de l'étape a) est envoyé dans un séparateur gaz/liquide B de l'étape b) permettant d'isoler un flux gazeux comprenant de l'hydrogène (7). L'effluent gazeux (7) est envoyé dans un compresseur de recycle C, il est mélangé avec un flux (11) d'appoint d'hydrogène puis recyclé dans le réacteur d'hydrocraquage via le flux (8).
  • L'effluent liquide (3) issu du séparateur B alimente une colonne de fractionnement D de l'étape d).
  • Un effluent comprenant des coupes légères (10), une coupe essence (9), et une coupe distillat moyen (8) correspondant au gazole et au kérosène sont séparées dans la colonne de fractionnement. Une coupe fraction liquide non convertie nommée UCO (UnConverted-Oil) (12) est également séparée puis envoyé via le flux (4) dans une seconde section d'hydrocraquage E de l'étape e). Ladite section d'hydrocraquage E comprend un réacteur d'hydrocraquage R3 (non représenté sur la figure). Une purge (13) est mise en œuvre sur le flux de la fraction liquide non convertie issu de l'étape d).
  • Une charge liquide hydrocarbonées (12) de type gazole est injectée en aval de la section d'hydrocraquage de l'UCO E de l'étape e) et est traité dans une section F d'hydrodésulfuration de l'étape f) en mélange avec l'effluent issu de la section d'hydrocraquage E, i.e. l'UCO hydrocraqué (5).
  • Les exemples illustrent l'invention sans en limiter la portée.
  • Exemples : Exemple 1a : comparatif : procédés dédiés
  • Cet exemple est un cas de base comparatif dans lequel les procédés d'hydrocraquage de DSV ou VGO et d'hydrodésulfuration des gazoles (GO) sont mis en œuvre dans deux procédé séparés dédiés.
  • L'unité d'hydrocraquage traite une charge gazole sous vide (VGO) et l'unité d'HDS de gazole traite une charge gazole (GO) décrite dans le tableau 1 : Tableau 1
    Type VGO GO
    Débit t/h 49 51
    Densité t/m3 0,92 0,83
    PI TBP °C 300 47
    PF TBP °C 552 416
    S wt% 2,18 0,68
    N wtppm 1800 210
  • Conditions opératoires principales • Hydrotraitement de Gazole
  • La charge GO est injectée dans une étape de préchauffe puis dans un réacteur d'hydrotraitement dans les conditions suivantes énoncées dans le tableau 2 : Tableau 2
    Réacteur HDS GO
    Température °C 336
    Pression partielle H2 MPa 4
    Catalyseur CoMo sur alumine HR1246
    VVH h-1 1,04
  • La catalyseur utilisé est un catalyseur CoMo sur alumine de type HR1246 commercialisé par la société Axens.
  • Le procédé d'HDS de gazole est ensuite composé d'un train de récupération de chaleur puis de séparation à haute pression incluant un compresseur de recycle et permettant de séparer d'une part l'hydrogène, les composé soufré et azoté et d'autre part l'effluent désulfuré alimentant un strippeur à la vapeur afin de séparer le sulfure d'hydrogène et le naphta.
  • L'effluent gazole final a les propriétés suivantes énoncées dans le tableau 3 : Tableau 3
    Type GO
    Débit t/h 46
    Densité t/m3 0,82
    PI TBP °C 151
    PF TBP °C 450
    S wtppm 10,00
    N wtppm 2
  • • Hydrocraqueur deux étapes
  • La charge VGO est injectée dans une étape de préchauffe puis dans une réacteur d'hydrotraitement dans les conditions suivantes énoncées dans le tableau 4 : Tableau 4
    Réacteur R1
    Température °C 385
    Pression partielle H2 MPa 14
    Catalyseur CoMo sur alumine HR1058
    VVH h-1 1,67
  • La catalyseur utilisé est un catalyseur CoMo sur alumine de type HR1058 commercialisé par la société Axens.
  • L'effluent de ce réacteur est ensuite mélangé a un flux d'hydrogène pour être refroidi puis est injecté dans un second réacteur dit d'hydrocraquage R2 opérant dans les conditions du tableau 5 : Tableau 5
    Réacteur R2
    Température °C 390
    Pression partielle H2 MPa 12,5
    Catalyseur Métal sur zéolithe HYK742
    VVH h-1 3
  • La catalyseur utilisé est un catalyseur métal sur zéolithe de type HYK742 commercialisé par la société Axens.
  • R1 et R2 constituent la première étape de l'hydrocraqueur, l'effluent de R2 est ensuite envoyé dans une étape de séparation composée d'un train de récupération de chaleur puis de séparation à haute pression incluant un compresseur de recycle et permettant de séparer d'une part l'hydrogène, le sulfure d'hydrogène et l'ammoniaque et d'autre part l'effluent alimentant un strippeur puis une colonne de fractionnement atmosphérique afin de séparer des flux concentré en H2S, naphta, keroséne, gazole a la spécification souhaitée, et une flux lourd non converti. Ce flux lourd non converti est injecté dans une étape de préchauffe puis dans un réacteur d'hydrocraquage R3 constituant la seconde étape d'hydrocraquage. Ce réacteur R3 est mis en œuvre dans les conditions suivantes énoncées dans le tableau 6 : Tableau 6
    Réacteur R3
    Température °C 345
    Pression partielle H2 MPa 12,5
    Catalyseur Métal sur silice-alumine amorphe HDK766
    VVH h-1 3
  • La catalyseur utilisé est un catalyseur métal sur silice-alumine amorphe de type HDK766 commercialisé par la société Axens.
  • L'effluent de R3 est ensuite injecté dans l'étape de séparation à haute pression en aval de la première étape d'hydrocraquage et recyclée. Le débit massique à l'entrée du réacteur R3 est égal au débit massique de la charge VGO, une purge correspondant à 2% massique du débit de la charge VGO est prise en fond de fractionnement sur le flux d'huile non-convertie.
  • La coupe distillat produit dans l'hydrocraqueur et récupérée de la colonne de fractionnement est conforme aux spécifications euro V, en particulier elle possède moins de 10ppm poids de soufre.
  • Le rendement en distillat moyens de ce procédé est de 85% massique, pour une conversion globale de 98% massique des hydrocarbures dont le point d'ébullition est supérieur à 380°C.
  • Le volume total de catalyseur nécessaire pour ce schéma est 147m3.
  • Exemple 1b : comparatif : co-traitement d'une charge DSV et d'une charge gazole dans un procédé d'hydrocraquage deux étapes.
  • Cet exemple est un cas de base comparatif dans lequel les réactions d'hydrocraquage de DSV ou VGO et d'hydrodésulfuration des gazoles (GO) sont mis en œuvre dans un seul procédé d'hydrocraquage deux étapes (co-traitement des deux charges)
  • L'unité d'hydrocraquage traite une charge distillat sous vide (VGO) en mélange avec une charge gazole (GO) identiques à celles utilisées dans l'exemple 1a). Les caractéristiques des charges (VGO) et (GO) sont données dans le tableau 1.
  • Conditions opératoires principales
  • Le mélange des deux charges VGO et GO est injecté dans une étape de préchauffe puis dans un réacteur d'hydrotraitement R1 opérant dans des conditions identiques à celles utilisées dans le tableau 4 de l'exemple 1a).
  • L'effluent du réacteur R1 est ensuite mélangé à un flux d'hydrogène pour être refroidi puis est injecté dans un second réacteur dit d'hydrocraquage R2 opérant dans des conditions identiques à celles mise en œuvre dans l'exemple 1a) et décrites dans le tableau 5 :
    R1 et R2 constituent la première étape de l'hydrocraqueur, l'effluent du réacteur R2 est ensuite envoyé dans une étape de séparation composée d'un train de récupération de chaleur puis de séparation à haute pression incluant un compresseur de recycle et permettant de séparer d'une part l'hydrogène, le sulfure d'hydrogène et l'ammoniaque et d'autre part l'effluent alimentant un strippeur puis une colonne de fractionnement atmosphérique afin de séparer des flux concentré en H2S, naphta, kérosène, gazole a la spécification souhaitée, et une flux lourd non converti. Ce flux lourd non converti est injecté dans une étape de préchauffe puis dans un réacteur d'hydrocraquage R3 constituant la seconde étape d'hydrocraquage. Ce réacteur R3 est mis en œuvre dans les mêmes conditions que celles mises en œuvre dans l'exemple 1a) et sont décrites dans le tableau 6 :
  • L'effluent du réacteur R3 est ensuite injecté dans l'étape de séparation à haute pression en aval de la première étape d'hydrocraquage et recyclée. Le débit massique à l'entrée du réacteur R3 est égal au débit massique de la charge VGO, une purge correspondant à 2% massique du débit de la charge VGO est prise en fond de fractionnement sur le flux d'huile non-convertie.
  • La coupe distillat produit dans l'hydrocraqueur et récupérée de la colonne de fractionnement est conforme aux spécifications euro V, en particulier elle possède moins de 10ppm poids de soufre.
  • Le rendement en distillat moyens de ce procédé est de 80% massique, pour une conversion globale de 98% massique des hydrocarbures dont le point d'ébullition est supérieur à 380°C.
  • Le volume total de catalyseur nécessaire pour ce schéma est 110m3.
  • Exemple 2 : Selon l'invention
  • Cet exemple est un schéma conforme à l'invention dans lequel l'hydrodésulfuration des gazoles a lieu en co-processing avec l'effluent de seconde étape d'hydrocraquage (donc avec de l'UCO hydrocraqué). Ce schéma se compose donc d'un unique hydrocraqueur deux étapes (il n'y a pas de procédé dédié à l'hydrodésulfuration du gazole).
  • La première étape du procédé a) est exactement la même que la première étape selon l'exemple 1. R1 et R2 opère sur la même charge VGO ou DSV pure décrite dans le tableau 1 dans les mêmes conditions opératoires énoncées aux tableaux 4 et 5.
  • L'effluent du réacteur R2 est ensuite envoyé dans une étape b) de séparation composée d'un train de récupération de chaleur puis de séparation à haute pression incluant un compresseur de recycle (étape c) et permettant de séparer d'une part l'hydrogène, le sulfure d'hydrogène et l'ammoniaque et d'autre part l'effluent alimentant un strippeur puis une colonne de fractionnement atmosphérique (étape d) afin de séparer des flux concentré en H2S, naphta, kérosène, gazole a la spécification souhaitée, et une fraction liquide lourde non converti (UCO) ayant un point d'ébullition supérieur à 380°C. Ce flux lourd non converti est injecté dans une étape de préchauffe puis dans un réacteur d'hydrocraquage R3 constituant la seconde étape d'hydrocraquage e). Ce réacteur est opéré dans les conditions suivantes énoncées au tableau 7 : Tableau 7
    Réacteur R3
    Température °C 345
    Pression partielle H2 MPa 13
    Catalyseur Métal sur silice-alumine amorphe HDK766
    VVH h-1 2,8
  • La catalyseur utilisé est un catalyseur métal sur silice-alumine amorphe de type HDK766 commercialisé par la société Axens.
  • L'effluent du réacteur R3 est ensuite mélangé à une charge GO identique à celle de l'exemple 1 décrite dans le tableau 1. Cette charge GO a été préalablement préchauffée par un moyen connu de l'homme du métier, par intégration thermique avec un autre flux du procédé. Le mélange effluent du réacteur R3 et la charge GO est ensuite injecté dans un réacteur d'hydrotraitement R4 (étape f) dont la cible est la désulfuration de la charge GO. Les conditions opératoires de ce réacteur sont les suivantes énoncées au tableau 8 : Tableau 8
    Réacteur R4
    Température °C 385
    Pression partielle H2 MPa 12,5
    Catalyseur NiMo sur alumine HR1058
    VVH h-1 5,4
  • La catalyseur utilisé est un catalyseur NiMo sur alumine de type HR1058 commercialisé par la société Axens.
  • L'effluent du réacteur R4 (étape f) est ensuite injecté dans l'étape de séparation à haute pression b) en aval de la première étape d'hydrocraquage a) et recyclée. Le débit massique à l'entrée du réacteur R3 est égal au débit massique de la charge VGO, une purge correspondant à 1% massique du débit de la charge VGO est prise en fond de fractionnement sur le flux d'huile non-convertie.
  • La coupe distillat produite récupérée de la colonne de fractionnement est conforme aux spécification euro V, en particulier elle possède moins de 10ppm poids de soufre.
  • Le rendement en distillat moyens de ce procédé est de 85% massique, pour une conversion globale de 99% massique des hydrocarbures dont le point d'ébullition est supérieur à 380°C.
  • Le volume total de catalyseur nécessaire pour ce schéma est 78m3.
  • De manière inattendue, la mise en œuvre du réacteur R4 de l'étape f) dans les conditions opératoires énoncées permet, par rapport au procédés dédiés de l'exemple 1a) de :
    • réduire l'investissement initial et la consommation de catalyseur dans la deuxième étape e) d'hydrocraquage, ce qui se traduit par une réduction du volume total de catalyseur nécessaire pour l'ensemble du procédé,
    et par rapport au co-traitement d'une charge DVS et d'une charge GO dans un procédé d'hydrocraquage deux étapes :
    • de limiter le craquage de la charge de type gazole dans l'étape d'hydrotraitement ce qui se traduit par l'augmentation du rendement en distillat moyens,
    • en plus de désulfurer la charge de type gazole, de minimiser la formation de produits lourds polyaromatiques (HPNA), ce qui se traduit par la limitation de la purge de la bouche de seconde étape d'hydrocraquage et donc d'augmenter la conversion du procédé, et
    • en plus de désulfurer la charge de type gazole, de convertir la partie non convertie issue de la deuxième étape d'hydrocraquage e), ce se traduit par la réduction de la quantité de catalyseur utilisée dans ladite étape e) d'hydrocraquage, à iso conversion par passe de l'étape constituée de la combinaison de la deuxième étape d'hydrocraquage e) et de l'étape f) d'hydrotraitement.

Claims (15)

  1. Procédé d'hydrocraquage de charges hydrocarbonées contenant au moins 20% volume et de préférence au moins 80% volume de composés bouillant au-dessus de 340°C, ledit procédé comprenant au moins les étapes suivantes :
    a) L'hydrocraquage desdites charges opérant, en présence d'hydrogène et d'au moins un catalyseur d'hydrocraquage, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L,
    b) La séparation gaz/liquide de l'effluent issu de l'étape a) pour produire un effluent liquide et un effluent gazeux comprenant au moins de l'hydrogène,
    c) L'envoi de l'effluent gazeux comprenant au moins de l'hydrogène dans une étape de compression avant son recycle dans au moins l'étape a) d'hydrocraquage,
    d) Le fractionnement de l'effluent liquide en au moins un effluent comprenant les produits hydrocarbonés convertis ayant des points d'ébullition inférieurs à 340°C et une fraction liquide non convertie ayant un point d'ébullition supérieurs à 340°C,
    e) L'hydrocraquage de ladite fraction liquide non convertie issue de l'étape d) opérant, en présence d'hydrogène et d'un catalyseur d'hydrocraquage comprenant une fonction hydrogénante comprenant au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium et le platine et/ou au moins un métal du groupe VIB choisi parmi le chrome, le molybdène et le tungstène, seul ou en mélange, et une fonction acide choisie parmi la silice alumine et les zéolithes, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 6 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L,
    f) L'hydrotraitement de la totalité de l'effluent issu de l'étape e) en mélange avec une charge liquide hydrocarbonée comprenant au moins 95% poids de composés bouillants à une température d'ébullition comprise entre 150 et 400°C, distincte dudit effluent issu de la deuxième étape d'hydrocraquage e), ladite étape f) d'hydrotraitement opérant en présence d'hydrogène et d'au moins un catalyseur d'hydrotraitement comprenant au moins un support amorphe alumine et au moins un élément hydro-déshydrogénant choisi parmi au moins un élément des groupes VIB et VIII non noble, à une température comprise entre 200 et 390°C, sous une pression comprise entre 2 et 16 MPa, à une vitesse spatiale comprise entre 0,2 et 5 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L.
  2. Procédé selon la revendication 1 dans lequel les charges hydrocarbonées traitées dans ledit procédé et envoyées dans l'étape a) sont choisies parmi les charges hydrocarbonées contenant au moins 80% volume de composés bouillant entre 370 et 580 °C.
  3. Procédé selon l'une des revendications 1 ou 2 dans lequel les charges hydrocarbonées traitées dans ledit procédé et envoyées dans l'étape a) sont choisies parmi les distillats sous vide (DSV) choisis parmi les gasoil issus de la distillation directe du brut ou d'unités de conversion et les distillats provenant de désulfuration ou d'hydroconversion de résidus atmosphériques et/ou de résidus sous vide, les huiles désasphaltées, et les charges issues de la biomasse ou encore tout mélange des charges précédemment citées.
  4. Procédé selon l'une des revendications 1 à 3 dans lequel l'étape a) d'hydrocraquage opère à une température comprise entre 320 et 450°C, sous une pression comprise entre 3 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 4 h-1, et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure est compris entre 200 et 2000 L/L.
  5. Procédé selon l'une des revendications 1 à 4 dans lequel lesdites charges hydrocarbonées traitées dans ledit procédé sont envoyées dans une étape d'hydrotraitement avant d'être envoyées dans ladite étape a) d'hydrocraquage, ladite étape d'hydrotraitement opérant en présence d'hydrogène et d'un catalyseur d'hydrotraitement et à une température comprise entre 200 et 400°C, sous une pression comprise entre 2 et 16 MPa, à une vitesse spatiale comprise entre 0,2 et 5 h-1 et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 100 et 2000 L/L.
  6. Procédé selon l'une des revendications 1 à 5 dans lequel le procédé comprend une étape d) de fractionnement de l'effluent liquide issu de l'étape a) en au moins un effluent comprenant les produits hydrocarbonés convertis ayant des points d'ébullition inférieurs à 380°C et une fraction liquide non convertie ayant un point d'ébullition supérieurs à 380°C.
  7. Procédé selon l'une des revendications 1 à 6 dans lequel une purge est réalisée sur la fraction liquide non convertie ayant un point d'ébullition supérieurs à 340°C.
  8. Procédé selon l'une des revendications 1 à 7 dans lequel l'étape e) d'hydrocraquage opère à une température comprise entre 320 et 450°C, sous une pression comprise entre 3 et 20 MPa, à une vitesse spatiale comprise entre 0,2 et 4 h-1, et à une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure est compris entre 200 et 2000 L/L.
  9. Procédé selon l'une des revendications 1 à 8 dans lequel la charge liquide hydrocarbonée utilisée dans l'étape e) comprend au moins 95% poids de composés bouillants à une température d'ébullition comprise entre 150 et 380°C.
  10. Procédé selon l'une des revendications 1 à 9 dans lequel ladite charge liquide hydrocarbonée traitée dans l'étape f) en mélange avec l'effluent issu de l'étape e) est choisie parmi le gazole straight run, le Light Vacuum Gasoil Oil (LVGO) selon la terminologie anglo-saxonne ou distillat sous vide légers, et les charges liquides hydrocarbonées issues d'une unité de cokéfaction (coking selon la terminologie anglo-saxonne), de préférence le gazole de coker, d'une unité de viscoréduction (visbreaking selon la terminologie anglo-saxonne), d'une unité de vapocraquage (steam cracking selon la terminologie anglo-saxonne) et/ou d'une unité de craquage catalytique (Fluid Catalytic Cracking selon la terminologie anglo-saxonne), de préférence les LCO (light cycle oil) ou gazoles légers issus d'une unité de craquage catalytique, et une charge gazole issue de la conversion de biomasse.
  11. Procédé selon l'une des revendications 1 à 10 dans lequel au moins une partie de l'effluent issu de l'étape f) d'hydrotraitement est recyclée dans l'étape b) de séparation gaz/liquide.
  12. Procédé selon l'une des revendications 1 à 10 dans lequel au moins une partie la totalité de l'effluent issu de l'étape f) d'hydrotraitement est envoyée dans une deuxième étape de séparation gaz/liquide pour produire un effluent liquide et un effluent gazeux comprenant au moins de l'hydrogène.
  13. Procédé selon la revendication 12 dans lequel l'effluent liquide issu de la deuxième étape de séparation est recyclé dans l'étape e) d'hydrocraquage et/ou dans l'étape f) d'hydrotraitement.
  14. Procédé selon l'une des revendications 12 ou 13 dans lequel l'effluent gazeux comprenant au moins de l'hydrogène issu de la deuxième étape de séparation est envoyé dans l'étape c) de compression.
  15. Procédé selon l'une des revendications 12 ou 13 dans lequel l'effluent gazeux comprenant au moins de l'hydrogène issu de la deuxième étape de séparation peut être envoyé dans une deuxième étape de compression avant son recycle dans l'étape e) et/ou dans l'étape f).
EP18305724.9A 2017-06-16 2018-06-13 Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement Active EP3415588B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1755489A FR3067717B1 (fr) 2017-06-16 2017-06-16 Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement

Publications (2)

Publication Number Publication Date
EP3415588A1 EP3415588A1 (fr) 2018-12-19
EP3415588B1 true EP3415588B1 (fr) 2020-05-13

Family

ID=60020000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18305724.9A Active EP3415588B1 (fr) 2017-06-16 2018-06-13 Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement

Country Status (9)

Country Link
US (1) US10752848B2 (fr)
EP (1) EP3415588B1 (fr)
KR (1) KR102558074B1 (fr)
CN (1) CN109135825B (fr)
BR (1) BR102018011832B1 (fr)
CA (1) CA3008093A1 (fr)
DK (1) DK3415588T3 (fr)
FR (1) FR3067717B1 (fr)
TW (1) TWI800512B (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3091533B1 (fr) 2019-01-09 2021-01-08 Ifp Energies Now Procede d’ hydrocraquage en deux etapes pour la production de naphta comprenant une etape d’hydrogenation mise en œuvre en amont de la deuxieme etape d’hydrocraquage
FR3091535B1 (fr) * 2019-01-09 2021-01-08 Ifp Energies Now Procede d’hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d’hydrocraquage pour la production de distillats moyens
FR3091536A1 (fr) * 2019-01-09 2020-07-10 IFP Energies Nouvelles Procede d’hydrocraquage en une etape comprenant une etape d'hydrogenation en amont ou en aval de l’etape d’hydrocraquage pour la production de naphta
FR3091537A1 (fr) * 2019-01-09 2020-07-10 IFP Energies Nouvelles Procede d’hydrocraquage en une etape comprenant une etape d'hydrogenation en amont ou en aval de l’etape d’hydrocraquage pour la production de distillats moyens
FR3091534B1 (fr) * 2019-01-09 2021-01-08 Ifp Energies Now Procede d’ hydrocraquage en deux etapes pour la production de naphta comprenant une etape d’hydrogenation mise en œuvre en aval de la deuxieme etape d’hydrocraquage
FR3091538B1 (fr) 2019-01-09 2021-01-08 Ifp Energies Now Procede d’hydrocraquage en deux etapes comprenant une etape d'hydrogenation en amont de la deuxieme etape d’hydrocraquage pour la production de distillats moyens
FR3101082B1 (fr) 2019-09-24 2021-10-08 Ifp Energies Now Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec une séparation gaz/liquide améliorée
US11142704B2 (en) 2019-12-03 2021-10-12 Saudi Arabian Oil Company Methods and systems of steam stripping a hydrocracking feedstock
US11136512B2 (en) * 2019-12-05 2021-10-05 Saudi Arabian Oil Company Two-stage hydrocracking unit with intermediate HPNA hydrogenation step
FR3104606B1 (fr) 2019-12-17 2021-11-19 Ifp Energies Now Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec un recyclage de l’hydrogène optimisé
FR3107530B1 (fr) * 2020-02-21 2022-02-11 Ifp Energies Now Procede optimise de traitement d’huiles de pyrolyse de plastiques en vue de leur valorisation
CN112391197B (zh) * 2020-11-10 2022-08-23 洛阳瑞泽石化工程有限公司 一种悬浮床渣油加氢裂化系统及方法
FR3136477A1 (fr) 2022-06-14 2023-12-15 IFP Energies Nouvelles Procédé d'hydrocraquage avec gestion du recyclage optimisée pour la production de naphta

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202217C (zh) * 2002-12-19 2005-05-18 中国石油化工股份有限公司 一种循环裂解加氢裂化工艺
US7238277B2 (en) * 2004-12-16 2007-07-03 Chevron U.S.A. Inc. High conversion hydroprocessing
FR2907459B1 (fr) * 2006-10-24 2012-10-19 Inst Francais Du Petrole Procede et installation de conversion de fractions lourdes petrolieres en lit fixe avec production integree de distillats moyens a tres basse teneur en soufre.
FR2910486B1 (fr) 2006-12-21 2009-02-13 Inst Francais Du Petrole Procede de conversion de charges issues de sources renouvelables pour produire des bases carburants gazoles de faible teneur en soufre et de cetane ameliore
US8992764B2 (en) * 2010-06-29 2015-03-31 Exxonmobil Research And Engineering Company Integrated hydrocracking and dewaxing of hydrocarbons
US8557106B2 (en) * 2010-09-30 2013-10-15 Exxonmobil Research And Engineering Company Hydrocracking process selective for improved distillate and improved lube yield and properties
US8158070B1 (en) * 2011-03-31 2012-04-17 Uop Llc Apparatus for hydroprocessing two streams
CN104039932B (zh) * 2011-11-04 2017-02-15 沙特阿拉伯石油公司 具有集成中间氢分离和纯化的加氢裂化方法
RU2640419C2 (ru) * 2013-03-15 2018-01-09 Ламмус Текнолоджи Инк. Гидрообработка продуктов термического крекинга
US9567536B2 (en) * 2014-11-03 2017-02-14 Uop Llc Integrated hydrotreating and slurry hydrocracking process
EP3274425B1 (fr) 2015-03-23 2021-06-16 ExxonMobil Research and Engineering Company Procédé d'hydrocraquage permettant d'obtenir des rendements de production élevés de produits lubrifiants de haute qualité

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TW201906993A (zh) 2019-02-16
US20180362864A1 (en) 2018-12-20
CN109135825B (zh) 2021-12-31
EP3415588A1 (fr) 2018-12-19
TWI800512B (zh) 2023-05-01
CA3008093A1 (fr) 2018-12-16
US10752848B2 (en) 2020-08-25
DK3415588T3 (da) 2020-08-10
BR102018011832B1 (pt) 2022-10-25
CN109135825A (zh) 2019-01-04
FR3067717B1 (fr) 2020-11-13
FR3067717A1 (fr) 2018-12-21
KR102558074B1 (ko) 2023-07-20
KR20180137410A (ko) 2018-12-27
BR102018011832A2 (pt) 2019-01-15

Similar Documents

Publication Publication Date Title
EP3415588B1 (fr) Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement
EP3018188B1 (fr) Procede de conversion de charges petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
FR3014897A1 (fr) Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments
FR3014111A1 (fr) Procede de raffinage d'une charge hydrocarbonee lourde mettant en œuvre un desasphaltage selectif en cascade
FR3067037A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d'un distillat sous vide, une etape d'hydrocraquage de distillat sous vide
FR3067036A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d'un distillat sous vide, une etape d'hydrotraitement de distillat sous vide
FR3030567A1 (fr) Procede de conversion profonde de residus maximisant le rendement en essence
WO2019134811A1 (fr) Procede d'hydrocraquage deux etapes comprenant au moins une etape de separation haute pression a chaud
FR3091533A1 (fr) Procede d’ hydrocraquage en deux etapes pour la production de naphta comprenant une etape d’hydrogenation mise en œuvre en amont de la deuxieme etape d’hydrocraquage
FR3076297A1 (fr) Procede integre d’hydrocraquage deux etapes pour maximiser la production de naphta
WO2020144095A1 (fr) Procede d' hydrocraquage en deux etapes pour la production de naphta comprenant une etape d'hydrogenation mise en œuvre en aval de la deuxieme etape d'hydrocraquage
FR3008711A1 (fr) Procede de raffinage d'une charge hydrocarbonee de type residu sous-vide mettant en œuvre un desasphaltage selectif, un hydrotraitement et une conversion du residu sous-vide pour la production d'essence et d'olefines legeres
WO2010004127A2 (fr) Procede de conversion comprenant une viscoreduction de residu puis un desasphaltage et une hydroconversion
EP3237577B1 (fr) Procédé et dispositif de réduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage
FR3083243A1 (fr) Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement a circulation d'hydrogene inversee
CA2607252A1 (fr) Procede et installation de conversion de fractions lourdes petrolieres en lit fixe avec production integree de distillats moyens a tres basse teneur en soufre
WO2020144097A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
WO2020144096A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en amont de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
EP3824049B1 (fr) Procede d'hydrocraquage en deux etapes utilisant une colonne de distillation a cloison
FR3084372A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte
EP3237576B1 (fr) Procédé et dispositif de réduction des composés aromatiques polycycliques lourds dans les unités d'hydrocraquage
FR3084371A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, un desasphaltage et un hydrocraquage en lit bouillonnant de l'asphalte
FR3071845A1 (fr) Procede integre de production de distillat moyen avec une boucle de recycle sur l'hydrotraitement
FR3071847A1 (fr) Procede de production de distillats moyens par hydrocraquage de distillats sous vide comprenant un procede d'hydrotraitement/hydroisomerisation integre au procede d'hydrocraquage
WO2023241930A1 (fr) Procédé d'hydrocraquage avec gestion du recyclage optimisée pour la production de naphta

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20190619

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20190723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602018004653

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10G0045020000

Ipc: C10G0065120000

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 45/02 20060101ALI20191009BHEP

Ipc: C10G 65/12 20060101AFI20191009BHEP

Ipc: C10G 47/00 20060101ALI20191009BHEP

Ipc: C10G 67/02 20060101ALI20191009BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018004653

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1270277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200803

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200914

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1270277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018004653

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200613

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

26N No opposition filed

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230626

Year of fee payment: 6

Ref country code: FR

Payment date: 20230622

Year of fee payment: 6

Ref country code: DK

Payment date: 20230621

Year of fee payment: 6

Ref country code: DE

Payment date: 20230627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 6