WO2015078265A1 - 施药装置及施药方法 - Google Patents

施药装置及施药方法 Download PDF

Info

Publication number
WO2015078265A1
WO2015078265A1 PCT/CN2014/090027 CN2014090027W WO2015078265A1 WO 2015078265 A1 WO2015078265 A1 WO 2015078265A1 CN 2014090027 W CN2014090027 W CN 2014090027W WO 2015078265 A1 WO2015078265 A1 WO 2015078265A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow
wall
liquid supply
chamber
Prior art date
Application number
PCT/CN2014/090027
Other languages
English (en)
French (fr)
Inventor
陈田来
陈永红
张立祯
吕荣波
顿宝红
马国江
Original Assignee
陈田来
陈永红
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈田来, 陈永红 filed Critical 陈田来
Publication of WO2015078265A1 publication Critical patent/WO2015078265A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • A01M1/2022Poisoning or narcotising insects by vaporising an insecticide
    • A01M1/2027Poisoning or narcotising insects by vaporising an insecticide without heating
    • A01M1/2044Holders or dispensers for liquid insecticide, e.g. using wicks
    • A01M1/205Holders or dispensers for liquid insecticide, e.g. using wicks using vibrations, e.g. ultrasonic or piezoelectric atomizers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • A01M1/2022Poisoning or narcotising insects by vaporising an insecticide
    • A01M1/2027Poisoning or narcotising insects by vaporising an insecticide without heating
    • A01M1/2033Poisoning or narcotising insects by vaporising an insecticide without heating using a fan
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M17/00Apparatus for the destruction of vermin in soil or in foodstuffs
    • A01M17/008Destruction of vermin in foodstuffs

Definitions

  • the invention relates to a medicine application device and a medicine application method, in particular to a medicine application device and a medicine application method.
  • Pesticide residues are one of the most serious food safety issues.
  • the pesticide application method and the backwardness and low efficiency of the application device are the main reasons for the excessive use of pesticides and pesticide residues.
  • Agricultural greenhouses, greenhouses, arch sheds and other facilities are the main places for the protection or anti-seasonal production of vegetables and other crops, but they are different from the field environment, the air humidity in the environment is large, the disease and insect pests are large, and the amount of pesticide spray required is large.
  • the number of drugs is high, and frequent spraying of pesticides will not only cause pesticide residues, but also increase the humidity of the air in the shed, which in turn will promote the growth of pests and diseases, and such a vicious circle. Based on this, people are eager to apply the medicine with good effect, no frequent application, and no deterioration of the air environment.
  • the current agricultural application device includes a conventional knapsack manual pressure atomizer, which has low application efficiency, large droplets, wide particle size and easy damage, and run, run, leak, and drop are common. Medicines, medical liquids, easy to cause environmental pollution, and require manual operation, large labor, high labor costs, and pesticide poisoning of pesticide application personnel under special conditions. Other types of agricultural application devices, such as motorized sprayers, have higher application efficiency, smaller droplets than knapsack manual pressure sprayers, wide fog particle spectrum, high noise, large self-contained, poor working environment, and professional maintenance. Wait. However, some electric sprayers developed in recent years have higher application efficiency, lower labor intensity, and are more convenient to use. However, there are wide fog particle spectrum, limited battery capacity, too many model brands, and various accessories are not common. Vulnerable and costly, it is difficult Large-scale promotion and application.
  • the prior art spraying method not only causes a large amount of waste of the pesticide, but also easily causes the residue of the pesticide on the application target and the contamination of the space where the application target is excessively applied.
  • the wick when used for a long time, especially when the pesticide with relatively poor solubility is used, the undissolved part of the drug microparticles are easily blocked by the porous material or the tiny pores of the wick and remain in the porous or capillary material. Long-term use will not only cause waste of drugs, but also lead to a reduction in the effect of application. This drawback is especially serious for the application method and apparatus for continuously extracting the liquid medicine and evaporating the liquid medicine by using the fixed wick having the capillary absorbing ability.
  • the droplets are small, the droplet size is concentrated, the deposition amount of the effective substance of the liquid medicine on the target object, and the target substance are
  • the coating density and distribution quality are ideal, and the medicine application, labor saving, environmental protection, energy saving, convenient use, easy cleaning, low pollution, low cost, long-term and efficient use of the application method and the application device, especially need to provide a kind It can use new application methods and application devices with longer cycle, higher universality, more convenient and economical operation and better application effect.
  • the object of the present invention is to provide a method for administering a drug and a device for applying the same, which is simple in design, easy to use, small in droplets generated, concentrated in droplet size, and deposited on the target substance and in the target.
  • the coverage density and distribution quality of the object are ideal, and the medicine, the medicinal solution, the labor saving, the environmental protection, the energy saving, and the Easy to use, easy to clean, low pollution, low cost, long-term and efficient use.
  • the preparation of the gaseous flow containing the ultrafine drug particles with better effect is realized by providing the ultrasonic oscillation device and other related means.
  • a method of administering the method comprising:
  • a powered gas stream is provided to the atomized drug solution to carry the atomized drug solution away and to be applied to the environment in which the application target is located.
  • an inlet for introducing a power flow is provided at least at a position close to a liquid level of the chemical liquid; the power of the power flow is from a blower located upstream of the liquid atomization site And/or an induced draft fan and/or a jet downstream of the liquid medicine atomization site; preferably, at least a blower is provided upstream of the chemical liquid atomization site to provide the conveying power; preferably, when the liquid jet is used, the fluidizer is used
  • the high velocity compressed bleed air stream is a medicinal gas stream or an air stream; further preferably, the source of the motive gas stream is an air stream.
  • the temperature range of the motive gas flow is selected to be between 5 and 30 ° C; further preferably, when the temperature of the environment in which the application target is located is lower than 0 to 10 ° C, the power is The difference between the gas flow and the ambient temperature is in the range of 5 to 20 °C.
  • the power flow is supplied to the atomized liquid before passing through a heating zone, and the heating zone is provided with at least an electrical component requiring heat dissipation for heating a heating source for the power flow; further preferably, the electrical component includes at least a voltage regulator for the ultrasonic oscillating device; further preferably, an electronic component and a circuit board for driving the motor and the control system of the reservoir agitation device; Further preferably, the heating zone is controllably provided with pulse heating or resistance heating or a PTC ceramic piece as an active electric heating component.
  • a heating means preferably one or more, is provided on an outflow path of the gaseous stream containing the ultrafine drug particles formed by the atomized drug solution and the motive gas stream A heat source that is adjacent to the output of the gaseous stream.
  • the temperature of the high velocity compressed bleed stream of the input jet is adjusted to provide an output temperature of the gaseous stream when the jet is used to provide power.
  • the oscillating operating frequency of the ultrasonic oscillating device is configured to operate at a frequency greater than 1.7 MHz, preferably at an operating frequency of 2.0 to 5 MHz.
  • an administration device comprising:
  • the atomization generating device comprises:
  • a spray chamber configured to hold a chemical liquid, to provide an atomization space for atomizing the chemical liquid, and a transport passage for a gaseous flow of the generated atomized chemical liquid;
  • An ultrasonic oscillating device configured to perform atomization on the chemical liquid, wherein an oscillating member of the ultrasonic oscillating device is disposed in contact with the chemical liquid to oscillate the chemical liquid to atomize the chemical liquid;
  • Airflow delivery components including:
  • a power flow airflow input assembly for supplying a power flow to the spray chamber while the ultrasonic oscillating device atomizes the chemical liquid
  • An airflow output assembly that carries the gaseous flow of the ultrafine drug particles formed by the motive gas stream and the atomized drug solution and is applied to the environment in which the application target is located.
  • the atomization chamber of the atomization device is disposed at a substantially intermediate position of the applicator, the ultrasonic oscillator is disposed at the bottom of the spray chamber;
  • the input assembly includes a bellows disposed on a left side of the spray chamber; and on the other side of the spray chamber opposite the bellows, the atomization generating device is further provided with a liquid storage tank, the liquid storage tank being disposed adjacent thereto
  • the inlet of the liquid to be atomized on the right wall of the atomization chamber supplies the liquid medicine to the atomization chamber;
  • the wind box is provided with a power grille, and the air box is provided with a blower, and the bellows provides
  • the power flow is input into the atomization chamber through a power flow input port on the left wall of the adjacent spray chamber; preferably, the power flow input port is slightly higher than the feed port of the atomized liquid, and the gaseous flow output port is substantially formed In the middle of the top of the shroud, and the
  • the power flow input port is slightly higher than the feed port of the atomized liquid
  • the gas flow output port is formed substantially at an intermediate position at the top of the shroud
  • the gaseous flow The angle between the axis of the output port and the axis of the power flow input port is between 90 degrees and 130 degrees.
  • the spray chamber includes a detachable upper and lower joint
  • the upper part and the lower part are together, wherein the lower part is an upper opening liquid supply bottom box, the upper part is a shroud which is open at the upper and lower sides; the liquid supply bottom box is formed at a lower part of the shroud and extends to the liquid storage
  • the bottom of the box further preferably, the shroud comprises a left housing and a right housing; further preferably, the lower end of the shroud forms a tightening opening and is inserted into the liquid bottom box to make the outer wall and the liquid supply bottom
  • the inner walls of the box are close together.
  • the liquid supply bottom box has a trapezoidal structure, the portion that cooperates with the shroud is located at a lower portion of the trapezoidal structure, and the inner wall surface of the lower portion of the trapezoidal structure forms a concave cavity.
  • the upper portion of the trapezoidal structure extends from the lower portion to the upper position and cooperates with the bottom of the liquid storage tank for supporting the liquid storage tank and providing the liquid storage tank member.
  • the liquid supply bottom box is formed as a separate component or by a bottom surface of the base; preferably, the liquid supply bottom box is a separate member supported by a trapezoidal structure
  • the upper top surface of the base below the upper portion forms a structural shape corresponding to the lower bottom surface of the liquid supply bottom box, and the two structures are closely fitted together.
  • the shroud is of a two-layer structure and is detachably assembled by the left and right halves, and the front and rear walls of the inner casing of the shroud are designed as
  • the curved inner wall causes the inner wall of the shroud to converge toward the gaseous flow outlet located at the top; preferably, the inner casing of the shroud is further formed with a flow guiding hole communicating with the inner portion of the atomization chamber.
  • the shroud comprises, in order from bottom to top, a sealing liquid section, a mist section, and a misting section, and the liquid supply opening of the spraying chamber is disposed in the sealing section.
  • the air inlet of the power flow is disposed between the sealing section and the mist section, and the gaseous flow outlet is disposed at the port of the fogging section.
  • the mist section of the inner wall of the shroud is formed with a defoaming rib.
  • the defoaming rib is disposed longitudinally along the inner wall of the shroud, and further preferably, the defoaming The ribbed rib is a apex; further preferably, the defoaming rib is formed on the left and/or right inner wall of the shroud.
  • a flow guiding comb is disposed in an airflow outflow direction of the power flow input port of the left wall of the atomization chamber, and preferably, the end of the flow guiding comb further forms a connection
  • the liquid barrier bank at the end of each of the flow guiding combs; further preferably, the end of the flow guiding comb or the end of the liquid barrier bank is formed with a plurality of downward protruding tips.
  • the flow guiding comb is comprised of a horizontal flow guiding portion and a vertical flow guiding portion, wherein the horizontal flow guiding comb portion is atomized from an upward direction of the power flow input port of the air guiding cover Indoor
  • the horizontal stretch is a certain length, preferably 20 to 35 mm, and then bent under the liquid supply bottom box to form a vertical flow comb portion, and the width is preferably 20 to 35 mm.
  • the inner wall of the spray chamber is provided with a detachable foam net, preferably, a small grid of 1 to 3 x 1 to 3 mm 2 is formed thereon.
  • the foaming net is formed on the front and/or rear inner wall of the atomization chamber, and the foaming net is formed on the front inner wall of the seam of the left and right casings of the spray chamber shroud.
  • the ultrasonic oscillating device is an integrated ultrasonic oscillating device and includes one or more ultrasonic oscillating units, the oscillating unit being disposed in a sealed housing, each ultrasonic oscillating unit One or more oscillating elements are provided, and the ceramic transducer sheets of the oscillating elements are exposed to contact with the liquid medicine to be atomized to perform ultrasonic oscillation.
  • the total amount of the oscillating elements of the ultrasonic oscillating device is 3-10; further preferably, the ultrasonic oscillating device is further provided with a liquid level control member and a voltage stabilizing device, wherein the liquid level control member is disposed on the sealed housing, and the voltage stabilizing device is disposed at the bottom of the base In the duct; further preferably, the applicator comprises one or more of the integrated ultrasonic oscillators.
  • the ultrasonic oscillating device is detachably disposed at the bottom of the outer portion of the liquid supply bottom box, and the oscillating member of the ultrasonic oscillating device passes through the opening in the bottom wall of the liquid supply bottom box Contacting the liquid chemical in the liquid supply bottom box to apply ultrasonic vibration to the liquid medicine; preferably, a bottom height is formed on the bottom wall of the liquid bottom box, and a liquid flow hole is formed in the partition;
  • the back of the ultrasonic oscillating device is located in the bottom air passage in the base or can be in fluid contact with the bottom air passage.
  • the ultrasonic oscillating device is detachably disposed at the bottom of the interior of the liquid supply bottom box, and the liquid supply bottom box is provided with a guide rod along the liquid level height direction.
  • a sealing housing of the ultrasonic oscillating device is slidably mounted on the guide rod, and further preferably, the sealed housing of the ultrasonic oscillating device is provided with an increase or decrease in buoyancy characteristics; further preferably, the ultrasonic wave
  • the oscillating operating frequency of the ceramic transducer of the oscillating device is configured to operate at frequencies greater than 1.7 MHz, preferably with an oscillating operating frequency of 2.0 to 5 MHz.
  • the applicator device includes a liquid control stabilization device for cooperating with the ultrasonic oscillation device, the liquid control stabilization device comprising a cover body, the cover body Forming a downwardly open cavity by the top wall and the outer peripheral wall for covering the ultrasonic oscillating device; the top wall of the cover body is formed with an opening corresponding to the number and position of the oscillating components of the ultrasonic oscillating device A downwardly extending cylindrical body extending from the inner wall of the top wall is formed at the lower side of each of the openings, and the cylinder is used for covering the outer periphery of the corresponding oscillating member, and is open at both ends of the cylinder.
  • the liquid control stabilization device comprising a cover body, the cover body Forming a downwardly open cavity by the top wall and the outer peripheral wall for covering the ultrasonic oscillating device; the top wall of the cover body is formed with an opening corresponding to the number and position of the oscillating components of the ultrasonic oscillating device
  • the internal cavity constitutes the stability of the corresponding oscillating element a cavity; a cavity between the outer wall surface of the cylinder and the inner wall surface of the outer peripheral wall of the cover constitutes a liquid control cavity, the liquid control cavity is a cavity closed at the upper end, and the top surface of the liquid control cavity is Forming a non-opening area of the top wall of the cover; forming a gap or a gap between the lower end surface of the outer peripheral wall of the cover and the upper end surface of the ultrasonic oscillating device to serve as a liquid control gap of the liquid control chamber Forming one or more slits between the lower end surface of the cylinder and the epitaxial surface of the oscillating member to serve as a liquid supply slit of the stable cavity; the highest position of the liquid supply slit of the stable cavity is lower than or It is equal to the highest position of the opening for the liquid control slit.
  • the liquid control stabilization device corresponding to the liquid level control member disposed on the ultrasonic oscillating device, the liquid control stabilization device further forms a liquid level cavity, and the upper portion of the liquid level cavity is in normal operation of the application device Communicating with the outside air, the bottom of the liquid level chamber is in communication with the potent liquid and the liquid medicine surrounding the liquid control chamber; when the liquid level control member is in the middle position of the ultrasonic vibration device, the preferred liquid level chamber is Forming a straight-through cylinder similar to a stable cavity structure at a position corresponding to the top wall of the cover body of the liquid control device and the liquid level control member, and forming a cavity for the liquid level using the cavity of the liquid level cavity a full-cylinder liquid level chamber; one or more liquid inlet slits formed between the straight-through cylinder constituting the liquid level chamber and the outer surface of the liquid level control member; when the liquid level control member is in the ultrasonic oscillation
  • the liquid level chamber is configured such that the outer peripheral wall of the
  • the liquid control stabilization device is supported on or hoisted above the ultrasonic oscillating device and forms a mating body with the ultrasonic oscillating device.
  • the liquid control stabilization device and the ultrasonic oscillation device cooperate with each other and are connected to form an assembly by a connection mechanism on the liquid control stabilization device; preferably, the connection mechanism is a card
  • the connection mechanism is a card
  • the ultrasonic oscillating device forms an upward protruding edge on the outer circumference to cooperate with the claw, so that the liquid control stabilization device is fixedly supported and covered on the upper end surface of the ultrasonic oscillating device; or the liquid control stabilization device is detachable It is fixed on the shroud, and is matched with the setting position of the flow control cover and the liquid control stabilization device, and is used for the liquid control gap, the liquid supply gap, and the liquid inlet gap of the liquid control stability device to be mounted on the upper end surface of the ultrasonic oscillation device.
  • a liquid-stabilizing device combined with a shroud and a foam-proof mesh to form an assembly for use with an integrated ultrasonic oscillating device.
  • one or more gap slits are formed as a liquid control slit on one or more sides or each side of the outer peripheral wall of the cover that is open downward, and the straight through in the stable cavity Cylinder
  • One or more gaps are formed on one or more sides or each side of the end as a stable cavity gap; or the bottom end surface of the liquid control chamber, the bottom end surface of the stable cavity, the bottom end surface of the liquid level chamber, and the periphery of the ultrasonic oscillating device
  • a certain installation gap is left between the surface, the epitaxial surface of the oscillating element, and the epitaxial surface of the liquid level control member as the liquid control gap of the liquid control chamber, the liquid supply gap of the stable cavity, and the liquid inlet gap of the liquid level chamber.
  • control fluid gap is controllable or adjustable: within the allowable range, by adjusting the suspension height of the fluid control stabilization device or the support height on the ultrasonic oscillation device, Adjust and set the width or size of the control slit.
  • the optimal liquid level of the liquid supply of the liquid supply bottom box is set according to the outflow position of the liquid medicine from the ejector positioning liquid supply assembly provided by the liquid storage tank,
  • the liquid level control member of the ultrasonic oscillating device detects the shutdown liquid level and implements the shutdown protection, and the lowest position of the liquid supply port of the liquid supply bottom box is at the same level as the lowest position of the liquid supply bottom box or slightly higher than the liquid supply
  • the lowest position of the bottom box, the highest position of the liquid supply port of the liquid supply bottom box is lower than the lowest position of the liquid control gap of the liquid control stabilization device.
  • the optimal liquid level of the liquid supply of the liquid supply bottom box is set according to the outflow position of the liquid medicine from the ejector positioning liquid supply assembly provided by the liquid storage tank,
  • the liquid level control member of the ultrasonic oscillating device detects the shutdown liquid level and implements the shutdown protection, and the lowest position of the liquid supply port of the liquid supply bottom box is at the same level as the lowest position of the liquid supply bottom box or slightly higher than the liquid supply
  • the lowest position of the bottom box, the highest position of the liquid supply port of the liquid supply bottom box is lower than the lowest position of the liquid control gap of the liquid control stabilization device.
  • the reservoir includes a reservoir for storing a liquid, the container having a smaller first opening and a larger second opening, wherein the first one is smaller
  • the opening is configured to communicate with the medical fluid flow path on the liquid supply bottom box, and the larger second opening is detachably sealed with a bottom cover.
  • the bottom cover and the second opening are threadedly engaged to form a second opening.
  • a liquid supply liquid control device is disposed on the flow path between the liquid storage tank and the liquid supply bottom box, so that the liquid medicine of the liquid storage tank is controlled.
  • the liquid supply liquid control device comprises a jack-type positioning liquid supply assembly and a jack control assembly, wherein the first opening at the bottom of the liquid tank is provided with a jack-type positioning liquid supply assembly, the jack type Positioning the liquid supply assembly to form a liquid flow chamber and a liquid flow port communicating with the liquid supply flow path of the spray chamber, the top rod control assembly includes a top rod for applying an external force to the top rod type positioning liquid supply assembly, and the upper top rod is disposed at The top rod is positioned below the liquid supply assembly to open or close the liquid flow port controlled by the top rod type liquid supply assembly as needed.
  • the jack-type positioning liquid supply assembly comprises a leather cap plug, a guide post in the liquid supply assembly, a spring, a limit guide ring, a top sheet, and the components are formed and formed Fluid flow and flow a housing of the mouth, the outer wall of the housing is sealingly connected with the first opening of the container, the inner wall forms a liquid flow chamber, and the outlet of the liquid flow chamber forms a liquid flow port; the leather cap plug acts on the liquid flow port for opening or closing the liquid flow port
  • the leather cap is fixed to the upper end of the inner guide post, and the lower end of the inner guide post is fixedly connected to the top piece for receiving the external force through the limiting guide ring disposed on the inner wall of the casing; the outer guide sleeve is sleeved with a spring, The spring is telescopically disposed between the limit guide ring of the liquid flow port and the topsheet.
  • the controllability of the plunger control assembly by the action of the plunger to the plunger-type positioning fluid supply assembly is achieved by increasing or decreasing the effective height of the plunger;
  • the ejector rod is of a screw type, and the screw is screwed up or down by an manual or electric control component to adjust the effective height of the ejector rod, or the ejector rod is designed to be foldable or telescopic or at the top of the ejector rod
  • the disassembled set is a cap that extends the effective length of the ejector pin. The effective height of the ejector lever is manually adjusted as needed.
  • the reservoir is provided with a stirring paddle and/or an expansion tube; preferably, the agitating paddle and/or the expansion tube are detachably disposed in the reservoir Further, preferably, the expansion cylinder and the agitating paddle are detachably mounted together and detachably mounted to the bottom cover of the liquid tank in a unitary structure and a separate structure.
  • a stirring paddle driven by electric power is disposed in the liquid storage tank, and the upper inner wall surface of the liquid bottom box is opposite to the rotating shaft of the stirring paddle, and is raised upward to form a hollow circular wall.
  • the agitating paddle shaft is driven to drive through a hollow circular wall structure and a driving motor disposed under the liquid supply bottom box;
  • the inner wall surface of the upper portion of the liquid bottom box is also formed on the outer periphery of the hollow circular wall structure a boss on the upper end surface of the hollow circular wall structure, the outer circumference of the boss forms an annular channel communicating with the inlet of the flow channel;
  • the inner wall surface of the liquid supply bottom box located on the outer periphery of the channel gradually decreases toward the annular channel
  • the annular channel is also gradually lowered toward the inlet of the flow channel, and the flow channel is also gradually lowered to the liquid supply port of the atomization chamber; further preferably, the lowest position of the channel and the flow channel are designed
  • the second opening of the container and the corresponding bottom cover are disposed at the bottom of the reservoir container;
  • the agitating paddle includes a rotating shaft, a sealing member, a hub fitted on the rotating shaft, and is formed at the hub
  • the upper blade and the driving motor for rotating the rotating shaft, the upper end of the stirring paddle shaft is rotatably fixed on the bottom cover and protrudes into the container, and the lower end protrudes from the bottom cover to directly or indirectly connect with the driving motor disposed outside the bottom cover;
  • the bottom cover forms a cylindrical circumferential flange, the flange is located opposite to the annular channel, and the inner side of the flange is formed with a cylindrical external thread wall which is combined with the second opening of the liquid medicine container.
  • the middle position of the bottom cover forms a boss extending into the opening of the container, and the back side of the boss forms a cavity to be fastened to the hollow circular wall structure formed on the inner wall surface of the upper portion of the liquid bottom box; Supported on the boss of the bottom cover, the shaft of which passes through the bottom cover
  • the driving motor disposed outside the bottom cover is directly or indirectly rotatably connected, and the driving motor of the stirring blade is disposed in the bottom air passage of the base.
  • the expansion tube includes a barrel for containing a bioactive carrier, and an attachment or attachment structure disposed below the barrel, the barrel having a plurality of regular or no a regular hollowed out hole;
  • the preferred expanded tubular body includes an enlarged cylindrical casing, an upper sealing head and a lower sealing head to form a cylindrical structure that is detachably coupled together;
  • the heads comprise two half bodies, wherein an integral structure is formed between the left half shell and the left half lower head, and an integral structure is formed between the right half lower head and the right half shell, the left half shell and the left half lower
  • the head is detachably combined with the right half shell and the right half lower head respectively; further preferably, the left and right half shells and the left and right half lower heads form slots on one side of the corresponding mating side, and the other side is formed
  • the plug, the socket and the plug are matched together; further preferably, the mounting or connecting structure under the cylinder is used for detachably
  • the second opening of the reservoir container and the corresponding bottom cover are disposed at the bottom of the container by a detachable sealing connection structure, and the stirring paddle and the expansion tube are coaxially designed and passable
  • the disassembly structure forms a unitary structure, and the expansion tube is detachably disposed above the agitating paddle, the agitating paddle is detachably disposed on the bottom cover, and the expansion tube and the agitating paddle are all protruded into the container.
  • the detachable sealing connection structure includes a detachable sleeve portion that is sleeved on the top end of the shaft and a bell-shaped connection that extends outwardly from the top end of the shaft portion.
  • the flange of the stirring paddle is detachably sleeved on the outer circumference of the shaft tube portion; the mounting or connecting structure at the bottom of the expanding tube forms an elastic connecting card groove on the outer wall of the lower sealing head, and the elasticity of the elastic card slot is connected to the outer flange Removably fixed in the elastic connection card slot.
  • the elastic card slot comprises: an annular inverted T-shaped caliper structure disposed on the corresponding left and right lower heads, the caliper structure forming a connection card slot having no elasticity
  • An elastic inverted T-shaped inner flange disposed at a position where the corresponding left and right lower heads are butted, and the connecting outer flange may be placed in the connecting groove by the elasticity of the elastic inverted T-shaped inner flange or taken out;
  • the connecting piece or the connecting groove portion of the bottom end ring caliper structure of the bottom end of the self-expanding cylinder is preferably not upwardly connected to the expansion housing of the left casing and the right casing of the expansion cylinder.
  • the expansion of the left casing 371 and the expansion of the right casing of the expansion cylinder are further fixed by glue bonding, and the connecting member or the connecting groove is upwardly connected.
  • the expansion structure of the left casing and the right casing of the expansion cylinder at the position of 20 to 30 mm is not fastened by adhesive bonding, and only the joint structure is used to achieve the docking between the two.
  • a detachable connection structure is provided between the stirring paddle or the expansion tube and the container cover: an upper bearing is disposed on the rotating shaft shared by the two, and the shaft hole of the bottom cover is disposed
  • the lower bearing, the upper bearing and the lower bearing form a mating structure, the rotating shaft passes through the boss of the bottom cover, and is connected with a coupling provided outside the bottom cover, the coupling is connected with the driving motor, preferably, the coupling
  • the lower part forms a expanding cavity, and the inner wall of the expanding cavity forms a gear structure, and the rotating shaft of the driving motor cooperates with the gear structure to drive the rotating shaft of the coupling and the stirring paddle and/or the expanding cylinder; preferably, the coupling expands
  • the cavity is sized to fit within the hollow circular wall-shaped structure on the boss of the inner wall surface of the upper portion of the liquid bottom box.
  • the functions of the expansion tube and the agitating paddle are combined into one to the expansion tube, the upper head and/or the lower head and/or the shell of the expansion tube
  • a stirring blade is provided on the circumference of the body.
  • the functions of the expansion tube and the agitating paddle are combined into a paddle, and the bioactive carrier is filled in the deformed and/or large paddle In the blade and/or paddle portion, the blade and/or slurry has a hollow passage for the inflow or outflow of the chemical.
  • the airflow delivery assembly includes a flow input assembly and an airflow output assembly, wherein the airflow input assembly includes a bellows having a blower disposed therein, the bellows being disposed on a left side of the spray chamber, provided
  • the power flow is input into the atomization chamber through a power flow input port on the left wall of the spray chamber adjacent to the bellows, and the air flow output assembly is disposed at the top of the atomization generating chamber described above, which is formed by the power flow and the atomized mist.
  • the gaseous flow containing the ultrafine drug particles is sent out to the environment in which the application target is located; further preferably, a blower is disposed upstream of the atomization generating chamber, and an air outlet of the blower volute corresponds to the power flow input port, and the air flow is from the power
  • the angle of the airflow input port to the horizontal plane is between -20 degrees and 20 degrees.
  • the airflow transport assembly further includes a bottom air duct formed by the base, the bottom air duct is formed by the base body and the box body being fastened, and the bottom of the seat body is provided with a leg;
  • a pulley such as a universal joint may be provided on the leg to facilitate the movement of the applicator; further preferably, the leg may also be designed as a telescopic leg which has been adjusted according to the application target.
  • a heat generating electrical component for the applicator device comprising a voltage regulator, a function switch, a control circuit board, a paddle motor, and a negative ion generating device is disposed in the bottom air duct.
  • the gas flow output assembly is disposed at a gaseous flow output port at the top of the atomization generating chamber to apply a gaseous flow containing the ultrafine drug particles to the environment in which the application target is located;
  • the airflow output assembly includes a rotatably disposed nozzle disposed at the gas flow output of the shroud And driving device for driving the nozzle to rotate relative to the gaseous flow output port; specifically, the bottom of the nozzle is formed with a gear ring structure, and the driving device comprises a motor and a transmission gear, and driven by the motor, the driving gear is rotated, and the nozzle gear ring passes through The transmission gears are meshed together and rotated, so that 360-degree application can be achieved.
  • the showerhead includes a gaseous flow input section (D1), a gaseous flow redirecting section (D2), a gaseous flow output section (D3), and the gaseous flow redirecting section (
  • D1 gaseous flow input section
  • D2 gaseous flow redirecting section
  • D3 gaseous flow output section
  • the front portion of D2) and the rear portion of the gaseous flow input section (D1) are rearwardly inclined, and the rear portion of the gaseous flow direction changing section (D2) and the front portion of the gaseous flow output section (D3) are inclined forward.
  • transition surface between the gaseous flow input segment (D1), the gaseous flow redirecting segment (D2), and the inner wall surface of the gaseous flow output segment (D3) is a smooth curved surface; preferably, the gaseous flow input segment (D1) ) to the gaseous flow direction segment (D2) forming a backward shape, the gaseous flow in the gas flow input section first loss angle ⁇ 1 ⁇ 90 °, preferably between 5 degrees and 30 degrees; the gaseous state
  • the rheological section (D2) to the gaseous stream output section (D3) form a forwardly inclined shape, and the gaseous flow in the gaseous section is a second effective variable angle ⁇ 2 ⁇ 90°, preferably at an angle of 5 degrees to 30 degrees.
  • the cross-sectional area of the entire smooth inner curved surface remains substantially the same or uniform; further preferably, the gaseous flow output outlet cross-sectional area of the gaseous flow output section (D3) of the shaped spray head is greater than or equal to The cross-sectional area of the gaseous flow input section (D1) of the gaseous flow input port; further preferably, the gaseous flow output section of the shaped sprinkler within a length range of part or all of the escape intermediate distance (d2) or the intermediate flow distance (d1)
  • the inner wall surface adopts the inner wall of the pockmark; further preferably, the lower inner wall surface starting from the liquid flow point of the gaseous flow output section of the nozzle gradually extends
  • a bellows formed by injection molding, a threading hole for the wire on the base, and a convex or convex shape of a circular or polygonal shape or other shape are provided at the control panel or
  • the water retaining wall prevents the droplets or dripping water formed by the liquefaction of the atomized liquid from flowing into the inside of the application device.
  • the The charging process can be accomplished by a plasma or negative ion generator disposed within the bottom air duct.
  • a draft fan or a jet is disposed at or near the gaseous flow outlet of the spray chamber to create a drainage effect; preferably, the power flow is used to generate drainage An effect of utilizing the drainage effect of the motive gas stream to form a gaseous stream containing the ultrafine drug particles with the atomized liquid, and utilizing the drainage effect of the motive gas stream to achieve the atomization liquid to the application target
  • the output of the standard environment; preferably, the power flow or high speed compressed air flow is a high speed compressed air stream or a high speed compressed drug stream.
  • the enclosed environment is a relatively closed environment;
  • the relatively closed environment includes a greenhouse for growing crops, a greenhouse, an arch shed, a cold storage for agricultural products storage, a fresh storage, and a gas storage , an animal house, a house, a public office or private residence, a vehicle;
  • the application target in the enclosed environment includes determining a drug application target and/or an indeterminate drug application target, preferably, the indeterminate drug application target
  • the determined application target is an inanimate body and/or a living body having a fixed form in the enclosed environment; further preferably, the determined application target in the agricultural closed environment Including crops or agricultural products or agricultural facilities, such as vegetables, melons, flowers, mushrooms, herbs, tobacco, tea, poultry farming and other crops or agricultural products or agricultural facilities; further preferably, the purpose of application of the crops or agricultural products Including de-worming and/or post-ripening treatment and/or vernalization treatment of crops and/or
  • the application method and device expand the selection range of the drug at the time of application by the applicator; the formed gaseous flow containing the ultrafine drug particles has high strength and can maintain a stable and good continuity.
  • Medicine, and the application of small particles can be less than 10 microns in diameter), easy to be three-dimensionally diffused and absorbed by plants, strong adhesion, three-dimensional killing of pests and diseases in space, less pesticide residues; can significantly reduce pesticides Actual use, energy saving and environmental protection; other measures such as application and environmental warming take care of each other to achieve multi-purpose use; can automatically complete the application of drugs, without manual direct contact with pesticides, reducing pesticide damage to the human body.
  • FIG. 1 is an exploded perspective view of a dispensing device in accordance with an exemplary embodiment of the present invention
  • Figure 2 is a schematic view of the applicator of Figure 1;
  • FIG. 3 is a perspective view of another exemplary embodiment of the present invention.
  • FIG. 4 is a perspective view showing an embodiment of a common nozzle with a base and a driving device
  • Figure 5 is a perspective view of an embodiment of an S-type head with a base and a driving device
  • Figure 6 is a schematic perspective view of an embodiment of a liquid storage tank without a stirring paddle
  • Figure 7 is a schematic perspective view of an embodiment of a liquid storage tank with a bottomed paddle
  • Figure 8 is a perspective view of the bottom cover type paddle and other related components
  • Figure 9 is an exploded perspective view of the bottom cover type stirring paddle
  • Figure 10 is a cross-sectional view of the bottom cover type stirring paddle
  • Figure 11 is a perspective view of a combination device including a shroud and a liquid control stabilization device
  • Figure 12 is a plan view of the shroud and the liquid control stabilization device
  • Figure 13 is a bottom view of the shroud and the liquid control stabilization device
  • Figure 14 is a perspective view of the left housing of the shroud
  • Figure 15 is a perspective view of the right housing of the shroud
  • Figure 16 is a perspective view of the left side casing of the flow guiding comb and the shroud
  • Figure 17 is a schematic view of a foam barrier
  • Figure 18 is a schematic cross-sectional view of a shroud with a foam barrier and a liquid control stabilization device
  • Figure 19 is a perspective view (full-cylinder liquid level chamber) of a liquid-controlled stabilization device of an integrated ultrasonic oscillating device including ten ultrasonic oscillating elements according to a first embodiment
  • Figure 20 is a front view of the liquid control stabilization device shown in Figure 19 (full cylinder liquid level chamber);
  • Figure 21 is a perspective view of a second embodiment of a liquid-controlled stabilization device incorporating an integrated ultrasonic oscillating device comprising ten ultrasonic oscillating elements (a half-tube open liquid level chamber);
  • Figure 22 is a perspective view showing a liquid control stabilization device of an integrated ultrasonic oscillating device including ten ultrasonic oscillating elements in a third embodiment (half-tube closed liquid level chamber);
  • 23 is a perspective view of an integrated ultrasonic oscillating device including ten ultrasonic oscillating elements
  • Figure 24 is a schematic view showing the principle of the ultrasonic oscillating device being mounted on the liquid supply bottom box through the wall hole;
  • 25 is a perspective view of an integrated ultrasonic oscillating device and a liquid control stabilization device assembly including ten ultrasonic oscillating elements;
  • 26 is an exploded view of an integrated ultrasonic oscillating device and a liquid control stabilization device including ten ultrasonic oscillating elements;
  • Figure 27 is a cross-sectional view of the jack lifting device of the electric screw type liquid supply device, wherein the liquid supply device is in an open state;
  • Figure 28 is a cross-sectional view of the jack lifting device of the electric screw type liquid supply device, wherein the liquid supply device is in a closed state;
  • Figure 29 is a cross-sectional view of the jack lifting device of the manual threaded liquid supply device, wherein the liquid supply device is in an open state;
  • Figure 30 is a cross-sectional view of the jack lifting device of the manual threaded liquid supply device, wherein the liquid supply device is in a closed state;
  • Figure 31 is a cross-sectional view of the jack lifting device of the manual cap type liquid supply device, wherein the liquid supply device is in an open state;
  • Figure 32 is a cross-sectional view showing the jack lifting device of the manual cap type liquid supply device, wherein the liquid supply device is in a closed state;
  • Figure 33 is a cross-sectional view of the jack lifting device of the folding or lever type liquid supply device, wherein the liquid supply device is in an open state;
  • Figure 34 is a cross-sectional view of the jack lifting device of the folding or lever type liquid supply device, wherein the liquid supply device is in a closed state;
  • Figure 35 is a perspective view of a liquid supply bottom box
  • Figure 36 is a perspective view of the biological pulp device
  • Figure 37 is a schematic cross-sectional view of the biological pulp device
  • Figure 38 is a schematic view showing a stirring mode of the expansion bucket instead of the stirring paddle;
  • 39 is a schematic perspective view of a deformed stirring paddle in which the expansion barrel and the stirring paddle are integrated;
  • Figure 40 is a schematic view of a diffuser vessel including a biopulp, wherein the expansion tub and the agitating paddle are arranged in a unitary structure;
  • Figure 41 is a schematic view of a diffuser vessel including a biopulp, wherein the expansion bucket and the stirring paddle are respectively disposed on different side walls;
  • Figure 42 is a schematic view of a diffuser vessel including a biopulp, wherein the expansion tub is disposed on the same side as the agitating paddle;
  • Figure 43 is a schematic view of a bio-paste expander container, wherein the expansion barrel and the stirring paddle are respectively disposed on different side walls;
  • Figure 44 is a schematic view showing the ceiling type structure in which the biological paddle is disposed at the upper position of the medicine box;
  • Figure 45 is a schematic view of the left and right housings of the expansion tube
  • Figure 46 is a schematic view of the housing and lower head of the expansion tube
  • Figure 47 is a schematic view of the upper head on the housing of the expansion tube
  • Figure 48 is a schematic view of the expansion tube after the carrier is added
  • Figure 49 is a schematic view of a single cylinder type expansion tube
  • Figure 50 is a schematic view of a multi-layer expansion tube
  • Figure 51 is a schematic view of a partition or baffle type expansion tube
  • Figure 52 is a cross-sectional structural view of the S-type nozzle
  • Figure 53 is a schematic view showing the working principle of the ejector type positioning liquid supply assembly and the liquid control stability device;
  • Figure 54 is a schematic diagram of the principle of a fluidic device.
  • Shroud 410, shroud left casing: 411, shroud right casing: 412, curved inner wind guiding surface: 421, defoaming tank: 441, gaseous flow outlet: 420, duct windshield Comb: 442, horizontal diversion comb: 4421, vertical guide comb: 4422, diversion hole: 4211, liquid barrier: 443, screw link position: 450, ultrasonic oscillating device and shroud engagement groove: 460, integrated Ultrasonic oscillator: 360, liquid level control: 361, integrated ultrasonic oscillator regulator: 362, integrated ultrasonic oscillator upper end: 363, integrated ultrasonic oscillator epitaxial surface: 364, single ultrasonic oscillator unit : 366, liquid control stability device: 430, control liquid stability device cover top wall: 431, stable cavity: 432, stable cavity wall: 4321, stable cavity height: 4322, stable cavity inlet gap: 4323, control liquid chamber: 4330, control liquid stability device cover outer peripheral wall: 4331, liquid control gap: 434,
  • the present application proposes an applicator device and a drug application method, which is simple in structure and optimization by the ultrasonic oscillating device and the power flow. Easy to operate, the droplets generated during the application process are small, the particle spectrum is concentrated, the deposition amount is small, the coverage density and the distribution quality are ideal, and the medicine, the chemical solution, the labor saving, the environmental protection, the energy saving, Easy to use, easy to clean, low pollution, low cost, and long-term efficient use.
  • the ultrafine drug particles described in the present application are described from a microscopic point of view, and the drug particles, the atomized particles, the atomized drug drops, and the drug liquid droplets described in the present application have the same meaning unless otherwise specified.
  • the particles as a whole may generally be referred to as atomized vapor, aerosol flow, cloud, etc., and those skilled in the art should not interpret these technical terms of the present application by strict physical scientific definitions;
  • powered airflow refers to a gas stream capable of carrying at least a portion of the atomized liquid droplets, and the present invention expresses "using the atomized liquid to carry away the atomized liquid to be applied to "The environment in which the application target is located” does not exclude the use of other transport power in addition to the power flow to carry the atomized liquid (atomized vapor) into the environment in which the application target is located;
  • gaseous flow containing ultrafine drug particles as described herein is a gaseous flow formed by a power flow in the process of carrying the ultrafine drug particles formed by atomization of the liquid to the outlet.
  • a method for administering a method comprising the steps of: allowing a drug to be present in the form of a nebulizable liquid;
  • a powered gas stream is provided to the atomized drug solution, and the atomized drug solution is carried away and applied to the environment in which the application target is located.
  • an applicator device comprising:
  • An atomization generating device comprising a spray chamber capable of containing a liquid medicine and providing an atomization space for atomizing the liquid medicine to And an ultrasonic oscillating device that atomizes the liquid medicine, the oscillating member of the ultrasonic oscillating device is arranged to be in contact with the medicinal liquid to oscillate the liquid medicine to atomize it;
  • An airflow delivery assembly comprising an airflow input assembly and an airflow output assembly, wherein the airflow input assembly supplies a power flow to the spray chamber while the ultrasonic oscillating device atomizes the liquid chemical to cause the atomized
  • the drug solution flows, and the airflow output assembly carries the atomized drug solution and applies it to the environment in which the application target is located.
  • the moving gas flow is combined with the ultrasonic oscillating device, and the ingenious cooperation and optimization of the two can realize the application of the most rational and finite resources.
  • the relatively large droplets of the liquid particles atomized by the ultrasonic oscillating device are returned to the surface of the liquid due to gravity, thereby reducing the atomization effect; on the other hand, due to the power flow to the atomized liquid
  • the coating of the droplets forms a gaseous stream containing the ultrafine drug particles, which causes friction between the motive gas stream and the atomized drug particles and between the atomized drug particles and the atomized drug particles, which promotes the atomization of the drug droplets well.
  • the crushing and evaporation make the application of the droplets smaller and the concentration of the particles more concentrated, so that the application of the droplets on the application target is less, the coverage density and the distribution quality are more ideal.
  • the use of ultrasonic oscillating device to achieve atomization of the liquid medicine will prevent the precipitation or flocculation of the liquid, and the atomized droplets generated by the ultrasonic vibration will have a small particle size (usually micro particles), which is very suitable for the power flow and
  • the motive gas stream forms a gaseous stream containing ultrafine drug particles of smaller particle size.
  • the applicator and method according to the embodiment of the present invention configures the applied drug into an atomizable drug solution, and then atomizes by the ultrasonic oscillating device and combines with the power gas flow to realize the application process, so that the applied drug is solid or powder. Whether it is a suspension or a liquid or an oil, whether it is volatile or non-volatile, whether it is a chemical active or a biologically active substance, and whether it is a herbicide, insecticide or sterilization that kills or prevents harmful organisms.
  • the drug is present in the form of a nebulizable liquid before application, which may be a good configuration that has been completed before leaving the factory, or may be completed by the user before the application of the drug. Configuration.
  • the application device and method of the embodiment of the present invention have three conversion forms of ultrasonic energy when ultrasonic vibration is generated by the ultrasonic oscillation device, and a part of the ultrasonic energy atomizes the liquid medicine and forms a gaseous flow of the ultrafine drug particles with the power flow, and the other part
  • the ultrasonic energy causes the liquid to form a liquid column with a certain potential energy.
  • the liquid column falls to the surface of the liquid, the liquid is stirred by the impact on the liquid level of the liquid, and a part of the ultrasonic energy is released in the form of heat.
  • the atomization effect is set to achieve the largest and most rational application of limited resources.
  • the applied drugs contain different ingredients, some contain one or more effective chemical active ingredients or components, some contain single or multiple mineral components or components, and some contain single or multiple An effective chemical or biologically active organic component or component, or a natural plant extract containing a complex component, which may generate a large amount of foam on the surface of the solution under the action of the ultrasonic oscillating device, thereby affecting the atomization effect of the ultrasonic oscillating device.
  • the application of the power flow also serves as a technical effect of suppressing or defoaming.
  • the invention utilizes the power airflow to carry away the atomized liquid medicine and apply it to the environment in which the application target is located, and the application device of the application method of the invention is freely dispersed due to the carrying of the atomized medicine droplet by the power flow.
  • the manner of action acts on the application target, thereby also allowing the invention to simplify the construction and labor costs of the application device. Since the invention is to atomize the liquid medicine and carry it into the space where the application target is carried by the power flow, the drug particles act on the application target in a freely dispersed manner in the environment where the application target is located, thereby obtaining a comprehensive three-dimensional and pervasive.
  • the application effect can also achieve a larger application range due to the transporting force of the airflow, and the coverage density and uniformity of distribution on the application target are improved, thereby making the present invention more suitable for application. Use in situations where there are many targets and the occupied environment is large.
  • the gaseous flow droplets containing ultrafine drug particles formed by the application method and device of the present invention have smaller particle size and more uniform particle size distribution, and are more easily absorbed by the application object, especially crops. The amount of ineffective deposition of the applied drug is reduced.
  • FIGS. 1 to 54 the application method and the administration device of the present application will be described in detail with reference to the accompanying drawings of the present application: FIGS. 1 to 54.
  • the medicine to be used is first in the form of a nebulizable liquid, and then the oscillating energy of the ultrasonic wave is used to atomize the liquid, and at the same time, atomization occurs.
  • the liquid chemical provides a motive flow and utilizes the motive gas stream to carry the atomized liquid away and apply it to the environment in which the application target is located.
  • the drug exists in the form of a nebulizable liquid
  • the medicament used in the present invention may be in the form of a solid or a powder or a suspension or a liquid or an oil; and/or volatile or non-volatile in terms of volatility; and/or chemically active in nature.
  • a biologically active substance; and/or a pharmaceutical or agricultural drug on the object to be administered for example, the drug is an agricultural drug, such as a micronutrient, a herbicide, an insecticide, a bactericide, a disinfectant, an antibiotic, an immunological preparation.
  • the biological agents such as a micronutrient, a herbicide, an insecticide, a bactericide, a disinfectant, an antibiotic, an immunological preparation.
  • the biological preparation is a biologically active single or multiple single-celled organisms (such as microorganisms) or extracts or cultures or ferments and/or biologically active single or multiple proteins (eg Biological enzymes) or extracts or cultures or ferments and/or single or multiple biologically active single-celled organisms and proteins or extracts or complexes of cultures or ferments.
  • biologically active single or multiple single-celled organisms such as microorganisms
  • biologically active single or multiple proteins eg Biological enzymes
  • the drug is a solid or a powder or a suspension or a liquid or an oil, is volatile or non-volatile, is a chemical active or a biologically active substance, and is a killing or preventing pest.
  • the biologically active substance can be administered by the application method of the present invention as long as it can be formulated into an aqueous solution or other solution which can be atomized.
  • the medicine according to the invention exists in the form of a nebulizable liquid medicine, which can be not only the configuration completed before the factory leaves the factory, but also the configuration completed before the user applies the medicine, and can also be completed during the application process. Because the concentration of ready-made drugs is relatively high, even if the ready-made drugs can be atomized, in order to ensure the effect, it is usually necessary to dilute the form of the drug into a dilute solution to facilitate the atomization of the drug solution.
  • Example 1 The use of a 0.3% matrine solution to control cucumber aphids in a protected area. Specifically, the dosage of the 0.3% matrine solution is diluted 500 times, that is, 4 g of the 0.3% matrine solution is diluted with 2 liters of water, which is the configuration of the medicinal solution.
  • Example 2 Control of Botrytis cinerea with 50% Kuchering WP. Specifically, the dosage is diluted 800 times according to the 50% speed Keling wettable powder, that is, 2.5 g of the 50% speed Keling wettable powder is diluted with 2 liters of water, which can realize the configuration of the liquid medicine.
  • Example 3 For the treatment of Botrytis cinerea using ZF-high-efficiency microorganisms, the pesticide residue was removed by diluting 800 times with 50% Kuchering WP. Diluted 200 times by ZF-high-efficiency microorganisms, that is, 10 ml of ZF-high-efficiency microorganisms are diluted with 2 liters of water, which is the configuration of the liquid medicine.
  • the present invention does not attempt to improve the drug itself, nor how to specifically configure the atomizable drug solution.
  • the drug used in the present invention can be completely a drug known in the art, and the working principle of the ultrasonic oscillating device is also known in the art, and ultrasonic oscillating devices of various working frequencies are commercially available, and therefore the art
  • the person can completely realize the configuration of the atomizable liquid medicine by using the technical means and principle known in the art in combination with the drug to be used.
  • the chemical liquid is required to contain as little or no impurities as possible, and the pH should not be too high, so as not to affect the atomization effect of the ultrasonic oscillating device.
  • the atomization of the liquid is achieved by an oscillating element (such as a ceramic transducer) that is in contact with the liquid through the ultrasonic oscillating device.
  • the ultrasonic oscillating element emits ultrasonic waves into the chemical liquid, and the ultrasonic liquid oscillates to cause the chemical liquid to be broken to produce ultrafine mist-like liquid particles (usually 3 to 10 ⁇ m) having a diameter of ⁇ m. Since the generated drug particles are ultrafine particles, it is very beneficial for the absorption of the target, especially the absorption of plant life such as crops.
  • the heat generated by the electronic part of the oscillating element during the working process has a heating effect on the atomized liquid particles, and the liquid solution itself generates heat under the action of the ultrasonic wave, thereby particularly facilitating the formation of the ultrafine drug particles. And the absorption of the application target.
  • the present invention proposes two exemplary embodiments:
  • the ultrasonic oscillating device is disposed on the outer wall of the atomization chamber, and only the oscillating member is in contact with the chemical liquid through the opening of the wall of the atomization chamber to apply an oscillating action.
  • the ultrasonic oscillating device since the ultrasonic oscillating device is disposed outside the container, it is not necessary to occupy a large space inside the container, and the chemical liquid is saved, and after the ultrasonic oscillating device is used, the residual chemical liquid is small.
  • the sealing of the container is required to be high.
  • the ultrasonic oscillating device is disposed inside the atomization chamber in an integrated form. All of the ultrasonic oscillating device components are integrated in a sealed housing to form an integrated component placed in the chemical solution, and only the oscillating member exposes the sealed casing and contacts the liquid chemical in the atomization chamber to perform an oscillating action.
  • the second method does not need to open the container, does not involve the problem of sealing with the container, and because of the integrated design of the sealed housing, the safety of the product and the convenience of disassembly are greatly improved.
  • the ineffective amount of the atomized drug droplets returning to the surface of the liquid medicine can be greatly reduced, thereby not only improving the atomization efficiency and effect of the ultrasonic wave oscillating device, but also enabling the drug application device of the embodiment of the invention to input too much power for transmission.
  • the atomized drops are carried away smoothly and applied to the environment in which the application target is located. Therefore, the operating frequency of the ultrasonic oscillating device of the applicator can be selected to be higher than that of the humidifier.
  • the frequency of the swash device is slightly larger, and its operating frequency is configured to be greater than 1.7 MHz, for example, the operating frequency is 2.0 to 5 MHz. For a more viscous liquid, the operating frequency is slightly larger, while for a less viscous solution, such as an aqueous solution, the operating frequency can be chosen to be smaller.
  • the power flow of the embodiment of the present invention is an air flow, which provides convenient air flow, simple control of air flow, and less restriction on air flow.
  • a drug delivery device has multiple drugs, it is recommended to use a drug gas stream.
  • the drug delivery device usually needs to be provided with an additional drug gas flow forming structure, and the drug gas flow forming structure is specifically formed by those skilled in the art.
  • Fully implementable such as evaporating a drug into a gas and mixing it with air to form a drug stream.
  • the power of the liquid medicine particles may be derived from the air supply power generated by the fan located upstream of the liquid medicine, or may be derived from the wind power generated by the fan located downstream of the liquid medicine. It can also be a drainage effect produced by a jet, or it can be a combination or a combination of the two. Whether it is a blower, an induced draft fan, or a jet, or a combination of at least two of these methods, the liquid atomization can be achieved, and the power flow can be flowed when the power flow is introduced into the container containing the liquid medicine. Through the surface of the liquid, the atomization effect is improved, and the atomized liquid is also taken away by the power flow.
  • an inlet for a motive stream is disposed at least at a location near the level of the liquid chemical.
  • At least a blower is disposed upstream of the liquid medicine, which is more convenient for promoting atomization and transportation of the liquid medicine, ensuring atomization particle size and uniformity of the liquid medicine, and improving energy saving effect.
  • the blower adopts a centrifugal fan.
  • a controllable stepping motor can be used to control the wind speed according to the applied amount, thereby not only improving the atomization effect but also reducing the energy cost.
  • separately or additionally providing an induced draft fan or jet at a position above the chemical solution near the application port may further increase the airflow delivery power.
  • the jet is provided to provide the conveying power, as shown in FIG.
  • the high-speed compressed pulsating airflow can not only utilize the drainage effect to greatly promote the evaporation and fog of the liquid. It also greatly promotes the collision and mixing between the atomized droplets and the gas stream.
  • the application of a gaseous stream containing ultrafine drug particles under the action of a high velocity compression vortex to the environment in which the application target is located can greatly increase the distance traveled.
  • the high-speed compressed air flow can select a high-speed compressed air flow or a high-speed compressed drug flow or use the above-mentioned power flow to simultaneously generate a drainage effect, that is, when the drainage effect is generated by the power flow, not only the drainage effect of the power flow but also the atomized liquid is formed.
  • the gaseous flow containing the ultrafine drug particles also utilizes the drainage effect of the power flow to achieve the output of the atomized solution to the target environment of the application.
  • the temperature control of the high-speed compression pulsating air flow can be used to control the output temperature of the gaseous flow.
  • a high velocity compressed air stream is employed to facilitate temperature regulation and to prevent medicinal properties during temperature regulation.
  • a high velocity compressed gas stream containing the drug may be employed.
  • the specific temperature control method of the convection current is very simple.
  • the temperature control means can be set on the flow path, and the temperature can be controlled during the gas source preparation stage.
  • the drug is applied to the environment in which the application target is located in a gaseous flow containing the ultrafine drug particles.
  • one or more of the following measures may be further employed to enhance the application effect of the application method of the present invention.
  • the ambient temperature at which the application target is applied is variable, especially in the two different seasons of winter and summer.
  • the ambient temperature of the application target is quite different, and the airflow convection effect caused by the temperature difference can be further improved. Application effect.
  • the temperature of the environment in which the application target is applied is correspondingly low.
  • the selected power flow is higher than the ambient temperature, and the difference is 5 ⁇ 20 °C range.
  • the gas flow output temperature detecting means and the ambient temperature detecting means of the application target can be set to realize the control of the gaseous flow output temperature.
  • the output temperature of the gaseous stream is controlled to correspond to the temperature of the environment in which the application target is located, such that when the temperature of the environment in which the application target is located is low, the temperature will have a relatively high temperature or enthalpy value.
  • the gaseous flow of the ultramicro drug particles is applied to the environment in which the application target is located, and the hot gaseous flow containing the ultrafine drug particles is dispersed in the application space, and when a relatively low temperature or enthalpy of application is encountered
  • the liquid condensation film is formed rapidly and three-dimensionally on the surface of the application object.
  • the formed film of the liquid condensate becomes a film layer of the drug liquid which is effective during the application operation; when the film layer of the effective drug liquid lasts for 1 to 2 hours When it is, it will be very good for the purpose of application.
  • the output temperature of the gaseous stream is controlled by controlling the input temperature of the motive gas stream.
  • the power flow can be set to a temperature control means, which can be a means of achieving heating and/or cooling.
  • the heating and/or cooling means can be adjusted according to the ambient temperature at which the application target is located, and the amount of heating (both cold and heat) can be controlled. If the power flow is derived from The outside air, while the ambient temperature of the outside air is satisfied by the application temperature requirement of the environment in which the application target is applied, the power flow can be directly applied to the atomized liquid without any heating or cooling process.
  • the process of directing the flow of outside air to the blower passes through a heating zone, which is a duct provided with electrical components, so that the electrical components can achieve a cooling effect, and the external airflow can obtain a heating effect.
  • the electrical component includes at least a voltage regulator required for the ultrasonic oscillating device; further, a circuit board and a stirring motor required to control the application device are also disposed in the air passage.
  • the temperature range of the power flow is selected to be in the range of 5 to 30 °C.
  • the temperature of the hot gas stream is too low (such as ⁇ 5 ° C), although it has some influence on the strength of the gaseous stream containing the ultrafine drug particles, it is more important to directly affect the formation of the gaseous stream containing the ultrafine drug particles in the relative Rapid dispersion in confined spaces and settling velocity on the target of application; when the temperature is too high (such as >35 or 40 °C), it is easy to cause temperature-sensitive pesticides such as bioactive pesticides with bioactive substances. Effectiveness is affected.
  • the temperature range of the hot gas stream is selected to be between 5 and 30 ° C.
  • the temperature of the hot gas stream can be selected to be high. Some, even more than 30 degrees, can be suitably higher.
  • the output temperature of the final gaseous stream can be adjusted by adjusting the temperature of the high velocity compressed pilot stream of the input jet, while high speed compression
  • the airflow is a high-speed compressed drug flow, it is also possible to achieve a multi-drug effect of the applicator.
  • one or more heat generating sources or one or more heating means surrounding the airflow path are provided on the outflow path containing the gaseous flow of the ultramicro drug particles.
  • the final delivery temperature of the gaseous stream is adjusted by heating or no heating.
  • a light source capable of generating heat is used at the output port close to the gaseous flow.
  • the temperature difference effect and the density difference effect can be used to make the atomized steam flow upward easily, and even the power of the fan can be eliminated, due to the density difference effect, small.
  • the rising heating flow will cause the entrained steam to rise;
  • the light source can also be used to cause the pest to produce a light-reducing effect to the applicator, if the applicator can be equipped with other mechanical means of removing pests, such as the grid. , glue mesh, glue board, etc., so that the light source that can generate heat produces a variety of functions.
  • the temperature of the gaseous stream can be changed to some extent by providing a temperature adjustment means for the liquid medicine, and the atomization effect of the ultrasonic wave oscillating device on the liquid medicine can be facilitated, and the atomization effect of the liquid medicine can be improved.
  • the temperature of the liquid supply of the liquid is adjusted by the heat exchange between the partition walls to avoid the damage that may be caused by the direct heating.
  • the stirring means is adjusted to prevent the precipitation or flocculation of the liquid solution by the stirring action of the chemical liquid, and the temperature of the liquid is heated by the friction between the stirring device and the chemical liquid.
  • the charging method is not a necessary step of the application method, the charging method can greatly improve the application effect.
  • the gaseous stream containing the ultramicro drug particles formed as described above is charged prior to being applied to the environment in which the application target is placed.
  • the charging process can be accomplished by a plasma or negative ion generator.
  • the application method of the embodiment of the invention is applicable to a relatively closed application environment, such as a protection facility for crop growth or a cold storage for agricultural product storage, a fresh-keeping warehouse, a gas storage warehouse or a breeding house for agricultural products, a public office or a private residence, and transportation.
  • a relatively closed environment such as tools.
  • the application target of the embodiment of the present invention may be to determine the application target, or it may be an indeterminate application target.
  • the indeterminate application target may be air without a fixed form, such as formaldehyde treatment in a room, the determined application target being an inanimate and/or living body having a fixed form in a closed environment, such as a crop or agricultural product or Agricultural facilities, etc., such as de-worming and / or disease removal of crops or agricultural products or agricultural facilities and / or regulation of residual pesticides and / or disinfection and / or growth and development.
  • the application method of the embodiment of the present invention can be applied to agricultural fields such as a protection facility for crop growth or a cold storage for agricultural product storage, a fresh-keeping warehouse, a gas storage warehouse, or a breeding house for agricultural products.
  • the applicator device integrally includes an atomization generating device and an airflow conveying assembly.
  • the atomization generating device includes a spray chamber 391 that provides an atomization generating space and a gas flow transport passage for the chemical liquid, and an ultrasonic oscillation device 360 that atomizes the chemical liquid.
  • the ultrasonic oscillating device has a The chemical liquid is in an oscillating element in a fluid contact relationship to oscillate the liquid medicine in the spray chamber to atomize it;
  • the airflow delivery assembly includes a flow input assembly and an airflow output assembly, wherein the airflow input assembly continuously atomizes the medical fluid at the ultrasonic oscillating device 360, continuously supplying a power flow to the spray chamber 391; the airflow output assembly will The motive stream formed by the motive gas stream and the atomized liquid is carried away and applied to the environment in which the application target is located.
  • the embodiment of the present invention makes the liquid atomizing generating device and the airflow conveying assembly easy to move and carry for ease of operation and use. Compact overall unit.
  • the applicator of the embodiment of the present invention has a compact combined structure as a whole.
  • the atomization chamber 391 (Fig. 24) of the atomization generating device is disposed at a substantially intermediate position of the application device for providing a space and a place for atomization of the liquid medicine and formation of a gaseous flow of the ultrafine drug particles.
  • the ultrasonic oscillating device 360 is disposed in the bottom of the interior of the atomization chamber 391 in an integrated manner.
  • the airflow conveying component is divided into a power flow input component and an airflow output component (referred to as an airflow output component) containing drug particles.
  • the power airflow input assembly includes a bellows 130 having a blower 200 disposed therein, disposed on the left side of the spray chamber 391, and providing a power flow through the power flow input port 154 on the left wall of the spray chamber 391 adjacent thereto (Fig. 18) input into the atomization chamber 391, and the gaseous flow containing the drug particles finally generated and outputted in the atomization chamber 391 is sent out of the application device by the air flow output unit disposed at the gaseous flow output port 420 at the top of the atomization chamber 391. outer.
  • the present embodiment also provides a reservoir 300 on the other side of the atomization chamber 391 opposite to the bellows.
  • a flow path and a liquid chemical positioning liquid supply device are disposed between the liquid storage tank and the atomization chamber 391 to secure and control the liquid supply to the atomization chamber 391.
  • the liquid medicine is first injected into the liquid storage tank 300 and then supplied into the atomization chamber from the input port of the liquid medicine to be atomized on the right wall of the atomization chamber 391.
  • This embodiment provides a reservoir to ensure a controlled supply of liquid to the spray chamber 391, but the reservoir 300 is not required.
  • the motive stream is an air stream.
  • a bottom air duct 270 (FIG. 24) is provided at the bottom of the wind box 130 in fluid communication with the wind box.
  • the bottom air duct 270 is provided with a lower portion of the entire applicator in the form of a base, and can be used to support the bellows and the spray chamber.
  • 391 and other components; on the other hand, The inside is used to set the voltage regulator of the ultrasonic oscillating device and the driving motor of the tank stirring device and the electronic control components of the control system and the circuit board, etc., which generate waste heat and require heat dissipation, and need heat dissipation during operation.
  • the present application device can not only improve the atomization efficiency, improve the generation of the gaseous flow of the ultrafine drug particles, and the application effect of the application device, but also can obtain a good energy-saving effect and the overall structure and process of the application device. It has become simpler.
  • the atomization chamber structure of the present embodiment has a separate structure including the upper and lower portions.
  • the lower portion is a liquid supply bottom box 390 having an upper opening
  • the upper portion is a shroud 410, which are detachably coupled together to provide a space for liquid atomization and formation of a gaseous flow of ultrafine drug particles.
  • the space should not be too small and sufficient flow should be provided to allow the atomized liquid particles to be dispensed without being mixed with the gas stream, and the gas stream should be sufficiently mixed with the atomized particles of the atomized liquid to form
  • the particle size of the drug particles is smaller and more uniform, but the space should not be too large, so as to prevent some atomized liquid particles from returning to the surface of the liquid and affecting the ultrasonic atomization due to the long process in the container.
  • the atomized application effect of the device is smaller and more uniform, but the space should not be too large, so as to prevent some atomized liquid particles from returning to the surface of the liquid and affecting the ultrasonic atomization due to the long process in the container.
  • a supply port 392 of the liquid medicine to be atomized is formed on one side wall of the liquid supply bottom box of the atomization chamber, so that the liquid medicine to be atomized flows into the liquid supply bottom box 390.
  • the position of the inner spray chamber 391 is such that atomization occurs by the integrated ultrasonic oscillating device 360.
  • a power flow input port 154 is provided on the other side wall of the liquid supply bottom box for the power airflow to enter the atomization chamber, and the generated atomized medicine is taken away in time to form a gaseous flow containing the ultrafine drug particles.
  • a gaseous flow output port 420 is provided at the top of the shroud to allow the gaseous flow to exit the spray chamber.
  • the application device of the embodiment of the present invention has the relative arrangement relationship between the liquid supply inlet of the spray chamber, the power flow input port, the output port containing the ultrafine drug gaseous flow, and the optimal liquid level of the liquid, and the gaseous flow.
  • the design of the parameters between the axis of the output port and the axis of the power flow input port taking into account the influence of the moving gas flow on the atomization quality of the liquid and the formation and output of the gaseous flow, through the coordination and optimization of the parameters,
  • the dynamic gas flow and the atomization of the ultrasonic oscillating device provide a good combination, the application of maximizing the rationalization of limited resources, and the comprehensive technical effects that are not realized by the individual means.
  • the embodiment proposes a liquid supply bottom box having the following features.
  • the liquid supply bottom case of the embodiment of the present invention has a substantially trapezoidal structure, and a portion matching the shroud is provided at a lower portion of the trapezoidal structure.
  • the inner wall surface of the lower portion of the liquid supply bottom box is formed with a cavity for the ultrasonic chamber and the atomization chamber 391 for accommodating the liquid medicine required for atomization, and the upper portion of the step with the higher position formed by the upper portion extending upward from the lower portion
  • the bottom of the tank 300 is fitted.
  • the liquid supply bottom box supports the liquid storage tank and the installation space required for providing the liquid storage tank and its components, and on the other hand, the liquid supply passage 392 which communicates with the lower concave chamber is formed by the inner wall surface of the liquid supply bottom box.
  • the liquid medicine supplied in the liquid storage tank is supplied to the atomization chamber 391, and flows into the cavity in which the ultrasonic oscillation device in the liquid supply bottom box is located.
  • the liquid supply flow path is a smooth flow path having a certain slope.
  • the communication reservoir 300 and the liquid supply bottom box 390 are conveniently and controllably provided.
  • a jack 339 for controlling the fluid storage tank 300 to communicate with or close to the flow path 392 is provided on the flow path 392.
  • the ejector rod 339 is used to open the liquid storage tank 300 to flow the liquid medicine to the flow path 392 (how to control the liquid storage tank 300 by the specific ejector rod)
  • the output of the liquid will be detailed in the rear tank section).
  • an electrically driven stirring device 350 is disposed in the reservoir 300.
  • the liquid bottom box 390 is located at a position corresponding to the stirring shaft at the inner wall surface of the upper step, and is bulged upward to form a hollow circular wall structure 397.
  • the lower portion of the rotating shaft of the stirring device or the coupling coupled to the rotating shaft may be at least partially disposed within the hollow circular wall structure 397 and drivably coupled to the driving motor 359.
  • the installation space of the driving mechanism of the stirring device is saved, and on the other hand, the rotating shaft is passed out of the portion of the liquid supply bottom box 390 at a higher position, thereby preventing the chemical liquid from rotating from the bottom of the liquid supply bottom box 390. Leak out of the outlet.
  • the inner wall surface of the liquid supply bottom box 390 of the embodiment of the present invention is formed on the outer wall of the hollow circular wall structure 397 to form a boss lower than the upper end surface of the hollow circular wall structure 397.
  • the outer periphery of the boss forms a channel 3972 communicating with the flow path.
  • the lowest positions of the channel 3972 and the flow path 392 are both designed to be larger than the highest working level of the atomization chamber 391 in the liquid supply bottom tank 390.
  • the upper end surface of the hollow circular wall structure 397 is higher than the highest position of the circular channel 3972.
  • the bottom outer wall surface of the liquid storage tank 300, the upper portion of the liquid supply bottom box 390, and the upper structure shape of the base correspond to each other.
  • the channel 3972 and the boss 3971 formed on the inner wall surface of the upper portion of the liquid supply bottom case 390 can be used as a mounting limit structure of the liquid storage tank 300.
  • the bottom of the liquid storage tank 300 forms a The boss corresponds to a concave portion and a convex portion.
  • the liquid storage tank 300 does not easily shake and be knocked over.
  • the shape of the bottom cover provided at the bottom of the liquid storage tank 300 is matched with the shape of the channel 3972 and the boss 3971, and is located at the bottom.
  • the coupling 358 on the agitating paddle 350 in the cover can extend into the hollow circular wall structure 397 of the liquid bottom box 390 and be coupled and engaged with the lower coupling 357 (Fig. 53) of the motor connected to the agitating paddle 350.
  • the cavity between the inner wall of the bottom cover and the outer wall of the coupling 358 on the agitating paddle 350 in the bottom cover can incorporate the hollow circular wall structure 397 of the liquid supply bottom box 390 therein.
  • the position of the base for accommodating the liquid supply bottom case 390 has a slightly round-walled structure corresponding to the liquid supply bottom case 390, and the lower coupling 357 connected to the motor of the stirring paddle 350 is located in the circular wall shape.
  • the hollow circular wall structure 397 of the liquid supply bottom case 390 can just incorporate the slightly thin circular wall structure on the base.
  • the liquid leakage exists only outside the hollow circular wall structure 397 of the liquid supply bottom box 390, and at most only outside the slightly rounded wall structure on the base. .
  • the leakage liquid existing outside the hollow circular wall structure 397 of the liquid supply bottom box 390 flows into the liquid supply flow path 392 of the liquid supply bottom box along the boss 3971 and the channel 3972 and enters the atomization chamber 391, and exists in the circle of the base.
  • the leakage liquid outside the wall structure flows into the position of the liquid supply bottom box 390 and the position of the base directly below and is accommodated, so that the liquid leakage can be effectively prevented from entering the motor of the stirring paddle 350 or the air duct of the base.
  • the inner wall surface of the liquid supply bottom box 390 forms an annular channel 3972 on the outer circumference of the boss and the inner wall on the upper step of the liquid supply bottom box 390 faces the annular channel 3972, which can be lowered.
  • the liquid medicine on the boss 3971 is collected into the annular channel 3972, and is uniformly sent into the atomization chamber 391 by the flow path 392, so that the chemical liquid cannot be prevented from sufficiently flowing into the cavity in the lower portion of the liquid supply bottom case 390 to be retained in the cavity. Waste of liquid medicine caused by some dead ends of the liquid bottom box.
  • the drive shaft of the agitator has a high height from the extended position of the liquid supply bottom box 390, it can effectively prevent the chemical liquid from being sealed from the rotation gap of the shaft of the agitator and the liquid supply bottom box 390. Strictly leaked, which greatly reduces the sealing pressure.
  • the inner wall surface of the liquid supply bottom case 390 located on the outer circumference of the annular groove 3972 is designed to gradually descend toward the annular groove 3972, and the annular groove is also gradually lowered toward the inlet of the flow path 392, and the flow path 392 is also lowered.
  • the liquid supply port 3922 of the atomization chamber 391 is gradually lowered. In this way, by the reduction in the height of the flow direction of the chemical liquid, it is possible to cause the drug to flow out to the upper wall surface of the liquid supply bottom case 390, whether it is controlled by the liquid supply bottom box 390 or due to poor sealing or the like.
  • the liquid can be sufficiently fed into the lower portion of the liquid supply bottom box 390 and further used for atomization, thereby avoiding the accumulation phenomenon generated during the supply of the liquid medicine, thereby avoiding the waste of the liquid medicine and reducing the liquid.
  • the cleaning work Further, the lowest positions of the annular channel 3972 and the flow path 392 are designed to be larger than the highest working level surface of the atomization chamber 391 in the liquid supply bottom box 390, and the upper end surface of the hollow circular wall structure 397 is higher than the annular groove. The highest position of the road 3972 further effectively prevents the liquid from entering the inside of the machine.
  • the liquid supply bottom box 390 of the embodiment of the present invention not only constitutes the bottom of the atomization chamber 391, but also extends to the bottom of the liquid storage tank 300 by a step shape, and is formed in fluid communication with the liquid storage tank 300 on the inner wall thereof and has a difference in position.
  • the flow path 392 and the annular channel 3972 having a difference from the flow path 392 enable the liquid medicine of the liquid storage tank 300 to be easily moved from the liquid storage tank 300 at a higher position to the liquid supply bottom box 390 at a lower position.
  • the flow of the cavity also allows the liquid medicine which may appear outside the flow path 392 to pass through the flow path 372 of the annular groove 3972 located at the outer periphery of the boss, and flows into the bottom of the liquid supply bottom tank 390 together with the liquid supply.
  • the liquid supply bottom tank 390 extends at the bottom of the liquid storage tank 300 and the atomization chamber 391 which are easy to generate the outflow of the chemical liquid during operation, so that the liquid supply bottom box 390 acts as a barrier and a tray, thereby advantageously preventing the setting.
  • the components underneath (such as a key component such as a stirring motor) are soiled by the chemical solution, and even cause a short circuit of the motor, so that the applicator of the embodiment of the present invention can be easily removed simply by the simple disassembly of the liquid supply bottom case 390. Wash it.
  • the types of pesticides are complicated and diverse. After each application, in order to improve the effect and safety of the next use, it is necessary to carry out the necessary cleaning of the application device, but the structure of the application device is Limitation, this cleaning process is difficult to achieve the desired actual results.
  • the liquid supply bottom box of the embodiment of the invention can improve the actual application effect and facilitate the operation of the actual user, and only need to remove the liquid supply bottom box after the application operation, without having to apply the entire application device. All of them are picked up and cleaned, and only the liquid supply bottom box needs to be cleaned.
  • the liquid supply bottom box 390 if the technical effect of the liquid bottom box is not considered, the liquid supply bottom box can be eliminated, and the base can be directly used (this application optimizes the base to the bottom wind).
  • the upper top surface forms a structure similar to that of the liquid supply bottom box. If the ultrasonic oscillating device and the cavity required for atomizing the liquid solution (as shown in Figure 1) are also implementable, this will bring great cleaning to the product. inconvenient. When it is necessary to clean the bottom of the spray chamber and the various components, it is necessary to lift the entire base or the entire machine for cleaning, which is very inconvenient to use.
  • a liquid supply bottom box having a simple structure the above various technical effects can be produced.
  • the top surface of the base (the base is optimized as the bottom air passage) forms a structural shape fully matched with the outer wall of the liquid supply bottom box, so that the liquid supply bottom box
  • the top surface of the 390 and the base (optimized to be the bottom air duct of the present application) can be matched and matched, as if a copy is attached to the upper top surface of the base, the overall structure is simpler and more compact, and further improved.
  • the overall device is anti-dirty and easy to clean.
  • the air guiding cover 410 is detachably assembled from the left and right halves, and the shroud 410 is detachable. Convenient and flexible. Further, the shroud shown in FIG. 11, FIG. 14, and FIG. 15 is provided to include a double-layer structure in which the outer casing is 411 and the inner casing is 421, so that the appearance can be changed without affecting other structures. The smoothing of the inner wall is used to improve the formation and extraction of the atomized liquid and the gaseous flow. As shown in FIG.
  • the front and rear walls of the inner casing of the shroud 410 are designed as curved inner walls and the inner wall of the shroud is converged toward the upper gaseous flow outlet, which can be reduced. Flow loss and increase the output power of the gaseous flow.
  • a guide hole 4211 is further formed on the inner casing of the shroud 410, as shown in FIG. 15, so that the liquid medicine that escapes from the position where the left and right casings are joined to the inner and outer casings is re-introduced. Atomization is performed indoors.
  • the shroud 410 in order to provide the hood 410 with a space for the liquid medicine to be more fully atomized and can be efficiently carried away and fully mixed by the power flow, as shown in FIGS. 14-16, the shroud 410
  • the sealing liquid section 471, the mist section 472 and the misting section 473 are sequentially arranged from the bottom to the top, and in order to prevent the outflow of the liquid medicine at the junction of the shroud 410 and the liquid supply bottom box 390, the sealing of the shroud 410 is performed.
  • the liquid section 471 forms a tightening opening and is inserted into the liquid supply bottom case 390 to be in close contact with the inner wall of the liquid supply bottom case 390.
  • the chemical liquid can be sputtered onto the liquid supply cover 390 even if it is sputtered on the shroud 410, thereby preventing liquid leakage, for example, the insertion depth is between 15 and 30 mm.
  • the liquid supply port 3922 of the spray chamber 391 is disposed in the liquid sealing section, and the input port 154 of the power flow is disposed between the liquid sealing section and the mist section, and the dynamic air outlet is provided. 420 is set at the port of the fogging section 473.
  • the shroud 410 is a component of the atomization chamber 391 from the physical structure.
  • the space required for atomization of the liquid is provided, but in fact it also has the function of the airflow conveying device, which provides a flow space and a conveying passage for the delivery of the drug mist and the generation and delivery of the gaseous flow.
  • the shroud 410 of the embodiment of the present invention further has the following features.
  • the mist section 472 of the inner wall of the shroud 410 is formed with a defoaming rib 441 for reducing or eliminating bubbles or foam generated during the operation of the ultrasonic oscillator, thereby weakening the cause.
  • the interference and influence of bubbles or foam on the atomization amount and atomization ability of the ultrasonic oscillator can help the residual liquid amount due to bubbles or foam at the end of the work, and can also be used for atomizing flow and power air.
  • the flow acts as a drainage to prevent the outflow of the drug solution.
  • the defoaming ribs 441 are disposed substantially along the longitudinal direction of the shroud 410, which not only better achieves the above effects, but also does not increase the resistance of the gaseous flow. Further, the rib top of the defoaming rib 441 is a pointed top to improve the defoaming effect of the defoaming rib.
  • a flow guiding comb 442 is provided, which is composed of a horizontal flow guiding comb portion 4421 and a vertical guiding comb portion 4422.
  • the horizontal flow guiding comb portion 4421 extends laterally from the upper side of the power flow input port 154 of the shroud to a certain length in the atomizing chamber 391, for example, 20 to 35 m, and then to the liquid supply bottom.
  • the box 390 is bent and extended to form a vertical guide comb portion 4422, so that the following technical effects can be obtained:
  • the diversion comb is used to separate the power flow input port into several small power flow input ports so that the power flow is evenly sent into the spray chamber, which prevents the flow of the moving gas from being excessively large.
  • the intake air blows down the ultrasonic vibration liquid column.
  • the loss of ultrasonic oscillating energy also reduces the amount of ineffective atomization (the ultrasonic oscillating device is not carried out by the power flow when it is not oscillating, but in the end it is mostly because the droplet is too large to return to the spray chamber or settle to the vicinity of the application device.
  • the application target is reached, thereby effectively increasing the amount of atomization and the energy efficiency ratio of the application device of the present invention.
  • the horizontal flow guiding portion and the vertical guiding flow formed by the guiding comb not only can play the role of guiding the power flow, but also prevent the excessive flow of the moving gas, and the air blows down the ultrasonic oscillating liquid column, thereby reducing the
  • the loss of ultrasonic oscillating energy also reduces the amount of ineffective atomization (the ultrasonic oscillating device is carried out by the power flow when it is not able to oscillate, but in the end it is mostly because the droplet is too large to return to the spray chamber or settle to the vicinity of the application device.
  • the application target effectively increases the atomization amount and the energy efficiency ratio of the application device of the present invention.
  • the vertical comb width of the flow guiding comb is greater than the horizontal comb width.
  • the foaming ribs 441 are also formed on the comb teeth of the guide comb, in particular the vertically arranged comb teeth.
  • the end of the vertical flow portion of the flow guiding comb 442 further forms a liquid barrier 443, and the liquid barrier 443 is connected to the end of each vertical flow comb 442 to prevent the application device from being in an unbalanced working state.
  • the backflow of the liquid medicine causes the phenomenon of dropping liquid or infiltration liquid inside the machine, and the overall strength of the flow guiding comb can be increased by connecting the end of the flow guiding comb.
  • the end of the liquid barrier 443 is further formed with a plurality of downward protruding portions 445, which not only enhance the flow guiding action of the guiding comb, but also have a thorn for the foam generated during the atomization of the liquid medicine. Breaking action, thereby reducing the generation of foam during the atomization process of the application device, preventing the atomized liquid from randomly entering the machine due to the generation of a large amount of foam, thereby causing the phenomenon of dropping liquid or infiltration liquid.
  • the above-described flow guiding comb 442, the liquid barrier 443, and the protruding portion 445 may be provided integrally or separately.
  • the liquid barrier 443 can be eliminated, and the comb teeth of the flow guiding comb 442 can be separated without providing a liquid barrier at the end. This not only makes the comb combs have a good shunting and drainage effect on the power flow, but also enables each comb to have a good liquid guiding effect, so that the droplets generated on the wall of the shroud can be easily introduced.
  • the liquid supply bottom box under the diversion comb In the liquid supply bottom box under the diversion comb.
  • a downward protruding portion is formed at the end of each comb tooth, so that not only the liquid medicine thereon can be advantageously introduced into the liquid supply bottom box at the bottom of the atomization chamber below, but also the atomization process.
  • the foam produced in the film has a puncture effect and has a good defoaming effect.
  • an arc-shaped structure may be integrally formed, or the horizontal guiding comb portion may be omitted, and the vertical guiding comb portion is directly formed on the shroud as shown in FIG.
  • the airflow input port extends downward from the upper edge of the input port.
  • a detachable independent component a damper net 449
  • the surface of the damper mesh is formed with a plurality of ⁇ 3 ⁇ 1 ⁇ 3mm 2 size small grid.
  • the foam barrier 449 is disposed on other walls of the wall of the spray chamber where the non-powered gas flow inlet is located, such as the front and/or rear inner walls of the spray chamber and/or the front inner wall opposite the power flow input.
  • the specific fixing manner can be arranged on the inner wall of the atomization chamber by detachable means such as snapping, plugging, screwing, etc., or can be detachably connected by means of snapping, plugging, screw fixing, etc.
  • the 449 is placed on the ultrasonic oscillating device at the bottom of the spray chamber. As shown in FIG. 17 and FIG.
  • the foaming net 449 can effectively block the bubble or foam in the liquid supply bottom box region through a plurality of small grids of 1 to 3 ⁇ 1 to 3 mm 2 size, and prevent bubbles. Or the foam is trapped by the wind and escapes from any gap of the machine to the outside of the machine, causing the overflow of the liquid, minimizing its possible impact and threat to the safety and stability of the machine.
  • the flow guiding comb, the power flow input port, the gaseous flow output port, and the shroud are all formed on the wall of the atomization chamber from a physical position, but in terms of its function, it is mainly reflected in improving the power flow.
  • the input and the generation and output of the gaseous stream containing the ultrafine drug particles are considered to be the structure of the airflow delivery device from a functional point of view.
  • horizontal and vertical technical terms in these directions should be understood as generally generally horizontal and substantially vertical.
  • the present invention dispenses with the prior art liquid lifting device with a porous material as a carrier. Because we have found that when applying relatively poorly soluble pesticide species, some of the undissolved small particles of the drug are easily blocked by the tiny pores of the porous material, which will cause unintentional waste of some pesticides and affect the application of pesticides. The actual effect. At the same time, due to the different specific conditions in different places, the liquid and liquid quality are very different. In long-term use, the area with high hardness of liquid medicine is prone to the phenomenon that the liquid alkali clogging the porous material carrier is on the one hand. The trouble and the workload are increased; in addition, after the application is completed, in the further cleaning of the application device, the defects such as incomplete cleaning and easy damage to the component are likely to occur.
  • the ultrasonic oscillating device can simultaneously realize atomization, temperature rise and chemical stirring of the liquid medicine, that is, the first aspect makes the liquid medicine atomize, and the second aspect absorbs the heat energy generated during the ultrasonic vibration process to heat the liquid to promote atomization, and the third In terms of the oscillating action of the ultrasonic waves and the continuously forming and falling liquid column, the stirring effect is achieved.
  • the specific effects have been described in the method section, and will not be described herein.
  • the ultrasonic oscillation device is used to realize the atomization and atomization of the medical solution by the ultrasonic oscillation device.
  • the ultrasonic oscillation device includes one or more ultrasonic oscillators, and each ultrasonic oscillator includes an ultrasonic oscillation component (commonly, such as ceramic transduction Pieces), heat sinks, control circuits and other components.
  • the integrated ultrasonic oscillating device is used to integrate the components in a sealed housing, and the ultrasonic The wave oscillating element is in contact with the working liquid to adapt to the liquid medicine, which is different from the water.
  • the integrated ultrasonic oscillating device may be a large ultrasonic oscillator provided with a plurality of ultrasonic oscillating elements and integrating all oscillating elements, heat dissipating components, driving and control circuits, etc., or may include one or more ultrasonic waves internally.
  • a modular integrated ultrasonic oscillating device of the oscillating element, and each of the ultrasonic oscillating elements may be a separate ultrasonic oscillator composed of the above ceramic transducer, heat dissipating component, driving and control circuit, etc., or
  • the oscillating unit consists only of the oscillating element and the heat sink (note that this does not conflict with the previous settings regarding the bottom duct).
  • the integrated ultrasonic oscillating device is detachably fixed to the bottom of the liquid supply bottom box 390 by a card slot, a snap or a screw.
  • the ultrasonic oscillating device can be directly disposed in the chemical liquid or disposed outside the wall of the liquid medicine container (in this embodiment, the liquid bottom box), but both of the ultrasonic oscillating elements (such as ceramic transducer sheets) and the fog to be treated are ensured.
  • the chemical solution is contacted (this embodiment is disposed in the drug solution in the container).
  • the drive and control circuitry isolated from the chemical fluid will produce a drive voltage that is consistent with the resonant frequency of the ceramic transducer plate when energized, which voltage will be applied to the ceramic wafer to produce oscillating energy.
  • the oscillating energy propagates in the liquid medicine in a direction perpendicular to the surface of the ceramic transducer sheet.
  • the liquid surface to swell up one of the liquid medicine columns, and the top end of the liquid medicine column generates a large number of minute tension waves, so that the bulge The surface tension of the liquid surface is greatly reduced, thereby forming a plurality of atomized micro-chemical liquid particles.
  • the operating oscillation frequency of the ceramic transducer sheet is in the frequency range of the ultrasonic wave, it is called ultrasonic oscillation atomization.
  • the depth of the chemical solution is maintained at a depth of 20 to 60 mm, and the height of the liquid column of the liquid surface is substantially at a height of 60 to 100 mm, which is advantageous for atomization of the liquid medicine and The generation of gaseous flow.
  • Ultrasonic oscillators in the prior art are generally used in the field of air humidification. Since water and liquid medicine have great differences in specific gravity, bulk density, electrical conductivity, electrolysis rate, viscosity, pH, etc., the present application utilizes ultrasonic oscillation. When the device is applied, it is not simply applied to the field of the applicator, but an improvement is made with the drug solution. In addition to the above-described improvements in the integrated ultrasonic oscillator, the applicant of the present invention has also found that the optimization of the number of ultrasonic oscillation oscillating elements also plays a good role in improving the energy efficiency ratio of the application device.
  • the relationship between the number of oscillating elements of the ultrasonic oscillating device, the duration of application, the relative humidity of the closed environment, the absorption of the front and back surfaces of the plant leaves, and the control effect can be obtained and optimized.
  • Table 1 Different numbers of ultrasonic oscillating components and application duration, relatively closed ambient humidity, plant leaves The relationship between the absorption effect and the control effect of the reverse side
  • the number of ultrasonic oscillating elements of each application device is proportional to the length of the application time, that is, the more the number of oscillating elements of the ultrasonic oscillating device of each application device, the higher the atomization rate, The shorter the drug time, the parabolic relationship between the application time and the control effect and the leaf back absorption rate.
  • the application time is in the range of 1 to 2 hours, the longer the application time, the better the control effect and the back absorption rate, and reach the peak value; when the application time exceeds 2 hours, the control effect and leaf back
  • the absorption rate decreases with the increase of application time; the application time is proportional to the humidity of the greenhouse, that is, the longer the application time, the higher the humidity in the greenhouse. Therefore, the application time is chosen to be about 2 hours.
  • the air humidity in the relatively closed loop is not increased much, and the air humidity in the shed is basically the same as that in the shed after the closed shed, while the absorption effect and the control effect on the back of the plant leaves are the most.
  • the number of oscillating components of the ultrasonic oscillating device 360 that can be integrated in each application device can be correspondingly configured according to needs, and the oscillating of the ultrasonic oscillating device of each application device can be performed according to the comprehensive cost performance standard.
  • the number of components is 3 to 10, for example, 6 to 10, and the atomization rate is more than 3.0 kg/hour. In this way, on the one hand, the gaseous flow intensity containing the ultrafine drug particles can be rapidly formed, thereby improving the application efficiency, and on the one hand, unnecessary energy and waste of the liquid can be avoided.
  • the ultrasonic oscillating device 360 the atomization of the medicinal solution is achieved by atomizing the medicinal fluid through its oscillating member 366.
  • Ceramic transducer sheets such as disc-shaped, are in the form of oscillating elements commonly used in ultrasonic oscillating devices on the market today. And whether the ultrasonic oscillating device is using multiple independent super
  • the sonic oscillator also uses an integrated ultrasonic oscillator, which can atomize the liquid as long as the oscillating element is in contact with the liquid.
  • the ultrasonic oscillator selects an integrated ultrasonic oscillating device to facilitate cleaning and control of the chemical liquid.
  • the structure of the ultrasonic oscillating device is matched with the arrangement thereof. Specifically, the ultrasonic oscillating device of the embodiment of the present invention is implemented by the following two embodiments.
  • the ultrasonic oscillating device includes an ultrasonic oscillator or a plurality of independent ultrasonic oscillator units disposed on the wall of the liquid supply bottom box, and only the oscillating member/ceramic transducer sheet is passed through the liquid supply bottom box wall.
  • the upper opening is in contact with the liquid supply of the liquid supply bottom box to exert an oscillating action.
  • 3 to 10 openings located at a lower position are formed on the bottom wall of the liquid supply bottom box, or belong to the same integrated ultrasonic oscillation device or 3 to 10 belonging to different ultrasonic oscillators.
  • Ultrasonic oscillating elements are disposed on the bottom wall of the liquid supply bottom box, and are in contact with the liquid medicine in the liquid supply bottom box through the openings to perform atomization, and under the Some are located in the bottom duct or can be in fluid contact with the bottom duct.
  • a partition is formed on the bottom wall of the liquid supply bottom box (as shown in FIG.
  • the so-called partition is not completely blocked, but has a flow hole in the partition, so that the liquid between the oscillating regions corresponding to the respective oscillating elements can also have a certain circulation.
  • the ultrasonic oscillating device since the ultrasonic oscillating device is disposed outside the liquid supply bottom box, the disassembly and replacement of the ultrasonic oscillating member is very convenient, and the number of the ultrasonic oscillators is easily started as needed; the ultrasonic oscillating device can be easily set in the supply The lower position of the liquid bottom box makes it unnecessary for the application device to maintain a high liquid level, the atomization effect is good, and the amount of the ineffective liquid is small after the application is completed; the non-working portion of the ultrasonic oscillation device can be set at the bottom In the air duct, not only the ultrasonic oscillating device is well cooled, but also the waste heat generated when the ultrasonic oscillating device is operated is heated from the bottom air duct into the bellows to increase the input temperature of the power flow.
  • an integrated ultrasonic oscillating device is selected and placed in the liquid medicine inside the liquid supply bottom box of the atomization chamber to completely cover the liquid medicine, and only the oscillating member such as the ceramic transducer sheet is exposed.
  • the sealing housing is in actual contact with the liquid in the spray chamber to effect an oscillating action.
  • the integrated ultrasonic oscillating device 360 includes a sealed casing 360, a liquid level control member 361, and 3 to 10 ultrasonic oscillating members 366 that expose the sealed casing from contact with the chemical liquid.
  • the ultrasonic oscillating device of the embodiment does not need to open the liquid medicine container, and does not involve the liquid medicine container.
  • the sealing difficulty problem is simple and easy to operate, and because of the integrated design of the sealed casing, the safety of the product and the convenience of disassembly are greatly improved.
  • the entire ultrasonic oscillating device is disposed in the liquid medicine inside the liquid supply bottom box, a higher liquid level is required to ensure the normal operation of the ultrasonic oscillating device, and the liquid medicine is likely to remain after the application device ends. It requires frequent cleaning and also causes waste of the liquid medicine and waste of the liquid medicine resources.
  • the ultrasonic oscillating device When the ultrasonic oscillating device is detachably disposed at the bottom of the inner portion of the liquid supply bottom box, a guide rod is disposed in the liquid supply bottom box along the liquid level height direction, so that the ultrasonic oscillating device has a sealed casing Slidably mounted on the guide. Further, in the liquid supply bottom box, the sealing housing of the ultrasonic oscillating device may be provided with measures for increasing or decreasing buoyancy to facilitate selection of the manner of use of the ultrasonic oscillating device under different purposes and conditions.
  • a liquid control stabilization device 430 is provided to cooperate with the ultrasonic oscillating device, as shown in FIG. 19 Figure 22 shows. This will not only greatly improve the atomization efficiency of the above-mentioned second ultrasonic oscillating device setting method, but also effectively reduce the residual liquid residual amount after the application of the application device, thereby realizing the purpose of real energy saving and emission reduction and the application device It has a simple structure that is easy to operate.
  • a liquid control stabilization device 430 for adapting an ultrasonic oscillating device provided in a chemical liquid container according to an embodiment of the present invention will be described.
  • the fluid control stabilization device 430 includes a housing that is surrounded by a top wall 431 and an outer peripheral wall 4331 into a downwardly open cavity for covering over the ultrasonic oscillating device.
  • the top wall of the cover body is formed with an opening corresponding to the number and position of the oscillating elements of the ultrasonic oscillating device. As shown in FIG. 26, a lower portion of each of the openings is formed to extend downward from the inner wall of the top wall. Straight-through cylinder with open ends. As shown in Figs. 20 to 22, the cylindrical body is used to cover the outer periphery of the oscillating member corresponding thereto, and the inner cavity opened at both ends thereof constitutes a stable cavity 432 of its corresponding oscillating member.
  • the cavity between the outer wall surface 4321 of the cylinder and the inner wall surface 4331 of the outer peripheral wall of the cover constitutes a liquid control chamber 4330, and the liquid control chamber is a cavity closed at the upper end, and the top surface thereof is covered by the cover body
  • the non-apertured area of the wall is constructed.
  • One or more slits are formed between the lower end surface 435 of the outer peripheral wall 4331 of the cover and the upper end surface of the ultrasonic oscillating device to serve as the liquid control slit 434 of the liquid control chamber 4330.
  • the lower end surface of the cylinder and the oscillating surface of the oscillating surface 364 also form one or more gaps for the stability cavity 4320 of the liquid supply slit 4323.
  • the highest position of the stable cavity liquid supply slit is lower than or equal to the highest position of the liquid control cavity control slit opening.
  • the liquid control stabilization device 430 of the above embodiment is designed according to the principle of the connector and the phenomenon of siphon, specifically:
  • the liquid control chamber 4330 is a non-opening area of the top wall 431 of the liquid control stabilization device and the peripheral wall of the liquid control stabilization device 430 (ie, the liquid control chamber wall) 4331 and the outer wall of the through tube (ie, the stable cavity wall) 4321
  • a closed air chamber is formed above the liquid control chamber. When the liquid level of the liquid control chamber rises, the air pressure in the closed air chamber will also increase under the compression of the liquid column. Will make the liquid not completely fill the entire cavity.
  • the stable cavity 432 is different, since the cavity is composed of a straight through cylinder (the upper and lower end faces are all communicated with the air), and the lower end thereof forms a liquid supply gap with the epitaxial surface 364 of the oscillating member, thereby entering the liquid control chamber. A part of the liquid will flow into the stable cavity, and the stable cavity is connected to the outside air because the upper end thereof, and the liquid in the liquid does not change due to the increase of the liquid, that is, When the liquid medicine enters the stable cavity from the gap of the stable cavity, it can rise freely along the inner wall of the cavity without being hindered by the air pressure.
  • the design of the above-mentioned stable cavity and liquid control chamber forms a "connector effect" between the stable cavity and the liquid medicine around the liquid control stabilization device. Therefore, once the liquid level around the ultrasonic oscillating device and the liquid control stabilization device is higher than the highest liquid level of the liquid control chamber, the liquid level in the stable cavity will be the liquid level around the liquid control stabilization device (ie, The liquid level in the cavity of the liquid supply bottom box keeps the same dynamic, and the liquid level in the liquid control chamber is formed with a closed air cavity in the upper part thereof. Under the pressure of the sealing air, the liquid level in the liquid control chamber is bound to be It is lower than the liquid level around the stable cavity and the liquid control device.
  • the gap between the liquid bottom box and the ultrasonic oscillator and the stable liquid control device is small, and the gap is mainly for ensuring the heat dissipation of the ultrasonic oscillating device, and is filled around the liquid control stabilization device and the ultrasonic oscillating device and The amount of liquid medicine between the inner walls of the liquid supply bottom case is small. Therefore, the use of stable control fluid
  • the ultrasonic oscillating device of the device does not need to supply a large amount of liquid medicine to ensure the safe and effective atomization of the ultrasonic oscillating device disposed inside the container, thereby minimizing the residual amount of residual liquid after the application of the application device and ensuring the remaining amount.
  • the high-efficiency and safe operation of the ultrasonic oscillating device and because the present application designs the highest position of the stable cavity supply slit to be lower than or equal to the highest position of the liquid-control chamber slit opening. Therefore, even if the liquid storage tank stops the liquid supply, even the liquid medicine in the flow path is no longer available, as long as the liquid level in the liquid supply bottom box is higher than the highest position of the liquid control gap, due to the principle of the communication device and the siphon action liquid It can enter the stable cavity to maintain the same liquid level as that in the liquid supply bottom box to maintain its optimal working liquid level, so that the ultrasonic vibration device 360 can atomize the liquid medicine in an optimal state from beginning to end. .
  • the present application sets the highest position of the liquid control gap as the shutdown liquid level line, and when the detecting element 361 on the ultrasonic oscillating device detects the liquid supply bottom. The operation of the ultrasonic oscillating device is stopped when the liquid medicine in the cartridge reaches or falls below the lowest position of the liquid control gap.
  • the liquid inlet gap of the present application acts as a liquid inlet, and the liquid control gap has no effect when the liquid level is high or optimal, and only works when the liquid level is close to the shutdown liquid level at the end of the application.
  • the minimum or shutdown liquid level is detected by the liquid level control member 361 and the shutdown protection is implemented; the lowest position of the liquid supply port 3922 of the liquid supply bottom box is at the same level as the position of the liquid supply bottom box 391, and the highest position of the liquid supply port is low. At the lowest position of the control liquid gap, to ensure that the liquid supply gap is available at all times during the entire application process.
  • liquid-control stabilization device of the present application can be applied not only to an application device using an ultrasonic oscillator, but also to any other occasion in which an ultrasonic oscillator is used to atomize a liquid in a container therein, and Used in any other location where the above principles require the control of the liquid level.
  • the present application also provides a liquid level control member 361 on the ultrasonic oscillating device, in order to ensure the effective function of the liquid level control device.
  • the working fluid control device 430 also forms a liquid level chamber to enable the liquid level control member to accurately perform the inspection.
  • the working principle of the liquid level chamber is also to use the principle of the connected device to make the liquid level in the liquid level and the stable liquid chamber and the liquid level around the liquid control device (ie, the ultrasonic oscillation device and the liquid control stability)
  • the liquid level of the liquid supply bottom box of the device is the same, as shown in Figs. 19 to 22 . Based on this principle, the formation of the liquid level cavity can be as follows:
  • a straight-through cylinder similar to a stable cavity structure is formed at a position corresponding to the top wall of the cover body and the liquid level control member 361, and a liquid level control member is formed by using the inner cavity thereof.
  • the liquid level chamber 437 (hereinafter referred to as "full cylinder liquid level chamber”).
  • one or more liquid inlet slits are formed between the straight cylinder of the full cylinder type liquid level chamber and the outer surface of the liquid level control member.
  • the outer peripheral wall of the cover body is formed at a position corresponding to the liquid level control member 361 to form a semi-cylindrical concave portion 437 recessed into the liquid control chamber, as shown in FIGS. 21-22, using the side of the concave portion
  • the wall surface and the inner wall surface of the liquid supply bottom box form a liquid level chamber (hereinafter referred to as a half cylinder liquid level chamber) for detecting the liquid level control member of the ultrasonic oscillating device, and the half cylinder liquid level chamber can be further according to the cavity thereof Whether the top is closed by the top wall of the shell is divided into an open liquid level chamber at the top of the half cylinder (as shown in Figure 21) and a closed liquid level at the top of the half cylinder (as shown in Figure 22).
  • the liquid control stability device is adapted to adopt a full-cylinder liquid level chamber; if the liquid level control member is disposed on both sides of the upper end surface of the ultrasonic oscillating device
  • the setting position of the liquid level control member is usually related to the number of ultrasonic oscillation element settings.
  • the liquid control stabilization device adopts a full cylinder liquid level chamber (as shown in FIG. 19), and the liquid control stability device 430 corresponding to the liquid level control member 361 located on the surface of the integrated ultrasonic device 360
  • the liquid level chamber 437 has a cylindrical shape and is a straight-through type in which both upper and lower ends are in communication with air.
  • the liquid control stabilization device 430 of the integrated ultrasonic device 360 which is composed of three, four, five, six or ten ultrasonic oscillating elements, is suitable for this mode, due to the liquid level.
  • the control member is disposed on both sides of the upper end surface of the ultrasonic oscillating device, and a semi-cylinder liquid level chamber (as shown in FIG. 21 and FIG. 22) is used, but the top portion is open and is located on the surface of the integrated ultrasonic device 360.
  • the liquid level chamber 437 of the liquid control stabilization device 430 corresponding to the liquid level control member 361 is semi-cylindrical due to the upper end thereof. The surface is not closed by the top wall of the liquid control device 430, so that the lower end surface and the upper end surface are still in communication with the air (as shown in Fig. 20).
  • liquid control stability device 430 with closed half-level liquid level chamber
  • the liquid control stabilization device 430 of the integrated ultrasonic device 360 which is composed of three, four, five, six or ten ultrasonic oscillating elements, is also suitable for this method, due to the liquid
  • the position control member is disposed on both sides of the upper end surface of the ultrasonic oscillating device, and a semi-cylinder liquid level chamber (as shown in FIG. 21 and FIG. 22) is used, but the top portion is closed and located at the integrated ultrasonic device 360.
  • the liquid level chamber 437 of the liquid control stabilization device 430 corresponding to the liquid level control member 361 of the surface is semi-cylindrical. Since the upper end surface is formed by the top wall of the liquid control stabilization device 430, the half cylinder of the liquid level chamber and the upper and lower end faces are still in communication with the air (as shown in Fig. 22).
  • the liquid level control device can use the principle of the connected device to determine whether the liquid level in the liquid supply tank and the liquid level in the stable cavity is in the shutdown liquid level line by detecting the liquid level in the liquid level chamber. .
  • the cooperation between the liquid control stabilization device and the ultrasonic oscillation device can be realized by directly forming an assembly with the integrated ultrasonic oscillation device 360, or by the liquid control stabilization device 430 and the air flow delivery device such as the flow guide 410 (see FIGS. 11 to 13). Illustrated) connected or fixed and/or cooperatively connected or fixed to components such as the foam barrier of the shroud 410 (as shown in Figure 18);
  • liquid control stability device 430 and the integrated ultrasonic oscillation device 360 form an assembly, and then the form used in conjunction with the shroud
  • the liquid control stabilization device 430 and the integrated ultrasonic oscillation device 360 are connected to each other by an attachment mechanism 436 located on the liquid control stabilization device 430 to form an assembly.
  • the connecting mechanism 436 is a claw structure, and the ultrasonic oscillating device 360 forms an upward protruding edge on the outer circumference thereof to cooperate with the claw, so that the liquid control stabilization device is fixedly supported and covers the upper end surface of the ultrasonic oscillating device.
  • the connection mechanism makes the connection between the liquid control stabilization device 430 and the integrated ultrasonic oscillation device 360 easy to install, securely mounted, easy to disassemble, and repeatable.
  • liquid-stabilizing device 430 and the shroud 410 constitute an assembly and the integrated ultrasonic oscillating device 360 is used in the hoisting form
  • the liquid-controlling device is detachably fixed to the shroud, and the liquid-conducting device is matched with the setting position of the liquid-controlling device 430 to make the liquid-controlling device
  • the required liquid control slit, the liquid supply slit, and the liquid inlet slit are hoisted on the upper end surface of the ultrasonic oscillating device.
  • a mounting groove 460 of the liquid-controlling device 430 is preset on the shroud 410, and an epitaxial surface is formed on the periphery of the top wall surface of the cover of the liquid-controlling device 430.
  • the surface of the mounting groove 460 on the shroud 410 can be inserted into the assembly by means of bonding or fixing by means of screws.
  • the slots are also bonded or screwed).
  • the corresponding mounting screw holes are first set on the liquid control stabilization device 430 and the anti-foaming net 449, and the liquid control stabilization device 430 and the anti-foaming net 449 are first fixed by screws;
  • the mounting groove 460 of the liquid-controlling device 430 is preset on the shroud 410, and the outer surface of the top wall panel of the cover of the liquid-controlling device 430 is inserted into the liquid-controlled and stable.
  • the assembly is assembled by means of bonding or screwing, and the position is optimized by the integrated ultrasonic oscillating device 360 to achieve matching use.
  • the liquid-stabilizing device is composed of any component, but it is ultimately used with an integrated ultrasonic oscillating device.
  • the integrated ultrasonic oscillating device is an integrated body composed of two or more ultrasonic oscillating components.
  • the integrated body formed by the integrated body or different integrated bodies and the liquid-controlling stability device can be matched according to the manner in which the different integrated ultrasonic oscillating devices are used.
  • control liquid gap liquid supply gap, liquid inlet gap formation
  • the liquid control slit of the liquid control stabilization device and the configuration of the liquid supply slit can accordingly have the following embodiments.
  • liquid-stabilizing device 430 and the integrated ultrasonic oscillating device 360 to directly form an assembly or require both to be fixed in advance
  • one or more slits are formed on one or several sides or each side of the end of the outer peripheral wall (ie, the liquid control chamber wall) 4331 of the cover which is opened downward, so that When the lower end surface of the outer peripheral wall of the liquid control device is attached to the end surface of the ultrasonic oscillating device, one or more liquid control slits 434 are formed therebetween, and other side walls other than the liquid control slit 434 are formed. Lower end just It is good to cover and fit on the outer edge of the ultrasonic oscillating device.
  • each of the stable cavity bodies ie, the stable cavity
  • each of the stable cavity bodies corresponding to the position of the oscillating member 366 can be covered on the outer periphery of the corresponding oscillating element ceramic transducer sheet (stability)
  • the inner diameter of the lower end surface of the cylinder body is larger than the corresponding outer diameter of the oscillating member such as the ceramic transducer sheet, and the lower end surface of the cylinder 437 (ie, the liquid level chamber) corresponding to the position of the liquid level control member 361 can be covered correspondingly.
  • the outer circumference of the liquid level control member (the inner diameter of which is larger than the outer diameter of the corresponding liquid level control member).
  • a plurality of, for example, 2 to 6, gap-type liquid supply slits 4323 are formed in the bottom end surface of the cylindrical body constituting the stabilization chamber 432 and the liquid level chamber 437, so that the cover body is formed.
  • a liquid supply gap is formed between the cylinder forming the stable cavity and the liquid inlet cavity and the corresponding oscillating member and the liquid level control member.
  • the hoisting method is set above the ultrasonic oscillating device.
  • the liquid control slit and the liquid supply slit can be formed by the above-mentioned formation method, and can also be directly formed by the installation gap between the liquid control stabilization device and the ultrasonic oscillation device, that is, the upper and lower end faces of the two are not in contact, so that the liquid control chamber is The bottom end surface (that is, the bottom end surface of the outer peripheral wall), the bottom end surface of the stable cavity (that is, the bottom end surface of the cylinder), the bottom end surface of the liquid level chamber, and the outer peripheral surface of the ultrasonic oscillating device, the extension of the oscillating member or the liquid level control member A certain installation gap is left between the faces as a liquid supply gap for the liquid control gap, the stable cavity, and the liquid level cavity, so that it is not necessary to specially process the liquid supply slit type 4323 on the wall.
  • each individual cavity may be single-layer or single-wall, or multi-layer or multi-wall, as needed, so that integrated ultrasonic oscillation can be achieved.
  • the efficiency of the device is optimized.
  • the stable cavity of the liquid control stability device can choose different cavity diameter and cavity height according to different needs, and its single layer Or the single-walled cavity and/or the multi-layered or multi-walled cavity has an upper end cavity having a diameter of 10 to 25 mm, a lower end cavity of 15 to 35 mm, or a stable cavity
  • the inner diameter of the lower end surface of the body is larger than the corresponding outer diameter of the oscillating member such as the ceramic transducer sheet of 1 to 10 mm, and the cavity height is 11 to 55 mm, which is not higher than the depth of the liquid medicine.
  • the gap height is smaller than the cavity height.
  • the liquid control slit 434 can also be set to be controllable or adjustable. For example, within the allowable range, adjustment or setting of the width or size of the liquid control slit 434 can be achieved by adjusting the hanging height of the liquid control stabilization device or the support height on the ultrasonic oscillation device to improve the ease of use and Universality.
  • the above liquid control stability device 430 can bring the following technical effects:
  • the stable cavity 432 on the liquid-control stabilization device 430 relatively fixes the range of the action liquid of the ultrasonic oscillation energy, which can effectively prevent the energy loss caused by the disordered transmission of the ultrasonic oscillation energy in the liquid. Effectively improve the ultrasonic oscillation capability of the integrated ultrasonic oscillating device by 10% to 30%, so that the integrated ultrasonic oscillating device can stabilize the atomization ability and atomization amount of the liquid medicine, thereby achieving the purpose of stability.
  • the liquid control stability device 430 When the liquid control stability device 430 is in operation, the upper portion of the control liquid slit 434 in the liquid control chamber 4330 is filled with air, and the chemical liquid is only present in the liquid control slit 434 and the stable cavity 432. It is used to control the liquid chamber 4330, and the remaining liquid residue can be minimized at the end of the work, and the remaining liquid residue can be controlled below 300 ml.
  • the liquid medicine tank 390 and the integrated ultrasonic vibration device 360 are located at the position of 391, even if the minimum liquid level limit at the time of shutdown is reached, the amount of liquid filled under the liquid control slit 434 Less than 300ml, but it can reduce the temperature of the integrated ultrasonic oscillating device during operation and protect the components of the integrated ultrasonic oscillating device from damage.
  • the chemical liquid can enter the stable cavity 432 (or 4320) through the liquid control slit 434 and the liquid supply slit 4323;
  • the liquid level in the stable chamber is always dynamic with the set optimal atomization level (working Time-balanced or static (not working) balance or the same relationship, so that the integrated ultrasonic oscillating device can always remain in the optimal atomization state until it reaches the minimum liquid level limit at the time of shutdown and stops working.
  • the application device of the embodiment of the present invention not only greatly reduces the energy loss caused by the disordered transmission of the ultrasonic oscillation energy in the chemical liquid, but also makes the atomization efficiency large due to the matching structure of the above-mentioned liquid control stabilization device and the ultrasonic oscillation device.
  • the liquid level control of the ultrasonic oscillating device is controlled by the above physical structure, so that the application device can achieve efficient atomization through a small liquid supply, and avoids the need for comparison.
  • the large liquid level ensures the waste of liquid medicine caused by the normal operation of the ultrasonic oscillating device.
  • the sample can achieve good technical effects, that is to say, its fogging object does not affect the realization of the above technical effects, whether it is a liquid or a solution.
  • the liquid control stabilization device 430 can be widely applied not only to application devices in various fields having ultrasonic oscillation atomization, but also widely used in air humidifier devices using water as a working liquid.
  • the present invention effectively reduces the amount of biological active substances in the air pollution control field, such as a private or public place, in a room or a place for the purpose of air purification for the purpose of removing formaldehyde, benzene, odor and the like in the air in the environment. Reduce the cost of air pollution control;
  • the manufacturing cost of the air humidifier can be effectively reduced, the working efficiency is improved, the working energy consumption is reduced, and energy saving and emission reduction are realized;
  • the working fluid of the ultrasonic oscillating device matched with the liquid-control stabilization device provided by the present application is a liquid medicine or water or other solution, and can be used as long as it can be atomized by the ultrasonic oscillating device.
  • the liquid control stabilization device of the above embodiment of the invention is a liquid medicine or water or other solution, and can be used as long as it can be atomized by the ultrasonic oscillating device.
  • the applicator device of the embodiment of the invention includes a The reservoir is used to ensure a controlled supply of the spray chamber as needed.
  • the liquid storage tank of the present embodiment includes a liquid storage container, the container is provided with a smaller first opening 335 and a larger second opening 337, wherein The smaller first opening 335 is provided with a liquid supply control device 330, and the larger second opening 337 is detachably sealed with a bottom cover 340.
  • the bottom cover 340 and the second opening 337 are threadedly engaged.
  • the two openings 337 are formed with a cylindrical outer threaded wall, and the corresponding bottom cover 340 is formed with an internally threaded wall to tighten the nut to the cylindrical threaded wall of the second opening 337.
  • the liquid storage tank of the embodiment of the invention is provided with a liquid medicine supply control device.
  • the medical liquid supply control device includes a jack-type positioning liquid supply assembly 330 and a jack control assembly 339X.
  • a top rod type positioning liquid supply assembly 330 is disposed at the first opening 335 at the bottom of the liquid storage tank, and the top rod type positioning liquid supply assembly 330 forms a liquid flow chamber and a liquid flow inlet which are in communication with the liquid supply passage of the spray chamber.
  • the liquid outlet, the liquid supply control device, at least the ejector is disposed under the ejector positioning liquid supply assembly 330, for opening or closing the liquid inlet of the ejector positioning liquid supply assembly 330, to realize the liquid storage
  • the output of the tank liquid is controlled, but the action of the jack on the top rod type positioning liquid supply assembly is controllable.
  • the jack-type positioning liquid supply assembly 330 includes a leather cap plug 331 , a liquid guide inner guide post 332 , an inner spring 333 , a limit guide ring 338 , a top sheet 334 , a liquid level positioning gap 336 , and the like.
  • a housing that houses the components and forms a flow chamber and a liquid flow inlet.
  • the ejector-type positioning liquid supply assembly 330 is sealingly connected to the first opening 335 through the outer wall of the housing, the inner wall forming a liquid flow chamber, and the first opening 335 at the bottom of the liquid storage tank is an inlet of the liquid flow chamber to form a liquid flow inlet, the liquid
  • the outlet at the position locating opening 336 forms a liquid flow outlet;
  • the cap 331 acts on the liquid inlet for opening or closing the liquid inlet, the cap 331 is fixed to the upper end of the inner guide 332, and the lower end of the inner guide 332 is worn.
  • the limit guide ring 338 disposed on the inner wall of the housing is fixedly coupled to the top piece 334 receiving the external force (including the case of being integrally formed).
  • the outer guide sleeve is sleeved with an inner spring 333, and the spring is telescopically disposed between the limit guide ring of the liquid flow inlet and the top sheet.
  • the inner spring 333 naturally extends downward, the cap plug 331 is stretched downward, the liquid inlet is sealed by it, and the liquid cannot flow out.
  • the liquid supply assembly inner guide piece 334 in the liquid supply assembly housing compresses the spring 333 of the liquid supply assembly upward, and the leather cap is plugged. 331.
  • the inner guiding column 332 of the liquid supply assembly and the inner guiding piece 334 of the liquid supply assembly move upward together, the inner guiding column tops the open cap, and the liquid medicine flows out until the liquid medicine in the liquid supply bottom box reaches the set optimal.
  • the liquid stops automatically when the liquid level is high.
  • the liquid level drops below the optimal liquid level, and the liquid liquid flows out from the liquid flow inlet exposed by the ejector positioning liquid supply assembly.
  • the amount of the liquid medicine flowing out of the liquid storage tank 300 reaches the set liquid level again, the liquid medicine automatically stops flowing out, and the cycle is repeated.
  • the optimal liquid level of the present application is set according to the position of the liquid outlet which finally flows out from the liquid flow chamber of the ejector liquid supply module, because the liquid flow outlet of the liquid flow chamber is It is in communication with the flow channel on the liquid supply bottom box, and the flow path is in turn circulated with the liquid medicine in the liquid supply bottom box, so the position of the liquid flow outlet of the liquid flow chamber is usually used to set the optimal medicine in the liquid bottom box. Liquid level.
  • the opening and closing thereof depends on whether the ejector can apply an external force to the top sheet, and the ejector control assembly described below makes the function of the ejector of the present application controllable. Sex.
  • the medical liquid supply control device of the embodiment of the invention further comprises a positioning liquid supply control device 339X on the basis of the ejector-type positioning liquid supply assembly 330, so that the action of the ejector is controllable.
  • the ejector control assembly can be controlled manually or automatically; from the principle of the invention, the ram can be machined into a screw that is rotated upward or downward by its own to change its position on the bottom support surface.
  • the effective working length (that is, the distance between the top end of the top rod and the top sheet of the ejector positioning liquid supply assembly), can also be processed into a foldable or retractable
  • the form changes the distance between the top end and the top sheet, and the action of the ram can be controlled by providing a detachable cap on the ram.
  • the automatic positioning liquid supply control device 339X includes a liftable threaded electric jack 339, a jack mounting assembly 3391, 3392, 3393, 3394, a forward and reverse drive mechanism 3395, and the like.
  • the electric jack is threadedly engaged with the jack mounting assembly, rotatably disposed on the jack mounting assembly, and the lower end portion is coupled to the forward and reverse driving mechanism, and the motor of the forward/reverse driving mechanism rotates forward or reverse
  • the lifting or lowering of the threaded electric jack 339 that can be raised and lowered is achieved.
  • the pitch of the liftable and lowered threaded electric jack 339 can be increased or decreased by the function control switch 111 or the corresponding button on the control panel 110, so that the top of the jack can be achieved as needed.
  • the timing of the slice is controlled.
  • the ejector mounting assembly is a frame structure that allows the electric ram to be lifted and lowered without shaking.
  • a driving mechanism such as a driving motor 3395 is disposed in the bottom air duct 270 to simplify the overall structure on the one hand, and to cool the motor by the wind of the bottom air duct on the other hand, and in turn to heat the wind in the bottom air duct to be sent to the wind box as a power air flow. To increase the temperature of the power flow. A seal is required at this point to ensure a seal between the plunger and the wall of the liquid supply bottom box and the bottom air passage.
  • the manual thread type positioning liquid supply control device 339X is provided with a jack lifting manual control device, which mainly comprises a threaded rod 3392 and a manual nut type top rod 339, and is manually rotated on the threaded rod 3392 by up and down.
  • the nut ejector 339 realizes the high and low of the manual nut ejector 339 to realize the opening or closing of the cap 331 in the quantitative control assembly 330, thereby realizing the outflow or non-outflow of the medicinal solution in the medicinal solution tank. ;
  • the length of the jack itself does not exert a top force on the jack-type positioning liquid supply assembly, and the force can be applied to the top sheet only when the cap is placed over the top of the jack.
  • the manual cap-type positioning liquid supply control device 339X ejector lift manual control device includes a cap inner ejector rod 3398 and a cap cap 3397, by inserting or removing the sleeve and The cap 3397 on the cap inner cap 3398 realizes the high and low of the cap cap ejector, thereby enabling the opening or closing of the cap plug 331 in the quantitative control assembly 330, thereby realizing the drug in the drug solution tank The liquid does not flow out or does not flow out.
  • the ejector lift manual control device of the folding positioning liquid supply control device 339X includes a folding ejector 3399, and quantitative control is realized by lifting the folding ejector lever 3399 upward or downward.
  • the opening or closing of the cap 331 in the assembly 330 enables the outflow or non-outflow of the drug solution in the drug solution tank.
  • the jack can be controlled or not applied to the top sheet according to requirements, so that the liquid tank can not only ensure the positioning and supply of the spray chamber, but also Conducive to the realization of the multi-function of the tank itself.
  • the optimal atomization liquid level of the ultrasonic oscillation device may be different.
  • the above design of the plunger-type positioning liquid supply assembly of the present application also makes the application device of the present application It is possible to make choices for the application of pesticides.
  • the optimum atomization liquid level of the ultrasonic oscillating device is in the range of 15 to 55 mm.
  • the application of the liquid supply control device of the present application can also be set to ensure the normal and safe operation of the ultrasonic oscillating device and ensure the atomization amount of the liquid medicine.
  • the liquid level detector prevents the ultrasonic oscillator from being burnt out due to insufficient operation of the spray chamber under the condition of improper operation or control failure.
  • Known sensors such as optical sensors can be used as the lowest level detector.
  • the application device of the embodiment of the present invention can also provide the above-mentioned liquid level detecting means and the alarm device or the supply of the medical liquid, the ultrasonic oscillating device, and the power flow.
  • the supply is linked and fully automated through the microprocessor.
  • the lowest level sensor can output a signal that turns the associated component off.
  • the ultrasonic oscillating device can be turned off, and may even include a blower fan for the power flow.
  • the lowest level sensor can cause a warning signal to the user, such as a visual warning such as a light and/or an audible signal such as a click.
  • the reservoir can also be provided with a maximum level detector.
  • the specific control method can refer to the control method of the minimum liquid level.
  • a stirring means and/or a expansion means are provided on the liquid storage tank to not only have a liquid storage function and a controllable function of supplying liquid to the atomization chamber, but also have agitation and/or Expand the function to improve the atomization effect of the ultrasonic oscillating device.
  • the application device of the embodiment of the present invention includes a stirring paddle.
  • the agitating paddle 350 includes a rotating shaft 353, a hub that is fitted to the rotating shaft, a blade 351 formed on the hub, and a drive motor 359 that drives the rotating shaft.
  • a swirling ring 352 connecting the respective blades 351 is also provided.
  • the paddle 350 can be placed on the top, bottom or side wall of the container by itself.
  • the paddle 350 is disposed at the bottom of the container and is integrally disposed with the bottom cover of the container.
  • one end of the stirring paddle 350 is rotatably fixed to the bottom cover and protrudes into the container.
  • the bottom cover forms a circumferential flange, and the inner side of the flange is formed with the second liquid medicine container
  • the opening 337 incorporates threads while the intermediate position of the inside of the bottom cover forms a boss 342 that extends into the container opening.
  • the agitating paddle 350 is disposed on the boss 342, and the rotating shaft passes through the boss of the bottom cover, and is connected to a driving motor 359 (FIG. 53) disposed outside the bottom cover, and the driving motor is driven.
  • the coupling is at least partially received within the cavity formed in the back of the bottom cover boss to save space.
  • the mixing paddle and the bottom cover of the container are combined to form a detachable integral part, which not only utilizes the detachability of the bottom cover, but also detachably sets the detachable setting of the stirring device, and also realizes the support of the stirring paddle by using the bottom cover,
  • the structure and process of the present invention are more simplified.
  • a container in order to enable the present invention to be applied to a biopharmaceutical device, a container can also be provided in the reservoir liquid container.
  • an expansion device is arranged to realize the expansion of the biological active material, so that the expansion process can be carried out separately without being restricted to the application process to ensure the biological active substance before the application.
  • the expansion is sufficiently expanded, and the overall structure of the application device is not complicated by the increase in the expansion function.
  • the invention combines the functions of the expansion device and the liquid storage device, so that the liquid storage device not only has the function of liquid storage and liquid supply, but also has the function of expanding the bacteria.
  • the expansion tube includes a barrel 370 containing a bioactive carrier 379, a closure, and a mounting or attachment structure 375 disposed beneath the barrel.
  • the expanded tubular body 370 adopts a split structure, and the expanded tubular casing 371, 372 and the expanded tubular lower head 374 and the expanded tubular upper head 373 form a detachable cylindrical structure.
  • the casing and the lower head are both halves, wherein the left half shell and the left half lower head form an integral structure, the right half lower head and the right side.
  • the half-shells form an integral structure, and the two parts are combined together in a detachable structure.
  • the specific detachable manner is preferably: the two are in the joint, one side forms a slot, one side forms a plug, and the left and right half
  • the housing, the left and right half heads are closely matched to each other, and the upper and lower half-shells, the upper opening of the cavity formed by the left and right half-heads also form a matching corresponding connection with the upper head 373. structure. This results in a simpler barrel structure. This structure is very suitable for the installation of the carrier in the expansion tube in the disassembly cleaning.
  • the cylinder body may be a single-barrel single-layer structure, as shown in FIG. 49, or may be a multi-barrel multi-layer structure, and the inside thereof may be used without a partition in the layer as shown in FIG. 50, or may be combined with FIG. 49 and FIG. It is shown that there is a partition type in the layer.
  • the porous lightweight carrier 379 which is filled in the bio-paddle expansion cylinder 370 and which promotes the growth and reproduction of each component of the bioactive material has a certain structure of a porous foamed polyurethane material. Thick or annular, or platelet, or block and/or volcanic material and/or activated carbon material and / or a composite of two or more of these materials.
  • the biological paddle housing has a plurality of regular or irregular hollow holes 376 to facilitate the inflow or outflow of the bioactive material solution.
  • the expansion cylinder 370 is fully or partially immersed in the biologically active solution in the container 300 of the multifunctional reservoir, so that the porous lightweight carrier 379 filled in the expansion cylinder 370 is continuously subjected to the biological activity.
  • the biological solution of the various aerobic, anaerobic, anaerobic and other biological active components in the biological active solution retained in the porous lightweight carrier 379 can be rapidly grown by submerging or scouring the solution. And multiplying and continuously flushing into the bioactive solution of the agitating paddle 300. After a certain period of time, the bioactive components of the bioactive solution in the multi-purpose reservoir container are A rapid expansion can be achieved to achieve an ideal effective bioequivalent.
  • the present application may also be formed partially or integrally on the upper head and/or the lower head and/or the housing of the expansion tube.
  • One or more outer projecting blades similar to the structure of the agitating paddle blade 351, enable the expansion tube to be utilized separately or in combination with the agitating paddle to produce a certain agitation effect.
  • a mounting structure 375 (shown in Figure 46) below the barrel is used to mount the expansion tube, or to be separately attached to the inner wall of the container, or to secure it to the paddle or to secure it to the bottom of the container. Cover.
  • the fixation described here is not an absolute fixation, including a rotatable fixation, but also a flexible attachment that allows the expansion cylinder to move within a certain range.
  • the specific installation structure can be known to those skilled in the art, and many existing technologies can be implemented, and details are not described herein. However, some embodiments will be given later in this application.
  • the expansion tub can be placed on the top, bottom or side walls of the container through its mounting structure like a paddle. However, as shown in Fig. 39, the expansion tub is placed at the bottom of the container integrally with the bottom cover of the container.
  • the specific setting method refer to the setting method of the stirring paddle.
  • the stirring paddle and/or the expanding tube are mounted on the bottom cover of the container, and the detachable function of the cover body can be used to realize the detachability of the stirring paddle without affecting the sealing function of the cover body, and the support can also be supported by the cover body. It is fixed without the need to provide a special support structure to make the structure of the applicator of the present application more simplified.
  • the effective equivalent of the bioactive substance is crucial for the application of the biopharmaceutical, especially for the preparation of the gaseous flow containing the ultrafine drug particles by the principle of ultrasonic oscillation.
  • the bioactive substance is well expanded before application to improve the application device. Performance is of great importance.
  • the stirring paddle and the expanding tube can be disposed on the side wall of the container, or on the top wall, the bottom wall or the container 300, any other medicine.
  • the position at which the liquid produces its effect in these methods, two mounting structures need to be formed in the container, and the structure is complicated. Therefore, the present application forms a combination of the stirring paddle and the expanding tube, and the expanding tube is not directly connected to the inner wall of the container, and the specific combination can be adopted.
  • a one-piece connection can also be used for the integral connection.
  • the axis of the agitating paddle 350 and the expanding cylinder 370 may be on the same axis or may not be on the same axis.
  • the paddle 350 and the bio paddle 370 can be mounted in any of the containers of the multi-function diffuser that may be required to be installed.
  • the agitating paddle 350 is integrally connected with the expanding cylinder 370, the two can be mounted in a unitary structure at any portion of the atomizing chamber that can be installed.
  • the multifunctional expansion tube and the stirring paddle of the embodiment of the invention are simultaneously disposed in the container of the liquid storage tank, so that the liquid medicine is not statically immersed in the expansion tube, but dynamically enters the expansion tube, so that not only the biological in the solution is ensured
  • the active material is most fully expanded, and the carrier in the expansion tube is also fully utilized, so that the expansion effect of the multifunctional expander of the present invention is greatly enhanced.
  • the stirring effect of the stirring slurry also causes the liquid medicine in the multi-function diffuser to not precipitate or flocculate, and further ensures the ultra-medical gaseous flow of the application device applied in the form of ultra-fine gaseous flow. Production and application effect.
  • the expansion tube, the stirring paddle, and the bottom cover of the container are detachably combined, wherein not only the expansion tube and the stirring pad are selectively combined, but the bottom cover can also be combined.
  • the combination is selected in combination with a paddle or a tube or a tube. This can not only affect the bottom cover closing function, but also utilize the detachability of the bottom cover to realize the installation and detachability of the stirring paddle and the expansion tube, and at the same time, the bottom cover can be used for supporting and fixing without setting a special support structure. Thereby, the structure of the applicator of the present application is further simplified.
  • the expansion tube and the stirring paddle can not only be combined to form a unitary member (referred to as “bio-pulp”), but also can be selected according to the single-function requirement, only the expansion tube or the stirring paddle is combined with the bottom cover of the container, so that the application
  • the liquid storage tank can be selected not only with a stirring function but also with only the expansion function, and also has both a stirring function and a expanding function, so that the liquid storage tank not only has a multi-function with a simple structure, but also can be practical according to the actual situation. The need to flexibly choose these features.
  • the second opening of the container is disposed at the bottom of the container, and the bottom cover and the container opening are disposed to be detachably connected, so as to facilitate installation between the expansion tube and the stirring paddle.
  • the stirring paddle and the expanding tube are optimized to be coaxial design and form a unitary structure through the detachable connecting structure, and considering the stirring paddle
  • the application has an expansion tube disposed thereon, the agitating paddle is disposed below, and is directly connected to the rotating shaft, but the overall structure is rotatably and detachably mounted on the side of the bottom cover liquid medicine, and is extended. Into the container.
  • the bottom cover is detachable from the outside of the container.
  • the bottom cover forms a circumferential flange, and the inner wall of the flange forms a thread which is combined with the second port of the container, and the inner circumference of the flange, that is, the intermediate position inside the bottom cover, is recessed into the container to form an opening into the container.
  • the integral structure formed by the stirring paddle and the expansion tube is rotatably supported on the boss of the bottom cover, and the rotating shafts of the two are passed through the boss of the bottom cover, and are connected to the driving motor 359 disposed outside the bottom cover, and driven
  • the motor is preferably at least partially received in a recess formed in the back of the bottom cover boss to save space. As shown in FIG. 9 and FIG.
  • the threaded joint of the cover body and the joint with the rotating shaft are provided with sealing rings 355, 341 and 356, and the rotating shaft passes through
  • the inlets and outlets of the bottom cover are provided with bearings 3541, 3542, and 3543 to ensure the rotation of the rotating shaft relative to the cover body and the rotation support of the cover body to the rotating shaft, and to drive the rotating shaft, a coupling and a driving source motor are further disposed at the end of the rotating shaft.
  • the drive shaft connection is designed to facilitate the installation and setup of the motor.
  • the rotational speed of the bio-blade 370 and/or the agitating paddle 350 and/or the drive motor 359 is above 50 revolutions per minute, such as between 100 and 200 revolutions per minute.
  • the biological paddle or paddle motor 359 can adopt a constant speed motor, a variable speed motor, or a positive and negative motor to improve its wideness.
  • the connecting member 353 for detachably connecting between the stirring paddle and the expansion tube includes a detachable sleeve. a shaft portion 3531 at the top end of the rotating shaft and a flared connecting outer flange 3532 extending outward from the top end of the shaft barrel, the hub of the stirring blade is detachably sleeved on the outer circumference of the shaft portion of the connecting piece;
  • the lower head is formed with a connecting groove 3751 formed by an annular caliper structure (as shown in FIG.
  • the connecting groove of the annular caliper structure partially includes two elastic inverted T-shaped inner flanges 3752 at a position where the lower head abuts (for example)
  • the outer flanges of the connecting members can be placed in or removed from the connecting grooves by the elasticity of the elastic inverted T-shaped inner flange.
  • the connecting piece of the bottom ferrule structure of the lower end of the self-expanding tube end or the connecting structure of the connecting barrel portion of the enlarged barrel left housing 371 and the expanding barrel right housing 372 at a position of about 20 to 30 mm upward is not completely completed.
  • the fastening sleeves are disposed together, such as the expansion cylinder left casing 371 and the expansion cylinder right casing 372 at positions of about 20 to 30 mm or more.
  • the insert structure can be further fixed by adhesive bonding, and the connecting structure of the expansion piece left housing 371 and the expansion cylinder right housing 372 of the connecting piece or the connecting groove upward about 20-30 mm is not glue-bonded. Fasten, and only use the insert structure to achieve the docking between the two.
  • the connecting flange of the top end of the agitating paddle and the expanded barrel housing connecting member 353 can be inserted upwardly into the bottom ferrule structure of the lower end of the expanded barrel.
  • the annular connecting wall or the connecting groove of the connecting member at this time, the un-bonded 20 to 30 mm position of the expansion cylinder left housing 371 and the expansion cylinder right housing 372 between the child and the female socket will be subjected to external force. Slightly open, so that the top end bell-type connecting outer flange 3532 of the stirring paddle and the enlarged barrel housing connecting member 353 can be easily inserted into the annular caliper structure 375 connecting groove 3571 of the bottom end of the expanding cylinder bottom end,
  • the connecting groove 3751 of the annular caliper structure 375 and the two inner flanges 3752 having elastic inverted T-shaped ends thereof will hook the top end bell-shaped connecting outer flange 3532 of the inserted connecting member 353, two The connector is securely fastened to ensure that it does not loosen when rotated.
  • the outer diameter of the outer flange of the agitating paddle and the enlarged barrel connector 353 is only larger than the ring caliper structure 375 at the bottom end of the expansion tube.
  • the two inner flanges of the piece or the connecting groove and the elastic inverted T-shaped end thereof have a radial diameter of 1 to 2 mm, which can be easily smashed and easily separated from each other.
  • the connecting member is first removed from the top end of the rotating shaft, and then the stirring paddle is removed from the top end of the rotating shaft, and finally the connecting member is sleeved on the rotating shaft and expanded. The connection is fixed.
  • two upper bearings are disposed on the rotating shafts of the two, that is, the outer bearing 3541 and the inline Bearing 3542.
  • a bearing 3543 is disposed at the shaft hole of the bottom cover, and the plurality of bearings form a mating structure, and the shaft barrel portion 3531 passes through the boss of the bottom cover, and is coupled to a coupling 358 at least partially disposed outside the bottom cover, the coupling The 358 is coupled to the drive motor 359.
  • a sealing is provided between each rotating component, such as an upper seal 355 between the rotating shaft and the stirring paddle, and a lower sealing 356 between the rotating shaft and the upper coupling 358 to prevent the liquid medicine from passing through the upper coupling 358 and the shaft of the stirring paddle motor.
  • the lower coupling 357 When the lower coupling 357 is coupled, it flows into the paddle motor 359 and the base duct 270.
  • the lower part of the coupling forms a expanding cavity, and the inner wall of the expanding cavity forms a gear structure, and the rotating shaft of the driving motor cooperates with the gear structure to drive the rotating shaft of the coupling and the stirring paddle and/or the expanding cylinder to rotate.
  • the expansion cover is fastened in a hollow circular wall structure on the boss of the upper inner wall surface of the liquid bottom box and a circular wall structure corresponding to the position of the base, thereby further preventing the outflow of the chemical liquid and the erosion of the surrounding parts thereof. .
  • the agitating slurry is driven When rotating, the expansion tube is also rotated, so that the expansion tube not only has the function of expanding, but also has the stirring function, which increases the mixing depth of the stirring slurry, and also makes the whole multi-function expander in the container.
  • the liquid medicine in each corner is well agitated, especially for the multi-purpose diffuser which uses a non-circular cross-section container which is easy to produce a dead angle.
  • combining the expansion tube and the agitating paddle to form an integral part also greatly simplifies the construction and manufacturing process of the multi-function diffuser, so that the multi-function agitator of the invention not only has more The simple structure, the function is more powerful, and the application is more flexible.
  • the expansion tube and the stirring paddle are fixed together in a detachable manner, which not only enables the expansion tube to rotate together with the stirring paddle when it needs to be rotated, but also needs to be disassembled and cleaned when the expansion tube is not required to rotate.
  • the replacement of the carrier or the liquid stored in the container is removed when the expansion is not required, so that the biological slurry and the multifunctional expander using the biological slurry have greater flexibility for the use of the liquid medicine of different needs.
  • the adjustability also makes the multi-functional living device of the embodiment have a wider application range, and can be used not only for the bioactive drug solution but also for the non-biological drug solution, and has the advantages of simple structure, convenient and flexible operation.
  • the liquid storage tank comprehensively considers the respective features of the above embodiments and the simplification of the overall structure of the application device and the simplicity of the installation of the driving mechanism, and further simplifies the structure.
  • the mixing paddle and the expansion tube are directly combined into a single component 3500 disposed on the container bottom cover of the liquid storage tank.
  • the entire biological paddle 370 is directly designed as a deformed and/or large mixing paddle.
  • 3500 which also has a hollow passage 376 and a head for the inflow or outflow of the liquid, and the bioactive carrier 359 is filled in the blades and/or paddles of the deformed and/or large agitating paddle 3500. .
  • the source of the motive gas stream of embodiments of the present invention may be an air stream or other gas stream, such as a certain drug gas stream.
  • the power flow of the present application employs an air flow.
  • the application device is provided with an airflow delivery component, which is divided into a power flow input component and a gas flow output component (referred to as a gas flow output component) containing drug particles. See FIGS. 2 and 35, the power flow input.
  • the assembly includes a bellows 130 having a blower 200 disposed therein, disposed on the left side of the spray chamber 391, and the supplied power flow is input to the spray chamber 391 through the power flow input port 154 on the left wall of the spray chamber 391 adjacent thereto.
  • a gaseous stream containing the ultrafine drug particles formed by the moving gas stream and the liquid atomizing mist is sent out to the environment in which the application target is located.
  • the power flow input component includes a power source for supplying the power flow into the atomization chamber.
  • the power source may be a blower disposed upstream of the atomization generating chamber, or may be disposed in the fog.
  • An induced draft fan or jet downstream of the chamber Considering the technical effects of the foregoing comprehensive optimization settings such as the chemical liquid supply inlet, the power flow input port, and the gaseous flow output port, the present embodiment provides a blower 200 upstream of the atomization generating chamber, and the air outlet of the blower 200 volute 153 corresponds to the power flow input port 154, and the angle of the airflow from the power airflow input port to the horizontal plane is between -20 degrees and 20 degrees.
  • the power airflow input assembly of the embodiment of the present invention further includes a bottom air duct in fluid communication with the wind box at the bottom of the upper casing 130 of the windbox, and the air passage has at least one air inlet 123 therein.
  • the outside air can also enter the bottom air passage through the air inlets and enter the wind box 130, thereby increasing the air intake amount.
  • a heat generating portion such as an electrical component (such as the transformer 362), a control component (such as the function switch 111, the control circuit board 700), other driving sources (such as the stirring paddle motor 359), and the negative ion generating device 600 is disposed in the air passage.
  • the utility model not only simplifies the electrical components and circuit lines of the application device of the present application, but also avoids contamination by the chemical liquid and short circuit, and can also obtain good heat dissipation of the heat-generating component, and the heat can enable the natural wind entering the bottom air passage to
  • the heat of the heat generating components provided in the air passage is heated, thereby increasing the temperature of the power flow input into the atomization generating chamber and the atomization effect of the chemical liquid without costly heating.
  • the bottom air duct is disposed in the form of a base below the entire applicator, such that it has the function of supporting a fan, an atomization generating chamber, and the like.
  • the bottom air duct adopts a split structure, and is composed of a bottom cover 120 and a base 100.
  • a foot 121 is arranged under the base, and a pulley such as a universal joint can be arranged on the leg to facilitate the movement of the applicator.
  • the legs can also be designed as telescopic legs to adjust the application height of the applicator according to the application object.
  • a gas flow output assembly 500 is disposed at the gaseous flow output port 420 at the top of the atomization generating chamber to apply a gaseous stream containing the ultrafine drug particles to the environment in which the application target is located.
  • the airflow output assembly 500 includes a rotatably disposed spray head 599 disposed in the gas flow output port 420 of the shroud and a drive means for rotating the spray head relative to the gaseous flow output port.
  • the bottom of the nozzle is formed with a gear ring structure 521, and the driving device includes a motor 530 and a transmission gear 522.
  • the driving gear 522 Under the driving of the motor, the driving gear 522 is driven to rotate, and the nozzle gear ring 521 is meshed with the transmission gear. It is also driven to rotate, so that 360-degree application can be achieved.
  • the driving device of the nozzle is not limited to the driving structure, and other driving structures that can rotate the nozzle can be used.
  • the nozzle greatly improves the application range, so that the device can ensure no dead angle of application.
  • the nozzle is designed as an approximately S-shaped nozzle, as shown in FIG. 52, the nozzle includes a gaseous flow input that is rotatably and sealingly connected to the gaseous flow outlet 420. Partial, gaseous flow direction change part, gaseous flow output part.
  • the nozzle having such a structure solves the problem that a large amount of drug drop is easily caused in the vicinity of the application device when the gas flow is output, that is, the change of the direction of the internal flow channel of the nozzle prevents the large droplets from being carried out by the power flow.
  • the effect of gravity subsiding rapidly to the vicinity of the applicator device cannot be effectively applied to the application target waste, and the surface of the applicator device is contaminated by the sediment drop.
  • the nozzle of the embodiment of the present invention further adopts at least one improvement as follows to obtain a better application effect.
  • the nozzle has a profiled outer contour and includes a gaseous flow input section (D1), a gaseous flow variable section (D2), and a gaseous flow output section (D3, the gaseous flow enters the shaped nozzle 599 from the gaseous flow input port 420,
  • the flow direction of the gaseous flow passes through at least twice the angle of change of the angle of 5 degrees to 30 degrees (indicated by ⁇ , as shown in Figure 52). The direction changes.
  • 599 is the special-shaped nozzle
  • 420 is the nozzle gas flow input port
  • 555 is the nozzle gas flow output port
  • D1 is the gas flow input section
  • D2 is the gaseous flow direction segment
  • D3 is the gaseous flow output section.
  • ⁇ 1 is the first loss divergence angle of the gaseous flow
  • ⁇ 2 is the second effective diversion angle of the gaseous flow
  • ⁇ 3 is the liquid flow liquid angle
  • A is the gaseous flow escape point
  • B is the gaseous flow liquid point
  • d2 For the gas flow escape medium distance
  • d1 is the gas flow liquid medium distance
  • ⁇ d is the gas flow escape variable distance
  • E is the gas flow input section gas flow input port inner wall and the gas flow output end end upper wall inner gas flow escape point A The gas flow is far away from the point
  • F is the gas flow distance between the inner wall of the gas flow input section and the gas flow point B of the inner wall of the gaseous flow output section
  • N is the convex curved surface of the inner wall of the shaped nozzle
  • L1 is the gas flow input direction tangent line
  • L4 is the vertical cut line of the lower inner wall of the gaseous flow output section D3 along the gaseous flow liquid point B point and the gaseous flow
  • L5 is the gas flow output section D3 at the end of the inner wall along the gaseous flow escape point A point, the irregular nozzle inner wall inner convex surface convex apex N point, the gaseous flow input section gaseous flow input port inner wall and the gaseous flow output section end upper wall gaseous flow escape
  • the gas flow between point A is far from the point line between point E
  • L6 is the gas flow distance point F between the inner wall of the gas flow input port and the gas flow point B of the inner wall of the gas flow output section.
  • the tangent line between the N points of the convex surface and the convex surface of the inner surface of the shaped nozzle, L8 is the tangent line of the liquid flow point B of the inner wall of the gaseous flow output section along the lower inner wall.
  • the closer the distance is; the larger the effective effective angle ⁇ 2 of the gaseous flow, the more effective the gaseous flow output, and the farther the gaseous flow is output from the gaseous flow output port of the gaseous flow output section of the shaped nozzle; for example, d2 >d1, and the larger the gas flow escape distance ⁇ d( ⁇ d d2-d1), the more gaseous flow escapes from the inner wall of the gas flow output section D3 along the gas flow escape point A, the gas flow output from the nozzle
  • the ineffective or wasteful application rate of the near-gas flow output port of segment D3 is increased year by year, and at the same time, the more liquefied gaseous flow liquid solution accumulated between the liquid flow point B of the inner wall of the lower end of the gaseous flow output section D3, at this time, If there is no suitable gaseous flow liquid angle ⁇ 3 , the liquefied gaseous flow liquid accumulated at the inner wall gaseous flow point B at the end of the gaseous flow output section
  • the whole nozzle adopts three-stage design such as gaseous flow input section (D1), gaseous flow variable section (D2), and gaseous flow output section (D3).
  • Different sections play different functions; gaseous flow change section
  • the front portion of (D2) and the rear portion of the gaseous flow input section (D1) are rearwardly inclined, and the rear portion of the gaseous flow direction changing section (D2) and the front portion of the gaseous flow output section (D3) are forwardly inclined.
  • the transition surface between the gas flow input section (D1), the gaseous flow direction change section (D2), and the inner wall surface of the gaseous flow output section (D3) is a smooth curved surface to reduce the resistance when the gaseous flow is transported.
  • the gaseous flow can be The first loss directing angle ⁇ 1 and the second effective turning angle ⁇ 2 of the gaseous flow are optimized.
  • the nozzle is a common ordinary nozzle 500.
  • the gaseous flow flows from the gaseous flow output port 420 through the gaseous flow input portion and the gaseous flow output portion, the flow direction of the gaseous flow only changes once by 90°.
  • the gaseous flow first loss divergence angle ⁇ 1 ⁇ 90° for example, between 5 degrees and 30 degrees
  • the gaseous flow second effective directional angle ⁇ 2 ⁇ 90° for example, Between 5 degrees and 30 degrees.
  • the lower inner wall of the gaseous flow output port at the end of the gaseous flow output section D3 can be set at the lower inner wall of the gaseous flow output section D3 along the gaseous flow point B point and the gaseous flow input.
  • the direction of the lower side of the vertical tangent line L4 of the tangential line L1 is gradually extended to the N point of the convex surface of the inner surface of the shaped nozzle at a certain angle, so that even the gaseous flow point of the inner wall of the lower end of the gaseous flow output section D3 A liquefied droplet is formed at B, and the droplet also flows back into the atomization chamber under the force of gravity without being carried out of the nozzle by the gaseous stream.
  • the gaseous flow has a liquid angle ⁇ 3 ⁇ 90°, for example, between 5 degrees and 30 degrees.
  • the gas flow escape distance d2 is larger than the gaseous flow liquid medium distance d2, that is, the gas flow escape distance The larger the ⁇ d, the better.
  • the whole nozzle adopts three-stage design such as gaseous flow input section (D1), gaseous flow variable section (D2), and gaseous flow output section (D3), and not only makes the gaseous state as low as possible to ensure the loss of gaseous flow as much as possible.
  • the transition surface between the flow input section (D1), the gaseous flow direction change section (D2), and the inner wall surface of the gaseous flow output section (D3) adopts a smooth curved surface design, and from the gaseous flow input section (D1) to the gaseous state Rheological section (D2) to gaseous flow Out of the segment (D3), the cross-sectional area of the entire smooth inner surface is basically the same or the same.
  • S555 ⁇ S420.
  • the inner wall surface of the gaseous flow output section of the shaped nozzle in the range of the escape intermediate distance (d2) or the partial distance of the fluid intermediate distance (d1) adopts the inner surface of the pockmark surface, because the atomization of the ultrafine
  • the inner wall of the gaseous flow output section of the nozzle is a smooth inner wall surface, The resistance between the droplet and the smooth inner wall surface is very small, and it is easily carried out by the power airflow, and falls outside the output port of the gas flow output portion of the nozzle, resulting in a range of nearly 100 cm outside the gas flow outlet of the gas flow output section of the nozzle.
  • Waste of ineffective dose after using the inner wall of the pockmark, some wind resistance may be slightly increased, but due to the increased resistance between the droplet and the inner wall surface of the pockmark, the liquefied droplet is not easily driven by the motive flow.
  • the amount of ineffective drug that falls within the range of nearly 100 cm outside the gaseous flow output port of the gas flow output section of the nozzle is greatly reduced or eliminated.
  • the above-mentioned nozzle is designed to prevent water droplets from being carried out by the wind from the air outlet, resulting in waste of the ineffective amount within a range of 100 cm from the air outlet, and completely eliminating the pesticide damage caused by the pesticide in the range. Really achieve the effect of green energy saving, the actual effect is shown in Table 2 below.
  • the gaseous flow output port of the gas flow output section of the nozzle is further formed with a gas flow grid 511.
  • the airflow grid has a long strip shape and integrally forms a convex arc-shaped arc surface to achieve better distribution and further flow of airflow.
  • the gas flow output section inside the nozzle is further provided with a guiding device, wherein the guiding device is provided with 2 to 5 curved blades, one end of the blade is fixed on the inner wall of the nozzle, and the other end is fixed on a shaft.
  • the blades are arranged in an array, and the curved surface guiding action of the flow passage formed between the blades can drive the airflow to rotate, so that the airflow can obtain an acceleration effect, effectively increase the airflow pressure of the gaseous flow, and the airflow output range is larger. Apply more evenly.
  • the nozzle can also be combined with the stepping motor and the control circuit while considering that the nozzle can be rotated 360 degrees and how to further obtain a larger range, a longer application distance, and a waste of smaller nozzles.
  • the selection of the board can be rotated at any angle according to the needs in any range of 0 to 360 degrees by the selection of the function keys of the control panel.
  • the applicator port is further provided with a rotatable cap. When used, the cap rotates to a position that does not block the flow of the applicator port, such as the back of the applicator port, so as not to affect the output of the gas stream, and the applicator does not use it when not in use. Cover the air outlet to protect the air outlet to prevent dirt and foreign matter from entering.
  • the gaseous stream containing the ultrafine drug particles formed above is charged prior to being applied to the environment in which the application target is applied, such that the gaseous stream containing the ultramicro drug particles formed is applied to the application target.
  • the environment is preceded by an OH - or O 3- negative charge.
  • the charging process can be accomplished by a plasma or negative ion generator disposed within the bottom air duct, as shown in Figures 1 and 2.
  • the applicator device of the embodiment of the invention is suitable for a relatively closed application environment, such as a protection facility for crop growth or a cold storage for agricultural product storage, a fresh-keeping warehouse, a gas storage warehouse or a breeding house for agricultural products, and the like generally meets the requirements.
  • a relatively closed application environment such as a protection facility for crop growth or a cold storage for agricultural product storage, a fresh-keeping warehouse, a gas storage warehouse or a breeding house for agricultural products, and the like generally meets the requirements.
  • the application target of the present invention may be to determine the application target, or it may be an indeterminate application target.
  • the indeterminate application target may be air without a fixed form, such as formaldehyde treatment in a room, and the determined application target is an inanimate and/or living body having a fixed form in a closed environment, such as a crop or agricultural product.
  • the application device of the embodiment of the present invention has a significant application effect in the agricultural field, especially in the protection facilities for crop growth, the cold storage of agricultural products storage, the fresh-keeping storage, the air-conditioning storage or the agricultural breeding housing, and the like.
  • the purpose of the application of the agricultural facility is to sterilize and/or eliminate disease and/or eliminate insects and/or immunize and/or produce antibiotic-free products.
  • the medicine used in the application device of the embodiment of the invention may be in the form of a solid or a powder or a suspension or a liquid medicine or an oil agent, and the pesticide or solution may or may not have a volatility in volatility.
  • a chemically active substance or a biologically active substance the biologically active substance may comprise a biologically active single or multiple single-celled organisms (such as microorganisms) or extracts or cultures or ferments and/or Biologically active single or multiple proteins (such as biological enzymes) or extracts or cultures or ferments and / or single or multiple biologically active single-celled organisms and proteins or extracts or cultures or fermentation a complex of the substance, and the configuration of the bioactive drug solution may be a configuration completed before the factory leaves the factory, or may be a configuration completed before the user deploys;
  • the purpose of the application is to purify and/or sterilize and/or deodorize and/or deodorize and/or remove formaldehyde in the air in a closed environment, or to remove insects from crops or agricultural products or livestock. / or in addition to disease and / or post-ripening treatment of pesticides and / or agricultural products and / or vernalization of crops and / or growth and development of crops for the purpose of micro-fertilizer, weeding, insecticidal, sterilization, disinfection and other purposes.
  • Test group The application device of the embodiment of the invention as shown in Fig. 2 was employed.
  • the application device comprises: an input assembly of a power flow provided with a blower and an air inlet passage, a spray chamber including a flow guide 410 and a liquid supply bottom tank 390, an integrated ultrasonic oscillation device 360 including 10 ultrasonic oscillation elements, An air flow conveying device, an automatic control device, a biological paddle (bottom cover 340, agitating paddle 350, and an expansion tube 370 containing the carrier 379) including the power flow and the output unit of the S-type nozzle 599 containing the gaseous flow of the drug particles, and the expansion Container 300.
  • the multifunctional liquid storage tank comprises a container 300, a biological paddle assembly stirring blade 350 disposed in the container, a expanding cylinder 370, a jack-type positioning liquid supply assembly 330 and a positioning liquid supply control device 339X;
  • the airflow conveying device is provided with an airflow input port 123, an airflow conveying port 555, an S-shaped nozzle 599, and a centrifugal fan that introduces an external airflow into the machine;
  • the control panel 110, the control switch 112, and the function switch 111 are mounted on the outer base, and are accompanied by a bright light, a light, or a sound prompt when activated;
  • the air source is air
  • the flow control device is the above manual cap type positioning liquid supply device 330;
  • the first step the expansion of biological actives in biological active solutions:
  • the present embodiment employs the manual cap-type liquid supply device jack lift manual control device 3390.
  • the applicator is placed in a suitable position, and the drug solution is prepared as required, and the drug solution is added to the container 300, and the container bottom cover 340 is tightened to determine that the container 300 has no leakage, and then the sleeve is removed from the manual cap.
  • the sleeve 3397 on the ram 3398 in the cap of the liquid supply device 330 is positioned in a nested manner, and the container 300 containing the liquid chemical is placed in the container position of the base.
  • the cap plug 331 seals the liquid flow hole in the liquid supply tank 300, and the liquid medicine cannot flow out from the container 300.
  • Step 2 Use of bioactive solution after expansion:
  • the container 300 is removed from the machine, and the cap 3397 on the ram 3398 in the cap of the manual cap-type positioning liquid supply device 330 is placed thereon, and the above-mentioned expansion is carried out for 2 hours.
  • the container 300 of the drug solution is reloaded into its container position at the base.
  • the ejector rod 339 jacks up the top sheet 334 of the liquid supply assembly, and the top sheet 334 of the liquid supply assembly compresses the spring 333 of the liquid supply assembly that is sleeved on the guide post 332 of the liquid supply assembly, and is pushed and fixed to the liquid supply assembly.
  • the inner lead column 332 and the cap plug 331 of the liquid supply assembly on the inner top sheet 334 are moved upward and are completely lifted up, so that the liquid medicine in the container 300 flows out from the exposed liquid flow hole, and the flow control device is opened.
  • the cap 331 is always lifted by the jack 339 until the amount of the liquid flowing out of the reservoir 300 reaches the set liquid level, and the liquid automatically stops flowing, and the power position of the 220v is selected.
  • the application time function button is set to 2 hours, the air outlet rotation angle function key is set to 360° rotation angle, and the air outlet rotation speed function key is set to rotate one rotation every 12 minutes, and the armpit is rotated.
  • the integrated ultrasonic oscillating device 360 power switch is turned on, and the machine starts to work normally.
  • the liquid level in the liquid supply bottom tank 390 reaches the working liquid level line, and the plurality of ultrasonic oscillator units in the integrated ultrasonic vibration device 360 start to work, and the air passes through the air flow input port 123 from the centrifugal induced draft fan.
  • An airflow delivery port 153 is blown out and controlled via the second airflow delivery port 154 to enter the position where the drug mist is formed at 4 to 10 cm in the upper portion of the integrated ultrasonic oscillating device 360 in the liquid reservoir.
  • the liquid medicine atomized by the integrated ultrasonic oscillating device 360 has begun to form a gaseous flow containing the ultrafine drug particles, and a large amount of OH - negative ions generated by the OH - negative ion generator are blown into and formed by the centrifugal fan along with the airflow.
  • the gaseous particles of the gaseous flow of the micro drug particles begin to undergo negative ion exchange, and then the negatively charged drug liquid particles are finally blown out from the gas flow delivery port 555 together with other large amounts of OH - negative ions.
  • the application device operates for a certain period of time, when the liquid level in the liquid supply bottom box 390 is lower than the minimum liquid level, the liquid medicine in the container 300 starts to flow again into the liquid supply bottom box 390 until the liquid supply bottom box 390 When the liquid level reaches the maximum liquid level again, the inflow is stopped, and the flow is reciprocated until the liquid medicine in the container flows into the liquid supply bottom box.
  • the integrated ultrasonic oscillating device 360 automatically stops powering and stops working. When the set time of 2 hours is reached, the machine automatically stops power and stops all work.
  • Control group The prior art is a drug application device that does not have a biological paddle.
  • the method of use is the same as the above.
  • Example 1 Effect of different methods on high-efficiency microbial expansion:
  • High-efficiency microbial use requirements In order to achieve an effective equivalent of high-efficiency microbial concentration when using high-efficiency microorganisms to remove formaldehyde or remove pesticide residues, a dilution of 200 times is required; in order to reduce the cost of use, the application of the present invention can be utilized.
  • the device is pre-expanded to a lower concentration of a highly efficient microbial solution (eg, a 400-fold dilution).
  • control group is prepared in the same way as the test group; that is, the high-efficiency microbial dilution is 400 times, that is, 10 ml of the ZN high-efficiency microorganism is diluted with 4 liters of the clear liquid into the liquid supply tank.
  • Expansion of high-efficiency microbial solution The high-efficiency microorganism in the high-efficiency microbial solution is expanded by the expansion method of the bioactive substance in the above bioactive substance solution, and after 2 hours, the high-efficiency microbial concentration in the high-efficiency microorganism solution is separately detected.
  • High-efficiency microbial solution detection method the total number of direct counting methods of the counter.
  • the total number of cells directly counted by the counter is determined by taking a fixed-diluted single-cell microbial (bacterial) suspension on a bacterial count plate, counting the average number of cells in a volume under a microscope, and converting the number of cells in the test sample.
  • control group and the present invention can significantly promote the rapid expansion of high-efficiency microorganisms and reduce the actual use cost.
  • the present invention can increase the expansion effect by 42.7% compared with the control group, and the actual use cost is reduced by 22.7% compared with the control group. .
  • the application device comprises: an input assembly for a power flow provided with a blower and an air inlet passage, a spray chamber including a flow guide 410 and a liquid supply bottom tank 390, and an integrated ultrasonic oscillation device including 10 ultrasonic oscillator units.
  • the air flow conveying device, the liquid control stabilization device 430, the automatic control device, the stirring paddle 350 and the liquid storage tank 300 of the output assembly including the gaseous flow of the drug particles of the power flow and the S-type nozzle 599.
  • the airflow conveying device is provided with an airflow input port 123, an airflow conveying port 555, and an S shape arranged on the base. a nozzle 599, a centrifugal fan that introduces an external airflow into the machine;
  • the control panel 110, the control switch 112, and the function switch 111 are mounted on the outer base, and are accompanied by a bright light, a light, or a sound prompt when activated;
  • the air source is air
  • the flow control device is the above-mentioned manual cap-type positioning liquid supply device 330;
  • the application method of the experimental group was the same as that of the above Example 4.1.
  • the equipment used in the control group was a DFH-16A knapsack hand sprayer commonly found on the market.
  • Example 2 Different application devices use high-efficiency microbial solution to remove the pesticide residue from the fruit after using 50% Sucrose WP 800 times solution on the protected tomato gray mold.
  • the DFH-16A type knapsack hand sprayer and the application device of the present invention were respectively used to remove the pesticide residue after using the ZN high-efficiency microorganism to protect the tomato gray mold by using 50% keeling WP 800 times liquid.
  • the test group was diluted 200 times according to ZN high-efficiency microorganisms, that is, 15 ml of ZN high-efficiency microorganisms were diluted into a liquid storage tank with 3 liters of clear water, and placed in the application device of the present invention for application; the control group was also diluted by ZN high-efficiency microorganisms.
  • Table 4 The application of the ZN high-efficiency microorganisms by the DFH-16A type knapsack hand sprayer and the application device of the embodiment of the present invention, the application of the 50% quick-King WP 800 times solution to the protective tomato gray mold Comparison of pesticide residues
  • the DFH-16A type knapsack hand sprayer and the application device of the embodiment of the present invention use ZN high-efficiency microorganisms to remove the pesticide residues after using the 50% quick-krinkle WP 800 times solution for the protective tomato gray mold. Very good removal effect.
  • the application device of the embodiment of the present invention has an obvious effect of saving medicine and water saving compared with the DFH-16A type knapsack manual sprayer, and saves 70% of the medicine and water.
  • the application device comprises: an input assembly for a power flow provided with a blower and an air inlet passage, a spray chamber including a flow guide 410 and a liquid supply bottom tank 390, and an integrated ultrasonic oscillation device including 10 ultrasonic oscillator units.
  • the air flow conveying device, the liquid control stabilization device 430, the automatic control device, the stirring paddle 350 and the liquid storage tank 300 of the output assembly including the gaseous flow of the drug particles of the power flow and the S-type nozzle 599.
  • the airflow conveying device is provided with an airflow input port 123, an airflow conveying port 555, an S-shaped nozzle 599, and a centrifugal fan that introduces an external airflow into the machine;
  • the control panel 110, the control switch 112, and the function switch 111 are mounted on the outer base, and are accompanied by a bright light, a light, or a sound prompt when activated;
  • the air source is air
  • the flow control device is the above-mentioned manual cap-type positioning liquid supply device 330;
  • the application method of the experimental group was the same as that of the above Example 4.1.
  • the equipment of the control group was a DFH-16A knapsack hand sprayer commonly used on the market.
  • Example 3 Removal effect of formaldehyde on indoor decoration by ZN high-efficiency microorganisms in different application devices:
  • the test group is diluted 200 times according to ZN high-efficiency microorganisms, that is, 10 ml of ZN high-efficiency microorganisms are diluted into a liquid storage tank with 2 liters of clear water, and placed in the application device of the present invention for application; the control group is also diluted by ZN high-efficiency microorganisms. 200 times the amount, that is, 75 ml of ZN high-efficiency microorganisms were diluted with 15 liters of water and sprayed into a DFH-16A knapsack hand sprayer. The indoors that have just been renovated are sprayed separately for a total of 3 days, once a day, the amount of formaldehyde in the room is measured, and the total amount of the drug and the total amount of the diluted drug are counted.
  • Table 5 Comparison of the removal effect of formaldehyde on interior decoration by using ZN high-efficiency microorganisms by using DFH-16A type knapsack hand sprayer and the application device of the embodiment of the present invention, respectively
  • the application device comprises: an input assembly of a power flow provided with a blower and an air inlet passage, a spray chamber including a flow guide 410 and a liquid supply bottom tank 390, and an integrated ultrasonic oscillation device including 10 ultrasonic oscillator units.
  • the airflow conveying device is provided with an airflow input port 123, an airflow conveying port 555, an S-shaped nozzle 599, and a centrifugal fan that introduces an external airflow into the machine;
  • the control panel 110, the control switch 112, and the function switch 111 are mounted on the outer base, and are accompanied by a bright light, a light, or a sound prompt when activated;
  • the air source is air
  • the flow control device is the above-mentioned manual cap-type positioning liquid supply device 330;
  • the method of use is the same as the working mode of the above embodiment 4.1, and the liquid medicine liquid channel and the liquid supply bottom box are washed by using the water in the multi-purpose water tank only after the end of the work.
  • the equipment of the control group was a DFH-16A knapsack hand sprayer.
  • Example 4 Different application devices used 0.5% pyrethrin emulsion to control the cucumber aphids in the strong growing period.
  • test group adopts the method of the embodiment of the invention: diluted by 300 times with 0.5% pyrethrin emulsion, that is, 10 ml of 0.5% pyrethrin emulsion is diluted into a liquid storage tank with 3 liters of water, and placed in the application device of the present invention. medicine;
  • control group used the prior art DFH-16A knapsack manual sprayer, also used 750 times of 0.5% pyrethrin, that is, 20 ml of 0.5% pyrethrin emulsion was diluted with 15 liters of water to DFH-16A knapsack manual sprayer. .
  • the number of live aphids on the cucumber seedlings in the protected area was examined 1 day and 2 days after the drug, and the control effect was calculated, and the total amount of the actual drug and the total amount of the diluted aqueous solution were counted.
  • Table 6 Comparison of the control effects of cucumber aphids in the strong growing period of protected areas after different application methods
  • the DFH-16A type knapsack hand sprayer and the method of the present invention have better control effects on the cucumber aphids in the protective land one day after the drug and two days after the drug.
  • the pesticide fumigation device has the same effect of saving medicine and water saving compared with the DFH-16A type knapsack manual sprayer, with 62.5% of the medicine and 85% of the water saving.
  • the application device and the application method of the embodiments of the present invention are not only simple and convenient to operate, but also have a uniform droplet particle spectrum, and the formed drug particles are negatively charged drug particles having a diameter of less than 10 micrometers.
  • Strong adhesion, stereoscopic realization of the purpose of application can greatly reduce the actual use of drugs up to 22.7% ⁇ 86.7%, energy saving and environmental protection, to achieve the entire process of automatic application, no labor. It has many advantages such as simple, economical, water-saving, energy-saving and environmental protection.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Soil Sciences (AREA)
  • Food Science & Technology (AREA)
  • Special Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种施药装置及施药方法,使药物以可雾化的药液形式存在;通过超声波振荡使药液雾化;向所述雾化的药液提供动力气流,以将所述雾化的药液带走并施加于施药目标所在的环境内。本施药装置施加的药粒粒径小、粒谱集中,能够被目标物有效吸收,不易造成农药残留和浪费。能够实现生物活性物药物在自然状态下的快速扩繁,从而使生物活性物药物在较短时间内达到最大量的有效生物当量。

Description

施药装置及施药方法 技术领域
本发明涉及一种施药装置及施药方法,尤其涉及一种用于农药的施药装置及施药方法。
背景技术
随着经济的飞速发展,人民的物质生活水平也得到了极大的丰富和满足,对食品安全问题日益关注。而农药残留是目前非常严重的食品安全问题之一。而农药的施药方法及施药装置的落后、低效率是造成农药过量使用及农药残留的主要原因。
农业大棚、温室、拱棚等设施是蔬菜等农作物保护性或反季节性生产的主要场所,但其有异于大田环境,环境内空气湿度大,病、虫害多,所需农药喷洒量大、施药次数多,而频繁的大量喷洒农药不但会造成农药的残留,还会导致棚内空气湿度增大,反过来促进病虫害的增长,如此恶性循环。基于此,人们迫切希望施药效果好、不用频繁施药、不会导致空气环境恶化的施药手段。而除农业大棚、温室、拱棚等设施存在这一迫切的技术需求外,现代农业禽畜养殖厂由于禽畜被圈养的空间由于禽畜较多,空气流动性流动较差,常发生疫情。为避免疫情,养殖过程中常要对禽畜大量使用抗生素、消毒剂等产品,从而也造成养殖出的农产品存在某些元素严重超标的问题。因此,在禽畜养殖厂等场所也迫切的需要一种能够有效地对禽畜养殖场所进行杀菌消毒,降低禽畜疫情危险,从而避免对禽畜大量使用抗生素、消毒剂等药物造成农产品某些元素超标的施药手段。
目前的农用施药装置包括常规背负式手动压力喷雾器,这种喷雾器施药效率低下,产生的雾滴大,雾滴粒谱较宽,易损坏,跑、冒、漏、滴现象比较普遍,费药、费药液、易造成环境污染,而且需要人工操作,劳动量大、人力成本高,特殊条件下易造成农药施药人员的农药中毒。其它类型的农用施药装置,如机动喷雾器,施药效率较高,雾滴较背负式手动压力喷雾器要小,雾滴粒谱较宽,噪音大、自重大、作业环境差、需专业人士维修等。而近几年发展的一些电动喷雾器,施药效率较高,劳动强度有所降低,使用比较方便,但存在雾滴粒谱较宽,电瓶容量有限,型号品牌太多,配件各异不通用,易损且费用较高等问题,难以 大面积推广应用。
另一方面,现有技术中对农药的施药方法也存在误区,大多现有技术均都停留在向施药目标物上直接喷洒农药的方式。尤其是对于非挥发性药液和/或针对特定施药目标的情形,现有技术中更是偏见的认为只有将药物直接喷洒到施药目标上(如农业保护设施里的农作物)才会获得不但节省农药还具有提高施药效果的效果。但被忽略的是,当农药被以液滴或药粉的形式直接喷洒到施药目标上时,不但粒径大且不均匀还存在农药不能到达的死角,因而施药目标的实际吸收效果并不好且容易造成农药的大量残留。因此,现有技术的这种喷药方式不但容易造成农药的大量浪费且容易造成农药在施药目标上的残留以及过度施药对施药目标所在空间的污染。
基于此,有人提出利用一多孔材料制成的可旋转的提液圈或具有毛细吸收能力的固定吸液芯不断地提取药液,再利用热空气加热提液圈或通过固定吸液芯毛细作用使药液从提液圈或固定吸液芯中不断逸出形成含有超微药物颗粒的气态流施加于施药目标。虽然这些技术相比前面提到的传统施药器械具有更好的技术效果,但经后来的使用发明人发现仍存在一些弊端:例如,由于将需要多孔材料制成的提液圈或毛细材料制成的吸液芯,当长期使用尤其是采用溶解性相对较差的农药时,未溶解的部分药物微小颗粒容易被多孔性材料或吸液芯的微小孔隙所阻挡而留在多孔或毛细材料中,长期使用不但会造成药物的浪费,还会导致施药效果的降低。这一弊端尤其是对于采用具有毛细吸收能力的固定吸液芯不断地提取药液、蒸发药液的施药方法及器械,更是显得尤为严重。
基于现有技术所存在的上述问题,需要提供一种比现有技术更简单易用,雾滴小,雾滴粒谱集中,药液有效物质在目标物上的沉积量和在目标物上的覆盖密度和分布质量较理想,而且省药、省人工、环保、节能、使用方便、容易清洗、低污染、低费用、可长期高效使用的施药方法及施药装置,尤其是需要提供一种能够使用周期更长、普适性更高、操作更方便经济而施药效果更好的新型施药方法及施药装置。
发明内容
本发明的目的在于提供一种施药方法及施药装置,其设计简单、容易使用、所产生的雾滴小、雾滴粒谱集中、药液有效物质在目标物上的沉积量和在目标物上的覆盖密度和分布质量较理想,而且省药、省药液、省人工、环保、节能、使 用方便、容易清洗、低污染、低费用、可长期高效使用。
根据本发明实施例的施药方法及施药装置,通过设置超声振荡装置及其他相关手段实现效果更好的含有超微药物颗粒气态流的制备。
根据本发明的一个方面的实施例,提供一种施药方法,包括:
使药物以可雾化的药液形式存在;
通过超声波振荡使所述药液雾化;以及
向所述雾化的药液提供动力气流,以将所述雾化的药液带走并施加于施药目标所在的环境内。
在所述施药方法的一种实施例中,至少在靠近药液的液面的位置处设置用于引入动力气流的进口;所述动力气流的输送动力来自位于药液雾化场所上游的送风机和/或药液雾化场所下游的引风机和/或射流器;优选的,至少在药液雾化场所的上游设置一送风机提供输送动力;优选的,当采用射流器时,用于射流器的高速压缩引气流为药气流或空气流;进一步优选的,所述动力气流的气流来源为空气流。
在所述施药方法的一种实施例中,所述动力气流的温度范围选择在5~30℃之间;进一步优选的,当施药目标所在环境的温度低于0~10℃时,动力气流高于环境温度的差值在5~20℃范围内。
在所述施药方法的一种实施例中,所述动力气流提供给所述雾化的药液之前,经过一加热区域,该加热区域至少设置有需要散热的电器部件作为用于加热所述动力气流的加热源;进一步优选的,电器部件至少包括有用于超声波振荡装置的稳压器;进一步优选的,还设有用于贮液箱搅拌装置的驱动电机及控制系统的电子元件、电路板;进一步优选的,该加热区域还可控的设有脉冲加热或电阻加热或PTC陶瓷片做为主动电加热部件。
在所述施药方法的一种实施例中,在由所述雾化的药液和动力气流形成的含有超微药物颗粒的气态流的流出路径上设置有加热手段,优选的为一个或多个发热光源,该发热光源靠近气态流的输出口处。
在所述施药方法的一种实施例中,采用射流器提供输送动力时,调节输入射流器的高速压缩引气流的温度,以调节气态流的输出温度。
在所述施药方法的一种实施例中,所述超声波振荡装置的振荡工作频率被配置为在大于1.7MHz的频率下工作,优选其工作频率为2.0~5MHz。
根据本发明进一步方面的实施例,提供一种施药装置,包括:
雾化发生装置,包括:
雾化室,设置成可容纳药液、提供用于雾化药液的雾化空间、及用于所生成的雾化的药液的气态流的输送通道;以及
超声波振荡装置,设置成对所述药液实施雾化,该超声波振荡装置的振荡元件被布置为与所述药液接触,以对所述药液实施振荡使药液雾化;
气流输送组件,包括:
动力气流气流输入组件,在所述超声波振荡装置将所述药液雾化的同时,向所述雾化室供应动力气流;以及
气流输出组件,将所述动力气流与所述雾化的药液形成的含有超微药物颗粒的气态流带走,并施加于施药目标所在的环境内。
在所述施药装置的进一步的实施例中,所述雾化发生装置的雾化室设置在施药装置的大致中间位置,所述超声波振荡装置设置在雾化室的底部;所述动力气流输入组件包括一设置在雾化室左侧的风箱;在所述雾化室与风箱相对的另一侧,所述雾化发生装置还设置一贮液箱,该贮液箱通过设置在与其邻接的雾化室右壁上的待雾化药液的供入口对所述雾化室提供药液;所述风箱上设有动力气流的进风格栅,风箱内设有送风机,风箱所提供的动力气流通过与其邻接的雾化室左壁上的动力气流输入口输入雾化室内;优选的,所述动力气流输入口略高于雾化药液的供入口,所述气态流输出口大致形成在导流罩顶部的中间位置,且气态流的输出口的轴线与动力气流输入口的轴线之间的角度在90度~130度之间;在位于雾化室顶部的气态流输出口处设置所述气流输出组件,将雾化室内由所述雾化的药液和动力气流生成的含有药物颗粒的气态流送出施药装置外;在所述风箱的底部设有一支撑在施药装置下部的底座,底座设有与外界连通的动力气流的入口,动力气流的入口内部形成有底部风道,且在该风道中设置有工作时有废热产生且需要散热的电器部件,该风道被可控的与所述风箱流体连通;优选的,该电器部件包括用于所述超声波振荡装置的稳压器;进一步优选的,电器部件还包括用于贮液箱中的搅拌装置的驱动电机及由于施药装置控制系统的电控元件及电路板。
在所述施药装置的进一步的实施例中,所述动力气流输入口略高于雾化药液的供入口,所述气态流输出口大致形成在导流罩顶部的中间位置,且气态流的输出口的轴线与动力气流输入口的轴线之间的角度在90度~130度之间。
在所述施药装置的进一步的实施例中,所述雾化室包括可拆卸的上下结合在 一起上部分和下两部分,其中下部分为上开口的供液底盒,上部分为上下均开口的导流罩;供液底盒形成在导流罩的下部,并延伸到所述贮液箱的底部;进一步优选的,导流罩包括左壳体和右壳体构成;进一步优选的,所述导流罩的下端形成收紧口插进供液底盒内部使其外壁与供液底盒内壁紧贴在一起。
在所述施药装置的进一步的实施例中,所述供液底盒为一梯形结构,与导流罩配合的部分位于梯形结构的下部,梯形结构的下部的内壁面形成一凹腔,用来作为设置超声波振荡装置及容纳雾化所需药液的室,梯形结构的上部由下部向上延伸到较高位置并与贮液箱的底部配合,用于支撑贮液箱及提供贮液箱部件所需的安装空间,并利用上部的内壁面形成与下部凹腔连通的供液流道以将贮液箱中提供的药液供给雾化室;优选的,所述供液流道为内壁光滑的流道。
在所述施药装置的进一步的实施例中,所述供液底盒为单独部件或由所述底座上底面形成;优选的,所述供液底盒为一单独构件,支撑在梯形结构的上部下面的所述底座的上顶面形成与供液底盒下底面对应的结构形状,两者结构吻合的贴合在一起。
在所述施药装置的进一步的实施例中,所述导流罩为双层结构,并由左右两半壳体可拆卸的装配在一起,且导流罩的内壳体的前后壁设计为弧形内壁并使得导流罩的内壁向位于顶部的气态流输出口收敛;优选的,导流罩的内壳体上还形成有与雾化室内部连通的导流孔。
在所述施药装置的进一步的实施例中,所述导流罩从下向上依次包括封药液段、雾道段、出雾段,雾化室的药液供液口设置在封液段,动力气流的进气口设置在封液段与雾道段之间,气态流输出口设置在出雾段的端口。
在所述施药装置的进一步的实施例中,在导流罩内壁的雾道段形成有消沫肋,优选的,消沫肋沿所述导流罩内壁纵向设置,进一步优选的,消沫肋的肋顶为尖顶;进一步优选的,所述消沫肋形成在所述导流罩的左和/或右内壁上。
在所述施药装置的进一步的实施例中,在所述雾化室左壁的动力气流输入口的气流流出方向,设置有导流梳,优选的,导流梳的末端还形成一连接在各个导流梳末端的阻液堤;进一步优选的,导流梳的末端或阻液堤的末端形成有多个向下的突尖部。
在所述施药装置的进一步的实施例中,所述导流梳由水平导流部分和竖向导流部分构成,其中水平导流梳部分从导流罩的动力气流输入口的上方向雾化室内 水平伸展一定长度,优选20~35mm处,再向供液底盒下方弯折延伸形成竖向导流梳部分,宽度优选20~35mm。
在所述施药装置的进一步的实施例中,所述雾化室的内壁前设置有可拆卸的阻沫网,优选的,其上形成有1~3×1~3mm2规格的小网格;优选的,所述阻沫网形成在雾化室的前和/或后内壁上,所述阻沫网形成在雾化室导流罩左右壳体接缝位置的前内壁上。
在所述施药装置的进一步的实施例中,所述超声波振荡装置为集成式超声波振荡装置,并包括一个或多个超声波振荡单元,所述振荡单元设置在密封壳体内,每一超声波振荡单元设有一个或多个振荡元件,该些振荡元件的陶瓷换能片露出密封壳体与待雾化的药液接触以实施超声波振荡,优选的,所述超声振荡装置的振荡元件的总量为3-10个;进一步优选的,所述超声波振荡装置还设有液位控制件和稳压装置,其中所述液位控制件设置在密封壳体上,稳压装置设置在所述底座的底部风道中;进一步优选的,所述施药装置包括一个或多个所述的集成式超声波振荡装置。
在所述施药装置的进一步的实施例中,所述超声波振荡装置被可拆卸的设置在供液底盒的外部的底部,超声波振荡装置的振荡元件通过供液底盒底壁上的开孔与所述供液底盒中的药液流体接触,以向所述药液施加超声波振荡;优选的,供液底盒的底壁上还形成一定高度的隔断,隔断上开有液流孔;优选的,所述超声波振荡装置的背部位于底座内的底部风道中或能够与底部风道流体接触。
在所述施药装置的进一步的实施例中,所述超声波振荡装置被可拆卸的设置在供液底盒的内部的底部,所述供液底盒中沿液位高度方向上设置有导杆,所述超声波振荡装置的密封壳体可滑动地安装在该导杆上,进一步优选的,所述超声波振荡装置的密封壳体设置有增大或减小浮力特征;进一步优选的,所述超声波振荡装置的陶瓷换能片的振荡工作频率被配置为在大于1.7MHz的频率工作,优选其振荡工作频率为2.0~5MHz。
在所述施药装置的进一步的实施例中,所述施药装置包括控液稳效装置,用于与所述超声振荡装置配合工作,该控液稳效装置包括一罩体,该罩体由顶壁和外周壁围成一向下开放的腔体,用于罩在超声振荡装置的上方;所述罩体的顶壁形成有与所述超声振荡装置的振荡元件数量及位置对应的开孔,每一开孔的下方由所述顶壁的内壁面向下延伸形成一两端开口的直通式筒体,该筒体用于罩在与其对应的振荡元件的外周,由筒体的两端开放的内腔构成相应振荡元件的稳效 腔;所述筒体的外壁面与所述罩体外周壁的内壁面之间的腔体构成控液腔,所述控液腔为上端封闭的腔体,所述控液腔的顶面由所述罩体顶壁的非开孔区域构成;所述罩体外周壁的下端面与所述超声振荡装置的上端面之间形成一个或多个缝隙,以用作所述控液腔的控液缝隙;筒体的下端面与所述振荡元件的外延面之间形成一个或多个缝隙,以用作所述稳效腔的供液缝隙;所述稳效腔供液缝隙的最高位置低于或等于用于所述控液缝隙的开口的最高位置。
在所述施药装置的进一步的实施例中,对应超声振荡装置上设置的液位控制件,控液稳效装置还形成一液位腔,在施药装置正常工作时,液位腔的上部与外界空气相通,液位腔的底部与稳效腔、控液腔周围的药液连通;当所述液位控制件在所述超声振荡装置的中间位置时,优选的所述液位腔被构造成在所述控液稳效装置的罩体顶壁与液位控制件对应的位置处形成一类似稳效腔结构的直通式筒体,利用液位腔的内腔形成用于液位控制件的全筒式液位腔;构成液位腔的直通式筒体与液位控制件的外沿面之间形成有一个或多个进液缝隙;当所述液位控制件在所述超声振荡装置的周围位置时,优选的所述液位腔被构造成使罩体的外周壁在与液位控制件对应的位置处形成一向控液腔凹进的半筒状凹部,利用该凹部的侧壁面与供液底盒的内壁面形成一可供超声振荡装置液位控制件检测的半筒式液位腔,所述半筒式液位腔又可根据其腔体的顶部是否被罩体的顶壁封闭分为半筒顶部开放式液位腔和半筒顶部封闭式液位腔。
在所述施药装置的进一步的实施例中,所述控液稳效装置支撑在超声振荡装置上或吊装在超声波振荡装置的上方,并与超声波振荡装置形成配合体。
在所述施药装置的进一步的实施例中,控液稳效装置与超声振荡装置通过位于控液稳效装置上的连接机构相互配合并连接成为一个装配体;优选的,连接机构为一卡爪结构,超声振荡装置在外周形成一向上的突沿与卡爪配合,使控液稳效装置被固定支撑并罩合在超声振荡装置的上端面上;或将控液稳效装置可拆卸的固定在导流罩上,通过导流罩与控液稳效装置的设置位置配合,使用于控液稳效装置的控液缝隙、供液缝隙、进液缝隙吊装在超声振荡装置的上端面上;或控液稳效装置与导流罩及阻沫网复合组成装配体,以与集成式超声振荡装置配套使用。
在所述施药装置的进一步的实施例中,在沿向下开放的罩体外周壁末端的一面或几面或每面形成有一个或多个豁口缝隙作为控液缝隙,在稳效腔的直通筒体 末端的一面或几面或每面形成有一个或多个豁口缝隙作为稳效腔缝隙;或使控液腔的底端面、稳效腔的底端面、液位腔的底端面与超声振荡装置外周面、振荡元件外延面、液位控制件的外延面之间被留有一定的安装间隙作为控液腔的控液缝隙、稳效腔的供液缝隙、液位腔的进液缝隙。
在所述施药装置的进一步的实施例中,控液缝隙为可控或可调的:在允许范围内,通过调整控液稳效装置的吊挂高度或在超声振荡装置上的支撑高度,实现对控液缝隙的宽度或大小的调节和设置。
在所述施药装置的进一步的实施例中,根据药液从贮液箱设置的顶杆式定位供液组件的流出位置设定所述供液底盒的药液的最佳液位,由超声波振荡装置的液位控制件检测停机液位,并实施停机保护,所述供液底盒的供液口的最低位置与供液底盒的最低位置处在同一水平面上或稍高于供液底盒的最低位置,所述供液底盒的供液口的最高位置低于控液稳效装置的控液缝隙的最低位置。
在所述施药装置的进一步的实施例中,根据药液从贮液箱设置的顶杆式定位供液组件的流出位置设定所述供液底盒的药液的最佳液位,由超声波振荡装置的液位控制件检测停机液位,并实施停机保护,所述供液底盒的供液口的最低位置与供液底盒的最低位置处在同一水平面上或稍高于供液底盒的最低位置,所述供液底盒的供液口的最高位置低于控液稳效装置的控液缝隙的最低位置。
在所述施药装置的进一步的实施例中,所述贮液箱包括一可贮液的容器、容器设有一较小的的第一开口和较大的第二开口,其中较小的第一开口用于与所述供液底盒上的药液流道连通,较大的第二开口可拆卸的密封有一底盖,优选的,底盖与第二开口为螺纹配合,在第二开口形成有圆筒形外螺纹壁,相应的底盖形成有内螺纹壁使其如一个螺母拧紧在第二开口圆筒形的螺纹壁上。
在所述施药装置的进一步的实施例中,所述贮液箱与供液底盒之间的流道上设有药液供液控液装置,以使贮液箱的药液被可控的供给液底盒,该药液供液控液装置包括顶杆式定位供液组件和顶杆控制组件,其中位于贮液箱底部的第一开口设置顶杆式定位供液组件,该顶杆式定位供液组件形成与雾化室供液流道连通的液流腔及液流口,顶杆控制组件包括用于对顶杆式定位供液组件施加外力作用的顶杆,上顶杆设置在顶杆式定位供液组件的下方,以根据需要打开或关闭顶杆式定位供液组件控制的液流口。
在所述施药装置的进一步的实施例中,该顶杆式定位供液组件包括皮帽塞、供液组件内导柱、弹簧、限位导圈、顶片以及围纳该些组件并形成液流腔及液流 口的壳体,壳体的外壁与容器的第一开口密封连接,内壁形成液流腔,液流腔的出口形成液流口;皮帽塞作用在液流口上用于打开或关闭液流口,皮帽塞固定在内导柱的上端,内导柱下端穿过设于壳体内壁上的限位导圈与用于接收外力的顶片固定连接;内导柱外周套设有弹簧,该弹簧可伸缩的设于液流口的限位导圈与顶片之间。
在所述施药装置的进一步的实施例中,所述顶杆控制组件通过顶杆对顶杆式定位供液组件的作用的可控性通过增高或降低顶杆的有效高度实现;优选的所述顶杆为螺杆式,通过手动或电动控制组件使螺杆向上旋出或向下旋入调节顶杆的有效高度,或所述顶杆设计为可折叠式或可伸缩式或在顶杆顶部可拆卸的套装一可延长顶杆有效长度的套帽,顶杆的有效高度根据需要手动调整。
在所述施药装置的进一步的实施例中,所述贮液箱内设置有搅拌桨和/或扩繁筒;优选的,所述搅拌桨和/或扩繁筒可拆卸的设置在贮液箱的底盖上;进一步优选的,所述扩繁筒和搅拌桨可拆卸地安装在一起并能以一整体结构和各自单独结构可拆卸的安装到贮液箱的底盖上。
在所述施药装置的进一步的实施例中,在所述贮液箱中设置由电力驱动的搅拌桨,供液底盒的上部内壁面与搅拌桨转轴相对的位置,向上隆起形成中空圆壁形结构,搅拌桨转轴穿过中空圆壁形结构与设置在供液底盒下方的驱动电机驱动连接;进一步优选的,供液底盒上部的内壁面还在中空圆壁形结构的外周形成低于中空圆壁形结构上端面的凸台,凸台的外周形成一与流道入口连通的环形槽道;进一步优选的,位于槽道外周的供液底盒内壁面逐渐向环形槽道降低,而环形槽道也向流道入口逐渐降低,流道也向雾化室的供液口逐渐降低;进一步优选的,将槽道和流道的最低位置均设计为大于雾化室供液底盒的最高液位工作液位面,中空圆壁形结构的上端面高于环形槽道的最高位置。
在所述施药装置的进一步的实施例中,容器的第二开口及相应的底盖设置在贮液箱容器的底部;搅拌桨包括转轴、密封件、套装在转轴上的轮毂、形成在轮毂上的桨叶及驱动转轴转动的驱动电机,搅拌桨转轴的上端可转动的固定在底盖上并伸进容器内,下端伸出底盖与设置在底盖外的驱动电机直接或间接连接;优选的,底盖形成一圆筒形周向凸缘,该凸缘的位置与上述的环形槽道相对,凸缘的内侧形成有与药液容器第二开口结合的圆筒形外螺纹壁,底盖的中间位置形成一可伸进容器开口内的凸台,凸台的背侧形成凹腔使其可扣合在供液底盒上部内壁面所形成的中空圆壁形结构上;搅拌桨支撑在底盖的凸台上,其转轴穿过底盖 与设置在底盖外侧的驱动电机直接或间接转动连接,所述搅拌桨的驱动电机设置在底座的底部风道中。
在所述施药装置的进一步的实施例中,扩繁筒包括容纳用于生物活性物载体的筒体、及设置在筒体下面的安装或连接结构,筒体上具有多个规则的或不规则的镂空孔;优选的扩繁筒筒体包括扩繁筒壳体、上封头和下封头,以形成可拆卸地结合在一起的筒体结构;优选的,扩繁筒壳体和下封头均包括两个半体,其中左半壳体与左半下封头之间形成一体结构,右半下封头及右半壳体之间形成一体结构,左半壳体和左半下封头与右半壳体和右半下封头分别可拆卸地组合在一起;进一步优选的,左右半壳体及左右半下封头在相应的配合处一侧形成插槽,另一侧形成插头,插槽和插头匹配的结合在一起;进一步优选的,所述筒体下面的安装或连接结构用来将扩繁筒可拆卸的固定在容器的内壁上,或将扩繁筒可拆卸的固定在搅拌桨上或将其可拆卸的固定在容器的底盖上。
在所述施药装置的进一步的实施例中,贮液箱容器的第二开口及相应底盖采用可拆卸密封连接结构设置在容器的底部,搅拌桨与扩繁筒为同轴设计且通过可拆卸连接结构形成一整体结构,扩繁筒可拆卸的设置在搅拌桨上方,搅拌桨可拆卸的设置在底盖上,扩繁筒、搅拌桨均被伸进容器中。
在所述施药装置的进一步的实施例中,所述可拆卸密封连接结构包括可拆卸的套设在转轴顶端上的轴筒部和从轴筒部顶端向外延伸的喇叭口型的连接外凸缘,搅拌桨的轮毂可拆卸的套设在轴筒部的外周;位于扩繁筒底部的安装或连接结构在下封头的外壁形成弹性连接卡槽,连接外凸缘利用弹性卡槽的弹性可拆卸的固定在弹性连接卡槽中。
在所述施药装置的进一步的实施例中,所述弹性卡槽包括:设置在对应的左、右下封头上的环状倒T型卡钳结构,卡钳结构形成不具有弹性的连接卡槽;设置在对应的左、右下封头对接的位置处的弹性倒T型内凸缘,连接外凸缘可利用弹性倒T型内凸缘的弹性放置在连接槽中或将其取出;进一步优选的,自扩繁筒底端下封头环形卡钳结构的连接件或连接槽部分向上优选约20~30mm位置的扩繁筒左壳体和扩繁筒右壳体的镶接结构不完全紧固的设置在一起,优选的,约20~30mm以上位置的扩繁筒左壳体371和扩繁筒右壳体的镶接结构可进一步采用胶粘结固定,而连接件或连接槽向上约20~30mm位置的扩繁筒左壳体和扩繁筒右壳体的镶接结构构不采用胶粘结紧固,而只利用镶接结构实现两者之间的对接。
在所述施药装置的进一步的实施例中,搅拌桨或扩繁筒与容器大盖之间设置可拆卸连接结构:在两者共用的转轴上设置一上轴承,底盖的轴孔处设置一下轴承,上轴承和下轴承形成配合结构,转轴从底盖的凸台中穿过,与设置在底盖外侧的联轴器连接,该联轴器与驱动电机连接,优选的,联轴器的下部形成一扩腔,扩腔的内壁上形成齿轮结构,驱动电机的转轴通过与该齿轮结构配合,带动联轴器及搅拌桨和/或扩繁筒的转轴旋转;优选的,联轴器扩腔的大小正好罩在供液底盒上部内壁面的凸台上的中空圆壁形结构内。
在所述施药装置的进一步的实施例中,将扩繁筒和搅拌桨的功能合而为一到扩繁筒上,在扩繁筒的上封头和/或下封头和/或壳体周面上设置搅拌桨叶。
在所述施药装置的进一步的实施例中,将扩繁筒和搅拌桨的功能合而为一到搅拌桨上,生物活性物载体填充于所述变形的和/或大号的搅拌桨的桨叶和/或桨体部分中,桨叶和/或浆体上具有可供药液流入或流出的镂空通道。
在所述施药装置的进一步的实施例中,气流输送组件包括气流输入组件和气流输出组件,其中气流输入组件包括内设有送风机的风箱,风箱设置在雾化室的左侧,所提供的动力气流通过与风箱邻接的雾化室左壁上的动力气流输入口输入雾化室内,而气流输出组件设置在上述的位于雾化发生室的顶部,将由动力气流与雾化药雾所形成的含有超微药物颗粒的气态流送出到施药目标所在的环境内;进一步优选的,在雾化发生室上游设置送风机,该送风机蜗壳的出风口与上述动力气流输入口对应,气流从该动力气流输入口送出的方向相对水平面的角度在-20度~20度之间。
在所述施药装置的进一步的实施例中,气流输送组件还包括一底座形成的底部风道,该底部风道由座体和箱体扣合而构成,座体的下面设有支脚;优选的,支脚上可设有万向节等滑轮以方便施药装置的移动;再进一步优选的,支脚还可设计为可伸缩的支脚已根据施药对象调整施药装置的施药高度。
在所述施药装置的进一步的实施例中,将用于施药装置的包括稳压器、功能开关、控制线路板、搅拌桨电机、负离子发生装置的发热电器部件设置在底部风道中。
在所述施药装置的进一步的实施例中,气流输出组件设置在雾化发生室顶部的气态流输出口处,以将含有超微药物颗粒的气态流施加到施药目标所在的环境内;具体的优选:气流输出组件包括可转动的设置在导流罩气态流输出口的喷头 及驱动喷头相对气态流输出口转动的驱动装置;具体的,喷头的底部设形成一齿轮圈结构,驱动装置包括电机及传动齿轮,在电机的带动下,带动传动齿轮转动,喷头齿轮圈通过与传动齿轮啮合在一起而被带动转动,从而可以实现360度全方位施药。
在所述施药装置的进一步的实施例中,所述喷头包括气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3),所述气态流变向段(D2)的前部分与所述气态流输入段(D1)的后部分呈后仰状,气态流变向段(D2)的后部分与气态流输出段(D3)的前部分呈前倾状,且所述气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3)的内壁面之间的过渡面为平滑曲面;优选的,所述气态流输入段(D1)至气态流变向段(D2)形成后仰状,气态流输入段中的气态流第一损耗变向角δ1≤90°,优选在5度角~30度角之间;所述气态流变向段(D2)至气态流输出段(D3)形成前倾状,气态流变向段中的气态流第二有效变向角δ2≤90°,优选在5度角~30度角之间,气态流流液角δ3≤90°,优选在5度角~30度角之间;进一步优选的,逃逸变距Δd≥0;优选的,从所述气态流输入段(D1)到气态流变向段(D2)再到气态流输出段(D3),整个平滑内曲面的截面积基本保持相同或一致;进一步优选的,所述异形喷头的气态流输出段(D3)的气态流输出口截面积大于或等于所述气态流输入段(D1)气态流输入口的截面积;进一步优选的,在逃逸中距(d2)或流液中距(d1)部分或全部的长度范围内的异形喷头气态流输出段的内壁面采用麻面内壁;进一步优选的,自所述喷头气态流输出段气态流流液点开始的下内壁面以一定的角度逐渐向所述异型喷头内壁内的凸曲面凸顶点处延伸。
在所述施药装置的进一步的实施例中,通过注塑形成的风箱、底座上用于走线的穿线孔孔沿和控制面板处设有圆形或多边形或其它形状的外凸挡水突或挡水墙,以防止雾化的药液因液化而形成的药滴或滴水流入施药装置内部。
在所述施药装置的进一步的实施例中,使上述形成的含有超微药物颗粒的气态流在被施加于施药目标所在环境之前带有OH-或O3-负电荷,优选的,该带电过程可通过等离子或负离子发生器实现,所述等离子或负离子发生器设置在底部风道内。
在所述施药装置的进一步的实施例中,在雾化室的气态流输出口或靠近输出口处还设置一引风机或一射流器产生引流效应;优选的,利用所述动力气流产生引流效应,从而既利用该动力气流的引流效应与所述雾化的药液形成含有超微药物颗粒的气态流,又利用该动力气流的引流效应实现所述雾化药液向所述施药目 标环境的输出;优选的,所述动力气流或高速压缩气流为高速压缩空气流或高速压缩药气流。
在所述施药装置的进一步的实施例中,其所述封闭环境为相对封闭的环境;所述相对封闭环境包括农作物生长用大棚、温室、拱棚、农产品储藏用冷库、保鲜库、气调库、兽舍、饲舍、公共办公或私人居住场所、交通工具;所述封闭环境内的施药目标包括确定施药目标和/或不确定施药目标,优选的,所述不确定施药目标为封闭环境内的无固定形态的空气,所述确定施药目标为封闭环境内有固定形态的无生命体和/或有生命体;进一步优选的,所述农用封闭环境内的确定施药目标包括农作物或农产品或农业设施,如蔬菜、瓜果、花卉、蘑菇、药材、烟草、茶叶、禽畜养殖等农作物或农产品或其农业设施;进一步优选的,对所述农作物或农产品的施药目的包括除虫和/或除病和/或除残留农药和/或农产品的后熟处理和/或农作物的春化处理和/或农作物的生长发育调节;对所述农业设施的施药目的包括消毒和/或除病和/或除虫和/或免疫和/或生产无抗生素产品;进一步优选的,对所述公共办公和/或私人居住场所和/或交通工具环境内的确定施药目标包括空气进行消毒和/或除菌和/或除虫和/或除臭和/或除甲醛。
根据本发明上述实施例的施药方法和装置,扩大了施药者在施药时药品的选择范围;所形成的含有超微药物颗粒的气态流强度高并能够保持稳定、良好的连续性施药,且施药颗粒小(可到直径小于10微米),易于立体扩散和被植物体吸收,附着能力强,空间内立体杀灭病虫害源,施药效果好农药残留少;可大幅降低农药的实际使用量,节能环保;施药与环境升温等其他措施统筹兼顾,实现一机多用;可自动完成施药,无需人工直接接触施药,减少农药对人体的侵害。
附图说明
图1为根据本发明的一种示例性实施例的施药装置的分解示意图;
图2为图1所示施药装置的示意图;
图3为根据本发明的另一种示例性实施例的立体示意图;
图4为带底座及驱动装置的普通喷头的一种实施例立体示意图;
图5为带底座及驱动装置的S型喷头的一种实施例的立体示意图;
图6为不带搅拌桨的贮液箱的一种实施例的透视示意图;
图7为带底盖式搅拌桨的贮液箱的一种实施例的透视示意图;
图8为底盖式搅拌桨及其它相关部件的立体示意图;
图9为底盖式搅拌桨的分解示意图;
图10为底盖式搅拌桨剖面图;
图11为包括导流罩与控液稳效装置的组合装置的立体示意图;
图12为导流罩与控液稳效装置的俯视图;
图13为导流罩与控液稳效装置的仰视图;
图14为导流罩的左壳体的立体示意图;
图15为导流罩的右壳体的立体示意图;
图16为导流梳与导流罩的左壳体的立体示意图;
图17为阻沫网的示意图;
图18为带阻沫网及控液稳效装置的导流罩的截面示意图;
图19为第一种实施例的配合包括十个超声波振荡元件的集成式超声振荡装置的控液稳效装置的立体示意图(全筒式液位腔);
图20为图19所示控液稳效装置的前视图(全筒式液位腔);
图21为第二种实施例的配合包括十个超声波振荡元件的集成式超声振荡装置的控液稳效装置的立体示意图(半筒开放式液位腔);
图22为第三者实施例的配合包括十个超声波振荡元件的集成式超声振荡装置的控液稳效装置的立体示意图图(半筒封闭式液位腔);
图23为包括十个超声波振荡元件的集成式超声振荡装置的立体示意图;
图24为超声波振荡装置通过壁孔安装在供液底盒上的原理示意图;
图25为包括十个超声波振荡元件的集成式超声振荡装置及控液稳效装置组合体的立体示意图;
图26为包括十个超声波振荡元件的集成式超声振荡装置及控液稳效装置的分解图;
图27为电动螺纹式供液装置的顶杆升降装置的剖视示意图,其中供液装置处于打开状态;
图28为电动螺纹式供液装置的顶杆升降装置的剖视示意图,其中供液装置处于关闭状态;
图29为手动螺纹式供液装置的顶杆升降装置的剖视示意图,其中供液装置处于打开状态;
图30为手动螺纹式供液装置的顶杆升降装置的剖视示意图,其中供液装置处于关闭状态;
图31为手动帽套式供液装置的顶杆升降装置的剖视示意图,其中供液装置处于打开状态;
图32为手动帽套式供液装置的顶杆升降装置的剖视示意图,其中供液装置处于关闭状态;
图33为折叠式或杠杆式供液装置的顶杆升降装置的剖视示意图,其中供液装置处于打开状态;
图34为折叠式或杠杆式供液装置的顶杆升降装置的剖视示意图,其中供液装置处于关闭状态;
图35为供液底盒的立体示意图;
图36为生物浆成套装置的立体示意图;
图37为生物浆成套装置的剖视示意图;
图38为扩繁桶替代搅拌桨的一种搅拌方式的示意图;
图39为扩繁桶与搅拌桨合为一体结构的变形搅拌桨的立体示意图;
图40为包括生物浆的扩繁器容器的示意图,其中扩繁桶与搅拌桨设置为一体结构;
图41为包括生物浆的扩繁器容器的示意图,其中扩繁桶与搅拌桨分别设置在不同侧壁上的示意图;
图42为包括生物浆的扩繁器容器的示意图,其中扩繁桶与搅拌桨分开设置在同一侧上;
图43为生物浆扩繁器容器的示意图,其中扩繁桶与搅拌桨分别设置在不同侧壁上;
图44为生物桨设置在药箱上部位置的吊顶式结构的示意图;
图45为扩繁筒的左右壳体的示意图;
图46为扩繁筒的壳体和下封头的示意图;
图47为扩繁筒的壳体上的上封头的示意图;
图48为加入载体后的扩繁筒的示意图;
图49为单筒式扩繁筒的示意图;
图50为复层式扩繁筒的示意图;
图51为隔断或隔板式扩繁筒的示意图;
图52为S型喷头剖面结构图;
图53为顶杆式定位供液组件及控液稳效装置的工作原理示意图;以及
图54为射流装置的原理示意图。
附图标记说明:
导流罩:410,导流罩左壳体:411,导流罩右壳体:412,弧形内导风面:421,消沫槽:441,气态流输出口:420,风道挡风梳:442,水平导流梳:4421,竖向导流梳:4422,导流孔:4211,阻液堤:443,螺丝链接位置:450,超声振荡装置与导流罩嵌接槽:460,集成式超声振荡装置:360,液位控制件:361,集成式超声振荡装置稳压器:362,集成式超声振荡装置上端面:363,集成式超声振荡装置外延面:364,单个超声波振荡器单元:366,控液稳效装置:430,控液稳效装置罩体顶壁:431,稳效腔:432,稳效腔壁:4321,稳效腔高:4322,稳效腔进液缝隙:4323,控液腔:4330,控液稳效装置罩体外周壁:4331,控液缝隙:434,控液稳效装置下端面:435,控液稳效装置与集成式超声振荡装置连接件:436,液位腔:437,负离子发生器:600,出风口导流梳:511,喷头喷头座:525,齿轮与电机连接轴承:523,齿轮罩:524,齿轮连接轴:523,小齿轮:522,大齿轮:521;喷头旋转电机:530,异形喷头:599,喷头气态流输入口:420,喷头气态流输出口:555,D1:气态流输入段,D2:气态流变向段,D3:气态流输出段,δ1:气态流第一损耗变向角,δ2:气态流第二有效变向角,δ3:气态流流液角,A:气态流逃逸点,B:气态流流液点,d2:气态流逃逸中距,d1:气态流流液中距,Δd:气态流逃逸变距,E:气态流输入段气态流输入口内壁与气态流输出段末端上内壁气态流逃逸点A间的气态流远距点,F:气态流输入段气态流输入口内壁与气态流输出段末端下内壁气态流流液点B间的气态流远距点,N:异型喷头内壁内凸曲面凸顶点;L1:气态流输入方向切面线,L4:气态流输出段D3末端下内壁沿气态流流液点B点与气态流输入方向切面线L1的垂直切面线,L7:气态流输出段D3末端上内壁沿气态流逃逸点A点与气态流输入方向切面线L1的垂直切面线,L2:气态流输出段末端上内壁沿气态流逃逸点A点与L4的垂直切面线,L3::气态流输出段末端下内壁沿气态流流液点B点与L4的垂直切面线;L5:气态流输出段D3末端上内壁沿气态流逃逸点A点、异型喷头内壁内凸曲面凸顶点N点、气态流输入段气态流输入口内壁与气态流输出段末端上内壁气态流逃逸点A间的气态流远距点E点之间的切面线,L6:气态流输入段气态流输入口内壁与气态流输出段末端下内壁气态流流液点B间的气态流远距 点F点、异型喷头内壁内凸曲面凸顶点N点之间的切面线,L8:气态流输出段末端下内壁气态流流液点B点沿下内壁向内的切面线;供液底盒:390,药液雾化室:391,药液流道:392,供液口:3922,动力气流输出口:153,动力气流输入口:154,供液顶杆:339,中空圆壁形结构:397,凸台:3971,槽道:3972,第一开口:335,第二开口:337;底盖:340,底盖内密封圈:341,底盖内凸台:342,搅拌桨:350,搅拌桨桨叶:351,搅拌桨涡流圈:352,搅拌桨与扩繁桶壳体连接件:353,轴筒部:3531,连接外凸缘:3532,搅拌桨外连轴承3541,搅拌桨内联轴承:3542,搅拌桨下轴承:3543,搅拌桨上密封:355,搅拌桨下密封:356,搅拌桨与搅拌桨电机连接下联轴器:357,搅拌桨上联轴器:358,搅拌桨电机:359,扩繁筒:370,扩繁筒左壳体:371,扩繁筒右壳体:372,扩繁筒上封头:373,扩繁筒下封头:374,扩繁筒左下封头:3741,扩繁筒右下封头:3742,扩繁筒壳体与搅拌桨连接件:375,环状倒T型卡钳结构的连接槽:3751,弹性倒T型凸缘:3752,镂空孔:376,左右壳体连接缝:377,隔筒:3781,隔板:3782,生物载体:379,顶杆式定位供液组件:330,皮帽塞:331,供液组件内导柱:332,供液组件内弹簧:333,供液组件内导片:334,液位定位豁口:336,,限位导圈:338,顶杆:339,顶杆调节组件339X,顶杆滑动件:3391,顶杆移动螺杆组件:3392,顶杆滑动螺纹与顶杆滑动驱动电机连接轴承:3393,顶杆滑动驱动电机轴承座:3394,顶杆滑动驱动电机:3395,顶杆滑动驱动电机与底座连接支架:3396,顶杆帽套:3397,帽套内顶杆:3398,折叠式或杠杆式顶杆:3399,底座:100,控制面板:110,功能开关:111,定时器:112,进风栅栏:123,底盖:120,支脚:121,底盖螺丝柱:125,底盖定位件:126,底盖稳压电源防移位置:127,溢流孔:128,紧固螺丝柱:129,底盖扣手:122,风箱上外壳:130,贮液箱:300,多功能水箱:302,药箱或贮液箱扣手:310,电源插孔:141,电源线:142,控制线路板:700,离心风机装置:200,左风轮:210,右风轮:220,风机与电机连接体:230,风机蜗壳:240,风机电机:250,风机电容:260,底座风道:270,射流室装置:450,射流组件及固定件:451,射流口:452,高速气流或液流入口:453。
具体实施方式
首先说明的是,本文中描述了关于本发明的各种方面、概念和特征的各种优选实施方式,但是这些描述不是本发明所有实施方式的完全或详尽的清单,除非 有特别说明,否则该些描述并不表明这些特征是必需的,排他性的。本申请示例性优选方法或优选结构的描述不应被解读为仅限于该种实施方式,除非本申请说明书明确陈述为该种情况。而在不冲突的情况下,本申请的不同实施例以及各个实施例的不同优化手段、即便没有在同一实施例中阐述,也应该被理解成能够被应用于在这里描述的任何其它方面、实施例或者例子,除非与之不相容或在本文中被明确地排除在外,否则本申请所有没有穷尽的实施方式之间的组合或子组合都是在本发明的保护范围内。以下结合说明书及附图详细阐述本发明主旨及其优选实施方式。
概括而言,本申请为解决现有技术缺陷及本领域技术人员的偏见,提出了一种施药装置和施药方法,通过超声振荡装置与动力气流的配合与优化,使得施药装置结构简单、操作方便,施药过程中产生的雾滴小,粒谱集中,在施药目标物上沉积量少、覆盖密度和分布质量理想,并且省药、省药液、省人工、环保、节能、使用方便、容易清洗、低污染、低费用、可长期高效使用。
说明的是:
本申请所述的超微药物颗粒是从微观的角度描述的,如无特别说明,本申请所述的药物颗粒、雾化粒滴、雾化药滴、药液粒滴具有相同的含义,而该些颗粒整体通常可称为雾化蒸汽、药雾流、云等,本领域的技术人员对本申请的这些技术术语的解读不应以严格的物理学上的科学定义进行区分;
本发明中所谓的动力气流,是指至少能够将部分雾化药液粒滴携带走的气流,而本申请中所表述的“利用该动力气流将所述雾化了的药液带走施加于施药目标所在的环境内”并不排除除动力气流之外还具有其他输送动力将雾化药液(雾化蒸汽)携带进施药目标所在的环境中;以及
本申请所述的“含有超微药物颗粒的气态流”是动力气流在将药液雾化所形成的超微药物颗粒携带向出口的过程中所形成的气态流。
根据本发明总体上的一种发明构思,提供一种施药方法,包括如下步骤:使药物以可雾化的药液形式存在;
通过超声波振荡使所述药液雾化;以及
向所述雾化的药液提供动力气流,将所述雾化的药液带走并施加于施药目标所在的环境内。
根据本发明总体上的另一种发明构思,提供一种施药装置,包括:
雾化发生装置,包括可容纳药液、提供用于雾化药液的雾化空间的雾化室以 及对所述药液实施雾化的超声振荡装置,该超声振荡装置的振荡元件被布置为与所述药液接触,以对所述药液实施振荡使其雾化;以及
气流输送组件,包括气流输入组件和气流输出组件,其中气流输入组件在所述超声振荡装置将所述药液雾化的同时,向所述雾化室供应动力气流,以使所述雾化的药液流动,所述气流输出组件将所述雾化的药液带走并施加于施药目标所在的环境内。
根据本发明实施例的施药装置和方法,将动气气流与超声振荡装置结合,通过两者的巧妙配合与优化,可以实现有限资源最大最合理化的应用。
由于动力气流的托浮力,被超声振荡装置雾化了的药液中颗粒比较大的液滴因重力而大量返回药液表面降低了雾化效果;另一方面,由于动力气流对雾化药液粒滴的裹挟形成含有超微药物颗粒的气态流,该气态流使动力气流与雾化药粒之间以及雾化药粒与雾化药粒之间产生磨擦,很好地促进雾化药滴的破碎与蒸发,使施药雾滴更小,粒谱更集中,使得施药雾滴在施药目标物上沉积量更少、覆盖密度和分布质量更理想。
利用超声振荡装置实现药液雾化,会防止药液发生沉淀或凝絮作用,同时由于超声波振荡作用产生的雾化液滴粒径很小(通常为微粒子),非常适合动力气流地输送并与动力气流形成含有粒径更小的超微药物颗粒的气态流。
根据本发明实施例的施药装置和方法将所施加药物配置成可雾化的药液,再通过超声振荡装置雾化并结合动力气流实现施药过程,使得所施药物无论是固剂还是粉剂还是悬浮剂还是药液剂还是油剂,无论其具有挥发性还是没有挥发性,无论是化学活性物还是生物活性物,也无论其是杀死或预防有害生物的除草剂、杀虫剂、杀菌剂、消毒剂、抗生素、免疫剂,还是促进农作物生长的微肥或调节农作物生长状态的生物激素,还是用于去除残留农药、超标二氧化硫、甲醛等有害物质的生物活性物,都能够实现高效的施药过程,施药装置的普适性大大增强。需要说明的是,本发明中所述的使药物在施药前以可雾化的药液形式存在,既可以是厂家出厂前已完成好的配置,也可以是使用者施药前自己完成的配置。
本发明实施例的施药装置和方法在利用超声振荡装置产生超声振荡时,超声波能量有三种转换形式,一部分超声波能量使药液雾化并与动力气流形成超微药物颗粒的气态流,另一部分超声波能量使药液形成具有一定高度势能的药液柱,药液柱在下落到药液表面时还会由于对药液液面的冲击而搅拌药液,一部分超声波能量以热能的形式释放出来会被用来提高药液的温度,有利于提高超声振荡装 置的雾化效果,实现有限资源最大最合理化的应用。
由于所施加的药物所含成分各异,有的含有某种或多种有效化学活性成分或组分,有的含有单种或多种矿物质成分或组分,有的含有单种或多种有效化学或生物活性的有机成分或组分,有的是含有复杂成分的天然植物体提取液,在超声振荡装置的作用下药液表面可能会产生大量的泡沫从而影响超声振荡装置的雾化效果,而动力气流的施加还会起到抑泡或消泡的技术效果。
本发明利用动力气流将雾化了的药液带走并施加于施药目标所在的环境内,由于动力气流对雾化药滴的携带,使得采用本发明施药方法的施药装置以自由弥散的方式作用于施药目标,由此也使得本发明可以简化了施药装置的结构和人工成本。由于本发明是将药液雾化通过动力气流携带到施药目标所在的空间内释放,使得药物颗粒在施药目标所在环境内以自由弥散的方式作用于施药目标,获得全面立体、无孔不入的施药效果,同时由于气流的输送动力还可以实现更大的施药范围,且在施药目标物上的覆盖密度和分布的均匀性都得到提高,由此也使得本发明更适合在施药目标多、所占环境空间大的情形下使用。
综上所述,本发明所提出的施药方法及装置形成的含有超微药物颗粒的气态流雾滴粒径更小且粒径分布更均匀,且更容易被施药对象尤其是农作物吸收,降低了所施药物的无效沉积量。
下面结合本申请的附图:图1~图54,详细说明本申请的施药方法及施药装置。
1、有关施药方法
总的来说,根据本发明实施例的施药方法,先使所采用的药物以可雾化的药液形式存在,然后利用超声波的振荡能量将药液雾化,与此同时向发生雾化的药液提供动力气流,并利用该动力气流将所述雾化了的药液带走并施加于施药目标所在的环境内。下面详细描述本发明实施例的施药方法的各步骤的操作过程。
1.1、使药物以可雾化的药液形式存在
本发明所采用的药物形态上可以为固剂或粉剂或悬浮剂或药液剂或油剂;和/或在挥发性上具有挥发性或不具有挥发性;和/或在属性上为化学活性物或生物活性物;和/或在施药对象上为民用药物或是农用药物,例如,药物为农用药物,如微肥、除草剂、杀虫剂、杀菌剂、消毒剂、抗生素、免疫制剂、生物制剂中的一种。进一步地,所述生物制剂为有生物学活性的单种或多种单细胞生物(如微生物)或提取物或培养物或发酵物和/或有生物学活性的单种或多种蛋白质(如 生物酶)或提取物或培养物或发酵物和/或单种或多种有生物学活性的单细胞生物和蛋白质或提取物或培养物或发酵物的复合体。本领域的技术人员能够理解,无论药物是固剂还是粉剂还是悬浮剂还是药液剂还是油剂,有挥发性还是没有挥发性,是化学活性物还是生物活性物,是杀死或预防有害生物的除草剂、杀虫剂、杀菌剂、消毒剂、抗生素、免疫剂,还是促进农作物生长的微肥或调节农作物生长状态的生物激素,还是用于去除残留农药、超标二氧化硫、甲醛等有害物质的生物活性物,只要可配成水性溶液或其它溶液可被雾化的药液形式存在,都可通过本发明的施药方法进行施药作业。
本发明所述的使药物以可雾化的药液形式存在,不但可以是厂家出厂前完成的配置,也可以是使用者施药前完成的配置,还可以在施药过程中完成。由于现成药物浓度比较高,即便现成的药物可以被雾化,但为保证效果,通常还是需要稀释一下,将药物配制成稀溶液的形态,以利于药液的雾化。
下面举例说明配制药物溶液的一些示例性实施例:
例1:使用0.3%苦参碱药液剂防治保护地黄瓜蚜虫。具体地,按0.3%苦参碱药液剂稀释500倍用量,即将4克0.3%苦参碱药液剂用清水2升稀释,即可是可实现药液的配置。
例2:使用50%速克灵可湿性粉剂防治保护地番茄灰霉病。具体地,按50%速克灵可湿性粉剂稀释800倍用量,即将2.5克50%速克灵可湿性粉剂用清水2升稀释,即可是可实现药液的配置。
例3:针对使用ZF-高效微生物的保护地番茄灰霉病,使用50%速克灵可湿性粉剂稀释800倍后去除农药残留。按ZF-高效微生物稀释200倍用量,即将10毫升ZF-高效微生物用清水2升稀释,即可是可实现药液的配置。
需要说明的是,本发明并不试图对药物本身进行改进,也不在于如何具体配置可雾化的药液。本发明所采用的药物完全可以是本领域所公知的药物,而超声波振荡装置的工作原理也是本领域所公知的,各种工作频率的超声波振荡装置在市场上都可以买得到,因此本领域技术人员完全可以结合自己所要使用的药物情况利用本领域所公知的技术手段及原理实现可雾化的药液的配置。总的来说,要求药液含有的杂质尽量少甚至没有为宜,且酸碱度不应过高,以免影响超声波振荡装置的雾化效果。由于这些化学原理都是本领域技术人员所公知的,本领域技术人员实施过程完全可以依据本领域所公知的化学常识选择合理的适于雾化的溶剂配置,因此,这里不针对所有的药物类型的药液配置进行全面详尽的说明。
1.2、利用超声振荡装置将药液雾化
1.2.1、超声波振荡装置的工作方式
对药液的雾化作用是通过超声振荡装置与药液接触的振荡元件(如陶瓷换能片)实现的。具体而言,超声振荡元件向药液中发射超声波,利用超声波的振荡作用使药液被破碎产生直径为μm级的超微雾状液体微粒(通常3-10μm)。由于生成的药物颗粒为超微颗粒,非常有利于施药目标吸收,尤其是农作物等植物生命体的吸收。另外,振荡元件的电子部分在工作过程中产生的热量对雾化的液体微粒有加温作用,加之药液在超声波的振荡作用下本身也会产生热量,从而特别有利于超微药物颗粒的形成及施药目标的吸收。关于振荡元件对药液的振荡作用,本发明提出两种示例性的实施方式:
第一种方式,如图24所示,将超声波振荡装置装置设置在雾化室的外壁上,仅有振荡元件透过雾化室的壁的开孔与药液接触,以施加振荡作用。在第一种方式中,由于超声波振荡装置是设置在容器的外部,不需要占用很大的容器内部空间,节省药液,且超声波振荡装置使用后,残余药液少。但第一种方式由于要在容器的壁上形成与振荡元件数量对应的多个开孔,对容器的密封要求较高。
第二种方式,如图23所示,将超声波振荡装置以一集成件形式设置于雾化室的内部。所有超声波振荡装置部件集成在一密封壳体中形成一集成件放置于药液中,仅有振荡元件露出密封壳体并与雾化室中的药液接触实施振荡作用。第二种方式不必对容器开孔,不涉及与容器的密封难问题,且由于采用密封壳体集成设计,也大大提高了产品的安全性及拆卸的方便性。
对于第二种方式,因为其没有第一种方式那么高的密封要求,不易造成容器的药物泄露,工作安全性较高。
1.2.2、超声波振荡装置的工作参数
市面上有很多用于加湿器的超声波振荡装置,虽然这些用于加湿器的超声波振荡装置也可用在本申请的施药方法及施药装置中,但考虑到施药装置又不完全同于加湿器,药液的雾化难度要大于水,因此选择适用于施药装置雾化作用的超声波振荡装置的工作参数可以很好的控制雾化药滴的粒径尺寸及粒径分布均匀度,同时还可大大降低雾化药滴返回药液表面的无效量,从而不但可以提高超声波振荡装置的雾化效率和效果,还可以使得本发明实施例的施药装置不用输入太多的输送动力就能将雾化药滴顺利的带走,并施加于施药目标所在的环境内。因此,可以将施药装置的超声波振荡装置工作频率选择得比加湿器所用的超声波振 荡装置的频率稍大些,其工作频率被配置为大于1.7MHz,例如工作频率为2.0~5MHz。对于粘度较大的药液,工作频率稍微取得大一些,而对于粘度较小的溶液,如水性药液,工作频率可以选择小一些。
1.3、向发生雾化的药液提供动力气流,将所述雾化了的药液带走并施加于施药目标所在的环境内
本发明实施例的动力气流是空气流,提供空气流方便,控制空气流简单,对空气流限制少。在一个施药装置具有多种药的情况下,推荐采用药气流,在此情况下,施药装置通常还需设置一个额外的药气流形成结构,药气流形成结构具体形成方式是本领域技术人员完全可实施的,如将药物蒸发成气体再与空气混合就可形成药气流。
对于使用空气流或者药气流的情况,对药液颗粒的输送动力可以来自于位于药液上游的风扇所产生的送风动力,也可以来自于位于药液下游的风扇所产生的引风动力,还可以是一射流器产生的引流效应,还可以是该些方式的结合或两两结合。无论是设置送风机、还是引风机、还是射流器、还是这些方式中的至少两种方式的组合,都可以实现药液雾化,并保证动力气流被引进装有药液的容器时药液能够流过药液表面,提高雾化效果,还利于雾化药液被动力气流带走。在一种示例性实施例中,至少在靠近药液液面的位置处设置一动力气流的进口。
作为一种示例性实施方式,至少在药液的上游设置一送风机,这样会更容易促进药液的雾化与输送,能保证药液雾化粒径及均匀度,提高节能效果。送风机采用离心风机,例如可采用可控制的步进电机,以根据所施药量控制风速,从而不但可以改善雾化效果还降低了能量费用。在一种示例性实施例中,在药液面的上方靠近施药口的位置单独或另外设置一引风机或射流器还可进一步提高气流输送动力。不仅如此,当设置射流器提供输送动力时,如图54所示,需要向射流器输入一高速压缩引气流,该高速压缩的引气流不但可以利用引流效应极大的促进药液的蒸发、雾化,还会极大的促进雾化药滴与气流之间的碰撞与混合。在高速压缩引气流作用下的含有超微药物颗粒的气态流施加到施药目标所在的环境内可以极大的提高输送的距离。该高速压缩气流可以选择高速压缩空气流或高速压缩药气流或利用上述动力气流同时产生引流效应,即当利用动力气流产生引流效应时,不但利用该动力气流的引流效应与雾化的药液形成含有超微药物颗粒的气态流,还利用动力气流的引流效应实现雾化药液向施药目标环境的输出。除此之外,还可利用高速压缩引气流的温度控制实现气态流的输出温度控制。在一 种示例性实施例中,采用高速压缩空气流,以便于温度的调节及防止温度调节过程中影响药性。在施药装置具有多种药物的情况下,可采用含有药物的高速压缩气体流。引气流的具体温度控制方式很简单,例如,可在其流动路径上设置控温手段,也可在气源制备阶段控制温度。
通过采用动力气流,将药物以含有超微药物颗粒的气态流方式施加到施药目标所在的环境内。在施药过程中,可进一步采用如下之一或多种措施,以提高本发明施药方法的施药效果。
1.3.1、控制所生成的含有超微药物颗粒的气态流的输出温度
施药目标所在的环境温度是可变的,尤其是冬天和夏天两个不同的季节,施药目标所在环境温度相差较大,而若能考虑到温差所带来的气流对流效应,可进一步提高施药效果。
由于春秋冬等季节是常规的蔬菜供应淡季,也由于保护性设施的外界温度较低,在需要进行反季节生产的保护性设施内,为保证反季节农作物的正常生长需要,需要保护性设施内的室内温度保持在一定的临界温度以上。因此,提高或保持一定的室内温度需要增加其他的升温或保温措施,以提供热气流。
例如,在秋冬季特别是冬季,施药目标所在环境的温度相应较低,当施药目标所在环境的温度低于0~10℃时,选则动力气流高于环境温度,且差值在5~20℃范围内。可设置气态流输出温度检测手段和施药目标所在环境温度检测手段来实现气态流输出温度的控制。
具体地,控制气态流的输出温度使其与施药目标所在环境的温度相对应,这样,当施药目标所在的环境的温度较低时,将具有相对较高的温度或热焓值的含有超微药物颗粒的气态流施加于施药目标所在的环境内,会使含有超微药物颗粒的热气态流在施药空间内弥散,遇到相对较低温度或热焓值的施药对象时,会在施药对象表面快速、立体地形成药液冷凝薄膜。例如,当效药液薄膜层持续时间达到0.5~3小时时,所形成的药液冷凝薄膜就成为施药作业时有效的药液薄膜层;当这一有效药液薄膜层持续1~2小时时,就会很好的实现施药目的。
在一种示例性实施例中,通过控制动力气流的输入温度控制所述气态流的输出温度。
为控制动力气流的输入温度,可以将动力气流设置为一控温手段,该手段可以是实现加热和/或冷却的手段。该加热和/或冷却手段可以根据施药目标所在的环境温度进行调节、控制加热量(既包括冷量也包括热量)。如果动力气流引自 外界空气,而外界空气环境温度又满足于施药目标所在环境的施药温度需求时,动力气流可以不经任何加热或冷却过程,直接施加给雾化的药液。在一种实施例中,将外界空气流引向送风机的过程中经过一加热区域,该加热区域为设有电器部件的风道,使得电器部件可获得冷却效果,而外界空气流可获得加热效果。例如,该电器部件至少包括超声振荡装置所需的稳压器;进一步地,控制施药装置所需的电路板及搅拌电机也设置在该风道中。
动力气流的温度范围选择在5~30℃的范围内。热气流温度太低(如<5℃)时,尽管对形成含有超微药物颗粒的气态流的强度产生一些影响,但更重要的是直接影响到形成的含有超微药物颗粒的气态流在相对密闭空间内的快速弥散和在施药目标物上的沉降速度;当温度过高(如>35或40℃)时,容易造成对温度较敏感的农药如具有生物活性物的生物制剂农药使其有效性受到影响。将热气流的温度范围选择在5~30℃之间,除考虑了上述的热气流的特点外,还考虑了本发明的普适性而选择的合适范围。实际使用时,如果是生物活性物的生物制剂农药,温度可以选择低一些,以免影响生物活性物的活性,如果是非生物活性物的生物制剂农药如化学农药的话,热气流的温度可以选择得高一些,甚至比30度还可以适当的高一些。
在一种示例性实施例中,,当利用射流器提供输送超微药物气态流的动力时,可通过调节输入射流器的高速压缩引气流的温度调节最后气态流的输出温度,而当高速压缩气流为高速压缩药气流时,还可实现施药装置具有多种药物的效果。
在一种示例性实施例中,在含有超微药物颗粒气态流的流出路径上设置有一个或多个能够发热的光源或一个或多个环绕气流路径的加热手段。通过加热或不加热调节气态流最后的输送温度。
例如,在靠近气态流的输出口处,采用能够发热的光源,一方面可利用温度差效应及密度差效应使雾化蒸汽容易向上流动,甚至可以取消风扇的动力,由于密度差效应,小的上升暖气流会引起所夹带的蒸汽升高;而另一方面,还可以利用光源使害虫产生驱光效应向施药装置靠近,如果施药装置能够同时再配以其它机械除害虫手段,如电网、粘网、粘板等,更使可以发热的光源产生多种功能。
在一种示例性实施例中,通过为所述药液设置调温手段可以一定程度地改变气态流温度,还可以有利于超声振荡装置对药液的雾化作用,提高药液的雾化效果。例如,采用间壁换热方式调节所述药液供液温度,以避免直接加热对药效可能造成的破坏。除加热手段外,还可为药液设置搅拌强度和/或搅拌方向可控可 调的搅拌手段,一方面利用对药液的搅拌作用防止发生药液沉淀或凝絮,另一方面利用搅拌装置与药液的摩擦作用使药液升温。
1.3.2、使气态流输出到施药目标所在环境之前带电
带电手段虽不是本施药方法的一个必要步骤,但采用这带电手段会很大的提高施药效果。为此,使上述形成的含有超微药物颗粒的气态流在被施加于施药目标所在环境之前带电。例如,使上述形成的含有超微药物颗粒的气态流在被施加于施药目标所在环境之前带有OH-或O3-等负电荷。在一种实施例中,该带电过程可通过等离子或负离子发生器实现。
本发明实施例的施药方法适用于相对封闭的施药环境,如农作物生长用保护设施或农产品储藏用冷库、保鲜库、气调库或农产品养殖用圈舍、公共办公或私人居住场所、交通工具等相对封闭的环境。而对于本发明实施例的施药目标并没有什么特殊要求,即可以是确定施药目标,也可是不确定施药目标。所述不确定施药目标可以是无固定形态的空气,如房间的甲醛处理,所述确定施药目标为封闭环境内有固定形态的无生命体和/或有生命体,如农作物或农产品或农业设施等,如对农作物或农产品或农业设施的除虫和/或除病和/或除残留农药和/或消毒防疫和/或生长发育调节等。本发明的实施例的施药方法可应用在在农业领域,例如农作物生长用保护设施或农产品储藏用冷库、保鲜库、气调库或农产品养殖用圈舍等农场所。
2、有关施药装置
下面结合附图具体描述本申请的示例性实施例的实施上述施药方法的施药装置。
在此说明的是,本发明在前面部分所描述的施药方法的实施例所取得的技术效果同样也体现在本发明的实施例的施药装置。在不违背发明主旨的情况下,本发明在施药方法实施方式部分所描述的技术效果同样也体现在本施药装置的相应部件或结构上。因此,为避免过多的重复性描述,本发明更多的是从装置的结构设置角度出发阐述如何实现上述施药方法及其技术效果,而施药方法部分描述的技术效果同样适于本施药装置部分所描述的相应结构。
如图1、图2所示,根据本发明示例性实施例的施药装置整体上包括雾化发生装置和气流输送组件。
雾化发生装置包括为药液提供雾化发生空间及气流输送通道的雾化室391以及对所述药液实施雾化的超声振荡装置360。该超声振荡装置具有被布置为与 所述药液处于流体接触关系的振荡元件,以对所述雾化室中的药液实施振荡,使其雾化;
气流输送组件包括气流输入组件和气流输出组件,其中气流输入组件在所述超声振荡装置360不断的将所述药液雾化,向所述雾化室391不断的供应动力气流;气流输出组件将所述动力气流与所述雾化药液形成的气态流带走并施加于施药目标所在的环境内。
虽然上述构成部分可制备成几个相对独立的模块并在功能上相互关联,但为便于操作与使用,本发明的实施例将药液雾化发生装置、气流输送组件制作成便于移动和携带的紧凑的整体装置。下面结合附图详细阐述本发明的各种实施方式的施药装置。
如图1、图2所示,从整体结构来看,本发明实施例的施药装置整体呈一紧凑的组合结构。具体而言,雾化发生装置的雾化室391(图24)被设置在施药装置的大致中间位置,用于提供用于药液雾化并形成超微药物颗粒气态流的空间与场所,而超声振荡装置360则以集成件的方式设置在雾化室391内部的底部。为使施药装置的结构紧凑,气流输送组件分为动力气流输入组件和含有药物颗粒的气流输出组件(简称气流输出组件)两大部分。动力气流输入组件包括一内设有送风机200的风箱130,其设置在雾化室391的左侧,所提供的动力气流通过与其邻接的雾化室391左壁上的动力气流输入口154(图18)输入雾化室391内,而最终在雾化室391生成并输出的含有药物颗粒的气态流则由设置在雾化室391顶部的气态流输出口420处的气流输出组件送出施药装置外。为有利的控制供入雾化室391的药液量以保证雾化量及雾化效果,本实施例还在雾化室391的与风箱相对的另一侧,设置一贮液箱300。该贮液箱与雾化室391之间设置有流道及药液定位供液装置以保障并控制对雾化室391的供液。使用时药液先注入贮液箱300再由雾化室391右壁上的待雾化药液的输入口供入雾化室内。本实施例设置一贮液箱以保证对雾化室391可控的供液,但该贮液箱300并不是必须的。在一种可替代的实施例中,通过一供液管直接从施药装置外向雾化室391供应,但这种结构看似简单,实质在使用中需要外引供液管的操作很麻烦,也不利于施药装置的整体自动控制。
根据本发明的一种实施例,动力气流为空气流。具体地,在风箱130的底部设有一与风箱流体连通的底部风道270(图24),该底部风道270以底座形式设置整个施药装置的下部,一方面可用于支撑风箱、雾化室391等部件;另一方面, 其内部被用来设置超声振荡装置的稳压器及贮液箱搅拌装置的驱动电机及控制系统的电控元件及电路板等工作时产生废热且需要散热的电器部件,将运行时需要散热的这些电器部件设置在底部风道270中,不但使这些需要散热的电器部件获得良好的散热,所产生的废热还可用于加热被吸入到底部风道270中的空气,从而提高动力气流的输入温度。这样,本施药装置不但可以提高雾化效率、改善超微药物颗粒气态流的生成及施药装置的施药效果,还可以获得很好的节能效果以及使本施药装置的整体结构及工艺变得更为简单。
下面结合附图,针对本发明实施例的施药装置的上述结构做进一步的具体说明。
2.1、关于雾化室:
如图1、图35、图14~图16所示,为便于超声振荡装置360的拆卸与雾化室391的清洗,本实施例的雾化室构造成为包括上下两部分的分体结构。下部分为具有上开口的供液底盒390,上部分为导流罩410,两者可拆卸的上下结合在一起,以提供药液雾化及形成超微药物颗粒气态流所需的空间。该空间不宜过小而应提供足够的流程,以使雾化了的药液颗粒不是与气流一混合就被送出,而应可以使动力气流与雾化药液的雾化颗粒充分混合形成所含药物颗粒粒径更小更均匀的气态流,但该空间也不应过大,以防止一些雾化了的药液颗粒因为在容器内的流程过长而大量返回药液表面并影响超声波雾化装置的雾化施药效果。
进一步的,如图1、2、35所示,在雾化室的供液底盒的一侧壁形成待雾化药液的供入口392,以使待雾化药液流入供液底盒390内雾化室391的位置,从而供集成式超声振荡装置360作用发生雾化。在供液底盒的另一侧壁上设有动力气流输入口154,以供动力气流进入雾化室内,将所产生的雾化药物及时带走并形成含有超微药物颗粒的气态流。在导流罩的顶部设置气态流输出口420,以使气态流流出雾化室。
本发明实施例的施药装置通过上述对雾化室的药液供入口、动力气流输入口、含有超微药物气态流的输出口与最佳的药液液面的相对设置关系、以及气态流的输出口的轴线与动力气流输入口的轴线之间的角度这些参数的设计,综合考虑了动气气流对药液雾化质量及气态流形成及输出效果的影响,通过参数的配合与优化,为动气气流与超声振荡装置的雾化作用提供了良好的结合,实现有限资源最大合理化的应用、以及单独手段均不实现的综合技术效果。
对于本发明实施例的雾化室,还提出如下进一步的改进。
2.1.1、关于供液底盒的设置
在实际农业生产中,药的种类比较繁杂,尤其是农药,在每次施药结束后,为了提高下次使用的效果和安全,都需要对施药装置进行必要的清洗,为此本发明的实施例提出了具有如下特征的供液底盒。
如图图1-2和35所示,本发明实施例的供液底盒具有大致的梯形结构,在梯形结构的下部设有与导流罩配合的部分。供液底盒下部的内壁面形成一凹腔用来作为设置超声振荡装置及容纳雾化所需药液的雾化室391,而由下部向上延伸形成的具有较高位置的台阶的上部与贮液箱300的底部配合。一方面,供液底盒支撑贮液箱及提供贮液箱及其部件所需的安装空间,另一方面,利用供液底盒的内壁面形成与下部的凹腔连通的供液流道392,以将贮液箱中提供的药液供给雾化室391,并流入供液底盒中的超声振荡装置所在的凹腔中。在一种实施例中,所述供液流道为具有一定坡度的光滑流道。
进一步的,如图35所示,为使药液能够方便、可控地从贮液箱300流入超声振荡装置所在的雾化室391中,在上述连通贮液箱300与供液底盒390的流道392上,设有用于控制贮液箱300与流道392连通或关闭的顶杆339。当贮液箱300落座到供液底盒390的上部的底面上时,该顶杆339用于打开贮液箱300,使其药液向流道392流出(具体顶杆如何控制贮液箱300的药液的输出将在后面贮液箱部分将详细阐述)。
进一步的,如图1和2所示,在贮液箱300中设置一电力驱动的搅拌设备350。为能够以简单紧凑的方式实现搅拌设备驱动部件的安装,供液底盒390位于上部的台阶处内壁面与搅拌轴相对应的位置,向上隆起形成一中空圆壁形结构397。如图35、图53所示,搅拌设备的转轴下部或与转轴连接的联轴器可至少部分设置在中空圆壁形结构397内并与驱动电机359可驱动地连接。采用装置结构,一方面节省了搅拌设备驱动机构的设置空间,另一方面还使得转轴穿出供液底盒390的处于一个较高位置的部分,从而防止药液从供液底盒390的转轴穿出处泄露。
如附图35所示,本发明实施例的供液底盒390位于上部的台阶处内壁面还在中空圆壁形结构397的外周形成一较低于中空圆壁形结构397上端面的凸台3971,凸台的外周形成一与流道连通的槽道3972。进一步的,将槽道3972和流道392的最低位置均设计为大于供液底盒390中的雾化室391的最高工作液位 面,中空圆壁形结构397的上端面高于圆形槽道3972的最高位置。
根据本发明实施例的具有如此结构凸台获得如下技术效果:
2.1.1.1、贮液箱300的底部外壁面、供液底盒390的上部、以及底座的上部结构形状相对应。
形成在供液底盒390上部的内壁面上的槽道3972和凸台3971可用作贮液箱300的安装限位结构,与该安装限位结构相应,贮液箱300的底部形成一与该凸台对应的凹部和凸部。当贮液箱300安装在供液底盒390的上部时,贮液箱300不会轻易发生摇晃和被碰倒。在一种实施例中,如图1、2、37~图43所示,设于贮液箱300底部的底盖的形状与该槽道3972和凸台3971的形状相对应地配合,位于底盖内的搅拌桨350上的连轴器358可伸入供液底盒390的中空圆壁形结构397中并与连接至搅拌桨350的电机的下联轴器357(图53)连接与配合,而底盖的内壁与底盖内的搅拌桨350上连轴器358外壁之间的空腔可以将供液底盒390的中空圆壁形结构397纳入其中。
同样地,用于安置供液底盒390的底座位置与供液底盒390相对应地具有一略细的圆壁形结构,与搅拌桨350的电机连接的下联轴器357位于该圆壁形结构中。当供液底盒390安装在底座上时,供液底盒390的中空圆壁形结构397刚好可以将底座上的略细的该圆壁形结构纳入其中。这样,即使贮液箱300的底盖出现漏液,漏液也仅存在于供液底盒390的中空圆壁形结构397之外,最多也仅在底座上的略细的圆壁形结构外。存在于供液底盒390的中空圆壁形结构397外的漏液沿凸台3971和槽道3972流入供液底盒的药液流道392处并进入雾化室391,存在于底座的圆壁形结构外的漏液流入供液底盒390的位与正下方的底座位置中并被收纳,这样可有效防止漏液进入搅拌桨350电机或底座风道内。
2.1.1.2、通过设置凸台3971,使供液底盒390的内壁面在凸台外周形成环形槽道3972并使供液底盒390的上部台阶上的内壁面向环形槽道3972降低,可将凸台3971上的药液收集到环形槽道3972中,并统一由流道392送进雾化室391内,可以防止药液不能充分流进供液底盒390下部的凹腔中从而滞留在供液底盒的某些死角所造成的药液浪费。
2.1.1.3、由于搅拌器的驱动轴从供液底盒390的伸出位置具有较高的高度,能够有效防止药液从搅拌器的转轴与供液底盒390配合的转动间隙处因密封不严而泄露,从而大大降低了密封压力。
对于上述中空圆壁形结构、凸台、环形槽道、流道,若进一步进行如下优化 设计还可获得更好的技术效果。
如图35所示,将位于环形槽道3972外周的供液底盒390的内壁面设计为逐渐向环形槽道3972降低,而环形槽道也向流道392的入口逐渐降低,流道392也向雾化室391的供液口3922逐渐降低。如此,通过药液流动方向位置高度的降低,可使无论是供液底盒390被控流出的药液,还是由于密封不严等原因渗漏流出到供液底盒390的上壁面上的药液,都能被充分的送进供液底盒390的下部并进一步被用于雾化,从而避免了药液供给过程中所产生的积滞现象,既避免了药液的浪费,也减小了清洗工作。进一步的,将环形槽道3972和流道392的最低位置均设计为大于供液底盒390中的雾化室391的最高工作液位面,中空圆壁形结构397的上端面高于环形槽道3972的最高位置,进一步有效防止药液进入机器内部。
本发明实施例的供液底盒390不但构成了雾化室391的底部,还通过台阶状延展到贮液箱300的底部,并在其内壁上形成与贮液箱300流体连通且具有位差的流道392以及与流道392具有位差的环形槽道3972,使得贮液箱300的药液可容易的从处于较高位置的贮液箱300向处于较低位置的供液底盒390的凹腔流进,也使得可能出现在流道392外的药液能够通过位于凸台外周的环形槽道3972的流进流道372中,并与供液一起流进供液底盒390底部的凹腔中。进一步地,供液底盒390在贮液箱300、雾化室391这些在运行中容易产生药液外流的结构的底部延伸,使得供液底盒390犹如一道屏障和接盘,有利地防止了设置在其下面的部件(如搅拌电机等关键部件)被药液弄脏,甚至造成电机的短路,也使得本发明实施例的施药装置能够仅仅通过供液底盒390的简单拆卸就非常容易的进行清洗。在实际农业生产中,农药的种类比较繁杂和多样,在每次施药结束后,为了提高下次使用的效果和安全,都需要对施药装置进行必要的清洗,但受施药装置结构的限制,这一清洗过程很难达到所要求的实际效果。而本发明实施例的供液底盒,可以提高实际施药效果和方便实际使用者的操作,施药作业后清洗时只需将供液底盒取下即可,而不必将整个施药装置全部抱起来清洗,仅需要清洗下供液底盒就可以了。
需要说明的是,对于供液底盒390的上述设置,如果不考虑供液底盒有利清洗的技术效果,实际上可取消供液底盒,而直接利用底座(本申请将底座优化为底部风道)上顶面形成与供液底盒类似的结构。如设置超声振荡装置及雾化药液所需的凹腔(如图1所示)也是可实施的,但这样会给产品的清洗带来了极大的 不便。当需要对雾化室底部及各部件进行清洗时,需要将整个底座或整个机器搬起进行清洗,使用非常不便。而通过设置具有简单结构的供液底盒,可以产生上述多种技术效果。
在本发明的另一实施例中,如图35所示,底座(本申请将底座优化为底部风道)上顶面形成与上述供液底盒外壁全匹配的结构形状,使供液底盒390与底座(本申请将底座优化为底部风道)的上顶面能够吻合的匹配在一起,犹如一个拷贝件贴合在底座的上顶面上,不但整体结构更为简单紧凑,还进一步提高整体装置防脏易清洗的效果。
2.1.2、关于导流罩的设置
如图1、2、图11~图18所示,为方便超声振荡装置的设置及更换清洗,导流罩410由左右两半壳体可拆卸的装配在一起,使导流罩410具有可拆卸的方便灵活性。进一步的,如图11、图14及图15所示的导流罩设置成包括外壳体为411和内壳体为421的双层结构,如此可在不改变外观与影响其他结构配合的情况下,利用其内壁形成光滑的流道,改进雾化药液及气态流的生成与引出效果。如图15所示,在本发明实施例中,将导流罩410的内壳体的前后壁设计为弧形内壁并使得导流罩的内壁朝向上部的气态流输出口收敛,这样可以减小流动损失,并增大气态流的输出动力。进一步的,导流罩410的内壳体上还形成导流孔4211,如图15所示,使得从左右壳体结合的位置逸出到内外壳体之间的药液被重新引回雾化室内进行雾化。
在本发明的实施例中,为使导流罩410为药液提供发生更充分雾化并能被动力气流高效携走且充分混合的空间,如图14~图16所示,导流罩410从下向上依次包括封药液段471、雾道段472和出雾段473,而为防止在导流罩410与供液底盒390的结合处产生药液外流,导流罩410的封药液段471形成一收紧口并插进供液底盒390内部,以与供液底盒390内壁紧贴。这样,不但防止漏风,也使得即便有药液溅射在导流罩410上也可以流到供液底盒390中,从而防止漏液,例如,插入深度在15~30mm之间。
参照图2、13-16和35,上述雾化室391的药液供液口3922设置在封液段,动力气流的输入口154设置在封液段与雾道段之间,动态气流输出口420设置在出雾段473的端口。
需要说明的是,导流罩410虽然从物理结构上为雾化室391的构成部分并贡 献了药液雾化所需的空间,但其实际上其也具有气流输送装置的作用,为药雾的输送及气态流的生成及送出提供了流动空间及输送通道。鉴于导流罩410的这些作用,本发明的实施例的导流罩410进一步具有如下特征。
2.1.2.1、消沫肋441的设置:
如图14~图16所示,在导流罩410内壁的例如雾道段472形成有消沫肋441,用于减少或消除超声波振荡器在工作过程中所产生的气泡或泡沫,从而减弱因气泡或泡沫对超声波振荡器对药液雾化量和雾化能力的干扰和影响,助于工作结束时因气泡或泡沫造成对剩余药液残余量的影响,还可以对雾化流、动力空气流起到引流作用,防止药液外流。
在一种实施例中,消沫肋441大致沿导流罩410的纵向方向设置,这样不但能更好的实现上述效果,还不至于增大气态流引出的阻力。进一步的,消沫肋441的肋顶为尖顶,以提高消沫肋的消沫效果。
2.1.2.2、导流梳442的设置
如图14所示,在导流罩410的设置有动力气流输入口154的侧壁(与风箱相邻的左壁)上不但形成有消沫肋441,还在动力气流输入口154的气流流出方向,设置有导流梳442,该导流梳由水平导流梳部分4421和竖向导流梳部分4422构成。具体地,如图1.所示,水平导流梳部分4421从导流罩的动力气流输入口154的上方向雾化室391内横向伸展一定长度,例如20~35m处,再向供液底盒390下方弯折延伸形成竖向导流梳部分4422,如此可获如下技术效果:
第一,利用导流梳将动力气流输入口分隔成几个小的动力气流输入口使得动力气流被均匀的送进雾化室,可防止动气气流动量过大进风吹倒超声波振荡药液柱造成超声振荡能量的损失,也降低了无效雾化量(超声振荡装置来不及振荡就被动力气流裹挟带出,但最终大多因雾滴太大而返回雾化室或沉降到施药装置附近未能到达施药目标),从而有效提高了本发明施药装置的雾化发生量及能效比。
第二,导流梳所形成的水平导流部分及竖向导流两部分不但可以起到引导动力气流的作用,还可以防止动气气流动量过大进风吹倒超声波振荡药液柱,从而减少了超声振荡能量的损失,也降低了无效雾化量(超声振荡装置来不及振荡就被动力气流裹挟带出,但最终大多因雾滴太大而返回雾化室或沉降到施药装置附近未能到达施药目标),有效提高了本发明施药装置的雾化发生量及能效比。
在进一步的实施例中,如图14所示,为减小不必要的流动阻力损失,导流梳442的宽×高=20~35mm×17~55mm之间,例如,宽×高=25mm×27mm, 导流梳的竖向梳齿宽度大于水平梳齿宽度。
导流梳的梳齿尤其是竖向设置的梳齿上也形成消沫肋441。
2.1.2.3、阻液堤443的设置:
如图14所示,导流梳442竖向导流部分的末端还形成一阻液堤443,阻液堤443连接在各个竖向导流梳442的末端,以防止施药装置在不平衡工作状态时出现药液倒流造成机器内部滴药液或渗药液现象的产生,同时还可通过连接在导流梳末端提高导流梳的整体强度。
2.1.2.4、突尖部445的设置:
如图14所示,阻液堤443的末端还形成有多个向下的突尖部445,不但可以加强导流梳的导流作用,还对药液雾化过程中所产生的泡沫具有刺破作用,从而降低本施药装置雾化过程中泡沫的产生,防止雾化药液因产生大量泡沫不规则地进入机器内部造成滴药液或渗药液现象的产生。
上述的导流梳442、阻液堤443、突尖部445可以设置成一体,也可以分别形成。另外,在阻液堤443的作用通过规范操作者及其它控制手段来保证的情况下,可以取消阻443液堤,使导流梳442的各个梳齿之间分开而不在末端设置阻液堤,这样不但使导流梳各个梳齿对动力气流具有很好的分流、引流作用,还可以使各个梳齿具有很好的导液作用,使导流罩壁上产生的液滴可容易的导引进导流梳下方的供液底盒中。可替换的,在各个梳齿末端形成向下的突尖部,使其不但能有利的将其上的药液引进其下方的雾化室底部的供液底盒内,还可以对雾化过程中所产生的泡沫具有刺破作用,具有很好的消沫效果。
另外,对于导流梳的水平导流部分和竖直导流部分还可以整体形成一弧状结构,或取消水平导流梳部分如图15所示直接将竖直导流梳部分形成于导流罩的气流输入口,由输入口上沿向下伸展。
2.1.2.5、阻沫网449的设置:
如图17、图18所示,当溶液中含有各种单一的或复合的农药成分、消毒剂成分、有机或无机成分时,在受到类似搅拌作用的外力作用时,就可以产生各种规格和大小的气泡或泡沫,从而严重影响实际使用效果或严重影响机器的安全稳定性能。为此,如图18所示,在本发明的实施例中,可以在雾化室的内壁面前设置一可拆卸的独立部件——阻沫网449,该阻沫网的表面形成有众多的1~3×1~3mm2规格的小网格。阻沫网449设置在雾化室的非动力气流入口所在壁的其他壁上,如雾化室的前和/或后内壁和/或与动力气流输入口相对的侧内壁前。 具体的固定方式可通过卡接、插接、螺钉固定等可拆卸方式将阻沫网449设置在雾化室的内壁上,也可以卡接、插接、螺钉固定等可拆卸方式将阻沫网449设置在位于雾化室底部的超声振荡装置上。如图17、图18所示,阻沫网449通过其上众多的1~3×1~3mm2规格的小网格可以将该种气泡或泡沫有效阻挡在供液底盒区域内,防止气泡或泡沫被风力裹挟下从机器的任意结构缝隙处逸出机外造成药液的外溢,将其对机器的安全稳定性能的可能影响和威胁降到最低程度。
最后,还需说明的是:对于本发明而言,上述一些部件可以认为属于雾化室也可以属于下面描述的气流输送组件。例如,导流梳、动力气流输入口、气态流输出口、导流罩从物理位置上看都是形成在雾化室的壁上,但从其功能作用上看,却主要体现在改善动力气流的输入及含有超微药物颗粒的气态流的生成及输出上,因此该些部件从功能看将其视为是气流输送装置的结构。另外,水平、竖向这些方向技术术语,应将其理解为总体上大致水平、大致竖直。
2.2、超声振荡装置
为能不断形成含有超微药物颗粒的气态流的效果,本发明放弃了现有技术以多孔性材料为载体的提液装置。因为我们试验发现,当在施用溶解性相对较差的农药物种时,未溶解的部分药物微小颗粒容易被多孔性材料的微小孔隙所阻挡,会造成部分农药的无故浪费,也会影响到施用农药的实际效果。同时,由于各地具体条件的不同,药液质差异很大,长时间使用,药液质硬度高的地区,容易出现药液碱堵塞多孔性材料载体的提液装置的现象,一方面在使用上增加了麻烦和工作量;另外,当施药结束后,在施药装置的进一步清洗上,也会容易出现清洗不彻底、容易损坏该部件等弊病。
而利用超声振荡装置可以同时实现药液雾化、升温和药液搅拌,即第一方面使药液被雾化,第二方面吸收超声振荡过程中产生的热能加热药液促进雾化,第三方面利用超声波的振荡作用及不断形成和落下的液柱实现搅拌作用,具体的效果由于在方法部分已经描述,此处不再赘述。
下面具体描述本发明的示例性实施例的超声振荡装置。
2.2.1、超声波振荡器的结构
本发明实施例的通过超声振荡装置利用超声波振荡原理实现药液振荡雾化,超声振荡装置包括一个或多个超声波振荡器,而每个超声波振荡器又包括超声波振荡元件(常见的如陶瓷换能片)、散热部件、控制电路等部件。在本发明实施例中,采用集成式超声波振荡装置将该些部件都集成在一个密封壳体中,且超声 波振荡元件与所工作药液接触,以适应药液这一不同于水的使用对象。
集成式超声波振荡装置可以是设有多个超声波振荡元件并将所有振荡元件、散热部件、驱动和控制电路等部件全部集成在一起的一个大超声波振荡器,还可以是内部包括一个或多个超声波振荡元件的模块化集成式超声振荡装置,而每个超声波振荡元件可以是一个独立的由上述陶瓷换能片、散热部件、驱动和控制电路等部件构成的一个完整的超声波振荡器,也可以是仅包括振荡元件和散热部件的振荡单元(注意此处不能与前面关于底部风道的设置冲突)。该集成式超声波振荡装置以卡槽、卡扣或螺丝等可拆卸方式固定在供液底盒390的底部。
使用时,可将超声振荡装置直接设置在药液中或设置在药液容器的壁外(本实施例是供液底盒),但都保证超声波振荡元件(如陶瓷换能片)与待雾化的药液接触(本实施例是设置在容器内的药液中)。运行时,与药液隔离的驱动和控制电路在通电后会产生与陶瓷换能片谐振频率相一致的驱动电压,该电压将被施加到电陶瓷片上使其产生振荡能量。振荡能量在药液中沿着与陶瓷换能片表面垂直的方向传播,这一向上传播的能量使药液面隆起一个个药液柱,药液柱的顶端产生大量微小的张力波,使得隆起药液面的表面张力大幅度的减小,从而形成许多雾化状的微药液粒子,由于陶瓷换能片的工作振荡频率在超声波的频率范围内,所以称其为超声波振荡雾化。在一种实施例中,药液的深度保持在20~60mm的药液深度,在该深度下药液面隆起的药液柱高度大致在60~100mm的高度,有利于药液的雾化及气态流的生成。
现有技术中超声波振荡器通常应用于空气加湿领域,由于水和药液在比重、容重、电导率、电解率、粘度、酸碱度等方面都有较大的不同,因此,本申请在利用超声波振荡器进行施药时并未将其简单的应用于施药装置领域,而是进行了与药液对象相配的改进。除上述集成式超声波振荡器的改进外,本发明的申请人还发现超声波振荡振荡元件的数量优化对施药装置的能效比的提高也起到很好的作用。
2.2.2、超声波振荡振荡元件数量的选择
经过大量的田间试验,可以得到施药装置中超声波振荡装置的振荡元件数量、施药时长、相对密闭环境湿度、植物叶片正反面吸收、防治效果之间的相互关系并加以优化。
试验结果见表一。
表一:不同数量的超声波振荡元件与施药时长、相对密闭环境湿度、植物叶 片反面吸收效果、防治效果之间的关系
Figure PCTCN2014090027-appb-000001
从表一可以看出,每台施药装置的超声波振荡元件数量与施药时间的长短成正比,即每台施药装置的超声波振荡装置的振荡元件数量越多,雾化率越高,施药时间就越短;而施药时间与防治效果、叶背吸收率之间则呈抛物线型关系。例如,当施药时间在1~2小时范围内时,施药时间越长,防治效果和叶背吸收率则越好,并达到峰值;当施药时间超过2小时时,防治效果和叶背吸收率则随施药时间的增长而降低;施药时间与大棚湿度成正比,即施药时间越长,则大棚湿度越高。因此施药时间选择为2小时左右,此时相对密闭环境内的空气湿度增加不大,基本与闭棚后棚内的空气湿度相当,而植物叶片叶背面的吸收效果和防治效果则均为最佳,因植物体地上部的吸收主要以叶片吸收为主,而叶片吸收则又以叶背吸收为主。因此,叶背吸收的高与低则与整个防治效果的好与坏直接相关。
从表一也可以看出,每台施药装置可集成的超声振荡装置360的振荡元件数量可以根据需要进行相应的配置,以综合性价比为标准,以每台施药装置的超声振荡装置的振荡元件数量为3~10个,例如为6~10个,雾化率大于3.0kg/小时。这样,一方面可以快速地形成含有超微药物颗粒的气态流强度,进而提高施药效率,一方面可以避免不必要的能量及药液浪费。
2.2.3、超声振荡装置的设置方式
无论超声振荡装置360采用何种设置方式,对药液的雾化作用都是通过其振荡元件366对药液实施雾化作用实现的。如圆盘形状的陶瓷换能片是目前市场上超声振荡装置常采用的振荡元件形式。而无论超声振荡装置是采用多个独立的超 声波振荡器还是采用一个集成式超声波振荡器,只要保证其振荡元件与药液接触,就可以使药液发生雾化作用。但对于超声振荡装置设置在容器内直接与药液接触的方式来说,超声波振荡器选择集成式超声振荡装置,以便于清洗和控制药液。超声振荡装置的结构形式与其设置方式相配,具体的,本发明实施例的超声振荡装置以下这两种实施方式实现。
2.2.3.1、超声振荡装置的第一种设置方式
如图24所示,将超声振荡装置包括一个超声波振荡器或多个独立的超声波振荡器单元,设置在供液底盒的壁上,仅振荡元件/陶瓷换能片透过供液底盒壁上的开孔与供液底盒的药液接触施加振荡作用。
具体的,如图24所示,在供液底盒的底壁上形成3~10个位于较低位置的开孔,或属于同一个集成式超声振荡装置或属于不同超声波振荡器的3~10个超声波振荡元件(部分由于投影关系未示出)被设于供液底盒的底壁上,透过该些开孔与供液底盒中的药液接触并实施雾化作用,而其下部分则位于底部风道中或能够与底部风道流体接触。进一步,为防止超声振荡能量在药液中的无序传递所造成的能量损耗,供液底盒的底壁上还形成隔断(如图24所示),但为保证药液在供液底盒内的流通效果,所谓隔断并不是完全隔断,而是在隔断上开有流通孔,使得各个振荡元件所对应的振荡区域之间的药液还能有一定的流通.
在上述实施方式中,由于超声振荡装置设置在供液底盒的外部,非常便于超声波振荡元件的拆卸和更换,还便于根据需要启动超声波振荡器的个数;超声振荡装置可容易的设置在供液底盒的较低位置处,使得施药装置不需要维持很高的药液液位,雾化效果好,且施药结束后无效药液量少;超声振荡装置非工作部分可设置在底部风道中,不但使超声振荡装置得到良好的冷却,还使超声振荡装置工作时所产生的废热被利用加热从底部风道供入风箱中提高动力气流的输入温度。
2.2.3.2、超声振荡装置的第二种设置方式:
如图23所示,选择一集成式超声振荡装置,将其置于雾化室的供液底盒的内部的药液中使药液将其完全覆盖,且仅振荡元件如陶瓷换能片露出密封壳体与雾化室中的药液真正接触实施振荡作用。具体地,集成式超声振荡装置360包括密封壳体360、液位控制件361以及3~10个超声波振荡元件366,该些振荡元件露出密封壳体与药液接触。
可见该种实施方式的超声振荡装置不必对药液容器开孔,不涉及与药液容器 的密封难度问题,结构简单容易操作,且由于采用密封壳体集成设计,因此大大提高了产品的安全性及拆卸的方便性。但这种实施方式,由于整个超声振荡装置设置于供液底盒内部的药液中,势必要求较高的液位才能保证超声振荡装置的正常工作,且施药装置结束后容易残留药液,需要经常的清洗且也造成药液的浪费和药液资源的浪费。
2.2.3.3、超声振荡装置的其它改进
当超声波振荡装置被可拆卸的设置在供液底盒的内部的底部时,在所述供液底盒中沿液位高度方向上设置有导杆,使所述超声波振荡装置其密封壳体可以滑动地安装在该导杆上。进一步的,在所述供液底盒中可以对所述超声波振荡装置的密封壳体设置有增大或减小浮力的措施,以方便选择在不同目的和条件下对超声波振荡装置的使用方式。
2.3、控液稳效装置
为解决上述超声振荡装置第二种实施方式存在的问题,在本发明的一种示例性实施例的超声振荡装置中,设置一控液稳效装置430与超声振荡装置配合工作,如图19~图22所示。此举不但能大大提高上述第二种超声振荡装置设置方式的雾化效率,还能有效降低施药装置工作结束后的剩余药液残余量,从而实现真正的节能减排目的并使施药装置具有容易操作的简单结构。
下面参照图19~图22所示,描述本发明实施例所提出的与设置在药液容器中的超声振荡装置进行适配工作的控液稳效装置430。
2.3.1、控液稳效装置430的结构及基本工作原理
在在一种实施例中,控液稳效装置430包括一罩体,该罩体由顶壁431和外周壁4331围成一向下开放的腔体,用于罩在超声振荡装置的上方。
所述罩体的顶壁形成有与所述超声振荡装置的振荡元件数量及位置对应的开孔,如图26所示,每一开孔的下方由所述顶壁的内壁面向下延伸形成一两端开口的直通式筒体。如图20~图22所示,该筒体用于罩在与其对应的振荡元件的外周,由其两端开放的内腔构成其相应振荡元件的稳效腔432。
所述筒体的外壁面4321与所述罩体外周壁的内壁面4331之间的腔体构成控液腔4330,所述控液腔为上端封闭的腔体,其顶面由所述罩体顶壁的非开孔区域构成。
所述罩体外周壁4331的下端面435与所述超声振荡装置的上端面之间形成一个或多个缝隙用作所述控液腔4330的控液缝隙434。
如图23所示,筒体的下端面与所述振荡元件的外延面364之间也形成一个或多个缝隙用作所述稳效腔4320的供液缝隙4323.
所述稳效腔供液缝隙的最高位置低于或等于所述控液腔控液缝隙开口的最高位置。
上述实施例的控液稳效装置430是根据连通器原理和虹吸现象而设计的,具体而言:
如图24和53所示,当贮液箱300被打开向雾化室的供液底盒390提供药液时,药液首先流入控液稳效装置430及超声振荡装置360与供液底盒390之间的空隙内;当药液先行充满控液稳效装置430及超声振荡装置360的四周且药液液位达到略高于控液稳效装置430的控液缝隙434时,药液同时也通过控液稳效装置430上的控液缝隙进入控液腔及稳效腔中;
由于控液腔4330是控液稳效装置顶壁431的非开孔区域与控液稳效装置430的周壁(也即控液腔壁)4331以及直通筒外壁(也即稳效腔壁)4321之间形成的腔体,因此控液腔内的上端面为密闭的,而下端面则通过控液缝隙434与空气相通,因此当供液底盒内的药液通过控液缝隙434进入该控液腔时,控液腔的上方将形成一密闭的空气腔,当控液腔的液位升高时,在液柱的压缩作用下密闭空气腔内的空气压力也将会升高,该压力会使药液不能完全充满其整个腔体。
而稳效腔432则不同,由于其腔体由直通的筒体构成(上下端面均与空气相通),且其下端与振荡元件的外延面364之间形成供液缝隙,因此进入控液腔中的药液又将有一部分流入稳效腔中,而稳效腔由于其上端是与外界空气连通的,其中的药液不会由于药液升高而使其上方的空气压力发生变化,也即当药液从稳效腔缝隙进入稳效腔时可以沿其腔体内壁自由上升而不会受阻于空气压力。
上述稳效腔、控液腔的设计使得稳效腔与控液稳效装置周围的药液形成了“连通器效果”。因此一旦当超声振荡装置与控液稳效装置周围的药液液位高于控液腔的最高液位,稳效腔内的液位将与控液稳效装置周围的药液液位(即供液底盒凹腔内的液位)保持动态相同,且控液腔内的液位由于其上部形成有密闭的空气腔,在密封空气的压强作用下,控液腔内的液位势必会低于稳效腔内及控液稳效装置周围的液位。而供液底盒与超声波振荡器及稳效控液装置之间的空隙很小,所设间隙主要是为了保证超声振荡装置散热的需要,填充在控液稳效装置及超声振荡装置周围及与供液底盒内壁之间的药液量很少。因此,采用了稳效控液 装置的超声振荡装置无需供给大量的药液才能保证设置在容器内部的超声振荡装置的安全有效的雾化作用,从而最大程度的降低了施药装置工作结束后的剩余药液残余量并保证了超声振荡装置的高效安全工作;而由于本申请将稳效腔供液缝隙的最高位置设计为低于或等于所述控液腔控液缝隙开口的最高位置。因此即便贮液箱停止了供液,甚至流道中已经没有了药液,只要供液底盒中的药液液位还高于控液缝隙的最高位置,由于连通器原理及虹吸作用药液仍能够进入稳效腔中保持与供液底盒中的药液液位相同从而维持其最佳工作液位,使所述超声振荡装置360从始至终都可以以最佳的状态雾化药液。而即便是液位到了停机液位不能使药液进入稳效腔,此时由于稳效腔内仍会保持一定的液位也不会导致“干振”。但此时的工作状态若持续下去无疑对超声振荡装置是不利的,因此本申请将控液缝隙的最高位置设定为停机液位线,当超声振荡装置上的检测元件361检测到供液底盒中的药液达到或低于控液缝隙的最低位置时即停止超声振荡装置的工作。
对于上述的最佳液位,靠施药前人为进行选择或设置,其通常通过贮液箱药液流出的位置决定的。由上面的分析可见,本申请的进液缝隙时刻起进液作用,而控液缝隙在液位高或最佳时无作用,只在施药的结束阶段液位接近停机液位时才起作用,主要为了控制药液在最后停机后的药液残留量。最低或停机液位靠液位控制件361检测并实施停机保护;供液底盒的供液口3922的最低位置与供液底盒的391位置处在同一水平面上,供液口的最高位置低于控液缝隙的最低位置处,以保证进液缝隙在整个施药过程中随时有药液供应。
本申请控液稳效装置的上述技术效果,不但使其可以应用于采用超声波振荡器的施药装置,也可以用于其他任何采用超声波振荡器将其所在容器内液体雾化的场合,还可以用于其他任何采用上述原理需要对液位进行控制的场所。
基于上述的工作原理,本申请若能进一步采取如下优化措施,还会取得更佳的技术效果。
2.3.2、控液稳效装置的优化措施
2.3.2.1、液位控制件的液位腔的设计
为能够使超声振荡装置在停机液位线时停止超声振荡装置的工作,如图23所示,本申请还在超声振荡装置上设置有液位控制件361,为保证该液位控制件的有效工作,控液稳效装置430还形成一液位腔以使液位控制件能够准确进行检 测工作,该液位腔的工作原理也是利用连通器原理使其内的液位高度与稳效腔、控液稳效装置周围的药液液位(即容纳有超声振荡装置及控液稳效装置的供液底盒的液位)相同,如图19~图22所示。基于该原理,液位腔的形成方式可有以下几种:
2.3.2.1.1:如图19所示,在其罩体顶壁与液位控制件361对应的位置处形成一类似稳效腔结构的直通式筒体,利用其内腔形成液位控制件的液位腔437(下称“全筒式液位腔”)。此种情况下,构成全筒式液位腔的直通式筒体与液位控制件的外沿面之间形成有类似供液缝隙的一个或多个进液缝隙(如图20所示)。
2.3.2.1.2:使罩体的外周壁在与液位控制件361对应的位置处形成一向控液腔凹进的半筒状凹部437,如图21-22所示,利用该凹部的侧壁面与供液底盒的内壁面形成一可供超声振荡装置液位控制件检测的液位腔(下称半筒式液位腔),该半筒式液位腔又可根据其腔体的顶部是否被罩体的顶壁封闭分为半筒顶部开放式液位腔(如图21所示)和半筒顶部封闭式液位(如图22所示)。
确定控液稳效装置采用何种液位腔依赖于与超声振荡装置的液位控制件361的设置方式相匹配。例如,当液位控制件设置在超声振荡装置的上端面的中间位置时,控液稳效装置就适合采用全筒式液位腔;若液位控制件设置在超声振荡装置的上端面两侧时,就适合采用半筒式液位腔;而液位控制件的设置位置通常跟超声波振荡元件设置个数有关,下面列出几个实施方式:
2.3.2.1.2.1、具有全筒液位腔的控液稳效装置430的实施方式
如图23所示,无论是配合由三个、四个、五个、六个,还是十个超声波振荡元件组成的集成式超声波装置360,由于液位控制件设置在超声振荡装置的上端面的中间位置,控液稳效装置就采用全筒式液位腔(如图19所示),与位于所述集成式超声波装置360表面的液位控制件361相对应的控液稳效装置430的液位腔437呈筒状,且是上下两端面都与空气相通的直通式。
2.3.2.1.2.2、具有半筒顶部开放式液位腔的控液稳效装置430的实施方式:
如图23所示,无论是配合由三个、四个、五个、六个,还是十个超声波振荡元件组成的集成式超声波装置360的控液稳效装置430适合采用该方式,由于液位控制件设置在超声振荡装置的上端面两侧,就采用半筒式液位腔(如图21、图22所示),但其顶部是开放式的,与位于所述集成式超声波装置360表面的液位控制件361相对应的控液稳效装置430的液位腔437呈半筒状,由于其上端 面未被控液稳效装置430的顶壁封闭,因此其下端面及上端面仍然与空气相通(如图20所示)。
2.3.2.1.2.3、具有半筒顶部封闭式液位腔的控液稳效装置430:
如图23所示,无论是配合由三个、四个、五个、六个,还是十个超声波振荡元件组成的集成式超声波装置360的控液稳效装置430也适合采用该方式,由于液位控制件设置在超声振荡装置的上端面两侧,就采用半筒式液位腔(如图21、图22所示),但其顶部是封闭式的,与位于所述集成式超声波装置360表面的液位控制件361相对应的控液稳效装置430的液位腔437呈半筒状。由于其上端面由控液稳效装置430的顶壁形成,因此所述液位腔的半筒与上、下端面仍与空气相通(如图22所示)。
由上述的几种液位腔构成方式可见,无论是哪一种,其上部都与外界空气相通,其底部都与稳效腔、控液腔周围的药液连通。因此液位控制件可利用连通器原理通过对液位腔的液位检测判断供液底盒中的药液及稳效腔中的药液液位是否处于停机液位线而采取相应的控制措施。
2.3.2.2、控液稳效装置的装配方式:
控液稳效装置与超声振荡装置的配合可通过与集成式超声振荡装置360直接组成装配体实现也可通过控液稳效装置430与气流输送装置如导流罩410(如图11~图13所示)相连接或固定和/或与导流罩410的阻沫网等部件协同相连接或固定(如图18所示);
下面结合说明书附图详细说明控液稳效装置的具体实施方式:
2.3.2.2.1、控液稳效装置430与集成式超声振荡装置360组成装配体,再与导流罩配套使用的形式
如图25、图26所示,控液稳效装置430与集成式超声振荡装置360通过位于控液稳效装置430上的连接机构436实现二者的相互配合连接成为一个装配体。
连接机构436为一卡爪结构,超声振荡装置360在其外周形成一向上的突沿与卡爪配合,使控液稳效装置被固定支撑并罩合在超声振荡装置的上端面上。该种连接机构可使控液稳效装置430与集成式超声振荡装置360的连接易安装、安装牢固、易拆卸、可重复的。
2.3.2.2.2、控液稳效装置430与导流罩410组成装配体与集成式超声振荡装置360配套使用的吊装形式
如图11-3、和17所示,将控液稳效装置可拆卸的固定在导流罩上,通过导流罩410与控液稳效装置430的设置位置配合使控液稳效装置以所需的控液缝隙、供液缝隙、进液缝隙吊装在超声振荡装置的上端面上。
2.3.2.2.3、控液稳效装置430与导流罩410组成装配体与集成式超声振荡装置360配套使用的固定装配形式
如图14-15所示,在导流罩410上预设出控液稳效装置430的安装槽460,控液稳效装置430罩体的顶壁面的四周向外形成有外延面,该外延面刚好可以插入导流罩410上的安装槽460中如图11、图13、图18所示,再将控液稳效装置与导流罩通过粘接或通过螺丝固定的方式组成装配体(插槽还要粘结或螺钉固定)。
2.3.2.2.4、控液稳效装置430与导流罩410及阻沫网449复合组成装配体与集成式超声振荡装置360配套使用的形式
如图17-18所示,先在控液稳效装置430与阻沫网449上设置相应的安装螺丝孔,通过螺丝使控液稳效装置430与阻沫网449先行固定;如图14和图15所示,在导流罩410上预设出控液稳效装置430的安装槽460,将控液稳效装置430罩体的顶壁面板的四周向外的外延面插入控液稳效装置430的安装槽460中;将上述组件通过粘接或通过螺丝固定的方式组成装配体,再通过与集成式超声振荡装置360进行位置的优化,以实现配套使用。
控液稳效装置无论与哪个部件组成组合体,但最终都还是要与集成式超声振荡装置配套使用,集成式超声振荡装置是由两个以上的超声波振荡元件所组成的集成体,也可以是所述集成体或不同的集成体之间组成的集成体,控液稳效装置可以根据所述不同的集成式超声振荡装置的使用方式进行相互配套。
2.3.2.3、控液缝隙、供液缝隙、进液缝隙的形成方式
根据上述的装配方式,控液稳效装置的控液缝隙及供液缝隙的构成方式可相应的具有以下实施方式。
2.3.2.3.1、对于控液稳效装置430与集成式超声振荡装置360直接组成装配体或需要两者事先固定的情况
对于控液缝隙形成方式,如图19所示,在沿向下开放的罩体外周壁(即控液腔壁)4331末端的一面或几面或每面都具有一个或多个豁口缝隙,以使得在控液稳效装置的外周壁的下端面与超声振荡装置的端面贴合时,两者之间形成一个或多个控液缝隙434,而除形成控液缝隙434以外的其它部分侧壁的下端面刚 好能罩住并贴合在超声振荡装置的周向外沿上。
对于供液缝隙、进液缝隙的形成方式,由于与振荡元件366位置相对应的每一个稳效腔筒体(即稳效腔)可以罩在相应的振荡元件陶瓷换能片的外周(稳效腔筒体下端面内径均大于所对应的的振荡元件如陶瓷换能片的外径),与液位控制件361位置相对应的筒体437(即液位腔)的下端面可以罩在相应的液位控制件的外周(其内径大于所对应的的液位控制件的外径)。为形成供液缝隙、进液缝隙,在构成稳效腔432及液位腔437的筒体的底端面上形成有多个,例如2~6个,豁口型的供液缝隙4323,使罩体罩在超声振荡装置上时,构成稳效腔、进液腔的筒体与相应的振荡元件、液位控制件之间形成供液缝隙。
2.3.2.3.2、对于控液稳效装置采用吊装的方式设置在超声振荡装置的上方的情况
控液缝隙、供液缝隙除可以采用上述的形成方式外,还可以直接由控液稳效装置与超声振荡装置之间的安装缝隙形成,即两者上下的端面不接触,使控液腔的底端面(也即外周壁的底端面)、稳效腔的底端面(也即筒体的底端面)、液位腔的底端面与超声振荡装置外周面、振荡元件或液位控制件的外延面之间被留有一定的安装间隙作为控液缝隙、稳效腔、液位腔的供液缝隙,从而不必在壁上专门加工进液豁口型的供液缝隙4323。
对于上述控液缝隙、供液缝隙、进液缝隙的形成方式,同时还需满足他们的位置要求,本领域技术人员可理解的,通过调整相应的腔体高度及配合的端面位置即可实现。
2.3.2.4、其他优化措施
2.3.2.4.1、对于控液稳效装置的稳效腔,根据需要,每个单独的腔可以是单层或单壁,也可以是复层或多壁的,从而可以使集成式超声振荡装置的工作效率达到最优。
控液稳效装置的稳效腔,无论是单层的或单壁的,也无论是复层的或多壁的,根据不同的需要,可以选择不同的腔径和腔高,其单层的或单壁的所述腔和/或复层的或多壁的所述腔的最外侧最大腔的上端面腔径为10~25mm,下端面腔径为15~35mm,或者以稳效腔筒体下端面内径大于所对应的的振荡元件如陶瓷换能片的外径为1~10mm,腔高为11~55mm并不高于药液深度。
2.3.2.4.2、对于控液稳效装置430上的控液缝隙434,其缝隙高度小于腔高, 出于一般情况下的控液目的,设定在1~10mm之间,例如为2mm。进一步的,控液缝隙434还可设置成可控或可调的。例如,在允许范围内,通过调整控液稳效装置的吊挂高度或在超声振荡装置上的支撑高度可实现对控液缝隙434的宽度或大小的调节和设置,以提高其使用方便程度和普适性。
2.3.3、上述控液稳效装置430可带来如下技术效果:
2.3.3.1、利用控液稳效装置430上的稳效腔432相对固定了超声振荡能量的作用药液范围,可有效阻止超声振荡能量在药液中的无序传递所造成的能量损耗,可有效提高集成式超声振荡装置的超声振荡能力10%~30%,使集成式超声振荡装置对药液药液雾化能力和雾化量得以稳定,从而达到稳效的目的。
2.3.3.2、控液稳效装置430在工作时,控液腔4330中自控液缝隙434以上部分被空气填充,药液仅存在于控液缝隙434和稳效腔432中。用于使用了控液腔4330,在工作结束时可使剩余的药液残余量降低至最低程度,剩余的药液残余量可控制在300ml以下。
2.3.3.3、供液底盒390中药液及集成式超声振荡装置360所处的391的位置处,即使达到了停机时的最低液位值极限,控液缝隙434以下所填充的药液量不足300ml,但足可以降低集成式超声振荡装置在工作时的温度和保护集成式超声振荡装置相关组件不致损坏。
2.3.3.4、由于控液缝隙434、进液缝隙4323的设置,放置于供液底盒390中的控液稳效装置430与集成式超声振荡装置360组成的装配体,当贮液箱药液通过供液底盒390的药液流道399流入供液底盒391位置时,药液就可通过控液缝隙434和供液缝隙4323进入稳效腔432(或4320)中;当最佳雾化药液位设定为高于控液腔控液缝隙最高位置的某一位置时,稳效腔中的液位高度就与设定的最佳雾化药液位始终保持一个动态的(工作时)或静态的(未工作时)平衡或相同的关系,从而使集成式超声振荡装置能够始终保持在最佳的雾化工作状态当中,直至达到了停机时的最低液位极限而停止工作。
本发明实施例的施药装置由于采用上述控液稳效装置与超声振荡装置的匹配结构,不但大大降低了超声振荡能量在药液中的无序传递所造成的能量损耗,使雾化效率大为提高,还通过上述物理结构上的配合实现了所供超声振荡装置的药液液位的控制,使得本施药装置通过较小的供液就能实现高效的雾化,而避免了需要较大液位保证超声振荡装置的正常工作而导致的药液浪费。
对于上述控液稳效装置与超声振荡装置,即便用在其他场合如加湿器,都一 样能取得很好的技术效果,也就是说其发雾对象无论是药液还是溶液都不影响其上述技术效果的实现。
2.3.4、控液稳效装置430的应用范围
控液稳效装置430不但可广泛适用于具有超声振荡雾化作用的各领域的施药装置中,还广泛用于以水为工作液体的空气加湿器装置中。
2.3.4.1、农业领域:
利用本申请的在农业领域的农作物或农产品或农业设施针对病虫害的预防或控制或杀灭和/或除残留农药和/或农作物的生长发育调节和/或场所的消毒等施放目的,有效减少农药的使用量,降低农药的使用成本;
2.3.4.2、空气污染治理与净化领域;
利用本申请在空气污染治理领域如私人或公共场所的房间或场所内针对对该环境内空气中的甲醛类、苯类、异味等污染物的去除目的的空气净化目的,有效减少生物活性物的使用量,降低空气污染治理的成本;
2.3.4.3、空气加湿领域:
利用本申请与空气加湿领域,可有效降低空气加湿器的制造成本,提高其工作效率,降低其工作能耗,实现节能减排;
2.3.4.4、卫生领域:
利用本申请在其它环保领域如污药液处理、垃圾消纳场所垃圾的降解及异味消除、生物肥料或沼气生产、卫生消毒等领域中有关药品的应用,降低使用成本,有效避免二次污染的发生;
2.3.4.5、其它领域:
利用本申请在其它任何需要进行液位控制或限制和/或其它任何需要进行液体总量或重量进行控制或限制和/或其它任何需要进行液体残留量控制或限制的任何设备和/或场所;
对于上述各领域,无论与本申请所提供的控液稳效装置所配套的超声振荡装置的工作液体是药液还是水或是其他溶液,只要能够通过超声振荡装置实现雾化的,都可使用本发明上述实施例的控液稳效装置。
2.4、贮液箱
保证雾化室所供药液在一个合理的液位内对超声振荡装置的雾化效果及含有超微药物颗粒的气态流是非常重要的。因此,本发明实施例的施药装置包括一 贮液箱以保证根据需要对雾化室可控的供液。
如图1-3、图6、图7所示,本实施例的贮液箱包括一可贮液的容器、容器设有一较小的的第一开口335和较大的第二开口337,其中较小的第一开口335设有药液供液控制装置330,较大的第二开口337可拆卸的密封有一底盖340,优选的,底盖340与第二开口337为螺纹配合,在第二开口337形成有圆筒形外螺纹壁,相应的底盖340形成有内螺纹壁,以使螺母拧紧在第二开口337圆筒形的螺纹壁上。
下面结合附图详细说明本发明的示例性实施例的贮液箱。
2.4.1、药液供液控制装置
为实现贮液箱对雾化室可控的供给待雾化的药液,本发明实施例的的贮液箱设置药液供液控制装置。
如图27~图34、图53所示,根据本发明的一种示例性实施例,药液供液控制装置包括顶杆式定位供液组件330和顶杆控制组件339X。在贮液箱底部的第一开口335处设置顶杆式定位供液组件330,该顶杆式定位供液组件330形成一与雾化室供液流道连通的液流腔及液流入口、液流出口,药液供液控制装置至少其顶杆设置在顶杆式定位供液组件330的下方,用于打开或关闭顶杆式定位供液组件330的液流入口,以实现对贮液箱药液的输出控制,但顶杆对顶杆式定位供液组件的作用是可控的。
2.4.1.1、顶杆式定位供液组件330
如图53所示,该顶杆式定位供液组件330包括皮帽塞331、供液组件内导柱332、内弹簧333、限位导圈338、顶片334、液位定位豁口336以及用于容纳这些组件并形成液流腔及液流入口的壳体。
顶杆式定位供液组件330通过壳体的外壁与第一开口335密封连接,内壁形成液流腔,贮液箱底部的第一开口335是所述液流腔的进口形成液流入口,液位定位豁口336处的出口形成液流出口;皮帽塞331作用在液流入口上用于打开或关闭液流入口,皮帽塞331固定在内导柱332的上端,内导柱332下端穿过设于壳体内壁上的限位导圈338与接收外力的顶片334固定连接(包括一体形成的情形)。内导柱外周套设有内弹簧333,该弹簧可伸缩的设于液流入口的限位导圈与顶片之间。当顶片没有被施加顶起作用力时,内弹簧333自然向下伸开,皮帽塞331被向下拉伸,液流入口被其密封,药液不能流出。当顶片被顶杆作用时,供液组件壳体中的供液组件内导片334将供液组件内弹簧333向上压缩,皮帽塞 331、供液组件内导柱332、供液组件内导片334一同向上移动,内导柱顶开皮帽塞,药液流出,一直到供液底盒中的药液达到设定的最佳液位线高度时药液才自动停止流出。而当供液底盒的药液被施药装置所施放消耗致使液位下降到到低于最佳液位高度时,药液又从被顶杆式定位供液组件被暴露的液流入口流出,而当从贮液箱300中流出的药液量再次达到被设定的液位线高度时,药液又自动停止流出,如此循环往复。
如图53所示,本申请的最佳药液液位是根据药液最终从顶杆式定位供液组件液流腔流出的液流出口位置设定的,因为液流腔的液流出口与与供液底盒上的流道连通,而流道又与供液底盒内的药液流通,因此液流腔的液流出口的位置通常被用来设置供液底盒内的最佳药液液位。
由本申请顶杆式定位供液组件的上述设置来看,其打开与关闭取决于顶杆能否给顶片施加外力,下面所描述的顶杆控制组件使得本申请的顶杆的作用具有可控性。
2.4.1.2、顶杆控制组件
本发明实施例的药液供液控制装置在具有顶杆式定位供液组件330的基础上,还包括定位供液控制装置339X,使顶杆的作用具有可控性。从操作的角度看,顶杆控制组件可通过手动控制也可通过自动控制;从发明原理来看,顶杆可加工成螺杆通过其本身的向上旋出或向下旋入改变其位于底部支撑面(也即供液底盒上部的上底面)上端的有效工作长度(也即顶杆顶端其与顶杆式定位供液组件的顶片之间的距离),也可加工成可折叠或可伸缩形式改变其顶端与顶片的距离,还可通过在顶杆上设一可拆卸的套帽使顶杆的作用可控。下面给出定位供液控制装置339X的几个实施例及使用方法:
2.4.1.2.1:实施例1:
如图27和图28所示,所述自动定位供液控制装置339X包括可升降的带螺纹的电动顶杆339、顶杆安装组件3391、3392、3393、3394、正反转驱动机构3395等部件,其中电动顶杆与顶杆安装组件螺纹配合,可转动的设置在顶杆安装组件上,其下侧端部与正反转驱动机构连接,由正反转驱动机构的电机的正转或反传实现可升降的带螺纹的电动顶杆339的升或降。可升降的带螺纹的电动顶杆339的升或降和/或降或升的螺距可以通过控制面板110上的功能控制开关111或相应按键来完成,这样就可以根据需要来实现顶杆对顶片的开启时机进行控制。另外,顶杆安装组件为一架体结构,使电动顶杆能够无摇晃稳定的升降。
为使结构紧凑,还能保证包括设于供液底盒顶杆的下端需要伸出供液底盒的底部并进入到供液底盒下部的底部风道100中,而驱动该顶杆转动的驱动机构如驱动电机3395设置在底部风道270中,一方面简化整体结构,另一方面也可利用底部风道的风冷却电机并反过来加热底部风道中要送给风箱作为动力气流的风,以提高动力气流的温度。此时需要密封件保证顶杆与所穿过的供液底盒、底部风道的壁之间的密封。
上述的电动方式也可以由以下的手动实施方式实现。
2.4.1.2.2:实施例2:
如图29和图30所示,手动螺纹式定位供液控制装置339X设有一顶杆升降手动控制装置,主要包括螺纹杆3392、手动螺母式顶杆339,通过上下旋转位于螺纹杆3392上的手动螺母式顶杆339实现手动螺母式顶杆339的高与低,来实现定量控制组件330中皮帽塞331的打开或关闭,从而实现所述药液箱中所述药液的流出或不流出;
2.4.1.2.3:实施例3:
在这一实施例中,顶杆本身的长度并不能对顶杆式定位供液组件施加顶力,只有当在顶杆顶部套上帽套时才能对顶片施加作用力。这样,如果不希望贮液箱一放置到供液底盒上时就有药液流出,只需将帽套取下即可。此时即便贮液箱放置到了供液底盒上,但由于顶杆的长度不能满足作用于顶片的需要,就不会使药液流出。
具体的,如图31和图32所示,所述手动帽套式定位供液控制装置339X顶杆升降手动控制装置包括帽套内顶杆3398和套帽3397,通过插上或取下套与帽套内顶杆3398上的套帽3397来实现整个套帽顶杆的高与低,进而实现定量控制组件330中皮帽塞331的打开或关闭,从而实现所述药液箱中所述药液的流出或不流出。
2.4.1.2.4:实施例4:
如图33和图34所示,所述折叠式定位供液控制装置339X的顶杆升降手动控制装置包括折叠式顶杆3399,通过向上板起或向下放倒折叠式顶杆3399来实现定量控制组件330中皮帽塞331的打开或关闭,从而实现所述药液箱中所述药液的流出或不流出。
在上述实施例中,无论是手动还是电动形式,顶杆都能够按照需求可控的对顶片施加作用或不施加作用,使得贮液箱不但能够保证对雾化室的定位供液,也 利于贮液箱本身多功能化的实现。另外,对于不同的药液而言,超声振荡装置的最佳雾化药液液位可能各不相同,本申请的顶杆式定位供液组件的上述设计,也使得本申请的施药装置在进行施药措施的选择上变成可能。通常地,超声振荡装置的最佳雾化药液液位在15~55mm的范围内。
除上述的顶杆式定位供液组件及顶杆控制组件外,本申请为保证超声振荡装置的正常安全的工作及保证药液雾化量,本申请的药液供液控制装置还可设置最低液位检测器,以防止操作不当或控制失灵等情况下对雾化室供液不足导致超声波振荡器被烧坏。具体的如光学传感器等已知的传感器可用作最低液位检测器。进一步的,为使本申请能具有高度自动化效果,减少人工操作,本发明实施例的施药装置还可将上述液位的检测手段与警报装置或药液的供应、超声振荡装置、动力气流的供应关联起来通过微处理器实现全自动控制。例如,当达到最低液位时,最低液位传感器可以输出使相关部件关闭的信号。例如,超声振荡装置可以被关掉,甚至还可以包括动力气流的送风扇。另外,最低液位传感器可以引起向使用者发出警告信号,例如可视警告如光和/或声响信号例如哔哔声。
进一步的,贮液箱也可设置一最高液位检测器。具体的控制方式可参照最低液位的控制方式。
2.4.2、贮液箱多功能的实现
除药液供液控制装置外,还在贮液箱上设置搅拌手段和/或扩繁手段,使其不但具有贮液及可控的向雾化室供液的功能,还具有搅拌和/或扩繁功能,从而提高超声振荡装置雾化的效果。
2.4.2.1、搅拌桨的设置
药液长时间的贮存容易发生沉淀或悬浮,从而影响药液的雾化及气态流的产生及药性的发挥,为此本发明实施例的施药装置包括一搅拌桨。如图8~图10所示,搅拌桨350包括转轴353、套装在转轴上的轮毂、形成在轮毂上的桨叶351及驱动转轴转动的驱动电机359。为防止搅拌桨在搅拌的过程中出现涡流及加强搅拌桨的强度,还设置一连接各个桨叶351的涡流圈352。
从可实施的角度看,搅拌桨350可以独自的设置在容器的顶部、底部或侧壁上。在一种示例性实施例中,如图7所示,搅拌桨350设置在容器的底部并与容器的底盖一体设置。
具体的,如图7~图10所示,搅拌桨350的一端可转动的固定在底盖上并伸进容器内。具体的,底盖形成一周向凸缘,凸缘的内侧形成有与药液容器第二 开口337结合的螺纹,同时底盖的内侧的中间位置形成一可伸进容器开口内的凸台342。如图8、图10所示,搅拌桨350设置在该凸台342上,其转轴从底盖的凸台中穿过,与设置在底盖外侧的驱动电机359(图53)连接,而驱动电机的联轴器被至少部分地容纳在底盖凸台背面形成的腔体内,以节省空间。
将搅拌桨和容器的底盖结合在一起形成一个可拆卸的整体部件,不但借用底盖的可拆卸性,巧妙实现了搅拌设备的可拆卸设置,还利用底盖实现了搅拌桨的支撑,使得本发明的结构及工艺更为简单化。
2.4.2.2、扩繁桶的设置
除上述的搅拌桨外,为使本发明谁是老大施药装置能够适用于生物药物,贮液箱药液容器内内还可以设置一扩繁桶。本发明实施例的施药装置的贮液箱中设置一个扩繁装置实现生物活性物的扩繁作用,使扩繁过程可以单独进行不受限于施药过程从而保证生物活性物在施药前得到充分的扩繁,而为使施药装置的整体结构不因扩繁功能的增加而变得复杂庞大。本发明将扩繁装置与贮液设备的功能合而为一使贮液器不但具有贮液供液功能,还具有扩繁功能。
如图45~图51所示,扩繁筒包括容纳有生物活性物载体379的筒体370、封头及设置在筒体下面的安装或连接结构375。其中扩繁筒筒体370的采用分体结构,由扩繁筒壳体371、372及扩繁筒下封头374、扩繁筒上封头373组成可拆卸的筒体结构。为进一步便于筒体的拆卸,如图44所示,壳体和下封头均为两半构成,其中左半壳体与左半下封头之间形成一体结构,右半下封头及右半壳体之间形成一体结构,两部分再以可拆卸结构组合在一起,具体的可拆卸的方式优选为:两者在配合处,一侧形成插槽,一侧形成插头,左、右半壳体、左、右半封头形成严密匹配的镶接在一起,而左右半壳体、左右半封头所形成的腔体的上口也与上封头373之间形成匹配对应的镶接结构。如此形成更简单的筒体结构。该结构非常适合扩繁筒内载体的安装于拆卸清洗。
另外,筒体可以是单桶单层结构,如图49所示,也可以是多桶复层结构,其内部可如图50所示采用层内无隔断,也可结合图49、图50所示,采用层内有隔断型的。
如图48~图51所示,填充于生物桨扩繁筒筒体370内的能促进生物活性物各组分生长繁殖的多孔性轻质载体379,为多孔性发泡聚氨酯材料构成的具有一定厚度的或环状体、或片状体、或块状体和/或火山岩材料和/或活性炭材料和 /或其中的两种或多种材料组成的的复合体。
为实现对生物活性物溶液的扩繁效果,如图48所示,生物桨壳体上具有多个规则的或不规则的镂空孔376,以方便所述生物活性物溶液的流入或流出。
工作时,扩繁筒370完全或部分地浸入多功能贮液箱的容器300内的生物活性物溶液中,使填充于扩繁筒370内的多孔性轻质载体379不断的被所述生物活性物溶液所淹没或冲刷,固载滞留于多孔性轻质载体379中的所述生物活性物溶液中的各种好氧、兼氧、厌氧等各生物活性物组分就可以得到快速的生长和繁殖,并不断的被冲刷到所述搅拌桨300的所述生物活性物溶液当中.当达到一定的时间后,多功能贮液箱容器中的生物活性物溶液的各生物活性物组分便可得到快速的扩繁,从而达到一个理想的有效生物当量。
而为使扩繁筒也能对药液具有一定的主动或被动的搅拌效果,本申请还可在扩繁筒的上封头和/或下封头和/或壳体上局部或整体地形成一个或多个类似搅拌桨桨叶351结构的外突桨,使得扩繁筒无论是被单独设置还是与搅拌桨设置在一起,都能够被利用产生一定的搅拌作用。
筒体下面的安装结构375(如附图46所示)用来安装扩繁筒,或将其单独的固定在容器的内壁上,或将其固定在搅拌桨上或将其固定在容器的底盖上.当然,这里所说的固定不是绝对的固定,包括可转动的固定,也包括允许扩繁筒在一定范围内活动的柔性固定方式。具体的安装结构本领域技术人员可知,有很多现有技术都可以实现,在此不作赘述。但本申请后面的内容中将给出一些实施方式。
虽然从可实施的角度看,扩繁桶可以像搅拌桨那样通过其安装结构设置在容器的顶部、底部或侧壁上。但如图39所示,将扩繁桶设置在容器的底部与容器的底盖一体设置。具体设置方式可参照搅拌桨的设置方式。
将搅拌桨和/或扩繁筒安装在容器的底盖上,可以在不影响盖体封闭功能的同时,利用盖体的可拆卸性实现搅拌桨的可拆卸,同时还可借用盖体实现支撑固定而不用设置专门的支撑结构从而使本申请的施药装置的结构更为简化。
2.4.2.3、扩繁桶与搅拌桨同时设置
当施药装置用于生物活性物药液的施药时,生物活性物的有效当量对生物药物的施药效果至关重要,尤其是对利用超声波振荡原理制备含有超微药物颗粒气态流的施药装置来说,使生物活性物在施药前得到很好的扩繁对提高施药装置的 性能具有重要的意义。而另一方面,由于很多活性药液是将药物作为溶质与溶剂制成的溶液,长时间贮存容易发生沉淀或悬浮,从而影响药液的雾化及气态流的产生及药性的发挥,而本申请将该些功能结合到贮液箱上构成一多功能贮液箱来实现,使该多功能贮液箱既可以贮存药液并根据需要向气态流发生及输送装置输送扩繁后的药液,又可以使药液在储存及扩繁期间得到搅拌保证药液的均一性,并使其生物活性物得以在自然状态下快速扩繁。
如果仅需要实现搅拌桨及扩繁筒各自的功能,搅拌桨、扩繁筒可以各自或以一整体部件设置在容器的侧壁上,顶壁上、底壁上或容器300其它任何可以对药液产生其作用效果的位置处。但这些方式,需要在容器内形成两个安装结构,结构复杂化,因此本申请将搅拌桨与扩繁筒形成一组合设置,扩繁筒不直接与容器内壁安装连接,具体的组合方式可以采用一体连接也可以采用分体连接。当搅拌桨350与扩繁筒370分体式连接时,搅拌桨350与扩繁筒370的轴心可以在同一条轴线上,也可以不在同一条轴线上。搅拌桨350与生物桨370可以安装在多功能扩繁器的容器内任何可以需要安装的部位。当搅拌桨350与扩繁筒370一体式连接,两者可以一整体结构安装在雾化室的任何可以需要安装的部位。
本发明实施例的多功能扩繁筒和搅拌桨同时设置在贮液箱的容器中,使得药液不是静态的浸入扩繁筒中,而是动态的进入扩繁筒中,这样不但保证溶液中的生物活性物得到最充分的扩繁,还使扩繁筒中的载体得到最充分的利用,从而使得本发明的多功能扩繁器的扩繁效果大大增强。而另一方面,搅拌浆的搅拌作用还使得多功能扩繁器中的药液不会发生沉淀、絮凝等现象,进一步保证以超微气态流形式施药的施药装置的超微药物气态流的产生及施药效果。
本发明的一种示例性实施例中,将扩繁筒、搅拌桨、容器底盖三者可拆卸的结合在一起,其中不但扩繁筒和搅拌桨可选择的结合在一起,底盖也可选择的与搅拌桨或扩繁筒或扩繁筒结合在一起。如此不但可以在不影响底盖封闭功能的同时,利用底盖的可拆卸性,实现搅拌桨、扩繁筒的可安装可拆卸,同时还可借用底盖实现支撑固定而不用设置专门的支撑结构从而使本申请的施药装置的结构更为简化。而扩繁筒、搅拌桨不但可以结合在一起形成一整体构件(简称为“生物浆”),还可根据单功能的需要仅选择扩繁筒或搅拌桨与容器的底盖结合,使本申请贮液箱不但可选择仅具有搅拌功能也可选择仅具有扩繁功能还可选择既具有搅拌功能又具有扩繁功能,从而使贮液箱不但以简单的结构拥有了多功能,还可以根据实际的需求灵活的选择该些功能。
如图8~图10及图36~图51所示,容器第二开口设置在容器的底部,底盖与容器开口被设置为可拆卸连接,为方便扩繁筒与搅拌桨的之间的安装与拆卸,且保证扩繁筒在随搅拌桨转动过程中能够牢固稳定的随搅拌桨转动,搅拌桨与扩繁筒优化为同轴设计且通过可拆卸连接结构形成一整体结构,而考虑搅拌桨与扩繁筒的功能需要,本申请将扩繁筒设置在上面,搅拌桨设置在下面,且直接与转轴连接,但整体结构可转动、可拆卸的安装在底盖药液一侧,并伸进容器中。
具体地,在底盖与容器第二开口的可拆卸连接结构中,从容器外可拆卸底盖。底盖形成一周向凸缘,由凸缘的内壁形成与容器第二口结合的螺纹,凸缘的内周、也即底盖内侧的中间位置向容器内凹进,形成一可伸进容器开口内的凸台342。搅拌桨与扩繁筒所形成的整体结构可转动的支撑在底盖的凸台上,两者的转轴从底盖的凸台中穿过,与设置在底盖外侧的驱动电机359连接,而驱动电机被较佳的至少部分容纳在底盖凸台背面形成的凹腔中,以节省空间。如图9、图10所示,为实现转轴与容器盖体之间的相对转动并保证密封,盖体的螺纹连接处及与转轴的配合处设置有密封圈355、341及356,转轴穿过底盖的入口、出口设置轴承3541、3542、3543,以保证转轴相对盖体的转动以及盖体对转轴的转动支撑,而为驱动转轴转动,转轴的末端还设置有一联轴器与驱动源电机的驱动轴连接,如此设计可方便电机的安装与设置。在一种示例性实施例中,生物桨370和/或搅拌桨350和/或驱动电机359的转速在50转/分钟以上,例如100~200转/分钟。根据使用需要,生物桨或搅拌桨电机359可以采用匀速电机,也可以采用变速电机,还可以采用正反转电机,以提高其广适性。
在搅拌桨与扩繁筒之间的可拆卸连接结构中,如图10、图46所示,用于搅拌桨与扩繁筒之间可拆卸连接的连接件353包括一可拆卸的套设在转轴顶端的轴筒部3531和从轴筒顶端向外延伸的喇叭口型的连接外凸缘3532,搅拌桨的轮毂可拆卸的套设在该连接件轴筒部的外周;扩繁筒底端的下封头上形成有环形卡钳结构形成的连接槽3751(如图46所示),该环形卡钳结构的连接槽在下封头对接的位置处部分包括两个弹性倒T型内凸缘3752(如图46所示),通过这些连接件的连接外凸缘可利用弹性倒T型内凸缘的弹性放置在连接槽中或将其取出。进一步的,自扩繁筒底端下封头环形卡钳结构的连接件或连接槽部分向上约20~30mm位置的扩繁筒左壳体371和扩繁筒右壳体372的镶接结构不完全紧固的设置在一起,如约20~30mm以上位置的扩繁筒左壳体371和扩繁筒右壳体372 的镶接结构可进一步采用胶粘结固定,而连接件或连接槽向上约20~30mm位置的扩繁筒左壳体371和扩繁筒右壳体372的镶接结构构不采用胶粘结紧固,而只利用镶接结构实现两者之间的对接。当需要将搅拌桨与扩繁筒连接时,可将搅拌桨与扩繁筒壳体连接件353的顶端喇叭口型的连接外凸缘,向上插入扩繁筒底端下封头环形卡钳结构的连接件的环形连接墙或连接槽,此时,未被粘结的20~30mm位置的扩繁筒左壳体371和扩繁筒右壳体372之间的子母口就会在受外力的情况下轻微张开,使搅拌桨与扩繁筒壳体连接件353的顶端喇叭口型的连接外凸缘3532可以很轻易地插入扩繁筒底端下盖上的环形卡钳结构375连接槽3571中,而该环形卡钳结构375的连接槽3751及其两端具有弹性倒T型的两个内凸缘3752就会将插入的连接件353的顶端喇叭口型的连接外凸缘3532钩住,两个连接体实现牢固固定,可保证转动时不发生松脱。
当要从搅拌桨上取下扩繁筒时,由于搅拌桨与扩繁筒连接件353的顶端喇叭口型的连接外凸缘其外径尺寸仅比扩繁筒底端的环形卡钳结构375的连接件或连接槽及其两端具有弹性倒T型的两个内凸缘的径向直径大1~2mm,可以很轻松地拽下,很容易实现相互脱离。
当仅需要扩繁筒与转轴及底盖连接时,将连接件先从转轴的顶端拆下,再将搅拌桨从转轴的顶端取下,最后再将连接件套设在转轴并与扩繁筒连接固定即可。
在搅拌桨和/或扩繁筒与容器底盖之间的可拆卸连接结构中,如图9和53所示,在两者的转轴上设置两个上轴承,即外联轴承3541和内联轴承3542。底盖的轴孔处设置一下轴承3543,几个轴承形成配合结构,转轴轴筒部3531从底盖的凸台中穿过,与至少部分设置在底盖外侧的联轴器358连接,该联轴器358与驱动电机359连接。各个转动部件之间设有密封,如转轴与搅拌桨间的上密封355、转轴与上联轴器358间的下密封356,以防止药液通过上联轴器358与搅拌桨电机轴上的下联轴器357配合联接时流入搅拌桨电机359及底座风道270内。联轴器的下部形成一扩腔,扩腔的内壁上形成齿轮结构,驱动电机的转轴通过与该齿轮结构配合,带动联轴器及搅拌桨和/或扩繁筒的转轴旋转。该扩腔罩扣在供液底盒上部内壁面的凸台上的中空圆壁形结构及相对应底座位置的圆壁形结构内,从而进一步防止了药液的流出及对其周围部件的侵蚀。
当扩繁筒和搅拌桨结合在一起形成一整体部件--生物浆时,在搅拌浆被驱动 旋转时,扩繁筒也被带动旋转,从而使扩繁筒不但具有了扩繁功能,还具有了搅拌功能,增大了搅拌浆的搅拌深度,也使得整个多功能扩繁器的容器内的各个角落的药液都得到较好的搅拌效果,尤其是对于采用容易产生搅拌死角的非圆形截面容器的多功能扩繁器效果则更为显著。而另一方面,将扩繁筒和搅拌桨结合在一起形成一整体部件也使得多功能扩繁器的构造与制造工艺得到了极大的简化,使得本发明的多功能搅拌器不但具有更为简单的结构,功能还更为能强大,应用更为灵活。将扩繁筒和搅拌桨以可拆卸的结合方式固定在一起,不但使扩繁筒在需要其转动时可以与搅拌桨一起转动,还可以在不需要其转动时如扩繁筒需要拆卸、清洗、更换载体或容器内所贮药液不需要扩繁作用时将其拆掉,使得生物浆及采用该生物浆的多功能扩繁器对不同需求的药液的使用具有更大的灵活性和可调整性,也使得本实施例的多功能生物器具有更广阔的适用范围,不但可用于生物活性物药液,也可用于非生物药液,且结构简单,操作方便灵活。
在多功能贮液箱的其他实施方式中,贮液箱综合考虑上述实施方式的各自特征及施药装置的整体结构的简化及驱动机构安装的简便性,为结构进一步简化需要,本申请还可直接将搅拌桨和扩繁筒合二为一个部件3500设置在贮液箱的容器底盖上,如图39所示,直接将整个生物桨370设计成一个变形的和/或大号的搅拌桨3500,其上同样具有可供药液流入或流出的镂空通道376和封头,生物活性物载体359填充于所述变形的和/或大号的搅拌桨3500的桨叶和/或桨体当中。当然也可以将扩繁筒和搅拌桨的功能合而为一到扩繁筒上,如图38所示,也可以在扩繁筒的上封头和/或下封头和/或壳体周面上设置搅拌桨叶。
2.5、关于气流输送方式
本发明实施例的动力气流的来源可以是空气流或其他气体流,如某一种药物气流。例如,本申请的动力气流采用空气流。
为将作为动力气流气源的空气流从外界环境中引入,并将其加热加压之后再输送到雾化室,使动力气流不但带走雾化发生室所产生的雾化药雾,还在携走雾化药雾的过程中与雾化药雾形成药粒粒度更小、分布更均一的超微药物颗粒气态流送出。本发明实施例施药装置设置了气流输送组件,该气流输送组件分为动力气流输入组件和含有药物颗粒的气流输出组件(简称气流输出组件)两大部分,参见图2和35,动力气流输入组件包括一内设有送风机200的风箱130,其设置在雾化室391的左侧,所提供的动力气流通过与其邻接的雾化室391左壁上的动力气流输入口154输入雾化室391内,而气流输出组件设置在上述的位于雾化发 生室391顶部,以将动气气流与药液雾化药雾所形成的含有超微药物颗粒的气态流送出到施药目标所在的环境内。
具体的,动力气流输入组件包括将动力气流供入雾化室内的动力源,如果不考虑动力气流的输入位置,该动力源可以是设置在雾化发生室上游的送风机,也可以是设置在雾化发生室下游的引风机或射流器。考虑到前述的药液供入口、动力气流输入口、气态流输出口等综合优化设置所具有的的技术效果,本实施例在雾化发生室上游设置送风机200,该送风机200蜗壳的出风口153与上述动力气流输入口154对应,气流从该动力气流输入口送出的方向相对水平面的角度在-20度~20度之间。
进一步的,如图1-3所示,本发明实施例的动力气流输入组件还在风箱上外壳130的底部设有一与风箱流体连通的底部风道,该风道上开有至少一个进风口123,使风机转动时外界空气还可通过该些进风口进入底部风道内再进入风箱130内,从而增大了进风量。进一步地,将电器元件(如变压器362)、控制部件(如功能开关111、控制线路板700)、其它驱动源(如搅拌桨电机359)、负离子发生装置600等发热部位设置在该风道中,不但使本申请施药装置的电器元件及电路线路得到简化并避免被药液污染和发生短路现象,还可以使发热部件得到良好的散热,而该热量可以使进入该底部风道中的自然风能够被设置在风道中的该些发热部件的热量加热,进而在无需花费加热成本的情况下提高了动力气流输入雾化发生室的温度及药液的雾化效果。在一种实施例中,该底部风道以底座形式设置整个施药装置的下面,这样其又具有了支撑风机、雾化发生室等功能。进一步的,为便于内部元件的维修更换,底部风道采用分体结构,由一底盖120和底座100扣合而构成。底座的下面设有支脚121,、支脚上可设有万向节等滑轮以方便施药装置的移动。进一步的,支脚还可设计为可伸缩的支脚,以根据施药对象调整施药装置的施药高度。
如图1-4所示,气流输出组件500设置在雾化发生室顶部的气态流输出口420处,以将含有超微药物颗粒的气态流施加到施药目标所在的环境内。如图2、4、图5所示,气流输出组件500包括一可转动的设置在导流罩气态流输出口420的喷头599及驱动喷头相对气态流输出口转动的驱动装置。具体的,喷头的底部设形成一齿轮圈结构521,驱动装置包括一电机530及传动齿轮522。在电机的带动下,带动传动齿轮522转动,喷头齿轮圈521由于与传动齿轮啮合在一起, 也被带动转动,从而可以实现360度全方位施药。当然,喷头的驱动装置并不限于该种驱动结构,也可以采用其他可以使喷头转动的驱动结构。
喷头的可转动设计,极大的提高了施药范围,使得本装置能够保证无施药死角。而为进一步优化喷头对超微药物颗粒气态流的施药效果,将喷头设计为一近似S形的喷头,如图52所示,喷头包括与气态流输出口420可转动密封连接的气态流输入部分、气态流变向部分、气态流输出部分。具有这种结构的喷头,解决了气态流输出时容易在施药装置附近造成大量药滴沉降问题,即:利用喷头内部流道方向的变化防止了较大液滴被动力气流裹挟带出后因重力作用迅速沉降到施药装置附近无法有效施加给施药目标的浪费且又造成施药装置表面被沉降药滴弄脏弄湿的弊端。而为避免S型喷头流道方向变化对气流的输出动量及输出范围的消极影响,本发明实施例的喷头进一步采取如下至少一的改进以获得更好的施药效果。
如图52所示,喷头具有异形外轮廓并包括气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3,气态流从气态流输入口420进入异形喷头599,在流经气态流变向段和气态流输出段时,气态流的流向经过了变向角为5度角~30度角(用δ表示变向角,如图52所示)的至少两次方向改变。
如图52所示,599为所述异形喷头,420为喷头气态流输入口,555为喷头气态流输出口,D1为气态流输入段,D2为气态流变向段,D3为气态流输出段,δ1为气态流第一损耗变向角,δ2为气态流第二有效变向角,δ3为气态流流液角,A为气态流逃逸点,B为气态流流液点,d2为气态流逃逸中距,d1为气态流流液中距,Δd为气态流逃逸变距,E为气态流输入段气态流输入口内壁与气态流输出段末端上内壁气态流逃逸点A间的气态流远距点,F为气态流输入段气态流输入口内壁与气态流输出段末端下内壁气态流流液点B间的气态流远距点,N为异型喷头内壁内凸曲面凸顶点;L1为气态流输入方向切面线,L4为气态流输出段D3末端下内壁沿气态流流液点B点与气态流输入方向切面线L1的垂直切面线,L7为气态流输出段D3末端上内壁沿气态流逃逸点A点与气态流输入方向切面线L1的垂直切面线,L2为气态流输出段末端上内壁沿气态流逃逸点A点与L4的垂直切面线,L3为气态流输出段末端下内壁沿气态流流液点B点与L4的垂直切面线;L5为气态流输出段D3末端上内壁沿气态流逃逸点A点、异型喷头内壁内凸曲面凸顶点N点、气态流输入段气态流输入口内壁与气态流输出段 末端上内壁气态流逃逸点A间的气态流远距点E点之间的切面线,L6为气态流输入段气态流输入口内壁与气态流输出段末端下内壁气态流流液点B间的气态流远距点F点、异型喷头内壁内凸曲面凸顶点N点之间的切面线,L8为气态流输出段末端下内壁气态流流液点B点沿下内壁向内的切面线.
假设气态流输出口420的截面积为S420,异形喷头气态流输出部分输出口555的截面积为S555;
当气态流的输送动力相同或一定时,气态流第一损耗变向角δ1越大,气态流的输出损耗就越多,而气态流从异形喷头气态流输出段的气态流输出口输出的距离就越近;气态流第二有效变向角δ2越大,气态流的有效输出就越多,气态流从异形喷头气态流输出段的气态流输出口输出的距离也越远;如d2>d1,且气态流逃逸变距Δd(Δd=d2-d1)越大,从气态流输出段D3末端上内壁沿气态流逃逸点A点逃逸出的气态流就越多,距喷头气态流输出段D3近气态流输出口的无效或浪费施药量同比增加,同时,累积在气态流输出段D3末端下内壁气态流流液点B间的被液化的气态流药液就越多,此时,如果没有合适的气态流流液角δ3,所述累积在气态流输出段D3末端下内壁气态流流液点B处的被液化的气态流药液就很容易从气态流输出段D3末端下内壁处的气态流流液点B点处流出喷头外,同样造成距喷头气态流输出段D3近气态流输出口的无效或浪费施药量的增加。
基于以上原因,在设计所述异形喷头时,主要从以下角度采取优化措施:
2.5.1、整个喷头采用气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3)等三段式设计,不同区段发挥不同的功效;气态流变向段(D2)的前部分与所述气态流输入段(D1)的后部分呈后仰状,气态流变向段(D2)的后部分与气态流输出段(D3)的前部分呈前倾状,且所述气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3)的内壁面之间的过渡面为平滑曲面,以减少气态流输送时的阻力。
2.5.2、优化气态流第一损耗变向角δ1和气态流第二有效变向角δ2的角度:
为减少气态流在气态流变向过程中的变向损耗量、增大从气态流输出段气态流输出口输出的有效气态流数量并将该气态流实现最远距离的输送,可对气态流第一损耗变向角δ1和气态流第二有效变向角δ2进行优化。
无论气态流第一损耗变向角δ1,还是气态流第二有效变向角δ2,都可以称之 为变向角δ。当变向角δ=90°时,气态流从气态流输出口420流经气态流输入部分和气态流输出部分时,流向没有改变,气态流仍沿原来气态流输出口420的流经方向流出;当变向角δ>90°时,只是气态流输入部分和气态流输出部分发生了镜像的变化,喷头结构和气态流流向并未发生变化;当变向角δ=45°时(如图3所示),所述喷头就是常见的普通喷头500,气态流从气态流输出口420流经气态流输入部分和气态流输出部分时,气态流的流向只发生了一次90°的改变。
因此,在一些实施例中气态流第一损耗变向角δ1≤90°,例如,在5度角~30度角之间;气态流第二有效变向角δ2≤90°,例如,在5度角~30度角之间。
2.5.3、气态流流液角δ3的优化措施:
为防止已累积在气态流输出段D3末端下内壁气态流流液点B处的被液化的气态流药液很容易地从气态流输出段D3末端下内壁处的气态流流液点B点处流出喷头外造成无效或浪费施药量的增加,可将气态流输出段D3末端气态流输出口的下内壁设在气态流输出段D3末端下内壁沿气态流流液点B点与气态流输入方向切面线L1的垂直切面线L4的下边位置,且使其以一定的角度逐渐向异型喷头内壁内凸曲面凸顶点N点延伸,这样,即使气态流输出段D3末端下内壁气态流流液点B处形成有液化的液滴,该液滴也会在重力作用下重新流入雾化室而不致被气态流裹挟带出喷头以外。
在一些实施例中,气态流流液角δ3≤90°,例如,在5度角~30度角之间。
2.5.4、气态流逃逸变距Δd的优化措施:
为防止和减少气态流从气态流输出段D3末端上内壁沿气态流逃逸点A点处逃逸,气态流逃逸中距d2比气态流流液中距d2越大越好,也即气态流逃逸变距Δd越大越好。
在一些实施例中,d2≥d1,Δd≥0。
2.5.5、其它优化措施:
整个喷头不仅采用气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3)等三段式设计,而且为保证尽可能少的气态流损失,不仅使所述气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3)的内壁面之间的过渡面采用平滑的曲面设计,而且从所述气态流输入段(D1)到气态流变向段(D2)再到气态流输 出段(D3),整个平滑内曲面的截面积其大小基本保持相同或一致。
在一些实施例中,S555≥S420。
进一步的,在逃逸中距(d2)或流液中距(d1)部分或全部的长度范围内的异形喷头气态流输出段的内壁面采用麻面内壁,其原因是:当雾化的超微药物颗粒气态流流经喷头的气态流输出段的内壁时,总会有一部分雾化的超微药物颗粒气态流液化形成液滴,当喷头气态流输出段的内壁是光滑的内壁表面时,由于液滴与光滑的内壁表面之间阻力很小,容易被动力气流裹挟带出,从而落在喷头气态流输出部分输出口外,造成在距喷头气态流输出段的气态流输出口外近100cm的范围内无效药量的浪费;但是,在采用麻面内壁后,可能稍微增加了一些风阻,但由于液滴与麻面的内壁表面之间阻力的增大,液化了的液滴就不容易被动力气流裹挟带出,从而落在喷头气态流输出段气态流输出口外近100cm范围内的无效药量就会大大降低或杜绝。
上述喷头的设计,可防止水滴被风从出风口裹挟带出,造成在距出风口100cm的范围内无效药量的浪费,彻底消除该范围内可能出现的由于农药造成的植物体农药药害,真正实现绿色节能的使用效果,实际效果见下表二。
表二:不同类型喷头在距喷头输出口100cm范围内无效药液量的实验
Figure PCTCN2014090027-appb-000002
根据上述实施例的施药装置的施药范围得到了极大的提升。而以下措施还会使本发明所设计的喷头优势效果更加明显。
如图4所示,喷头的气态流输出段气态流输出口还形成有气流栅511。气流栅为长条形状,且整体形成一外凸的出风弧面,以使气流获得更好的分配和更远 距离的输出。喷头内部气态流输出段还设有一导向装置,该导向装置设有2~5个呈曲面的叶片,叶片的一端固定在喷头内壁上,另一端固定在一根轴上。该些叶片呈顺列布置,由于叶片之间所构成的流道的曲面引导作用,可带动气流旋转,使气流获得加速效果,有效的增加气态流的出风压力,使气流输出范围更大、施药更均匀。
在本发明的实施例中,在考虑喷头可360度转动以及如何能够进一步获得范围更大、施药距离更远、浪费更小的喷头改进的同时,喷头还可以通过结合步进电机和控制电路板的选择,通过控制面板功能键的选择可以在0~360度的任意范围内根据需要以任意角度旋转。在施药口还设有一可转动的盖帽,使用时盖帽转动到不阻挡施药口气流流出的位置,如施药口的背后,以不影响气体流的输出,施药装置不使用时将其盖在出风口上,保护出风口,避免脏物、异物进入。
2.6、离子或负离子发生器
在本发明的实施例中,上述形成的含有超微药物颗粒的气态流在被施加于施药目标所在环境之前带电,使上述形成的含有超微药物颗粒的气态流在被施加于施药目标所在环境之前带有OH-或O3-负电荷。该带电过程可通过等离子或负离子发生器实现,所述等离子或负离子发生器设置在底部风道内,如图1和2所示。
3、本发明实施例的施药装置的应用
本发明实施例的施药装置适用于相对封闭的施药环境,如农作物生长用保护设施或农产品储藏用冷库、保鲜库、气调库或农产品养殖用圈舍等一般都符合这要求。对于本发明的施药目标并没有什么特殊要求,即可以是确定施药目标,也可是不确定施药目标。所述不确定施药目标可以是无固定形态的空气,如房间的甲醛处理,而所述确定施药目标为封闭环境内有固定形态的无生命体和/或有生命体,如农作物或农产品或农业设施等,如对农作物或农产品或农业设施的除虫和/或除病和/或除残留农药和/或消毒防疫和/或生长发育调节等。本发明实施例的施药装置在农业领域尤其是农作物生长用保护设施或农产品储藏用冷库、保鲜库、气调库或农产品养殖用圈舍等农场所的施药效果很显著,如对所述农业设施的施药目的是可以消毒和/或除病和/或除虫和/或免疫和/或生产无抗生素产品等目的。
本发明实施例的施药装置所使用的药物在形态上可以为固剂或粉剂或悬浮剂或药液剂或油剂,所述农药或溶液在挥发性上可以具有挥发性也可以不具有挥 发性;在属性上为化学活性物或生物活性物,生物活性物可包括有生物学活性的单种或多种单细胞生物(如微生物)或提取物或培养物或发酵物和/或有生物学活性的单种或多种蛋白质(如生物酶)或提取物或培养物或发酵物和/或单种或多种有生物学活性的单细胞生物和蛋白质或提取物或培养物或发酵物的复合体,而所述生物活性物药液的配置可以是厂家出厂前完成的配置,也可以是使用者布放前完成的配置;
所述施药目的为对封闭环境内空气进行消毒和/或除菌和/或除虫和/或除臭和/或除甲醛等空气净化目的,也可以是农作物或农产品或牲畜的除虫和/或除病和/或除残留农药和/或农产品的后熟处理和/或农作物的春化处理和/或农作物的生长发育调节目的微肥、除草、杀虫、杀菌、消毒等目的。
4、下面以几个实施例说明本发明实施例的施药装置的技术效果:
如图1-3所示,下面以最简单的实施例为例说明本发明的工作方式。
4.1、使用高效微生物溶液对保护地番茄灰霉病使用50%速克灵可湿性粉剂800倍液后,果实去除农药残留的效果。
试验组:采用如图2所示的本发明实施例的施药装置。
该施药装置包括:设有送风机及进风通道的动力气流的输入组件、包括导流罩410和供液底盒390的雾化室、包括10个超声振荡元件的集成式超声振荡装置360、包括动力气流和S型喷头599的含有药物颗粒的气态流的输出组件的气流输送装置、自动控制装置、生物桨(底盖340、搅拌桨350和含有载体379的扩繁筒370)及扩繁容器300。
多功能贮液箱包括容器300及设置在容器内的生物桨组件搅拌桨350、扩繁筒370以及顶杆式定位供液组件330和定位供液控制装置339X;
气流输送装置设有布置于底座上的气流输入口123、气流输送口555、S形喷头599、将外界气流引入机中的离心式风机;
外底座上安装控制面板110、控制开关112、功能切换开关111,当启动时便伴有亮光、亮灯或声音第提示;
气源为空气;
流量控制设备为上述手动帽套式定位供液装置330;
AC220V电源。
本发明实施例的施药装置的工作过程如下:
第一步:生物活性物溶液中生物活性物的扩繁:
如图32所示,本实施例采用上述手动帽套式供液装置顶杆升降手动控制装置3390。
首先,将施药装置放置在合适的位置,并按照要求配好药液,并将药液加入容器300中,拧紧容器底盖340,确定容器300无漏液情况后,取下套于手动帽套式定位供液装置330的帽套内的顶杆3398上的套帽3397,将装有药液的容器300放入其在底座的容器位置上。此时,由于顶杆339被降低高度不起顶起作用,皮帽塞331就将供液液箱300中的液流孔密封,药液就不能从容器300中流出。将机器电源线142插入电源插板接通电源,将控制面板110上的控制开关112设定为2小时,功能开关111只选择搅拌桨和生物桨工作,2小时后,机器停止工作,生物活性物溶液中生物活性物的扩繁工作完成。
第二步:扩繁后生物活性物溶液的使用:
如图31所示,从机器上取下容器300,将手动帽套式定位供液装置330的帽套内的顶杆3398上的套帽3397套于其上,将上述装有扩繁2小时药液的容器300重新装入其在底座的容器位置上。此时,顶杆339顶起供液组件内顶片334,供液组件内顶片334使套在供液组件内导柱332上的供液组件内弹簧333向上压缩,推动固定于供液组件内顶片334上的供液组件内导柱332和皮帽塞331向上移动并被完全顶起,使容器300中的药液从被暴露的液流孔流出,流量控制装置打开。此时,皮帽塞331一直被顶杆339顶起,一直到贮液箱300中流出的药液量达到被设定的液位线高度时药液才自动停止流出,选择220v的电源档位,将机器上的电源线142插头插入220V电源接口,摁下总电源开关接通电源,选择功能开关111,使容器300中的搅拌桨和扩繁筒开始旋转并开始搅拌药液,将控制面板上的施药时间功能键设定为2小时,将出风口旋转角度功能键设定为360°旋转角度,将出风口旋转转速功能键设定为每12分钟旋转一圈的转速旋转,摁下集成式超声振荡装置360电源开关接通电源,机器开始正常工作。此时,供液底盒390中的药液液位达到工作液位线,集成式超声振荡装置360中的多个超声波振荡器单元开始工作,空气经气流输入口123由离心式引风机从第一气流输送口153处吹出并经第二气流输送口154经控制地进入贮液底盒中集成式超声振荡装置360上部4~10cm处药雾形成的位置处。此时,经集成式超声振荡装置360雾化的药液已开始形成含有超微药物颗粒的气态流,OH-负离子发生器 产生的大量OH-负离子随同气流经离心风机被吹入与形成含有超微药物颗粒的气态流的药液微粒开始进行负离子交换,随后,带负电荷的药液微粒与其它大量的OH-负离子一并最后从气流输送口555处被吹出。施药装置工作一定时间后,当供液底盒390中的药液位低于最低药液位时,容器300中的药液再次开始流入供液底盒390,直到供液底盒390中的药液位再次达到最大药液位时停止流入,如此往复流入,直至容器中的药液全部流入供液底盒为至。当供液底盒中的药液液位低于最低液位线时,集成式超声振荡装置360自动断电停止工作,当达到2小时的设定时间时,机器自动断电停止全部工作。
对照组:现有技术为不具备生物桨的一种施药装置。
使用方法同上述工作方式。
实施例一:不同方法对高效微生物扩繁效果的影响:
高效微生物使用要求:在利用高效微生物除甲醛或除农药残留时,为了达到有效当量的高效微生物浓度,要求使用浓度为200倍的稀释量;为了降低使用成本,可利用本发明实施例的施药装置预先对较低浓度的高效微生物溶液(如400倍的稀释液)进行扩繁。
高效微生物溶液的配制:对照组与试验组配制方法相同;即高效微生物稀释400倍用量,即将10ml的ZN高效微生物用清药液4升稀释到供液箱中。
高效微生物溶液的扩繁:利用上述生物活性物溶液中生物活性物的扩繁方法对高效微生物溶液中的高效微生物进行扩繁,2小时后,分别检测所述高效微生物溶液中的高效微生物浓度。
高效微生物溶液的检测方法:计数仪直接计数的全数测定法。
计数仪直接计数的全数测定法:取定容稀释的单细胞微生物(细菌)悬液放置在细菌计数板上,在显微镜下计数一定体积中的平均细胞数,换算出供测样品的细胞数。
每毫升原菌液含菌数=每小格平均菌数×4000000×稀释倍数,(计数板上每小格中菌液=1/4000000毫升)
表三:不同方法对高效微生物扩繁效果的影响
Figure PCTCN2014090027-appb-000003
Figure PCTCN2014090027-appb-000004
结果表明,对照组和本发明都可以显著地促进高效微生物的快速扩繁和降低实际使用成本,但本发明较对照组可提高42.7%的扩繁效果,较对照组降低实际使用成本约22.7%。
4.2、使用高效微生物溶液对保护地番茄灰霉病使用50%速克灵可湿性粉剂800倍液后,果实去除农药残留的效果。
本实施例实验组设备:使用本发明实施例的上述图2所示的施药装置。
该施药装置包括:设有送风机及进风通道的动力气流的输入组件、包括导流罩410和供液底盒390的雾化室、包括10个超声波振荡器单元的集成式超声振荡装置360、包括动力气流和S型喷头599的含有药物颗粒的气态流的输出组件的气流输送装置、控液稳效装置430、自动控制装置、搅拌桨350及贮液箱300。
贮液箱300及设置在贮液箱内的搅拌桨350、以及顶杆式定位供液组件330和定位供液控制装置339X;
气流输送装置设有布置于底座上的气流输入口123、气流输送口555、S形 喷头599、将外界气流引入机中的离心式风机;
外底座上安装控制面板110、控制开关112、功能切换开关111,当启动时便伴有亮光、亮灯或声音第提示;
气源为空气;
流量控制设备为上述的手动帽套式定位供液装置330;
AC220V电源。
实验组的施药装置使用方法同上述实施例4.1的工作方式。
对照组使用的设备为市场上常见的DFH-16A型背负式手动喷雾器。
使用DFH-16A型背负式手动喷雾器和本发明实施例的施药装置测定利用ZN高效微生物对保护地番茄灰霉病使用50%速克灵可湿性粉剂800倍液后果实去除农药残留的效果。
实施例二、不同施药装置利用高效微生物溶液对保护地番茄灰霉病使用50%速克灵可湿性粉剂800倍液后,果实去除农药残留的效果。
分别采用DFH-16A型背负式手动喷雾器和本发明实施例的施药装置使用ZN高效微生物对保护地番茄灰霉病使用50%速克灵可湿性粉剂800倍液后去除农药残留的效果。其中,试验组按ZN高效微生物稀释200倍用量,即将15ml的ZN高效微生物用清水3升稀释到贮液箱中,放入本发明施药装置中进行施药;对照组同样按ZN高效微生物稀释200倍用量,即将75ml的ZN高效微生物用清水15升稀释到DFH-16A型背负式手动喷雾器中喷洒。分别于施50%速克灵可湿性粉剂800倍液3天后3日内每日进行一次,测定农药残留的数值,并统计实际用药总量和稀释用药总量。
表四:分别采用DFH-16A型背负式手动喷雾器和本发明实施例的施药装置施用ZN高效微生物的方法对保护地番茄灰霉病施用50%速克灵可湿性粉剂800倍液后的果实农药残留效果比较
Figure PCTCN2014090027-appb-000005
Figure PCTCN2014090027-appb-000006
结果表明,DFH-16A型背负式手动喷雾器和本发明的实施例的施药装置使用ZN高效微生物对保护地番茄灰霉病使用50%速克灵可湿性粉剂800倍液后去除农药残留均有很好的去除效果。但本发明的实施例的施药装置较DFH-16A型背负式手动喷雾器具有很明显的省药、省水的效果,省药省水各70%。
4.3、使用DFH-16A型背负式手动喷雾器和本发明实施例的施药装置测定利用ZN高效微生物对室内装修除甲醛的效果。
实验组的设备使用本发明实施例的上述图2所示的施药装置。
该施药装置包括:设有送风机及进风通道的动力气流的输入组件、包括导流罩410和供液底盒390的雾化室、包括10个超声波振荡器单元的集成式超声振荡装置360、包括动力气流和S型喷头599的含有药物颗粒的气态流的输出组件的气流输送装置、控液稳效装置430、自动控制装置、搅拌桨350及贮液箱300。
贮液箱300及设置在贮液箱内的搅拌桨350、以及顶杆式定位供液组件330和定位供液控制装置339X;
气流输送装置设有布置于底座上的气流输入口123、气流输送口555、S形喷头599、将外界气流引入机中的离心式风机;
外底座上安装控制面板110、控制开关112、功能切换开关111,当启动时便伴有亮光、亮灯或声音第提示;
气源为空气;
流量控制设备为上述的手动帽套式定位供液装置330;
AC220V电源。
实验组的施药装置使用方法同上述实施例4.1的工作方式。
对照组的设备为市场上常见的DFH-16A型背负式手动喷雾器。
实施例三、不同施药装置利用ZN高效微生物对室内装修甲醛的去除效果:
其中,试验组按ZN高效微生物稀释200倍用量,即将10ml的ZN高效微生物用清水2升稀释到贮液箱中,放入本发明施药装置中进行施药;对照组同样按ZN高效微生物稀释200倍用量,即将75ml的ZN高效微生物用清水15升稀释到DFH-16A型背负式手动喷雾器中喷洒。分别对刚完成装修的室内进行喷洒处理,共处理3天,每天处理一次,测定室内甲醛的数值,并统计实际用药总量和稀释用药总量。
表五:分别采用DFH-16A型背负式手动喷雾器和本发明实施例的施药装置施用ZN高效微生物的方法对室内装修甲醛的去除效果比较
Figure PCTCN2014090027-appb-000007
结果表明,DFH-16A型背负式手动喷雾器和本发明实施例的施药装置使用ZN高效微生物对室内装修甲醛的去除效果均有很好的去除效果。但本发明较DFH-16A型背负式手动喷雾器具有很明显的省药、省水的效果,省药省水效果 各达86.7%。
4.4:测试0.5%除虫菊素乳剂对保护地旺盛生长期黄瓜蚜虫的防治效果。
本实施例实验组设备:使用本发明实施例的上述图54所示的施药装置。
该施药装置包括:设有送风机及进风通道的动力气流的输入组件、包括导流罩410和供液底盒390构的雾化室、包括10个超声波振荡器单元的集成式超声振荡装置360、包括动力气流和S型喷头599的含有药物颗粒的气态流的输出组件的气流输送装置、自动控制装置、搅拌桨350、贮液箱300及多功能水箱302。
设置在贮液箱300上的底盖340及搅拌桨350、顶杆式定位供液组件330和定位供液控制装置339X;
气流输送装置设有布置于底座上的气流输入口123、气流输送口555、S形喷头599、将外界气流引入机中的离心式风机;
外底座上安装控制面板110、控制开关112、功能切换开关111,当启动时便伴有亮光、亮灯或声音第提示;
气源为空气;
流量控制设备为上述的手动帽套式定位供液装置330;
AC220V电源。
使用方法同上述实施例4.1的工作方式,仅在工作结束后,使用多功能水箱中的水液对药液流道及供液底盒进行冲洗。
对照组的设备为DFH-16A型背负式手动喷雾器。
实施例四、不同施药装置利用0.5%除虫菊素乳剂对保护地旺盛生长期黄瓜蚜虫的防治效果。
试验组采用本发明实施例的方法:按0.5%除虫菊素乳剂稀释300倍用量,即将10毫升0.5%除虫菊素乳剂用清水3升稀释到贮液箱中,放入本发明施药装置中进行施药;
对照组采用现有技术的DFH-16A型背负式手动喷雾器,同样按0.5%除虫菊素750倍用量,即将20毫升0.5%除虫菊素乳剂用清水15升稀释到DFH-16A型背负式手动喷雾器中喷洒。
分别于药后1天和2天检查保护地黄瓜幼苗上的蚜虫活虫数,计算防治效果,并统计实际用药总量和稀释水剂药液用药总量。
本发明实施例的施药装置与常规背负式手动喷雾器施药器械在农业保护地设施中的应用及特点比较如下:
表六:不同施药方法施药后保护地旺盛生长期黄瓜蚜虫的防治效果比较
Figure PCTCN2014090027-appb-000008
结果表明,药后1天和药后2天,DFH-16A型背负式手动喷雾器和本发明实施例的方法对保护地黄瓜蚜虫均有较好的防治效果。但农药熏蒸器较DFH-16A型背负式手动喷雾器在具有相同药效的情况下,具有很明显的省药、省水的效果,省药62.5%,省水85%。
综上所述,本发明实施例的施药装置和施药方法不仅操作简单,方便易行,雾滴粒谱较一致,而且形成的药物微粒是直径小于10微米的带负电荷的药物微粒子,附着能力强,空间内立体实现施药目的,可大幅降低药物的实际使用量达22.7%~86.7%,节能环保,实现了自动施药的全过程,不需要人工。具有简单易行、省药、省水、节能、环保等诸多优点。
而可以预料的是,当采用本发明提出的各种优化措施后将比目前的实验结果取得更好的技术效果。
最后说明:
1)在本申请说明书(包括说明书所有文字及所有附图)和技术方案中,术语“包括”和“容纳”以及其它类似表述意指“包括但是并不限于”,而且并不用于(并且不是)排除其它部分、添加物、构件或者步骤。
2)在本申请说明书(包括说明书所有文字及所有附图)和技术方案中,单数涵盖复数,除非上下文另有要求。
3)本申请所公开的各种优选实施方式即便没有在同一实施例中阐述,也应 该被理解成能够被应用于在这里描述的任何其它方面、实施例或者例子,除非与之不相容或在本文中被明确地排除在外,否则本申请所有没有穷尽的实施方式之间的组合或子组合都是在本发明的保护范围内。
4)本文中描述了关于本发明的各种方面、概念和特征的各种优选实施方式,但是这些描述不是本发明所有实施方式的完全或详尽的清单,除非有特别说明,否则该些描述并不表明这些特征是必需的,排他性的。本申请示例性优选方法或优选结构的描述不应被解读为仅限于该种实施方式,除非本申请说明书明确陈述为该种情况。

Claims (26)

  1. 一种施药方法,其特征在于:
    使药物以可雾化的药液形式存在;
    通过超声波振荡使所述药液雾化;以及
    向所述雾化的药液提供动力气流,以将所述雾化的药液带走并施加于施药目标所在的环境内。
  2. 如上述权利要求1所述的施药方法,其特征在于:至少在靠近药液的液面的位置处设置用于引入动力气流的进口;所述动力气流的输送动力来自位于药液雾化场所上游的送风机和/或药液雾化场所下游的引风机和/或射流器;优选的,至少在药液雾化场所的上游设置一送风机提供输送动力;优选的,当采用射流器时,用于射流器的高速压缩引气流为药气流或空气流;进一步优选的,所述动力气流的气流来源为空气流;优选的,所述动力气流的温度范围选择在5~30℃之间;进一步优选的,当施药目标所在环境的温度低于0~10℃时,动力气流高于环境温度的差值在5~20℃范围内;优选的,所述动力气流提供给所述雾化的药液之前,经过一加热区域,该加热区域至少设置有需要散热的电器部件作为用于加热所述动力气流的加热源;进一步优选的,电器部件至少包括有用于超声波振荡装置的稳压器;进一步优选的,还设有用于贮液箱搅拌装置的驱动电机及控制系统的电子元件、电路板;进一步优选的,该加热区域还可控的设有脉冲加热或电阻加热或PTC陶瓷片做为主动电加热部件;优选的,在由所述雾化的药液和动力气流形成的含有超微药物颗粒的气态流的流出路径上设置有加热手段,优选的为一个或多个发热光源,该发热光源靠近气态流的输出口处;优选的,采用射流器提供输送动力时,调节输入射流器的高速压缩引气流的温度,以调节气态流的输出温度。
  3. 如上述权利要求1所述的施药方法,其特征在于:所述超声波振荡装置的振荡工作频率被配置为在大于等于1.7MHz的频率下工作,优选其工作频率为2.0~5MHz。
  4. 一种施药装置,特征在于,包括:
    雾化发生装置,包括:
    雾化室,设置成可容纳药液、提供用于雾化药液的雾化空间、及用于所 生成的雾化的药液的气态流的输送通道;以及
    超声波振荡装置,设置成对所述药液实施雾化,该超声波振荡装置的振荡元件被布置为与所述药液接触,以对所述药液实施振荡使药液雾化;
    气流输送组件,包括:
    动力气流气流输入组件,在所述超声波振荡装置将所述药液雾化的同时,向所述雾化室供应动力气流;以及
    气流输出组件,将所述动力气流与所述雾化的药液形成的含有超微药物颗粒的气态流带走,并施加于施药目标所在的环境内。
  5. 如上述4权利要求所述的施药装置,其特征在于:
    所述雾化发生装置的雾化室设置在施药装置的大致中间位置,所述超声波振荡装置设置在雾化室的底部;所述动力气流输入组件包括一设置在雾化室左侧的风箱;在所述雾化室与风箱相对的另一侧,所述雾化发生装置还设置一贮液箱,该贮液箱通过设置在与其邻接的雾化室右壁上的待雾化药液的供入口对所述雾化室提供药液;所述风箱上设有动力气流的进风格栅,风箱内设有送风机,风箱所提供的动力气流通过与其邻接的雾化室左壁上的动力气流输入口输入雾化室内;优选的,所述动力气流输入口略高于雾化药液的供入口,所述气态流输出口大致形成在导流罩顶部的中间位置,且气态流的输出口的轴线与动力气流输入口的轴线之间的角度在90度~130度之间;在位于雾化室顶部的气态流输出口处设置所述气流输出组件,将雾化室内由所述雾化的药液和动力气流生成的含有药物颗粒的气态流送出施药装置外;在所述风箱的底部设有一支撑在施药装置下部的底座,底座设有与外界连通的动力气流的入口,动力气流的入口内部形成有底部风道,且在该风道中设置有工作时有废热产生且需要散热的电器部件,该风道被可控的与所述风箱流体连通;优选的,该电器部件包括用于所述超声波振荡装置的稳压器;进一步优选的,电器部件还包括用于贮液箱中的搅拌装置的驱动电机及由于施药装置控制系统的电控元件及电路板。
  6. 如上述权利要求5所述的施药装置,其特征在于:所述雾化室包括可拆卸的上下结合在一起上部分和下两部分,其中下部分为上开口的供液底盒,上部分为上下均开口的导流罩;供液底盒形成在导流罩的下部,并延伸到所述贮液箱的底部;进一步优选的,导流罩包括左壳体和右壳体构成;进一步优选的,所述导流罩的下端形成收紧口插进供液底盒内部使其外壁与供液底盒内壁紧贴在一 起;优选的,所述供液底盒为一梯形结构,与导流罩配合的部分位于梯形结构的下部,梯形结构的下部的内壁面形成一凹腔,用来作为设置超声波振荡装置及容纳雾化所需药液的室,梯形结构的上部由下部向上延伸到较高位置并与贮液箱的底部配合,用于支撑贮液箱及提供贮液箱部件所需的安装空间,并利用上部的内壁面形成与下部凹腔连通的供液流道以将贮液箱中提供的药液供给雾化室;优选的,所述供液流道为内壁光滑的流道;优选的,所述供液底盒为单独部件或由所述底座上底面形成;优选的,所述供液底盒为一单独构件,支撑在梯形结构的上部下面的所述底座的上顶面形成与供液底盒下底面对应的结构形状,两者结构吻合的贴合在一起。
  7. 如上述权利要求6所述的施药装置,其特征在于:所述导流罩为双层结构,并由左右两半壳体可拆卸的装配在一起,且导流罩的内壳体的前后壁设计为弧形内壁并使得导流罩的内壁向位于顶部的气态流输出口收敛;优选的,导流罩的内壳体上还形成有与雾化室内部连通的导流孔;优选的,所述导流罩从下向上依次包括封药液段、雾道段、出雾段,雾化室的药液供液口设置在封液段,动力气流的进气口设置在封液段与雾道段之间,气态流输出口设置在出雾段的端口;优选的,在导流罩内壁的雾道段形成有消沫肋,优选的,消沫肋沿所述导流罩内壁纵向设置,进一步优选的,消沫肋的肋顶为尖顶;进一步优选的,所述消沫肋形成在所述导流罩的左和/或右内壁上;优选的,在所述雾化室左壁的动力气流输入口的气流流出方向,设置有导流梳,优选的,导流梳的末端还形成一连接在各个导流梳末端的阻液堤;进一步优选的,导流梳的末端或阻液堤的末端形成有多个向下的突尖部;优选的,所述导流梳由水平导流部分和竖向导流部分构成,其中水平导流梳部分从导流罩的动力气流输入口的上方向雾化室内水平伸展一定长度,优选20~35mm处,再向供液底盒下方弯折延伸形成竖向导流梳部分,宽度优选20~35mm;优选的,所述雾化室的内壁前设置有可拆卸的阻沫网,优选的,其上形成有1~3×1~3mm2规格的小网格;优选的,所述阻沫网形成在雾化室的前和/或后内壁上,所述阻沫网形成在雾化室导流罩左右壳体接缝位置的前内壁上。
  8. 如上述权利要求4所述的施药装置,其特征在于:所述超声波振荡装置为集成式超声波振荡装置,并包括一个或多个超声波振荡单元,所述振荡单元设置在密封壳体内,每一超声波振荡单元设有一个或多个振荡元件,该些振荡元件的陶瓷换能片露出密封壳体与待雾化的药液接触以实施超声波振荡,优选的,所 述超声振荡装置的振荡元件的总量为3-10个;进一步优选的,所述超声波振荡装置还设有液位控制件和稳压装置,其中所述液位控制件设置在密封壳体上,稳压装置设置在所述底座的底部风道中;进一步优选的,所述施药装置包括一个或多个所述的集成式超声波振荡装置;优选的,所述超声波振荡装置被可拆卸的设置在供液底盒的外部的底部,超声波振荡装置的振荡元件通过供液底盒底壁上的开孔与所述供液底盒中的药液流体接触,以向所述药液施加超声波振荡;优选的,供液底盒的底壁上还形成一定高度的隔断,隔断上开有液流孔;优选的,所述超声波振荡装置的背部位于底座内的底部风道中或能够与底部风道流体接触;优选的,所述超声波振荡装置被可拆卸的设置在供液底盒的内部的底部,所述供液底盒中沿液位高度方向上设置有导杆,所述超声波振荡装置的密封壳体可滑动地安装在该导杆上,进一步优选的,所述超声波振荡装置的密封壳体设置有增大或减小浮力特征;进一步优选的,所述超声波振荡装置的陶瓷换能片的振荡工作频率被配置为在大于1.7MHz的频率工作,优选其振荡工作频率为2.0~5MHz。
  9. 如上述权利要求8所述的施药装置,其特征在于:所述施药装置包括控液稳效装置,用于与所述超声振荡装置配合工作,该控液稳效装置包括一罩体,该罩体由顶壁和外周壁围成一向下开放的腔体,用于罩在超声振荡装置的上方;所述罩体的顶壁形成有与所述超声振荡装置的振荡元件数量及位置对应的开孔,每一开孔的下方由所述顶壁的内壁面向下延伸形成一两端开口的直通式筒体,该筒体用于罩在与其对应的振荡元件的外周,由筒体的两端开放的内腔构成相应振荡元件的稳效腔;所述筒体的外壁面与所述罩体外周壁的内壁面之间的腔体构成控液腔,所述控液腔为上端封闭的腔体,所述控液腔的顶面由所述罩体顶壁的非开孔区域构成;所述罩体外周壁的下端面与所述超声振荡装置的上端面之间形成一个或多个缝隙,以用作所述控液腔的控液缝隙;筒体的下端面与所述振荡元件的外延面之间形成一个或多个缝隙,以用作所述稳效腔的供液缝隙;所述稳效腔供液缝隙的最高位置低于或等于用于所述控液缝隙的开口的最高位置;进一步优选的,对应超声振荡装置上设置的液位控制件,控液稳效装置还形成一液位腔,在施药装置正常工作时,液位腔的上部与外界空气相通,液位腔的底部与稳效腔、控液腔周围的药液连通;当所述液位控制件在所述超声振荡装置的中间位置时,优选的所述液位腔被构造成在所述控液稳效装置的罩体顶壁与液位控制件对应的位置处形成一类似稳效腔结构的直通式筒体,利用液位腔的内腔形成用于液位控制件的全筒式液位腔;构成液位腔的直通式筒体与液位控制件的外沿面之间形 成有一个或多个进液缝隙;当所述液位控制件在所述超声振荡装置的周围位置时,优选的所述液位腔被构造成使罩体的外周壁在与液位控制件对应的位置处形成一向控液腔凹进的半筒状凹部,利用该凹部的侧壁面与供液底盒的内壁面形成一可供超声振荡装置液位控制件检测的半筒式液位腔,所述半筒式液位腔又可根据其腔体的顶部是否被罩体的顶壁封闭分为半筒顶部开放式液位腔和半筒顶部封闭式液位腔。
  10. 如上述权利要求9所述的施药装置,其特征在于:所述控液稳效装置支撑在超声振荡装置上或吊装在超声波振荡装置的上方,并与超声波振荡装置形成配合体;优选的,控液稳效装置与超声振荡装置通过位于控液稳效装置上的连接机构相互配合并连接成为一个装配体;优选的,连接机构为一卡爪结构,超声振荡装置在外周形成一向上的突沿与卡爪配合,使控液稳效装置被固定支撑并罩合在超声振荡装置的上端面上;或将控液稳效装置可拆卸的固定在导流罩上,通过导流罩与控液稳效装置的设置位置配合,使用于控液稳效装置的控液缝隙、供液缝隙、进液缝隙吊装在超声振荡装置的上端面上;或控液稳效装置与导流罩及阻沫网复合组成装配体,以与集成式超声振荡装置配套使用;优选的,在沿向下开放的罩体外周壁末端的一面或几面或每面形成有一个或多个豁口缝隙作为控液缝隙,在稳效腔的直通筒体末端的一面或几面或每面形成有一个或多个豁口缝隙作为稳效腔缝隙;或使控液腔的底端面、稳效腔的底端面、液位腔的底端面与超声振荡装置外周面、振荡元件外延面、液位控制件的外延面之间被留有一定的安装间隙作为控液腔的控液缝隙、稳效腔的供液缝隙、液位腔的进液缝隙;优选的,控液缝隙为可控或可调的:在允许范围内,通过调整控液稳效装置的吊挂高度或在超声振荡装置上的支撑高度,实现对控液缝隙的宽度或大小的调节和设置。
  11. 如上述权利要求6-10所述的施药装置,其特征在于:根据药液从贮液箱设置的顶杆式定位供液组件的流出位置设定所述供液底盒的药液的最佳液位,由超声波振荡装置的液位控制件检测停机液位,并实施停机保护,所述供液底盒的供液口的最低位置与供液底盒的最低位置处在同一水平面上或稍高于供液底盒的最低位置,所述供液底盒的供液口的最高位置低于控液稳效装置的控液缝隙的最低位置。
  12. 如上述权利要求5所述的施药装置,其特征在于:所述药液供给装置还设置有一贮液箱,所述贮液箱与供液底盒之间形成有连通两者的流道,所述药液 先注入贮液箱再由该流道供入供液底盒内;进一步优选的,所述药液供给装置还设有多功能水箱,该多功能水箱与贮液箱之间也形成一流道;优选的,所述述贮液箱与供液底盒之间的流道与多功能水箱与贮液箱之间的流道一体地形成在供液底盒的内壁上,且沿着多功能水箱、贮液箱、供液底盒,高度依次降低,从而为所述贮液箱提供热水以提高由贮液箱进入供液底盒的药液液温,并在施药装置操作前和/或后对药道进行清洗;进一步优选的,所述供液底盒为阶梯状,其较低部分形成容纳药液的凹槽并设置所述超声波振荡装置,从该较低位置部分所述供液底盒的底壁向上延伸于注液箱、多功能水箱的底部,使得所述贮液箱、多功能水箱设于供液底盒的较高位置处;进一步优选的,所述供液底盒的底壁形成可流体连通贮液箱、多功能水箱的流道;进一步优选的,所述贮液箱上设有正反量度刻度;进一步优选的,所述供液底盒上设置一可拆卸地复件,该复件拷贝供液底盒的内部形状,覆盖在供液底盒的内壁上。
  13. 如上述权利要求12所述的施药装置,其特征在于:所述贮液箱包括可贮液的容器,容器设有一较小的第一开口和较大的第二开口,其中较小的第一开口用于与所述供液底盒上的药液流道连通,较大的第二开口可拆卸的密封有一底盖,优选的,底盖与第二开口螺纹配合,第二开口形成有圆筒形外螺纹壁,相应的底盖形成有内螺纹壁,以使利用螺母拧紧在第二开口圆筒形的螺纹壁上。
  14. 如上述权利要求12和13所述的施药装置,其特征在于:所述贮液箱与供液底盒之间的流道上设有药液供液控液装置,以使贮液箱的药液被可控的供给液底盒,该药液供液控液装置包括顶杆式定位供液组件和顶杆控制组件,其中位于贮液箱底部的第一开口设置顶杆式定位供液组件,该顶杆式定位供液组件形成与雾化室供液流道连通的液流腔及液流口,顶杆控制组件包括用于对顶杆式定位供液组件施加外力作用的顶杆,上顶杆设置在顶杆式定位供液组件的下方,以根据需要打开或关闭顶杆式定位供液组件控制的液流口;优选的,该顶杆式定位供液组件包括皮帽塞、供液组件内导柱、弹簧、限位导圈、顶片以及围纳该些组件并形成液流腔及液流口的壳体,壳体的外壁与容器的第一开口密封连接,内壁形成液流腔,液流腔的出口形成液流口;皮帽塞作用在液流口上用于打开或关闭液流口,皮帽塞固定在内导柱的上端,内导柱下端穿过设于壳体内壁上的限位导圈与用于接收外力的顶片固定连接;内导柱外周套设有弹簧,该弹簧可伸缩的设于液流口的限位导圈与顶片之间;优选的,所述顶杆控制组件通过顶杆对顶杆式定位供液组件的作用的可控性通过增高或降低顶杆的有效高度实现;优选的所述顶 杆为螺杆式,通过手动或电动控制组件使螺杆向上旋出或向下旋入调节顶杆的有效高度,或所述顶杆设计为可折叠式或可伸缩式或在顶杆顶部可拆卸的套装一可延长顶杆有效长度的套帽,顶杆的有效高度根据需要手动调整。
  15. 如上述权利要求13所述的施药装置,其特征在于:所述贮液箱内设置有搅拌桨和/或扩繁筒;优选的,所述搅拌桨和/或扩繁筒可拆卸的设置在贮液箱的底盖上;进一步优选的,所述扩繁筒和搅拌桨可拆卸地安装在一起并能以一整体结构和各自单独结构可拆卸的安装到贮液箱的底盖上。
  16. 如上述权利要求15所述的施药装置,其特征在于:在所述贮液箱中设置由电力驱动的搅拌桨,供液底盒的上部内壁面与搅拌桨转轴相对的位置,向上隆起形成中空圆壁形结构,搅拌桨转轴穿过中空圆壁形结构与设置在供液底盒下方的驱动电机驱动连接;进一步优选的,供液底盒上部的内壁面还在中空圆壁形结构的外周形成低于中空圆壁形结构上端面的凸台,凸台的外周形成一与流道入口连通的环形槽道;进一步优选的,位于槽道外周的供液底盒内壁面逐渐向环形槽道降低,而环形槽道也向流道入口逐渐降低,流道也向雾化室的供液口逐渐降低;进一步优选的,将槽道和流道的最低位置均设计为大于雾化室供液底盒的最高液位工作液位面,中空圆壁形结构的上端面高于环形槽道的最高位置;优选的,容器的第二开口及相应的底盖设置在贮液箱容器的底部;搅拌桨包括转轴、密封件、套装在转轴上的轮毂、形成在轮毂上的桨叶及驱动转轴转动的驱动电机,搅拌桨转轴的上端可转动的固定在底盖上并伸进容器内,下端伸出底盖与设置在底盖外的驱动电机直接或间接连接;优选的,底盖形成一圆筒形周向凸缘,该凸缘的位置与上述的环形槽道相对,凸缘的内侧形成有与药液容器第二开口结合的圆筒形外螺纹壁,底盖的中间位置形成一可伸进容器开口内的凸台,凸台的背侧形成凹腔使其可扣合在供液底盒上部内壁面所形成的中空圆壁形结构上;搅拌桨支撑在底盖的凸台上,其转轴穿过底盖与设置在底盖外侧的驱动电机直接或间接转动连接,所述搅拌桨的驱动电机设置在底座的底部风道中。
  17. 如上述权利要求15所述的施药装置,其特征在于:扩繁筒包括容纳用于生物活性物载体的筒体、及设置在筒体下面的安装或连接结构,筒体上具有多个规则的或不规则的镂空孔;优选的扩繁筒筒体包括扩繁筒壳体、上封头和下封头,以形成可拆卸地结合在一起的筒体结构;优选的,扩繁筒壳体和下封头均包括两个半体,其中左半壳体与左半下封头之间形成一体结构,右半下封头及右半壳体之间形成一体结构,左半壳体和左半下封头与右半壳体和右半下封头分别可 拆卸地组合在一起;进一步优选的,左右半壳体及左右半下封头在相应的配合处一侧形成插槽,另一侧形成插头,插槽和插头匹配的结合在一起;进一步优选的,所述筒体下面的安装或连接结构用来将扩繁筒可拆卸的固定在容器的内壁上,或将扩繁筒可拆卸的固定在搅拌桨上或将其可拆卸的固定在容器的底盖上。
  18. 如上述权利要求17所述的施药装置,其特征在于:贮液箱容器的第二开口及相应底盖采用可拆卸密封连接结构设置在容器的底部,搅拌桨与扩繁筒为同轴设计且通过可拆卸连接结构形成一整体结构,扩繁筒可拆卸的设置在搅拌桨上方,搅拌桨可拆卸的设置在底盖上,扩繁筒、搅拌桨均被伸进容器中;优选的,所述可拆卸密封连接结构包括可拆卸的套设在转轴顶端上的轴筒部和从轴筒部顶端向外延伸的喇叭口型的连接外凸缘,搅拌桨的轮毂可拆卸的套设在轴筒部的外周;位于扩繁筒底部的安装或连接结构在下封头的外壁形成弹性连接卡槽,连接外凸缘利用弹性卡槽的弹性可拆卸的固定在弹性连接卡槽中;优选的,所述弹性卡槽包括:设置在对应的左、右下封头上的环状倒T型卡钳结构,卡钳结构形成不具有弹性的连接卡槽(3751);设置在对应的左、右下封头对接的位置处的弹性倒T型内凸缘(3752),连接外凸缘可利用弹性倒T型内凸缘的弹性放置在连接槽中或将其取出;进一步优选的,自扩繁筒底端下封头环形卡钳结构的连接件或连接槽部分向上优选约20~30mm位置的扩繁筒左壳体(371)和扩繁筒右壳体(372)的镶接结构不完全紧固的设置在一起,优选的,约20~30mm以上位置的扩繁筒左壳体371和扩繁筒右壳体的镶接结构可进一步采用胶粘结固定,而连接件或连接槽向上约20~30mm位置的扩繁筒左壳体(371)和扩繁筒右壳体的镶接结构构不采用胶粘结紧固,而只利用镶接结构实现两者之间的对接。
  19. 如上述权利要求15-18任一项所述的施药装置,其特征在于:搅拌桨或扩繁筒与容器大盖之间设置可拆卸连接结构:在两者共用的转轴上设置一上轴承,底盖的轴孔处设置一下轴承,上轴承和下轴承形成配合结构,转轴从底盖的凸台中穿过,与设置在底盖外侧的联轴器连接,该联轴器与驱动电机连接,优选的,联轴器的下部形成一扩腔,扩腔的内壁上形成齿轮结构,驱动电机的转轴通过与该齿轮结构配合,带动联轴器及搅拌桨和/或扩繁筒的转轴旋转;优选的,联轴器扩腔的大小正好罩在供液底盒上部内壁面的凸台上的中空圆壁形结构内。
  20. 如上述权利要求19所述的施药装置,其特征在于:将扩繁筒和搅拌桨的功能合而为一到扩繁筒上,在扩繁筒的上封头和/或下封头和/或壳体周面上设置搅拌桨叶;进一步优选的,将扩繁筒和搅拌桨的功能合而为一到搅拌桨上,生 物活性物载体填充于所述变形的和/或大号的搅拌桨的桨叶和/或桨体部分中,桨叶和/或浆体上具有可供药液流入或流出的镂空通道。
  21. 如上述权利要求4所述的施药装置,其特征在于:
    气流输送组件包括气流输入组件和气流输出组件,其中气流输入组件包括内设有送风机(200)的风箱,风箱设置在雾化室的左侧,所提供的动力气流通过与风箱邻接的雾化室左壁上的动力气流输入口输入雾化室内,而气流输出组件设置在上述的位于雾化发生室的顶部,将由动力气流与雾化药雾所形成的含有超微药物颗粒的气态流送出到施药目标所在的环境内;进一步优选的,在雾化发生室上游设置送风机,该送风机蜗壳的出风口(153)与上述动力气流输入口(154)对应,气流从该动力气流输入口送出的方向相对水平面的角度在-20度~20度之间;优选的,气流输送组件还包括一底座形成的底部风道,该底部风道由座体(120)和箱体(100)扣合而构成,座体的下面设有支脚;优选的,支脚上可设有万向节等滑轮以方便施药装置的移动;再进一步优选的,支脚还可设计为可伸缩的支脚已根据施药对象调整施药装置的施药高度;优选的,将用于施药装置的包括稳压器、功能开关(111)、控制线路板(700)、搅拌桨电机(359)、负离子发生装置的发热电器部件设置在底部风道中。
  22. 如上述权利要求21所述的的施药装置,其特征在于:气流输出组件(500)设置在雾化发生室顶部的气态流输出口(420)处,以将含有超微药物颗粒的气态流施加到施药目标所在的环境内;具体的优选:气流输出组件包括可转动的设置在导流罩气态流输出口(420)的喷头(500)及驱动喷头相对气态流输出口转动的驱动装置;具体的,喷头的底部设形成一齿轮圈结构,驱动装置包括电机及传动齿轮,在电机的带动下,带动传动齿轮转动,喷头齿轮圈通过与传动齿轮啮合在一起而被带动转动,从而可以实现360度全方位施药;进一步优选的,所述喷头包括气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3),所述气态流变向段(D2)的前部分与所述气态流输入段(D1)的后部分呈后仰状,气态流变向段(D2)的后部分与气态流输出段(D3)的前部分呈前倾状,且所述气态流输入段(D1)、气态流变向段(D2)、气态流输出段(D3)的内壁面之间的过渡面为平滑曲面;优选的,所述气态流输入段(D1)至气态流变向段(D2)形成后仰状,气态流输入段中的气态流第一损耗变向角δ1≤90°,优选在5度角~30度角之间;所述气态流变向段(D2)至气态流输出段(D3)形成前倾状,气态流变向段中的气态流第二有 效变向角δ2≤90°,优选在5度角~30度角之间,气态流流液角δ3≤90°,优选在5度角~30度角之间;进一步优选的,逃逸变距Δd≥0;优选的,从所述气态流输入段(D1)到气态流变向段(D2)再到气态流输出段(D3),整个平滑内曲面的截面积基本保持相同或一致;进一步优选的,所述异形喷头的气态流输出段(D3)的气态流输出口截面积大于或等于所述气态流输入段(D1)气态流输入口的截面积;进一步优选的,在逃逸中距(d2)或流液中距(d1)部分或全部的长度范围内的异形喷头气态流输出段的内壁面采用麻面内壁;进一步优选的,自所述喷头气态流输出段气态流流液点开始的下内壁面以一定的角度逐渐向所述异型喷头内壁内的凸曲面凸顶点处延伸。
  23. 如上述权利要求21所述的施药装置,其特征在于:通过注塑形成的风箱(130)、底座(100)上用于走线的穿线孔孔沿和控制面板处设有圆形或多边形或其它形状的外凸挡水突或挡水墙,以防止雾化的药液因液化而形成的药滴或滴水流入施药装置内部。
  24. 如上述权利要求4-23任一项所述的施药装置,其特征在于:使上述形成的含有超微药物颗粒的气态流在被施加于施药目标所在环境之前带有OH-或O3-负电荷,优选的,该带电过程可通过等离子或负离子发生器实现,所述等离子或负离子发生器设置在底部风道内。
  25. 如上述权利要求21所述的施药装置,其特征在于:在雾化室的气态流输出口或靠近输出口处还设置一引风机或一射流器产生引流效应;优选的,利用所述动力气流产生引流效应,从而既利用该动力气流的引流效应与所述雾化的药液形成含有超微药物颗粒的气态流,又利用该动力气流的引流效应实现所述雾化药液向所述施药目标环境的输出;优选的,所述动力气流或高速压缩气流为高速压缩空气流或高速压缩药气流。
  26. 如上述权利要求4-25任一项所述的所述的施药装置,其特征在于:其所述封闭环境为相对封闭的环境;所述相对封闭环境包括农作物生长用大棚、温室、拱棚、农产品储藏用冷库、保鲜库、气调库、兽舍、饲舍、公共办公或私人居住场所、交通工具;所述封闭环境内的施药目标包括确定施药目标和/或不确定施药目标,优选的,所述不确定施药目标为封闭环境内的无固定形态的空气,所述确定施药目标为封闭环境内有固定形态的无生命体和/或有生命体;进一步优选的,所述农用封闭环境内的确定施药目标包括农作物或农产品或农业设施, 如蔬菜、瓜果、花卉、蘑菇、药材、烟草、茶叶、禽畜养殖等农作物或农产品或其农业设施;进一步优选的,对所述农作物或农产品的施药目的包括除虫和/或除病和/或除残留农药和/或农产品的后熟处理和/或农作物的春化处理和/或农作物的生长发育调节;对所述农业设施的施药目的包括消毒和/或除病和/或除虫和/或免疫和/或生产无抗生素产品;进一步优选的,对所述公共办公和/或私人居住场所和/或交通工具环境内的确定施药目标包括空气进行消毒和/或除菌和/或除虫和/或除臭和/或除甲醛。
PCT/CN2014/090027 2013-11-26 2014-10-31 施药装置及施药方法 WO2015078265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310605503.7 2013-11-26
CN201310605503.7A CN104663633B (zh) 2013-11-26 2013-11-26 一种施药装置及施药方法

Publications (1)

Publication Number Publication Date
WO2015078265A1 true WO2015078265A1 (zh) 2015-06-04

Family

ID=53198335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090027 WO2015078265A1 (zh) 2013-11-26 2014-10-31 施药装置及施药方法

Country Status (2)

Country Link
CN (1) CN104663633B (zh)
WO (1) WO2015078265A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108052134A (zh) * 2017-12-30 2018-05-18 利穗科技(苏州)有限公司 数字化缓冲液配液系统及方法
CN109100482A (zh) * 2018-07-13 2018-12-28 山东省水利科学研究院 一种可根据监测结果多方位调节的土壤研究装置
WO2019152862A1 (en) * 2018-02-02 2019-08-08 Apdn (B.V.I.) Inc. Systems and methods for tracking the origin of cannabis products and cannabis derivative products
CN110849689A (zh) * 2019-11-29 2020-02-28 无限极(中国)有限公司 一种用于中药成份检验液的制取装置
CN112459505A (zh) * 2020-11-19 2021-03-09 无锡城市职业技术学院 一种组合式钢筋保护层定距装置
CN112811484A (zh) * 2021-01-14 2021-05-18 连云港师范高等专科学校 一种蟹塘喷洒式药品投放装置
CN112931472A (zh) * 2021-03-26 2021-06-11 宿迁学院 一种果园自动仿形弥雾施药机
CN112970708A (zh) * 2021-02-05 2021-06-18 程燕红 一种用于农业的种植的喷药设备
CN114280285A (zh) * 2021-12-30 2022-04-05 生态环境部南京环境科学研究所 水稻病虫防治药剂对甲壳类水生生物急性毒性试验装置
CN114409185A (zh) * 2021-12-31 2022-04-29 江苏世邦生物工程科技有限公司 智能养殖水立体式循环净化系统
CN114642757A (zh) * 2022-04-30 2022-06-21 厦门金名节能科技有限公司 一种智能化防疫消杀用设备
CN115010325A (zh) * 2022-06-29 2022-09-06 安徽新宇环保科技股份有限公司 一种磷回收反应器
CN115024291A (zh) * 2022-05-25 2022-09-09 牛之朗(福建)供应链有限公司 一种牛周转运输专用牛蝇灭杀装置及其方法
CN115380890A (zh) * 2022-09-20 2022-11-25 农业农村部南京农业机械化研究所 防飘失果树施药机
CN116870743A (zh) * 2023-09-05 2023-10-13 包头职业技术学院 一种合金生产用原料混合设备
CN117509857A (zh) * 2023-12-29 2024-02-06 山东省环境保护科学研究设计院有限公司 一种高效重金属废水处理装置
CN117800440A (zh) * 2024-02-29 2024-04-02 西南石油大学 一种石油污水处理系统及方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668142B (zh) * 2013-11-26 2018-09-11 北京中献智农科技有限公司 一种适用于超声波振荡器的控液稳效装置
CN105772272B (zh) * 2016-03-22 2017-02-15 刘先国 一种环保健康绿色高压喷杀器
CN106386764B (zh) * 2016-10-27 2022-08-16 武汉航达航空科技发展有限公司 一种直升机农用喷洒设备
CN106489892A (zh) * 2016-10-31 2017-03-15 孙成军 防沉淀农用喷药机
CN107223653A (zh) * 2017-06-09 2017-10-03 合肥市川丘生态农业科技发展有限公司 农药喷洒设备
CN107223652A (zh) * 2017-06-09 2017-10-03 合肥市川丘生态农业科技发展有限公司 农药喷洒装置
CN107114338A (zh) * 2017-06-09 2017-09-01 合肥市川丘生态农业科技发展有限公司 撒药车
AT520470B1 (de) * 2017-09-18 2020-07-15 Zeta Biopharma Gmbh Heizvorrichtung für Rührköpfe
CN108041103A (zh) * 2017-12-08 2018-05-18 孙佳蔚 一种大棚虫害农药雾剂的制备方法及其混合加热喷雾机
CN108013016B (zh) * 2017-12-29 2020-09-08 江苏启晟生态农业研究院有限公司 一种农业用快速配药装置
CN107912409A (zh) * 2018-01-03 2018-04-17 李微 履带式自动打药机
CN109744218A (zh) * 2019-01-29 2019-05-14 广西科技大学 一种移动载体上的可调单排杆式农药喷洒装置
FR3093085B1 (fr) * 2019-02-22 2021-03-12 Exel Ind Couvercle pour cuve comprenant un event pourvu d’un flotteur en serie avec une chicane
CN111226891B (zh) * 2020-03-06 2023-08-25 山东农业大学 一种温室用精量雾化均匀施药系统及方法
CN112704052B (zh) * 2020-12-10 2022-12-09 六夫丁作物保护有限公司 自动化现混式配药方法及配药系统
CN112690265B (zh) * 2020-12-24 2022-09-06 吉林农业大学 一种病虫害防治定时喷药装置及方法
CN112815438B (zh) * 2021-01-05 2022-03-11 河北化工医药职业技术学院 一种实验室设备用加湿器
CN113100209B (zh) * 2021-04-22 2024-01-23 吴凯华 一种具有调节机构的园林喷洒设备及使用方法
CN113267615B (zh) * 2021-07-16 2021-09-24 东营金丰正阳科技发展有限公司 一种石油水份自动快速测定仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2745684A1 (fr) * 1996-03-08 1997-09-12 Begouen Jean Paul Soufflant autonome pour lutter contre les animaux sous-terrains
CN2877298Y (zh) * 2006-02-24 2007-03-14 姚红 生物型超声波空气处理器
CN2879668Y (zh) * 2006-04-18 2007-03-21 红河森菊生物有限责任公司 超声波杀菌灭虫器
US7712249B1 (en) * 2007-11-16 2010-05-11 Monster Mosquito Systems, Llc Ultrasonic humidifier for repelling insects
CN102845402A (zh) * 2012-04-20 2013-01-02 陈田来 一种农药的高效布药方法及农药高效布药器
CN103371139A (zh) * 2012-04-20 2013-10-30 陈田来 一种高效布药方法及高效布药器
CN203735328U (zh) * 2013-11-26 2014-07-30 北京中献智农科技有限公司 一种生物浆、多功能扩繁器及生物施药装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226368A (ja) * 1990-01-23 1991-10-07 Kenji Kondo フラックス噴霧装置
CN1062183C (zh) * 1996-04-17 2001-02-21 蒋弘 用于空气消毒的超声波雾化装置
CN2614089Y (zh) * 2003-01-28 2004-05-05 鞍山市钢都医疗器械厂 热风多功能超声波雾化器
CN2711606Y (zh) * 2004-04-30 2005-07-20 马伟博 超声雾化空气加湿器
JP2006149995A (ja) * 2004-11-26 2006-06-15 Yoshimi Sano 殺菌・消臭の手法
GB2458162A (en) * 2008-03-07 2009-09-09 Reckitt Benckiser Air cleaner
CN203245080U (zh) * 2013-05-10 2013-10-23 南通德祺五金机械有限公司 一种带存水口的超声波雾化器
CN103486675B (zh) * 2013-10-09 2016-04-20 浙江二马环境科技有限公司 湿法去除室内空气颗粒物的方法和装置
CN203791114U (zh) * 2013-11-26 2014-08-27 陈田来 适用于超声波振荡器的控液稳效装置及其应用装置
CN203884514U (zh) * 2013-11-26 2014-10-22 陈田来 一种施药装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2745684A1 (fr) * 1996-03-08 1997-09-12 Begouen Jean Paul Soufflant autonome pour lutter contre les animaux sous-terrains
CN2877298Y (zh) * 2006-02-24 2007-03-14 姚红 生物型超声波空气处理器
CN2879668Y (zh) * 2006-04-18 2007-03-21 红河森菊生物有限责任公司 超声波杀菌灭虫器
US7712249B1 (en) * 2007-11-16 2010-05-11 Monster Mosquito Systems, Llc Ultrasonic humidifier for repelling insects
CN102845402A (zh) * 2012-04-20 2013-01-02 陈田来 一种农药的高效布药方法及农药高效布药器
CN103371139A (zh) * 2012-04-20 2013-10-30 陈田来 一种高效布药方法及高效布药器
CN203735328U (zh) * 2013-11-26 2014-07-30 北京中献智农科技有限公司 一种生物浆、多功能扩繁器及生物施药装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108052134A (zh) * 2017-12-30 2018-05-18 利穗科技(苏州)有限公司 数字化缓冲液配液系统及方法
WO2019152862A1 (en) * 2018-02-02 2019-08-08 Apdn (B.V.I.) Inc. Systems and methods for tracking the origin of cannabis products and cannabis derivative products
CN109100482B (zh) * 2018-07-13 2023-09-22 山东省水利科学研究院 一种可根据监测结果多方位调节的土壤研究装置
CN109100482A (zh) * 2018-07-13 2018-12-28 山东省水利科学研究院 一种可根据监测结果多方位调节的土壤研究装置
CN110849689A (zh) * 2019-11-29 2020-02-28 无限极(中国)有限公司 一种用于中药成份检验液的制取装置
CN110849689B (zh) * 2019-11-29 2022-03-04 无限极(中国)有限公司 一种用于中药成份检验液的制取装置
CN112459505A (zh) * 2020-11-19 2021-03-09 无锡城市职业技术学院 一种组合式钢筋保护层定距装置
CN112811484A (zh) * 2021-01-14 2021-05-18 连云港师范高等专科学校 一种蟹塘喷洒式药品投放装置
CN112970708A (zh) * 2021-02-05 2021-06-18 程燕红 一种用于农业的种植的喷药设备
CN112931472A (zh) * 2021-03-26 2021-06-11 宿迁学院 一种果园自动仿形弥雾施药机
CN112931472B (zh) * 2021-03-26 2023-02-03 宿迁学院 一种果园自动仿形弥雾施药机
CN114280285A (zh) * 2021-12-30 2022-04-05 生态环境部南京环境科学研究所 水稻病虫防治药剂对甲壳类水生生物急性毒性试验装置
CN114280285B (zh) * 2021-12-30 2022-06-21 生态环境部南京环境科学研究所 水稻病虫防治药剂对甲壳类水生生物急性毒性试验装置
CN114409185A (zh) * 2021-12-31 2022-04-29 江苏世邦生物工程科技有限公司 智能养殖水立体式循环净化系统
CN114409185B (zh) * 2021-12-31 2023-11-28 江苏世邦生物工程科技有限公司 智能养殖水立体式循环净化系统
CN114642757A (zh) * 2022-04-30 2022-06-21 厦门金名节能科技有限公司 一种智能化防疫消杀用设备
CN114642757B (zh) * 2022-04-30 2024-05-07 厦门金名节能科技有限公司 一种智能化防疫消杀用设备
CN115024291A (zh) * 2022-05-25 2022-09-09 牛之朗(福建)供应链有限公司 一种牛周转运输专用牛蝇灭杀装置及其方法
CN115024291B (zh) * 2022-05-25 2023-11-17 牛之朗(福建)供应链有限公司 一种牛周转运输专用牛蝇灭杀装置及其方法
CN115010325B (zh) * 2022-06-29 2023-04-28 安徽新宇环保科技股份有限公司 一种磷回收反应器
CN115010325A (zh) * 2022-06-29 2022-09-06 安徽新宇环保科技股份有限公司 一种磷回收反应器
CN115380890A (zh) * 2022-09-20 2022-11-25 农业农村部南京农业机械化研究所 防飘失果树施药机
CN116870743A (zh) * 2023-09-05 2023-10-13 包头职业技术学院 一种合金生产用原料混合设备
CN117509857A (zh) * 2023-12-29 2024-02-06 山东省环境保护科学研究设计院有限公司 一种高效重金属废水处理装置
CN117509857B (zh) * 2023-12-29 2024-05-28 山东省环境保护科学研究设计院有限公司 一种高效重金属废水处理装置
CN117800440A (zh) * 2024-02-29 2024-04-02 西南石油大学 一种石油污水处理系统及方法
CN117800440B (zh) * 2024-02-29 2024-05-14 西南石油大学 一种石油污水处理系统及方法

Also Published As

Publication number Publication date
CN104663633A (zh) 2015-06-03
CN104663633B (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2015078265A1 (zh) 施药装置及施药方法
CN203884514U (zh) 一种施药装置
CN104663639B (zh) 一种生物桨、多功能扩繁器及生物施药装置
US8296993B2 (en) Ultrasonic humidifier for repelling insects
JP5097899B2 (ja) 改良された紫外線消毒作用を有する加湿器
CN102845402B (zh) 一种农药的高效布药方法及农药高效布药器
CN203735328U (zh) 一种生物浆、多功能扩繁器及生物施药装置
CN203737463U (zh) 喷头、气流输出组件、空气加湿器及施药装置
CN203791114U (zh) 适用于超声波振荡器的控液稳效装置及其应用装置
CN202941320U (zh) 一种高效布药器
CN103371139B (zh) 一种高效布药方法及高效布药器
CN109329247A (zh) 一种用于绿化带杀虫剂喷洒的辅助装置
CN104668142B (zh) 一种适用于超声波振荡器的控液稳效装置
CN102845406B (zh) 一种生物活性物的高效布放方法及生物活性物高效布放器
CN210248105U (zh) 一种农用打药高效率喷洒装置
CN203735322U (zh) 一种供液控制装置及其施药装置
CN203735323U (zh) 一种便携式弥雾机
CN212035582U (zh) 蔬菜病虫害综合防治装置
US20090304763A1 (en) Insect Attractant Composition
CN210929306U (zh) 一种农业用农药喷洒装置
KR20000058687A (ko) 진공청소분무기
CN213719577U (zh) 一种用于草坪的喷洒装置
CN208370766U (zh) 一种多功能园林打药机
CN213095705U (zh) 一种玉米种植农药喷洒器装置
CN211211117U (zh) 一种便捷式农药喷洒装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 14865475

Country of ref document: EP

Kind code of ref document: A1