WO2015076388A1 - 終脳又はその前駆組織の製造方法 - Google Patents

終脳又はその前駆組織の製造方法 Download PDF

Info

Publication number
WO2015076388A1
WO2015076388A1 PCT/JP2014/080966 JP2014080966W WO2015076388A1 WO 2015076388 A1 WO2015076388 A1 WO 2015076388A1 JP 2014080966 W JP2014080966 W JP 2014080966W WO 2015076388 A1 WO2015076388 A1 WO 2015076388A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
cells
cell
culture
aggregate
Prior art date
Application number
PCT/JP2014/080966
Other languages
English (en)
French (fr)
Inventor
大輔 門嶋
秀哉 坂口
Yoshiki Sasai (笹井 芳樹)
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2015549212A priority Critical patent/JP6499084B2/ja
Priority to EP14863861.2A priority patent/EP3072960B1/en
Priority to CA2931278A priority patent/CA2931278A1/en
Priority to ES14863861T priority patent/ES2732730T3/es
Priority to MYPI2016701809A priority patent/MY188836A/en
Priority to US15/037,926 priority patent/US11198850B2/en
Priority to CN201480072070.6A priority patent/CN106103702B/zh
Priority to AU2014353973A priority patent/AU2014353973B2/en
Priority to KR1020167016716A priority patent/KR102317610B1/ko
Publication of WO2015076388A1 publication Critical patent/WO2015076388A1/ja
Priority to US17/549,468 priority patent/US20220098550A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0622Glial cells, e.g. astrocytes, oligodendrocytes; Schwann cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Definitions

  • the present invention relates to a technique for inducing differentiation from pluripotent stem cells into telencephalon or a precursor tissue thereof in vitro.
  • the cerebral cortex of mammals has a multilayer structure (I-VI layer), which is gradually formed from the stage of fetal cerebral cortex formation (Non-patent Document 1).
  • the cerebral cortex is generated from the neuroepithelium of the dorsal telencephalon (mantle) and gradually forms a hemisphere in the hemisphere (Fig. 17A) (Non-patent Document 2).
  • Cortical hem is adjacent to the posterior caudal side of the cerebral cortex, while the outer basal ganglia (LGE, striatum primordia) and the diaphragm are adjacent to the rostral side via the pale cortex.
  • LGE outer basal ganglia
  • striatum primordia striatum primordia
  • Non-patent Document 3 the outermost I-layer fistula (embryonic) formed mainly from Reelin-positive Kahal Retius cells.
  • the primordial of the period is called the marginal zone; (Fig. 17B) ⁇ (in the case of human cerebral cortex, some Reelin-positive cells are also produced directly from cerebral cortical neuroepithelium) (Non-patent Document 4).
  • the remaining cortical plate layers have a characteristic pattern in which neurons are generated and arranged regularly in time and space. This is called an inside-out pattern, in which deeper layers of neurons are generated earlier from neural progenitor cells (FIG. 17B) (Non-patent Documents 5 and 6).
  • Non-patent Document 10 In this floating cell mass derived from self-organized human ES cells, cerebral cortical neuroepithelium is spontaneously formed, and the ventricular zone, cortical plate and marginal zone are also spontaneous after 40-45 days of culture. Formed. This cerebral cortical neuroepithelium reproduced cerebral cortex formation in the early stages of human pregnancy, but was immature in many respects (FIG. 17C) (non-patent document 7).
  • Non-patent Document 11 outer radial glial cells (oRG) could be induced in cerebral cortical tissue having a multilayer structure derived from human pluripotent stem cells.
  • This study uses a non-selective differentiation method that provides stochastic specificity of the brain region. This differentiation method is characterized by swirling the aggregated mass using a spinner flask.
  • An object of the present invention is to provide a technique for inducing a more mature telencephalon or a precursor tissue thereof from mammalian pluripotent stem cells in vitro.
  • the present inventors have succeeded in performing steric induction of cerebral cortex tissue over a longer period of time by improving the culture conditions of the method for inducing self-assembly of human cerebral cortex.
  • This method succeeded in spontaneously causing the dorsal ventral and anteroposterior polarities seen in living embryos in the self-organized cerebral cortex.
  • a specific nerve region along the dorsoventral axis or the anteroposterior axis can be selectively differentiated by an exogenous signal factor, and the cerebral cortex tissue can be continuously connected to the adjacent tissue in the same positional relationship as in the living body.
  • the multilayer structure (ventricular zone, subventricular zone, lateral subventricular zone, intermediate zone, subplate, deep cortical plate, We succeeded in three-dimensional formation from the surface layer along the deep axis.
  • the present invention is as follows:
  • telencephalon marker positive aggregate by suspension culture of the pluripotent stem cell aggregate in the presence of a Wnt signal inhibitor and a TGF ⁇ signal inhibitor; and A method for producing a cell aggregate containing the telencephalon or a partial tissue thereof, or a precursor tissue thereof, further comprising suspension culture under high oxygen partial pressure conditions.
  • the obtained cell aggregate includes any telencephalon partial tissue selected from the group consisting of cerebral cortex, basal ganglia, hippocampus and choroid, or a precursor tissue thereof.
  • the cell aggregate to be produced contains hippocampal tissue or a precursor tissue thereof including dentate gyrus tissue or a precursor tissue thereof, and Ammon horn tissue or a precursor tissue thereof in a continuous neuroepithelium.
  • the production method according to [7], wherein the hippocampal tissue or progenitor tissue further includes cortical hem in a continuous neuroepithelium.
  • telencephalon or a partial tissue thereof (cerebral cortex, basal ganglia, hippocampus, choroid, etc.) or a precursor tissue thereof from pluripotent stem cells over a long period of time. .
  • a cerebral cortex tissue or a precursor tissue thereof having polarity of the dorsoventral axis and anterior-posterior axis can be selectively induced from pluripotent stem cells.
  • a cerebral cortex tissue or a precursor tissue thereof having a multi-layer structure in the second trimester can be selectively induced from pluripotent stem cells.
  • cerebral cortex tissue or a precursor tissue thereof, choroid tissue or a precursor tissue thereof, and hippocampal tissue or a precursor tissue thereof are self-organized as a neighboring tissue from a pluripotent stem cell into a continuous neuroepithelium. It is possible.
  • hippocampal tissue or a precursor tissue thereof including dentate gyrus tissue or a precursor tissue thereof and ammon horn tissue or a precursor tissue thereof, into a continuous neuroepithelium from pluripotent stem cells. Is possible.
  • neural progenitor cells having characteristics of outer radial glial cells (oRG) that are abundant in the cerebral cortex of the human fetus and not present in the cerebral cortex of the mouse can be obtained from human pluripotent stem cells. It can be specifically induced outside the band.
  • oRG outer radial glial cells
  • Induction of cerebral cortex progenitor tissue differentiation from human pluripotent stem cells (A) Foxg1 :: venus expression in cell aggregate of Day 26. (B) Foxg1 :: venus expression in cells in Day 34 aggregates. (C) A neuroepithelium-like structure on the hemisphere having a ventricular-like cavity formed inside the sputum cell aggregate. (D) Pax6 expression on the luminal side of the frog neuroepithelial structure. (E) Sox2 expression on the luminal side of the epithelial structure. (F) Phosphorylated histone H3 (pH3) expression on the most luminal side of the frog neuroepithelial structure.
  • A Cell aggregate including both Foxg1 :: venus positive neuroepithelium and Foxg1 :: venus negative neuroepithelium.
  • Bf1 (Foxg1) venus expression in cell aggregates including choroidal choroid, hippocampal progenitor tissue and cerebral cortex progenitor tissue.
  • C Expression of Lmx1a and Lef1 in cell aggregates including choroidal choroid, hippocampal progenitor tissue and cerebral cortex progenitor tissue. Differentiation induction of hippocampal progenitor tissue from human pluripotent stem cells.
  • A-D Expression of Bf1 (Foxg1) :: venus (A), Lmx1a B (B), Prox1 Zbtb20 ⁇ ⁇ (C) and Nrp2 (D) in the cell aggregate of Day 61.
  • E-H Expression of Foxg1 :: venus, Lmx1a and Lef1 (E), Zbtb20 (F), Prox1 (G), Prox1 and Zbtb20 (H) in the cell aggregate of EDay 75.
  • A Expression of Zbtb20, a hippocampal marker, in MAP2-positive cells showing neural dendrites.
  • Bf1 (Foxg1) venus expression in Zbtb20 positive cells.
  • C Expression of GFAP, an astrocyte marker, in Zbtb20 positive cells in the shape of glial cells.
  • D Expression pattern in dispersed culture of Prox1 which is a granule cell marker of dentate gyrus and KA1 which is a cone cell marker of CA3 in the hippocampal region. Prox1 is a small cell with a cell body diameter of about 5-10 ⁇ m, and KA1 is expressed in a large, cone-like cell with a cell body diameter of 10-20 ⁇ m.
  • E Bf1 (Foxg1) :: venus expression in the cells seen in FIG.
  • A-A ′ Signal expression image and its bright field image during calcium imaging.
  • B Various time-course response patterns of cells for calcium signals are shown.
  • C-C ′ Bright field image during electrophysiology test.
  • D Sodium-potassium current response.
  • E Evoked action potential.
  • F Its inhibition by sEPSC and DNQX. Bar: 50 ⁇ m (C, C ′).
  • a higher level of pErk signal was observed on the opposite side of Coup-TF1 expression (N).
  • the gradient and polarity of expression are shown as triangles. Arrowhead, ventricular girdle (VZ) (note that a gradient of marker expression is seen in the ventricular zone).
  • VZ ventricular girdle
  • Fgf8 treatment suppressed CoupTF1 and increased expression of rostral marker Sp8 (scale bar, 1 mm in A; 200 ⁇ m in C-P), nuclear counterstain (blue), DAPI.
  • A-I Asymmetric curved morphogenesis of human ES cell-derived neuroepithelium. In A, the arrows indicate the boundaries of the neuroepithelial region.
  • G-I Basal neural stem / progenitor cells (Pax6 +, Sox2 +) and intermediate neural stem / progenitor cells (Tbr2 +) in SVZ in Day 91 culture.
  • H Percentage of Sox2 + / Tbr2- and Sox2- / Tbr2 + neural stem / progenitor cells in all neural stem / progenitor cells (Sox2 + and / or Tbr2 +) in the cortical plate.
  • FIG. 1 Schematic diagram of the developing fetal telencephalon.
  • FIG. 1 Schematic diagram of the developing fetal telencephalon.
  • FIG. 1 Schematic diagram of the developing fetal telencephalon.
  • FIG. 1 Schematic diagram of the developing fetal telencephalon.
  • FIG. 1 Schematic diagram of the developing fetal telencephalon.
  • FIG. 1 Schematic diagram of the developing fetal telencephalon.
  • FIG. 1 Schematic diagram of the multilayered structure of the fetal cerebral cortical neuroepithelium in the early second trimester of human pregnancy (approximately 13 embryonic weeks).
  • C Schematic diagram of the layered cerebral cortical neuroepithelial structure induced in the self-organized culture of human ES cells before. Its structure is similar to human cerebral cortex tissue during early pregnancy. Axial polarity in human ES cell-derived cerebral cortical neuroepithelium.
  • A A schematic diagram of an improved culture method.
  • Coup-TF1 expression in cerebral cortical neuroepithelium was strong in the posterior region but weak in the ventral region (F).
  • G As a result of double immunostaining of CoupTF1 and Lhx2, these expression patterns were shown to have the same bias.
  • H-J Parasagittal section of mouse telencephalon of E12.5.
  • Gsh2 LGE (lateral basal ganglia) marker (H); Lmx1a, cortical hem and choroidal marker (H); Otx2 and Zic1, cortical hem markers (I and J).
  • SAG treatment efficiently suppressed the expression of Pax6 and Gsh2. ** P ⁇ 0.01 and *** P ⁇ 0.001, Dunnett's test.
  • D Schematic diagram of cortical morphogenesis in human ES cell culture compared to fetal cerebral cortex.
  • C-E High-magnification observation of calretinin + neuronal cells (C), MAP2 + neurites (D), and CSPG accumulation in the intermediate zone (E) of cerebral cortical neuroepithelium.
  • F Immunostaining of layer marker of E14.5 mouse fetal cerebral cortex.
  • G Day 70 Immunostaining of human ES cell-derived cerebral cortical neuroepithelium. Almost no accumulation of GAD65 + interneurons or TAG1 + inferior axons in the cortical plate was observed.
  • H-J Day 91 Immunostaining of human ES cell-derived cerebral cortical neuroepithelium.
  • A-C Pax6 and Sox2 immunostaining in apical and basal heel (SVZ) neural stem / progenitor cells in human ES cell-derived cerebral cortical neuroepithelium on Day 91. Most of Sox2-positive cells expressed Pax6 (C).
  • D-F Effect of ⁇ Notch signal inhibition on the expression of neural stem / progenitor cells and neuronal markers in cerebral cortical neuroepithelium.
  • Tbr2 + and phosphorylated vimentin + neural stem / progenitor cells in human ES cell-derived cerebral cortical neuroepithelium did not have protrusions on the basement membrane side (apical apex) (Same for the protrusion on the side) (Scale bar, 100 ⁇ m for AE; 25 ⁇ m for)
  • the present invention provides a telencephalon marker positive aggregate by suspending the aggregate of pluripotent stem cells in the presence of a Wnt signal inhibitor and a TGF ⁇ signal inhibitor, and the telencephalon marker positive aggregate And a method for producing a cell aggregate containing the telencephalon or a partial tissue thereof, or a precursor tissue thereof, which further comprises suspension culture. Further suspension culture is preferably performed under high oxygen partial pressure conditions. Details of the present invention will be described below.
  • Pluripotent Stem Cell is a daughter cell that has the ability to differentiate into all the cells that make up a living body (differentiated pluripotency) and the same differentiation potential as self after cell division. A cell that has both the ability to produce (self-replicating ability).
  • Pluripotency can be evaluated by transplanting cells to be evaluated into nude mice and testing for the presence or absence of teratoma containing each of the three germ layers (ectodermal, mesoderm, and endoderm). it can.
  • pluripotent stem cells examples include embryonic stem cells (ES cells), embryonic germ cells (EG cells), induced pluripotent stem cells (iPS cells), etc.
  • the cell is not limited to this as long as it is a cell having both.
  • embryonic stem cells or induced pluripotent stem cells are preferably used.
  • Embryonic stem cells can be established, for example, by culturing an early embryo before implantation, an inner cell mass constituting the early embryo, a single blastomere, etc. (Manipulating theuse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994); Thomson, J. A. et al., Science, 282, 1145-1147 (1998)).
  • An early embryo produced by nuclear transfer of a somatic cell nucleus may be used as an early embryo (Wilmut et al. (Nature, 385, 810 (1997)), Cibelli et al. (Science, 280, 1256). (1998)), Akira Iriya et al.
  • Fusion ES cells obtained by cell fusion of ES cells and somatic cells are also included in the embryonic stem cells used in the method of the present invention.
  • Embryonic stem cells can be obtained from a predetermined institution or commercially available products can be purchased.
  • human embryonic stem cells KhES-1, KhES-2 and KhES-3 are available from the Institute of Regenerative Medicine, Kyoto University.
  • Embryonic germ cells can be established by culturing primordial germ cells in the presence of LIF, bFGF, SCF, etc. (Matsui et al., Cell, 70, 841-847 (1992) , Shamblott et al., Proc. Natl. Acad.ciSci. USA, 95 (23), 13726-13731 (1998), Turnpenny et al., StemsCells, 21 (5), 598-609, (2003)).
  • iPS cells Induced pluripotent stem cells
  • somatic cells eg, fibroblasts, skin cells, lymphocytes, etc.
  • somatic cells eg, fibroblasts, skin cells, lymphocytes, etc.
  • somatic cells eg, fibroblasts, skin cells, lymphocytes, etc.
  • somatic cells eg, fibroblasts, skin cells, lymphocytes, etc.
  • somatic cells eg, fibroblasts, skin cells, lymphocytes, etc.
  • the nuclear reprogramming factor is a substance (group) capable of inducing cells having differentiation pluripotency and self-replicating ability from somatic cells such as fibroblasts, a proteinous factor or a nucleic acid encoding the same (vector) Or any substance such as a low molecular weight compound.
  • the nuclear reprogramming factor is a protein factor or a nucleic acid encoding the same, the following combinations are preferably exemplified (in the following, only the name of the protein factor is described).
  • (1) Oct3 / 4, Klf4, Sox2, c-Myc where Sox2 can be replaced with Sox1, Sox3, Sox15, Sox17 or Sox18.
  • Klf4 can be replaced with Klf1, Klf2 or Klf5. Furthermore, c-Myc can be replaced with T58A (active mutant), N-Myc, or L-Myc.) (2) Oct3 / 4, Klf4, Sox2 (3) Oct3 / 4, Klf4, c-Myc (4) Oct3 / 4, Sox2, Nanog, Lin28 (5) Oct3 / 4, Klf4, c-Myc, Sox2, Nanog, Lin28 (6) Oct3 / 4, Klf4, Sox2, bFGF (7) Oct3 / 4, Klf4, Sox2, SCF (8) Oct3 / 4, Klf4, c-Myc, Sox2, bFGF (9) Oct3 / 4, Klf4, c-Myc, Sox2, SCF
  • IPS cells are preferably used for autologous transplantation.
  • Pluripotent stem cells obtained by modifying a gene on a chromosome using a known genetic engineering technique can also be used in the present invention.
  • a pluripotent stem cell uses a known method to knock a labeled gene (for example, a fluorescent protein such as GFP) into a gene encoding a differentiation marker in-frame, so that the differentiation stage corresponding to the expression of the labeled gene is used as an index. It may be a cell that can be identified as having reached.
  • pluripotent stem cells for example, warm-blooded animals, preferably mammalian pluripotent stem cells can be used.
  • mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, and sheep, pets such as dogs and cats, humans, monkeys, Primates such as orangutans and chimpanzees.
  • the pluripotent stem cell is preferably a rodent (mouse, rat, etc.) or primate (human etc.) pluripotent stem cell, most preferably a human pluripotent stem cell.
  • Pluripotent stem cells can be maintained and cultured by a method known per se.
  • pluripotent stem cells are preferably maintained by serum-free culture using a serum substitute such as Knockout TM Serum Replacement (KSR) or feeder-cell culture.
  • KSR Knockout TM Serum Replacement
  • the pluripotent stem cells used in the present invention are preferably isolated. “Isolated” means that an operation to remove factors other than the target cells and components has been performed, and the state existing in nature has been removed.
  • the purity of “isolated human pluripotent stem cells” (percentage of the number of human pluripotent stem cells in the total number of cells) is usually 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably Is 99% or more, most preferably 100%.
  • Aggregates of pluripotent stem cells are obtained by culturing dispersed pluripotent stem cells on a culture vessel under non-adhesive conditions (that is, suspension culture). And a plurality of pluripotent stem cells can be aggregated to form an aggregate.
  • the incubator used for forming the agglomerates is not particularly limited.
  • the incubator is preferably non-cell-adhesive.
  • the surface of the incubator is artificially treated so as to be non-cell-adhesive, or artificially treated for the purpose of improving the adhesion with cells (for example, Those that are not coated with an extracellular matrix or the like can be used.
  • the medium used for the formation of aggregates can be prepared using a medium used for culturing animal cells as a basal medium.
  • a basal medium for example, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, Ham medium, Ham's
  • the medium is not particularly limited as long as it can be used for culturing animal cells, such as F-12 medium, RPMI 1640 medium, Fischer's medium, and mixed medium thereof.
  • the medium used at the time of formation of the aggregate is preferably a serum-free medium.
  • a serum-free medium means a medium that does not contain unconditioned or unpurified serum.
  • a medium containing a purified blood-derived component or animal tissue-derived component (for example, cytokine) corresponds to a serum-free medium.
  • the medium used for the formation of the aggregate may contain a serum substitute.
  • the serum substitute may appropriately contain, for example, albumin, transferrin, fatty acid, collagen precursor, trace element, 2-mercaptoethanol or 3'thiolglycerol, or an equivalent thereof.
  • a serum substitute can be prepared, for example, by the method described in WO98 / 30679.
  • a serum substitute can utilize. Examples of such commercially available serum substitutes include KSR (knockoutockserum replacement) (Invitrogen), Chemically-defined Lipid concentrated (Gibco), and Glutamax (Gibco).
  • the medium used for the formation of aggregates can contain other additives as long as they do not adversely affect differentiation induction from pluripotent stem cells to the telencephalon or its partial tissue or its precursor tissue.
  • additives include insulin, iron sources (eg, transferrin), minerals (eg, sodium selenate), saccharides (eg, glucose), organic acids (eg, pyruvate, lactic acid, etc.), serum proteins (eg, albumin, etc.) ), Amino acids (eg L-glutamine etc.), reducing agents (eg 2-mercaptoethanol etc.), vitamins (eg ascorbic acid, d-biotin etc.), antibiotics (eg streptomycin, penicillin, gentamicin etc.), buffering agents ( Examples thereof include, but are not limited to, HEPES and the like.
  • the medium used for the formation of aggregates may be a medium used for inducing differentiation from a pluripotent stem cell to the telencephalon or its partial tissue or its precursor tissue, which will be described later.
  • the pluripotent stem cells are recovered from the subculture and dispersed into single cells or a state close thereto.
  • the pluripotent stem cells are dispersed using an appropriate cell dissociation solution.
  • the cell dissociation solution for example, EDTA; proteolytic enzymes such as trypsin, collagenase IV, metalloprotease and the like can be used alone or in appropriate combination. Among them, those having low cytotoxicity are preferable, and as such a cell dissociation solution, for example, commercially available products such as dispase (Adia), TrypLE® (Invitrogen), or Accutase (MILLIPORE) are available. Dispersed pluripotent stem cells are suspended in the medium.
  • an inhibitor of Rho-associated ⁇ coiled-coil kinase is preferably added from the beginning of the culture.
  • the ROCK inhibitor is added, for example, within 15 days, preferably within 10 days, more preferably within 6 days from the start of culture.
  • Examples of the ROCK inhibitor include Y-27632 ((+)-(R) -trans-4- (1-aminoethyl) -N- (4-pyrylyl) cyclohexanecarboxamide dihydrochloride).
  • the concentration of the ROCK inhibitor used for suspension culture is a concentration that can suppress cell death of pluripotent stem cells induced by dispersion.
  • concentrations are usually about 0.1-200 ⁇ M, preferably about 2-50 ⁇ M.
  • concentration of the ROCK inhibitor may be varied within the addition period. For example, the concentration can be halved in the latter half of the period.
  • a suspension of dispersed pluripotent stem cells is seeded in the incubator, and the dispersed pluripotent stem cells are cultured on the incubator under non-adhesive conditions, thereby allowing a plurality of multiple pluripotent stem cells to be cultured.
  • Capable stem cells are assembled to form aggregates. At this time, even if a plurality of pluripotent stem cell aggregates are simultaneously formed in one culture compartment by seeding the dispersed pluripotent stem cells in a relatively large incubator such as a 10 cm dish. It is good, but this causes a large variation in the size of each aggregate and the number of pluripotent stem cells contained therein, and this variation causes the pluripotent stem cells to change to the telencephalon or its partial tissue or its precursor.
  • the dispersed pluripotent stem cells are rapidly aggregated to form one aggregate in one culture compartment.
  • a method for rapidly aggregating such dispersed pluripotent stem cells include the following methods: (1) A method in which dispersed pluripotent stem cells are confined in a culture compartment having a relatively small volume (for example, 1 ml or less, 500 ⁇ l or less, 200 ⁇ l or less, 100 ⁇ l or less), and one aggregate is formed in the compartment. .
  • the cultured compartment is allowed to stand after confining the dispersed pluripotent stem cells.
  • Examples of the culture compartment include wells in multiwell plates (384 well, 192 well, 96 well, 48 well, 24 well, etc.), micropores, chamber slides, etc., tubes, medium drops in the hanging drop method, etc. However, it is not limited to these.
  • the dispersed pluripotent stem cells confined in the compartment are subjected to gravity and settled in one place, or the cells adhere to each other, thereby forming one aggregate in one culture compartment.
  • the bottom shape of the multi-well plate, micropore, chamber slide, tube or the like is preferably U-bottom or V-bottom so that the dispersed pluripotent stem cells can be easily precipitated in one place.
  • a method of forming one aggregate in the tube by putting the pluripotent stem cells dispersed in a centrifuge tube, centrifuging the cells, and precipitating the pluripotent stem cells in one place.
  • the number of pluripotent stem cells seeded in one culture compartment is such that one aggregate is formed per culture compartment, and the method of the present invention allows the pluripotent stem cell, from the pluripotent stem cell, to the telencephalon or its Although it is not particularly limited as long as differentiation into a partial tissue or its precursor tissue is possible, it is usually about 1 ⁇ 10 3 to about 5 ⁇ 10 4 , preferably about 1 ⁇ 10 3 to one culture compartment. About 2 ⁇ 10 4 , more preferably about 2 ⁇ 10 3 to about 1.2 ⁇ 10 4 pluripotent stem cells are seeded.
  • pluripotent stem cells by rapidly aggregating pluripotent stem cells, about 1 ⁇ 10 3 to about 5 ⁇ 10 4 cells, preferably about 1 ⁇ 10 3 to about 2 ⁇ 10 4 cells per culture compartment, and more Preferably, one cell aggregate consisting of about 2 ⁇ 10 3 to about 1.2 ⁇ 10 4 pluripotent stem cells is formed.
  • the time to aggregate formation is such that one aggregate is formed per compartment, and the method of the present invention allows differentiation induction from pluripotent stem cells to cerebral cortex or its precursor tissue in the aggregate. However, it is preferable to shorten this time because shortening this time can be expected to induce efficient differentiation into the target cerebral cortex tissue or its precursor tissue.
  • pluripotent stem cell aggregates are formed within 24 hours, more preferably within 12 hours, even more preferably within 6 hours, and most preferably within 2 to 3 hours.
  • a person skilled in the art can appropriately adjust the time until the formation of the aggregate by adjusting tools for aggregating cells, centrifugation conditions, and the like.
  • culture temperature is not particularly limited, but is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is, for example, about 1 to 10%, preferably about 5%.
  • a qualitatively uniform population of pluripotent stem cell aggregates can be obtained.
  • the qualitative uniformity of aggregates of pluripotent stem cells means that the size and number of aggregates, macroscopic morphology, microscopic morphology by tissue staining analysis and its uniformity, expression of differentiation and undifferentiation markers and Evaluation can be made based on uniformity, differentiation marker expression control and synchronization, differentiation efficiency reproducibility between aggregates, and the like.
  • the population of pluripotent stem cells aggregates used in the method of the present invention has a uniform number of pluripotent stem cells contained in the aggregates.
  • a population of pluripotent stem cell aggregates is “homogeneous” means that 90% or more of the aggregates in the aggregate population are average values of the parameters ⁇ 10 in the aggregate population. %, Preferably within an average value ⁇ 5%.
  • the production method of the present invention comprises a suspension culture of an aggregate of pluripotent stem cells in the presence of a Wnt signal inhibitor and a TGF ⁇ signal inhibitor. And obtaining a telencephalon marker positive aggregate (first culture step), and further subjecting the telencephalon marker positive aggregate to suspension culture (second culture step).
  • the suspension culture in the second culture step is preferably performed under high oxygen partial pressure conditions.
  • the expression of the telencephalon marker gene is induced by committing the differentiation direction from the pluripotent stem cell to the telencephalon region, and the obtained telencephalon marker positive aggregate is obtained in the second culture.
  • further differentiation into the telencephalon or its partial tissue or its precursor tissue is induced.
  • telencephalon marker examples include, but are not limited to, Foxg1 (also called Bf1), Six3, and the like.
  • the telencephalon marker positive aggregate contains cells that express at least one telencephalon marker.
  • the telencephalon marker positive aggregate is a Foxg1 positive aggregate.
  • the telencephalon marker positive aggregate for example, 30% or more, preferably 50% or more, more preferably 70% or more of the cells contained in the aggregate are positive for the telencephalon marker.
  • telencephalic partial tissues include cerebral cortex, basal ganglia, hippocampus, choroid.
  • telencephalon or a partial tissue thereof, or a precursor tissue thereof is self-organized in an aggregate of pluripotent stem cells.
  • telencephalon marker positive aggregates eg, Foxg1 positive aggregates
  • the telencephalon marker-positive aggregate eg, Foxg1-positive aggregate
  • the telencephalon marker-positive aggregate is further suspended in suspension (preferably under high oxygen partial pressure conditions), whereby the telencephalon is expressed in the aggregate.
  • a marker-positive neuroepithelial-like structure is formed.
  • 70% or more of the cells contained in the aggregate containing a neuroepithelial-like structure are positive for the telencephalon marker (eg, Foxg1 positive).
  • the neuroepithelial-like structure formed in the aggregate exhibits a multi-row columnar epithelial structure with a ventricular-like cavity inside.
  • the neuroepithelial structure includes Pax6-positive and Sox2-positive cell layers on the luminal side, and includes phosphorylated Histone H3-positive mitotic cells in the most luminal part. These structures are similar to the ventricular zone of the cerebral cortex during early human pregnancy.
  • Tuj1 which is a marker of postmitotic neurons
  • Ctip2 and Tbr1 which are early cortical plate markers of the cerebral cortex
  • Cells that express are included. These include Reelin positive Cajal Retius cells, which are neurons in the first layer of the cerebral cortex, and may have a layer rich in Laminin near the surface layer. That is, in a preferred embodiment, the aggregate obtained by the production method of the present invention contains cerebral cortex precursor tissue.
  • “Suspension culture” of an aggregate of pluripotent stem cells refers to culturing an aggregate of pluripotent stem cells in a medium under conditions that are not adhesive to the incubator. Thereby, three-dimensional formation which was difficult in the conventional adhesion culture becomes possible.
  • the medium used for suspension culture contains a Wnt signal inhibitor and a TGF ⁇ signal inhibitor.
  • a Wnt signal inhibitor and a TGF ⁇ signal inhibitor By the action of the Wnt signal inhibitor and the TGF ⁇ signal inhibitor, differentiation induction from the pluripotent stem cells to the telencephalon region can be performed efficiently.
  • the Wnt signal inhibitor is not particularly limited as long as it can suppress signal transduction mediated by Wnt.
  • Wnt signal inhibitors include IWR-1-endo (4-[(3aR, 4S, 7R, 7aS) -1,3,3a, 4,7,7a-hexahydro-1,3-dioxo-4, 7-methano-2H-isoindol-2-yl] -N-8-quinolinyl-benzamide), IWP-2, XAV939, Dkk1, Cerberus protein, Wnt receptor inhibitor, soluble Wnt receptor, Wnt antibody, casein Examples include, but are not limited to, kinase inhibitors and dominant negative Wnt proteins. Of these, IWR-1-endo is preferable.
  • the TGF ⁇ signal inhibitor is not particularly limited as long as it can suppress signal transduction mediated by TGF ⁇ .
  • TGF ⁇ signal inhibitors SB431542 (4- (5-Benzol [1,3] dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl) -benzamide), LY-364947, Examples thereof include, but are not limited to, SB-505 and A-83-01. Of these, SB431542 is preferable.
  • Wnt signal inhibitor and TGF ⁇ signal inhibitor are IWR-1-endo and SB431542.
  • the concentration of the Wnt signal inhibitor and the TGF ⁇ signal inhibitor in the medium can be appropriately set within a range in which differentiation induction from the pluripotent stem cell to the telencephalon region is possible in the aggregate, but the Wnt signal inhibitor
  • the concentration is usually 0.1 to 50 ⁇ M, preferably 0.3 to 5 ⁇ M.
  • SB431542 is used as a TGF ⁇ signal inhibitor, the concentration is usually 0.1 to 100 ⁇ M, preferably 1 to 10 ⁇ M.
  • the medium used for floating culture of aggregates can be prepared using a medium used for animal cell culture as a basal medium.
  • a basal medium for example, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, Ham medium, Ham's
  • the medium is not particularly limited as long as it can be used for animal cell culture, such as F-12 medium, RPMI 1640 medium, Fischer's medium, Neurobasal medium, and mixed medium thereof.
  • Glasgow MEM medium is used.
  • the medium used for the suspension culture of the aggregate is preferably a serum-free medium.
  • the medium used for the suspension culture of the aggregate may contain a serum substitute.
  • the serum substitute may appropriately contain, for example, albumin, transferrin, fatty acid, collagen precursor, trace element, 2-mercaptoethanol or 3'thiolglycerol, or an equivalent thereof.
  • a serum substitute can be prepared, for example, by the method described in WO98 / 30679.
  • a serum substitute can utilize. Examples of such commercially available serum substitutes include KSR (knockoutockserum replacement) (Invitrogen), Chemically-defined Lipid concentrated (Gibco), and Glutamax (Gibco).
  • the medium used for suspension culture of aggregates can contain other additives as long as they do not adversely affect differentiation induction from pluripotent stem cells to telencephalon or a partial tissue thereof, or a precursor tissue thereof.
  • additives include insulin, iron sources (eg, transferrin), minerals (eg, sodium selenate), saccharides (eg, glucose), organic acids (eg, pyruvate, lactic acid, etc.), serum proteins (eg, albumin, etc.) ), Amino acids (eg L-glutamine etc.), reducing agents (eg 2-mercaptoethanol etc.), vitamins (eg ascorbic acid, d-biotin etc.), antibiotics (eg streptomycin, penicillin, gentamicin etc.), buffering agents ( Examples thereof include, but are not limited to, HEPES and the like.
  • the medium used for suspension culture of aggregates is a growth-factor-free chemical synthesis medium (growth-factor) from the viewpoint of not adversely affecting differentiation induction into the telencephalon or a partial tissue thereof, or a precursor tissue thereof.
  • Serum substitutes such as KSR
  • gfCDM -free (Chemically (Defined) Medium
  • the “growth factors” referred to here include pattern forming factors such as Fgf, Wnt, Nodal, Notch, Shh; insulin and Lipid-rich albumin.
  • culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is, for example, about 1 to 10%, preferably about 5%.
  • the O 2 concentration is, for example, about 20%.
  • the first culture step is performed for a period of time sufficient to induce the telencephalon marker positive aggregate (eg, Foxg1-positive aggregate) by committing the direction of differentiation into the telencephalon region.
  • the telencephalon marker positive aggregate can be detected by, for example, RT-PCR or immunohistochemistry using an telencephalon marker-specific antibody. For example, it is carried out until 50% or more, preferably 70% or more of the cell aggregates in culture are positive for the telencephalon marker.
  • the culture period can vary depending on the animal species of pluripotent stem cells and the type of Wnt signal inhibitor and TGF ⁇ signal inhibitor, so it cannot be specified in general. For example, human pluripotent stem cells When used, the first culture step is 15 to 20 days (eg, 18 days).
  • the telencephalic marker positive aggregate obtained in the first culturing step is further subjected to suspension culture to obtain a cell aggregate containing the telencephalon or a partial tissue thereof, or a precursor tissue thereof.
  • the suspension culture in the second culture step is preferably performed under high oxygen partial pressure conditions. Further suspension culture of the telencephalon marker-positive aggregate under high oxygen partial pressure conditions achieves long-term maintenance culture of the ventricular zone contained in the aggregate, and the telencephalon or its partial tissue, or its precursor tissue It is possible to induce differentiation efficiently.
  • the high oxygen partial pressure condition means an oxygen partial pressure condition that exceeds the oxygen partial pressure (20%) in the air.
  • the oxygen partial pressure in the second culture step is, for example, 30 to 60%, preferably 35 to 60%, more preferably 38 to 60%.
  • the medium used for the second culture step can be prepared using a medium used for culturing animal cells as a basal medium in the same manner as the medium used for the first culture step.
  • a basal medium for example, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, Ham medium, Ham's
  • the medium is not particularly limited as long as it can be used for culturing animal cells, such as F-12 medium, RPMI 1640 medium, Fischer's medium, and mixed medium thereof.
  • DMEM medium is used.
  • the Wnt signal inhibitor and the TGF ⁇ signal inhibitor used in the first culture step are unnecessary.
  • the medium used for the second culture step does not contain a Wnt signal inhibitor and a TGF ⁇ signal inhibitor.
  • the medium used in the second culturing step preferably contains N2 supplement as a serum substitute in order to promote differentiation induction into the telencephalon or its partial tissue or its precursor tissue.
  • N2 supplement is a known serum replacement composition containing insulin, transferrin, progesterone, putrescine and sodium selenite, and can be purchased from Gibco / Invitrogen.
  • the amount of N2 supplement added can be appropriately set so that differentiation induction into the telencephalon, its partial tissue, or its precursor tissue is promoted.
  • the medium used in the second culture step preferably contains a chemically determined lipid concentrate (Chemically Defined Lipid Concentrate) for long-term maintenance culture of the ventricular zone.
  • Chemically Defined Lipid Concentrate is a purified lipid mixture comprising cholesterol, DL- ⁇ -tocopherol, arachidonic acid, linolenic acid, linoleic acid, myristic acid, oleic acid, palmitic acid, palmitoleic acid, and stearic acid, respectively.
  • Lipid Concentrate a commercially available product can be used, and for example, it can be purchased from Gibco / Invitrogen.
  • the medium used for suspension culture of aggregates can contain other additives as long as they do not adversely affect differentiation induction from pluripotent stem cells to telencephalon or a partial tissue thereof, or a precursor tissue thereof.
  • additives include insulin, iron sources (eg, transferrin), minerals (eg, sodium selenate), saccharides (eg, glucose), organic acids (eg, pyruvate, lactic acid, etc.), serum proteins (eg, albumin, etc.) ), Amino acids (eg L-glutamine etc.), reducing agents (eg 2-mercaptoethanol etc.), vitamins (eg ascorbic acid, d-biotin etc.), antibiotics (eg streptomycin, penicillin, gentamicin etc.), buffering agents ( Examples thereof include, but are not limited to, HEPES and the like.
  • the medium used in the second culturing step is a chemically synthesized medium (growth-free) that does not adversely affect differentiation induction into the telencephalon or a partial tissue thereof, or a precursor tissue thereof.
  • serum-substitute (KSR, etc.) is added to factor-free (Chemically (Defined) Medium; (gfCDM)).
  • growth factors include pattern forming factors such as Fgf, Wnt, Nodal, Notch, Shh; insulin and Lipid-rich albumin.
  • the medium in the second culturing step contains N2 supplement and Chemically Defined Lipid Concentrate.
  • the medium in the second culture step is a serum-free medium.
  • the medium in the second culture step may contain serum.
  • Serum can contribute to long-term maintenance culture of the ventricular zone.
  • Serum includes, but is not limited to, FBS and the like.
  • the serum is preferably immobilized.
  • the serum concentration in the medium can be appropriately adjusted within a range that can contribute to long-term maintenance culture of the ventricular zone, but is usually 1 to 20% (v / v).
  • the medium in the second culture step may contain heparin.
  • Heparin can contribute to long-term maintenance culture of the ventricular zone.
  • the heparin concentration in the medium can be appropriately adjusted within a range that can contribute to long-term maintenance culture of the ventricular zone, but is usually 0.5 to 50 ⁇ g / ml, preferably 1 to 10 ⁇ g / ml (eg, 5 ⁇ g / ml). ).
  • the medium in the second culture step may contain an extracellular matrix component.
  • the extracellular matrix can contribute to long-term maintenance culture of the ventricular zone.
  • Extracellular matrix component refers to various components normally found in the extracellular matrix.
  • the main component of the basement membrane include type IV collagen, laminin, heparan sulfate proteoglycan, and entactin.
  • the extracellular matrix component added to the medium commercially available ones can be used, and examples thereof include Matrigel (BD Bioscience), human laminin (Sigma), and the like. Matrigel is a basement membrane preparation from Engelbreth Holm Swarn (EHS) mouse sarcoma.
  • Matrigel's growth factor reduced product has lower growth factor concentrations than normal Matrigel, with standard concentrations of EGF ⁇ 0.5 ng / ml, NGF ⁇ 0.2 ng / ml, PDGF ⁇ 5 pg / ml , IGF-1 is 5 ng / ml, and TGF- ⁇ is 1.7 ng / ml.
  • the concentration of the extracellular matrix component in the medium can be adjusted as appropriate within a range that can contribute to long-term maintenance culture of the ventricular zone. However, when using Martigel, 1 / 500-1 / 20 of the culture solution. It is preferable to add at a volume of 1 more preferably 1/100.
  • the medium in the second culture step contains serum and heparin in addition to N2 supplement and Chemically Defined Lipid Concentrate.
  • the culture medium may further contain an extracellular matrix.
  • the medium of this embodiment is suitable for observing induction of differentiation of the telencephalon or a partial tissue thereof or a precursor tissue thereof over a long period of time.
  • medium containing N2 supplement, Chemically Defined Lipid Concentrate, serum and heparin (optionally further extracellular matrix) may be used over the entire range of the second culturing step, but only for a part of the period. You may use the culture medium of an aspect.
  • a medium containing N2 supplement and Chemically Defined Lipid Concentrate and not containing serum, heparin and extracellular matrix is used in the middle (for example, in the Foxg1-positive aggregate, After the formation of a neuroepithelium-like structure (multi-row columnar epithelium) on a hemisphere with a chamber-like cavity), N2 supplements, Chemically Defined Lipid Concentrate, serum, heparin, (optionally, extracellular matrix) You may switch to the containing medium.
  • culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is, for example, about 1 to 10%, preferably about 5%.
  • the second culturing step is performed at least for a period sufficient to form a neuroepithelium-like structure (multi-row columnar epithelium) on the hemisphere having a ventricular-like cavity in the Foxg1-positive aggregate.
  • the neuroepithelium-like structure can be confirmed by microscopic observation.
  • the culture period can vary depending on the animal type of pluripotent stem cells, the type of Wnt signal inhibitor and TGF ⁇ signal inhibitor, etc., and thus cannot be specified in general.
  • human pluripotent stem cells Is used the second culturing step is at least 15 to 20 days (eg, 17 days).
  • the second culturing step is carried out over a long period of time (eg, 20 days or more, preferably 50 days or more, more preferably 70 days or more).
  • a long period of time eg, 20 days or more, preferably 50 days or more, more preferably 70 days or more.
  • the second culturing step is performed in a cell aggregate in which a cerebral cortex tissue or a precursor tissue thereof has a marginal zone, a cortical plate, a subplate, an intermediate zone, and a subventricular zone from the surface layer to the deep portion. And until a multi-layer structure including the ventricular zone is exhibited.
  • the cerebral cortex or its precursor tissue exhibiting the multilayer structure is self-organized.
  • the culture period required to exhibit the multilayer structure can vary depending on the animal type of pluripotent stem cells, the type of Wnt signal inhibitor and TGF ⁇ signal inhibitor, etc., but cannot be specified in general.
  • the second culture step is performed, for example, for 52 days or more.
  • the marginal zone generally contains Reelin positive Cajal Retius cells and laminin.
  • the cortical plate includes a Tbr1-positive, Ctip2-positive deep cortical plate, and a shallow cortical plate containing nerve cells expressing Satb2, and the shallow cortical plate contacts the marginal zone.
  • the shallow cortical plate may not be clearly formed, but when the differentiation is sufficiently advanced (for example, the second culture step is performed for 73 days or more.
  • both the deep cortical plate and the shallow cortical plate are clearly formed.
  • the subplate is formed directly under the cortical plate and contains cells containing many neurites that are positive for Calretinin and positive for MAP2.
  • the intermediate zone is a sparse layer of cells between the subventricular zone and the cortical plate.
  • the subventricular zone is characterized by Tbr2 positivity.
  • the ventricular zone is characterized as Sox2 positive and Pax6 positive.
  • a cerebral cortex tissue or a precursor tissue thereof is a marginal zone, a shallow cortex plate, a deep cortex plate, a sub-plate, an intermediate plate in the cell aggregate from the surface layer to the deep portion. This is carried out until a multi-layered structure including the belt, outer subventricular zone, subventricular zone, and ventricular zone is exhibited (eg, 73 days or more). Such a multilayer structure is found in vivo in the cerebral cortex of human midgestation.
  • oSVZ lateral subventricular zone
  • the neural stem / progenitor cells are abundant in the cerebral cortex of human fetuses and have the same characteristics as outer radial glial cells (oRG) that are hardly present in the mouse cerebral cortex. That is, according to the present invention, a human-specific phenomenon such as the appearance of oRG-like cells in the outer subventricular zone can be reproduced in vitro.
  • the dorsoventral axis and anteroposterior axis of the cerebral cortex are spontaneously formed.
  • the expression of the dorsal caudal marker (CoupTF1, Lhx2, etc.) is stronger on one side and on the other side Shows a weak gradient, and the expression of rostral markers (eg, Sp8) shows a gradient opposite to the dorsal dorsal marker.
  • a region in which a dorsal caudal marker (eg, CoupTF1, Lhx2) is strongly expressed in the cerebral cortical ventricular zone is formed adjacent to a region in which a cortical hem marker (eg, Zic1, Otx2) is expressed. .
  • a dorsal caudal marker eg, CoupTF1, Lhx2
  • a cortical hem marker eg, Zic1, Otx2
  • suspension culture of the aggregate is performed in the presence / absence of feeder cells.
  • the incubator used for suspension culture of aggregates is not particularly limited.
  • flasks, tissue culture flasks, dishes, petri dishes, tissue culture dishes, multi dishes, microplates, microwells examples include plates, micropores, multiplates, multiwell plates, chamber slides, petri dishes, tubes, trays, culture bags, and roller bottles.
  • the incubator is preferably non-cell-adhesive.
  • the surface of the incubator is artificially treated so as to be non-cell-adhesive, or artificially treated for the purpose of improving the adhesion with cells (for example, Those that are not coated with an extracellular matrix or the like can be used.
  • an oxygen permeable one may be used as an incubator used for suspension culture of aggregates.
  • an oxygen-permeable incubator By using an oxygen-permeable incubator, the supply of oxygen to the agglomerates is improved, which can contribute to long-term maintenance culture of the ventricular zone.
  • the cell aggregate grows large and there is a risk that sufficient oxygen will not be supplied to cells in the aggregate (for example, cells in the ventricular zone). It is preferable to use an incubator.
  • the aggregates may be statically cultured, or the aggregates may be moved intentionally by swirling culture or shaking culture.
  • the stationary culture refers to a culture method for culturing in a state where the aggregate is not intentionally moved. That is, for example, the medium convects with local changes in the medium temperature, and the aggregate may move due to the flow, but the aggregate is not intentionally moved. Including the case, in the present invention, it is referred to as static culture.
  • Static culture may be performed throughout the whole period of suspension culture, or static culture may be performed only for a part of the period. For example, only one of the first culturing step and the second culturing step can be set as stationary culture. In a preferred embodiment, stationary culture is performed throughout the entire period of suspension culture. Static culture is advantageous in that it does not require an apparatus, is expected to have little damage to cell masses, and can reduce the amount of culture medium.
  • a qualitatively uniform population of pluripotent stem cell aggregates is cultured in suspension in a medium containing a Wnt signal inhibitor and a TGF ⁇ signal inhibitor.
  • a qualitatively uniform population of pluripotent stem cell aggregates By using a qualitatively uniform population of pluripotent stem cell aggregates, the difference between the aggregates in terms of the degree of differentiation into the telencephalon or its sub-tissue or its precursor tissue is minimized. The target differentiation induction efficiency can be improved.
  • the following aspects are included in suspension culture of a qualitatively uniform population of pluripotent stem cell aggregates. (1) Prepare a plurality of culture compartments and seed a qualitatively uniform population of pluripotent stem cell aggregates so that one culture compartment contains one pluripotent stem cell aggregate.
  • one pluripotent stem cell aggregate is put in each well of a 96-well plate.
  • one pluripotent stem cell aggregate is converted into a Wnt signal inhibitor and TGF ⁇ signal inhibition.
  • a qualitatively uniform population of pluripotent stem cell aggregates is seeded in one culture compartment so that one culture compartment contains multiple pluripotent stem cell aggregates.
  • a plurality of pluripotent stem cell aggregates are placed in the compartment.
  • a plurality of pluripotent stem cell aggregates are placed in a medium containing a Wnt signal inhibitor and a TGF ⁇ signal inhibitor. Incubate in suspension.
  • any of the aspects (1) and (2) may be adopted, and the aspect may be changed during the culture (from the aspect (1) to the aspect (2). Or, from the aspect (2) to the aspect (1)).
  • the aspect of (1) is employ
  • the aspect of (2) is employ
  • the telencephalon or a partial tissue thereof contained in the cell aggregate, or its The differentiation stage of the precursor tissue progresses. Therefore, it is preferable to appropriately adjust the culture period and culture conditions according to the target telencephalon or a partial tissue thereof, or a precursor tissue thereof.
  • the following (4) to (11) one aspect of the present invention will be described. However, these are examples of the present invention and do not limit the present invention.
  • suspension culture is performed in the presence of a Wnt signal enhancer and a bone morphogenetic factor signal transduction pathway activator. Or its precursor tissue can be induced.
  • the Wnt signal enhancer is not particularly limited as long as it can induce the choroid or its precursor tissue when used in the above method.
  • GSK-3 ⁇ inhibitor recombinant Wnt3a, Wnt agonist (compound ), Dkk (inhibitor of Wnt inhibitory protein), R-Spondin and the like.
  • GSK-3 ⁇ inhibitors include CHIR99021 (6-[[2-[[4- (2,4-Dichlorophenyl) -5- (5-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino] ethyl] amino] -3-pyridinecarbonitrile), Kenpaullone, 6-Bromoindirubin-3'-oxime (BIO), and the like.
  • the Wnt signal enhancer is preferably a GSK-3 ⁇ inhibitor, more preferably CHIR99021.
  • the concentration of the Wnt signal enhancer is not particularly limited as long as it can induce the choroid or its precursor tissue when used in the above method.
  • CHIR99021 When CHIR99021 is used, it is generally about 0.1 ⁇ M to 30 ⁇ M, preferably about 1 ⁇ M to 10 ⁇ M (eg, 3 ⁇ M).
  • a bone morphogenetic factor signal transduction pathway activator means any substance that activates a pathway through which a signal is transmitted by the binding of a bone morphogenetic factor and a receptor.
  • the osteogenic factor signal transduction pathway activator include BMP2, BMP4, BMP7, GDF5 and the like.
  • the osteogenic factor signaling pathway activator is BMP4.
  • BMP4 is a known cytokine and its amino acid sequence is also known.
  • BMP4 used in the present invention is mammalian BMP4.
  • BMP4 is preferably a rodent (mouse, rat, etc.) or primate (human, etc.) BMP4, most preferably human BMP4.
  • Human BMP4 means that BMP4 has the amino acid sequence of BMP4 that is naturally expressed in vivo by humans.
  • the representative amino acid sequences of human BMP4 are NCBI accession numbers, NP_001193.2 (updated June 15, 2013), NP_570911.2 (updated June 15, 2013), NP_570912.2 (2013) (Updated on June 15), an amino acid sequence (mature human BMP4 amino acid sequence) obtained by removing the N-terminal signal sequence (1-24) from each of these amino acid sequences can be exemplified.
  • the concentration of the bone morphogenetic factor signal transduction pathway activator in the medium can be appropriately set as long as it can induce differentiation from pluripotent stem cells to the choroid or its precursor tissue in the aggregate.
  • concentration is usually 0.05 to 10 nM, preferably 0.1 to 2.5 nM (eg, 0.5 nM).
  • the medium used for induction of the choroid or its precursor tissue may contain N2 supplement, Chemically Defined Lipid Concentrate, serum and heparin.
  • Culturing in a medium containing a Wnt signal enhancer and a bone morphogenetic factor signal transduction pathway activator (such as BMP4) is not necessarily performed in the entire period until the choroid or its precursor tissue is induced in the second culturing step. It is not necessary to carry out over a part, and it may be carried out in a part of the period.
  • Suspension culture may be continued after switching to a medium that does not contain a Wnt signal enhancer and an osteogenic factor signal transduction pathway activator (such as BMP4).
  • the choroid or its precursor tissue can be induced in 80% or more of the population of cell aggregates.
  • telencephalon tissues other than the choroid eg, cerebral cortex
  • Hippocampus a cerebral cortex or its precursor tissue and / or a hippocampus or its precursor tissue can be obtained in the same cell aggregate.
  • choroidal tissue can be confirmed by the expression of choroidal markers (TTR, Lmx1a, Otx2, etc.), non-expression of telencephalon markers (Foxg1, etc.), and the morphology of pleated monolayer epithelium. .
  • the time required for induction of choroidal tissue varies depending on the culture conditions and the type of mammal from which the pluripotent stem cells are derived, so it cannot be specified in general, but when human pluripotent stem cells are used, From the start of the culturing step 2 to, for example, 24 days later, choroidal tissue is induced inside the aggregate.
  • a cell aggregate including the choroid or its precursor tissue can be obtained by selecting a cell aggregate from which the choroid or its precursor tissue is derived from the obtained population of cell aggregates.
  • the Wnt signal enhancer is not particularly limited as long as it can induce the hippocampus or its precursor tissue.
  • GSK-3 ⁇ inhibitor for example, GSK-3 ⁇ inhibitor, recombinant Wnt3a, Wnt agonist (compound ), Dkk (inhibitor of Wnt inhibitory protein), R-Spondin and the like.
  • GSK-3 ⁇ inhibitors examples include CHIR99021 (6-[[2-[[4- (2,4-Dichlorophenyl) -5- (5-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino] ethyl] amino] -3-pyridinecarbonitrile), Kenpaullone, 6-Bromoindirubin-3'-oxime (BIO), and the like.
  • the Wnt signal enhancer is preferably a GSK-3 ⁇ inhibitor, more preferably CHIR99021.
  • the concentration of the Wnt signal enhancer is not particularly limited as long as it can induce the hippocampus or its precursor tissue when used in the above method.
  • CHIR99021 is generally about 0.1 ⁇ M to 30 ⁇ M, preferably about 1 ⁇ M to 10 ⁇ M (eg, 3 ⁇ M).
  • the medium used for induction of the hippocampus or its precursor tissue may contain N2 supplement, Chemically Defined Lipid Concentrate, serum and heparin.
  • the culture in the medium containing the Wnt signal enhancer does not necessarily need to be performed over the entire period until the hippocampus or its precursor tissue is induced in the second culture step. Just do it.
  • floating culture in a medium containing a Wnt signal enhancer for 3 days or more from the start of the second culture step is sufficient to induce the hippocampus or its precursor tissue, and then a Wnt signal enhancer is added.
  • the suspension culture may be continued after switching to a medium not containing it.
  • the hippocampus or its precursor tissue can be induced in 80% or more of the population of cell aggregates.
  • telencephalon tissues other than the hippocampus eg, cerebral cortex, choroid
  • differentiation into telencephalon tissues other than the hippocampus eg, cerebral cortex, choroid
  • a cell aggregate containing the cerebral cortex or the precursor tissue and / or the choroid or the precursor tissue in the same cell aggregate can be obtained.
  • the medium used for inducing the hippocampus or its precursor tissue does not contain a bone morphogenetic factor signal transduction pathway activator (such as BMP4).
  • a bone morphogenetic factor signal transduction pathway activator such as BMP4
  • the medium used for induction of the hippocampus or its precursor tissue may contain a bone morphogenetic factor signal transduction pathway activator (such as BMP4).
  • BMP4 bone morphogenetic factor signal transduction pathway activator
  • the induction of hippocampus or its precursor tissue can be confirmed using the expression of cortical hem markers (Lmx1a, Otx2, etc.) and the expression of telencephalon markers (Foxg1, etc.) as indicators.
  • the time required for induction of the hippocampus or its progenitor tissue varies depending on the culture conditions and the type of mammal from which the pluripotent stem cells are derived, so it cannot be generally specified, but human pluripotent stem cells were used.
  • the hippocampus or its precursor tissue is induced inside the aggregate from the start of the second culture step to, for example, 24 days later.
  • suspension culture is transiently treated with a Wnt signal enhancer and an osteogenic factor signal transduction pathway activator.
  • the choroid or its precursor tissue
  • the hippocampus or its precursor tissue
  • the cerebral cortex or its precursor tissue
  • suspension culture is performed in the presence of a Wnt signal enhancer and a bone morphogenetic factor signal transduction pathway activator, and the obtained cell aggregate is transformed into a Wnt signal enhancer and a bone morphogenetic factor signal. Further culturing is performed in the absence of a substance that activates the transmission pathway.
  • choroid or its precursor tissue
  • hippocampal tissue or precursor tissue
  • cerebral cortex tissue or its precursor tissue
  • choroid (or precursor tissue), hippocampal tissue (or precursor tissue) and cerebral cortex tissue (or precursor tissue thereof) are induced in continuous neuroepithelium in 80% or more of the population of cell aggregates. be able to.
  • a series of operations including formation of choroidal tissue and subsequent removal of these factors by treatment with a Wnt signal enhancer and a bone morphogenetic factor signal transduction pathway activator (acceleration by addition and reversion by removal) ) (Induction-reversal method) causes a signal called organizer activity to flow, and appropriate self-organization of choroidal tissue, cortical hem, gyrus tissue, and Ammon's horn tissue can be achieved.
  • the choroid (or its precursor tissue), hippocampus (or precursor tissue) and cerebral cortex (or its precursor tissue) can be induced in one cell aggregate.
  • the choroid or its precursor tissue
  • hippocampus or precursor tissue
  • cerebral cortex or its precursor tissue
  • GSK-3 ⁇ inhibitor examples include GSK-3 ⁇ inhibitor, recombinant Wnt3a, Wnt agonist (compound), Dkk (inhibitor of Wnt inhibitory protein), R-Spondin and the like.
  • the GSK-3 ⁇ inhibitor include CHIR99021, Kenpaullone, 6-Bromoindirubin-3′-oxime (BIO) and the like.
  • the Wnt signal enhancer is preferably a GSK-3 ⁇ inhibitor, more preferably CHIR99021.
  • the concentration of Wnt signal enhancer induces choroid (or precursor tissue), hippocampus (or precursor tissue) and cerebral cortex tissue (or precursor tissue thereof) in one cell aggregate when used in the above method.
  • CHIR99021 it is usually about 0.1 ⁇ M to 100 ⁇ M, preferably about 1 ⁇ M to 30 ⁇ M (eg, 3 ⁇ M).
  • osteogenic factor signal transduction pathway activators examples include BMP2, BMP4, BMP7, GDF5 and the like.
  • the osteogenic factor signaling pathway activator is BMP4.
  • the concentration of an osteogenic factor signaling pathway activator in the culture medium when used in the above method, is in the choroid (or its precursor tissue), hippocampus (or precursor tissue) and cerebral cortex (or although it is not particularly limited as long as it can induce the precursor tissue), when BMP4 is used as a bone morphogenetic factor signal transduction pathway activator, its concentration is usually 0.05 to 10 nM, preferably 0.1 to 2.5 nM ( Example: 0.5 nM).
  • the medium used for the second culturing step in the present methodology may include N2 supplement, Chemically Defined Lipid Concentrate, serum and heparin.
  • the duration of culturing in a medium containing a Wnt signal enhancer and a bone morphogenetic factor signal transduction pathway activator (such as BMP4) varies depending on the culture conditions and the type of mammal from which the pluripotent stem cells are derived. However, when human pluripotent stem cells are used, it is usually 1 to 7 days, preferably 2 to 4 days (eg, 3 days).
  • the culture period after removal of Wnt signal enhancer and osteogenic factor signal transduction pathway activator (BMP4, etc.) varies depending on the culture conditions and the type of mammal from which the pluripotent stem cells are derived. However, when human pluripotent stem cells are used, it is usually 10 days or longer, preferably 14 days or longer.
  • choroid or its precursor tissue
  • hippocampus or its precursor tissue
  • cerebral cortex tissue or its precursor tissue
  • a choroidal region that is Lmx1a positive and Foxg1 negative
  • cortical hem region that expresses Lmx1a and Otx2 and is weakly positive to Foxg1
  • Region, Lef1-negative and Foxg1-positive cerebral cortex progenitor tissue is continuously formed on the same neuroepithelium.
  • cell aggregates in which choroid (or precursor tissue), hippocampus (or precursor tissue) and cerebral cortex (or precursor tissue) are formed in continuous neuroepithelium By selecting, the target cell aggregate can be obtained.
  • the suspension culture is transiently treated with a Wnt signal enhancer and bone formation.
  • the hippocampus continuously contains dentate gyrus tissue (or its precursor tissue) and Ammon horn tissue (or its precursor tissue) in one cell aggregate. The tissue or its precursor tissue can be induced.
  • Ammon horn tissue or its precursor tissue has been differentiated from pluripotent stem cells.
  • suspension culture is performed in the presence of a Wnt signal enhancer and a bone morphogenetic factor signal transduction pathway activator, and the obtained cell aggregate is subjected to a high oxygen partial pressure condition under a Wnt signal condition. Further culturing is performed in the absence of a potentiator and an osteogenic factor signaling pathway activator.
  • hippocampal tissue or its precursor tissue including dentate gyrus tissue (or its precursor tissue) and ammon horn tissue (or its precursor tissue) is formed in the continuous neuroepithelium in the obtained cell aggregate.
  • a cell aggregate containing Ammon's horn tissue (or its precursor tissue) can be obtained.
  • a series of operations including formation of choroidal tissue and subsequent removal of these factors by treatment with a Wnt signal enhancer and a bone morphogenetic factor signal transduction pathway activator (acceleration by addition and reversion by removal) ) (Induction-reversal method) causes a signal called organizer activity to flow, and appropriate self-organization of choroidal tissue, cortical hem, gyrus tissue, and Ammon's horn tissue can be achieved.
  • Wnt signal enhancer when used in the above method, as long as dentate gyrus tissue (or its precursor tissue) and Ammon's horn tissue (or its precursor tissue) can be induced in one cell aggregate,
  • examples include GSK-3 ⁇ inhibitor, recombinant Wnt3a, Wnt agonist (compound), Dkk (inhibitor of Wnt inhibitory protein), R-Spondin and the like.
  • the GSK-3 ⁇ inhibitor include CHIR99021, Kenpaullone, 6-Bromoindirubin-3′-oxime (BIO) and the like.
  • the Wnt signal enhancer is preferably a GSK-3 ⁇ inhibitor, more preferably CHIR99021.
  • the concentration of the Wnt signal enhancer as long as it can induce dentate gyrus tissue (or its precursor tissue) and Ammon's horn tissue (or its precursor tissue) in one cell aggregate when used in the above method
  • concentration of the Wnt signal enhancer is generally about 0.1 ⁇ M to 30 ⁇ M, preferably about 1 ⁇ M to 10 ⁇ M (eg, 3 ⁇ M).
  • osteogenic factor signal transduction pathway activators examples include BMP2, BMP4, BMP7, GDF5 and the like.
  • the osteogenic factor signaling pathway activator is BMP4.
  • the concentration of the bone morphogenetic factor signal transduction pathway activator in the medium is determined in one cell aggregate in the dentate gyrus tissue (or its precursor tissue) and ammon horn tissue (or its precursor tissue). ) Can be induced, but when BMP4 is used as a bone morphogenetic factor signal transduction pathway activator, its concentration is usually 0.05 to 10 nM, preferably 0.1 to 2.5 nM (eg, 0.5 nM).
  • the medium used for the second culturing step in the present methodology may include N2 supplement, Chemically Defined Lipid Concentrate, serum and heparin.
  • the medium used for the second culture step in the present methodology can include B27 supplement, L-glutamine and serum.
  • the duration of culturing in a medium containing a Wnt signal enhancer and a bone morphogenetic factor signal transduction pathway activator (such as BMP4) varies depending on the culture conditions and the type of mammal from which the pluripotent stem cells are derived. However, when human pluripotent stem cells are used, it is usually 1 to 7 days, preferably 2 to 4 days (eg, 3 days).
  • the culture period after removal of Wnt signal enhancer and osteogenic factor signal transduction pathway activator (BMP4, etc.) varies depending on the culture conditions and the type of mammal from which the pluripotent stem cells are derived. However, when human pluripotent stem cells are used, it is usually 40 days or longer, preferably 51 days or longer.
  • the dentate gyrus tissue (or its precursor tissue) and Ammon's horn tissue (or its precursor tissue) are continuously formed in one cell aggregate is confirmed by the expression of the marker of each tissue as an index. Can do.
  • the dentate gyrus tissue (or its precursor tissue) can be identified as positive for Lef1 (hippocampal progenitor tissue marker), positive for Zbtb20, positive for Prox1, and the like.
  • Ammon horn (or its precursor tissue) can be identified as positive for Lef1 (hippocampal progenitor tissue marker), weakly positive for Zbtb20, or the like.
  • the cell aggregate obtained by the present invention in addition to the dentate gyrus tissue (or its precursor tissue) and Ammon horn tissue (or its precursor tissue) in the continuous neuroepithelium in the cell aggregate, Further included is cortical hem. That is, hippocampal tissue or its precursor tissue including dentate gyrus tissue (or its precursor tissue), Ammon horn tissue (or its precursor tissue) and cortical hem can be induced in the continuous neuroepithelium.
  • expression of Zbtb20 is also adjacent to the choroid (Lmx1a positive, Foxg1 negative) and cortical hem (Lmx1a positive, Foxg1 weakly positive) region even in Lef1-positive neuroepithelium (There is a gradient of expression intensity that is strong in the dentate gyrus tissue or its precursor tissue, and weakens as the distance from the tissue increases.
  • the dentate gyrus tissue or its precursor tissue is formed between the Ammon horn tissue or its precursor tissue (eg, Zbtb20 weakly positive), cortical hem and choroid . That is, dentate gyrus tissue (or its precursor tissue), Ammon's horn tissue (or its precursor tissue) and cortical hem are formed in a continuous neuroepithelium in an arrangement adjacent to each other similar to a living body.
  • the target cell aggregate can be obtained.
  • the basal ganglia or its precursor tissue is induced in the cell aggregate by treating the cell aggregate with a sonic hedgehog (Shh) signal agonist.
  • Sh sonic hedgehog
  • the Shh signal agonist is not particularly limited as long as it can induce the basal ganglia tissue or its precursor tissue when used in the above method, for example, a protein belonging to the Hedgehog family (for example, Shh), Shh receptor agonists, Purmorphamine, SAG (N-Methyl-N ′-(3-pyridinylbenzyl) -N ′-(3-chlorobenzo [b] thiophene-2-carbonyl) -1,4-diaminocyclohexane) it can.
  • the Shh signal agonist is preferably SAG.
  • the concentration of the Shh signal agonist is not particularly limited as long as it can induce the basal ganglia tissue or its precursor tissue when used in the above method.
  • SAG When SAG is used, it is usually 1 nM to 10 ⁇ M.
  • the basal ganglia (LGE) is preferentially induced on the telencephalic neuroepithelium among the basal ganglia. Is done.
  • the basal ganglia (MGE) is preferentially induced on the telencephalic neuroepithelium among the basal ganglia.
  • the cell aggregate to be subjected to the Shh signal agonist treatment is preferably a telencephalon marker positive cell aggregate.
  • the Shh signal agonist treatment (culture in a medium containing a Shh signal agonist) may be performed only in one of the first culture step and the second culture step, or may be performed in both of them.
  • the culture in the medium containing the Shh signal agonist may be performed over the entire period until the basal ganglia tissue is induced, or may be performed only during a part of the period.
  • the Shh signal agonist treatment is performed for 3 to 10 days (eg, 7 days) from the latter half of the first culture step to the first half of the second culture step in which the telencephalon marker is expressed in the cell aggregate. ) Over a period of time.
  • the induction of the basal ganglia or its precursor tissue can be confirmed using the expression of the basal ganglia tissue marker as an indicator.
  • basal ganglia tissue marker examples include Gsh2 and GAD65.
  • MGE inner basal ganglia primordium
  • the time required to induce the basal ganglia or its precursor tissue varies depending on the culture conditions and the type of mammal from which the pluripotent stem cells are derived.
  • the basal ganglia or its precursor tissue is induced inside the aggregate from the start of the second culture step to, for example, 24 days later.
  • the basal ganglia or its precursor tissue can be induced in 70% or more of the population of cell aggregates.
  • a cell aggregate containing the basal ganglia or its precursor tissue can be obtained by selecting a cell aggregate from which the basal ganglia or its precursor tissue is derived from the obtained population of cell aggregates.
  • the basal ganglia (or precursors thereof) (eg, LGE, MGE) induced by the method are continuously formed in the cerebral cortex (or precursors thereof) and one cell aggregate. Is done. That is, the basal ganglia (or precursor tissues thereof) (for example, LGE, MGE) and the cerebral cortex (or precursor tissues thereof) are formed in the continuous neuroepithelium in the obtained cell aggregate. In one embodiment, basal ganglia (or precursor tissues thereof) (eg, LGE, MGE) and cerebral cortex (or precursor tissues thereof) are induced in continuous neuroepithelium in 50% or more of the population of cell aggregates. be able to.
  • the dorsoventral axis and the anteroposterior axis of the cerebral cortex are spontaneously formed.
  • the expression of the dorsal caudal marker (CoupTF1, Lhx2, etc.) is stronger on one side and weaker on the other side
  • the expression of rostral markers (eg, Sp8) is opposite to the dorsal marker.
  • the entire cerebral cortex ventricular zone can be rostralized by the action of FGF8, which is known to be important for the acquisition of the rostral specificity of the cerebral cortex.
  • FGF8 treatment can be performed by using a medium containing FGF8 in the second culture step.
  • concentration of FGF in the medium is sufficient to achieve rostralization, and is usually 10 to 1000 ng / ml, preferably 50 to 300 ng / ml.
  • FGF8 treatment is performed in all or part of the second culture step.
  • the rostralization of the entire cerebral cortical ventricular zone is caused by the overall attenuation of the expression of the dorsal caudal marker (CoupTF1, Lhx2, etc.) and the increase of the rostral marker (eg, Sp8) throughout the ventricular zone, etc. Can be confirmed.
  • cell aggregates dentate gyrus tissue (or its precursor tissue) and ammon horn tissue (or its precursor tissue) containing the hippocampus or its precursor tissue obtained by the method of (7) above are used.
  • the cell aggregate containing the hippocampus or its precursor tissue is treated with an appropriate cell dissociation solution and dispersed to a single cell or a state close thereto.
  • an appropriate cell dissociation solution for example, a physiological aqueous solution containing a chelate such as EDTA; a proteolytic enzyme such as papain, trypsin, collagenase IV, metalloprotease, etc. alone or in appropriate combination can be used.
  • Dispersed cells are suspended in an appropriate medium for culturing the cells, and seeded in a culture vessel.
  • a culture vessel adhesive culture equipment generally used for cell adhesion culture can be used. Examples of the culture equipment include, but are not limited to, petri dishes, petri dishes, flasks, multi-well plates, chamber slides, and the like.
  • the surface of the culture vessel is an extracellular matrix such as laminin, fibronectin, collagen, basement membrane preparation; poly-L-lysine, poly-D-lysine, poly-L-ornithine, etc. You may coat with the polymer of.
  • the surface of the culture vessel is coated directly or indirectly with laminin and fibronectin. Indirect coating is performed by, for example, first forming a poly-L-lysine substrate by coating the surface of the culture vessel with poly-L-lysine, and then coating laminin and fibronectin on the substrate. Can be performed.
  • the medium used for adhesion culture of dispersed cells can be prepared using a medium used for culturing animal cells (preferably nerve cells) as a basal medium.
  • a basal medium for example, DMEM, Ham's F-12, Neurobasal, IMDM, M199, EMEM, ⁇ MEM, Fischer's Medium, and mixed media thereof can be used for culturing animal cells (preferably nerve cells).
  • the medium can be used.
  • Neurobasal is used.
  • the medium preferably contains a B27 supplement as a serum substitute in order to promote maturation of hippocampal neurons.
  • B27 supplements are biotin, L-carnitine, corticosterone, ethanolamine, D (+) galactose, reduced glutathione, linoleic acid, linolenic acid, progesterone, putrescine, retinylacetic acid, selenium, triodo-1-thyromine, vitamin E , Vitamin E acetate, bovine albumin, catalase, insulin, superoxide dismutase, transferrin and the like.
  • a vitamin A-free B27 supplement obtained by removing retinyl acetate from the composition.
  • the amount of B27 supplement added can be appropriately set so that the maturation of hippocampal neurons is promoted.
  • the medium may contain BDNF to promote maturation of hippocampal neurons.
  • the concentration of BDNF in the medium is not particularly limited as long as it promotes the maturation of hippocampal neurons, but is usually 1 ng / ml or more, preferably 10 ng / ml or more, more preferably 20 ng / ml or more.
  • the upper limit of the BDNF concentration is not particularly limited as long as it promotes the maturation of hippocampal neurons, but the activity saturates even when added in excess, so it is usually set to a concentration of 1000 ng / ml or less, preferably 100 ng / ml or less. preferable.
  • BDNF is preferably isolated.
  • the medium may contain NT-3 in order to promote maturation of hippocampal neurons.
  • the concentration of NT-3 in the medium is not particularly limited as long as it promotes the maturation of hippocampal neurons, but is usually 1 ng / ml or more, preferably 10 ng / ml or more, more preferably 20 ng / ml or more. is there.
  • the upper limit of NT-3 concentration is not particularly limited as long as it promotes the maturation of hippocampal neurons, but the activity is saturated even if added excessively, so the concentration is usually 1000 ng / ml or less, preferably 100 ng / ml or less. It is preferable.
  • NT-3 is preferably isolated.
  • the medium may contain serum.
  • Serum can contribute to the maturation of hippocampal neurons.
  • Serum includes, but is not limited to, FBS and the like.
  • the serum is preferably immobilized.
  • the serum concentration in the medium can be appropriately adjusted within a range that can contribute to long-term maintenance culture of the ventricular zone, but is usually 1 to 20% (v / v).
  • the medium can contain other additives as long as they do not adversely affect the maturation of hippocampal neurons.
  • additives include insulin, iron sources (eg, transferrin), minerals (eg, sodium selenate), saccharides (eg, glucose), organic acids (eg, pyruvate, lactic acid, etc.), serum proteins (eg, albumin, etc.) ), Amino acids (eg L-glutamine etc.), reducing agents (eg 2-mercaptoethanol etc.), vitamins (eg ascorbic acid, d-biotin etc.), antibiotics (eg streptomycin, penicillin, gentamicin etc.), buffering agents ( Examples thereof include, but are not limited to, HEPES and the like.
  • the medium used for adherent culture of dispersed cells contains B27 supplement.
  • the B27 supplement is preferably vitamin A free.
  • the medium may further contain FBS and L-glutamine.
  • the medium used for the adhesion culture of dispersed cells contains B27 supplement, BDNF and NT-3.
  • the B27 supplement is preferably vitamin A free.
  • the medium may further contain FBS and L-glutamine.
  • an inhibitor of Rho-associated coiled-coil kinase may be added from the beginning of the adhesion culture.
  • the ROCK inhibitor is added, for example, within 15 days, preferably within 10 days, more preferably within 6 days from the start of culture.
  • Examples of the ROCK inhibitor include Y-27632 ((+)-(R) -trans-4- (1-aminoethyl) -N- (4-pyrylyl) cyclohexanecarboxamide dihydrochloride).
  • the concentration of the ROCK inhibitor used for the adhesion culture is a concentration capable of suppressing cell death.
  • concentrations are usually about 0.1-200 ⁇ M, preferably about 2-50 ⁇ M.
  • concentration of the ROCK inhibitor may be varied within the addition period. For example, the concentration can be halved in the latter half of the period.
  • culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • CO 2 concentration is, for example, about 1 to 10%, preferably about 5%.
  • the seeded cells adhere to the surface of the culture vessel and begin to extend neurites.
  • the period of adhesion culture of the dispersed cells is not particularly limited as long as the period is sufficient for differentiation of the dispersed cells into mature hippocampal neurons, but is usually 50 days or more, preferably 80 days or more, more preferably 100 days. That's it.
  • the adherent culture of dispersed cells is performed until mature hippocampal neurons appear.
  • the appearance of mature hippocampal neurons can be confirmed by hippocampal neuron specific markers.
  • Mature hippocampal neurons can be identified as, for example, Zbtb20 and Foxg1-positive cells with MAP2-positive dendrites. Therefore, in one embodiment, adherent culture of dispersed cells is performed until the appearance of Zbtb20 and Foxg1-positive and MAP2-positive dendrites is confirmed.
  • the mature hippocampal neurons include hippocampal dentate granule cells (Prox1-positive, circular and relatively small cells) and hippocampal CA3 region cone cells (KA1-positive, relatively large cells).
  • Zbtb20 and GFAP positive astrocytes may be induced.
  • the present invention also provides a method for producing the astrocyte.
  • Single dispersed cells tend to form small clusters, and neurites are elongated between induced mature hippocampal neurons.
  • the mature hippocampal neurons thus induced are functional and produce a sodium-potassium current response, evoked action potential, and / or spontaneous excitatory post-synaptic current (sEPSC) upon potential stimulation. These neural activities can be confirmed using the patch clamp method.
  • the induced mature hippocampal neurons can be used for functional analysis or the like as they are, or can be detached from the culture vessel with an appropriate cell dissociation solution and isolated.
  • telencephalon or partial tissue thereof or precursor tissue thereof is obtained from the cell aggregate obtained as described above. Can be isolated.
  • the present invention provides a cell aggregate obtained by the method of the present invention, the telencephalon or a partial tissue thereof, and a precursor tissue thereof.
  • the present invention provides hippocampal neurons obtained by the method of the present invention described above.
  • the cell aggregate obtained by the method of the present invention, the telencephalon or a partial tissue thereof, a precursor tissue thereof, and a hippocampal neuron can be used for transplantation medicine.
  • a therapeutic drug for diseases based on disorders of the telencephalon (cerebral cortex, basal ganglia, choroid, hippocampus, etc.) or in the damaged state of the telencephalon (cerebral cortex, basal ganglia, choroid, hippocampus, etc.)
  • the telencephalon or its partial tissues cerebral cortex, basal ganglia, choroid, hippocampus, etc.
  • their precursor tissues or hippocampal neurons
  • telencephalic disorders For patients with diseases based on telencephalic disorders, or telencephalic lesions, cell aggregates obtained by the present invention, telencephalon or a partial tissue thereof (cerebral cortex, basal ganglia, choroid, hippocampus, etc.), those By transplanting progenitor tissue, or hippocampal neurons, diseases based on telencephalic disorders, or telencephalic injury states can be treated.
  • Diseases based on telencephalic disorders include Parkinson's disease, Huntington's chorea, Alzheimer's disease, ischemic brain disease (eg, stroke), epilepsy, brain trauma, motor neurological disease, neurodegenerative disease, and the like.
  • a state where replenishment of these cells is desired includes after brain surgery (for example, after removal of a brain tumor).
  • pluripotent stem cells eg, induced pluripotent stem cells
  • pluripotent stem cells established from recipient somatic cells eg, induced pluripotent stem cells
  • Self-endothelium or a partial tissue thereof, a precursor tissue thereof, or a hippocampal neuron is produced and transplanted into the recipient.
  • the cell aggregate obtained by the present invention can be used for drug screening and evaluation.
  • the telencephalon or a partial tissue thereof, or a precursor tissue thereof obtained by the present invention has a higher-order structure very similar to the telencephalon or a partial tissue thereof or a precursor tissue thereof in a living body, and therefore is based on a telencephalon disorder.
  • the present invention can be applied to screening for therapeutic agents for diseases and telencephalic injuries, side effects / toxicity tests of drugs (eg, alternative tests for corneal stimulation test), and development of new treatment methods for diseases in the telencephalon.
  • Example 1 3D formation of selective cortical progenitor tissue from human pluripotent stem cells (method) Disperse human ES cells (KhES-1; telencephalon-specific gene Foxg1 with fluorescent protein gene Venus) into a single cell by trypsin treatment, according to SFEBq method (Nakano et al, Cell Stem Cell, 2012) Then, aggregates were formed, and suspension aggregate culture for differentiation induction was performed at 37 ° C. in the presence of 5% CO 2 .
  • KSR Kerat Serum Replacement
  • 0.1 mM non-essential amino acid solution Gibco / Invitrogen
  • 1 mM sodium pyruvate solution Sigma
  • 0.1 mM 2-mercaptoethanol was used.
  • 20 ⁇ M of ROCK inhibitor Y-27632 was added to suppress dispersion-induced cell death, and the concentration was reduced by half for the next 3 days.
  • FIG. 1F These neuroepithelial structures have Pax6-positive and Sox2-positive cell layers with high cell density on the luminal side (Figs. 1D and E), and phosphorylated Histone H3-positive mitotic cells in the most luminal part. Recognized (FIG. 1F). These structures were similar to the ventricular zone of the cerebral cortex in early human pregnancy. On the outside of the cell layer similar to the ventricular zone, Tuj1, which is a marker of postmitotic neurons, was expressed, and Ctip2 and Tbr1, which were early cortical plate markers of the cerebral cortex, were expressed.
  • Reelin-positive Cajal Retius cells which are neurons in the first layer of the cerebral cortex, and had a layer containing a large amount of Laminin near the surface layer. That is, it was found that cerebral cortex progenitor tissue was formed in the aggregates cultured in this way. Thus, it was recognized with high reproducibility that the cerebral cortex progenitor tissue of human early pregnancy was self-forming.
  • Example 2 Formation of basal ganglia progenitor tissue from human pluripotent stem cells (method) The cells were cultured in the same manner as in Example 1 until the 35th day of differentiation induction. That is, human ES cell aggregates were cultured in a V-bottom 96-well plate until 18 days after induction of differentiation, and then the floating aggregates were transferred to a cell non-adsorbing Petri dish (diameter 9 cm). Suspension culture to the eye was carried out in the presence of 37 ° C., 5% CO 2 and 40% O 2 .
  • Sonic hedgehog (Shh) signal agonist SAG was added to the culture solution of Example 1 at a final concentration of 30 nM or 500 nM only during the period from the 15th day to the 21st day. These aggregates were analyzed on day 35 by immunohistochemical staining.
  • Example 3 Continuous three-dimensional formation of cerebral cortex and basal ganglia (method) The cells were cultured in the same manner as in Example 2 until the 35th day of differentiation induction. That is, human ES cell aggregates were cultured in a V-bottom 96-well plate until 18 days after induction of differentiation, and then the floating aggregates were transferred to a cell non-adsorbing Petri dish (diameter 9 cm). Suspension culture to the eye was carried out in the presence of 37 ° C., 5% CO 2 and 40% O 2 . Only during the period from the 15th day to the 21st day of the differentiation culture, the Shh signal agonist SAG was added to the culture solution at a concentration of 30 nM. These aggregates were analyzed on day 35 by immunohistochemical staining.
  • Example 4 3D formation of selective choroidal tissue from human pluripotent stem cells (method) After 18 days after differentiation induction, the cells were cultured in a V-bottom 96-well plate under the culture conditions of Example 1, and the floating aggregates were transferred to a non-adsorbing Petri dish (diameter 9 cm). The reaction was carried out in the presence of CO 2 and 40% O 2 . From the 18th day to the 42nd day of the culture, the DMEM / F12 medium (Gibco / Invitrogen) was supplemented with 1% N2 supplement (Gibco / Invitrogen), 1% lipid concentrate (Chemically defined lipid concentrate, Gibco / Invitrogen). ), 10% FBS, 5 ⁇ g / ml heparin, 3 ⁇ M GSK-3 ⁇ inhibitor CHIR99021, 0.5 nM BMP4 added, and cultured on day 42 by immunohistochemical staining.
  • DMEM / F12 medium Gibco / Invitrogen
  • Example 5 Formation of selective cortical hem (progenitor tissue of hippocampus) from human pluripotent stem cells (method) After 18 days after differentiation induction, the cells were cultured in a V-bottom 96-well plate under the culture conditions of Example 1, and the floating aggregates were transferred to a non-adsorbing Petri dish (diameter 9 cm). The reaction was performed in the presence of CO 2 and 40% O 2 . From the 18th day to the 42nd day of the culture, DMEM / F12 medium (Gibco / Invitrogen) was supplemented with 1% N2 supplement (Gibco / Invitrogen), 1% lipid concentrate (Chemically defined lipid concentrate, Gibco / Invitrogen). ), 10% FBS, 5 ⁇ g / ml heparin, 3 ⁇ M GSK-3 ⁇ inhibitor added to CHIR99021 (Wnt signal enhancer) and analyzed on day 42 by immunohistochemical staining.
  • DMEM / F12 medium
  • Example 6 Sequential formation of choroid, hippocampal progenitor tissue and cerebral cortex progenitor tissue (method) After 18 days after differentiation induction, the cells were cultured in a V-bottom 96-well plate under the culture conditions of Example 1, and the floating aggregates were transferred to a non-adsorbing Petri dish (diameter 9 cm). The reaction was performed in the presence of CO 2 and 40% O 2 . From the 18th day to the 35th day of the culture, the DMEM / F12 medium (Gibco / Invitrogen) was supplemented with 1% N2 supplement (Gibco / Invitrogen), 1% lipid concentrate (Chemically defined lipid concentrate, Gibco / Invitrogen).
  • Foxg1 venus negative neuroepithelium had a structure protruding outward from the aggregate, and its tip had a hemispherical structure.
  • Lmx1a positive and Foxg1 venus negative choroid region
  • Lmx1a, Otx2 expressing cortical hem region weakly positive
  • Foxg1 venus weakly positive region
  • Lef1 positive A region of hippocampal progenitor tissue positive for Foxg1 :: venus, Lef1-negative and Foxg1 ::: venus-positive cerebral cortex progenitor tissue was continuously formed (FIGS. 6B and 6C).
  • the choroid, hippocampal progenitor tissue, and cerebral cortex progenitor tissue were continuously self-forming in one agglomerate, and more than 80% of the agglomerates were recognized with good reproducibility.
  • Example 7-1 Continuous three-dimensional formation of each region in hippocampal tissue (method) After 18 days after differentiation induction, the cells were cultured in a V-bottom 96-well plate under the culture conditions of Example 1, and the floating aggregates were transferred to a non-adsorbing Petri dish (diameter 9 cm). The reaction was performed in the presence of CO 2 and 40% O 2 . From the 18th day onward, the culture solution was cultured using one of the following two media.
  • the agglutinates have a neuroepithelium that is positive for the hippocampal progenitor tissue marker, Lef1 and Foxg1 :: venus. Was formed (FIGS. 7A, B).
  • These neuroepithelium contained many Nrp2-positive neurons, which are hippocampal progenitor tissue markers (FIG. 7D).
  • the neuroepithelium also contained many cells positive for Zbtb20, a marker for hippocampal neurons and progenitor cells (FIG. 7C).
  • the expression of Zbtb20 in the neuroepithelial ventricular zone and subventricular zone is strong in the precursor tissue of the dentate gyrus (adjacent to the choroid and cortical hem), and from the Ammon horn (choroid and cortical hem) There is a gradient of expression intensity that is weak in the progenitor tissue in the far part.
  • the expression of Zbtb20 is adjacent to the choroid (Lmx1a positive, Foxg1 :: venus negative) and cortical hem (Lmx1a positive, Foxg1 :: venus weakly positive) regions in Lef1-positive neuroepithelium formed from human ES cells.
  • Example 7-2 Mature hippocampal neurons (method) obtained by dispersive culture of continuous three-dimensional formation of each region in hippocampal tissue Continuous hippocampal tissue was induced by the method of Example 7-1, and cell aggregates obtained during Day 60-90 were converted into single cells with a cell dissociation solution such as papain enzyme solution (SUMITOMO BAKELITE, MB-X9901). Then, the cells were seeded on a glass dish or slide, and planar culture was performed. Before culturing, the glass surface was coated with poly-D-Lysine 200 ⁇ g / ml overnight at 4 ° C.
  • a cell dissociation solution such as papain enzyme solution
  • the culture solution used was Neurobasal medium (Gibco / Invitrogen) supplemented with 2% B27 supplement without vitamin A (Gibco / Invitrogen), 2 mM L-glutamine and 10% FBS. Cells cultured under these planar conditions stuck to the glass surface within 2-3 days after dispersion and began to extend neurites. Analysis was performed by immunohistochemical staining between d140 and d197.
  • Prox1 positive cells that are hippocampal dentate gyrus markers and KA1 that is hippocampal CA3 region marker are positive, and Prox1 positive cells are circular and relatively small indicating granule cells
  • KA1-positive cells had a relatively large pyramidal cell-like shape (FIGS. 8D-E). This is thought to be consistent with the formation of granule cells in the dentate gyrus seen in vivo and cone cells in the CA region.
  • the proportion of Zbtb20 positive cells was around 80%, and this expression rate was recognized with good reproducibility. From these results, it was suggested that granule cells of the hippocampal dentate gyrus and cone cells of the hippocampal CA3 region could be induced in terms of marker expression and cell morphology.
  • Example 7-3 Functional analysis of mature hippocampal neurons obtained by distributed culture of hippocampal tissue induced in three dimensions (method) Continuous hippocampal tissue was dispersedly cultured in the same manner as in Example 7-1. In this test, flat culture was performed by seeding on a glass or plastic dish or slide. For the culture, the surface of glass or plastic was coated with poly-D-Lysine 100 ⁇ g / ml at 37 ° C. for 3 hours and Laminin 20 ⁇ g / ml / Fibronectin 8 ⁇ g / ml overnight at 37 ° C.
  • the culture broth was dispersed on days 1 and 2 in Neurobasal medium (Gibco / Invitrogen) with 2% B27 supplement without vitamin A (Gibco / Invitrogen), 2 mM L-glutamine, 1% FBS, 20ng / ml BDNF, 20ng / ml NT-3 and 10 ⁇ M Y-27632 added were used.
  • Neurobasal medium (Gibco / Invitrogen) was supplemented with 2% B27 supplement vitamin A (Gibco / Invitrogen), 2 mM L-glutamine, 10% FBS, BDNF 20ng / ml, and NT-3 20ng / ml.
  • the buffer for internal solution 120mM K-Gluconate, 10mM KCl, 10mM EGTA, and 10mM Hepes containing buffer with KOH pH7.2
  • the pH of the buffer containing external solution 140 mM NaCl, 2.5 mM CaCl 2 , 2 mM MgCl 2 , 10 mM Glucose, 1 mM NaH 2 PO 4 , and 10 mM Hepes to pH 7.4 with NaOH. Satisfied and used.
  • the measurement was performed with EPC10 (HEKA). All tests were performed at room temperature.
  • the film capacitance component was corrected, and the test was performed under the condition that the series resistance value was within 3 times the electrode resistance value.
  • Voltage-dependent sodium and potassium currents were held at -60 mV, and measurements were made during stimulation from -80 mV to +60 mV in increments of -10 mV.
  • sEPSC measured the current over time when the voltage was held at -60 mV, and the drug was DNQX (sigma, D0540) at a final concentration of 10 ⁇ M.
  • the membrane potential when hyperpolarization stimulation was performed was measured.
  • Example 8 Three-dimensional formation of cerebral cortex with multi-layered structure of mid-gestation from human pluripotent stem cells (method) The cells were cultured in the same manner as in Example 1 until the 35th day of differentiation induction. That is, after culturing human ES cell aggregates in a V-bottom 96-well plate until 18 days after induction of differentiation, the floating aggregates were transferred to a non-adsorbing Petri dish (diameter 9 cm), and differentiation induction after 18 days. Suspension culture was performed at 37 ° C. in the presence of 5% CO 2 and 40% O 2 .
  • the agglomerates were divided into half portions once every two weeks after the 35th day, and the culture was continued with the culture solution described in Example 1. From the 56th day after differentiation induction, the cell mass was transferred to a cell non-adsorbing culture dish (diameter 6 cm, SARSTEDT) with high oxygen permeability and culture was continued. From day 70 of differentiation induction, the concentration of Matrigel Growth Factor Reduce (BD Bioscience) was changed to 2% and the culture was continued. These aggregates were analyzed by immunohistochemical staining on days 70 and 91.
  • FIG. 10F, F ' A cerebral ventricular zone with high cell density containing Pax6-positive and Sox2-positive neural progenitor cells (Fig. 10F, F ') and a subventricular zone containing Tbr2-positive cells formed above it (Figure 10G). Between the cortical plate and the subventricular zone, a sparse cell was developed that resembled the middle zone of midgestation. A cell layer containing many calretinin-positive and MAP2-positive neurites was formed immediately below the cortical plate (Fig. 10H, H '). In this cell layer, accumulation of chondroitin sulfate proteoglycan (CSPG) was observed (Fig. 10H "), suggesting that a sub-plate was formed. The cerebral cortex tissue possessed became thicker (Fig.
  • FIG. 10I had a Sox2-positive and Pax6-positive ventricular zone and a Tbr2-positive subventricular zone that developed even during this period (Fig. 10J, K, M)
  • the cortical plate is also thickened (Fig. 10I), and it contains not only Tbr1-positive and Ctip2-positive deep cortical plate neurons but also Satb2-positive, Brn2-positive shallow cortical plate neurons.
  • Fig. 10L-O Even at this time, a Calretinin-positive subplate was observed directly under the cortical plate (Fig. 10P).
  • -Has a multi-layered structure found in the cerebral cortex of human midgestation along the deep axis It becomes possible to weave a three-dimensional form.
  • Example 9 Spontaneous axis formation in the cerebral cortex and its extrinsic control (method) The cells were cultured in the same manner as in Example 1 until the 42nd day of differentiation induction. That is, human ES cell aggregates were cultured in a V-bottom 96-well plate until 18 days after induction of differentiation, and then the floating aggregates were transferred to a non-adsorbing Petri dish (diameter 9 cm), from 18 to 42 days after induction of differentiation. Suspension culture to the eye was carried out in the presence of 37 ° C., 5% CO 2 and 40% O 2 . The same culture solution as that used in Example 1 was used. When examining the influence of exogenous factors, 200 ng / mL of FGF8b was added to the culture medium on the 24th to 42nd days. Under any condition, aggregates were analyzed by immunohistochemical staining on day 42.
  • CoupTF1 and Lhx2 are known as dorsal dorsal markers that form a gradient from the dorsal caudal side to the rostral side in the cerebral cortical ventricular zone in early pregnancy.
  • Sp8 is known as a rostral marker showing an opposite gradient.
  • the dorsal-side marker CoupTF1 was expressed more strongly on one side and weakly on the other side in the cerebral cortical ventricular zone derived from human pluripotent stem cells (FIG. 11A).
  • the expression of Sp8, the rostral marker showed a slope opposite to that of CoupTF1 (FIG.
  • the dorsal caudal side of the cerebral cortex is adjacent to the cortical hem, but the cortical ventricular zone derived from human pluripotent stem cells also has regions where the dorsal-tail markers CoupTF1 and Lhx2 are strongly expressed. It was formed adjacent to a region that expresses cortical hem markers Zic1 and Otx2 (FIGS. 11D and E).
  • FGF8 is important for obtaining the rostral specificity of the cerebral cortex in vivo.
  • phosphorylated Erk produced by FGF signal was strongly accumulated on the rostral side where the expression of the dorsal caudal marker CoupTF1 was weak (FIG. 11F).
  • FGF8b when exogenous FGF8b was allowed to act, CoupTF1 expression was attenuated as a whole, and conversely, Sp8 expression was increased throughout the ventricular zone (FIG. 11G-I).
  • Example 10 Human ES cell maintenance culture and differentiated human ES cells (KhES-1) were used according to the Japanese government's guidelines for human ES cell research. Human ES cells were treated with 20% (vol / vol) Knockout Serum Replacement (KSR, Gibco / Invitrogen), 2 mM glutamine, 0.1 mM in DMEM / F12 (Sigma) using MEF cells inactivated by mitomycin C.
  • KSR Knockout Serum Replacement
  • Non-essential amino acid solution Gibco / Invitrogen
  • 0.1 mM 2-mercaptoethanol (2-ME) 50 U / ml penicillin
  • 50 ⁇ g / ml streptomycin was used as a medium and cultured at 37 ° C. in the presence of 2% CO 2 .
  • human ES cells were reacted with PBS containing 0.25% trypsin, 0.1 mg / ml collagenase IV, 20% KSR, 1 mM CaCl 2 at 37 ° C. for 7 minutes, and detached from feeder cells in a lump. .
  • the detached human ES cell mass was gently pipetted into small cell masses (tens of cells). Cell passage was performed in 3-4 quarters.
  • SFEBq culture human ES cells were dispersed into single cells with TrypLE Express (Gibco / Invitrogen) containing 0.05 mg / ml DNase I (Roche) and 10 ⁇ M Y-27632 and 20 ⁇ M Y-27632. Aggregates were formed by seeding each well of a V-bottom 96-well plate with a low cell-adsorbing surface coat using a cerebral cortical differentiation medium.
  • the medium for cerebral cortical differentiation was G-MEM medium (Gibco / Invitrogen), 20% KSR® (Knockout® Serum® Replacement), 0.1 mM non-essential amino acid solution (Gibco / Invitrogen), 1 mM sodium pyruvate solution (Sigma), A solution supplemented with 0.1 mM 2-mercaptoethanol, 100 U / ml penicillin, 100 ⁇ g / ml streptomycin was used.
  • the day when the SFEBq culture was started was defined as day 0, and IWR1e (Wnt inhibitor) and SB431542 (TGF ⁇ inhibitor) were added on days 0 to 18 so that the concentrations were 3 ⁇ M and 5 ⁇ M, respectively.
  • Cerebral cortical neuroepithelium derived from human ES cells was cultured under the following conditions. On day 18 of culture, cell clumps were transferred to a 9 cm Petri dish with a low cell-adsorbing surface coat and 1% N2 supplement (Gibco / Invitrogen), 1% in DMEM / F12 medium (Gibco / Invitrogen). % Lipid concentrate (Chemically defined lipid concentrate, Gibco / Invitrogen), 0.25 mg / mL fungizone, 100 U / ml penicillin, 100 ⁇ g / ml streptomycin added at 37 ° C., 5% CO 2 , The culture was performed in the presence of 40% O 2 .
  • Cerebral cortical neuroepithelialization was carried out by adding human recombinant FGF8b (Gibco, 200 ng / mL) during 24-42 days in culture. Cell aggregates were fixed on day 42 of culture.
  • the ventralization of the cerebral cortical neuroepithelium was performed by adding the hedgehog agonist SAG (30 nM or 500 nM) during 15-21 days of culture. Cell aggregates were fixed on day 35 of culture.
  • V-bottom 96-well plates were constructed from 9000 human ES cells. 15) was seeded in each well and cultured in a GMEM-KSR medium containing a Rho-kinase inhibitor (Y-27632) (Reference 16) (FIG. 18A). Thereafter, the cell mass was transferred to a low cell adsorptive 9 cm culture dish and cultured in the presence of 40% O 2 .
  • SB43152 ventricular zone Inhibitor
  • IWR1e Wnt inhibitor
  • foxg1 :: venus positive cells had an efficiency of 30-40% of the total cells (FIG. 12B and FIG. 18C).
  • the foxg1 :: venus positive neuroepithelium showed a neuroepithelium-like structure (multi-row columnar epithelium) on the hemisphere with a ventricle-like cavity inside (FIG.
  • These neuronal cell layers contained Reelin-positive Cajal-retius cells (FIG. 12I), and had a layer containing a large amount of Laminin near the surface layer (FIG. 12J). That is, a self-organized layer structure was formed in the cerebral cortical neuroepithelium derived from human ES cells.
  • telencephalon marker Foxg1 is about 18-20 days in culture Start to be observed.
  • the apical side of the neuroepithelium (aPKC positive) was located on the outer periphery of the cell mass (Fig. 13A, bottom).
  • aPKC positive was located on the outer periphery of the cell mass (Fig. 13A, bottom).
  • this neuroepithelium was partially discontinuously divided into several large neuroepithelium (FIG. 13A). Subsequently, these segmented cerebral cortical neuroepithelium showed a curvature with a concave apical side (FIG. 13 BD and FIG. 19A, top).
  • Each segment of the cerebral cortical neuroepithelium showed an asymmetric curved structure.
  • One side of the neuroepithelium has a rotation end feature (Fig. 13 B-D, arrow) and the other side has a round feature.
  • Activated myosin (indicated by phosphorylated MLC2) was uniformly accumulated on the surface of the apical side of the cerebral cortex region, including the rounded side (FIG. 13C).
  • the rotation end of the cerebral cortex region approached the opposite side and finally adhered (FIGS. 13E to E and F).
  • the body of the cerebral cortex region neuroepithelium moved in the same direction as the rotation end (Fig. 13 E-H).
  • the morphological change accompanying this rotation finally formed a hemispheric cerebral cortex structure with the inner lumen located on the 27th day of culture (FIG. 13I and FIG. 19A, armpit).
  • the neuroepithelium on which weak SAG has acted has a continuous formation of areas of cerebral cortex (Pax6 positive) and LGE (Gsh2 positive), which is an improved culture. Under the conditions, it is shown that the mantle and the mantle lower part are continuously formed in one aggregate by self-assembly. Within this continuous neuroepithelium, the rotational end of the cerebral cortical neuroepithelium (Fig. 13 OQ, arrow)) is located on the opposite side of the cerebral cortex-LGE junction, and the rotation end and the non-rotation end are the cerebral cortex, respectively. This is consistent with the dorsal and ventral side of the neuroepithelium.
  • the developing cerebral cortex abducts due to the strong curvature of the mantle epithelium, but the fetus mantle itself does not move because its ends are fixed by other tissues.
  • the curvature from the midline cortex of the fetal neuroepithelium (hippocampal area) to the dorsal area of the cerebral cortex is particularly strong (Fig. 17A).
  • the posterior end of the cerebral cortical neuroepithelium derived from human ES cells can move without being fixed, causing a morphological change accompanying rotation. It can be inferred that this reflects the strong bending action on the dorsal side of the cerebral cortex (Fig. 19D).
  • FIG. 14A and A ′ the thickness of human ES cell-derived cerebral cortical neuroepithelium was 200 ⁇ m or more.
  • the neuroepithelium morphologically showed a multi-layered structure of ventricular zone, subventricular zone, intermediate zone, cortical plate, and marginal zone (FIG. 14 BG and FIGS. 20A and B).
  • Laminin accumulated in the outermost layer of the marginal zone and contained Reelin positive cells (CR cells) (FIGS. 14C and C ′).
  • a cortical plate was formed directly under the marginal zone, and it contained Tbr1-positive and Ctip2-positive deep cortical plate neurons (FIGS. 14D and D '). At this time, few neurons expressed Satb2 (Reference 21), a marker of the superficial cortical plate (FIG. 14E).
  • the luminal ventricular zone is approximately 100 ⁇ m thick on the 70th day of culture, with Pax6-positive and Sox2-positive neural stem / progenitor cells (Fig. 14 F and F '), or radial glia (Reference 22). Contained cells called.
  • a subventricular zone composed of Tbr2-positive cells was formed on the top (FIG. 14G).
  • the thickness of the cerebral cortical neuroepithelium was 300-350 ⁇ m, and it had a well-developed ventricular zone (Fig. 14 K and Fig.20 H and I).
  • the cortical plate was also thickened (about 150 ⁇ m; Fig. 14 I), and contained not only Tbr1-positive and Ctip2-positive deep cortical plate neurons but also shallow cortical plate neurons (Satb2-positive, Brn2-positive) ( Fig. 14 (LN) and Fig. 20 (J). Nerve cells (Calretinin positive) on the subplate were also observed just below the cortical plate (Fig. 14 O).
  • Fig. 14P The separation of the morphological layer structure observed during long-term culture (summarized in Fig. 14P) is similar to the tissue found in the first trimester of human fetal cerebral cortex (References 25 and 27). Furthermore, in the cortical plate derived from human ES cells, the superficial nerve cell sputum (Satb2 positive, Brn2 positive) was preferentially located on the surface side of the deep neuronal sputum (Tbr1 positive, Ctip2 positive) (Fig. 15 AH ). Furthermore, if cells are labeled for 1 day using EdU on the 50th day and BrdU on the 70th day, the cells labeled with EdU and BrdU are preferentially located on the deep and surface layers, respectively, on the 91st day.
  • Fig. 15 IL results are similar to the inside-out pattern during fetal cerebral cortex development (Ref. 5, 6), that is, the late-born cerebral cortex neurons are located outside and the early-born cerebral cortex neurons are located inside. It shows that neurons have a tendency to be located.
  • CaMKII ⁇ a marker of mature neurons, is more preferentially observed in the luminal 2/3 part of the cerebral cortex derived from human ES cells.
  • the region mainly expressed Tbr1 but not Satb2 (FIG. 15 MO and Fig. 20 K).
  • the majority of CaMKII ⁇ -positive neurons co-expressed Tbr1 but not Satb2 ( Figure 20 L and M; Figure 15 P).
  • SVZ contained a number of IntermediateTprogenitors that were Tbr2-positive, Sox2-negative, and Pax6-negative (Fig. 14 G and M).
  • nerve stem / progenitor cells different from Intermediate ⁇ progenitors, phosphorylated Vimentin-positive, Tbr2-negative, Sox2-positive, Pax6-positive, accumulated outside SVZZ (Fig. 16 GG ′′ And Fig. 21 (AC).
  • the percentage of cells of this type was relatively small at 70 days of culture and became prominent at 91 days of culture (Fig. 16 H). On the 91st day of culture, this Tbr2 negative and Sox2 positive were observed.
  • oRG neural stem / progenitor cells different from Tbr2-positive Intermediate progenitors
  • Tbr2-negative, Sox2-positive, and Pax6-positive neural stem / progenitor cells of the cerebral cortical neuroepithelium derived from human ES cells on day 91 of culture have apical processes but no lumen processes.
  • Fig. 16 JK 'and Fig. 21 H, H', and I These cells have pericentrin-positive basal bodies in the cell body even in SVZ (Fig. 21 (J)). This is different from a neural stem cell on the lumen side having a basal body near the lumen.
  • oRG-like cells derived from human ES cells tended to divide horizontally (Fig. 16 L and M).
  • Tbr2-positive cells did not have protrusions on the apical side as in vivo Intermediate-progenitors (FIG. 21-K-K ′′).
  • cerebral cortical neuroepithelium derived from human ES cells can grow healthy under suspension culture conditions for a long period of 13 weeks or longer. And it becomes a thickness of about 350 ⁇ m, and has a multi-layered structure that is seen in the fetal cerebral cortex of human mid-gestation pupae (from 11 weeks of embryonic life) (Reference 30).
  • the culture method of the present invention was able to reproduce even a phenomenon characteristic of cerebral cortex development in the middle stage of human pregnancy, that is, the appearance of oRG-like neural stem / progenitor cells on the 91st day of culture (13 weeks). These results also suggest that the generation speed of the self-organized tissue in the method of the present invention is almost the same as that of the fetal brain.
  • the culture system of the present invention can also be used for studies on the specificity of the dorsoventral axis of the entire telencephalon.
  • the cerebral cortex and LGE striatal primordia
  • the formation of MGE was induced by a stronger hedgehog signal.
  • the improved culture system shown in this study can also reproduce complex cerebral cortex layer formation, ie, ventricular zone, subventricular zone, intermediate zone, subplate, cortical plate, marginal zone Became.
  • the subplate is a structure that is particularly prevalent in primates (sometimes called the VII layer) and is thought to be formed by pioneer neurons in the cerebral cortex (References 24 and 25).
  • the subplate is a structure that appears only temporarily in the fetal brain, and a part derived from the subplate is present in interneurons of white matter in the adult brain (Reference 33). Since subplates are lost after birth, the study is not particularly easy in humans, so our system may be important in studies of neuronal cell layers where this understanding is not advanced.
  • our culture system could be applied to studying inside-out stratification of human fetal cerebral cortex, including causes of spondylosis.
  • the culture system of the present invention has great advantages in studying the role of oRG neural stem / progenitor cells in human cerebral cortex formation.
  • oRG neural stem / progenitor cells For wrinkled human cerebral cortex, it is probably a great advantage to have this neural stem / progenitor cell that produces many superficial neurons with multiple divisions.
  • no specific marker has been reported to define oRG, and to distinguish between oRG and luminal neural stem cell sputum (both Sox2-positive, Pax6-positive, Tbr2-negative) Depends mainly on movement and location. Therefore, research on oRG using dispersive culture that loses its positional relationship has become extremely limited.
  • the culture system of the present invention has a great advantage in this respect because it has a three-dimensional positional relationship with the developing human cerebral cortex.
  • oRG could be induced in cerebral cortical tissue having a multilayered structure derived from human pluripotent stem cells (Reference 34).
  • This study uses a non-selective differentiation method that probabilistically obtains brain region specificity (we are a highly reproducible cerebral cortex-specific differentiation method).
  • the telencephalon having a higher-order structure similar to that of the telencephalon in vivo, or a partial tissue thereof (cerebral cortex, basal ganglia, hippocampus, choroid, etc.), or a progenitor tissue thereof is pluripotent in vitro. Stem cells can be induced. Therefore, the present invention is useful for the implementation of regenerative medicine in the cranial nerve region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Neurology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 本発明は、多能性幹細胞の凝集塊を、Wntシグナル阻害剤及びTGFβシグナル阻害剤の存在下で浮遊培養することにより、終脳マーカー陽性凝集塊を得て、更に該終脳マーカー陽性凝集塊を、高酸素分圧条件下で更に浮遊培養することを特徴とする、哺乳動物の多能性幹細胞から、より成熟した終脳又はその前駆組織をインビトロで誘導する方法を提供する。一態様において、高酸素分圧条件下での浮遊培養を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で行う。

Description

終脳又はその前駆組織の製造方法
 本発明は、インビトロにおいて、多能性幹細胞から終脳又はその前駆組織への分化を誘導する技術に関する。
 ほ乳類の大脳皮質は多層構造(I-VI層)を有し、これは胎児の大脳皮質形成期から徐々に形成される(非特許文献1)。大脳皮質は背側終脳(外套)の神経上皮から生み出され、徐々に外転しながら両側に半球状の脳胞を形成する (図17A) (非特許文献2)。大脳皮質の後尾側は皮質ヘムが隣接し、一方吻腹側は古皮質を介して外側基底核原基(LGE, 線条体原基)や隔膜が隣接している。成体の6層の中には、その大部分が皮質ヘムや隔膜などの隣接する組織に由来し(非特許文献3)、主にリーリン陽性のカハールレチウス細胞から形成される最表層のI層 (胎生時期の原基は辺縁帯と呼ばれる; 図17B)が存在する (ヒトの大脳皮質の場合、リーリン陽性細胞の一部は大脳皮質神経上皮からも直接生み出される) (非特許文献4)。残りの皮質板の層は、時間および空間的に規則正しく神経細胞が生み出され配置される特徴的なパターンを有していている。これはインサイド-アウトパターンと呼ばれ、より深い層の神経細胞がより早く神経前駆細胞から生みだされる(図17B) (非特許文献5, 6)。
 多くの情報を得ることができるマウスの大脳皮質の発生とは異なり、ヒトの大脳皮質の発生はヒト胎児の脳組織の利用が限られるために詳しくは理解されていない。これまでに本発明者らは、マウスおよびヒトのES細胞を用いた3次元培養法(SFEBq法)を樹立し、この凝集塊が大脳皮質の発生の初期過程を再現することを示した (非特許文献7-9)。この方法はヒトiPS細胞の適応も可能であることが報告されている (非特許文献10)。この自己組織化されたヒトES細胞由来の浮遊細胞塊の中には、大脳皮質神経上皮が自発的に形成され、培養40-45日後には脳室帯や皮質板および辺縁帯も自発的に形成される。この大脳皮質神経上皮は、ヒト妊娠初期の大脳皮質形成を再現したが、多くの点で未成熟であった (図17C) (非特許文献7)。
 最近、ヒト多能性幹細胞由来の多層構造を有した大脳皮質組織の中で、外側放射状グリア細胞(oRG)が誘導できたという結果が報告された (非特許文献11)。この研究は確率論的に脳領域の特異性が得られる非選択的な分化方法を用いている。この分化方法は、凝集塊をスピナーフラスコを用いて旋回培養することを特徴とする。
Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 8:427-437. Hebert JM, Fishell G. (2008) The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 9:678-685. Bielle F, et al. (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci. 8:1002-1012. Bystron I, Blakemore C, Rakic P. (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 9:110-122. Rakic P. (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science. 183:425-427. Shen Q. et al. (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9:743-751. Eiraku M. et al. (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3: 519-532. Watanabe K. et al. (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8:288-296. Nasu M, et al. (2012) Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS One 7:e53024. Mariani J. et al. (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci USA.109:12770-12775. Lancaster M. et al. (2013) Cerebral organoids model human brain development and microcephaly. Proc Natl Acad Sci USA. 109:12770-12775.
 本発明は、哺乳動物の多能性幹細胞から、より成熟した終脳又はその前駆組織をインビトロで誘導する技術を提供することを目的とする。
 本発明者らは、鋭意検討の結果、ヒト立体大脳皮質の自己組織化誘導方法の培養条件を改良することにより、より選択的で長期間にわたり大脳皮質組織の立体誘導を行うことに成功した。この方法によって、自己組織化された大脳皮質の中に、生体の胚の中で見られる背腹軸および前後軸の極性を自発的に起こらせることに成功した。また、外因性のシグナル因子によって、背腹軸あるいは前後軸に沿った特定の神経領域を選択的に分化誘導すること、生体内と同様の位置関係で大脳皮質組織を隣接する組織と連続的に立体形成させること、周辺組織を選択的に自己組織化させることにも成功した。
 更に、大脳皮質組織の培養を続けることで、ヒト妊娠中期の大脳皮質に見られる多層構造(脳室帯、脳室下帯、外側脳室下帯、中間帯、サブプレート、深部皮質板、浅部皮質帯、辺縁帯)を、表層から深層軸に沿って立体形成することに成功した。
 更に、培養条件を工夫することにより、大脳皮質以外に、大脳基底核、海馬、脈絡膜等の組織の立体誘導を行うことにも成功した。
 本発明者らは、上記知見に基づき更に検討を加え、本発明を完成するに至った。
 即ち、本発明は下記の通りである:
[1]多能性幹細胞の凝集塊を、Wntシグナル阻害剤及びTGFβシグナル阻害剤の存在下で浮遊培養することにより、終脳マーカー陽性凝集塊を得ること、及び該終脳マーカー陽性凝集塊を、高酸素分圧条件下で更に浮遊培養することを含む、終脳若しくはその部分組織、或いはその前駆組織を含む細胞凝集塊の製造方法。
[2]得られる細胞凝集塊が、大脳皮質、大脳基底核、海馬及び脈絡膜からなる群から選択されるいずれかの終脳部分組織、又はその前駆組織を含む、[1]記載の製造方法。
[3]高酸素分圧条件下での浮遊培養を、Wntシグナル増強剤の存在下で行う、[1]又は[2]記載の製造方法。
[4]高酸素分圧条件下での浮遊培養を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で行う、[1]又は[2]記載の製造方法。
[5](I)多能性幹細胞の凝集塊を、Wntシグナル阻害剤及びTGFβシグナル阻害剤の存在下で浮遊培養することにより、終脳マーカー陽性凝集塊を得ること、
(II)(I)で得られた該終脳マーカー陽性凝集塊を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で更に浮遊培養すること、及び
(III)(II)で得られた細胞凝集塊をWntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の不在下で更に浮遊培養すること
を含む、終脳若しくはその部分組織、或いはその前駆組織を含む細胞凝集塊の製造方法。
[6]製造される細胞凝集塊が、連続した神経上皮中に、大脳皮質組織又はその前駆組織、脈絡膜組織又はその前駆組織、及び海馬組織又はその前駆組織を含む、[5]記載の製造方法。
[7]製造される細胞凝集塊が、連続した神経上皮中に、歯状回組織又はその前駆組織、及びアンモン角組織又はその前駆組織を含む、海馬組織またはその前駆組織を含む、[5]記載の製造方法。
[8]海馬組織または前駆組織が、連続した神経上皮中に、皮質ヘムを更に含む、[7]記載の製造方法。
[9]製造される細胞凝集塊が、アンモン角組織又はその前駆組織を含む、[5]記載の製造方法。
[10](II)及び(III)における浮遊培養を高酸素分圧条件下で行う、[5]記載の製造方法。
[11]細胞凝集塊を、shhシグナル作動薬で処理することを含む、[1]又は[2]記載の製造方法。
[12]細胞凝集塊を、FGF8で処理することを含む、[1]又は[2]記載の製造方法。
[13]得られる細胞凝集塊が、表層から深部に向かって、辺縁帯、皮質板、サブプレート、中間帯、脳室下帯及び脳室帯を含む多層構造を有する、大脳皮質組織又はその前駆組織を含む、[2]記載の製造方法。
[14]得られる細胞凝集塊が、大脳基底核又はその前駆組織を含む、[11]記載の製造方法。
[15]得られる細胞凝集塊が、吻側化大脳皮質又はその前駆組織を含む、[12]記載の製造方法。
[16]多能性幹細胞が胚性幹細胞又は誘導多能性幹細胞である、[1]~[15]のいずれかに記載の製造方法。
[17]多能性幹細胞がヒト由来である、[1]~[16]のいずれかに記載の製造方法。
[18]浮遊培養をフィーダー細胞の非存在下で行う、[1]~[17]のいずれかに記載の製造方法。
[19][1]~[18]のいずれかに記載の製造方法により得られる細胞凝集塊。
[20][1]~[18]のいずれかに記載の製造方法により得られる、海馬又はその前駆組織を含む細胞凝集塊を分散すること、及び分散した細胞を更に接着培養し、該細胞から成熟した海馬ニューロンを誘導することを含む、成熟した海馬ニューロンの製造方法。
 本発明によれば、多能性幹細胞から、選択的で長期間に亘り、終脳若しくはその部分組織(大脳皮質、大脳基底核、海馬、脈絡膜等)、或いはその前駆組織を誘導することができる。
 本発明によれば、多能性幹細胞から、選択的に、背腹軸及び前後軸の極性を有する大脳皮質組織又はその前駆組織を誘導することができる。
 本発明によれば、多能性幹細胞から、選択的に妊娠中期の多層構造を有する大脳皮質組織又はその前駆組織を誘導することができる。
 本発明によれば、多能性幹細胞から、連続した神経上皮中に、大脳皮質組織又はその前駆組織、脈絡膜組織又はその前駆組織、及び海馬組織又はその前駆組織を隣接する組織として自己組織化することが可能である。
 本発明によれば、多能性幹細胞から、連続した神経上皮中に、歯状回組織又はその前駆組織、及びアンモン角組織又はその前駆組織を含む、海馬組織又はその前駆組織を誘導することが可能である。
 本発明によれば、ヒト胎児の大脳皮質に豊富に存在し、マウスの大脳皮質では存在しない、外側放射状グリア細胞(oRG)の特徴を有する神経前駆細胞を、ヒト多能性幹細胞から脳室下帯外側に特異的に誘導することができる。
ヒト多能性幹細胞からの大脳皮質前駆組織の分化誘導。(A) Day 26の細胞凝集塊におけるFoxg1::venus発現。(B)Day 34の凝集塊中の細胞におけるFoxg1::venus発現。(C) 細胞凝集塊内部に形成された、脳室様の空洞を有する、半球上の神経上皮様構造。(D) 神経上皮構造の内腔側におけるPax6発現。(E) 神経上皮構造の内腔側におけるSox2発現。(F) 神経上皮構造の最も内腔側における、リン酸化ヒストンH3(pH3)発現。(G) 脳室帯に類似した細胞層の外側における、Tuj1発現。(H) 脳室帯に類似した細胞層の外側における、Ctip2発現。(I) 脳室帯に類似した細胞層の外側におけるReelin陽性カハールレチウス細胞の出現。(J) 凝集塊の表層近くにおけるLaminin発現。 ヒト多能性幹細胞からの大脳基底核前駆組織の分化誘導。(A) 終脳神経上皮に形成されたGsh2を発現するLGE。(B) LGE神経上皮の直下に存在するGAD65陽性のGABA作動性神経細胞。(C) 終脳神経上皮に形成されたNkx2.1を発現するMGE。(D) MGEを形成した細胞凝集塊におけるPax6発現。 大脳皮質と大脳基底核の連続的な立体形成。(A) 終脳神経上皮に形成されたGsh2を発現するLGE。(B) 終脳神経上皮に形成されたLGEにおけるGAD65発現。(C) LGE神経上皮と連続して形成されたPax陽性大脳皮質神経上皮。 ヒト多能性幹細胞からの脈絡膜組織の分化誘導。(A) 多能性幹細胞から誘導された脈絡膜組織におけるTTR及びLmx1a発現。(B) 多能性幹細胞から誘導された脈絡膜組織におけるOtx2発現。Foxg1::venusの発現は認められない。 ヒト多能性幹細胞からの皮質ヘムの分化誘導。(A) 多能性幹細胞から誘導された皮質ヘムにおけるLmx1a発現。TTRの発現は認められない。(B) 多能性幹細胞から誘導された皮質ヘムにおけるOtx2発現。Foxg1::venus弱陽性である神経上皮が主体の凝集塊が形成された。 脈絡膜、海馬前駆組織及び大脳皮質前駆組織の連続的形成。(A) Foxg1::venus陽性の神経上皮とFoxg1::venus陰性の神経上皮の両者を含む細胞凝集塊。(B) 脈絡膜、海馬前駆組織及び大脳皮質前駆組織を含む細胞凝集塊におけるBf1(Foxg1)::venus発現。(C) 脈絡膜、海馬前駆組織及び大脳皮質前駆組織を含む細胞凝集塊におけるLmx1a及びLef1の発現。 ヒト多能性幹細胞からの海馬前駆組織の分化誘導。(A-D) Day 61の細胞凝集塊におけるBf1(Foxg1)::venus (A)、Lmx1a (B)、 Prox1 Zbtb20 (C)及びNrp2 (D)の発現を示す。(E-H) Day 75の細胞凝集塊におけるFoxg1::venus、Lmx1a及びLef1 (E)、Zbtb20 (F)、 Prox1 (G)及びProx1及びZbtb20 (H)の発現を示す。 ヒトES細胞から誘導した3次元の海馬組織の平面分散培養。(A)神経の樹状突起を示すMAP2陽性の細胞における、海馬マーカーであるZbtb20の発現。(B)Zbtb20陽性細胞におけるBf1(Foxg1)::venus発現。(C)グリア細胞様の形をしたZbtb20陽性細胞での、アストロサイトマーカーであるGFAPの発現。(D)海馬領域のうち、歯状回の顆粒細胞マーカーであるProx1とCA3の錐体細胞マーカーであるKA1の分散培養での発現パターン。Prox1は細胞体の直径が5-10μm程度の小型の細胞で、KA1は細胞体の直径が10-20μmの大型で錐体細胞様の形態をした細胞で発現が見られる。(E)図Dでみられた細胞でのBf1(Foxg1)::venusの発現を示す。Bar: 200μm(A,B), 100μm(C), 10μm(D, E)。 海馬前駆組織を分散培養にて長期培養した際のカルシウムイメージング及び電気生理的解析。(A-A’)カルシウムイメージングの際のシグナル発現像とその明視野像。(B)カルシウムシグナルの細胞ごとでの様々な経時的応答パターンを示す。(C-C’)電気生理試験の際の明視野像。(D)ナトリウム-カリウム電流応答。(E)誘発性活動電位。(F)sEPSCとDNQXによるその阻害。Bar: 50μm(C, C’)。 ヒト多能性幹細胞からの妊娠中期型の多層構造を持つ大脳皮質前駆組織の分化誘導。(A及びA’) Day 70のヒト多能性幹細胞由来大脳皮質神経上皮の切片。A’はCtip2及びPax6の免疫染色を示す。低拡大観察においても、脳室帯(Pax6+)、脳室下帯、中間帯、及び皮質板(Ctip2+)の明確な分離が見られた。(B-H”) Day 70の大脳皮質の層特異的マーカーによる免疫染色。(I) Days 70及び91における大脳皮質神経上皮の全厚(Cortical NE)及び脳室帯(VZ)及び皮質板(CP)の厚さ。(J-P) Day 91大脳皮質神経上皮の帯特異的マーカーによる免疫染色。(Q) ヒトES細胞由来大脳皮質神経上皮の長期培養において見られる層構造の模式図。 大脳皮質の自発的な軸形成と外因性因子による制御。(A-F) Day 42の細胞凝集塊におけるCoup-TF1 (A), Lhx2 (B), Coup-TF1及びLhx2 (C), Coup-TF1及びZic1 (D), Coup-TF1及びOtx2 (E), CoupTF1及びリン酸化Erk (F)の発現。(G) FGF8b処理によるCoupTF1発現の減弱。(H) FGF8b処理による、Sp8発現の脳室帯全体に渡る上昇。(I) FGF8b処理による、Coup-TF1及びSp8発現パターンの変化。 ヒトES細胞から自己組織化された大脳皮質神経上皮の軸極性。(A) foxg1::Venusで可視化した大脳皮質神経上皮を含むヒトES細胞凝集塊 (Day 26)。 (B) foxg1::Venus陽性細胞の代表的なFACS解析。(C-J) foxg1::venus ヒトES細胞から自己形成された半球状大脳皮質構造の免疫染色。VZ、脳室帯。(K-N) ヒトES細胞由来大脳皮質神経上皮において観察される軸極性の自己形成。皮質ヘム様組織(Otx2+; M)は、大脳皮質神経上皮の後尾側マーカーCoup-TF1 (K)及びLhx2の発現が強い側に隣接する領域に局在した。Coup-TF1発現と逆側でより高いレベルのpErkシグナルが観察された (N)。発現の勾配及び極性を三角で示す。矢頭、脳室帯 (VZ)(マーカー発現の勾配が脳室帯中に見られることに留意されたい)。(O及びP)Fgf8処理は、CoupTF1を抑制し、吻腹側マーカーSp8の発現を拡大させた(スケールバー、Aにおいては1mm; C-Pにおいては200μm。)核対比染色(青)、DAPI。 自己組織化された神経上皮における非対称的な湾曲形態形成。(A-I) ヒトES細胞由来神経上皮の非対称的な湾曲形態形成。Aにおいて、矢は、神経上皮領域の境界を示す。B-Dにおいて、矢は、湾曲した上皮を示す。Eにおいて、矢頭は、湾曲する上皮を示す。F-Iにおいて、矢は、回転運動を示す。(J-L) 神経上皮の回転に対するROCK阻害剤 Y-27632の効果。(L) ROCK阻害剤による、回転形態形成の抑制。***:Fisher の抽出検定における分割表解析(2 × 2)においてP < 0.001。処置群、n = 187神経上皮領域;対照群;n = 130 (M及びN) 回転形態は、Otx2及びCoup-TF1(後尾側マーカー)の強い発現を有する側において優先的に観察された。(O-Q) Day 35の神経上皮構造における、大脳皮質(Pax6+)及びLGE (Gsh2+ ; GAD65+ GABA作動性神経細胞を直下に伴う)の隣接した形成。LGE領域に接する大脳皮質側は、強い回転を伴う側(矢)とは反対に位置した。(R) Day 24のヒトES細胞由来大脳皮質神経上皮における分裂中の核の上下運動(二光子イメージング)。pax6::venus レポーターヒトES細胞と非標識ヒトES細胞とを一部混合して可視化した。頂端側及び基底側の両方の突起を有する2つの娘細胞が頂端側の分裂前駆細胞から発生した。(スケールバー、Aにおいては200 μm、B-H及びJ-Nにおいては100μm、O-Qにおいては200 μm。)核対比染色(青)、DAPI。 ヒトES細胞由来大脳皮質神経上皮における多層構造の自己形成。 (A及びA') Day70のヒトES細胞由来大脳皮質神経上皮の切片。低拡大観察においても、脳室帯(Pax6+)、脳室下帯、中間帯、及び皮質板(Ctip2+)の明確な分離が見られた。(B-H'') Day 70の大脳皮質神経上皮の層特異的マーカーによる免疫染色。(I) Days 70及び91における大脳皮質神経上皮の厚さ(Cortical NE)及び脳室帯(VZ)及び皮質板(CP)の厚さ。**P < 0.01; ***P < 0.001、Day 70大脳皮質神経上皮と、Day 91大脳皮質神経上皮(それぞれ、n = 6)との間のStudent t 検定。(J-O) Day 91大脳皮質神経上皮の層特異的マーカーによる免疫染色。(P) ヒトES細胞由来大脳皮質神経上皮の長期培養において見られる層構造の模式図。(スケールバー、Aにおいて400 μm;B-H″において50 μm;J-Oにおいて100 μm。)グラフ中のバー、SEM。核対比染色(青)、DAPI。 皮質板におけるSatb2+及びBrn2+大脳皮質神経細胞の基底側に偏った局在。(A-H) Satb2及びBrn2(表層マーカー)陽性の大脳皮質神経細胞は、Day 91培養において、ヒトES細胞由来大脳皮質板の基底(表層)部に優先的に局在した。基底側に局在したSatb2+細胞のほとんどは、深層マーカーTbr1陰性であった。(H) 皮質板内におけるマーカー陽性神経細胞の分布。相対的な位置付けのため、皮質板の頂端側及び基底側の境界を、それぞれ、0及び100と定義した。***P <0.001. Mann-Whitney検定。赤線:中央値。定量した神経細胞数:Tbr1+ (n =105), Satb2+ (n = 58), Ctip2+ (n = 87), 及び Brn2+ (n = 86). (I-L) EdU(Day 50;赤;n = 36)及びBrdU (Day 70; 白; n = 53)を用いた二重パルス標識試験。Day 91に免疫染色により解析した。Hと同様に統計学的解析を行った。(M-O) Day 112において、成熟大脳皮質神経細胞マーカーCaMKIIαは、皮質板のより深い部分に局在するTbr1+ 神経細胞において優先的に発現していた。成熟した神経細胞の生存を維持するため、大脳皮質神経細胞を78日目から112日目の間、トランスウェルフィルター上で培養した。(O) Hと同様にプロットを行った。***P < 0.001、事後多重比較検定とともに、Kruskal-Wallis検定。定量した神経細胞の数:Tbr1+ (n = 293)、Satb2+ (n = 177)、及びCaMKIIα+ (n = 132)。(P) Day 91及び112のヒトES細胞由来大脳皮質神経上皮における神経細胞分布の模式図。(スケールバー、A-C、E-G及びI-Kにおいて100 μm;Dにおいて50 μm;M及びNにおいて200 μm。)核対比染色(青)、DAPI。 oRG様神経幹/前駆の出現。(A-F) Day 70 (C)及び Day 91 (D-F)のヒトES細胞由来大脳皮質神経上皮における、垂直方向(60-90°の分割角度)及び非垂直方向(0-30°及び30-60°)の分割(A及びB)を有する頂端側神経幹/前駆細胞の百分率。p-Vimentin、M期マーカー。矢頭、ペリセントリン。解析された細胞:n = 42 (Day 70) 及びn = 33 (Day 91)。(G-I) Day 91培養のSVZにおける、基底側神経幹/前駆細胞(Pax6+, Sox2+)及びintermediate神経幹/前駆細胞(Tbr2+)。(H) 皮質板における全ての神経幹/前駆細胞(Sox2+及び/又は Tbr2+)中のSox2+/Tbr2-及びSox2-/Tbr2+神経幹/前駆細胞の百分率。Day 70からDay 91にかけて、Sox2+/Tbr2-神経幹/前駆細胞の百分率が増加したが、Sox2-/Tbr2+神経幹/前駆細胞は、それに比例して減少した。***P < 0.001、Day 70試料とDay 91試料との間のStudent t検定。各日における4つの大脳皮質神経上皮領域からの脳室帯外部の神経幹/前駆細胞を数えた。(I) Day 91において、Sox2+/Tbr2-神経幹/前駆細胞は、Sox2-/Tbr2+神経幹/前駆細胞(右)よりも、脳室表面からより遠くに局在する傾向を示した。***P < 0.001、Mann-Whitney検定。赤線、中央値。(J-M) Pax6+ p-Vimentin+神経幹/前駆細胞は、軟膜へと伸びる長い基底膜側の突起を有するが、頂端側の突起は有しておらず(J及びJ′)、これらの神経幹/前駆細胞はTbr2陰性であった(K 及びK′)。基底膜側の突起を有するこれらの神経幹/前駆細胞の大部分(>70%)は、水平方向の分割角度(60-90°; L及びM)を示した(n = 37)。(スケールバー、Dにおいては100 μm;Eにおいては25 μm;G, J, 及び Kにおいては50 μm;Lにおいては10 μm。)グラフ中のバー、SEM。核対比染色(青)、DAPI。 胎児大脳皮質神経上皮の発生。(A)発生中の胎児終脳の模式図。(B)ヒト妊娠第2期初期(約13胚週齢)の胎児大脳皮質神経上皮の多層化した構造の模式図。(C) 以前のヒトES細胞の自己組織化培養において誘導された層状大脳皮質神経上皮構造の模式図。その構造は、妊娠初期の間のヒト大脳皮質組織に似ている。 ヒトES細胞由来大脳皮質神経上皮における軸極性。(A)改良された培養方法の模式図。(A′) Day 7におけるヒトES細胞の凝集塊形成の比較。(上)本発明者らの以前の培養;(下)改良された培養、それは分散したヒトES細胞から、分割していない滑らかな凝集塊の形成を促進した。(B)foxg1::Venusシグナルを有する神経上皮を含むヒトES細胞凝集塊 (Day 26)の百分率。***P < 0.001、Student t検定。(C) foxg1::Venus+集団についての代表的なFACS解析。灰色、コントロール(培養1日目);赤、以前の条件下での培養34日目。(D) Day 42大脳皮質神経上皮の皮質板におけるTbr1の免疫染色シグナル。(E及びF) マウス胎児終脳(Foxg1+; E)における領域マーカーの局在。大脳皮質神経上皮におけるCoup-TF1発現は、後尾側領域において強いが、腹側領域において弱かった(F)。(G) CoupTF1とLhx2の二重免疫染色の結果、これらの発現パターンは同様の偏りがあることが示された。(H-J) E12.5のマウス終脳の傍矢状切片。Gsh2、LGE (外側基底核隆起)マーカー(H);Lmx1a、皮質ヘム及び脈絡膜マーカー (H);Otx2 及びZic1、皮質ヘムマーカー(I及びJ)。 (K) Coup-TF1とZic1の二重免疫染色の結果、皮質ヘムマーカーZic1は、大脳皮質神経上皮に隣接した組織のCoup-TF1発現が強い側において発現することが示された。 (L) Fgf8処理 (Days 24-42)のCoupTF1及びSp8発現への効果。大脳皮質神経上皮の横断面(最長軸部分のもの)において、分極化した発現(黒)、ブロードな発現(灰色)及び検出できないシグナル(白)の百分率をカウントした。このような方法でカウントを行ったため、分極化した発現パターンの百分率は、少し過小評価かもしれない。(スケールバー、A′ and Bにおいて1 mm);D, G, and I-Kにおいて200 μm;E, F, and Hにおいて500 μm)グラフ中のバー、SEM。 大脳皮質神経上皮における、湾曲形態形成及び頂端側分割。 (A) ヒトES細胞凝集塊における大脳皮質神経上皮領域の自発的な湾曲形態形成:(上)Day 24;(下)Day 27。aPKC、頂端側マーカー。(B) ヒトES細胞 に由来する、Foxg1+終脳神経上皮におけるPax6+(大脳皮質)及びGsh2+ (外側基底核原基)神経上皮の百分率。低濃度のSAG (30 nM; Days 15-21; 灰色カラム)は、Pax6+神経上皮の割合を部分的に抑制しGsh2+神経上皮の割合を上昇させた。この条件下、Pax6+ NE及びGsh2+ NEの比較的大きな領域はしばしば隣り合って見出された。500 nMでは、SAG処理は、効率的にPax6 及びGsh2の発現を抑制した。**P < 0.01 及び ***P < 0.001、Dunnettの検定。(C) 500 nM SAGで処理した神経上皮における内側基底核原基マーカーNkx2.1の発現。Nkx2.1+ 神経上皮は、Foxg1+終脳NEの40-50%を占めた。(D)胎児大脳皮質と比較した、ヒトES細胞培養における大脳皮質形態形成の模式図。 (E) Days 28-29における管腔側(頂端側)表面近くの頂端側前駆細胞の対称分裂、これらの細胞は、垂直的な分裂角度(定義のために図14を参照のこと)での細胞分裂の前に管腔側表面へと近づき、そして共に基底側へ移動した。pax6::venus ヒトES細胞により可視化(部分的に野生型ヒトES細胞と混合)。(スケールバー、A及びCにおいて200 μm。)グラフ中のバー:SEM。 ヒトES細胞由来大脳皮質神経上皮におけるサブプレート形成。(A-E) Day 70 ヒトES細胞由来大脳皮質神経上皮の免疫染色。(A及びB) アセチル化チューブリン(AcTubulin;安定化微小管)、DAPI(核染色)、及びネスチン(神経幹細胞の中間型フィラメント)による単純染色によっても、大脳皮質神経上皮において明確な形態学的な層の分離が観察された。(C-E)大脳皮質神経上皮の中間帯(E)におけるcalretinin+神経細胞(C)、MAP2+神経突起(D)、及びCSPG蓄積の、高拡大観察。(F) E14.5マウス胎児大脳皮質の層マーカーの免疫染色。 (G) Day 70 ヒトES細胞由来大脳皮質神経上皮の免疫染色。皮質板におけるGAD65+介在神経細胞の蓄積又はTAG1+大脳皮質下行性の軸索は、ほとんど観察されなかった。(H-J) Day 91 ヒトES細胞由来大脳皮質神経上皮の免疫染色。大脳皮質神経上皮はよく発達し、多層化した構造はより厚くなった(H 及びI)。皮質板には、いくらかの数のBrn2+表層性神経細胞が含まれていた (J)。(K) Day 112 ヒトES細胞由来大脳皮質神経上皮のTbr1の免疫染色シグナル。(L 及びM) Day 112 ヒトES細胞由来大脳皮質神経上皮の皮質板における成熟化した大脳皮質神経細胞マーカーCaMKIIαの発現。CaMKIIα陽性神経細胞の大部分がTbr1(L)を共発現したが、Satb2 (M)は共発現しなかった。(スケールバー、A, B, G, L, 及びMにおいて50 μm;C-Eにおいて20 μm;F and H-Jにおいて100 μm;Kにおいて200 μm。) oSVZにおけるoRG様神経幹/前駆細胞。(A-C) Day 91のヒトES細胞由来大脳皮質神経上皮中の頂端側及び基底側 (SVZ) 神経幹・前駆細胞におけるPax6及びSox2の免疫染色。Sox2陽性細胞の大部分はPax6を発現した(C)。(D-F) Notchシグナル阻害による、大脳皮質神経上皮における神経幹/前駆細胞及び神経細胞マーカーの発現に対する効果。Notch阻害剤処理(10 μM DAPT、Days 70-77)により、Sox2- Tbr2+ intermediate神経幹・前駆細胞が増加したが、Sox2+ Tbr2-細胞は処理後も稀なままだった(D and E)。Satb2+神経細胞も、DAPT処理により増加した(D and E)。処理後において、大脳皮質神経上皮の厚さの上昇も観察された (F)。***P < 0.001、DAPT処理(n = 6)とDAPT非処理(n = 5)との間のStudent t検定。(G)ヒト胎児oSVZにおけるoRG神経幹/前駆細胞の模式図。(H 及び H′) SVZにおけるリン酸化vimentin+神経幹/前駆細胞はSox2を発現した。(I) SVZにおける軟膜表面へ伸びる長い頂端側突起を有するリン酸化vimentin+神経幹/前駆細胞。(J)基底側への突起を有するリン酸化vimentin+神経幹/前駆細胞は、pericentrin+中心体を神経細胞体内に有していた。分裂の間、2つのpericentrin+中心体が、分裂細胞において見出された。(K-K″) oRG様神経幹/前駆細胞とは異なり、ヒトES細胞由来大脳皮質神経上皮中のTbr2+、リン酸化vimentin+神経幹/前駆細胞は、基底膜側に突起を有していなかった(頂端側の突起も同様)。(スケールバー、A-E において100 μm; H-K において25 μm。)
 本発明は、多能性幹細胞の凝集塊を、Wntシグナル阻害剤及びTGFβシグナル阻害剤の存在下で浮遊培養することにより、終脳マーカー陽性凝集塊を得ること、及び該終脳マーカー陽性凝集塊を、更に浮遊培養することを含む、終脳若しくはその部分組織、或いはその前駆組織を含む細胞凝集塊の製造方法を提供するものである。更なる浮遊培養は、好適には、高酸素分圧条件下で行われる。
 以下、本発明の詳細を説明する。
(1)多能性幹細胞
 「多能性幹細胞」とは、生体を構成するすべての細胞に分化しうる能力(分化多能性)と、細胞分裂を経て自己と同一の分化能を有する娘細胞を生み出す能力(自己複製能)とを併せ持つ細胞をいう。
 分化多能性は、評価対象の細胞を、ヌードマウスに移植し、三胚葉(外胚葉、中胚葉、内胚葉)のそれぞれの細胞を含むテラトーマ形成の有無を試験することにより、評価することができる。
 多能性幹細胞としては、胚性幹細胞(ES細胞)、胚性生殖細胞(EG細胞)、誘導多能性幹細胞(iPS細胞)等を挙げることができるが、分化多能性及び自己複製能を併せ持つ細胞である限り、これに限定されない。本発明においては、胚性幹細胞又は誘導多能性幹細胞が好適に用いられる。
 胚性幹細胞(ES細胞)は、例えば、着床以前の初期胚、当該初期胚を構成する内部細胞塊、単一割球等を培養することによって樹立することができる(Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994);Thomson, J. A. et al., Science, 282, 1145-1147 (1998))。初期胚として、体細胞の核を核移植することによって作製された初期胚を用いてもよい(Wilmut et al. (Nature, 385, 810 (1997))、Cibelli et al. (Science, 280, 1256 (1998))、入谷明ら(蛋白質核酸酵素, 44, 892 (1999))、Baguisi et al. (Nature Biotechnology, 17, 456 (1999))、Wakayama et al. (Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad. Sci. USA, 96, 14984 (1999))、Rideout III et al. (Nature Genetics, 24, 109 (2000) 、Tachibana et al. (Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer, Cell (2013) in press)。初期胚として、単為発生胚を用いてもよいKim et al. (Science, 315, 482-486 (2007))、Nakajima et al. (Stem Cells, 25, 983-985 (2007))、Kim et al. (Cell Stem Cell, 1, 346-352 (2007))、Revazova et al. (Cloning Stem Cells, 9, 432-449 (2007))、Revazova et al. (Cloning Stem Cells, 10, 11-24 (2008))。
 ES細胞と体細胞の細胞融合によって得られる融合ES細胞も、本発明の方法に用いられる胚性幹細胞に含まれる。
 胚性幹細胞は、所定の機関より入手でき、また、市販品を購入することもできる。例えば、ヒト胚性幹細胞であるKhES-1、KhES-2及びKhES-3は、京都大学再生医科学研究所より入手可能である。
 胚性生殖細胞(EG細胞)は、始原生殖細胞を、LIF, bFGF, SCFの存在下で培養すること等により樹立することができる(Matsui et al., Cell, 70, 841-847 (1992)、Shamblott et al., Proc. Natl. Acad. Sci. USA, 95(23), 13726-13731 (1998)、Turnpenny et al., Stem Cells, 21(5), 598-609, (2003))。
 誘導多能性幹細胞(iPS細胞)とは、体細胞(例えば線維芽細胞、皮膚細胞、リンパ球等)へ核初期化因子を接触させることにより、人為的に分化多能性及び自己複製能を獲得した細胞をいう。iPS細胞は、体細胞(例えば線維芽細胞、皮膚細胞等)にOct3/4、Sox2、Klf4およびc-Mycからなる核初期化因子を導入する方法で初めて見出された(Cell, 126: p. 663-676, 2006)。その後、多くの研究者により、リプログラム因子の組み合わせや因子の導入法について様々な改良が進められており、多様な誘導多能性幹細胞の製造法が報告されている。
 核初期化因子は、線維芽細胞等の体細胞から分化多能性および自己複製能を有する細胞を誘導することができる物質(群)であれば、タンパク性因子またはそれをコードする核酸(ベクターに組み込まれた形態を含む)、あるいは低分子化合物等のいかなる物質から構成されてもよい。核初期化因子がタンパク性因子またはそれをコードする核酸の場合、好ましくは以下の組み合わせが例示される(以下においては、タンパク性因子の名称のみを記載する)。
(1) Oct3/4, Klf4, Sox2, c-Myc(ここで、Sox2はSox1, Sox3, Sox15, Sox17またはSox18で置換可能である。また、Klf4はKlf1, Klf2またはKlf5で置換可能である。さらに、c-MycはT58A(活性型変異体), N-Myc, L-Mycで置換可能である。)
(2) Oct3/4, Klf4, Sox2
(3) Oct3/4, Klf4, c-Myc
(4) Oct3/4, Sox2, Nanog, Lin28
(5) Oct3/4, Klf4, c-Myc, Sox2, Nanog, Lin28
(6) Oct3/4, Klf4, Sox2, bFGF
(7) Oct3/4, Klf4, Sox2, SCF
(8) Oct3/4, Klf4, c-Myc, Sox2, bFGF
(9) Oct3/4, Klf4, c-Myc, Sox2, SCF
 これらの組み合わせの中で、得られるiPS細胞を治療用途に用いることを念頭においた場合、Oct3/4, Sox2及びKlf4の3因子の組み合わせが好ましい。一方、iPS細胞を治療用途に用いることを念頭に置かない場合(例えば、創薬スクリーニング等の研究ツールとして用いる場合など)は、Oct3/4, Klf4, Sox2及びc-Mycの4因子か、それにLin28またはNanogを加えた5因子が好ましい。
 自家移植用途にはiPS細胞が好適に用いられる。
 染色体上の遺伝子を公知の遺伝子工学の手法を用いて改変した多能性幹細胞も、本発明において使用できる。多能性幹細胞は、公知の方法を用いて、分化マーカーをコードする遺伝子に標識遺伝子(例えばGFP等の蛍光タンパク質)をインフレームにノックインすることにより、標識遺伝子の発現を指標として対応する分化段階に達したことを識別可能とした細胞であってもよい。
 多能性幹細胞としては、例えば温血動物、好ましくは哺乳動物の多能性幹細胞を使用できる。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の家畜、イヌ、ネコ等のペット、ヒト、サル、オランウータン、チンパンジー等の霊長類を挙げることができる。多能性幹細胞は、好ましくは、げっ歯類(マウス、ラット等)又は霊長類(ヒト等)の多能性幹細胞であり、最も好ましくはヒト多能性幹細胞である。
 多能性幹細胞は、自体公知の方法により維持培養できる。例えば、臨床応用の観点では、多能性幹細胞は、KnockoutTMSerum Replacement(KSR)などの血清代替物を用いた無血清培養や、無フィーダー細胞培養により維持することが好ましい。
 本発明において使用される多能性幹細胞は、好ましくは単離されている。「単離」とは、目的とする細胞や成分以外の因子を除去する操作がなされ、天然に存在する状態を脱していることを意味する。「単離されたヒト多能性幹細胞」の純度(総細胞数に占めるヒト多能性幹細胞数の百分率)は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは99%以上、最も好ましくは100%である。
(2)多能性幹細胞の凝集塊の形成
 多能性幹細胞の凝集塊は、分散させた多能性幹細胞を、培養器に対して、非接着性の条件下で培養し(即ち、浮遊培養し)、複数の多能性幹細胞を集合させて凝集塊を形成させることにより、得ることができる。
 この凝集塊形成に用いる培養器としては、特に限定されないが、例えば、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マイクロポア、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトルが挙げられる。非接着性の条件下での培養を可能とするため、培養器は、細胞非接着性であることが好ましい。細胞非接着性の培養器としては、培養器の表面が、細胞非接着性となるように人工的に処理されているものや、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリクス等によるコーティング処理)されていないもの等を使用することができる。
 凝集塊の形成時に用いられる培地は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、ハム培地、Ham’s F-12培地、RPMI 1640培地、Fischer’s培地、およびこれらの混合培地など、動物細胞の培養に用いることのできる培地であれば特に限定されない。
 多能性幹細胞から、終脳若しくはその部分組織、又はその前駆組織への分化誘導に、悪影響を与えない観点から、凝集塊の形成時に用いられる培地は、好ましくは、無血清培地である。無血清培地とは、無調整又は未精製の血清を含まない培地を意味する。精製された血液由来成分や動物組織由来成分(例えば、サイトカイン)を含有する培地は無血清培地に該当するものとする。
 凝集塊の形成時に用いられる培地は、血清代替物を含有していてもよい。血清代替物は、例えば、アルブミン、トランスフェリン、脂肪酸、コラーゲン前駆体、微量元素、2-メルカプトエタノール又は3’チオールグリセロール、あるいはこれらの均等物などを適宜含有するものであり得る。かかる血清代替物は、例えば、WO98/30679記載の方法により調製できる。また、本発明の方法をより簡便に実施するために、血清代替物は市販のものを利用できる。かかる市販の血清代替物としては、例えば、KSR(knockout serum replacement)(Invitrogen社製)、Chemically-defined Lipid concentrated(Gibco社製)、Glutamax(Gibco社製)が挙げられる。
 凝集塊の形成に用いられる培地は、多能性幹細胞から、終脳若しくはその部分組織、又はその前駆組織への分化誘導に、悪影響を与えない範囲で、他の添加物を含むことができる。添加物としては、例えば、インスリン、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等が挙げられるが、これらに限定されない。
 また、凝集塊の形成に用いられる培地は、後述する、多能性幹細胞から、終脳若しくはその部分組織、又はその前駆組織への分化誘導において用いられる培地であってもよい。
 多能性幹細胞の凝集塊の形成に際しては、まず、多能性幹細胞を継代培養から回収し、これを、単一細胞、又はこれに近い状態にまで分散する。多能性幹細胞の分散は、適切な細胞解離液を用いて行われる。細胞解離液としては、例えば、EDTA;トリプシン、コラゲナーゼIV、メタロプロテアーゼ等のタンパク分解酵素等を単独で又は適宜組み合わせて用いることができる。なかでも細胞障害性が少ないものが好ましく、このような細胞解離液として、例えば、ディスパーゼ(エーディア)、TrypLE (Invitrogen)又はアキュターゼ(MILLIPORE)等の市販品が入手可能である。分散された多能性幹細胞は上記培地中に懸濁される。
 分散により誘導される多能性幹細胞(特に、ヒト多能性幹細胞)の細胞死を抑制するために、Rho-associated coiled-coilキナーゼ(ROCK)の阻害剤を培養開始時から添加することが好ましい(特開2008-99662)。ROCK阻害剤を培養開始から例えば15日以内、好ましくは10日以内、より好ましくは6日以内添加する。ROCK阻害剤としては、Y-27632((+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride)等を挙げることができる。浮遊培養に用いられるROCK阻害剤の濃度は、分散により誘導される多能性幹細胞の細胞死を抑制し得る濃度である。例えば、Y-27632について、このような濃度は、通常約0.1~200μM、好ましくは約2~50μMである。ROCK阻害剤の濃度を添加する期間内で変動させてもよく、例えば期間の後半で濃度を半減させることができる。
 分散された多能性幹細胞の懸濁液を、上記培養器中に播き、分散させた多能性幹細胞を、培養器に対して、非接着性の条件下で培養することにより、複数の多能性幹細胞を集合させて凝集塊を形成する。この際、分散された多能性幹細胞を、10cmディッシュのような、比較的大きな培養器に播種することにより、1つの培養コンパートメント中に複数の多能性幹細胞の凝集塊を同時に形成させてもよいが、こうすると凝集塊ごとの大きさや、中に含まれる多能性幹細胞の数に大きなばらつきが生じ、このばらつきが原因で、多能性幹細胞から、終脳若しくはその部分組織、又はその前駆組織への分化の程度に、凝集塊間で差が生じ、結果として分化誘導の効率が低下してしまう。そこで、分散した多能性幹細胞を迅速に凝集させて、1つの培養コンパートメント中に1つの凝集塊を形成することが好ましい。このような分散した多能性幹細胞を迅速に凝集させる方法としては、例えば、以下の方法を挙げることができる:
(1)比較的小さな体積(例えば、1ml以下、500μl以下、200μl以下、100μl以下)の培養コンパートメント中に、分散した多能性幹細胞を閉じ込め、該コンパートメント中に1個の凝集塊を形成する方法。好ましくは分散した多能性幹細胞を閉じ込めた後、培養コンパートメントを静置する。培養コンパートメントとしては、マルチウェルプレート(384ウェル、192ウェル、96ウェル、48ウェル、24ウェル等)、マイクロポア、チャンバースライド等におけるウェルや、チューブ、ハンギングドロップ法における培地の液滴等を挙げることができるが、これらに限定されない。該コンパートメントに閉じ込められた分散した多能性幹細胞が、重力にうながされて1箇所に沈殿し、或いは細胞同士が接着することにより、1つの培養コンパートメントにつき、1つの凝集塊が形成される。マルチウェルプレート、マイクロポア、チャンバースライド、チューブ等の底の形状は、分散した多能性幹細胞が1箇所へ沈殿するのが容易となるように、U底又はV底とすることが好ましい。
(2)遠心チューブに分散した多能性幹細胞を入れ、これを遠心し、1箇所に多能性幹細胞を沈殿させることにより、該チューブ中に1個の凝集塊を形成する方法。
 1つの培養コンパートメント中に播く多能性幹細胞の数は、1つの培養コンパートメントにつき1つの凝集塊が形成され、且つ本発明の方法によって、該凝集塊において、多能性幹細胞から、終脳若しくはその部分組織、又はその前駆組織への分化誘導が可能であれば、特に限定されないが、1つの培養コンパートメントにつき、通常約1×10~約5×10個、好ましくは約1×10~約2×10個、より好ましくは約2×10~約1.2×10個の多能性幹細胞を播く。そして、多能性幹細胞を迅速に凝集させることにより、1つの培養コンパートメントにつき、通常約1×10~約5×10個、好ましくは約1×10~約2×10個、より好ましくは約2×10~約1.2×10個の多能性幹細胞からなる細胞凝集塊が1個形成される。
 凝集塊形成までの時間は、1つのコンパートメントにつき1つの凝集塊が形成され、且つ本発明の方法によって、該凝集塊において、多能性幹細胞から、大脳皮質又はその前駆組織への分化誘導が可能な範囲で適宜決定可能であるが、この時間を短くすることにより、目的とする大脳皮質組織又はその前駆組織への効率よい分化誘導が期待できるため、この時間は短いほうが好ましい。好ましくは、24時間以内、より好ましくは12時間以内、さらに好ましくは6時間以内、最も好ましくは、2~3時間で、多能性幹細胞の凝集塊を形成する。この凝集塊形成までの時間は、細胞を凝集させる用具や、遠心条件などを調整することで当業者であれば適宜調節することが可能である。
 また凝集塊形成時の培養温度、CO濃度等の他の培養条件は適宜設定できる。培養温度は、特に限定されるものではないが、例えば約30~40℃、好ましくは約37℃である。また、CO濃度は、例えば約1~10%、好ましくは約5%である。
 更に、同一培養条件の培養コンパートメントを複数用意し、各培養コンパートメントにおいて、1個の多能性幹細胞の凝集塊を形成させることにより、質的に均一な、多能性幹細胞の凝集塊の集団を得ることができる。多能性幹細胞の凝集塊が質的に均一であることは、凝集塊のサイズおよび細胞数、巨視的形態、組織染色解析による微視的形態およびその均一性、分化および未分化マーカーの発現およびその均一性、分化マーカーの発現制御およびその同期性、分化効率の凝集塊間の再現性などに基づき、評価することが可能である。一態様において、本発明の方法に用いる、多能性幹細胞の凝集塊の集団は、凝集塊中に含まれる多能性幹細胞の数が均一である。特定のパラメーターについて、多能性幹細胞の凝集塊の集団が「均一」とは、凝集塊の集団全体のうちの90%以上の凝集塊が、当該凝集塊の集団における当該パラメーターの平均値±10%の範囲内、好ましくは、平均値±5%の範囲内であることを意味する。
(3)終脳若しくはその部分組織、又はその前駆組織の誘導
 本発明の製造方法は、多能性幹細胞の凝集塊を、Wntシグナル阻害剤及びTGFβシグナル阻害剤の存在下で浮遊培養することにより、終脳マーカー陽性凝集塊を得ること(第1の培養工程)、及び該終脳マーカー陽性凝集塊を、更に浮遊培養すること(第2の培養工程)を含む。第2の培養工程における浮遊培養は、好適には、高酸素分圧条件下で行われる。第1の培養工程により、多能性幹細胞から、終脳領域への分化方向をコミットすることにより、終脳マーカー遺伝子の発現が誘導され、得られた終脳マーカー陽性凝集塊を第2の培養工程に付すことにより、終脳若しくはその部分組織、又はその前駆組織への更なる分化が誘導される。
 終脳マーカーとしては、Foxg1(Bf1とも呼ばれる)、Six3等を挙げることができるが、これらに限定されない。終脳マーカー陽性凝集塊は、少なくとも1つの終脳マーカーを発現する細胞を含有する。好ましい態様において、終脳マーカー陽性凝集塊は、Foxg1陽性凝集塊である。終脳マーカー陽性凝集塊においては、例えば、該凝集塊に含まれる細胞の30%以上、好ましくは50%以上、より好ましくは70%以上が、終脳マーカー陽性である。
 終脳の部分組織としては、大脳皮質、大脳基底核、海馬、脈絡膜等を挙げることができる。
 本発明によれば、終脳若しくはその部分組織、又はその前駆組織が、多能性幹細胞の凝集塊内に自己組織化される。本発明の一態様によれば、多能性幹細胞の凝集塊を、Wntシグナル阻害剤及びTGFβシグナル阻害剤の存在下で浮遊培養することにより、終脳マーカー陽性凝集塊(例、Foxg1陽性凝集塊)を得て、該終脳マーカー陽性凝集塊(例、Foxg1陽性凝集塊)を、(好適には、高酸素分圧条件下で)更に浮遊培養することにより、該凝集塊中に、終脳マーカー陽性の神経上皮様構造が形成される。一態様において、神経上皮様構造を含む凝集塊に含まれる細胞の70%以上が終脳マーカー陽性(例、Foxg1陽性)である。一態様において、凝集塊中に形成された、神経上皮様構造は、内部に脳室様の空洞を有した多列円柱上皮構造を呈する。一態様において、該神経上皮構造は、内腔側にPax6陽性およびSox2陽性の細胞層を有し、最も内腔の部分にリン酸化Histone H3陽性の有糸分裂細胞を含む。これらの構造は、ヒト妊娠初期の大脳皮質の脳室帯に類似する。一態様において、脳室帯に類似した神経上皮様の細胞層の外側には、有糸分裂後の神経細胞のマーカーであるTuj1を発現し、大脳皮質の初期皮質板マーカーであるCtip2とTbr1を発現する細胞が含まれる。これらは、大脳皮質の第1層の神経細胞であるReelin陽性カハールレチウス細胞を含み、表層近くにはLamininを多く含んだ層を有し得る。つまり、好ましい態様において、本発明の製造方法により得られる凝集塊には、大脳皮質前駆組織が含まれる。
 多能性幹細胞の凝集塊を「浮遊培養する」とは、多能性幹細胞の凝集塊を、培地中において、培養器に対して非接着性の条件下で培養することをいう。これにより、従来の接着培養では困難であった立体形成が可能になる。
 浮遊培養に用いられる培地は、Wntシグナル阻害剤及びTGFβシグナル阻害剤を含む。Wntシグナル阻害剤及びTGFβシグナル阻害剤の作用により、多能性幹細胞から終脳領域への分化誘導を効率的に行うことが出来る。
 Wntシグナル阻害剤は、Wntにより媒介されるシグナル伝達を抑制し得るものである限り特に限定されない。Wntシグナル阻害剤としては、例えば、IWR-1-endo(4-[(3aR,4S,7R,7aS)-1,3,3a,4,7,7a-hexahydro-1,3-dioxo-4,7-methano-2H-isoindol-2-yl]-N-8-quinolinyl-benzamide)、IWP-2、XAV939、Dkk1、Cerberus蛋白、Wnt受容体阻害剤、可溶型Wnt受容体、Wnt抗体、カゼインキナーゼ阻害剤、ドミナントネガティブWnt蛋白が挙げられるがこれらに限定されない。なかでも、IWR-1-endoが好ましい。
 TGFβシグナル阻害剤は、TGFβにより媒介されるシグナル伝達を抑制し得るものである限り特に限定されない。TGFβシグナル阻害剤としては、SB431542(4-(5-ベンゾール[1,3]ジオキソール-5-イル-4-ピリジン-2-イル-1H-イミダゾール-2-イル)-ベンズアミド)、LY-364947、SB-505、A-83-01等が挙げられるが、これらに限定されない。なかでも、SB431542が好ましい。
 好ましいWntシグナル阻害剤とTGFβシグナル阻害剤の組み合わせは、IWR-1-endo及びSB431542である。
 培地中のWntシグナル阻害剤及びTGFβシグナル阻害剤の濃度は、凝集塊において、多能性幹細胞から終脳領域への分化誘導を可能な範囲で、適宜設定することができるが、Wntシグナル阻害剤としてIWR-1-endoを用いる場合、その濃度は、通常、0.1~50 μM、好ましくは0.3~5 μMである。TGFβシグナル阻害剤としてSB431542を用いる場合、その濃度は、通常、0.1~100 μM、好ましくは1~10 μMである。
 凝集塊の浮遊培養に用いられる培地は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、ハム培地、Ham’s F-12培地、RPMI 1640培地、Fischer’s培地、Neurobasal培地、およびこれらの混合培地など、動物細胞の培養に用いることのできる培地であれば特に限定されない。好ましくは、Glasgow MEM培地が用いられる。
 多能性幹細胞から、終脳若しくはその部分組織、又はその前駆組織への分化誘導に、悪影響を与えない観点から、凝集塊の浮遊培養に用いられる培地は、好ましくは、無血清培地である。
 凝集塊の浮遊培養に用いられる培地は、血清代替物を含有していてもよい。血清代替物は、例えば、アルブミン、トランスフェリン、脂肪酸、コラーゲン前駆体、微量元素、2-メルカプトエタノール又は3’チオールグリセロール、あるいはこれらの均等物などを適宜含有するものであり得る。かかる血清代替物は、例えば、WO98/30679記載の方法により調製できる。また、本発明の方法をより簡便に実施するために、血清代替物は市販のものを利用できる。かかる市販の血清代替物としては、例えば、KSR(knockout serum replacement)(Invitrogen社製)、Chemically-defined Lipid concentrated(Gibco社製)、Glutamax(Gibco社製)が挙げられる。
 凝集塊の浮遊培養に用いられる培地は、多能性幹細胞から、終脳若しくはその部分組織、又はその前駆組織への分化誘導に、悪影響を与えない範囲で、他の添加物を含むことができる。添加物としては、例えば、インスリン、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等が挙げられるが、これらに限定されない。
 一態様において、凝集塊の浮遊培養に用いられる培地は、終脳若しくはその部分組織、又はその前駆組織への分化誘導に悪影響を与えない観点から、成長因子を含まない化学合成培地(growth-factor-free Chemically Defined Medium; gfCDM)に、血清代替物(KSR等)を添加したものである。ここにいう「成長因子」には、Fgf、Wnt、Nodal、Notch、Shh等のパターン形成因子;インスリン及びLipid-rich albuminが包含される。
 凝集塊の浮遊培養における培養温度、CO濃度、O濃度等の他の培養条件は適宜設定できる。培養温度は、例えば約30~40℃、好ましくは約37℃である。CO濃度は、例えば約1~10%、好ましくは約5%である。O濃度は、例えば約20%である。
 第一の培養工程は、終脳領域への分化方向がコミットされて、終脳マーカー陽性凝集塊(例、Foxg1陽性凝集塊)が誘導されるのに十分な期間実施される。終脳マーカー陽性凝集塊は、例えば、RT-PCRや、終脳マーカー特異的抗体を用いた免疫組織化学により検出することができる。例えば、培養中の細胞凝集塊のうち50%以上、好ましくは70%以上の細胞凝集塊が終脳マーカー陽性となるまで実施される。培養期間は、多能性幹細胞の動物種や、Wntシグナル阻害剤及びTGFβシグナル阻害剤の種類に応じて変動し得るので、一概に特定することは出来ないが、例えば、ヒト多能性幹細胞を用いた場合、第一の培養工程は、15~20日(例、18日)である。
 第二の培養工程においては、第一の培養工程で得られた終脳マーカー陽性凝集塊を、更に浮遊培養することにより、終脳若しくはその部分組織、或いはその前駆組織を含む細胞凝集塊を得る。第二の培養工程における浮遊培養は、好適には高酸素分圧条件下で行われる。高酸素分圧条件下で終脳マーカー陽性凝集塊を更に浮遊培養することにより、凝集塊に含まれる脳室帯の長期間の維持培養が達成され、終脳若しくはその部分組織、或いはその前駆組織への効率的な分化誘導が可能となる。
 高酸素分圧条件とは、空気中の酸素分圧(20%)を上回る酸素分圧条件を意味する。第二の培養工程における酸素分圧は、例えば、30~60%、好ましくは35~60%、より好ましくは38~60%である。
 第二の培養工程に用いられる培地は、第一の培養工程に用いられる培地と同様に、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、ハム培地、Ham’s F-12培地、RPMI 1640培地、Fischer’s培地、およびこれらの混合培地など、動物細胞の培養に用いることのできる培地であれば特に限定されない。好ましくは、DMEM培地が用いられる。
 第二の培養工程においては、第一の培養工程に用いられた、Wntシグナル阻害剤及びTGFβシグナル阻害剤は不要である。一態様において、第二の培養工程に用いられる培地には、Wntシグナル阻害剤及びTGFβシグナル阻害剤が含まれない。
 第二の培養工程に用いられる培地は、終脳若しくはその部分組織、又はその前駆組織への分化誘導を促進するため、血清代替物としてN2サプリメントを含有することが好ましい。N2サプリメントは、インスリン、トランスフェリン、プロゲステロン、プトレスシン及び亜セレン酸ナトリウムを含む、公知の血清代替用組成物であり、Gibco/Invitrogen社等から購入可能である。N2サプリメントの添加量は、終脳若しくはその部分組織、又はその前駆組織への分化誘導が促進されるように、適宜設定することができる。
 また、第二の培養工程に用いられる培地は、脳室帯の長期間の維持培養のため、化学的に決定された脂質濃縮物(Chemically Defined Lipid Concentrate)を含有することが好ましい。Chemically Defined Lipid Concentrateは、それぞれ精製された、コレステロール、DL-α-トコフェロール、アラキドン酸、リノレン酸、リノール酸、ミリスチン酸、オレイン酸、パルミチン酸、パルミトレイン酸、及びステアリン酸を含む脂質混合物である。 Chemically Defined Lipid Concentrateは市販のものを使用することができ、例えば、Gibco/Invitrogen社等から購入可能である。
 凝集塊の浮遊培養に用いられる培地は、多能性幹細胞から、終脳若しくはその部分組織、又はその前駆組織への分化誘導に、悪影響を与えない範囲で、他の添加物を含むことができる。添加物としては、例えば、インスリン、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等が挙げられるが、これらに限定されない。
 一態様において、第二の培養工程において用いられる培地は、終脳若しくはその部分組織、又はその前駆組織への分化誘導に、悪影響を与えない観点から、成長因子を含まない化学合成培地(growth-factor-free Chemically Defined Medium; gfCDM)に、血清代替物(KSR等)を添加したものである。ここにいう「成長因子」には、Fgf、Wnt、Nodal、Notch、Shh等のパターン形成因子;インスリン及びLipid-rich albuminが包含される。
 好ましい態様において、第二の培養工程における培地は、N2サプリメント及びChemically Defined Lipid Concentrateを含有する。
 一態様において、第二の培養工程における培地は、無血清培地である。
 一態様において、第二の培養工程における培地は、血清を含んでいてもよい。血清は、脳室帯の長期間の維持培養に寄与し得る。血清としては、FBS等が挙げられるが、これに限定されない。血清は非動化されていることが好ましい。培地中の血清濃度は、脳室帯の長期間の維持培養に寄与しうる範囲で適宜調整することができるが、通常1~20%(v/v)である。
 一態様において、第二の培養工程における培地は、ヘパリンを含んでいてもよい。ヘパリンは、脳室帯の長期間の維持培養に寄与し得る。培地中のヘパリン濃度は、脳室帯の長期間の維持培養に寄与しうる範囲で適宜調整することができるが、通常0.5~50μg/ml、好ましくは1~10μg/ml(例、5μg/ml)である。
 一態様において、第二の培養工程における培地は、細胞外マトリクス成分を含んでいてもよい。細胞外マトリクスは、脳室帯の長期間の維持培養に寄与し得る。「細胞外マトリクス成分」とは、細胞外マトリクス中に通常見出される各種成分をいう。本発明の方法では、基底膜成分を用いることが好ましい。基底膜の主成分としては、例えばIV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカン、エンタクチンが挙げられる。培地に添加する細胞外マトリクス成分としては市販のものが利用でき、例えば、Matrigel(BD Bioscience)、ヒト型ラミニン(シグマ)などが挙げられる。Matrigelは、Engelbreth Holm Swarn(EHS)マウス肉腫由来の基底膜調製物である。Matrigelの主成分はIV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカン、エンタクチンであるが、これらに加えてTGF-β、線維芽細胞増殖因子(FGF)、組織プラスミノゲン活性化因子、EHS腫瘍が天然に産生する増殖因子が含まれる。Matrigelのgrowth factor reduced製品は、通常のMatrigelよりも増殖因子の濃度が低く、その標準的な濃度はEGFが<0.5ng/ml、NGFが<0.2ng/ml、PDGFが<5pg/ml、IGF-1が5ng/ml、TGF-βが1.7ng/mlである。本発明の方法では、growth factor reduced製品の使用が好ましい。
 培地中の細胞外マトリクス成分の濃度は、脳室帯の長期間の維持培養に寄与しうる範囲で適宜調整することができるが、Martigelを用いる場合には培養液の1/500-1/20の容量、さらに好ましくは1/100の容積で添加することが好ましい。
 一態様において、第二の培養工程における培地は、N2サプリメント及びChemically Defined Lipid Concentrateに加えて、血清及びヘパリンを含有する。該態様においては、該培地に細胞外マトリクスを更に含んでいてもよい。本態様の培地は、長期間にわたる終脳若しくはその部分組織、又はその前駆組織の分化誘導を観察するのに適している。この場合、第二の培養工程の全範囲にわたり、N2サプリメント、Chemically Defined Lipid Concentrate、血清及びヘパリン(任意で更に細胞外マトリクス)を含有する培地を用いてもよいが、一部の期間のみ、当該態様の培地を用いてもよい。一態様において、第二の培養工程において、まず、N2サプリメント及びChemically Defined Lipid Concentrateを含み、血清、ヘパリン及び細胞外マトリクスを含有しない培地を用い、途中から(例えば、Foxg1陽性凝集塊中に、脳室様の空洞を有した半球上の神経上皮様構造(多列円柱上皮)が形成された段階以降において)、N2サプリメント、Chemically Defined Lipid Concentrate、血清、ヘパリン、(任意で、細胞外マトリクス)を含有する培地へ切り替えてもよい。
 第2の培養工程における培養温度、CO濃度等の他の培養条件は適宜設定できる。培養温度は、例えば約30~40℃、好ましくは約37℃である。CO濃度は、例えば約1~10%、好ましくは約5%である。
 第2の培養工程は、少なくとも、Foxg1陽性凝集塊中に、脳室様の空洞を有した半球上の神経上皮様構造(多列円柱上皮)が形成されるのに十分な期間実施される。当該神経上皮様構造は、顕微鏡観察により確認することが可能である。培養期間は、多能性幹細胞の動物種や、Wntシグナル阻害剤及びTGFβシグナル阻害剤の種類等に応じて変動し得るので、一概に特定することは出来ないが、例えば、ヒト多能性幹細胞を用いた場合、第2の培養工程は、少なくとも15~20日(例、17日)である。
 本発明の方法においては、第2の培養工程を長期間(例、20日以上、好ましくは50日以上、より好ましくは70日以上)に亘り実施することにより、細胞凝集塊内において、安定的な終脳の自己組織化を誘発することが可能であり、第2の培養工程を継続して実施すると、時間の経過とともに、細胞凝集塊内に含まれる終脳若しくはその部分組織、又はその前駆組織の分化段階が進んでいく。そのため、所望の分化段階に到達するまで、第2の培養工程を継続して実施するのが好ましい。
 一態様において、第2の培養工程を、細胞凝集塊中に、大脳皮質組織又はその前駆組織が、表層から深部に向かって、辺縁帯、皮質板、サブプレート、中間帯、脳室下帯及び脳室帯を含む多層構造を呈するまで実施する。重要なことに、本発明の方法においては、該多層構造を呈する大脳皮質又はその前駆組織が自己組織化される。該多層構造を呈するまでに要する培養期間は、多能性幹細胞の動物種や、Wntシグナル阻害剤及びTGFβシグナル阻害剤の種類等に応じて変動し得るので、一概に特定することは出来ないが、ヒト多能性幹細胞を用いた場合、第2の培養工程を、例えば、52日以上実施する。辺縁帯には、一般的に、Reelin陽性のカハールレチウス細胞及びラミニンが含まれる。皮質板には、Tbr1陽性、Ctip2陽性の深部皮質板、及びSatb2を発現した神経細胞を含む浅部皮質板が包含され、浅部皮質板が辺縁帯と接する。大脳皮質前駆組織の分化が十分に進んでいない場合には、浅部皮質板が明確に形成されていない場合もあるが、分化が十分に進むと(例えば、第2の培養工程を73日以上実施すると)、深部皮質板及び浅部皮質板の双方が明確に形成される。サブプレートは、皮質板の直下に形成され、Calretinin陽性かつMAP2陽性の多くの神経突起を含んだ細胞を含む。中間帯は、脳室下帯と皮質板との間の、細胞がまばらな層である。脳室下帯はTbr2陽性で特徴付けられる。脳室帯は、Sox2陽性かつPax6陽性で特徴付けられる。一態様において、第2の培養工程は、細胞凝集塊中に、大脳皮質組織又はその前駆組織が、表層から深部に向かって、辺縁帯、浅部皮質板、深部皮質板、サブプレート、中間帯、外側脳室下帯、脳室下帯及び脳室帯を含む多層構造を呈するまで(例、73日以上)実施する。このような多層構造は、インビボにおいては、ヒト妊娠中期の大脳皮質に見られるものである。
 興味深いことに、本発明の方法において、ヒト多能性幹細胞を用いた場合、外側脳室下帯(oSVZ)に、リン酸化Vimentin陽性、Tbr2陰性、Sox2陽性、Pax6陽性の神経幹・前駆細胞が含まれる。該神経幹・前駆細胞は、ヒト胎児の大脳皮質に豊富に存在し、マウス大脳皮質ではほとんど存在しない外側放射状グリア細胞(oRG)と同じ特徴を有する。即ち、本発明によれば、oRG様細胞の外側脳室下帯における出現という、ヒトに特異的な現象をインビトロにおいて再現することができる。
 重要なことに、本発明の方法においては、大脳皮質の背腹軸及び前後軸が自発的に形成される。例えば、一態様において、第2の培養工程において得られる、細胞凝集塊に含まれる、大脳皮質脳室帯において、背尾側マーカー(CoupTF1、Lhx2等)の発現が、片側ではより強く、反対側では弱いという勾配を示し、吻腹側マーカー(例、Sp8)の発現が、背尾側マーカーと逆の勾配を示す。或いは、一態様において、大脳皮質脳室帯における背尾側マーカー(例、CoupTF1、Lhx2)が強く発現する領域が皮質ヘムマーカー(例、Zic1、Otx2)を発現する領域と隣接して形成される。
 本発明の方法を通じ、多能性幹細胞から終脳若しくはその部分組織、又はその前駆組織への分化誘導が可能な限り、フィーダー細胞の存在下/非存在下いずれの条件で凝集塊の浮遊培養を行ってもよいが、未決定因子の混入を回避する観点から、フィーダー細胞の非存在下で凝集塊の浮遊培養を行うのが好ましい。
 本発明の方法において、凝集塊の浮遊培養に用いる培養器としては、特に限定されないが、例えば、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マイクロポア、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトルが挙げられる。非接着性の条件下での培養を可能とするため、培養器は、細胞非接着性であることが好ましい。細胞非接着性の培養器としては、培養器の表面が、細胞非接着性となるように人工的に処理されているものや、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリクス等によるコーティング処理)されていないもの等を使用することができる。
 凝集塊の浮遊培養に用いる培養器として、酸素透過性のものを用いても良い。酸素透過性の培養器を用いることにより、凝集塊への酸素の供給が向上し、脳室帯の長期間の維持培養に寄与しうる。特に、第2の培養工程においては、細胞凝集塊が大きく成長し、凝集塊の中の細胞(例えば脳室帯の細胞)にまで、十分な酸素が供給されなくなるリスクがあるため、酸素透過性の培養器の使用が好ましい。
 凝集塊の浮遊培養に際しては、凝集塊の培養器に対する非接着状態を維持できる限り、凝集塊を静置培養してもよいし、旋回培養や振とう培養により凝集塊を意識的に動かしてもよいが、本発明においては、旋回培養や振とう培養により凝集塊を意識的に動かす必要はない。即ち、一態様において、本発明の製造方法における浮遊培養は、静置培養により行われる。静置培養とは、凝集塊を意識的に移動させない状態で培養する培養法のことをいう。すなわち、例えば、局所的な培地温度の変化に伴って、培地が対流し、その流れによって、凝集塊が移動することがあるが、意識的に凝集塊を移動させていないことから、この様な場合も含めて、本発明では静置培養というものとする。浮遊培養の全期間を通じて静置培養を実施してもよいし、一部の期間のみ静置培養を実施してもよい。例えば、上記の第1の培養工程及び第2の培養工程のいずれか一方のみを静置培養とすることができる。好ましい態様において、浮遊培養の全期間を通じて、静置培養を行う。静置培養は装置が不要であり、細胞塊のダメージも少ないことが期待され、培養液の量も少なくできる点で有利である。
 好ましい態様において、質的に均一な、多能性幹細胞の凝集塊の集団を、Wntシグナル阻害剤及びTGFβシグナル阻害剤を含む培地中で浮遊培養する。質的に均一な、多能性幹細胞の凝集塊の集団を用いることにより、終脳若しくはその部分組織、又はその前駆組織への分化の程度についての凝集塊間での差を最小限に抑制し、目的とする分化誘導の効率を向上することができる。質的に均一な、多能性幹細胞の凝集塊の集団の浮遊培養には、以下の態様が包含される。
(1)複数の培養コンパートメントを用意し、1つの培養コンパートメントに1つの多能性幹細胞の凝集塊が含まれるように、質的に均一な、多能性幹細胞の凝集塊の集団を播く。(例えば、96ウェルプレートの各ウェルに1つずつ、多能性幹細胞の凝集塊を入れる。)そして、各培養コンパートメントにおいて、1つの多能性幹細胞の凝集塊をWntシグナル阻害剤及びTGFβシグナル阻害剤を含む培地中で浮遊培養する。
(2)1つの培養コンパートメントに複数の多能性幹細胞の凝集塊が含まれるように、質的に均一な、多能性幹細胞の凝集塊の集団を1つの培養コンパートメントに播く。(例えば、10cmディッシュに、複数の多能性幹細胞の凝集塊を入れる。)そして、該コンパートメントにおいて、複数の多能性幹細胞の凝集塊をWntシグナル阻害剤及びTGFβシグナル阻害剤を含む培地中で浮遊培養する。
 本発明の方法を通じて、(1)及び(2)のいずれの態様を採用してもよく、また、培養の途中で態様を変更してもよい((1)の態様から(2)の態様へ、或いは(2)の態様から(1)の態様へ)。一態様において、第一の培養工程においては(1)の態様を採用し、第二の培養工程において(2)の態様を採用する。
 上述の通り、本発明の方法においては、細胞凝集塊内において、終脳の自己組織化が誘発されるので、時間の経過とともに、細胞凝集塊内に含まれる終脳若しくはその部分組織、又はその前駆組織の分化段階が進んでいく。従って、目的とする終脳若しくはその部分組織、又はその前駆組織に応じて、培養期間や培養条件を適宜調節することが好ましい。以下(4)~(11)において、本発明の一態様を説明するが、これらは本発明の例示であって、本発明を限定するものではない。
(4)脈絡膜の誘導
 本発明の方法の第2の培養工程において、浮遊培養を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で行うことにより、細胞凝集塊中に脈絡膜又はその前駆組織を誘導することができる。
 Wntシグナル増強剤としては、上記方法において用いた場合、脈絡膜又はその前駆組織を誘導することが可能である限り、特に限定されず、例えば、GSK-3β阻害剤、組み換え型Wnt3a、Wnt agonist (化合物)、Dkk (Wnt阻害タンパク質の阻害剤)、R-Spondin等が挙げられる。GSK-3β阻害剤としては、例えば、CHIR99021(6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile)、Kenpaullone、6-Bromoindirubin-3'-oxime(BIO)等を挙げることができる。Wntシグナル増強剤は、好ましくはGSK-3β阻害剤であり、より好ましくはCHIR99021である。
 Wntシグナル増強剤の濃度は、上記方法において用いた場合、脈絡膜又はその前駆組織を誘導することが可能である限り、特に限定されない。CHIR99021を用いる場合、通常、約0.1μM ~30μM、好ましくは約1μM~10μM(例、3μM)である。
 本明細書において、骨形成因子シグナル伝達経路活性化物質は、骨形成因子と受容体との結合によってシグナルが伝達される経路を活性化する任意の物質を意味する。骨形成因子シグナル伝達経路活性化物質の例としてはBMP2、BMP4、BMP7、GDF5などが挙げられる。好ましくは、骨形成因子シグナル伝達経路活性化物質はBMP4である。以下、主にBMP4について記載するが、本発明において使用される骨形成因子シグナル伝達経路活性化物質はBMP4に限定されない。BMP4は、公知のサイトカインであり、そのアミノ酸配列も公知である。本発明に用いるBMP4は、哺乳動物のBMP4である。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の家畜、イヌ、ネコ等のペット、ヒト、サル、オランウータン、チンパンジー等の霊長類を挙げることができる。BMP4は、好ましくは、げっ歯類(マウス、ラット等)又は霊長類(ヒト等)のBMP4であり、最も好ましくはヒトBMP4である。ヒトBMP4とは、BMP4が、ヒトが生体内で天然に発現するBMP4のアミノ酸配列を有することを意味する。ヒトBMP4の代表的なアミノ酸配列としては、NCBIのアクセッション番号で、NP_001193.2(2013年6月15日更新)、NP_570911.2(2013年6月15日更新)、NP_570912.2(2013年6月15日更新)、これらのアミノ酸配列のそれぞれからN末端シグナル配列(1-24)を除いたアミノ酸配列(成熟型ヒトBMP4アミノ酸配列)等を例示することができる。
 培地中の骨形成因子シグナル伝達経路活性化物質の濃度は、凝集塊において、多能性幹細胞から脈絡膜又はその前駆組織への分化を誘導可能な範囲で、適宜設定することができるが、骨形成因子シグナル伝達経路活性化物質としてBMP4を用いる場合、その濃度は、通常、0.05~10 nM、好ましくは0.1~2.5 nM(例、0.5 nM)である。
 好ましい態様において、脈絡膜又はその前駆組織の誘導に用いる培地には、N2サプリメント、Chemically Defined Lipid Concentrate、血清及びヘパリンが含まれ得る。
 Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を含む培地中での培養は、必ずしも第2の培養工程において、脈絡膜又はその前駆組織が誘導されるまでの全ての期間に亘って行う必要はなく、その一部の期間において行えばよい。例えば、第2の培養工程の開始から、3日間以上、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を含む培地中で浮遊培養を行えば、脈絡膜又はその前駆組織を誘導するに十分であり、その後、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を含まない培地に切り替えた上で、浮遊培養を継続してもよい。
 ここで、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を含む培地中での培養期間が長いほど、脈絡膜選択的な分化を誘導することができる(即ち、同一細胞凝集塊内に、脈絡膜以外の終脳組織(例、大脳皮質、海馬)への分化が生じにくい)。一態様において、細胞凝集塊の集団の8割以上において、脈絡膜又はその前駆組織を誘導することができる。一方、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を含む培地中での培養期間が短い場合、同一細胞凝集塊内に、脈絡膜以外の終脳組織(例、大脳皮質、海馬)への分化が生じやすくなり、脈絡膜又はその前駆組織に加え、大脳皮質又はその前駆組織及び/又は海馬又はその前駆組織を同一細胞凝集塊内に含む、細胞凝集塊を得ることができる(後述)。
 脈絡膜組織が誘導されたことは、脈絡膜マーカー(TTR、Lmx1a、Otx2等)の発現や、終脳マーカー(Foxg1等)の非発現、ひだ状の単層上皮の形態を指標に確認することができる。脈絡膜組織の誘導に要する時間は、培養条件や、多能性幹細胞の由来する哺乳動物の種類によって変動するので、一概に特定することは出来ないが、ヒト多能性幹細胞を用いた場合、第2の培養工程の開始から、例えば24日後までには、凝集塊の内部に、脈絡膜組織が誘導される。得られた細胞凝集塊の集団の中から、脈絡膜又はその前駆組織が誘導された細胞凝集塊を選択することにより、脈絡膜又はその前駆組織を含む細胞凝集塊を得ることができる。
(5)海馬の誘導
 本発明の方法の第2の培養工程において、浮遊培養を、Wntシグナル増強剤の存在下で行うことにより、細胞凝集塊中に海馬又はその前駆組織(皮質ヘム等)を誘導することができる。
 Wntシグナル増強剤としては、上記方法において用いた場合、海馬又はその前駆組織を誘導することが可能である限り、特に限定されず、例えば、GSK-3β阻害剤、組み換え型Wnt3a、Wnt agonist (化合物)、Dkk (Wnt阻害タンパク質の阻害剤)、R-Spondin等が挙げられる。GSK-3β阻害剤としては、例えば、CHIR99021(6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile)、Kenpaullone、6-Bromoindirubin-3'-oxime(BIO)等を挙げることができる。Wntシグナル増強剤は、好ましくはGSK-3β阻害剤であり、より好ましくはCHIR99021である。
 Wntシグナル増強剤の濃度は、上記方法において用いた場合、海馬又はその前駆組織を誘導することが可能である限り、特に限定されない。CHIR99021を用いる場合、通常、約0.1μM ~30μM、好ましくは約1μM~10μM(例、3μM)である。
 好ましい態様において、海馬又はその前駆組織の誘導に用いる培地には、N2サプリメント、Chemically Defined Lipid Concentrate、血清及びヘパリンが含まれ得る。
 Wntシグナル増強剤を含む培地中での培養は、必ずしも第2の培養工程において、海馬又はその前駆組織が誘導されるまでの全ての期間に亘って行う必要はなく、その一部の期間において行えばよい。例えば、第2の培養工程の開始から、3日間以上、Wntシグナル増強剤を含む培地中で浮遊培養を行えば、海馬又はその前駆組織を誘導するに十分であり、その後、Wntシグナル増強剤を含まない培地に切り替えた上で、浮遊培養を継続してもよい。
 ここで、Wntシグナル増強剤を含む培地中での培養期間が長いほど、海馬選択的な分化を誘導することができる(即ち、同一細胞凝集塊内に、海馬組織以外の終脳組織(例、大脳皮質、脈絡膜)への分化が生じにくい)。一態様において、細胞凝集塊の集団の8割以上において、海馬又はその前駆組織を誘導することができる。一方、Wntシグナル増強剤を含む培地中での培養期間が短い場合、同一細胞凝集塊内に、海馬以外の終脳組織(例、大脳皮質、脈絡膜)への分化が生じやすくなり、海馬組織又はその前駆組織に加え、大脳皮質又はその前駆組織及び/又は脈絡膜又はその前駆組織を同一細胞凝集塊内に含む、細胞凝集塊を得ることができる。
 一態様において、海馬又はその前駆組織の誘導に用いる培地には、骨形成因子シグナル伝達経路活性化物質(BMP4等)が含まれない。骨形成因子シグナル伝達経路活性化物質(BMP4等)を含まない培地を用いることにより、脈絡膜への分化誘導を抑制し、海馬組織又はその前駆組織の選択的な誘導が可能となる。
 別の態様において、海馬又はその前駆組織の誘導に用いる培地には、骨形成因子シグナル伝達経路活性化物質(BMP4等)が含まれていてもよい。この場合、分化の海馬選択性が低下する一方、同一細胞凝集塊内に、海馬以外の終脳組織(例、脈絡膜)への分化が生じやすくなる。
 海馬又はその前駆組織が誘導されたことは、皮質ヘムマーカー(Lmx1a、Otx2等)の発現、終脳マーカー(Foxg1等)の発現を指標に確認することができる。海馬又はその前駆組織の誘導に要する時間は、培養条件や、多能性幹細胞の由来する哺乳動物の種類によって変動するので、一概に特定することは出来ないが、ヒト多能性幹細胞を用いた場合、第2の培養工程の開始から、例えば24日後までには、凝集塊の内部に、海馬又はその前駆組織が誘導される。得られた細胞凝集塊の集団の中から、海馬又はその前駆組織が誘導された細胞凝集塊を選択することにより、海馬又はその前駆組織を含む細胞凝集塊を得ることができる。
(6)脈絡膜、海馬前駆組織及び大脳皮質前駆組織の誘導
 本発明の方法の第2の培養工程において、浮遊培養を、一過性に、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で行うことにより、1つの細胞凝集塊中に、脈絡膜(又はその前駆組織)と海馬(又は前駆組織)と大脳皮質(又はその前駆組織)を誘導することができる。
 即ち、第2の培養工程において、浮遊培養を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で行い、得られた細胞凝集塊を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の不在下で更に培養する。その結果、得られた細胞凝集塊に含まれる連続した神経上皮中に、脈絡膜(又はその前駆組織)、海馬組織(又は前駆組織)及び大脳皮質組織(又はその前駆組織)が形成される。一態様において、細胞凝集塊の集団の8割以上において、連続した神経上皮中に、脈絡膜(又はその前駆組織)、海馬組織(又は前駆組織)及び大脳皮質組織(又はその前駆組織)を誘導することができる。
 理論には束縛されないが、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質処理による、脈絡膜組織の形成、その後のこれらの因子の除去という一連の操作(添加による促進、及び除去による揺り戻し)(induction-reversal method)によってオーガナイザー活性と称するシグナルが流れて、脈絡膜組織、皮質ヘム、歯条回組織、アンモン角組織の適切な自己組織化が達成され得る。
 Wntシグナル増強剤としては、上記方法において用いた場合、1つの細胞凝集塊中に、脈絡膜(又はその前駆組織)、海馬(又は前駆組織)及び大脳皮質(又はその前駆組織)を誘導することができる限り、特に限定されず、例えば、GSK-3β阻害剤、組み換え型Wnt3a、Wnt agonist (化合物)、Dkk (Wnt阻害タンパク質の阻害剤)、R-Spondin等が挙げられる。GSK-3β阻害剤としては、例えば、CHIR99021、Kenpaullone、6-Bromoindirubin-3'-oxime(BIO)等を挙げることができる。Wntシグナル増強剤は好ましくは、GSK-3β阻害剤であり、より好ましくはCHIR99021である。
 Wntシグナル増強剤の濃度は、上記方法において用いた場合、1つの細胞凝集塊中に、脈絡膜(又はその前駆組織)、海馬(又は前駆組織)及び大脳皮質組織(又はその前駆組織)を誘導することができる限り、特に限定されない。CHIR99021を用いる場合、通常、約0.1μM ~100μM、好ましくは約1μM~30μM(例、3μM)である。
 骨形成因子シグナル伝達経路活性化物質の例としてはBMP2、BMP4、BMP7、GDF5などが挙げられる。好ましくは、骨形成因子シグナル伝達経路活性化物質はBMP4である。
 培地中の骨形成因子シグナル伝達経路活性化物質の濃度は、上記方法において用いた場合、1つの細胞凝集塊中に、脈絡膜(又はその前駆組織)、海馬(又は前駆組織)及び大脳皮質(又はその前駆組織)を誘導することができる限り、特に限定されないが、骨形成因子シグナル伝達経路活性化物質としてBMP4を用いる場合、その濃度は、通常、0.05~10 nM、好ましくは0.1~2.5 nM(例、0.5 nM)である。
 好ましい態様において、本方法論における第2の培養工程に用いる培地には、N2サプリメント、Chemically Defined Lipid Concentrate、血清及びヘパリンが含まれ得る。
 Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を含む培地中での培養の期間は、培養条件や、多能性幹細胞の由来する哺乳動物の種類によって変動するので、一概に特定することは出来ないが、ヒト多能性幹細胞を用いた場合、通常、1~7日、好ましくは2~4日(例、3日)である。
 Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を除去した後の培養期間は、培養条件や、多能性幹細胞の由来する哺乳動物の種類によって変動するので、一概に特定することは出来ないが、ヒト多能性幹細胞を用いた場合、通常、10日以上、好ましくは14日以上である。
 1つの細胞凝集塊中に、脈絡膜(又はその前駆組織)、海馬(又は前駆組織)及び大脳皮質組織(又はその前駆組織)が連続的に形成されたことは、各組織のマーカーの発現を指標に確認することができる。例えば、生体と類似した互いに隣接した配置で、Lmx1aが陽性でFoxg1が陰性の脈絡膜領域、Lmx1a、Otx2を発現しFoxg1弱陽性である皮質ヘムの領域、Lef1陽性でFoxg1が陽性の海馬前駆組織の領域、Lef1陰性かつFoxg1陽性の大脳皮質前駆組織が、同一神経上皮上に連続的に形成される。
 得られた細胞凝集塊の集団の中から、連続した神経上皮中に、脈絡膜(又はその前駆組織)、海馬(又は前駆組織)及び大脳皮質(又はその前駆組織)が形成された細胞凝集塊を選択することにより、目的とする細胞凝集塊を得ることができる。
(7)海馬組織内の各領域の連続的な立体形成
 (6)と同様に、本発明の方法の第2の培養工程において、浮遊培養を、一過性に、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で行うことにより、1つの細胞凝集塊中に、歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)を連続的に含む、海馬組織又はその前駆組織を誘導することができる。これまでに、多能性幹細胞からアンモン角組織(又はその前駆組織)を分化させたという報告はない。
 即ち、第2の培養工程において、浮遊培養を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で行い、得られた細胞凝集塊を、高酸素分圧条件下、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の不在下で更に培養する。その結果、得られた細胞凝集塊における連続した神経上皮中に、歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)を含む海馬組織又はその前駆組織が形成される。また、この培養の結果、アンモン角組織(又はその前駆組織)を含む細胞凝集塊を得ることができる。
 理論には束縛されないが、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質処理による、脈絡膜組織の形成、その後のこれらの因子の除去という一連の操作(添加による促進、及び除去による揺り戻し)(induction-reversal method)によってオーガナイザー活性と称するシグナルが流れて、脈絡膜組織、皮質ヘム、歯条回組織、アンモン角組織の適切な自己組織化が達成され得る。
 Wntシグナル増強剤としては、上記方法において用いた場合、1つの細胞凝集塊中に、歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)を誘導することができる限り、特に限定されず、例えば、GSK-3β阻害剤、組み換え型Wnt3a、Wnt agonist (化合物)、Dkk (Wnt阻害タンパク質の阻害剤)、R-Spondin等が挙げられる。GSK-3β阻害剤としては、例えば、CHIR99021、Kenpaullone、6-Bromoindirubin-3'-oxime(BIO)等を挙げることができる。Wntシグナル増強剤は、好ましくはGSK-3β阻害剤であり、より好ましくはCHIR99021である。
 Wntシグナル増強剤の濃度は、上記方法において用いた場合、1つの細胞凝集塊中に、歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)を誘導することができる限り、特に限定されない。CHIR99021を用いる場合、通常、約0.1μM ~30μM、好ましくは約1μM~10μM(例、3μM)である。
 骨形成因子シグナル伝達経路活性化物質の例としてはBMP2、BMP4、BMP7、GDF5などが挙げられる。好ましくは、骨形成因子シグナル伝達経路活性化物質はBMP4である。
 培地中の骨形成因子シグナル伝達経路活性化物質の濃度は、上記方法において用いた場合、1つの細胞凝集塊中に、歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)を誘導することができる限り、特に限定されないが、骨形成因子シグナル伝達経路活性化物質としてBMP4を用いる場合、その濃度は、通常、0.05~10 nM、好ましくは0.1~2.5 nM(例、0.5 nM)である。
 好ましい態様において、本方法論における第2の培養工程に用いる培地には、N2サプリメント、Chemically Defined Lipid Concentrate、血清及びヘパリンが含まれ得る。
 別の態様において、本方法論における第2の培養工程に用いる培地には、B27サプリメント、Lグルタミン及び血清が含まれ得る。
 Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を含む培地中での培養の期間は、培養条件や、多能性幹細胞の由来する哺乳動物の種類によって変動するので、一概に特定することは出来ないが、ヒト多能性幹細胞を用いた場合、通常、1~7日、好ましくは2~4日(例、3日)である。
 Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質(BMP4等)を除去した後の培養期間は、培養条件や、多能性幹細胞の由来する哺乳動物の種類によって変動するので、一概に特定することは出来ないが、ヒト多能性幹細胞を用いた場合、通常、40日以上、好ましくは51日以上である。
 1つの細胞凝集塊中に、歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)が連続的に形成されたことは、各組織のマーカーの発現を指標に確認することができる。例えば、歯状回組織(又はその前駆組織)は、Lef1(海馬前駆組織マーカー)陽性、Zbtb20陽性、Prox1陽性等で特定され得る。アンモン角(又はその前駆組織)は、Lef1(海馬前駆組織マーカー)陽性、Zbtb20弱陽性等で特定され得る。
 一態様において、本発明により得られる細胞凝集塊においては、細胞凝集塊における連続した神経上皮中に、歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)に加えて、皮質ヘムが更に含まれる。即ち、連続した神経上皮中に、歯状回組織(又はその前駆組織)、アンモン角組織(又はその前駆組織)及び皮質ヘムを含む、海馬組織又はその前駆組織を誘導することができる。
 一態様において、本方法により得られる細胞凝集塊においては、Lef1陽性神経上皮でもZbtb20の発現は脈絡膜(Lmx1a陽性、Foxg1陰性)や皮質ヘム(Lmx1a陽性、Foxg1弱陽性)の領域と隣接する部分(歯状回組織又はその前駆組織)で強く、これらから離れるに従って弱くなるという発現強度の勾配が見られる。
 別の態様において、歯状回組織又はその前駆組織(例、Zbtb20陽性、Prox1陽性)が、アンモン角組織又はその前駆組織(例、Zbtb20弱陽性)と、皮質ヘムおよび脈絡膜の間に形成される。即ち、生体と類似した互いに隣接した配置で、歯状回組織(又はその前駆組織)、アンモン角組織(又はその前駆組織)及び皮質ヘムが連続した神経上皮中に形成される。
 得られた細胞凝集塊の集団の中から、連続した神経上皮中に、歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)が形成された細胞凝集塊を選択することにより、目的とする細胞凝集塊を得ることができる。
(8)大脳基底核組織の誘導
 本発明の方法において、細胞凝集塊を、ソニックヘッジホッグ(Shh)シグナル作動薬で処理することにより、細胞凝集塊中に大脳基底核又はその前駆組織を誘導することができる。
 Shhシグナル作動薬としては、上記方法において用いた場合、大脳基底核組織又はその前駆組織を誘導することが可能である限り、特に限定されず、例えば、Hedgehogファミリーに属する蛋白(例えば、Shh)、Shh受容体アゴニスト、Purmorphamine、SAG(N-Methyl-N′-(3-pyridinylbenzyl)-N′-(3-chlorobenzo[b]thiophene-2-carbonyl)-1,4-diaminocyclohexane)等を挙げることができる。Shhシグナル作動薬は、好ましくはSAGである。
 Shhシグナル作動薬の濃度は、上記方法において用いた場合、大脳基底核組織又はその前駆組織を誘導することが可能である限り、特に限定されない。SAGを用いる場合、通常、1nM ~10μMである。
 ここで、SAGを比較的低濃度(例えば1nM~75nM、好ましくは25nM~50nM)で用いる場合、大脳基底核のうち、外側基底核原基(LGE)が、終脳神経上皮上に優先的に誘導される。一方、SAGを比較的高濃度(例えば100nM~10μM、好ましくは250nM~1μM)で用いる場合、大脳基底核のうち、内側基底核原基(MGE)が、終脳神経上皮上に優先的に誘導される。
 Shhシグナル作動薬処理に付す細胞凝集塊は、好ましくは、終脳マーカー陽性細胞凝集塊である。Shhシグナル作動薬処理(Shhシグナル作動薬を含む培地中での培養)は、第1の培養工程、第2の培養工程のいずれか一方においてのみ行ってもよく、その両方において行ってもよい。Shhシグナル作動薬を含む培地中での培養は、大脳基底核組織が誘導されるまでの全ての期間に亘って行ってもよいし、その一部の期間のみにおいて行ってもよい。
 一態様において、Shhシグナル作動薬処理は、細胞凝集塊中に終脳マーカーが発現する、第1の培養工程の後半から、第2の培養工程の前半にかけての3~10日間(例、7日間)に亘り、一過性に行われる。
 大脳基底核又はその前駆組織が誘導されたことは、大脳基底核組織マーカーの発現を指標に確認することができる。外側基底核原基(LGE)マーカーとしては、Gsh2、GAD65を挙げることができる。内側基底核原基(MGE) マーカーとしては、Nkx2.1を挙げることができる。
 大脳基底核又はその前駆組織の誘導に要する時間は、培養条件や、多能性幹細胞の由来する哺乳動物の種類によって変動するので、一概に特定することは出来ないが、ヒト多能性幹細胞を用いた場合、第2の培養工程の開始から、例えば24日後までには、凝集塊の内部に、大脳基底核又はその前駆組織が誘導される。一態様において、細胞凝集塊の集団の7割以上において、大脳基底核又はその前駆組織を誘導することができる。得られた細胞凝集塊の集団の中から、大脳基底核又はその前駆組織が誘導された細胞凝集塊を選択することにより、大脳基底核又はその前駆組織を含む細胞凝集塊を得ることができる。
 好ましい態様において、本方法により誘導される大脳基底核(又はその前駆組織)(例、LGE、MGE)は、大脳皮質(又はその前駆組織)と、1つの細胞凝集塊中に、連続して形成される。即ち、得られた細胞凝集塊における連続した神経上皮中に、大脳基底核(又はその前駆組織)(例、LGE、MGE)及び大脳皮質(又はその前駆組織)が形成される。一態様において、細胞凝集塊の集団の5割以上において、連続した神経上皮中に、大脳基底核(又はその前駆組織)(例、LGE、MGE)及び大脳皮質(又はその前駆組織)を誘導することができる。
(9)大脳皮質における軸形成の外因性制御
 上述の通り、本発明の方法においては、大脳皮質の背腹軸及び前後軸が自発的に形成される。一態様において、第2の培養工程において得られる、細胞凝集塊に含まれる、大脳皮質脳室帯において、背尾側マーカー(CoupTF1、Lhx2等)の発現が、片側ではより強く、反対側では弱いという勾配を示し、吻腹側マーカー(例、Sp8)の発現が、背尾側マーカーと逆の勾配を示す。ここに、大脳皮質の吻腹側の特異性の獲得に重要であることが知られるFGF8を作用させることにより、大脳皮質脳室帯全体を吻側化させることができる。
 FGF8処理は、第2の培養工程においてFGF8を含む培地を用いることにより行うことができる。培地中のFGF濃度は、吻側化の達成に十分な濃度であり、通常、10~1000ng/ml、好ましくは50~300ng/mlである。
 FGF8処理は、第2の培養工程の全部又は一部において実施される。
 大脳皮質脳室帯全体が吻側化されたことは、背尾側マーカー(CoupTF1、Lhx2等)の発現の全体的減弱、及び吻腹側マーカー(例、Sp8)の脳室帯全体にわたる上昇等によって確認することができる。これは、FGF8処理により、大脳皮質の背腹軸に沿った前頭葉と後頭葉等の領域を選択的に制御して誘導できる可能性を示す。
(10)海馬ニューロンの誘導
 上記(5)~(7)のいずれかの方法により得られる海馬又はその前駆組織を含む細胞凝集塊を分散し、分散した細胞を更にインビトロで接着培養することにより、成熟した海馬ニューロンを得ることが出来る。本発明は、このような海馬ニューロンの製造方法をも提供する。
 当該製造方法においては、好ましくは、上記(7)の方法により得られる海馬又はその前駆組織を含む細胞凝集塊(歯状回組織(又はその前駆組織)及びアンモン角組織(又はその前駆組織)を連続的に含む、海馬組織又はその前駆組織を含む細胞凝集塊)が用いられる。
 海馬又はその前駆組織を含む細胞凝集塊を、適切な細胞解離液で処理し、単一細胞、又はこれに近い状態にまで分散する。細胞解離液としては、例えば、EDTA等のキレート;パパイン、トリプシン、コラゲナーゼIV、メタロプロテアーゼ等のタンパク分解酵素等を単独で又は適宜組み合わせて含む生理的水溶液を用いることができる。
 分散された細胞を、該細胞を培養するための適切な培地中に懸濁し、培養容器中に播種する。培養容器としては、細胞の接着培養に一般的に用いられる接着性の培養器材を用いることができる。培養器材としては、例えば、シャーレ、ペトリデッシュ、フラスコ、マルチウェルプレート、チャンバースライド等を挙げることができるが、これらに限定されない。
 細胞との接着性を向上させるため、培養容器の表面を、ラミニン、フィブロネクチン、コラーゲン、基底膜標品等の細胞外マトリクス;ポリ-L-リジン、ポリ-D-リジン、ポリ-L-オルニチン等のポリマーによるコーティングしてもよい。一態様において、培養容器の表面を直接又は間接的にラミニン及びフィブロネクチンによりコートする。間接的なコーティングは、例えば、培養容器の表面をまず、ポリ-L-リジンでコートすることにより、ポリ-L-リジンの下地を形成し、その下地の上に、ラミニン及びフィブロネクチンをコートすることにより行うことができる。
 分散された細胞の接着培養に用いる培地は、動物細胞(好ましくは神経細胞)の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばDMEM、Ham’s F-12、Neurobasal、IMDM、M199、EMEM、αMEM、Fischer’s Mediumおよびこれらの混合培地など、動物細胞(好ましくは神経細胞)の培養に用いることのできる培地であれば特に限定されない。好ましくは、Neurobasalが用いられる。
 該培地は、海馬ニューロンの成熟を促進するため、血清代替物としてB27サプリメントを含むことが好ましい。B27サプリメントは、ビオチン、L-カルニチン、コルチコステロン、エタノールアミン、D(+)ガラクトース、還元型グルタチオン、リノール酸、リノレン酸、プロゲステロン、プトレッシン、レチニル酢酸、セレン、トリオド-l-チロミン、ビタミンE、ビタミンE酢酸塩、ウシアルブミン、カタラーゼ、インスリン、スーパーオキシドジスムターゼ、トランスフェリン等を含む公知の組成物である。尚、海馬ニューロンの成熟を阻害しないため、該組成物からレチニル酢酸を除いた、ビタミンAフリーのB27サプリメントを用いることが好ましい。B27サプリメントの添加量は、海馬ニューロンの成熟が促進されるように、適宜設定することができる。
 一態様において、海馬ニューロンの成熟を促進するため、該培地はBDNFを含んでもよい。BDNFを含む場合、培地中のBDNF濃度は、海馬ニューロンの成熟を促進する限り特に限定されないが、通常1ng/ml以上、好ましくは10ng/ml以上、より好ましくは20ng/ml以上である。BDNF濃度の上限値は、海馬ニューロンの成熟を促進する限り特に限定されないが、過剰に添加しても活性が飽和するため、通常1000ng/ml以下、好ましくは100ng/ml以下の濃度とすることが好ましい。BDNFは、好ましくは単離されている。
 一態様において、海馬ニューロンの成熟を促進するため、該培地はNT-3を含んでもよい。NT-3を含む場合、培地中のNT-3濃度は、海馬ニューロンの成熟を促進する限り特に限定されないが、通常1ng/ml以上、好ましくは10ng/ml以上、より好ましくは20ng/ml以上である。NT-3濃度の上限値は、海馬ニューロンの成熟を促進する限り特に限定されないが、過剰に添加しても活性が飽和するため、通常1000ng/ml以下、好ましくは100ng/ml以下の濃度とすることが好ましい。NT-3は、好ましくは単離されている。
 一態様において、該培地は、血清を含んでいてもよい。血清は、海馬ニューロンの成熟に寄与し得る。血清としては、FBS等が挙げられるが、これに限定されない。血清は非動化されていることが好ましい。培地中の血清濃度は、脳室帯の長期間の維持培養に寄与しうる範囲で適宜調整することができるが、通常1~20%(v/v)である。
 一態様において、該培地は、海馬ニューロンの成熟に悪影響を与えない範囲で、他の添加物を含むことができる。添加物としては、例えば、インスリン、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等が挙げられるが、これらに限定されない。
 好ましい態様において、分散された細胞の接着培養に用いる培地は、B27サプリメントを含む。該B27サプリメントは、好ましくは、ビタミンAフリーである。該培地は、更に、FBS及びL-グルタミンを含み得る。
 別の好ましい態様において、分散された細胞の接着培養に用いる培地は、B27サプリメント、BDNF及びNT-3を含む。該B27サプリメントは、好ましくは、ビタミンAフリーである。該培地は、更に、FBS及びL-グルタミンを含み得る。
 分散した細胞の細胞死を抑制するために、Rho-associated coiled-coilキナーゼ(ROCK)の阻害剤を接着培養開始時から添加してもよい。ROCK阻害剤を培養開始から例えば15日以内、好ましくは10日以内、より好ましくは6日以内添加する。ROCK阻害剤としては、Y-27632((+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride)等を挙げることができる。接着培養に用いられるROCK阻害剤の濃度は、細胞死を抑制し得る濃度である。例えば、Y-27632について、このような濃度は、通常約0.1~200μM、好ましくは約2~50μMである。ROCK阻害剤の濃度を添加する期間内で変動させてもよく、例えば期間の後半で濃度を半減させることができる。
 分散した細胞の接着培養における培養温度、CO濃度等の他の培養条件は適宜設定できる。培養温度は、例えば約30~40℃、好ましくは約37℃である。CO濃度は、例えば約1~10%、好ましくは約5%である。
 接着培養を開始して、2~3日以内に、播種した細胞は培養容器の表面に接着し、神経突起を伸ばし始める。
 分散した細胞の接着培養の期間は、分散した細胞の成熟した海馬ニューロンへの分化に十分な期間である限り、特に限定されないが、通常50日以上、好ましくは80日以上、より好ましくは100日以上である。
 一態様において、分散した細胞の接着培養を、成熟した海馬ニューロンが出現するまで行う。成熟した海馬ニューロンの出現は、海馬ニューロン特異的なマーカーにより確認することが出来る。成熟した海馬ニューロンは、例えば、Zbtb20及びFoxg1陽性であり、かつMAP2陽性の樹状突起を有する細胞として特定できる。従って、一態様において、Zbtb20及びFoxg1陽性であり、かつMAP2陽性の樹状突起を有する細胞の出現が確認されるまで、分散した細胞の接着培養が行われる。
 上記成熟した海馬ニューロンには、海馬歯状回の顆粒細胞(Prox1陽性、円形で比較的小さな細胞)、及び海馬CA3領域の錐体細胞(KA1陽性、比較的大きい細胞)が包含される。
 海馬ニューロンに加えて、Zbtb20及びGFAP陽性のアストロサイトが誘導されることがある。本発明は、当該アストロサイトの製造方法をも提供する。
 単一に分散した細胞は小さな塊を形成しやすく、誘導された成熟した海馬ニューロン間で神経突起が伸長される。
 このようにして誘導された成熟した海馬ニューロンは機能的であり、電位刺激によるナトリウム・カリウム電流応答、誘発性活動電位、及び/又は自発性興奮性シナプス後電流(sEPSC)を生じる。これらの神経活動は、パッチクランプ法を用いて確認することが出来る。
 誘導された成熟した海馬ニューロンは、そのまま機能解析等に用いることもできるし、適切な細胞解離液で培養容器から剥離し、単離することも出来る。
(11)細胞凝集塊、単離された終脳若しくはその部分組織、又はその前駆組織の用途
 更なる局面において、上記により得られた細胞凝集塊から終脳若しくはその部分組織、又はその前駆組織を単離することができる。本発明は上記本発明の方法により得られる細胞凝集塊、終脳若しくはその部分組織、及びその前駆組織を提供する。更なる態様において、本発明は上記本発明の方法により得られる海馬ニューロンを提供する。
 本発明の方法により得られた細胞凝集塊、終脳若しくはその部分組織、それらの前駆組織、及び海馬ニューロンは、移植医療のために使用することができる。例えば、終脳(大脳皮質、大脳基底核、脈絡膜、海馬等)の障害に基づく疾患の治療薬として、或いは終脳(大脳皮質、大脳基底核、脈絡膜、海馬等)の損傷状態において、該当する損傷部分を補充するために、本発明の方法により得られた細胞凝集塊、終脳若しくはその部分組織(大脳皮質、大脳基底核、脈絡膜、海馬等)、それらの前駆組織、又は海馬ニューロンを用いることができる。終脳の障害に基づく疾患、又は終脳の損傷状態の患者に、本発明により得られた細胞凝集塊、終脳若しくはその部分組織(大脳皮質、大脳基底核、脈絡膜、海馬等)、それらの前駆組織、又は海馬ニューロンを移植することにより、終脳の障害に基づく疾患、又は終脳の損傷状態を治療することができる。終脳の障害に基づく疾患としては、パーキンソン病、ハンチントン舞踏病、アルツハイマー病、虚血性脳疾患(例えば、脳卒中)、てんかん、脳外傷、運動神経疾患、神経変性疾患などが挙げられる。さらに、これら細胞の補充が所望される状態としては、脳外科手術後(例えば、脳腫瘍摘出後)が挙げられる。
 移植医療においては、組織適合性抗原の違いによる拒絶がしばしば問題となるが、移植のレシピエントの体細胞から樹立した多能性幹細胞(例、誘導多能性幹細胞)を用いることで当該問題を克服できる。即ち、好ましい態様において、本発明の方法において、多能性幹細胞として、レシピエントの体細胞から樹立した多能性幹細胞(例、誘導多能性幹細胞)を用いることにより、当該レシピエントについて免疫学的自己の終脳若しくはその部分組織、それらの前駆組織、又は海馬ニューロンを製造し、これが当該レシピエントに移植される。
 さらに、本発明により得られた細胞凝集塊、終脳若しくはその部分組織、又それらの前駆組織、又は海馬ニューロンを薬物のスクリーニングや評価のために使用することができる。特に、本発明により得られる終脳若しくはその部分組織、又はその前駆組織は、生体における終脳若しくはその部分組織、又はその前駆組織と極めて類似した高次構造を有するので、終脳の障害に基づく疾患や、終脳の損傷状態の治療薬のスクリーニング、医薬品の副作用・毒性試験(例、角膜刺激試験の代替試験)、終脳における疾患の新たな治療方法の開発などに適用することができる。
 以下の実施例により本発明をより具体的に説明するが、実施例は本発明の単なる例示を示すものにすぎず、本発明の範囲を何ら限定するものではない。
[実施例1]
ヒト多能性幹細胞からの選択的な大脳皮質前駆組織の立体形成
(方法)
 ヒトES細胞(KhES-1;終脳特異的遺伝子Foxg1に蛍光タンパク遺伝子Venusをノックインしたもの)をトリプシン処理により単一細胞に分散し、SFEBq法(Nakano et al, Cell Stem Cell, 2012)に準じて凝集塊を形成し、分化誘導のための浮遊凝集塊培養を37℃、5% CO2存在下に行った。分散した9000個のヒトES細胞を、低細胞吸着性の表面コートをしたV底型96ウェルプレートの各ウェルに播種し、分化誘導用の培養液は成長因子を含まないG-MEM培地(Gibco/Invitrogen社)に20%KSR (Knockout Serum Replacement)、0.1mM 非必須アミノ酸溶液(Gibco/Invitrogen社)、1mM ピルビン酸ナトリウム溶液(Sigma社)、0.1 mM 2-メルカプトエタノールを添加したものを用いた。分化誘導の最初の3日間は分散惹起性細胞死を抑制するためにROCK阻害剤Y-27632を20 μM添加し、次の3日間はその濃度を半減させて作用させた。分化誘導開始後0日目から18日目までWntシグナル阻害剤IWR-1-endを3 μM、TGFβシグナル阻害剤SB431542 を5 μM 添加して作用させた。分化誘導開始後18日目に、これらの凝集塊を低細胞吸着性の表面コートをした9 cm ペトリ皿に移し、浮遊培養を37℃、5% CO2、40% O2存在下に行った。18日目から35日目まではDMEM/F12培地(Gibco/Invitrogen社)に1%のN2サプリメント (Gibco/Invitrogen社)、1%の脂質濃縮物(Chemically defined lipid concentrate、Gibco/Invitrogen社)を添加したものを用いた。35日目以降は、これらの培養液に、さらに10%FBS、5 μg/mlのヘパリン、1%のマトリゲル グロースファクター リデュースト(BD Bioscience社)を添加したものを用いた。これらの凝集塊は、分化誘導開始後1日目および34日目にFACSで解析を行い、42日目に免疫組織染色で解析した。
(結果)
 分化誘導開始18日後より、凝集塊にFoxg1::venusの蛍光が強く観察された。分化誘導開始26日後には、9割以上の凝集塊で再現性良くFoxg1::venusの蛍光が強く観察された(図1A)。分化誘導開始34日後には、全細胞の7.5割以上の細胞でFoxg1::venusの蛍光が観察された。またすべての凝集塊はFoxg1::venus 陽性であった(図1B)。Foxg1:venus陽性凝集塊は、内部に脳室様の空洞を有した半球上の神経上皮様構造(多列円柱上皮)を示した。これらの神経上皮構造は、内腔側にPax6陽性およびSox2陽性の細胞密度が高い細胞層を有し(図1D、E)、最も内腔の部分にリン酸化Histone H3陽性の有糸分裂細胞を認めた(図1F)。これらの構造はヒト妊娠初期の大脳皮質の脳室帯に類似していた。脳室帯に類似した細胞層の外側には、有糸分裂後の神経細胞のマーカーであるTuj1を発現し、大脳皮質の初期皮質板マーカーであるCtip2とTbr1を発現していた。またこれらは、大脳皮質の第1層の神経細胞であるReelin陽性カハールレチウス細胞を含み、表層近くにはLamininを多く含んだ層を有していた。つまり、このように培養した凝集塊の中に大脳皮質前駆組織が形成されていることが判った。このようにヒト妊娠初期の大脳皮質前駆組織を自己形成することが再現性良く認められた。
[実施例2]
ヒト多能性幹細胞からの大脳基底核前駆組織の立体形成
(方法)
 分化誘導35日目まで実施例1の培養条件と同様に培養した。即ち、ヒトES細胞凝集塊を分化誘導18日後までV底96穴プレートにて培養したのち、浮遊凝集塊を細胞非吸着性のペトリ皿(直径9 cm)に移し、分化誘導18日から35日目までの浮遊培養を37℃、5% CO2、40% O2存在下で行った。ただし、実施例1の培養液に15日目から21日目の期間のみ、Sonic hedgehog (Shh)シグナル作動薬SAGを30 nMまたは500 nMの最終濃度で添加して作用させた。これらの凝集塊は、35日目に免疫組織染色で解析した。
(結果)
 Shhシグナル作動薬SAGを30 nMを作用させた場合、Foxg1::venus陽性の終脳神経上皮には、Gsh2を発現する外側基底核原基(LGE)が形成された(図2A,Bの矢頭)。Gsh2陽性のLGE神経上皮はこの条件下において7割以上の凝集塊で再現性良く認められた。胎児のLGEはGABA作動性神経細胞である線条体神経細胞を生み出す。同様に、ヒトES細胞由来のLGE神経上皮の直下には、GAD65陽性のGABA作動性神経細胞が認められた(図2B)。
 一方、Shhシグナル作動薬SAGを500 nMを作用させた場合、凝集塊のFoxg1::venus陽性の終脳神経上皮は、Nkx2.1を発現する内側基底核原基(MGE)を形成した(図2C,D)。Foxg1::venus陽性かつNkx2.1陽性のMGE 神経上皮はこの条件下において8割以上の凝集塊で再現性良く認められた。胎児脳では、MGEは淡蒼球や大脳皮質介在神経細胞の前駆組織である。このように、本培養法により大脳基底核前駆組織であるLGEやMGEを高効率に誘導できることが示された。
[実施例3]
大脳皮質と大脳基底核の連続的な立体形成
(方法)
 分化誘導35日目まで実施例2の培養条件と同様に培養した。即ち、ヒトES細胞凝集塊を分化誘導18日後までV底96穴プレートにて培養したのち、浮遊凝集塊を細胞非吸着性のペトリ皿(直径9 cm)に移し、分化誘導18日から35日目までの浮遊培養を37℃、5% CO2、40% O2存在下で行った。分化培養15日目から21日目の期間のみ、Shhシグナル作動薬SAGを30 nMの濃度で培養液に添加した。これらの凝集塊は、35日目に免疫組織染色で解析した。
(結果)
 実施例2で示したように、Shhシグナル作動薬SAGを30 nMを作用させた場合、終脳神経上皮はFoxg1::venus陽性かつ、外側基底核原基(LGE)のマーカーであるGsh2,GAD65を発現した(図3A,B)。これらのLGE 神経上皮は、Gsh2陰性かつ大脳皮質のマーカーであるPax6陽性の大脳皮質神経上皮と連続して形成されていた(図3C)。つまりこれらの結果は、大脳皮質と大脳基底核が一つの凝集塊の中に連続して形成されていることを示している。このように、大脳皮質と大脳基底核が一つの凝集塊の中に連続して自己形成することは、5割以上の凝集塊で再現性良く認められた。
[実施例4]
ヒト多能性幹細胞からの選択的な脈絡膜組織の立体形成
(方法)
 分化誘導18日後まで実施例1の培養条件でV底96穴プレートにて培養したのち、浮遊凝集塊を細胞非吸着性のペトリ皿(直径9 cm)に移し、浮遊培養を37℃、5% CO2,40% O2存在下で行った。培養液は、18日目から42日目までは、DMEM/F12培地(Gibco/Invitrogen社)に1% N2サプリメント(Gibco/Invitrogen社)、1% 脂質濃縮物(Chemically defined lipid concentrate、Gibco/Invitrogen社)、10%FBS、5 μg/ml ヘパリン、3 μM GSK-3β阻害剤CHIR99021、0.5 nM BMP4を加えたものを用いて培養し、42日目に免疫組織染色で解析した。
(結果)
 上記の条件で培養した場合、分化誘導開始18日目以降も凝集塊にBf1(Foxg1)::venusの強い蛍光は観察されなかった。これらの凝集塊はひだ状の単層上皮となり、脈絡膜のマーカーであるTTR、Lmx1a、Otx2を発現している(図4A,B)ことから、脈絡膜組織を誘導できたと考えられた。この条件下で脈絡膜組織を自己形成することは、8割以上の凝集塊で再現性良く認められた。
[実施例5]
ヒト多能性幹細胞からの選択的な皮質ヘム(海馬采の前駆組織)の形成
(方法)
 分化誘導18日後まで実施例1の培養条件でV底96穴プレートにて培養したのち、浮遊凝集塊を細胞非吸着性のペトリ皿(直径9 cm)に移し、浮遊培養を37℃、5% CO2、40% O2存在下で行った。培養液は、18日目から42日目までは、DMEM/F12培地(Gibco/Invitrogen社)に1% N2サプリメント (Gibco/Invitrogen社)、1% 脂質濃縮物(Chemically defined lipid concentrate、Gibco/Invitrogen社)、10%FBS、5 μg/ml ヘパリン、3 μM GSK-3β阻害剤CHIR99021(Wntシグナル増強剤)を加えたものを用いて培養し、42日目に免疫組織染色で解析した。
(結果)
 上記のように18日目以降Wntシグナルを増強した条件で培養した場合、皮質ヘムのマーカーのLmx1a、Otx2を発現し、Foxg1::venus弱陽性である神経上皮が主体である凝集塊が形成された(図5A,B)。この神経上皮は脈絡膜マーカーのTTRを発現しなかった(図5A)。これらのマーカー発現プロフィールから、この条件では海馬采の前駆組織である皮質ヘムが選択的に誘導されたと考えられる。この条件下で、皮質ヘムの選択的な形成することは、8割以上の凝集塊で再現性良く認められた。
[実施例6]
脈絡膜と海馬前駆組織と大脳皮質前駆組織の連続的な立体形成
(方法)
 分化誘導18日後まで実施例1の培養条件でV底96穴プレートにて培養したのち、浮遊凝集塊を細胞非吸着性のペトリ皿(直径9 cm)に移し、浮遊培養を37℃、5% CO2、40% O2存在下で行った。培養液は、18日目から35日目までは、DMEM/F12培地(Gibco/Invitrogen社)に1% N2サプリメント(Gibco/Invitrogen社)、1% 脂質濃縮物(Chemically defined lipid concentrate、Gibco/Invitrogen社)、10%FBS、5 μg/ml ヘパリンを加えたものを用いて培養した。ただし、18日目から21日目の期間のみ、これらの培養液に3 μM GSK-3β阻害剤CHIR99021、0.5 nM BMP4を添加し作用させた。これらの物質は、実施例4と5にあるように、脈絡膜や皮質へムへの分化を促進するが、実施例6の培養では、これらの作用を3日間に限定し、21日目以降の培養からはこれらを除いた。これらの凝集塊は35日目に免疫組織染色で解析した。
(結果)
 上記のように、一過性にのみWntシグナルとBMPシグナルを増強して、その後にそれらを除去した条件で培養した場合、培養21-27日目の凝集塊には、Foxg1::venus陽性の神経上皮とFoxg1::venus陰性の神経上皮の両者が形成され(図6A)、それらは連続した神経上皮を構成していた。このようなFoxg1::venus陽性と陰性の神経上皮の両者を隣接して含む状態は、8割以上の凝集塊で再現性良く認められた。Foxg1::venus陰性の神経上皮は、凝集塊から外へ突出する構造を取り、その先端は半球様の構造を有していた。分化誘導開始35日目において、これらの凝集塊では、Lmx1aが陽性でFoxg1::venusが陰性の脈絡膜領域、Lmx1a、Otx2を発現しFoxg1::venus弱陽性である皮質ヘムの領域、Lef1陽性でFoxg1::venusが陽性の海馬前駆組織の領域、Lef1陰性かつFoxg1::venus陽性の大脳皮質前駆組織が連続的に形成されていた(図6B,C)。このように、脈絡膜と海馬前駆組織と大脳皮質前駆組織が一つの凝集塊の中に連続して自己形成することは、8割以上の凝集塊で再現性良く認められた。
[実施例7-1]
海馬組織内の各領域の連続的な立体形成
(方法)
 分化誘導18日後まで実施例1の培養条件でV底96穴プレートにて培養したのち、浮遊凝集塊を細胞非吸着性のペトリ皿(直径9 cm)に移し、浮遊培養を37℃、5% CO2、40% O2存在下で行った。培養液は、18日目以降は、下記の2つの培地のいずれかを用いて培養を行った。
1) DMEM/F12培地(Gibco/Invitrogen社)に1% N2サプリメント (Gibco/Invitrogen社)、1% 脂質濃縮物(Chemically defined lipid concentrate、Gibco/Invitrogen社)、10%FBS及び5 μg/ml ヘパリンを加えたもの
2) Neurobasal培地(Gibco/Invitrogen社)に2% B27サプリメント ビタミンA無し(Gibco/Invitrogen社)、2mM L-グルタミン及び10% FBSを加えたもの
 ただし、実施例6と同様に、18日目から21日目の期間のみ、これらの培養液に3 μM GSK-3β阻害剤CHIR99021、0.5 nM BMP4を添加し作用させた。これらの凝集塊は61日目及び75日目に免疫組織染色で解析した。
(結果)
 上記の1)および2)のいずれの培養液を用いた培養でも、61日目まで継続して培養した場合、凝集塊には海馬前駆組織マーカーであるLef1陽性かつFoxg1::venus陽性の神経上皮が形成された(図7A, B)。これらの神経上皮は海馬前駆組織マーカーであるNrp2陽性の神経細胞を多く含んでいた(図7D)。また神経上皮は海馬神経細胞および前駆細胞のマーカーであるZbtb20陽性の細胞も多く含んでいた(図7C)。胎児の海馬前駆組織では、神経上皮の脳室帯および脳室下帯のZbtb20の発現は歯状回(脈絡膜や皮質ヘムに隣接する部分)の前駆組織に強く、アンモン角(脈絡膜や皮質ヘムから遠い部分)の前駆組織に弱いという発現強度の勾配が見られる。同様に、ヒトES細胞から形成したLef1陽性神経上皮でもZbtb20の発現は脈絡膜(Lmx1a陽性、Foxg1::venusは陰性)や皮質ヘム(Lmx1a陽性、Foxg1::venusは弱陽性)の領域と隣接する部分で強く、これらから離れるに従って弱くなるという発現強度の勾配が見られた(図7A, B, C)。さらに培養を同条件で75日目まで継続すると、歯状回神経細胞に特徴的なZbtb20とProx1をともに発現する領域(図7E, DG)が、Zbtb20が弱陽性のアンモン角領域(図7E, CA)と、皮質ヘム(図7E, hem)および脈絡膜(図7E, CP)の間に形成が確認された。これらは海馬組織内において歯状回組織、アンモン角組織になり得る領域が連続的に形成されていることを示している。
[実施例7-2]
海馬組織内の各領域の連続的な立体形成を分散培養し得られる成熟した海馬ニューロン
(方法)
 実施例7-1の方法により連続した海馬組織を誘導し、Day60-90の間で得られた細胞凝集塊をパパイン酵素液(SUMITOMO BAKELITE, MB-X9901)などの細胞解離液にて単一細胞に分散させ、その細胞をガラス製のdishやslideなどに播種して平面培養を行った。培養を行う前にガラスの表面をpoly-D-Lysine 200μg/mlで4℃にて一晩、Laminin 20μg/ml/Fibronectin 8μg/mlで37℃にて一晩コーティングした。
 培養液はNeurobasal培地(Gibco/Invitrogen社)に2% B27サプリメント ビタミンA無し(Gibco/Invitrogen社)、2mM L-グルタミン及び10% FBSを加えたものを用いた。これらの平面条件で培養した細胞は、分散後2-3日以内にガラスの表面に張り付き、神経突起を延ばし始めた。d140からd197の間に免疫組織染色で解析した。
(結果)
 単一に分散した細胞は小さな凝集塊を形成しやすく、そのニューロン間で神経突起が伸長されていた(図8A)。ほとんどの細胞で海馬マーカーであるZbtb20は陽性であり(図8B)、Foxg1::venusもDay197時点で陽性であった(図8B)。MAP2陽性の樹状突起を認めるニューロン以外に散在する細胞がみられたが、これらの細胞もZbtb20(+)で、細胞の形はグリア細胞様で、GFAP陽性であることより、アストロサイトであると示唆された(図8C)。Zbtb20陽性細胞の中には、海馬の歯状回マーカーであるProx1陽性細胞と海馬のCA3領域マーカーであるKA1が陽性の細胞が見られ、Prox1陽性細胞は顆粒細胞を示唆する円形で比較的小さな細胞である一方、KA1陽性細胞は比較的大きめの錐体細胞様の形をしていた(図8D-E)。これは生体内で見られる歯状回では顆粒細胞が、CA領域では錐体細胞が形成される事と矛盾していないと考えられた。Zbtb20陽性の細胞割合は8割前後で、この発現率は再現良く認められた。
 これらの結果から、マーカーの発現と細胞形態上、海馬歯状回の顆粒細胞及び海馬CA3領域の錐体細胞が誘導できたことが示唆された。
[実施例7-3]
3次元で誘導した海馬組織を分散培養し得られる成熟した海馬ニューロンの機能解析
(方法)
 実施例7-1と同様の方法により、連続した海馬組織を分散培養した。本試験においてはガラス製もしくはプラスチック製のdishやslideなどに播種して平面培養を行った。培養にはガラスもしくはプラスチックの表面をpoly-D-Lysine 100μg/mlで37℃にて3時間、Laminin 20μg/ml/Fibronectin 8μg/mlで37℃にて一晩コーティングした。
 培養液は分散1~2日目はNeurobasal培地(Gibco/Invitrogen社)に2% B27サプリメント ビタミンA無し(Gibco/Invitrogen社)、2mM L-グルタミン、1% FBS、20ng/ml BDNF、20ng/ml NT-3、及び10μM Y-27632を加えたものを用いた。培養3日目以降は、Neurobasal培地(Gibco/Invitrogen社)に2% B27サプリメント ビタミンA無し(Gibco/Invitrogen社)、2mM L-グルタミン、10% FBS、BDNF 20ng/ml、及びNT-3 20ng/mlを加えた培地を用いて、半量培地交換を3日に1回行った。分散後30-60日の間に、細胞をfluo4-AM(life technologies、F-14201) 5μM中で37℃にて45分インキュベートし、培地で洗浄後にLCMを用いたカルシウムイメージングによる機能解析を行った。また、同じ方法で分散培養した細胞でパッチクランプ法による電気生理的解析を行った。測定はwhole cell patch clampにておこない、ガラス電極(電極抵抗値3-6MΩ)内を内液用バッファー(120mM K-Gluconate、10mM KCl、10mM EGTA、及び10mM Hepes含有バッファーをKOHにてpH7.2に調整)で、チャンバー内を外液用バッファー(140mM NaCl、2.5mM CaCl2、2mM MgCl2、10mM Glucose、1mM NaH2PO4、及び10mM Hepes含有バッファーをNaOHにてpH7.4に調整)で満たして使用した。測定はEPC10(HEKA)にて行った。全ての試験は室温で実施した。膜容量成分補正を行い、直列抵抗値は電極抵抗値の3倍以内となる条件下で試験を実施した。電位依存性のナトリウム、カリウム電流は、-60mVで電位を保持し、-80mVから+60mVまで-10mV刻みでの刺激時の測定を行った。sEPSCは-60mVにて電圧を保持した際の経時的な電流を測定し、薬剤はDNQX(sigma, D0540)を終濃度10μMで使用した。活動電位は過分極刺激を行った際の膜電位を測定した。
(結果)
 分散後30-31日経過後のカルシウムイメージングでは、多くの神経がカルシウム流入に伴う発火活動を示しており(図9A, A’)、各細胞の多様な経時的活動パターンが確認できた(図9B)。分散後53日目に施行したパッチクランプでは、電位刺激によるナトリウム・カリウム電流応答、誘発性活動電位、及び自発性興奮性シナプス後電流(spontaneous excitatory postsynaptic current; sEPSC)が認められた(図9C-E)。このsEPSCはAMPA型グルタミン酸受容体アンタゴニストであるDNQXによる阻害が確認された(図9F)。
 これらの実験により、実施例7で得られた神経細胞では自発的な神経活動が見られ、かつその細胞では刺激に応じた活動を示しており、シナプスネットワークも有する機能的な神経が得られていることが示唆された。
[実施例8]
ヒト多能性幹細胞からの妊娠中期型の多層構造を持つ大脳皮質の立体形成
(方法)
 分化誘導35日目まで実施例1の培養条件と同様に培養した。即ち、ヒトES細胞凝集塊を分化誘導18日後までV底96穴プレートにて培養したのち、浮遊凝集塊を細胞非吸着性のペトリ皿(直径9 cm)に移し、分化誘導18日目以降の浮遊培養を37℃、5% CO2、40% O2存在下で行った。長期間において凝集塊を健康に維持するために35日目以降は、2週間に1度凝集塊を半分割し、実施例1で記載した培養液で培養を継続した。分化誘導56日目以降は、酸素透過性の高い細胞非吸着性培養皿(直径6cm, SARSTEDT社)に細胞塊を移し培養を継続した。分化誘導70日目以降は、マトリゲル グロースファクター リデュースト(BD Bioscience社)の濃度を2%に変更して培養を継続した。これらの凝集塊は、70日目および91日目に免疫組織染色で解析した。
(結果)
 上記の条件で培養した場合、分化誘導開始70日目で凝集塊は形態的に明らかな層構造を示した(図10A-B’)。この層構造の最も表層にはLamininが蓄積し、Reelin陽性のカハールレチウス細胞を含んだ辺縁帯が形成されていた(図10C,C’)。辺縁帯の直下にはTbr1陽性、Ctip2陽性の深部皮質板の神経細胞を含む皮質板が観察された(図10D,D’)。この時点では浅部皮質板のマーカーであるSatb2を発現した神経細胞は少なかった(図10E)。内腔側には細胞密度が高くPax6陽性およびSox2陽性の神経前駆細胞を含んだ細脳室帯(図10F,F’)と、その上部にTbr2陽性の細胞を含んだ脳室下帯が形成されていた(図10G)。皮質板と脳室下帯の間は細胞がまばらな、妊娠中期の中間帯と良く似た領域が発達していた。皮質板の直下にはCalretinin陽性かつMAP2陽性の多くの神経突起を含んだ細胞層が形成されていた(図10H,H’)。この細胞層はコンドロイチン硫酸プロテオグリカン(CSPG)の蓄積が観察される(図10H”)ことからもサブプレートが形成されていることが示唆された。分化誘導開始91日目には、この多層構造を持った大脳皮質組織はさらに分厚くなり(図10I)、この時期においても発達したSox2陽性かつPax6陽性の脳室帯およびTbr2陽性の脳室下帯を有していた(図10J,K,M)。皮質板も同様に分厚くなり(図10I)、Tbr1陽性、Ctip2陽性の深部皮質板の神経細胞だけでなく、Satb2陽性、Brn2陽性の浅部皮質板の神経細胞も多く含まれていることが明らかになった(図10L-O)。この時点においてもCalretinin陽性のサブプレートは皮質板の直下に観察された(図10P)。このように、本培養法によって、図10Qに示すような表層-深部軸に沿ってヒト妊娠中期の大脳皮質に見られる多層構造を有する組織を立体形成することが可能となった。
[実施例9]
大脳皮質の自発軸形成とその外因性の制御
(方法)
 分化誘導42日目まで実施例1の培養条件と同様に培養した。即ち、ヒトES細胞凝集塊を分化誘導18日後までV底96穴プレートにて培養したのち、浮遊凝集塊を細胞非吸着性のペトリ皿(直径9 cm)に移し、分化誘導18日から42日目までの浮遊培養を37℃、5% CO2、40% O2存在下で行った。培養液は実施例1と同じものを用いた。外因性因子の影響を検討する際には24日目から42日目にこの培養液に200 ng/mLのFGF8bを添加し作用させた。いずれの条件においても、凝集塊は42日目に免疫組織染色で解析した。
(結果)
 妊娠初期の大脳皮質脳室帯において発現が背尾側から吻腹側にかけて勾配を形成する背尾側マーカーとしてCoupTF1やLhx2が知られている。一方で逆の勾配を示す吻腹側マーカーとしてSp8が知られている。外因性因子を作用させない場合には、ヒト多能性幹細胞から誘導した大脳皮質脳室帯でも背尾側マーカーのCoupTF1が、片側ではより強く、反対側では弱く発現していた(図11A)。吻腹側マーカーであるSp8の発現はCoupTF1と逆の勾配を示し(図11A)、他の背尾側マーカーであるLhx2の発現はCoupTF1と同じ勾配を示した(図11B,C)。生体内の終脳組織では大脳皮質の背尾側は皮質ヘムに隣接するが、ヒト多能性幹細胞から誘導した大脳皮質脳室帯も、背尾側マーカーのCoupTF1やLhx2が強く発現する領域が皮質ヘムマーカーであるZic1やOtx2を発現する領域と隣接して形成されていた(図11D,E)。これらは、この条件下においてヒト多能性幹細胞から誘導した大脳皮質は自発的に背尾側から吻腹側への極性を自己組織化的に獲得したことを示唆している。
 生体内において大脳皮質の吻側の特異性の獲得にはFGF8が重要であることが知られている。凝集塊の培養では、外因性因子を作用させない場合、背尾側マーカーCoupTF1の発現の弱い吻腹側でFGFシグナルにより生じるリン酸化Erkが強く蓄積した(図11F)。一方、外因性のFGF8bを作用させた場合には、CoupTF1の発現が全体に減弱し、逆にSp8の発現が脳室帯全体に渡って上昇した(図11G-I)。これらは、外因性にシグナルを与えることで、大脳皮質の背腹軸あるいは前後軸に沿った前頭葉と後頭葉などの領域性を選択的に制御して、誘導できることを示唆する。
[実施例10]
(方法)
ヒトES細胞の維持培養と分化
 ヒトES細胞(KhES-1)は日本政府のヒトES細胞研究指針に従って使用した。ヒトES細胞はマイトマイシンCによって不活性化されたMEF細胞をフィーダーとして、DMEM/F12 (Sigma)に 20% (vol/vol) Knockout Serum Replacement (KSR, Gibco/Invitrogen社), 2 mM グルタミン, 0.1 mM非必須アミノ酸溶液 (Gibco/Invitrogen社), 5 ng/ml ヒト組換えbFGF (Wako), 0.1 mM 2-メルカプトエタノール (2-ME), 50 U/ml ペニシリン、 50 μg/ml ストレプトマイシンを加えたものを培地として用いて、37℃, 2% CO存在下で培養を行った。細胞の継代は、ヒトES細胞を0.25%トリプシン、0.1 mg/ml コラゲナーゼIV、20% KSR、1 mM CaCl2を含むPBSで37℃で7分間反応させて、塊のままフィーダー細胞から剥がした。剥がしたヒトES細胞の塊は、緩やかにピペッティングして小さな細胞の塊 (数十個の細胞)にした。細胞の継代は3~4分の1で行った。
 SFEBq培養では、ヒトES細胞を0.05 mg/ml DNase I (Roche) と10 μM Y-27632を含んだTrypLE Express (Gibco/Invitrogen社)で単一細胞に分散し、20 μM Y-27632を含んだ大脳皮質分化用培地を用いて低細胞吸着性の表面コートをしたV底型96ウェルプレートの各ウェルに播種し凝集塊を形成した。大脳皮質分化用培地は、G-MEM培地(Gibco/Invitrogen社)に20%KSR (Knockout Serum Replacement)、0.1mM 非必須アミノ酸溶液(Gibco/Invitrogen社)、1mM ピルビン酸ナトリウム溶液(Sigma社)、0.1 mM 2-メルカプトエタノール、100 U/ml ペニシリン、 100 μg/ml ストレプトマイシンを添加したものを用いた。SFEBq培養を開始した日を0日目とし、IWR1e (Wnt阻害剤) 及び SB431542 (TGFβ 阻害剤)をそれぞれ3 μM 及び 5 μMになるように培養0日目から18日目に添加した。
 ヒトES細胞から誘導した大脳皮質神経上皮は、次の条件で培養を行った。培養18日目に、細胞凝集塊を低細胞吸着性の表面コートをした9 cm ペトリ皿に移し、DMEM/F12培地(Gibco/Invitrogen社)に1%のN2サプリメント (Gibco/Invitrogen社)、1%の脂質濃縮物(Chemically defined lipid concentrate、Gibco/Invitrogen社)、0.25mg/mLのファンギゾン、100 U/ml ペニシリン、 100 μg/ml ストレプトマイシンを添加したものを用いて37℃、5% CO2、40% O2存在下で培養した。培養35日目からは、10%FBS、5 μg/mlのヘパリン、1%のマトリゲル グロースファクター リデュースト(BD Bioscience社)を培地に加えた。細胞凝集塊の中心部分の細胞死を抑制するために、培養35日目以降は2週間毎に実体顕微鏡下で鋭利なピンセットを用いて半割し、培養56日目以降はlumox培養皿(SARSTEDT; O2透過性)を用いた。培養70日目以降は、マトリゲルの濃度を増加させ(最終2%)、B27添加物(Gibco/Invitrogen社)を培地に加えた。
 大脳皮質神経上皮の前方化は、培養24-42日の間にヒト組換えFGF8b (Gibco, 200ng/mL)を添加することにより行った。細胞凝集塊は、培養42日目に固定した。
 大脳皮質神経上皮の腹側化は、培養15-21日の間にヘッジホッグ作動薬SAG (30 nM または500 nM)を添加することにより行った。細胞凝集塊は、培養35日目に固定した。
(結果)
自己組織化した大脳皮質神経上皮の極性
 SFEBq培養法を改良するために (図18 A 及び A′)、分散した9000個のヒトES細胞を、低細胞吸着性のV底型96ウェルプレート (文献15) の各ウェルに播種し、Rho-キナーゼ阻害剤(Y-27632)(文献16) を含んだGMEM-KSR培地で培養を行った (図18A)。その後、細胞塊を低細胞吸着性9cm培養皿に移し、40% O2存在下で培養した。脂質濃縮物(18日目)、10%FBS、ヘパリン、低濃度のマトリゲル(1%)(35日目)の添加は脳室帯の長期間の維持培養のために、最初の18日間のTGFβ阻害剤(SB43152)とWnt阻害剤(IWR1e)の添加は終脳領域の効率的な誘導のために添加した。
 この改良した培養条件下において、すべてのヒトES細胞由来細胞塊は培養26日目にはfoxg1::venus(終脳マーカー) (文献2) 陽性の神経上皮を有し (図12A 及び 図18B)、培養34日目には全細胞の75%以上の細胞がfoxg1::venusを発現した。一方、以前の方法ではfoxg1::venus陽性細胞は全細胞の30-40%の効率であった (図12B 及び 図18C)。foxg1::venus陽性の神経上皮は、内部に脳室様の空洞を有した半球上の神経上皮様構造(多列円柱上皮)を示した (図12C; 培養42日目)。これらの神経上皮構造は、内腔側にPax6陽性およびSox2陽性の細胞密度が高い細胞層を有し (図12 D 及び E) 、最も内腔の部分にリン酸化Histone H3陽性の有糸分裂細胞を認めた (図12F)。これらの構造はヒト妊娠初期の大脳皮質の脳室帯に類似していた。この脳室帯に類似した細胞層の外側には、有糸分裂後の神経細胞のマーカーであるTuj1を発現し (CP; 図12G)、大脳皮質の初期皮質板マーカーであるCtip2とTbr1を発現していた (文献1, 2) (図12H 及び 図18D)。またこれらの神経細胞層はReelin陽性カハールレチウス細胞を含み (図12I)、表層近くにはLamininを多く含んだ層を有していた (図12J)。つまりヒトES細胞由来の大脳皮質神経上皮内に、自己組織化した層構造が形成されていた。
 興味深いことに、自己組織化した大脳皮質神経上皮は高頻度に軸極性を有していた。胎児脳において後尾側から吻腹側に発現勾配を示す (図18 E 及び F) CoupTF1の脳室帯での発現は、ヒトES細胞由来の神経上皮の片側で発現が高く (図12K, 赤)、反対に吻腹側のマーカーであるSp8の発現は、CoupTF1とは相反する発現勾配を示した (図12K, 白)。この現象と一致するように、Lhx2の発現(生体内では背側から腹側にかけて発現勾配を示す)もCoupTF1と同じ側で強い発現を示した (図12L 及び 図18G)。CoupTF1とSp8の相反する発現勾配は培養35日目には既に観察されていた。マウス胎児では、大脳皮質の後尾側は、将来海馬領域の海馬采を生み出す皮質ヘムに隣接している (図18 H-J)。この現象と一致するように、皮質マーカーであるOtx2とZic1は大脳皮質神経上皮のCoupTF1が強く発現する側に隣接する領域で発現していた (図12M 及び 図18K)。
 これらの結果は、ヒトES細胞由来の神経上皮は皮質内の後尾側から吻腹側の極性を自発的に獲得することを示している。マウス胎児では、FGF8が大脳皮質の吻側化を誘導する(文献17)。興味深いことに、リン酸化Erk(FGFシグナルの下流で機能する)の強いシグナルが、ヒトES細胞由来の大脳皮質神経上皮ではCoupTF1の発現と逆側で観察された (図12N)。また、ヒトES細胞由来の大脳皮質に外因性のFGF8を作用させると、CoupTF1の発現が失われ、Sp8の発現が広範囲に誘導された (図12 O 及び P 及び 図18L)。これらの結果はFGF-MAPKシグナルがこの自己組織化に関与していることを示している。
自己組織化した大脳皮質神経上皮の領域特異的な湾曲を伴う形態変化
 ヒトES細胞由来の神経上皮(N-cadherin陽性かつSox2陽性)において、終脳マーカーFoxg1の発現は培養18-20日くらいに観察され始める。神経上皮の頂端側(aPKC陽性)は細胞塊の外周に位置した (図13A, 下)。培養21日目にはこの神経上皮は部分的に非連続的にいくつかの大きな神経上皮に分かれた (図13A)。その後、これらの分割された大脳皮質神経上皮は頂端側がくぼんだ湾曲を示した (図13 B-D 及び 図19A, 上)。
 大脳皮質神経上皮のそれぞれの分割された部分は非対称性の湾曲構造を示した。神経上皮の片側は回転端の特徴を持ち (図13 B-D, 矢印)、もう片側は丸い特徴がある。活性化ミオシン(リン酸化MLC2で示される)は大脳皮質領域の頂端側の表層に丸い側も含めて一様に蓄積した (図13C)。ライブイメージングでは、大脳皮質領域の回転端が反対側に近づき、最終的に接着した(図13 E 及び F)。この過程において大脳皮質領域神経上皮の本体は回転端と同じ方向に動いていた (図13 E-H)。この回転を伴った形態変化は最終的に培養27日目に内腔が内側に位置する半球状の大脳皮質構造を形成した(図13I 及び 図19A, 下)。
 大脳皮質領域の回転を伴う形態変化は、頂端側の収縮に必要なRho-ROCK-myosin経路の阻害剤であるRock阻害剤の添加により抑制された (図13 J-L)。回転端の神経上皮では後尾側マーカー(Otx2およびCoupTF1; 図13 M 及び N)が発現していることから、回転端は大脳皮質神経上皮の後尾側と考えられた。
 神経上皮を弱くヘッジホッグ作動薬(培養15-20日目に30 nM SAGを作用させる)で腹側化すると (文献18, 19)、foxg1::venusを発現する神経上皮の多くの部分がLGEマーカーであるGsh2 (文献20)を発現した (図13 O, 矢頭, 及び 図19 B)。生体内で見られるように、多量のGAD65陽性GABA作動性神経細胞がLGE神経上皮の直下に誘導された (文献19) (図11P, 赤)。一方で終脳神経上皮の残りの領域の多くは大脳皮質のマーカーであるPax6陽性であった (図13 Q)。高濃度のSAG添加によって、Pax6やGsh2の発現が抑制され、MGEマーカーであるNkx2.1が誘導された (図19 B 及び C)。重要なことに、弱いSAGを作用させた神経上皮は、生体内で見られるように、大脳皮質(Pax6陽性)とLGE(Gsh2陽性)の領域が連続的に形成され、このことは改良した培養条件下では、自己組織化によって、ひとつの凝集塊の中で外套と外套下部が連続的に形成されていることを示している。この連続した神経上皮の中で、大脳皮質神経上皮の回転端 (図13 O-Q, 矢印)は大脳皮質―LGE連結部とは反対側に位置し、これは回転端および非回転端がそれぞれ大脳皮質神経上皮の背側と腹側に相当することと一致している。
 胎児では、外套神経上皮の強い湾曲によって発生中の大脳皮質が外転するが、胎児の外套そのものは、その端が他の組織によって固定されているために動かない。胎児神経上皮の皮質正中部(海馬領域)から大脳皮質背側の領域の湾曲は特に強力である (図17 A)。本立体培養系では、ヒトES細胞由来の大脳皮質神経上皮の後尾側の端が固定されずに動くことができるので回転を伴う形態変化を起こす。これは胎児の大脳皮質背側の強い湾曲作用を反映していると推察することが出来る (図19 D)。
 これらの結果は、ヒトES細胞由来の大脳皮質神経上皮が自発的に後尾から吻腹にかけて軸極性を獲得し、それに沿った非対称的な回転を伴う形態変化を起こすことでドーム様の神経上皮を自発的に形成することを示している。このような形態変化によって、神経上皮の頂端側表面が大脳皮質半球の内側に位置するようになる。ライブイメージングでは、胎児の脳室帯で見られるように、神経幹細胞が核の上下運動を繰り返しながら内腔面で頻繁に分裂していた (図13 R, 及び 図19 E;この時期の分裂は大部分が対称分裂であった。)。
3つの皮質神経細胞層への形態的な分離
 改良した培養条件下では、ヒトES細胞由来の大脳皮質神経上皮は培養42日以降も成長を続けた。培養70日ではヒトES細胞由来の大脳皮質神経上皮の厚さは200μm以上になった (図14 A 及び A′)。この時期になると、神経上皮は形態的に脳室帯、脳室下帯、中間帯、皮質板、辺縁帯の多層構造を示した (図14 B-G 及び 図20 A 及び B)。辺縁帯の最表層にはLamininが蓄積し、リーリン陽性の細胞(CR細胞)を含んでいた (図14 C 及び C′)。辺縁帯の直下には皮質板が形成され、Tbr1陽性、Ctip2陽性の深部皮質板の神経細胞を含んでいた (図14 D 及び D′)。この時期には浅部皮質板のマーカーであるSatb2 (文献21)を発現した神経細胞は少なかった (図14 E)。内腔側の脳室帯は、培養70日目には約100μmの厚さで、Pax6陽性およびSox2陽性の神経幹/前駆細胞 (図14 F 及び F′)、または放射状グリア (文献22)と呼ばれる細胞を含んでいた。その上部にTbr2陽性の細胞から成る脳室下帯が形成されていた (図14 G)。
 この時期になると、皮質板と脳室下帯の間は細胞がまばらな、妊娠中期の中間帯と良く似た領域が発達していた。皮質板の直下にはCalretinin陽性で、中間帯に多くのMAP2陽性の神経突起を伸ばした一層の細胞層が形成されていた (図14 H 及び H′ 及び 図20 C 及び D)。これらの特徴は、ヒトの胎児の大脳皮質に顕著に見られるサブプレートにある神経細胞(視床と大脳皮質を連結する初期パイオニア神経細胞)と類似している (文献23-25)。胎児のサブプレートとその直下の中間帯にはコンドロイチン硫酸プロテオグリカン(CSPG)の蓄積が観察される (図20 F, 右下, 括弧) (文献26)。同様に、ヒトES細胞由来大脳皮質神経上皮の同じ領域にも強いCSPGの蓄積が観察された (図14 H″及び 図20 E)。これらの結果はヒトES細胞由来の大脳皮質神経上皮が、皮質板や辺縁帯だけでなくサブプレートや中間帯も、内腔から頂端に向かって胎児と同じ並びで自己組織化し得ることを示している。この時期には、大脳皮質で明らかなGAD65陽性の介在神経細胞やTAG1陽性の皮質下行性の神経軸索の蓄積は観察されなかった (図20 G)。
 培養91日目には、大脳皮質神経上皮の厚さは300-350μmになり、この時期にもよく発達した脳室帯を有していた (図14 I-K 及び 図20 H 及びI)。皮質板も分厚くなり(150μm程度;図14 I)、Tbr1陽性、Ctip2陽性の深部皮質板の神経細胞だけでなく、浅部皮質板の神経細胞 (Satb2陽性、Brn2陽性)も多く含んでいた(図14 L-N 及び 図20 J)。サブプレートの神経細胞(Calretinin陽性) はこの時期にも皮質板の直下に観察された(図14 O)。
 長期間培養することによって見られた形態的な層構造の分離 (図14 Pに要約)は、ヒト胎児大脳皮質の妊娠中期の始めに見られる組織に類似している (文献25, 27)。さらに、ヒトES細胞由来の皮質板の中で、表層神経細胞 (Satb2陽性、Brn2陽性)が深層神経細胞 (Tbr1陽性、Ctip2陽性)よりも優先的に表層側に位置していた (図15 A-H)。さらに、培養50日目にEdUおよび70日目にBrdUを用いて細胞を1日ラベルすると、培養91日目にはEdUとBrdUでラベルされた細胞が優先的にそれぞれ深層と表層側に位置していた(図15 I-L)。これらの結果は胎児の大脳皮質発生時のインサイド-アウトパターン(文献5, 6)、つまり遅生まれの大脳皮質神経細胞は外側に、早生まれの大脳皮質神経細胞は内側に位置するというパターンに類似して神経細胞が位置する傾向を持っていることを示している。この考えに一致するように、培養112日では、成熟した神経細胞のマーカーであるCaMKIIαがより優先的に、ヒトES細胞由来の大脳皮質の内腔側の2/3の部分に観察され、その領域はSatb2ではなくTbr1を主に発現していた (図15 M-O 及び 図20 K)。実際、細胞レベルでも、CaMKIIα陽性の神経細胞の大部分はSatb2ではなくTbr1を共発現していた(図20 L 及び M; 図15 Pに要約)。
oSVZにおけるヒト特有の神経幹/前駆細胞の出現
 最後に、長期間培養したヒトES細胞由来大脳皮質における大脳皮質神経幹/前駆細胞の動態を検討した。過去のin vivo研究によって、発生がより進んだ時期では内腔側の神経幹細胞の非垂直の分裂が増加し、この非対称的な分裂によって頂端側の神経前駆細胞が生み出されることが明らかになっている (文献28, 29)。本培養において、培養70日での内腔側神経幹細胞は垂直の分裂面(60-90度)を優位に示した (図16 A-C)。この分裂では内腔表面に対して平行に娘細胞の分裂が起こる。一方、培養91日では分裂中の神経幹細胞(リン酸化Vimentin陽性)は非垂直の分裂をより高頻度に示した (図16 D-F)。
 培養70および91日の両方で、SVZにはTbr2陽性、Sox2陰性、Pax6陰性の多くのIntermediate progenitorsが含まれていた (図14 G 及び M)。興味深いことに、培養91日では、SVZの外側にIntermediate progenitorsとは異なる種類の、リン酸化Vimentin陽性かつTbr2陰性、Sox2陽性、Pax6陽性である神経幹/前駆細胞が蓄積していた (図16 G-G″ 及び 図21 A-C)。この種類の細胞は培養70日での割合は比較的小さく、培養91日で顕著になった (図16 H)。培養91日には、このTbr2陰性かつSox2陽性の細胞はより頂端側に位置し、一方でTbr2陽性かつSox2陰性のIntermediate progenitorsはより内腔側に位置していた (図16 I, 右)。興味深いことに、これらの神経幹/前駆細胞は、早期の神経分化を誘導することにより内腔側の神経幹/前駆細胞を強力に減少させるNotchシグナル阻害剤に対して異なる反応性を示した。Notchシグナル阻害剤はTbr2陽性かつSox2陰性のIntermediate progenitorsを増加させたが、Tbr2陰性かつSox2陽性の細胞はその処理後にはほとんど残っていなかった (図21 D-F)。
 最近の研究では、発生が進んだ時期のヒト大脳皮質形成oSVZにはTbr2陽性のIntermediate progenitorsとは種類の異なるTbr2陰性、Sox2陽性、Pax6陽性の神経幹/前駆細胞が蓄積していることが報告されている (図21 G) (文献11, 12)。oRG(またはOSVZ幹細胞)と呼ばれるこれらの神経幹/前駆細胞 (文献11, 12) は、ヒト大脳皮質に特徴的な表層神経細胞の膨大な数の産生に寄与していると考えられている。このoRG細胞は頂端側表層に向けた突起を有するが、内腔の神経幹細胞とは異なり内腔側への突起は持っていない。同様に培養91日目のヒトES細胞由来の大脳皮質神経上皮のTbr2陰性、Sox2陽性、Pax6陽性の神経幹/前駆細胞は頂端側の突起を持つが、内腔側への突起は持っていない (図16 J-K′ 及び 図21 H, H′, 及び I)。これらの細胞はSVZでもpericentrin陽性の基底小体を細胞体の中に持っている (図21 J)。これは内腔近傍に基底小体を有する内腔側の神経幹細胞とは異なる。生体内のoRGと同様に、ヒトES細胞由来のoRG様の細胞は水平に分裂する傾向を示した(図16 L 及び M)。Tbr2陽性の細胞(リン酸化Vimentin陽性)は、生体内のIntermediate progenitorsと同様に頂端側への突起は持っていなかった(図21 K-K″)。
 まとめると、これらの結果は自己組織化された大脳皮質神経上皮はヒトの大脳皮質形成のより発生の進んだ時期に見られるような、oRG様の細胞の出現も含めて神経幹/前駆細胞の動態を模倣していることを示している。
 この研究で、ヒト胎児脳で見られる軸極性と多層構造の分離を、ヒトES細胞由来の大脳皮質神経上皮が内在性のプログラムによって自己組織化でき得ることが示された。本発明の培養系では、ヒトES細胞由来の大脳皮質神経上皮は13週以上もの長期間において浮遊培養条件下で健康的に成長することが出来る。そして、約350μmの厚さになり、ヒト妊娠中期 (胎生11週から)の胎児大脳皮質で見られる多層構造を有するようになる(文献30)。この結果は、従前の3次元培養の限界、つまりヒト妊娠初期に相当する成熟さの組織までしか大脳皮質神経上皮を維持できなかったことと明らかに異なる。本発明の培養法は、さらにヒト妊娠中期の大脳皮質発生に特徴的な現象、つまり培養91日(13週)でのoRG様の神経幹/前駆細胞の出現までも再現することが出来た。これらの結果は、本発明の方法における自己組織化した組織の発生スピードは、胎児の脳の発生とほぼ同等であることも示唆している。
 この培養で重要な効果の一つは、長い培養期間において継続的に拡大する神経上皮の中でも、内在的にプログラムされた大脳皮質の発生が実行されるということである。皮質内での極性形成が自発的に形成されるメカニズムは将来の研究に向けて興味深い問題である。さらにヒトES細胞由来の大脳皮質神経上皮は回転を伴うような形態変化は、自発的に形成された極性に沿った非対称性の動きを示した。
 大脳皮質神経上皮の極性に加えて、本発明の培養系は終脳全体の背腹軸の特異性に関する研究に対しても用いることが出来る。特に部分的に腹側化させた条件 (図13 O-Q),では、ヒトES細胞由来の神経上皮の自己組織化によって、生体内で見られるように大脳皮質とLGE (線条体原基)を隣接した位置関係で再現した。一方でより強力なヘッジホッグシグナルによってMGEの形成を誘導した。
 この試験で示した改良された培養系では、大脳皮質の複雑な層形成、つまり脳室帯、脳室下帯、中間帯、サブプレート、皮質板、辺縁帯の形成も再現することが可能になった。サブプレートは霊長類では特に優位な構造(時に、VII層と呼ばれる)で、大脳皮質の初期神経細胞 (pioneer neuron)で形成されると考えられている (文献24, 25)。しかしながらサブプレートは胎児脳では一時的にのみ出現する構造で、サブプレートに派生した一部が成体脳の白質の介在神経細胞に存在する (文献33)。サブプレートは生後には無くなってしまうため、その研究は特にヒトにおいては容易ではなく、それ故に我々の系はこの理解が進んでいない神経細胞層の研究では重要であろう。さらに、我々の培養系は、滑脳症の原因を含めて、ヒト胎児大脳皮質のインサイド-アウトの層形成の研究にも応用できるであろう。
 最後に、本発明の培養系は、ヒトの大脳皮質形成でのoRG神経幹/前駆細胞の役割を研究する上で大きな利点を持っている。しわのあるヒトの大脳皮質にとって、何度も分裂を繰り返しながら多くの表層神経細胞を生み出すこの神経幹/前駆細胞を有することは、恐らく大きな利点だと考えられる。これまでに、oRGと定義付けるための特異的なマーカーは報告されていないし、oRGと内腔側の神経幹細胞 (どちらもSox2陽性、Pax6陽性、Tbr2陰性)を区別するには、細胞形態と、その動きと場所に主に依存している。それ故に、位置関係が失われてしまう分散培養を用いたoRGの研究は極めて限定的になってしまっている。一方で、本発明の培養系は、発生中のヒトの大脳皮質の3次元の位置関係を有するので、この点で大きな利点を持っている。ごく最近、ヒト多能性幹細胞由来の多層構造を有した大脳皮質組織の中で、oRGが誘導できたという同様の結果が報告された (文献34)。この研究は確率論的に脳領域の特異性が得られる非選択的な分化方法を用いている(我々は再現性の高い大脳皮質特異的な分化法である)。
 本発明を好ましい態様を強調して説明してきたが、好ましい態様が変更され得ることは当業者にとって自明であろう。本発明は、本発明が本明細書に詳細に記載された以外の方法で実施され得ることを意図する。したがって、本発明は添付の「請求の範囲」の精神および範囲に包含されるすべての変更を含むものである。
 ここで述べられた特許および特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
参考文献
   1 Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 8:427-437.
   2 Hebert JM, Fishell G. (2008) The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 9:678-685.
   3 Bielle F, et al. (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci. 8:1002-1012.
   4 Bystron I, Blakemore C, Rakic P. (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 9:110-122.
   5 Rakic P. (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science. 183:425-427. 
   6 Shen Q. et al. (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci9:743-751.
   7 Eiraku M. et al. (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3: 519-532.
   8 Watanabe K. et al. (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8:288-296.
   9 Nasu M, et al. (2012) Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS One 7:e53024.
   10 Mariani J. et al. (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci USA.109:12770-12775.
   11 Hansen DV, Lui JH, Parker PR, Kriegstein AR. (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554-561.
   12 Fietz SA, et al.(2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 13:690-699. 
   13 Wang X, Tsai JW, LaMonica B, Kriegstein AR. (2011) A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci. 14:555-561.
   14 Shitamukai A, Konno D, Matsuzaki F. (2011) Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci. 31:3683-3695.
   15 Nakano T, et al.(2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771-785.
   16 Watanabe K, et al. (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnol. 25:681-686.
   17 Storm EE, et al. (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133:1831-1844.
   18 Fuccillo M, Rallu M, McMahon AP, Fishell G (2004) Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development 131:5031-5040.
   19 Danjo T, et al. (2011) Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci. 31:1919-1933.
   20 Yun K, Potter S, Rubenstein JL (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128:193-205.
   21 Alcamo EA, et al.(2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57:364-377. 
   22 Doetsch F. (2003) The glial identity of neural stem cells. Nat Neurosci. 6:1127-1134.
   23 Kostovic I, Rakic P. (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol. 297:441-470.
   24 Wang WZ, et al.(2010) Subplate in the developing cortex of mouse and human. J Anat. 217:368-380. 
   25 Judas M, Sedmak G, Kostovic I. (2013) The significance of the subplate for evolution and developmental plasticity of the human brain. Front Hum Neurosci. 7:423.
   26 Sheppard AM, Pearlman AL. (1997) Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J Comp Neurol. 378:173-179.
   27 Bayer SA and Altman J. (2005) Atlas of Human Central Nervous System Development, volume 3: The Human Brain During the Second Trimester (CRC Press, Boca Raton)
   28 LaMonica BE, Lui JH, Hansen DV, Kriegstein AR. (2013) Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat Commun. 4:1665. 
   29 Taverna E, Huttner WB. (2010) Neural progenitor nuclei IN motion. Neuron 67:906-914.
   30 Bayatti N, et al. (2008) A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex 18:1536-1548.
   31 Letinic K, Zoncu R, Rakic P. (2002) Origin of GABAergic neurons in the human neocortex. Nature.417:645-649.
   32 Rakic S, Zecevic N. (2003) Emerging complexity of layer I in human cerebral cortex. Cereb Cortex.13:1072-1083.
   33 Judas M, Sedmak G, Pletikos M. (2010) Early history of subplate and interstitial neurons: from Theodor Meynert (1867) to the discovery of the subplate zone (1974). J Anat. 217(4):344-367.
   34 Lancaster MA, et al. (2013) Cerebral organoids model human brain development and microcephaly. Nature. 501:373-379. 
   35 Bayer SA and Altman J. (2004) Atlas of Human Central Nervous System Development, volume 2: The Human Brain During the Third Trimester (CRC Press, Boca Raton)
 本発明によれば、生体内の終脳と同様の高次構造を有する終脳若しくはその部分組織(大脳皮質、大脳基底核、海馬、脈絡膜等)、或いはその前駆組織を、インビトロにおいて多能性幹細胞誘導することができる。従って、本発明は、脳神経領域における再生医療の実施に有用である。
 本出願は日本で出願された特願2013-242394(出願日:2013年11月22日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (20)

  1.  多能性幹細胞の凝集塊を、Wntシグナル阻害剤及びTGFβシグナル阻害剤の存在下で浮遊培養することにより、終脳マーカー陽性凝集塊を得ること、及び該終脳マーカー陽性凝集塊を、高酸素分圧条件下で更に浮遊培養することを含む、終脳若しくはその部分組織、或いはその前駆組織を含む細胞凝集塊の製造方法。
  2.  得られる細胞凝集塊が、大脳皮質、大脳基底核、海馬及び脈絡膜からなる群から選択されるいずれかの終脳部分組織、又はその前駆組織を含む、請求項1記載の製造方法。
  3.  高酸素分圧条件下での浮遊培養を、Wntシグナル増強剤の存在下で行う、請求項1又は2記載の製造方法。
  4.  高酸素分圧条件下での浮遊培養を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で行う、請求項1又は2記載の製造方法。
  5. (I)多能性幹細胞の凝集塊を、Wntシグナル阻害剤及びTGFβシグナル阻害剤の存在下で浮遊培養することにより、終脳マーカー陽性凝集塊を得ること、
    (II)(I)で得られた該終脳マーカー陽性凝集塊を、Wntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の存在下で更に浮遊培養すること、及び
    (III)(II)で得られた細胞凝集塊をWntシグナル増強剤及び骨形成因子シグナル伝達経路活性化物質の不在下で更に浮遊培養すること
    を含む、終脳若しくはその部分組織、或いはその前駆組織を含む細胞凝集塊の製造方法。
  6.  製造される細胞凝集塊が、連続した神経上皮中に、大脳皮質組織又はその前駆組織、脈絡膜組織又はその前駆組織、及び海馬組織又はその前駆組織を含む、請求項5記載の製造方法。
  7.  製造される細胞凝集塊が、連続した神経上皮中に、歯状回組織又はその前駆組織、及びアンモン角組織又はその前駆組織を含む、海馬組織またはその前駆組織を含む、請求項5記載の製造方法。
  8.  海馬組織または前駆組織が、連続した神経上皮中に、皮質ヘムを更に含む、請求項7記載の製造方法。
  9.  製造される細胞凝集塊が、アンモン角組織又はその前駆組織を含む、請求項5記載の製造方法。
  10.  (II)及び(III)における浮遊培養を高酸素分圧条件下で行う、請求項5記載の製造方法。
  11.  細胞凝集塊を、shhシグナル作動薬で処理することを含む、請求項1又は2記載の製造方法。
  12.  細胞凝集塊を、FGF8で処理することを含む、請求項1又は2記載の製造方法。
  13.  得られる細胞凝集塊が、表層から深部に向かって、辺縁帯、皮質板、サブプレート、中間帯、脳室下帯及び脳室帯を含む多層構造を有する、大脳皮質組織又はその前駆組織を含む、請求項2記載の製造方法。
  14.  得られる細胞凝集塊が、大脳基底核又はその前駆組織を含む、請求項11記載の製造方法。
  15.  得られる細胞凝集塊が、吻側化大脳皮質又はその前駆組織を含む、請求項12記載の製造方法。
  16.  多能性幹細胞が胚性幹細胞又は誘導多能性幹細胞である、請求項1~15のいずれか1項記載の製造方法。
  17.  多能性幹細胞がヒト由来である、請求項1~16のいずれか1項記載の製造方法。
  18.  浮遊培養をフィーダー細胞の非存在下で行う、請求項1~17のいずれか1項記載の製造方法。
  19.  請求項1~18のいずれか1項記載の製造方法により得られる細胞凝集塊。
  20.  請求項1~18のいずれか1項記載の製造方法により得られる、海馬又はその前駆組織を含む細胞凝集塊を分散すること、及び分散した細胞を更に接着培養し、該細胞から成熟した海馬ニューロンを誘導することを含む、成熟した海馬ニューロンの製造方法。
PCT/JP2014/080966 2013-11-22 2014-11-21 終脳又はその前駆組織の製造方法 WO2015076388A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2015549212A JP6499084B2 (ja) 2013-11-22 2014-11-21 終脳又はその前駆組織の製造方法
EP14863861.2A EP3072960B1 (en) 2013-11-22 2014-11-21 Method for manufacturing telencephalon or progenitor tissue thereof
CA2931278A CA2931278A1 (en) 2013-11-22 2014-11-21 Method for manufacturing telencephalon or progenitor tissue thereof
ES14863861T ES2732730T3 (es) 2013-11-22 2014-11-21 Método para producir telencéfalo o tejido progenitor del mismo
MYPI2016701809A MY188836A (en) 2013-11-22 2014-11-21 Method for manufacturing telencephalon or progenitor tissue thereof
US15/037,926 US11198850B2 (en) 2013-11-22 2014-11-21 Method for manufacturing telencephalon or progenitor tissue thereof
CN201480072070.6A CN106103702B (zh) 2013-11-22 2014-11-21 制备端脑或其前体组织的方法
AU2014353973A AU2014353973B2 (en) 2013-11-22 2014-11-21 Method for manufacturing telencephalon or progenitor tissue thereof
KR1020167016716A KR102317610B1 (ko) 2013-11-22 2014-11-21 종뇌 또는 그 선구 조직의 제조 방법
US17/549,468 US20220098550A1 (en) 2013-11-22 2021-12-13 Method for manufacturing telencephalon or progenitor tissue thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-242394 2013-11-22
JP2013242394 2013-11-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/037,926 A-371-Of-International US11198850B2 (en) 2013-11-22 2014-11-21 Method for manufacturing telencephalon or progenitor tissue thereof
US17/549,468 Continuation US20220098550A1 (en) 2013-11-22 2021-12-13 Method for manufacturing telencephalon or progenitor tissue thereof

Publications (1)

Publication Number Publication Date
WO2015076388A1 true WO2015076388A1 (ja) 2015-05-28

Family

ID=53179647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080966 WO2015076388A1 (ja) 2013-11-22 2014-11-21 終脳又はその前駆組織の製造方法

Country Status (10)

Country Link
US (2) US11198850B2 (ja)
EP (1) EP3072960B1 (ja)
JP (4) JP6499084B2 (ja)
KR (1) KR102317610B1 (ja)
CN (2) CN111269885A (ja)
AU (1) AU2014353973B2 (ja)
CA (1) CA2931278A1 (ja)
ES (1) ES2732730T3 (ja)
MY (1) MY188836A (ja)
WO (1) WO2015076388A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085909A (ja) * 2015-11-02 2017-05-25 学校法人北里研究所 微乳頭構造を有する肺腺癌の原発巣に由来するヒト細胞株及びその利用
WO2017126551A1 (ja) * 2016-01-22 2017-07-27 国立大学法人名古屋大学 ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
US10174289B2 (en) 2014-05-28 2019-01-08 Children's Hospital Medical Center Methods and systems for converting precursor cells into gastric tissues through directed differentiation
WO2020100481A1 (ja) 2018-11-15 2020-05-22 Jsr株式会社 脳オルガノイドの製造方法
JP2020517283A (ja) * 2017-04-25 2020-06-18 イーエムベーアー−インスティテュート フュール モレクラレ バイオテクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 二分化または多分化オルガノイド
US10781425B2 (en) 2010-05-06 2020-09-22 Children's Hospital Medical Center Methods and systems for converting precursor cells into intestinal tissues through directed differentiation
JP2021072818A (ja) * 2013-11-22 2021-05-13 国立研究開発法人理化学研究所 終脳又はその前駆組織の製造方法
WO2021090877A1 (ja) * 2019-11-06 2021-05-14 Jsr株式会社 脳オルガノイド及びその使用
WO2021100829A1 (ja) 2019-11-20 2021-05-27 大日本住友製薬株式会社 神経系細胞の凍結方法
WO2021100830A1 (ja) 2019-11-20 2021-05-27 大日本住友製薬株式会社 細胞凝集体の凍結方法
US11066650B2 (en) 2016-05-05 2021-07-20 Children's Hospital Medical Center Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
WO2022265086A1 (ja) 2021-06-17 2022-12-22 国立大学法人京都大学 ヒト多能性幹細胞由来大脳皮質細胞製剤の製造方法
US11584916B2 (en) 2014-10-17 2023-02-21 Children's Hospital Medical Center Method of making in vivo human small intestine organoids from pluripotent stem cells
US11767515B2 (en) 2016-12-05 2023-09-26 Children's Hospital Medical Center Colonic organoids and methods of making and using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058892B1 (fr) * 2016-11-23 2021-04-09 Univ Bordeaux Unite de tissu neural et utilisation d'une telle unite pour l'implantation dans le systeme nerveux d'un mammifere
EP3658666A4 (en) * 2017-07-28 2021-04-28 Memorial Sloan-Kettering Cancer Center ESTABLISHMENT OF A TOPOGRAPHIC ORGANIZATION IN A THREE-DIMENSIONAL TISSUE CULTURE
US11365390B2 (en) 2017-12-19 2022-06-21 Xcell Biosciences, Inc. Methods of modulating cell phenotype by way of regulating the gaseous environment
US20220235322A1 (en) * 2019-05-30 2022-07-28 President And Fellows Of Harvard College Reproducible brain organoids and methods of making
EP4206320A1 (en) 2020-08-21 2023-07-05 JSR Corporation Method of culturing human induced pluripotent stem cells, culture of human induced pluripotent stem cells, and method of producing cerebral organoids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030679A1 (en) 1997-01-10 1998-07-16 Life Technologies, Inc. Embryonic stem cell serum replacement
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
WO2009148170A1 (ja) * 2008-06-06 2009-12-10 独立行政法人理化学研究所 幹細胞の培養方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1772514A3 (en) 1999-07-12 2007-06-20 Walter Gehring Manipulation of tissue or organ type using the notch pathway
JP5141016B2 (ja) 2004-06-18 2013-02-13 独立行政法人理化学研究所 無血清浮遊培養による胚性幹細胞の神経分化誘導法
US8883502B2 (en) * 2010-09-09 2014-11-11 The Regents Of The University Of California Expandable cell source of neuronal stem cell populations and methods for obtaining and using them
JP2016520291A (ja) * 2013-03-14 2016-07-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア invitroでの内側神経節隆起前駆細胞の作製
MY188836A (en) 2013-11-22 2022-01-07 Sumitomo Chemical Co Method for manufacturing telencephalon or progenitor tissue thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030679A1 (en) 1997-01-10 1998-07-16 Life Technologies, Inc. Embryonic stem cell serum replacement
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
WO2009148170A1 (ja) * 2008-06-06 2009-12-10 独立行政法人理化学研究所 幹細胞の培養方法

Non-Patent Citations (65)

* Cited by examiner, † Cited by third party
Title
"Manipulating the Mouse Embryo A Laboratory Manual, Second Edition,", 1994, COLD SPRING HARBOR LABORATORY PRESS
AKIRA IRITANI ET AL., TANPAKUSHITSU KAKUSAN KOSO, vol. 44, 1999, pages 892
ALCAMO EA ET AL.: "Satb2 regulates callosal projection neuron identity in the developing cerebral cortex", NEURON, vol. 57, 2008, pages 364 - 377
BAGUISI ET AL., NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 456
BAYATTI N ET AL.: "A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone", CEREB CORTEX, vol. 18, 2008, pages 1536 - 1548
BAYER SA; ALTMAN J.: "The Human Brain During the Second Trimester", vol. 3, 2005, CRC PRESS, article "Atlas of Human Central Nervous System Development"
BAYER SA; ALTMAN J.: "The Human Brain During the Third Trimester", vol. 2, 2004, CRC PRESS, article "Atlas of Human Central Nervous System Development"
BIELLE F ET AL.: "Multiple origins of Cajal-Retzius cells at the borders of the developing pallium", NAT NEUROSCI, vol. 8, 2005, pages 1002 - 1012
BYSTRON I; BLAKEMORE C; RAKIC P.: "Development of the human cerebral cortex: Boulder Committee revisited", NAT REV NEUROSCI, vol. 9, 2008, pages 110 - 122
BYSTRON I; BLAKEMORE C; RAKIC P.: "Development of the human cerebral cortex: Boulder Committee revisited", NAT REV NEUROSCI., vol. 9, 2008, pages 110 - 122
CELL, vol. 126, 2006, pages 663 - 676
CIBELLI ET AL., SCIENCE, vol. 280, 1998, pages 1256
DANJO T ET AL.: "Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals", J NEUROSCI, vol. 31, 2011, pages 1919 - 1933
DOETSCH F.: "The glial identity of neural stem cells", NAT NEUROSCI, vol. 6, 2003, pages 1127 - 1134
EIRAKU M. ET AL.: "Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals", CELL STEM CELL, vol. 3, 2008, pages 519 - 532
FIETZ SA ET AL.: "OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling", NAT NEUROSCI., vol. 13, 2010, pages 690 - 699
FUCCILLO M; RALLU M; MCMAHON AP; FISHELL G: "Temporal requirement for hedgehog signaling in ventral telencephalic patterning", DEVELOPMENT, vol. 131, 2004, pages 5031 - 5040
HANSEN DV; LUI JH; PARKER PR; KRIEGSTEIN AR: "Neurogenic radial glia in the outer subventricular zone of human neocortex", NATURE, vol. 464, 2010, pages 554 - 561
HEBERT JM; FISHELL G.: "The genetics of early telencephalon patterning: some assembly required", NAT REV NEUROSCI, vol. 9, 2008, pages 678 - 685
HEBERT JM; FISHELL G: "The genetics of early telencephalon patterning: some assembly required", NAT REV NEUROSCI, vol. 9, 2008, pages 678 - 685
JUDAS M; SEDMAK G; KOSTOVIC I.: "The significance of the subplate for evolution and developmental plasticity of the human brain", FRONT HUM NEUROSCI, vol. 7, 2013, pages 423
JUDAS M; SEDMAK G; PLETIKOS M.: "Early history of subplate and interstitial neurons: from Theodor Meynert (1867) to the discovery of the subplate zone", J ANAT., vol. 217, no. 4, 2010, pages 344 - 3 67
KADOSHIMA, T. ET AL.: "Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell -derived neocortex", PNAS, vol. 110, no. 50, 10 December 2013 (2013-12-10), pages 20284 - 20289, XP055234150 *
KIM ET AL., CELL STEM CELL, vol. 1, 2007, pages 346 - 352
KIM ET AL., SCIENCE, vol. 315, 2007, pages 482 - 486
KOSTOVIC I; RAKIC P.: "Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain", J COMP NEUROL, vol. 297, 1990, pages 441 - 470
LAMONICA BE; LUI JH; HANSEN DV; KRIEGSTEIN AR: "Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex", NAT COMMUN, vol. 4, 2013, pages 1665
LANCASTER M. ET AL.: "Cerebral organoids model human brain development and microcephaly", PROC NATL ACAD SCI USA., vol. 109, 2013, pages 12770 - 12775
LANCASTER MA ET AL.: "Cerebral organoids model human brain development and microcephaly", NATURE, vol. 501, 2013, pages 373 - 379
LETINIC K; ZONCU R; RAKIC P.: "Origin of GABAergic neurons in the human neocortex", NATURE, vol. 417, 2002, pages 645 - 649
MARIANI J. ET AL.: "Modeling human cortical development in vitro using induced pluripotent stem cells", PROC NATL ACAD SCI USA, vol. 109, 2012, pages 12770 - 12775
MARIANI J. ET AL.: "Modeling human cortical development in vitro using induced pluripotent stem cells", PROC NATL ACAD SCI USA., vol. 109, 2012, pages 12770 - 12775
MATSUI ET AL., CELL, vol. 70, 1992, pages 841 - 847
MOLYNEAUX BJ; ARLOTTA P; MENEZES JR; MACKLIS JD.: "Neuronal subtype specification in the cerebral cortex", NAT REV NEUROSCI., vol. 8, 2007, pages 427 - 437
MOLYNEAUX BJ; ARLOTTA P; MENEZES JR; MACKLIS JD: "Neuronal subtype specification in the cerebral cortex", NAT REV NEUROSCI, vol. 8, 2007, pages 427 - 437
MONDRAGON-TERAN, P. ET AL.: "Lowering Oxygen Tension Enhances the Differentiation of Mouse Embryonic Stem Cells into Neuronal Cells", BIOTECHNOL. PROG., vol. 25, 2009, pages 1480 - 1488, XP002607342 *
NAKAJIMA ET AL., STEM CELLS, vol. 25, 2007, pages 983 - 985
NAKANO ET AL., CELL STEMCELL, 2012
NAKANO T ET AL.: "Self-formation of optic cups and storable stratified neural retina from human ESCs", CELL STEM CELL, vol. 10, 2012, pages 771 - 785
NASU M ET AL.: "Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture", PLOS ONE, vol. 7, 2012, pages E53024
NATURE GENETICS, vol. 22, 1999, pages 127
PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 14984
RAKIC P.: "Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition", SCIENCE, vol. 183, 1974, pages 425 - 427
RAKIC S; ZECEVIC N: "Emerging complexity of layer I in human cerebral cortex", CEREB CORTEX, vol. 13, 2003, pages 1072 - 1083
REVAZOVA ET AL., CLONING STEM CELLS, vol. 10, 2008, pages 11 - 24
REVAZOVA ET AL., CLONING STEM CELLS, vol. 9, 2007, pages 432 - 449
RIDEOUT III ET AL., NATURE GENETICS, vol. 24, 2000, pages 109
SHAMBLOTT ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, no. 23, 1998, pages 13726 - 13731
SHEN Q. ET AL.: "The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells", NAT NEUROSCI, vol. 9, 2006, pages 743 - 751
SHEPPARD AM; PEARLMAN AL: "Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse", J COMP NEUROL, vol. 378, 1997, pages 173 - 179
SHITAMUKAI A; KONNO D; MATSUZAKI F.: "Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors", J NEUROSCI, vol. 31, 2011, pages 3683 - 3695
STORM EE ET AL.: "Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers", DEVELOPMENT, vol. 133, 2006, pages 1831 - 1844
TACHIBANA ET AL.: "Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer", CELL, 2013
TAVERNA E; HUTTNER WB: "Neural progenitor nuclei IN motion", NEURON, vol. 67, 2010, pages 906 - 914
THOMSON, J. A. ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 1147
TURNPENNY ET AL., STEM CELLS, vol. 21, no. 5, 2003, pages 598 - 609
WAKAYAMA ET AL., NATURE, vol. 394, 1998, pages 369
WANG WZ ET AL.: "Subplate in the developing cortex of mouse and human", J ANAT., vol. 217, 2010, pages 368 - 380
WANG X; TSAI JW; LAMONICA B; KRIEGSTEIN AR: "A new subtype of progenitor cell in the mouse embryonic neocortex", NAT NEUROSCI., vol. 14, 2011, pages 555 - 561
WATANABE K ET AL.: "A ROCK inhibitor permits survival of dissociated human embryonic stem cells", NATURE BIOTECHNOL., vol. 25, 2007, pages 681 - 686
WATANABE K. ET AL.: "Directed differentiation of telencephalic precursors from embryonic stem cells", NAT NEUROSCI, vol. 8, 2005, pages 288 - 296
WATANABE, K. ET AL.: "A ROCK inhibitor permits survival of dissociated human embryonic stem cells", NATURE BIOTECHNOLOGY, vol. 25, no. 6, 2007, pages 681 - 686, XP002458303 *
WATANABE, K. ET AL.: "Directed differentiation of telencephalic precursors from embryonic stem cells", NATURE NEUROSCIENCE, vol. 8, no. 3, 2005, pages 288 - 296, XP002487263 *
WILMUT ET AL., NATURE, vol. 385, 1997, pages 810
YUN K; POTTER S; RUBENSTEIN JL: "Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon", DEVELOPMENT, vol. 128, 2001, pages 193 - 205

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781425B2 (en) 2010-05-06 2020-09-22 Children's Hospital Medical Center Methods and systems for converting precursor cells into intestinal tissues through directed differentiation
JP7116964B2 (ja) 2013-11-22 2022-08-12 国立研究開発法人理化学研究所 終脳又はその前駆組織の製造方法
JP2021072818A (ja) * 2013-11-22 2021-05-13 国立研究開発法人理化学研究所 終脳又はその前駆組織の製造方法
US10174289B2 (en) 2014-05-28 2019-01-08 Children's Hospital Medical Center Methods and systems for converting precursor cells into gastric tissues through directed differentiation
US11053477B2 (en) 2014-05-28 2021-07-06 Children's Hospital Medical Center Methods and systems for converting precursor cells into gastric tissues through directed differentiation
US11584916B2 (en) 2014-10-17 2023-02-21 Children's Hospital Medical Center Method of making in vivo human small intestine organoids from pluripotent stem cells
JP2017085909A (ja) * 2015-11-02 2017-05-25 学校法人北里研究所 微乳頭構造を有する肺腺癌の原発巣に由来するヒト細胞株及びその利用
JP7465569B2 (ja) 2016-01-22 2024-04-11 国立大学法人東海国立大学機構 ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
JP2022062165A (ja) * 2016-01-22 2022-04-19 国立大学法人東海国立大学機構 ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
JPWO2017126551A1 (ja) * 2016-01-22 2018-11-22 国立大学法人名古屋大学 ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
WO2017126551A1 (ja) * 2016-01-22 2017-07-27 国立大学法人名古屋大学 ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
JP7023496B2 (ja) 2016-01-22 2022-02-22 国立大学法人東海国立大学機構 ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
US11066650B2 (en) 2016-05-05 2021-07-20 Children's Hospital Medical Center Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
US11767515B2 (en) 2016-12-05 2023-09-26 Children's Hospital Medical Center Colonic organoids and methods of making and using same
JP2020517283A (ja) * 2017-04-25 2020-06-18 イーエムベーアー−インスティテュート フュール モレクラレ バイオテクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 二分化または多分化オルガノイド
JP7248590B2 (ja) 2017-04-25 2023-03-29 イーエムベーアー-インスティテュート フュール モレクラレ バイオテクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 二分化または多分化オルガノイド
WO2020100481A1 (ja) 2018-11-15 2020-05-22 Jsr株式会社 脳オルガノイドの製造方法
WO2021090877A1 (ja) * 2019-11-06 2021-05-14 Jsr株式会社 脳オルガノイド及びその使用
WO2021100830A1 (ja) 2019-11-20 2021-05-27 大日本住友製薬株式会社 細胞凝集体の凍結方法
WO2021100829A1 (ja) 2019-11-20 2021-05-27 大日本住友製薬株式会社 神経系細胞の凍結方法
WO2022265086A1 (ja) 2021-06-17 2022-12-22 国立大学法人京都大学 ヒト多能性幹細胞由来大脳皮質細胞製剤の製造方法
KR20240034191A (ko) 2021-06-17 2024-03-13 고쿠리츠 다이가쿠 호진 교토 다이가쿠 인간 다능성 줄기세포 유래 대뇌 피질 세포 제제의 제조 방법

Also Published As

Publication number Publication date
JP2019122396A (ja) 2019-07-25
JP6835335B2 (ja) 2021-02-24
JP6499084B2 (ja) 2019-04-10
JP2022141848A (ja) 2022-09-29
ES2732730T3 (es) 2019-11-25
CN111269885A (zh) 2020-06-12
US20160289635A1 (en) 2016-10-06
AU2014353973A1 (en) 2016-07-07
JPWO2015076388A1 (ja) 2017-03-16
KR20160090339A (ko) 2016-07-29
EP3072960A1 (en) 2016-09-28
US11198850B2 (en) 2021-12-14
EP3072960B1 (en) 2019-03-27
MY188836A (en) 2022-01-07
US20220098550A1 (en) 2022-03-31
EP3072960A4 (en) 2017-06-28
CN106103702B (zh) 2020-03-24
JP7116964B2 (ja) 2022-08-12
AU2014353973B2 (en) 2021-01-28
CN106103702A (zh) 2016-11-09
CA2931278A1 (en) 2015-05-28
KR102317610B1 (ko) 2021-10-26
JP2021072818A (ja) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6835335B2 (ja) 終脳又はその前駆組織の製造方法
JP7088496B2 (ja) 網膜組織の製造方法
US20220112457A1 (en) Production method for nerve tissue
JP5761816B2 (ja) 多能性幹細胞から神経前駆細胞への分化誘導法
JP7360583B2 (ja) 網膜組織の製造方法
JP6495830B2 (ja) 毛様体周縁部様構造体の製造法
JP2008099662A (ja) 幹細胞の培養方法
JP2023156413A (ja) 背側化シグナル伝達物質又は腹側化シグナル伝達物質による錐体視細胞又は桿体視細胞の増加方法
WO2019103125A1 (ja) 神経系細胞又は神経組織と非神経上皮組織とを含む細胞塊の製造方法及びその細胞塊
US20240279602A1 (en) Method for producing cerebral cortical cell preparation derived from human pluripotent stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549212

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2931278

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15037926

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167016716

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014863861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014863861

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014353973

Country of ref document: AU

Date of ref document: 20141121

Kind code of ref document: A