WO2015075922A1 - Dispositif de nettoyage de substrat transmetteur d'uv et procédé de nettoyage - Google Patents

Dispositif de nettoyage de substrat transmetteur d'uv et procédé de nettoyage Download PDF

Info

Publication number
WO2015075922A1
WO2015075922A1 PCT/JP2014/005811 JP2014005811W WO2015075922A1 WO 2015075922 A1 WO2015075922 A1 WO 2015075922A1 JP 2014005811 W JP2014005811 W JP 2014005811W WO 2015075922 A1 WO2015075922 A1 WO 2015075922A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
substrate
ozone water
ultraviolet
wavelength
Prior art date
Application number
PCT/JP2014/005811
Other languages
English (en)
Japanese (ja)
Inventor
隆行 自在丸
Original Assignee
野村マイクロ・サイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村マイクロ・サイエンス株式会社 filed Critical 野村マイクロ・サイエンス株式会社
Priority to KR1020167006804A priority Critical patent/KR20160088283A/ko
Priority to JP2015548988A priority patent/JPWO2015075922A1/ja
Priority to CN201480056479.9A priority patent/CN105637619A/zh
Publication of WO2015075922A1 publication Critical patent/WO2015075922A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1316Methods for cleaning the liquid crystal cells, or components thereof, during manufacture: Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/0231Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to electromagnetic radiation, e.g. UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0057Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation
    • C11D2111/22

Definitions

  • the present invention relates to an ultraviolet transmissive substrate cleaning apparatus and cleaning method.
  • an RCA cleaning method or a wet cleaning method using a cleaning liquid such as an alkaline detergent has been performed as a method for cleaning a semiconductor silicon substrate or a liquid crystal glass substrate.
  • a concentrated chemical such as hydrogen peroxide, sulfuric acid, hydrochloric acid, or ammonia is used to remove an object to be removed from the substrate surface.
  • a method of combining brush cleaning, ultraviolet irradiation, ultrasonic cleaning, and the like with cleaning using an alkaline detergent or the like as a cleaning liquid is also performed. Since these methods use a large amount of concentrated chemicals and cleaning liquids, a cleaning method that uses as little concentrated chemicals and cleaning liquids as possible is required from the viewpoint of wastewater treatment work and environmental conservation.
  • the size of the glass substrate is much larger than that of the semiconductor wafer, and in recent years, the enlargement of the glass substrate is remarkable.
  • the amount of concentrated chemicals and cleaning liquid used and the amount of pure water used for rinsing them increase. Therefore, problems such as a rise in the manufacturing cost of the glass substrate and an increase in environmental load due to an increase in wastewater treatment load have arisen.
  • dry cleaning may be performed as pretreatment of wet cleaning.
  • surface treatment is performed by irradiating the substrate with ultraviolet rays, thereby decomposing organic substances on the substrate surface (see, for example, Patent Documents 1 and 2).
  • an inorganic material on the substrate surface is previously cleaned with an organic solvent or the like and rinsed with pure water.
  • the present invention has been made to solve the above-described problems, and is an ultraviolet transmissive substrate that can reduce wastewater treatment load and environmental load as compared with conventional cleaning methods using concentrated chemicals and cleaning liquids.
  • An object is to provide a cleaning apparatus and a cleaning method.
  • the cleaning device of the embodiment is a cleaning device for an ultraviolet transparent substrate, wherein the ozone water supply unit supplies ozone water to the cleaning surface of the substrate, and the ozone water is supplied to the cleaning surface of the substrate.
  • An ultraviolet irradiation unit that irradiates ultraviolet rays including a wavelength of 250 to 260 nm is provided on the surface opposite to the cleaning surface of the substrate.
  • the cleaning method of the embodiment is a method for cleaning an ultraviolet transmissive substrate, supplying ozone water to the cleaning surface of the substrate, and including an ultraviolet ray having a wavelength of 250 to 260 nm on the surface opposite to the cleaning surface of the substrate. It is characterized by irradiating.
  • the cleaning apparatus and the cleaning method of the ultraviolet transmissive substrate of the present invention it is possible to reduce the wastewater treatment load and the environmental load as compared with the conventional cleaning method using concentrated chemicals.
  • FIG. 1 is a diagram for explaining the cleaning method of this embodiment.
  • ultraviolet light is irradiated onto a surface (hereinafter referred to as an ultraviolet irradiation surface) 2b opposite to the cleaning surface 2a in a state where ozone water is supplied to the cleaning surface 2a of the substrate 2.
  • the object 3 to be removed in the present embodiment is, for example, an organic thin film such as a photoresist or an organic substance that adheres to the cleaning surface 2a in a clean room.
  • inorganic substances such as metal fine particles attached to the cleaning surface 2a can be removed.
  • the cleaning surface 2a is irradiated with ultraviolet light on the ultraviolet irradiation surface 2b while ozone water is supplied to the cleaning surface 2a, and the active surface is generated by irradiating the ozone water with ultraviolet rays. 2a to be removed 3 is removed.
  • the radical active species to be generated are mainly oxygen radicals generated by the reaction represented by the following formula (1) and hydroxy radicals generated by the reaction represented by the following formula (2).
  • oxygen radicals and hydroxy radicals are removed by oxidizing and decomposing organic substances on the cleaning surface 2a, and similarly, oxidizing inorganic substances to form oxides and removing them.
  • an ozone water film 4 having a predetermined thickness is present on the cleaning surface 2a.
  • Ozone molecules in the ozone water film 4 are decomposed by ultraviolet rays to generate radical active species.
  • the generated radical active species for example, oxidatively decompose and clean the organic matter to be removed 3. Since the object 3 to be removed adheres to the cleaning surface 2 a, among the radical active species generated in the ozone water film 4, radical active species mainly generated in the vicinity of the cleaning surface 2 a contribute to the decomposition and removal of the object 3 to be removed. .
  • the ultraviolet ray when the ultraviolet ray is irradiated from the cleaning surface 2a side, a part of the ultraviolet ray is scattered or refracted on the surface of the ozone water film 4, and the irradiated ultraviolet ray is attenuated before reaching the cleaning surface 2a. It is thought that. Further, a part of the ultraviolet rays are absorbed by ozone molecules present in the upper part of the ozone water film 4, and the amount of ultraviolet rays reaching the cleaning surface 2a with respect to the irradiated ultraviolet rays is reduced, so that in the vicinity of the cleaning surface 2a. There is also a possibility that the amount of oxygen radicals generated will be reduced.
  • a part of radical active species generated in the upper part of the ozone water film 4 causes a chain reaction of radical generation before reaching the removal target 3 on the cleaning surface 2a. Since water is drained from the substrate 2 to the outside in accordance with the flow of water, there is a possibility that the removal target 3 on the cleaning surface 2a may not be reached.
  • the surface 2b opposite to the cleaning surface 2a is irradiated with ultraviolet rays. Therefore, there is no attenuation of ultraviolet rays due to scattering, reflection, refraction, etc. of ultraviolet rays on the surface of the ozone water film 4. Further, there is no attenuation of ultraviolet rays when passing through the ozone water film 4. Further, radical active species generated in the ozone water film 4 are not drained from the substrate 2 to the outside according to the flow of ozone water. Therefore, the substrate can be cleaned more efficiently than when ultraviolet rays are irradiated from the cleaning surface 2a side.
  • FIG. 2 is a schematic side view showing the cleaning apparatus 1 of the present embodiment.
  • FIG. 3 is a schematic plan view showing the cleaning device 1 of the present embodiment.
  • the cleaning apparatus of this embodiment is a so-called flat-flow cleaning apparatus.
  • a cleaning apparatus 1 shown in FIG. 2 includes an ozone water supply unit 5 that supplies ozone water to a cleaning surface 2a of a substrate 2 to be cleaned, and a surface opposite to the cleaning surface 2a of the substrate 2 (hereinafter referred to as an ultraviolet irradiation surface).
  • 2b is provided with an ultraviolet irradiation unit 6 for irradiating ultraviolet rays.
  • an object to be removed 3 such as an organic substance or an inorganic substance adheres to the cleaning surface 2 a of the substrate 2.
  • Reference numeral 7 denotes a transport roller for transporting the substrate 2.
  • the transport roller 7 is disposed so as to transport the substrate 2 placed on the transport roller 7 below the ozone water supply unit 5.
  • the transport roller 7 transports the substrate 2 in the direction of the arrow A, and the cleaning device 1 installed in the middle of the transport path sequentially cleans the substrate 2.
  • the substrate 2 has an ultraviolet transmittance with an extinction coefficient with respect to ultraviolet rays having a wavelength of 254 nm, preferably 50% or less.
  • the substrate 2 preferably has an ultraviolet transmittance of the above-described wavelength (254 nm) of 50% or more, and more preferably 90% or more.
  • the substrate 2 is not particularly limited as long as it has the above-described extinction coefficient or ultraviolet transmittance.
  • a compound semiconductor substrate such as a gallium arsenide (GaAs) substrate, a transparent resin substrate such as polyethylene phthalate (PET), polycarbonate (PC), or polyethylene naphthalate (PEN) can be used.
  • the ozone water supply unit 5 includes an ozone water nozzle 5 b that supplies ozone water to the cleaning surface 2 a of the substrate 2.
  • the ozone water supply unit 5 includes an ozone water production unit 5a that produces ozone water and supplies the ozone water to the ozone water nozzle 5b.
  • the ozone water production unit 5a produces ozone water by dissolving ozone in pure water.
  • a device that dissolves ozone gas in pure water through a gas permeable film or a device that dissolves ozone gas in pure water by making countercurrent contact between ozone gas and pure water in a packed tower is used. Can do.
  • the pure water may be pure water having a suitable purity according to the type and application of the substrate 2 and the purpose of cleaning.
  • the substrate 2 is a liquid crystal glass substrate
  • the resistivity in terms of 25 ° C.
  • Pure water of 10 M ⁇ ⁇ cm or more can be suitably used.
  • the concentration of ozone water produced by the ozone water production unit 5a is preferably 50 to 300 ppm, and more preferably 100 to 200 ppm.
  • carbon dioxide etc. to ozone water as a self-decomposition inhibitor.
  • the temperature of ozone water supplied by the ozone water supply unit 5 is not particularly limited, and may be about 15 ° C. to 25 ° C. (normal temperature). When ozone water is used at room temperature, it is possible to reduce the apparatus and energy for cleaning.
  • the ozone water may be heated.
  • the substrate surface is preferably 15 to 50 ° C., more preferably about room temperature (20 to 30 ° C.) to obtain a cleaner substrate surface in a short time. be able to.
  • a spray nozzle for injecting ozone water or a shower nozzle for spraying ozone water is used as the ozone water nozzle 5b.
  • the ozone water nozzle 5b is connected to the ozone water production unit 5a by a pipe.
  • the ozone water manufactured by the ozone water manufacturing unit 5a is supplied to the ozone water nozzle 5b through this pipe.
  • the supplied ozone water is supplied from the ozone water nozzle 5b to the cleaning surface 2a.
  • the ozone water nozzle 5b preferably includes a pressurizing device.
  • the pressurizing device can pressurize the ozone water and supply it to the cleaning surface 2a.
  • the flow rate of the ozone water supplied to the cleaning surface 2a is preferably about 0.5 to 5 m / s, whereby the cleaning efficiency can be improved.
  • the ozone water supply unit 5 preferably includes an ultrasonic application device.
  • the ultrasonic wave application device applies ultrasonic waves to the ozone water
  • the ozone water nozzle 5b supplies the ozone water to which the ultrasonic waves are applied to the cleaning surface 2a.
  • the frequency of the ultrasonic wave is preferably 30 kHz or more, more preferably 100 to 2,000 kHz, and still more preferably 700 to 1,500 kHz.
  • the ultraviolet irradiation unit 6 irradiates the surface 2b of the substrate 2 opposite to the cleaning surface 2a (hereinafter also referred to as an ultraviolet irradiation surface) 2b with ultraviolet rays having a wavelength of 250 to 260 nm.
  • the ultraviolet irradiation unit 6 preferably irradiates ultraviolet rays including at least a wavelength of 254 nm.
  • Ultraviolet rays having a wavelength of 250 to 260 nm, particularly ultraviolet rays having a wavelength of 254 nm have a higher absorption rate by ozone molecules in pure water than visible light or ultraviolet rays having other wavelengths. Therefore, the irradiation reaction of radical active species represented by the above formulas (1) and (2) is promoted by irradiating with ultraviolet rays including the above preferred wavelength range. As a result, the removal target 3 can be effectively removed.
  • the ultraviolet irradiation unit 6 may irradiate at least ultraviolet rays having a wavelength of 250 to 260 nm. Not only ultraviolet rays having the above wavelengths but also light having other wavelengths, for example, ultraviolet rays having a wavelength in the vicinity of 185 nm, 250 having a wavelength in the range of 220 to 400 nm. Irradiation with ultraviolet light having a wavelength other than ⁇ 260 nm, visible light other than ultraviolet light, or light having an infrared wavelength region may be performed. In this case, the region of the emission peak wavelength of the light irradiated by the ultraviolet irradiation unit 6 is not particularly limited, but preferably has the emission peak wavelength in a range of at least 250 to 260 nm.
  • the light source of the ultraviolet irradiation unit 6 is not limited as long as it generates ultraviolet light having the above-described wavelength.
  • a low pressure mercury lamp, a high pressure mercury lamp, a vacuum ultraviolet lamp, a xenon lamp, a light emitting diode (LED), or the like is used. Can do. Since the ultraviolet irradiation illuminance of the ultraviolet irradiation unit 6 greatly affects the generation concentration (generation amount) of radical active species, a light source that can irradiate ultraviolet rays with a stable illuminance and has a long emission lifetime and low running cost is preferable. As such a light source, a low-pressure mercury lamp is preferably used.
  • the substrate 2 when the substrate 2 is large, it is preferable to use an LED from the viewpoint of partial uniformity of the ultraviolet illuminance irradiated on the substrate 2 and miniaturization of the cleaning device. Since the LED has a long light emission life and excellent linearity of irradiated light, the running cost can be reduced by using the LED.
  • Ultraviolet illuminance of irradiating ultraviolet irradiation unit 6, in order to remove the matter to be removed 3 efficiently is preferably 2 ⁇ 20mW / m 2, more preferably 3 ⁇ 8mW / m 2.
  • the to-be-removed object 3 attached to the cleaning surface of the substrate 2 is decomposed by radical active species generated by irradiating ozone water with ultraviolet rays, and is removed by dissolving in ozone water.
  • the distance from the light source of the ultraviolet irradiation unit 6 to the ultraviolet irradiation surface 2b can be appropriately set depending on the absorption coefficient of the substrate 2, the concentration of ozone water, the type of light source used, and the like. Considering that the illuminance of ultraviolet rays is inversely proportional to the square of the distance from the light source in the air, it is set to several hundred mm or less, preferably 5 to 20 mm, for example. Thus, the ultraviolet light emitting intensity is, if 2 ⁇ 20mW / m 2 about ultraviolet light source, the ultraviolet intensity in the cleaning surface 2a can be a 3 mW / m 2 or more, thereby improving the cleaning efficiency .
  • the ultraviolet irradiation unit 6 is disposed between the plurality of transport rollers 7 by disposing the ultraviolet irradiation unit 6 on the surface 2 b side opposite to the cleaning surface 2 a of the substrate 2. be able to. Therefore, it is possible to reduce the size of the cleaning device 1. Furthermore, since the distance between the light source of the ultraviolet irradiation unit 6 and the glass substrate 2 can be reduced by providing the ultraviolet irradiation unit on the surface 2b side opposite to the cleaning surface 2a, the ultraviolet irradiation efficiency can be improved.
  • the ultraviolet irradiation unit 6 when the ultraviolet irradiation unit 6 is installed above the substrate 2, for example, there is a concern that an ozone water droplet splashes and touches the light source of the ultraviolet irradiation unit 6 and the light source of the ultraviolet irradiation unit 6 may be damaged. In some cases, the substrate 2 may be damaged. On the other hand, in the cleaning apparatus 1 of the present embodiment, since the ultraviolet irradiation unit 6 is installed below the substrate 2, waterproofing is easy.
  • the ultraviolet light source may be protected by a quartz glass tube, for example, in order to prevent the adhesion of ozone water droplets.
  • a quartz glass tube for example, in order to prevent the adhesion of ozone water droplets.
  • the cleaning apparatus 1 since the cleaning apparatus 1 according to the present embodiment includes the ultraviolet irradiation unit 6 below the substrate 2, the force for holding the ultraviolet irradiation unit 6 is also greater than when the ultraviolet irradiation unit 6 is provided above the substrate 2. Small is good. Therefore, the apparatus configuration can be simplified.
  • the step S100 for holding the substrate the step S200 for supplying ozone water to the cleaning surface of the held substrate, and the ozone water contacted the cleaning surface of the substrate.
  • the substrate is cleaned using the cleaning apparatus 1 of the present embodiment as follows. First, the substrate 2 to be cleaned is placed and held on the transport roller 7, and the transport roller 7 is operated to transport the substrate 2. Then, while supplying ozone from the ozone water nozzle 5b to the cleaning surface 2a of the substrate to be transported in step S200, the ultraviolet irradiation unit 6 irradiates ultraviolet rays from the ultraviolet irradiation surface 2b side in step S300.
  • the ozone water supply flow rate of the ozone water nozzle 5b is dependent on the area of the substrate 2 to be cleaned, in terms of cleaning performance, is preferably 1 m 2 per 40 ⁇ 400L / min, 1m 2 More preferably, it is 100 to 400 L / min.
  • the substrate 2 is placed and held on the transport roller 7, but the substrate 2 is in a state where ozone water is supplied to the cleaning surface 2a, and is opposite to the cleaning surface 2a.
  • the manner or method of holding the substrate 2 as long as the surface is held in such a manner that it can be irradiated with ultraviolet rays having the above-mentioned wavelength.
  • the cleaning of the substrate in the cleaning apparatus 1 may be performed batchwise or continuously. When cleaning a small substrate, it is preferable to use a batch method.
  • the cleaning method of the present invention is a cleaning method characterized by energy saving, cost reduction, and high cleaning ability, and exhibits a great effect particularly when applied to cleaning of a liquid crystal glass substrate having a large cleaning area. be able to.
  • the liquid crystal glass substrate has been remarkably increased in size in recent years, and flat-flow cleaning is becoming the mainstream for the purpose of cleaning uniformity and cleaning time.
  • the effect of the present invention is not limited only to the flat-flow cleaning method, the showering method in which the cleaning liquid is poured in the shower, the spin cleaning method for supplying the cleaning liquid onto the rotating substrate, and the batch type immersion bath in which the cleaning liquid is contained
  • any conventionally known cleaning method using a cleaning liquid such as an immersion cleaning method and a combination thereof
  • any cleaning method can improve the cleaning efficiency as in this embodiment.
  • the cleaning efficiency can be further improved by combining physical cleaning using a sponge or the like with each of the cleaning methods as described above.
  • the cleaning apparatus of the present embodiment it is possible to reduce the wastewater treatment load and the environmental burden compared to the conventional cleaning method using concentrated chemicals and cleaning liquids, and it is possible to simplify the apparatus configuration. . Therefore, the cleaning efficiency of the substrate with ozone water can be improved.
  • Example 1 As the object to be cleaned, a liquid crystal glass substrate having a size of 50 mm in length, 50 mm in width, and 0.7 mm in thickness and having a transmittance of 99% for ultraviolet rays having a wavelength of 254 nm was used. Ozone water having a concentration of 100 ppm is supplied to the cleaning surface of this substrate at a flow rate of 1 L / min (400 L / min per 1 m 2 ), and ultraviolet light having a wavelength near 254 nm is applied to the surface opposite to the cleaning surface from the glass substrate. Irradiation was performed at a UV illuminance of 3.8 mW / m 2 from below 10 mm. As the ultraviolet irradiation device, a low-pressure mercury lamp AY-11 (trade name, manufactured by Nippon Photo Science Co., Ltd.) was used.
  • the water contact angle on the surface of the liquid crystal glass substrate before cleaning and the water contact angle on the surface of the liquid crystal glass substrate after cleaning times of 0 seconds, 30 seconds, 60 seconds, 180 seconds, 300 seconds, and 600 seconds are measured with a contact angle meter PG-X ( (Trade name, manufactured by Matsubo Co., Ltd.).
  • the measurement results of the water contact angle are shown in Table 1. It shows that the smaller the water contact angle, the less organic matter adhered to the liquid crystal glass substrate and the better the cleaning is.
  • the wavelength characteristics of the low-pressure mercury lamp used are shown in FIG.
  • Example 1 the liquid crystal glass substrate was cleaned under the same conditions as in Example 1 except that ultraviolet rays were irradiated from the cleaning surface side, and the change with time of the water contact angle on the liquid crystal glass substrate surface was measured. The results are shown in Table 1.
  • Example 2 In Example 1, the liquid crystal glass substrate was cleaned under the same conditions as in Example 1 except that cleaning was performed without irradiating ultraviolet rays, and the change with time in the water contact angle on the liquid crystal glass substrate surface was measured. The results are also shown in Table 1.
  • Comparative Example 3 In Comparative Example 1, the liquid crystal glass substrate was cleaned under the same conditions as in Comparative Example 1 except that ultrasonic waves were applied to the ozone water supplied from the ozone water nozzle 5b using a fine jet (PT-010J50 (manufactured by Pretec)). And the change with time of the water contact angle on the surface of the liquid crystal glass substrate was measured. The results are shown in Table 1. In Comparative Example 3, only a cleaning effect substantially equivalent to that in Comparative Example 2 was shown. This indicates that the effect of ultraviolet irradiation did not appear because the ultraviolet water was reflected by the ozone water film due to the vibration applied to the ozone water film.
  • the cleaning efficiency is improved by irradiating ultraviolet rays having a wavelength of 250 to 260 nm.
  • the irradiation is performed from the cleaning surface side. It has been found that the contact angle decreases in a short time, that is, good cleaning is performed in a short time.

Abstract

Dans un mode de réalisation, un dispositif de nettoyage de substrat transmetteur d'UV présente les éléments suivants: une unité d'alimentation en eau ozonisée qui fournit de l'eau ozonisée sur une surface de nettoyage d'un substrat; et une unité d'irradiation à la lumière ultraviolette qui, avec l'eau ozonisée fournie sur ladite surface de nettoyage, irradie la surface opposée du substrat avec la lumière ultraviolette présentant des longueurs d'ondes dans la plage de 250 à 260 nm.
PCT/JP2014/005811 2013-11-22 2014-11-19 Dispositif de nettoyage de substrat transmetteur d'uv et procédé de nettoyage WO2015075922A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167006804A KR20160088283A (ko) 2013-11-22 2014-11-19 자외선 투과성 기판의 세정장치 및 세정방법
JP2015548988A JPWO2015075922A1 (ja) 2013-11-22 2014-11-19 紫外線透過性基板の洗浄装置及び洗浄方法
CN201480056479.9A CN105637619A (zh) 2013-11-22 2014-11-19 紫外线透过性基板的清洗装置以及清洗方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013241894 2013-11-22
JP2013-241894 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015075922A1 true WO2015075922A1 (fr) 2015-05-28

Family

ID=53179207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005811 WO2015075922A1 (fr) 2013-11-22 2014-11-19 Dispositif de nettoyage de substrat transmetteur d'uv et procédé de nettoyage

Country Status (5)

Country Link
JP (1) JPWO2015075922A1 (fr)
KR (1) KR20160088283A (fr)
CN (1) CN105637619A (fr)
TW (1) TW201534409A (fr)
WO (1) WO2015075922A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015011229A1 (de) * 2015-08-27 2017-03-02 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat
DE102015011228A1 (de) 2015-08-27 2017-03-02 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat
DE102015011177A1 (de) * 2015-08-27 2017-03-02 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016064A (ko) * 2016-08-05 2018-02-14 무진전자 주식회사 반도체 웨이퍼 세정 방법 및 장치
KR101961326B1 (ko) 2016-10-19 2019-07-18 세메스 주식회사 기판을 처리하는 장치의 부품 세정 방법 및 장치
CN106405926A (zh) * 2016-11-30 2017-02-15 武汉华星光电技术有限公司 一种彩色滤光片的制备方法
CN107159666A (zh) * 2017-06-04 2017-09-15 杜耀均 一种利用臭氧清洗玻璃的方法
CN108919565A (zh) * 2018-06-29 2018-11-30 张家港康得新光电材料有限公司 一种导电玻璃的清洗方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070885A (ja) * 1998-09-01 2000-03-07 Ultla Clean Technology Kaihatsu Kenkyusho:Kk 基板洗浄装置及び基板洗浄方法
WO2009022429A1 (fr) * 2007-08-16 2009-02-19 Asahi Glass Company, Limited Appareil de nettoyage de substrat et procédé de nettoyage de substrat

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182945A (ja) 1991-12-27 1993-07-23 Hitachi Ltd 洗浄装置
JP2727481B2 (ja) 1992-02-07 1998-03-11 キヤノン株式会社 液晶素子用ガラス基板の洗浄方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070885A (ja) * 1998-09-01 2000-03-07 Ultla Clean Technology Kaihatsu Kenkyusho:Kk 基板洗浄装置及び基板洗浄方法
WO2009022429A1 (fr) * 2007-08-16 2009-02-19 Asahi Glass Company, Limited Appareil de nettoyage de substrat et procédé de nettoyage de substrat

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015011229A1 (de) * 2015-08-27 2017-03-02 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat
DE102015011228A1 (de) 2015-08-27 2017-03-02 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat
DE102015011177A1 (de) * 2015-08-27 2017-03-02 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat
DE102015011228B4 (de) * 2015-08-27 2017-06-14 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat
DE102015011177B4 (de) * 2015-08-27 2017-09-14 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat
RU2680059C1 (ru) * 2015-08-27 2019-02-14 Зюсс Микротек Фотомаск Эквипмент Гмбх Унд Ко.Кг Устройство для нанесения жидкой среды, подвергаемой ультрафиолетовому облучению, на подложку
DE102015011229B4 (de) * 2015-08-27 2020-07-23 Süss Microtec Photomask Equipment Gmbh & Co. Kg Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat

Also Published As

Publication number Publication date
TW201534409A (zh) 2015-09-16
JPWO2015075922A1 (ja) 2017-03-16
CN105637619A (zh) 2016-06-01
KR20160088283A (ko) 2016-07-25

Similar Documents

Publication Publication Date Title
WO2015075922A1 (fr) Dispositif de nettoyage de substrat transmetteur d'uv et procédé de nettoyage
TW501198B (en) Method and device for processing substrate
US6217665B1 (en) Method of cleaning substrate using ultraviolet radiation
TW200725197A (en) Apparatus and methods for mask cleaning
CN103008311A (zh) 一种基于紫外光的干式清洗方法
JP2006229198A (ja) 紫外線内設洗浄器具のための方法および装置
JP4088810B2 (ja) 基板洗浄装置及び基板洗浄方法
US6391117B2 (en) Method of washing substrate with UV radiation and ultrasonic cleaning
JPH07114191B2 (ja) 洗浄方法
JP2018534608A (ja) 紫外線に暴露された水性液体媒体で基板を処理する方法
JP3125753B2 (ja) 基板の洗浄方法および基板洗浄装置
US20170123320A1 (en) Method for removing photoresist
JP2002192089A (ja) 洗浄方法
JP4519234B2 (ja) 物品表面の清浄化方法およびそのための清浄化装置
JP2004241726A (ja) レジスト処理方法およびレジスト処理装置
JPS63271938A (ja) 硬表面の洗浄方法
JP4700224B2 (ja) レジスト剥離装置
JP2001300455A (ja) 被洗浄体の洗浄方法及び装置
JP2006272069A (ja) 洗浄装置
JP2006116542A (ja) 基板処理方法及びその装置
JP3118201B2 (ja) 有機質汚れの高度洗浄方法
JP6357319B2 (ja) 被洗浄基板の洗浄方法及び洗浄装置
JP2014151258A (ja) オゾン水分解方法及び洗浄装置
WO2019000216A1 (fr) Dispositif de nettoyage de substrat
JP2001343499A (ja) 基板処理装置及び処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015548988

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167006804

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863866

Country of ref document: EP

Kind code of ref document: A1