WO2015072573A1 - フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法 - Google Patents

フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法 Download PDF

Info

Publication number
WO2015072573A1
WO2015072573A1 PCT/JP2014/080529 JP2014080529W WO2015072573A1 WO 2015072573 A1 WO2015072573 A1 WO 2015072573A1 JP 2014080529 W JP2014080529 W JP 2014080529W WO 2015072573 A1 WO2015072573 A1 WO 2015072573A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reduction
unreduced
mass
cobalt
Prior art date
Application number
PCT/JP2014/080529
Other languages
English (en)
French (fr)
Inventor
昂志 ▲高▼濱
圭行 永易
和章 早坂
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to US15/036,882 priority Critical patent/US20160296913A1/en
Priority to EP14862864.7A priority patent/EP3072592A4/en
Publication of WO2015072573A1 publication Critical patent/WO2015072573A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation

Definitions

  • the present invention relates to a method for producing a Fischer-Tropsch synthesis catalyst and a method for producing a hydrocarbon.
  • Patent Document 1 discloses a catalyst in which an active metal such as cobalt or iron is supported on a support such as silica or alumina
  • Patent Document 2 discloses cobalt or zirconium.
  • a catalyst containing titanium and silica is disclosed.
  • the catalyst used in the FT synthesis reaction (hereinafter sometimes referred to as “FT synthesis catalyst”) is prepared, for example, as follows. That is, first, a catalyst (unreduced catalyst) on which cobalt oxide and / or ruthenium oxide is supported is obtained by impregnating a carrier such as silica or alumina with a cobalt salt, ruthenium salt or the like and calcining it. It is done.
  • the catalyst is brought into contact with a reducing gas (hydrogen gas or the like) and subjected to a reduction treatment, whereby the active metals cobalt and / or Alternatively, it is necessary to convert ruthenium from an oxide state to a metal state.
  • a reducing gas hydrogen gas or the like
  • the present invention relates to a reduction-processed FT synthesis catalyst, a production method capable of producing an FT synthesis catalyst having excellent reaction activity for a Fischer-Tropsch synthesis reaction, and an FT synthesis catalyst obtained by the production method
  • An object of the present invention is to provide a method for producing hydrocarbons.
  • One aspect of the present invention relates to a production method for producing a Fischer-Tropsch synthesis catalyst.
  • the production method includes a reduction step of obtaining the Fischer-Tropsch synthesis catalyst by reduction treatment of an unreduced catalyst.
  • the unreduced catalyst comprises a carrier obtained by firing a carrier precursor containing silica and a zirconium compound, and a cobalt oxide and / or ruthenium oxide supported on the carrier.
  • the zirconium content of the unreduced catalyst is 0.01 to 7% by mass in terms of zirconium oxide based on the total mass of the unreduced catalyst.
  • reduction treatment of the unreduced catalyst is performed by bringing a reducing gas into contact with the unreduced catalyst under the conditions of GHSV of 200 h ⁇ 1 to 1500 h ⁇ 1 and a linear velocity of 20 mm / s or more. .
  • the degree of reduction of the cobalt atom represented by the following formula (1) and / or the reduction of the ruthenium atom represented by the following formula (2) of the Fischer-Tropsch synthesis catalyst in the reduction step, the degree of reduction of the cobalt atom represented by the following formula (1) and / or the reduction of the ruthenium atom represented by the following formula (2) of the Fischer-Tropsch synthesis catalyst.
  • the reduction treatment of the unreduced catalyst can be performed so that the degree is 75 to 93%.
  • Reduction degree of cobalt atom (%) 100 ⁇ [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
  • Degree of reduction of ruthenium atom (%) 100 ⁇ [mass of metal ruthenium atom] / [mass of all ruthenium atoms] (2)
  • the Fischer-Tropsch synthesis catalyst obtained by the reduction treatment in this way is more excellent in reaction activity.
  • Another aspect of the present invention relates to a Fischer-Tropsch synthesis catalyst produced by the above production method.
  • a Fischer-Tropsch synthesis catalyst is excellent in reaction activity and can be suitably used in a Fischer-Tropsch synthesis reaction.
  • Another aspect of the present invention relates to a method for producing hydrocarbons, comprising the step of obtaining hydrocarbons by reacting carbon monoxide with hydrogen gas in the presence of the Fischer-Tropsch synthesis catalyst produced by the above production method.
  • the Fischer-Tropsch synthesis catalyst is excellent in reaction activity, so that hydrocarbons can be produced efficiently.
  • the production method according to the present embodiment includes a reduction step of obtaining a Fischer-Tropsch synthesis catalyst (hereinafter, sometimes referred to as “FT synthesis catalyst”) by reduction treatment of an unreduced catalyst.
  • FT synthesis catalyst a Fischer-Tropsch synthesis catalyst
  • the unreduced catalyst contains a support obtained by calcining a support precursor containing silica and a zirconium compound, and a cobalt oxide and / or ruthenium oxide supported on the support.
  • the zirconium content in the unreduced catalyst is 0.01 to 7% by mass in terms of zirconium oxide based on the total mass of the unreduced catalyst.
  • the reduction gas in the reduction step, is brought into contact with the unreduced catalyst under the conditions that GHSV is 200 h ⁇ 1 or more and 1500 h ⁇ 1 or less and the linear velocity is 20 mm / s or more. I do.
  • An unreduced catalyst contains the support
  • the zirconium content in the unreduced catalyst is 0.01 to 7% by mass in terms of zirconium oxide, based on the total mass of the unreduced catalyst.
  • a large amount of zirconia reduces the reducibility of cobalt and / or ruthenium, and the initial activity. Is preferably 0.1 to 6% by mass, more preferably 0.5 to 5.5% by mass.
  • the content is 10 to 35% by mass based on the total mass of the unreduced catalyst from the viewpoint of obtaining a catalyst for FT synthesis having higher reaction activity. It is preferably 20 to 30% by mass.
  • the content is preferably 5 to 35% by mass, more preferably 10 to 20% by mass based on the total mass of the unreduced catalyst.
  • a catalyst for FT synthesis using ruthenium as an active site is characterized by higher activity and higher wax selectivity than those using cobalt as an active site, and the amount of the catalyst used may be greatly reduced.
  • the total content thereof is preferably 5 to 35% by mass based on the total mass of the unreduced catalyst, and 10 to 30% by mass. It is more preferable that
  • the average particle size of the unreduced catalyst is preferably 10 ⁇ m to 10 mm, more preferably 10 ⁇ m to 5 mm, further preferably 10 to 150 ⁇ m, and even more preferably 30 to 100 ⁇ m.
  • the average particle size of the unreduced catalyst can be measured using a particle size distribution measuring device. For example, using Beckman Coulter Co., Ltd. Coulter Counter Multisizer 3, it is automatically measured and calculated by the electrical detection zone method (Coulter principle). Is done.
  • the unreduced catalyst may further contain a noble metal.
  • a noble metal at least one of Pt, Pd, Au and Re is preferable, and Pt is more preferable.
  • the reduction of cobalt and / or ruthenium can be promoted. Thereby, the oxidation of cobalt metal by the water produced
  • the amount of the noble metal supported is preferably 0.001 to 1% by mass, preferably 0.001 to 0.5% by mass, based on the total mass of the unreduced catalyst, in terms of the balance between the above effects and economy. It is more preferable that
  • the unreduced catalyst preferably has a mesopore volume of 0.35 cm 3 / g or more.
  • the mesopore volume of the unreduced catalyst is calculated by the following method. First, in order to remove moisture adsorbed on the unreduced catalyst, for example, a pretreatment for evacuating at 300 ° C. for 5 hours is performed. About the catalyst after this pretreatment, BELSORP-max manufactured by Nippon Bell Co., Ltd. is used, and adsorption / desorption isotherms are automatically measured by a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature ( ⁇ 196 ° C.). . The analysis software (BEL Master TM ) attached to the device can be used for data analysis.
  • the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BJH method, and the meso-fine per unit mass of the unreduced catalyst is analyzed.
  • the pore volume (cm 3 / g) is calculated.
  • the BJH method is a method for obtaining an average pore diameter from a desorption isotherm, which is a relationship between the relative pressure when the adsorbate is desorbed and the amount of adsorption. (EP Barrett, LG Joyner, PH Halenda: J. Am. Chem. Soc., 73, 373 (1951).)
  • Mesopore volume of unreduced catalyst is more preferably 0.35 ⁇ 0.8cm 3 / g, further preferably 0.4 ⁇ 0.7cm 3 / g.
  • mesopore volume of the unreduced catalyst is smaller than 0.35 cm 3 / g, catalyst deterioration tends to occur at the initial stage of the reaction.
  • mesopore volume of the unreduced catalyst is larger than 0.8 cm 3 / g, the pores become too large and catalyst wear tends to occur. Therefore, the catalyst tends to be deteriorated due to wear loss during the reaction.
  • the unreduced catalyst preferably has a specific surface area of 130 m 2 / g or more.
  • the specific surface area of the unreduced catalyst is calculated by the following method. First, in order to remove moisture adsorbed on the unreduced catalyst, for example, a pretreatment for evacuating at 300 ° C. for 5 hours is performed. About the catalyst after this pretreatment, BELSORP-max manufactured by Nippon Bell Co., Ltd. is used, and adsorption / desorption isotherms are automatically measured by a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature ( ⁇ 196 ° C.). .
  • the analysis of the data can be used an apparatus annex analysis software (BEL Master TM), adsorption-desorption isotherm of the measured nitrogen is automatically analyzed by a formula: BET, surface area per unit mass of the unreduced catalyst (M 2 / g) is calculated.
  • BEL Master TM apparatus annex analysis software
  • M 2 / g surface area per unit mass of the unreduced catalyst
  • the specific surface area of the unreduced catalyst is preferably from 130 to 400 m 2 / g, more preferably from 140 to 200 m 2 / g.
  • the specific surface area is smaller than 130 m 2 / g, catalyst deterioration tends to occur easily in the initial stage of the reaction.
  • the specific surface area is larger than 400 m 2 / g, catalyst wear tends to occur during the reaction, and catalyst deterioration due to wear loss tends to occur.
  • silica at least one selected from the group consisting of colloidal silica, water glass, aerosil, aerogel, silica sol, silica gel, powdered silica, and silicate can be preferably used.
  • Silica is preferably baked at a predetermined baking temperature T 1 described later.
  • the specific surface area of silica is preferably 50 to 500 m 2 / g, and more preferably 150 to 400 m 2 / g.
  • active metals such as cobalt tend to aggregate.
  • the specific surface area is larger than 500 m 2 / g, the pore diameter tends to be too small, and the pores tend to be blocked by the loading of an active metal such as cobalt.
  • the specific surface area of silica is calculated by the following method. First, in order to remove moisture adsorbed on silica, for example, a pretreatment for evacuation at 300 ° C. for 5 hours is performed. The pretreated silica is subjected to automatic measurement of adsorption and desorption isotherms by BELSORP-max manufactured by Nippon Bell Co., Ltd. using a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature ( ⁇ 196 ° C.). .
  • the analysis software (BELMaster TM ) attached to the apparatus can be used for the analysis of the data, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BET equation to determine the surface area per unit mass of silica (m 2 / G) is calculated.
  • the average pore diameter of silica is preferably 8 to 25 nm, more preferably 10 to 20 nm, and even more preferably 10 to 15 nm. If the average pore size is smaller than 8 nm, the reaction activity tends to be low due to diffusion rate limiting. On the other hand, if the average pore diameter is larger than 25 nm, the surface area of the support is reduced, and the supported metal tends to aggregate, which tends to reduce the reaction activity.
  • the average pore diameter of silica is calculated by the following method. First, in order to remove moisture adsorbed on silica, for example, a pretreatment for evacuation at 300 ° C. for 5 hours is performed. The pretreated silica is subjected to automatic measurement of adsorption and desorption isotherms by BELSORP-max manufactured by Nippon Bell Co., Ltd. using a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature ( ⁇ 196 ° C.). . For analysis of data, analysis software (BEL Master TM ) attached to the apparatus can be used, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BJH method, and the average pore diameter of silica is calculated.
  • BEL Master TM analysis software attached to the apparatus can be used, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BJH method, and the average pore diameter of silica is calculated.
  • the carrier precursor can be prepared, for example, using an impregnation method typified by the Incipient Wetness method using silica and a zirconium compound.
  • the shape of silica is not particularly limited, but it can be used from various shaped products such as spherical products, crushed products, and round shaped products, and a shape suitable for the process can be selected.
  • the average particle diameter of the silica is not limited, and for example, a particle having a size of 5 ⁇ m to 10 mm, preferably 5 ⁇ m to 5 mm, more preferably 5 to 150 ⁇ m, and further preferably 10 to 100 ⁇ m is appropriately selected depending on the process. be able to.
  • the average particle size of silica can be measured using a particle size distribution measuring device. For example, using a Coulter counter Multisizer 3 manufactured by Beckman Coulter, Inc., it is automatically measured and calculated by an electrical detection band method (Coulter principle). .
  • the carrier precursor may contain one or more selected from the group consisting of alumina, titania, magnesia, ceria, zirconia, and complex oxides as a carrier material other than silica.
  • the composite oxide include silica-alumina, silica-titania, alumina-titania, silica-zirconia, alumina-zirconia, titania-zirconia and the like.
  • zirconyl nitrate ZrO (NO 3 ) 2
  • zirconium oxychloride ZrOCl 2
  • zirconium oxychloride chloride ZrO (OH) Cl
  • zirconyl sulfate ZrOSO 4
  • zirconyl acetate ZrO (C) 2 H 3 O 2 ) 2
  • zirconyl ammonium carbonate (NH 4 ) 2 ZrO (CO 3 ) 2 ), and the like.
  • zirconyl nitrate, zirconyl acetate, and zirconyl ammonium carbonate are preferable.
  • a zirconium compound can be used individually by 1 type or in combination of 2 or more types.
  • This production method includes a step of calcining a carrier precursor containing silica calcined at a temperature T 1 and a zirconium compound at a temperature T 2 to obtain a carrier, the carrier, a cobalt compound and / or ruthenium. And a step of calcining the catalyst precursor containing the compound at a temperature T 3 , and T 1 , T 2, and T 3 preferably satisfy the conditions of the following formulas (A) to (C).
  • T 1 ⁇ T 3 (A) 250 ° C. ⁇ T 2 ⁇ 450 ° C.
  • B 250 ° C. ⁇ T 3 ⁇ 450 ° C. (C)
  • the firing temperature T 1 of the silica preferably satisfies the above formula (A), and if it is fired at a high temperature, it causes sintering and tends to make it difficult to obtain a desired average pore diameter. It is preferable that the temperature is 400 to 650 ° C.
  • the firing time can be, for example, 0.5 to 10 hours. Calcination can be performed, for example, in the presence of molecular oxygen such as in air.
  • an impregnation method typified by the Incipient Wetness method can be used as a method for preparing the carrier precursor.
  • the support precursor can be dried after impregnation, for example, preferably at a drying temperature of 50 to 150 ° C., more preferably 70 to 120 ° C., preferably 0.5 to 48 hours, more preferably 1 to 24 hours. .
  • the firing temperature T 2 of the support precursor is 250 ° C. or higher 450 ° C. or less, from the viewpoint of maintaining high mesopore volume, and more preferably 250 ⁇ 300 ° C..
  • T 2 exceeds 450 ° C.
  • the form of zirconia changes from amorphous to crystalline, which is not preferable.
  • the firing temperature is preferably equal to or higher than the decomposition start temperature of the zirconium compound used.
  • cobalt compound used in the present embodiment a compound having cobalt in the molecule in the form of a salt or a complex can be used.
  • nitrate, hydrochloride, sulfate, formate, acetate, propionate, oxalate, acetylacetonate and the like can be mentioned.
  • Specific examples include cobalt nitrate, cobalt chloride, cobalt formate, cobalt propionate, cobalt acetate, and cobalt acetylacetonate.
  • a cobalt compound can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the ruthenium compound used in this embodiment include ruthenium halides such as ruthenium chloride and ruthenium bromide, ruthenium oxide (IV), ruthenium hydroxide (III), acetylacetonatoruthenium, hexaammineruthenium (II) chloride, and dodeca. And carbonyl triruthenium.
  • the content of the cobalt compound in the catalyst precursor is preferably set to be 10 to 35% by mass in terms of cobalt oxide (tricobalt tetroxide) based on the total mass of the unreduced catalyst. From the viewpoint of obtaining high reactivity, it is more preferable that the content of the cobalt compound in the catalyst precursor is 20 to 30% by mass in terms of cobalt oxide (tricobalt tetroxide) based on the total mass of the unreduced catalyst.
  • the content of the ruthenium compound in the catalyst precursor may be set to be 5 to 35% by mass in terms of ruthenium oxide (RuO 2 ) based on the total mass of the unreduced catalyst.
  • the content of the ruthenium compound in the catalyst precursor is more preferably 10 to 20% by mass in terms of ruthenium oxide (RuO 2 ) based on the total mass of the unreduced catalyst.
  • the catalyst precursor can be dried after impregnation, for example, preferably at a drying temperature of 50 to 150 ° C., more preferably 70 to 120 ° C., preferably 0.5 to 48 hours, more preferably 1 to 24 hours. .
  • Sintering temperature T 3 of the catalyst precursor is preferably 250 ° C. or higher 450 ° C. or less, from the viewpoint of obtaining high dispersibility cobalt compound and / or ruthenium compound, and more preferably 400 ⁇ 450 ° C.. If T 3 exceeds 450 ° C., the form of zirconia changes from amorphous to crystalline, which is not preferable.
  • the firing temperature is preferably equal to or higher than the decomposition start temperature of the cobalt compound and / or ruthenium compound to be used.
  • the reduction step is a step of obtaining an FT synthesis catalyst by reduction treatment of an unreduced catalyst.
  • the reduction treatment can be performed by bringing a reducing gas into contact with an unreduced catalyst under the conditions of GHSV of 200 h ⁇ 1 to 1500 h ⁇ 1 and a linear velocity of 20 mm / s or more.
  • the reducing gas is a gas containing molecular hydrogen, preferably contains 70% by volume or more of molecular hydrogen, and more preferably contains 95% by volume or more of molecular hydrogen.
  • molecular hydrogen content is less than 70% by volume, the reduction efficiency tends to be insufficient, such being undesirable.
  • Specific gas used for the reduction treatment includes hydrogen gas, a mixed gas of hydrogen gas and inert gas such as nitrogen gas, and the like, and hydrogen gas is particularly preferable.
  • an FT synthesis reaction may occur during reduction under a high pressure reduction condition of 1.1 MPa or more as an absolute pressure, which may cause problems such as heat generation. Although it is not preferable, a trace amount of contamination is acceptable.
  • the reduction temperature is preferably 250 to 500 ° C, more preferably 350 to 450 ° C.
  • the degree of reduction of cobalt atoms ratio of the mass of metal cobalt atoms to the total mass of cobalt atoms
  • ruthenium atoms metal ruthenium atoms relative to the total mass of ruthenium atoms
  • the mass ratio tends not to be sufficiently increased.
  • the reduction temperature exceeds 500 ° C., the aggregation of metal cobalt and / or metal ruthenium may proceed excessively and the activity may decrease.
  • the reduction pressure is not particularly limited, but is selected from normal pressure to about 5 MPa.
  • the reduction time largely depends on the temperature, atmosphere, equipment used, etc., and thus it is difficult to define it generally, but it is generally about 0.5 to 60 hours.
  • the reduction treatment may be carried out in a catalyst production facility, or may be carried out in a facility for producing hydrocarbons by the FT synthesis method or a facility attached thereto.
  • the reduction treatment can be carried out in a generally known reduction reaction furnace or reduction reaction tower, for example, in a fixed bed, a fluidized bed, a rotary kiln or the like.
  • Preferred processes include a fluidized bed and a rotary kiln from the viewpoint of contact efficiency between the reducing gas and the catalyst.
  • GHSV is preferably at 200h -1 or more, in consideration of the economic losses more preferably 200h at -1 to 1500h -1, more preferably not more than 600h -1 to 1500h -1.
  • the linear velocity is preferably 20 mm / s or more, more preferably 20 mm / s or more and 150 mm / s or less, and further preferably 35 mm / s or more and 150 mm / s or less.
  • GHSV in the reduction treatment indicates a volume flow rate of the reducing gas per unit volume of the unreduced catalyst, and is a value obtained by, for example, “volume flow rate of reducing gas / volume of unreduced catalyst”.
  • the linear velocity in the reduction treatment indicates the velocity of the reducing gas passing through the cross section of the reduction reaction furnace (or reduction reaction tower) filled with the unreduced catalyst.
  • volume flow rate of reducing gas / filled with unreduced catalyst It is a value obtained by the calculation formula of “the cross-sectional area of the reduction reaction furnace (or reduction reaction tower)”.
  • the obtained catalyst for FT synthesis has a degree of reduction of the cobalt atom represented by the following formula (1) and / or a degree of reduction of the ruthenium atom represented by the following formula (2): It is preferable to perform the reduction treatment so as to be 93%.
  • Reduction degree of cobalt atom (%) 100 ⁇ [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
  • Degree of reduction of ruthenium atom (%) 100 ⁇ [mass of metal ruthenium atom] / [mass of all ruthenium atoms] (2)
  • the degree of reduction of cobalt atoms in the catalyst for FT synthesis is preferably 75 to 93%, more preferably 80 to 93%.
  • the degree of reduction is less than 75%, the activity of the catalyst for FT synthesis tends to be low.
  • the degree of reduction exceeds 93%, treatment at a high temperature or for a long time is required.
  • the reduction is performed under such conditions, it is included in the catalyst for FT synthesis. Cobalt metal particles aggregated and the activity tends to decrease.
  • the reduction degree of the cobalt atom contained in the catalyst for FT synthesis is measured as follows using a TPR (Temperature Programmed Reduction) measuring apparatus.
  • “Mass of cobalt metal atoms” is “mass of all cobalt atoms” ⁇ “mass of unreduced cobalt atoms”.
  • the degree of reduction of the ruthenium atom in the FT synthesis catalyst is preferably 75 to 93%, more preferably 80 to 93%.
  • the degree of reduction is less than 75%, the activity of the catalyst for FT synthesis tends to be low.
  • the degree of reduction exceeds 93%, treatment at a high temperature or for a long time is required.
  • the reduction is performed under such conditions, it is included in the catalyst for FT synthesis.
  • the ruthenium metal particles to be aggregated tend to decrease in activity.
  • the degree of reduction of ruthenium atoms contained in the FT synthesis catalyst is measured in the same manner as the degree of reduction of cobalt atoms using a TPR (Temperature Programmed Reduction) measuring device.
  • TPR Temporal Programmed Reduction
  • the hydrocarbon production method according to the present embodiment is characterized in that a hydrocarbon is obtained by FT synthesis reaction of carbon monoxide and hydrogen gas in the presence of the above-described catalyst for FT synthesis.
  • the raw material for carrying out the FT synthesis reaction is not particularly limited as long as it is a synthesis gas mainly composed of molecular hydrogen and carbon monoxide, but the hydrogen / carbon monoxide molar ratio is 1.5-2.
  • a synthesis gas having a molar ratio of 1.8 to 2.2 is more preferred.
  • the FT synthesis reaction can be carried out in a process known as a reaction process for FT synthesis, for example, a fixed bed, a supercritical fixed bed, a slurry bed, a fluidized bed, or the like.
  • a reaction process for FT synthesis for example, a fixed bed, a supercritical fixed bed, a slurry bed, a fluidized bed, or the like.
  • Preferred processes include a fixed bed, a supercritical fixed bed, and a slurry bed.
  • reaction conditions of FT synthesis reaction There is no restriction
  • the reaction temperature is 200 to 280 ° C.
  • the gas space velocity is 1000 to 3000 h ⁇ 1
  • W (catalyst mass) / F (synthesis gas flow rate) is 1 to 10 g ⁇ h / mol
  • the absolute pressure is 1.
  • the reaction can be carried out in the range of 1 to 5.1 MPa.
  • Example 1 ⁇ Preparation of unreduced catalyst A-1> Spherical silica particles (average pore diameter 15 nm, average particle diameter 100 ⁇ m, specific surface area 255 m 2 / g) were calcined in air at 650 ° C. for 3 hours. Next, the calcined silica particles were impregnated by an Incipient Wetness method with an amount of zirconyl nitrate such that the content based on the total mass of the unreduced catalyst to be formed was 3% by mass in terms of zirconium oxide. Silica particles impregnated with zirconyl nitrate were dried at 120 ° C. for 12 hours and then calcined in air at 300 ° C. for 3 hours to obtain a carrier.
  • the obtained carrier was impregnated with an aqueous cobalt nitrate solution in an amount of 30% by mass in terms of tricobalt tetroxide based on the total mass of the unreduced catalyst to be formed by the Incipient Wetness method.
  • the carrier impregnated with the aqueous cobalt nitrate solution was dried at 120 ° C. for 12 hours and then calcined in air at 450 ° C. for 3 hours to obtain an unreduced catalyst A-1.
  • the mass of the unreduced catalyst obtained here is a standard for determining the amount of impregnation of the above-mentioned zirconyl nitrate and cobalt nitrate aqueous solution. That is, the mass in the state in which all the supported zirconia atoms and cobalt atoms are converted into zirconium oxide (zirconia) and tricobalt tetroxide (cobalt oxide), respectively, is a standard.
  • the hydrogen adsorption amount at 100 ° C. of the FT synthesis catalyst was measured using a metal dispersity measuring device (BEL-METAL-3 manufactured by Nippon Bell Co., Ltd.) as follows. First, an unreduced catalyst to be measured was weighed and charged into a metal dispersion measuring device, and reduction treatment was performed in hydrogen gas under the same conditions as the reduction conditions for obtaining a catalyst for FT synthesis. Then, the sample of the catalyst for FT synthesis obtained in the metal dispersity measuring device is cooled to room temperature, further heated to 100 ° C. which is the measurement temperature, adsorbed with hydrogen gas, and the amount of adsorbed hydrogen gas is calculated. did.
  • a metal dispersity measuring device BEL-METAL-3 manufactured by Nippon Bell Co., Ltd.
  • ⁇ FT synthesis reaction> 5 g of the obtained catalyst for FT synthesis was taken out in a dry box under an inert atmosphere so as not to be oxidized, and transferred to a stainless steel autoclave reactor having an internal volume of 100 ml together with 30 ml of normal hexadecane. Then, a mixed gas of hydrogen gas / carbon monoxide gas of 2/1 (molar ratio) is used as a raw material, W (catalyst mass) / F (synthesis gas flow rate) 3 g ⁇ h / mol, temperature 220 ° C., pressure 2. Fischer-Tropsch synthesis reaction was started under conditions of 3 MPa and stirring speed of 1000 rpm. The gas composition at the outlet of the reactor was analyzed over time by gas chromatography, and the conversion rate of carbon monoxide (CO conversion rate) was calculated from the analysis data. Table 1 shows the average value of CO conversion for 24 hours from the start of the reaction.
  • Example 2 A catalyst for FT synthesis was obtained in the same manner as in Example 1 except that the linear velocity of the reducing gas and the GHSV in the reduction treatment of the unreduced catalyst A-1 were changed as shown in Table 1. Further, in the same manner as in Example 1, the measurement of the hydrogen adsorption amount and the FT synthesis reaction were performed. The results are shown in Table 1.
  • Example 4 ⁇ Preparation of unreduced catalyst A-2> Spherical silica particles (average pore diameter 15 nm, average particle size 100 [mu] m, a specific surface area of 255m 2 / g), and in air, and calcined 3 hours at 650 ° C..
  • the calcined silica particles were impregnated by an Incipient Wetness method with an amount of zirconyl nitrate such that the content based on the total mass of the unreduced catalyst to be formed was 5% by mass in terms of zirconium oxide.
  • Silica particles impregnated with zirconyl nitrate were dried at 120 ° C. for 12 hours and then calcined in air at 300 ° C. for 3 hours to obtain a carrier.
  • the obtained carrier was impregnated with an aqueous cobalt nitrate solution in an amount of 30% by mass in terms of tricobalt tetroxide based on the total mass of the unreduced catalyst to be formed by the Incipient Wetness method.
  • the carrier impregnated with the aqueous cobalt nitrate solution was dried at 120 ° C. for 12 hours and then calcined in air at 450 ° C. for 3 hours to obtain an unreduced catalyst A-2.
  • the obtained FT synthesis catalyst was subjected to measurement of the amount of hydrogen adsorption and FT synthesis reaction in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 A catalyst for FT synthesis was obtained in the same manner as in Example 4 except that the linear velocity and GHSV of the reducing gas in the reduction treatment of the unreduced catalyst A-2 were changed as shown in Table 2. Further, in the same manner as in Example 4, measurement of the amount of hydrogen adsorption and FT synthesis reaction were performed. The results are shown in Table 2.
  • the obtained carrier was impregnated with an aqueous cobalt nitrate solution in an amount of 30% by mass in terms of tricobalt tetroxide based on the total mass of the unreduced catalyst to be formed by the Incipient Wetness method.
  • the carrier impregnated with the aqueous cobalt nitrate solution was dried at 120 ° C. for 12 hours and then calcined in air at 450 ° C. for 3 hours to obtain an unreduced catalyst A-3.
  • the obtained FT synthesis catalyst was subjected to measurement of the amount of hydrogen adsorption and FT synthesis reaction in the same manner as in Example 1. The results are shown in Table 2.
  • Example 7 ⁇ Preparation of unreduced catalyst A-4> Spherical silica particles (average pore diameter 10 nm, average particle diameter 100 ⁇ m, specific surface area 255 m 2 / g) were calcined in air at 650 ° C. for 3 hours. Next, the calcined silica particles were impregnated by an Incipient Wetness method with an amount of zirconyl nitrate whose content based on the total mass of the unreduced catalyst to be formed was 7% by mass in terms of zirconium oxide. The silica particles impregnated with zirconyl nitrate were dried at 120 ° C. for 12 hours and then calcined in air at 350 ° C. for 3 hours to obtain a carrier.
  • the obtained support was impregnated with an aqueous solution of cobalt nitrate in an amount of 15% by mass in terms of tricobalt tetroxide based on the total mass of the unreduced catalyst to be formed by the Incipient Wetness method.
  • the carrier impregnated with the aqueous cobalt nitrate solution was dried at 120 ° C. for 12 hours and then calcined in air at 450 ° C. for 3 hours to obtain an unreduced catalyst A-4.
  • the obtained FT synthesis catalyst was subjected to measurement of the amount of hydrogen adsorption and FT synthesis reaction in the same manner as in Example 1. The results are shown in Table 2.
  • Example 8 ⁇ Preparation of unreduced catalyst A-5> Spherical silica particles (average pore size 15 nm, average particle size 70 ⁇ m, specific surface area 255 m 2 / g) were calcined in air at 650 ° C. for 3 hours. Next, the calcined silica particles were impregnated by an Incipient Wetness method with an amount of zirconyl nitrate such that the content based on the total mass of the unreduced catalyst to be formed was 3% by mass in terms of zirconium oxide. Silica particles impregnated with zirconyl nitrate were dried at 120 ° C. for 12 hours and then calcined in air at 300 ° C. for 3 hours to obtain a carrier.
  • the obtained support was impregnated with an aqueous solution of ruthenium chloride in an amount of 15% by mass in terms of ruthenium oxide (RuO 2 ) based on the total mass of the unreduced catalyst to be formed by the Incipient Wetness method.
  • the carrier impregnated with the aqueous ruthenium chloride solution was dried at 120 ° C. for 12 hours and then calcined in air at 400 ° C. for 3 hours to obtain an unreduced catalyst A-5.
  • the obtained FT synthesis catalyst was subjected to measurement of the amount of hydrogen adsorption and FT synthesis reaction in the same manner as in Example 1. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 フィッシャー・トロプシュ合成用触媒を製造する方法であって、未還元触媒の還元処理により前記フィッシャー・トロプシュ合成用触媒を得る還元工程を有し、前記未還元触媒が、シリカ及びジルコニウム化合物を含有する担体前駆体を焼成して得られる担体と、該担体に担持されたコバルト酸化物及び/又はルテニウム酸化物と、を含有し、前記未還元触媒のジルコニウム含量が、前記未還元触媒の全質量を基準として、酸化ジルコニウム換算で0.01~7質量%であり、前記還元工程において、GHSVが200h-1以上1500h-1以下、線速度が20mm/s以上の条件で前記未還元触媒に還元ガスを接触させて、前記未還元触媒の還元処理を行う、製造方法。

Description

フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
 本発明は、フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法に関する。
 水素と一酸化炭素とを主成分とする合成ガスから炭化水素を合成する反応は、フィッシャー・トロプシュ合成(FT合成)と呼ばれ、燃料などの製造に利用されている。このFT合成反応に用いる触媒として、例えば、特許文献1には、シリカ、アルミナ等の担体上に、コバルト、鉄等の活性金属を担持した触媒が開示され、特許文献2には、コバルト、ジルコニウム又はチタン、及びシリカを含有する触媒が開示されている。
特開平4-227847号公報 特開昭59-102440号公報
 FT合成反応に用いる触媒(以下、「FT合成触媒」ということもある。)は、例えば、以下のようにして調製される。すなわち、まず、シリカ、アルミナ等の担体に、コバルト塩、ルテニウム塩等を含浸させ、これを焼成することによって、コバルト酸化物及び/又はルテニウム酸化物が担持された触媒(未還元触媒)が得られる。このようにして得られた触媒がFT合成反応に対して十分な活性を発現するためには、該触媒を還元ガス(水素ガス等)に接触させて還元処理し、活性金属であるコバルト及び/又はルテニウムを酸化物の状態から、金属の状態へと変換することが必要となる。
 本発明は、還元処理されたFT合成触媒であって、フィッシャー・トロプシュ合成反応に対する反応活性に優れたFT合成触媒を製造することが可能な製造方法、及びその製造方法によって得られたFT合成触媒を用いた炭化水素の製造方法を提供することを目的とする。
 本発明の一側面は、フィッシャー・トロプシュ合成用触媒を製造する製造方法に関するものである。当該製造方法は、未還元触媒の還元処理により前記フィッシャー・トロプシュ合成用触媒を得る還元工程を有する。
 また、上記製造方法において、上記未還元触媒は、シリカ及びジルコニウム化合物を含有する担体前駆体を焼成して得られる担体と、該担体に担持されたコバルト酸化物及び/又はルテニウム酸化物と、を含有し、上記未還元触媒のジルコニウム含量は、上記未還元触媒の全質量を基準として、酸化ジルコニウム換算で0.01~7質量%である。
 また、上記還元工程においては、GHSVが200h-1以上1500h-1以下、線速度が20mm/s以上の条件で上記未還元触媒に還元ガスを接触させて、上記未還元触媒の還元処理を行う。
 このように特定のジルコニウム含量を有する未還元触媒に対して、特定の条件で還元処理を行うことによって、反応活性に優れるフィッシャー・トロプシュ合成用触媒を得ることができる。
 本発明の一態様において、上記還元工程では、上記フィッシャー・トロプシュ合成用触媒の下記式(1)で表されるコバルト原子の還元度及び/又は下記式(2)で表されるルテニウム原子の還元度が75~93%となるように、上記未還元触媒の還元処理を行うことができる。
 コバルト原子の還元度(%)=100×〔金属コバルト原子の質量〕/〔全コバルト原子の質量〕   …(1)
 ルテニウム原子の還元度(%)=100×〔金属ルテニウム原子の質量〕/〔全ルテニウム原子の質量〕   …(2)
 このように還元処理して得られたフィッシャー・トロプシュ合成用触媒は、より反応活性に優れたものとなる。
 本発明の他の側面は、上記製造方法により製造されるフィッシャー・トロプシュ合成用触媒に関するものである。このようなフィッシャー・トロプシュ合成用触媒は、反応活性に優れ、フィッシャー・トロプシュ合成反応に好適に使用することができる。
 本発明の他の側面は、上記製造方法により製造されたフィッシャー・トロプシュ合成用触媒の存在下、一酸化炭素と水素ガスとを反応させて炭化水素を得る工程を有する、炭化水素の製造方法に関する。このような炭化水素の製造方法では、フィッシャー・トロプシュ合成用触媒が反応活性に優れるため、炭化水素を効率良く製造することができる。
 本発明によれば、反応活性に優れたフィッシャー・トロプシュ合成用触媒を製造することが可能な製造方法、及びその製造方法によって得られたフィッシャー・トロプシュ合成用触媒を用いた炭化水素の製造方法が提供される。
 本発明のフィッシャー・トロプシュ合成用触媒の製造方法の好適な一実施形態について、以下に説明する。
 本実施形態に係る製造方法は、未還元触媒の還元処理によりフィッシャー・トロプシュ合成用触媒(以下、場合により「FT合成用触媒」という。)を得る還元工程を有する。
 本実施形態において、未還元触媒は、シリカ及びジルコニウム化合物を含有する担体前駆体を焼成して得られる担体と、該担体に担持されたコバルト酸化物及び/又はルテニウム酸化物と、を含有するものであり、未還元触媒におけるジルコニウム含量は、未還元触媒の全質量を基準として、酸化ジルコニウム換算で0.01~7質量%である。
 また、本実施形態において、還元工程では、GHSVが200h-1以上1500h-1以下、線速度が20mm/s以上の条件で未還元触媒に還元ガスを接触させて、当該未還元触媒の還元処理を行う。
 このように特定の未還元触媒を特定の条件で還元処理することによって、フィッシャー・トロプシュ合成反応における反応活性に優れた、フィッシャー・トロプシュ合成用触媒を得ることができる。
 以下に、本実施形態に係る未還元触媒及び還元工程について詳述する。
(未還元触媒)
 未還元触媒は、シリカ及びジルコニウム化合物を含有する担体前駆体を焼成して得られる担体と、該担体に担持されたコバルト酸化物及び/又はルテニウム酸化物と、を含有するものである。
 未還元触媒におけるジルコニウム含量は、未還元触媒の全質量を基準として、酸化ジルコニウム換算で0.01~7質量%であり、多量のジルコニアはコバルト及び/又はルテニウムの還元性を低下させ、初期活性の低下を招く恐れがあることから、好ましくは0.1~6質量%であり、より好ましくは0.5~5.5質量%である。
 未還元触媒がコバルト酸化物を含有するとき、その含有量は、より高い反応活性を有するFT合成用触媒が得られる観点から、未還元触媒の全質量を基準として、10~35質量%であることが好ましく、20~30質量%であることがより好ましい。
 また、未還元触媒がルテニウム酸化物を含有するとき、その含有量は、未還元触媒の全質量を基準として5~35質量%であることが好ましく、10~20質量%であることがより好ましい。ルテニウムを活性点とするFT合成用触媒は、コバルトを活性点とするものよりも高活性で、ワックス選択率が高いことが特長であり、触媒の使用量を大幅に削減できる場合がある。
 また、未還元触媒がコバルト酸化物及びルテニウム酸化物を含有するとき、これらの合計含有量は、未還元触媒の全質量を基準として5~35質量%であることが好ましく、10~30質量%であることがより好ましい。
 未還元触媒の平均粒子径は、10μm~10mmが好ましく、10μm~5mmがより好ましく、10~150μmがさらに好ましく、30~100μmがさらにより好ましい。未還元触媒の平均粒子径は、粒度分布測定装置を用いて測定でき、例えば、ベックマン・コールター株式会社製コールターカウンター Multisizer 3を使用し、電気的検知帯法(コールター原理)により、自動測定・算出される。
 未還元触媒は、貴金属を更に含有していてもよい。貴金属としては、Pt、Pd、Au及びReのうちの一種以上が好ましく、Ptがより好ましい。貴金属を含有させることにより、コバルト及び/又はルテニウムの還元を促進することができる。これにより、触媒の劣化要因と推察される、フィッシャー・トロプシュ合成反応中に生成した水によるコバルト金属の酸化を抑制することができる。
 貴金属の担持量は、上記の効果と経済性とのバランスの点で、未還元触媒の全質量を基準として0.001~1質量%であることが好ましく、0.001~0.5質量%であることがより好ましい。
 未還元触媒は、メソ細孔容積が0.35cm/g以上であることが好ましい。未還元触媒のメソ細孔容積は、以下の方法で算出される。まず、未還元触媒に吸着した水分を除去するため、例えば、300℃、5時間の真空排気する前処理を行う。この前処理後の触媒について、日本ベル(株)社製 BELSORP-maxを使用し、液体窒素温度(-196℃)で窒素を用いた定容量法ガス吸着法により吸脱着等温線を自動測定する。データの解析には、装置附属の解析ソフトウェア(BEL MasterTM)を用いることができ、測定された窒素の吸脱着等温線はBJH法にて自動解析され、未還元触媒の単位質量当りのメソ細孔容積(cm/g)が算出される。なお、BJH法とは、吸着質が脱離するときの相対圧と吸着量の関係である脱着等温線から平均細孔径を求める手法である。(E.P.Barrett, L.G.Joyner, P.H.Halenda:J.Am.Chem.Soc.,73,373(1951).)
 未還元触媒のメソ細孔容積は、0.35~0.8cm/gであることがより好ましく、0.4~0.7cm/gであることがさらに好ましい。未還元触媒のメソ細孔容積が0.35cm/gより小さいと、反応初期に触媒劣化が起こりやすくなる傾向がある。一方、未還元触媒のメソ細孔容積が0.8cm/gより大きいと、細孔が大きくなり過ぎて、触媒摩耗が起こりやすくなる。そのため、反応中に摩耗損失による触媒劣化を起こしやすくなる傾向がある。
 未還元触媒は、比表面積が130m/g以上であることが好ましい。未還元触媒の比表面積は以下の方法で算出される。まず、未還元触媒に吸着した水分を除去するため、例えば、300℃、5時間の真空排気する前処理を行う。この前処理後の触媒について、日本ベル(株)社製 BELSORP-maxを使用し、液体窒素温度(-196℃)で窒素を用いた定容量法ガス吸着法により吸脱着等温線を自動測定する。データの解析には、装置附属の解析ソフトウェア(BEL MasterTM)を用いることができ、測定された窒素の吸脱着等温線はBETの式にて自動解析され、未還元触媒の単位質量当りの表面積(m/g)が算出される。
 未還元触媒の比表面積は、130~400m/gであることが好ましく、140~200m/gであることがより好ましい。比表面積が130m/gより小さいと、反応初期に触媒劣化が起こりやすくなる傾向がある。一方、比表面積が400m/gより大きいと、反応中に触媒摩耗が起こりやすく、摩耗損失による触媒劣化を起こしやすくなる傾向がある。
 本実施形態において、シリカとしては、コロイダルシリカ、水ガラス、アエロジル、エアロゲル、シリカゾル、シリカゲル、粉末シリカ、及びケイ酸塩からなる群より選ばれる少なくとも1種を好ましく用いることができる。シリカは後述する所定の焼成温度Tで焼成されていることが好ましい。
 シリカの比表面積は、50~500m/gであることが好ましく、150~400m/gであることがより好ましい。比表面積が50m/gより小さいとコバルトなどの活性金属が凝集しやすくなる傾向がある。一方、比表面積が500m/gより大きいと、細孔径が小さくなりすぎて、コバルトなどの活性金属の担持により細孔が閉塞されやすくなる傾向がある。
 シリカの比表面積は以下の方法で算出される。まず、シリカに吸着した水分を除去するため、例えば、300℃、5時間の真空排気する前処理を行う。この前処理後のシリカについて、日本ベル(株)社製 BELSORP-maxを使用し、液体窒素温度(-196℃)で窒素を用いた定容量法ガス吸着法により吸脱着等温線を自動測定する。データの解析には、装置附属の解析ソフトウェア(BELMasterTM)を用いることができ、測定された窒素の吸脱着等温線はBETの式にて自動解析され、シリカの単位質量当りの表面積(m/g)が算出される。
 シリカの平均細孔径は、8~25nmであることが好ましく、10~20nmであることがより好ましく、10~15nmであることが更により好ましい。平均細孔径が8nmより小さいと、拡散律速により反応活性が低くなる傾向がある。一方、平均細孔径が25nmより大きいと、担体の表面積が低くなるため担持金属が凝集しやすくなり、反応活性の低下を招く傾向がある。
 シリカの平均細孔径は以下の方法で算出される。まず、シリカに吸着した水分を除去するため、例えば、300℃、5時間の真空排気する前処理を行う。この前処理後のシリカについて、日本ベル(株)社製 BELSORP-maxを使用し、液体窒素温度(-196℃)で窒素を用いた定容量法ガス吸着法により吸脱着等温線を自動測定する。データの解析には、装置附属の解析ソフトウェア(BEL MasterTM)を用いることができ、測定された窒素の吸脱着等温線はBJH法にて自動解析され、シリカの平均細孔径が算出される。
 担体前駆体は、例えば、シリカとジルコニウム化合物とを用いて、Incipient Wetness法に代表される含浸法を用いて調製することができる。
 シリカの形状は特に限定されないが、球状品、破砕品、円往状成形品等の各種形状品の中から使用することができ、プロセスに適合した形状を選択することができる。シリカの平均粒子径についても制限はなく、例えば、5μm~10mm、好ましくは5μm~5mm、より好ましくは5~150μm、さらに好ましくは10~100μmのものを、プロセスに応じて適宜選択して使用することができる。シリカの平均粒子径は、粒度分布測定装置を用いて測定でき、例えば、ベックマン・コールター株式会社製コールターカウンター Multisizer 3を使用し、電気的検知帯法(コールター原理)により、自動測定・算出される。
 担体前駆体には、シリカ以外の担体材料として、アルミナ、チタニア、マグネシア、セリア及びジルコニア並びにこれらの複合酸化物からなる群より選択される1種以上を含有させることができる。複合酸化物としては、シリカ-アルミナ、シリカ-チタニア、アルミナ-チタニア、シリカ-ジルコニア、アルミナ-ジルコニア、チタニア-ジルコニアなどが挙げられる。
 ジルコニウム化合物としては、硝酸ジルコニール(ZrO(NO)、酸塩化ジルコニウム(ZrOCl)、水酸化オキソ塩化ジルコニウム(ZrO(OH)Cl)、硫酸ジルコニール(ZrOSO)、酢酸ジルコニール(ZrO(C)、炭酸ジルコニールアンモニウム((NHZrO(CO)などが挙げられる。これらのなかでも、硝酸ジルコニール、酢酸ジルコニール、炭酸ジルコニールアンモニウムが好ましい。ジルコニウム化合物は1種を単独で、又は2種以上を組み合わせて用いることができる。
 以下に、未還元触媒の好適な一製造方法について詳述する。
 本製造方法は、温度Tで焼成されたシリカと、ジルコニウム化合物と、が含まれる担体前駆体、を温度Tで焼成して担体を得る工程と、上記担体と、コバルト化合物及び/又はルテニウム化合物と、が含まれる触媒前駆体、を温度Tで焼成する工程と、を備え、T、T及びTが下記式(A)~(C)の条件を満たすことが好ましい。
 T≧T          …(A)
 250℃≦T≦450℃   …(B)
 250℃≦T≦450℃   …(C)
 シリカの焼成温度Tは上記式(A)を満たすことが好ましく、高い温度で焼成すると焼結を引き起こし、所望の平均細孔径が得られにくくなる傾向にあることから250~700℃であることが好ましく、400~650℃であることがより好ましい。焼成時間は、例えば、0.5~10時間とすることができる。焼成は、例えば、空気中などの分子状酸素の存在下で行うことができる。
 担体前駆体の調製方法としては、Incipient Wetness法に代表される含浸法を用いることができる。担体前駆体は、含浸後、例えば、好ましくは50~150℃、より好ましくは70~120℃の乾燥温度で、好ましくは0.5~48時間、より好ましくは1~24時間乾燥することができる。
 担体前駆体の焼成温度Tは250℃以上450℃以下であるが、高いメソ細孔容積を維持するという観点から、250~300℃がより好ましい。Tが450℃を超えると、ジルコニアの形態が無定形から結晶へと変化するため好ましくない。Tが250℃より低いと、ジルコニウム化合物の分解開始温度以下となり、十分な触媒活性が得られにくくなる。そのため、焼成温度は用いるジルコニウム化合物の分解開始温度以上であることが好ましい。
 次に、上記で得られる担体と、コバルト化合物及び/又はルテニウム化合物と、が含まれる触媒前駆体、を温度Tで焼成する工程について説明する。
 本実施形態で用いるコバルト化合物としては、コバルトを塩又は錯体の形で分子内に有する化合物を用いることができる。例えば、硝酸塩、塩酸塩、硫酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、シュウ酸塩、アセチルアセトナート等が挙げられる。具体的には、硝酸コバルト、塩化コバルト、蟻酸コバルト、プロピオン酸コバルト、酢酸コバルト、コバルトアセチルアセトナートなどを挙げることができる。コバルト化合物は1種を単独で、又は2種以上を組み合わせて用いることができる。
 本実施形態で用いるルテニウム化合物としては、塩化ルテニウム、臭化ルテニウムなどのハロゲン化ルテニウム、酸化ルテニウム(IV)、水酸化ルテニウム(III)、アセチルアセトナトルテニウム、ヘキサアンミンルテニウム(II)塩化物、ドデカカルボニル三ルテニウム等が挙げられる。
 触媒前駆体の調製方法としては、Incipient Wetness法に代表される含浸法を用いることができる。このとき、触媒前駆体におけるコバルト化合物の含有量が、未還元触媒の全質量を基準として酸化コバルト(四酸化三コバルト)換算で10~35質量%となるように設定されることが好ましい。高い反応性を得る観点から、触媒前駆体におけるコバルト化合物の含有量が、未還元触媒の全質量を基準として酸化コバルト(四酸化三コバルト)換算で20~30質量%となることがより好ましい。
 また、ルテニウム化合物を用いる場合、触媒前駆体におけるルテニウム化合物の含有量が、未還元触媒の全質量を基準として酸化ルテニウム(RuO)換算で5~35質量%となるように設定されることが好ましい。高い反応性を得る観点から、触媒前駆体におけるルテニウム化合物の含有量が、未還元触媒の全質量を基準として酸化ルテニウム(RuO)換算で10~20質量%となることがより好ましい。
 触媒前駆体は、含浸後、例えば、好ましくは50~150℃、より好ましくは70~120℃の乾燥温度で、好ましくは0.5~48時間、より好ましくは1~24時間乾燥することができる。
 触媒前駆体の焼成温度Tは250℃以上450℃以下が好ましく、コバルト化合物及び/又はルテニウム化合物の高い分散性を得る観点から、400~450℃がより好ましい。Tが450℃を超えると、ジルコニアの形態が無定形から結晶へと変化するため好ましくない。焼成温度は用いるコバルト化合物及び/又はルテニウム化合物の分解開始温度以上であることが好ましい。
(還元工程)
 還元工程は、未還元触媒の還元処理によりFT合成用触媒を得る工程である。
 還元処理は、GHSVが200h-1以上1500h-1以下、線速度が20mm/s以上の条件で未還元触媒に還元ガスを接触させて行うことができる。
 還元ガスは、分子状水素を含むガスであり、好ましくは分子状水素を70体積%以上含み、より好ましくは分子状水素を95体積%以上含む。分子状水素の含有量が70体積%未満の場合には、還元の効率が不十分となる傾向となり好ましくない。還元処理に使用する具体的な気体としては、水素ガス、水素ガスと窒素ガス等の不活性ガスとの混合ガス等が挙げられるが、水素ガスが特に好ましい。
 なお、還元処理に使用する気体が更に一酸化炭素を含む場合には、絶対圧として1.1MPa以上の高圧還元条件において還元中にFT合成反応が生起され、発熱等の問題を生じる懸念があることから好ましくないが、微量の混入であれば許容される。
 還元温度は、250~500℃であることが好ましく、350~450℃であることがより好ましい。還元温度が250℃よりも低い場合には、コバルト原子の還元度(コバルト原子の全質量に対する金属コバルト原子の質量の比)及び/又はルテニウム原子の還元度(ルテニウム原子の全質量に対する金属ルテニウム原子の質量の比)が十分に高められない傾向にある。一方、還元温度が500℃を超える場合には、金属コバルト及び/又は金属ルテニウムの凝集が過剰に進行して活性が低下する場合がある。
 還元の圧力は特に限定されないが、常圧~5MPa程度が選択される。還元時間は、温度、雰囲気、使用する装置等に大きく依存することから、一概に規定することは困難であるが、一般的には0.5~60時間程度である。
 還元処理は、触媒製造設備内において実施されてもよく、また、FT合成法による炭化水素の製造を実施する設備あるいはこれに付属する設備において実施されてもよい。
 また還元処理は、一般的に知られている還元反応炉又は還元反応塔で実施することができ、例えば、固定床、流動床、ロータリーキルン等において実施することができる。好ましいプロセスとしては、還元ガスと触媒との接触効率の観点から、流動床、ロータリーキルンを挙げることができる。
 還元処理において、GHSVは200h-1以上であることが好ましく、経済損失を考慮すると200h-1以上1500h-1以下であることがより好ましく、さらに好ましくは600h-1以上1500h-1以下である。
 また、還元処理において、線速度は、20mm/s以上であることが好ましく、20mm/s以上150mm/s以下であることがより好ましく、35mm/s以上150mm/s以下であることが更に好ましい。
 なお、本明細書中、還元処理におけるGHSVは、未還元触媒の単位体積当たりの還元ガスの体積流量を示し、例えば「還元ガスの体積流量/未還元触媒の体積」で求められる値である。また、還元処理における線速度は、未還元触媒が充填される還元反応炉(又は還元反応塔)の断面を通過する還元ガスの速度を示し、例えば「還元ガスの体積流量/未還元触媒が充填される還元反応炉(又は還元反応塔)の断面積」の計算式で得られる値である。
 還元工程においては、得られるFT合成用触媒の、下記式(1)で表されるコバルト原子の還元度、及び/又は、下記式(2)で表されるルテニウム原子の還元度が、75~93%となるように還元処理を行うことが好ましい。
 コバルト原子の還元度(%)=100×〔金属コバルト原子の質量〕/〔全コバルト原子の質量〕   …(1)
 ルテニウム原子の還元度(%)=100×〔金属ルテニウム原子の質量〕/〔全ルテニウム原子の質量〕   …(2)
 FT合成用触媒のコバルト原子の還元度は、好ましくは75~93%であり、より好ましくは80~93%である。還元度が75%未満である場合には、FT合成用触媒の活性が低い傾向にある。一方、還元度が93%を超えるように還元を行なうためには、高温あるいは長時間の処理が必要となるが、そのような条件にて還元を行なった場合には、FT合成用触媒に含まれるコバルト金属粒子が凝集し、活性が低下する傾向にある。
 なお、FT合成用触媒に含まれるコバルト原子の還元度は、TPR(Temperature Programed Reduction)測定装置を用いて、以下のようにして測定する。まず、基準となる試料として未還元触媒(コバルト原子が酸化物の状態、還元度0%)について、TPR測定装置でTPR測定を行い、生成するm/z=18(HO)量(1)を計測する。得られた値を基に、未還元触媒における「全コバルト原子の質量」を「コバルト原子量×4/3×(生成したm/z=18量(1))/水の分子量」として求める。次に、測定対象の触媒をTPR測定装置により、未還元触媒と同様の条件にてTPR測定を行ない、m/z=18量(2)を計測する。そして、得られた値を基に、FT合成用触媒における「未還元コバルト原子の質量」を「コバルト原子量×4/3×(生成したm/z=18量(2))/水の分子量」として求める。「金属コバルトの原子の質量」は「全コバルト原子の質量」-「未還元コバルト原子の質量」である。従って、コバルト原子の還元度(%)=100×〔金属コバルト原子の質量〕/〔全コバルト原子の質量〕=100×(「全コバルト原子の質量」-「未還元コバルト原子の質量」)/「全コバルト原子の質量」=100×(「生成したm/z=18量(1)」-「生成したm/z=18量(2)」)/(「生成したm/z=18量(1))となる。
 また、FT合成用触媒のルテニウム原子の還元度は、好ましくは75~93%であり、より好ましくは80~93%である。還元度が75%未満である場合には、FT合成用触媒の活性が低い傾向にある。一方、還元度が93%を超えるように還元を行なうためには、高温あるいは長時間の処理が必要となるが、そのような条件にて還元を行なった場合には、FT合成用触媒に含まれるルテニウム金属粒子が凝集し、活性が低下する傾向にある。
 なお、FT合成用触媒に含まれるルテニウム原子の還元度は、TPR(Temperature Programed Reduction)測定装置を用い、コバルト原子の還元度と同様にして測定される。
 次に、本発明の炭化水素の製造方法の好適な一実施形態について、以下に説明する。
 本実施形態に係る炭化水素の製造方法は、上述したFT合成用触媒の存在下、一酸化炭素と水素ガスとをFT合成反応させて、炭化水素を得ることを特徴とする。
 FT合成反応を実施する際の原料としては、分子状水素及び一酸化炭素を主成分とする合成ガスであれば特に制限はないが、水素/一酸化炭素のモル比が1.5~2.5である合成ガスが好適であり、該モル比が1.8~2.2である合成ガスがより好適である。
 FT合成反応は、FT合成の反応プロセスとして公知のプロセス、例えば、固定床、超臨界固定床、スラリー床、流動床等で実施することができる。好ましいプロセスとしては、固定床、超臨界固定床、スラリー床を挙げることができる。
 FT合成反応の反応条件については特に制限はなく、公知の条件にて行うことができる。例えば、反応温度としては200~280℃、ガス空間速度としては1000~3000h-1、W(触媒質量)/F(合成ガス流量)が1~10g・h/mol、圧力としては絶対圧1.1~5.1MPaの範囲で反応を行うことができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
(実施例1)
<未還元触媒A-1の調製>
 球状のシリカ粒子(平均細孔径15nm、平均粒子径100μm、比表面積255m/g)を、空気中、650℃で3時間焼成した。次いで、焼成したシリカ粒子に、形成する未還元触媒の全質量を基準とした含有量が酸化ジルコニウム換算で3質量%となる量の硝酸ジルコニールをIncipient Wetness法により含浸させた。硝酸ジルコニール含浸後のシリカ粒子を120℃で12時間乾燥し、その後空気中、300℃で3時間焼成することで担体を得た。
 得られた担体に、形成する未還元触媒の全質量を基準とした含有量が四酸化三コバルト換算で30質量%となる量の硝酸コバルト水溶液を、Incipient Wetness法により含浸させた。硝酸コバルト水溶液含浸後の担体を、120℃で12時間乾燥し、その後空気中、450℃で3時間焼成し、未還元触媒A-1を得た。
 なお、ここで得られた未還元触媒の質量が、上記の硝酸ジルコニール及び硝酸コバルト水溶液の含浸量を決める際の基準となる。すなわち、担持されたジルコニア原子及びコバルト原子の全量がそれぞれ酸化ジルコニウム(ジルコニア)及び四酸化三コバルト(コバルト酸化物)に転換された状態での質量が基準となる。
<FT合成用触媒の調製(未還元触媒の還元)>
 未還元触媒A-1をロータリーキルンにて水素気流下で還元した。還元に使用した水素の線速度は52mm/s、GHSVは300h-1に設定し、ロータリーキルン内の触媒層温度を、室温から350℃まで昇温し、350℃にて7時間保持して活性化されたFT合成用触媒を得た。
<水素吸着量の測定>
 FT合成用触媒の100℃における水素吸着量を、金属分散度測定装置(日本ベル社製BEL-METAL-3)を用いて、以下のようにして測定した。まず、測定対象の未還元触媒を秤量して金属分散度測定装置に仕込み、FT合成用触媒を得るための還元条件と同一の条件下にて水素ガス中で還元処理を行った。その後、金属分散度測定装置内で得られたFT合成用触媒の試料を室温まで冷却し、更に測定温度である100℃まで昇温した後水素ガスを吸着させ、吸着した水素ガスの量を算出した。そして、吸着水素ガス量を、仕込んだFT合成用触媒の質量で除し、単位触媒質量当りの水素ガス吸着量を算出した。また、吸着水素ガス量を、FT合成用触媒の活性金属(コバルト及び/又はルテニウム)の質量で除し、活性金属(コバルト及び/又はルテニウム)の単位質量当たりの水素ガス吸着量を算出した。得られた結果を表1に示す。なお、表中、「還元度×水素吸着量(2)(ml/g)」は、触媒の活性点の数を便宜的に示した値である。
<FT合成反応>
 得られたFT合成用触媒5gを、酸化されないように不活性雰囲気下、ドライボックス中で取り出し、ノルマルヘキサデカン30mlと共に内容積100mlのステンレス鋼製オートクレーブ型反応器に移した。そして、水素ガス/一酸化炭素ガスが2/1(モル比)の混合ガスを原料とし、W(触媒質量)/F(合成ガス流量)=3g・h/mol、温度220℃、圧力2.3MPa、攪拌速度1000rpmの条件でフィッシャー・トロプシュ合成反応を開始した。反応器の出口のガス組成をガスクロマトグラフィーで経時的に分析し、この分析データから、一酸化炭素の転化率(CO転化率)を算出した。反応開始から24時間のCO転化率の平均値を表1に示す。
(実施例2~3)
 未還元触媒A-1の還元処理における還元ガスの線速度及びGHSVを表1に記載のとおり変更したこと以外は、実施例1と同様にして、FT合成用触媒を得た。また、実施例1と同様にして、水素吸着量の測定及びFT合成反応を行った。結果を表1に示す。
(実施例4)
<未還元触媒A-2の調製>
 球状のシリカ粒子(平均細孔径15nm、平均粒子径100μm、比表面積255m/g)を、空気中、650℃で3時間焼成した。次いで、焼成したシリカ粒子に、形成する未還元触媒の全質量を基準とした含有量が酸化ジルコニウム換算で5質量%となる量の硝酸ジルコニールをIncipient Wetness法により含浸させた。硝酸ジルコニール含浸後のシリカ粒子を120℃で12時間乾燥し、その後空気中、300℃で3時間焼成することで担体を得た。
 得られた担体に、形成する未還元触媒の全質量を基準とした含有量が四酸化三コバルト換算で30質量%となる量の硝酸コバルト水溶液を、Incipient Wetness法により含浸させた。硝酸コバルト水溶液含浸後の担体を、120℃で12時間乾燥し、その後空気中、450℃で3時間焼成し、未還元触媒A-2を得た。
<FT合成用触媒の調製(未還元触媒の還元)>
 未還元触媒A-2をロータリーキルンにて水素気流下で還元した。還元に使用した水素の線速度は150mm/s、GHSVは250h-1に設定し、ロータリーキルン内の触媒層温度を、室温から350℃まで昇温し、350℃にて7時間保持して活性化されたFT合成用触媒を得た。
 得られたFT合成用触媒について、実施例1と同様にして水素吸着量の測定及びFT合成反応を行った。結果を表1に示す。
(実施例5)
 未還元触媒A-2の還元処理における還元ガスの線速度及びGHSVを表2に記載のとおり変更したこと以外は、実施例4と同様にして、FT合成用触媒を得た。また、実施例4と同様にして、水素吸着量の測定及びFT合成反応を行った。結果を表2に示す。
(実施例6)
<未還元触媒A-3の調製>
 球状のシリカ粒子(平均細孔径10nm、平均粒子径100μm、比表面積255m/g)を、空気中、650℃で3時間焼成した。次いで、焼成したシリカ粒子に、形成する未還元触媒の全質量を基準とした含有量が酸化ジルコニウム換算で7質量%となる量の硝酸ジルコニールをIncipient Wetness法により含浸させた。硝酸ジルコニール含浸後のシリカ粒子を120℃で12時間乾燥し、その後空気中、350℃で3時間焼成することで担体を得た。
 得られた担体に、形成する未還元触媒の全質量を基準とした含有量が四酸化三コバルト換算で30質量%となる量の硝酸コバルト水溶液を、Incipient Wetness法により含浸させた。硝酸コバルト水溶液含浸後の担体を、120℃で12時間乾燥し、その後空気中、450℃で3時間焼成し、未還元触媒A-3を得た。
<FT合成用触媒の調製(未還元触媒の還元)>
 未還元触媒A-3をロータリーキルンにて水素気流下で還元した。還元に使用した水素の線速度は32mm/s、GHSVは1200h-1に設定し、ロータリーキルン内の触媒層温度を、室温から350℃まで昇温し、350℃にて7時間保持して活性化されたFT合成用触媒を得た。
 得られたFT合成用触媒について、実施例1と同様にして水素吸着量の測定及びFT合成反応を行った。結果を表2に示す。
(実施例7)
<未還元触媒A-4の調製>
 球状のシリカ粒子(平均細孔径10nm、平均粒子径100μm、比表面積255m/g)を、空気中、650℃で3時間焼成した。次いで、焼成したシリカ粒子に、形成する未還元触媒の全質量を基準とした含有量が酸化ジルコニウム換算で7質量%となる量の硝酸ジルコニールをIncipient Wetness法により含浸させた。硝酸ジルコニール含浸後のシリカ粒子を120℃で12時間乾燥し、その後空気中、350℃で3時間焼成することで担体を得た。
 得られた担体に、形成する未還元触媒の全質量を基準とした含有量が四酸化三コバルト換算で15質量%となる量の硝酸コバルト水溶液を、Incipient Wetness法により含浸させた。硝酸コバルト水溶液含浸後の担体を、120℃で12時間乾燥し、その後空気中、450℃で3時間焼成し、未還元触媒A-4を得た。
<FT合成用触媒の調製(未還元触媒の還元)>
 未還元触媒A-4をロータリーキルンにて水素気流下で還元した。還元に使用した水素の線速度は32mm/s、GHSVは1200h-1に設定し、ロータリーキルン内の触媒層温度を、室温から350℃まで昇温し、350℃にて7時間保持して活性化されたFT合成用触媒を得た。
 得られたFT合成用触媒について、実施例1と同様にして水素吸着量の測定及びFT合成反応を行った。結果を表2に示す。
(実施例8)
<未還元触媒A-5の調製>
 球状のシリカ粒子(平均細孔径15nm、平均粒子径70μm、比表面積255m/g)を、空気中、650℃で3時間焼成した。次いで、焼成したシリカ粒子に、形成する未還元触媒の全質量を基準とした含有量が酸化ジルコニウム換算で3質量%となる量の硝酸ジルコニールをIncipient Wetness法により含浸させた。硝酸ジルコニール含浸後のシリカ粒子を120℃で12時間乾燥し、その後空気中、300℃で3時間焼成することで担体を得た。
 得られた担体に、形成する未還元触媒の全質量を基準とした含有量が酸化ルテニウム(RuO)換算で15質量%となる量の塩化ルテニウム水溶液を、Incipient Wetness法により含浸させた。塩化ルテニウム水溶液含浸後の担体を、120℃で12時間乾燥し、その後空気中、400℃で3時間焼成し、未還元触媒A-5を得た。
<FT合成用触媒の調製(未還元触媒の還元)>
 未還元触媒A-5をロータリーキルンにて水素気流下で還元した。還元に使用した水素の線速度は32mm/s、GHSVは1200h-1に設定し、ロータリーキルン内の触媒層温度を、室温から350℃まで昇温し、350℃にて7時間保持して活性化されたFT合成用触媒を得た。
 得られたFT合成用触媒について、実施例1と同様にして水素吸着量の測定及びFT合成反応を行った。結果を表2に示す。
(比較例1~4)
 未還元触媒A-1の還元処理における還元ガスの線速度及びGHSVを表3に記載のとおり変更したこと以外は、実施例1と同様にして、FT合成用触媒を得た。また、実施例1と同様にして、水素吸着量の測定及びFT合成反応を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (4)

  1.  フィッシャー・トロプシュ合成用触媒を製造する方法であって、
     未還元触媒の還元処理により前記フィッシャー・トロプシュ合成用触媒を得る還元工程を有し、
     前記未還元触媒が、シリカ及びジルコニウム化合物を含有する担体前駆体を焼成して得られる担体と、該担体に担持されたコバルト酸化物及び/又はルテニウム酸化物と、を含有し、
     前記未還元触媒のジルコニウム含量が、前記未還元触媒の全質量を基準として、酸化ジルコニウム換算で0.01~7質量%であり、
     前記還元工程において、GHSVが200h-1以上1500h-1以下、線速度が20mm/s以上の条件で前記未還元触媒に還元ガスを接触させて、前記未還元触媒の還元処理を行う、製造方法。
  2.  前記還元工程において、前記フィッシャー・トロプシュ合成用触媒の下記式(1)で表されるコバルト原子の還元度及び/又は下記式(2)で表されるルテニウム原子の還元度が75~93%となるように、前記未還元触媒の還元処理を行う、請求項1に記載の製造方法。
     コバルト原子の還元度(%)=100×〔金属コバルト原子の質量〕/〔全コバルト原子の質量〕   …(1)
     ルテニウム原子の還元度(%)=100×〔金属ルテニウム原子の質量〕/〔全ルテニウム原子の質量〕   …(2)
  3.  請求項1又は2に記載の製造方法により製造される、フィッシャー・トロプシュ合成用触媒。
  4.  請求項1又は2に記載の製造方法により製造されたフィッシャー・トロプシュ合成用触媒の存在下、一酸化炭素と水素ガスとを反応させて炭化水素を得る工程を有する、炭化水素の製造方法。
     
PCT/JP2014/080529 2013-11-18 2014-11-18 フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法 WO2015072573A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/036,882 US20160296913A1 (en) 2013-11-18 2014-11-18 Production method for catalyst for fischer-tropsch synthesis, and production method for hydrocarbon
EP14862864.7A EP3072592A4 (en) 2013-11-18 2014-11-18 Production method for catalyst for fischer-tropsch synthesis, and production method for hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-238107 2013-11-18
JP2013238107A JP6007167B2 (ja) 2013-11-18 2013-11-18 フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法

Publications (1)

Publication Number Publication Date
WO2015072573A1 true WO2015072573A1 (ja) 2015-05-21

Family

ID=53057505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080529 WO2015072573A1 (ja) 2013-11-18 2014-11-18 フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法

Country Status (4)

Country Link
US (1) US20160296913A1 (ja)
EP (1) EP3072592A4 (ja)
JP (1) JP6007167B2 (ja)
WO (1) WO2015072573A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170028392A1 (en) * 2015-07-31 2017-02-02 IFP Energies Nouvelles Process for the preparation of a catalyst intended for use in a fischer-tropsch reaction
WO2018221700A1 (ja) 2017-05-31 2018-12-06 古河電気工業株式会社 フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置
WO2020116474A1 (ja) 2018-12-03 2020-06-11 古河電気工業株式会社 低級オレフィン含有ガスの製造装置および低級オレフィン含有ガスの製造方法
WO2020116476A1 (ja) 2018-12-03 2020-06-11 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法
WO2020116475A1 (ja) 2018-12-03 2020-06-11 古河電気工業株式会社 触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法
WO2020116471A1 (ja) 2018-12-03 2020-06-11 国立大学法人北海道大学 機能性構造体の前駆体および機能性構造体
CN111686722A (zh) * 2020-06-15 2020-09-22 中科合成油内蒙古有限公司 钌基费托合成催化剂及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2971297C (en) * 2014-12-19 2023-06-20 Bp P.L.C. Process for preparation of a supported cobalt-containing fischer-tropsch synthesis catalyst
JP2016182544A (ja) * 2015-03-25 2016-10-20 東ソー株式会社 水素化反応用触媒およびこれを用いた脂環族化合物の製造方法
JPWO2017131231A1 (ja) * 2016-01-29 2018-11-22 Jxtgエネルギー株式会社 フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
JP6839602B2 (ja) * 2017-05-01 2021-03-10 日鉄エンジニアリング株式会社 合成ガスから炭化水素を製造する触媒の製造方法、合成ガスから炭化水素を製造する炭化水素の製造方法
CN113751020A (zh) * 2020-06-03 2021-12-07 清华大学 金属复合化合物基贵金属单原子催化剂材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102440A (ja) 1982-11-22 1984-06-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ フイツシヤ−トロプシユ触媒の製造法、そのようにして製造された触媒及び炭化水素の製造におけるかかる触媒の使用
JPS6135854A (ja) * 1984-07-20 1986-02-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 触媒の活性化方法
JPH04227847A (ja) 1990-05-04 1992-08-17 Shell Internatl Res Maatschappij Bv 合成ガスからの炭化水素の製造方法
JP2003519011A (ja) * 2000-01-04 2003-06-17 エクソン リサーチ アンド エンジニアリング カンパニー 水素およびアンモニアによる炭化水素合成触媒の増強
WO2011108347A1 (ja) * 2010-03-05 2011-09-09 Jx日鉱日石エネルギー株式会社 フィッシャー・トロプシュ合成触媒及びその製造方法、並びに炭化水素の製造方法
JP2011177626A (ja) * 2010-02-26 2011-09-15 Jx Nippon Oil & Energy Corp 活性化フィッシャー・トロプシュ合成触媒の製造方法及び炭化水素の製造方法
JP2012213678A (ja) * 2011-03-31 2012-11-08 Japan Oil Gas & Metals National Corp 活性化されたフィッシャー・トロプシュ合成反応用触媒および炭化水素の製造方法
WO2014046009A1 (ja) * 2012-09-21 2014-03-27 Jx日鉱日石エネルギー株式会社 フィッシャー・トロプシュ合成用触媒及びその製造方法、並びに炭化水素の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL64719C (ja) * 1947-01-17
US2620347A (en) * 1949-05-07 1952-12-02 Ruhrchemie Ag Catalytic hydrogenation of carbon monoxide with iron catalysts
US4681867A (en) * 1985-06-05 1987-07-21 Air Products And Chemicals, Inc. Supported fischer-tropsch catalyst and method of making the catalyst
US4619910A (en) * 1985-06-05 1986-10-28 Air Products And Chemicals, Inc. Catalyst for selective conversion of synthesis gas and method of making the catalyst
US5545674A (en) * 1987-05-07 1996-08-13 Exxon Research And Engineering Company Surface supported cobalt catalysts, process utilizing these catalysts for the preparation of hydrocarbons from synthesis gas and process for the preparation of said catalysts
US5128377A (en) * 1987-05-07 1992-07-07 Exxon Research And Engineering Company Cobalt-titania catalysts, process utilizing these catalysts for the preparation of hydrocarbons from synthesis gas, and process for the preparation of said catalysts (C-2448)
US4962078A (en) * 1987-05-07 1990-10-09 Exxon Research And Engineering Company Cobalt-titania catalysts, process utilizing these catalysts for the preparation of hydrocarbons from synthesis gas, and process for the preparation of said catalysts
GB8918845D0 (en) * 1989-08-18 1989-09-27 Shell Int Research Process for the preparation of a catalyst suitable for the preparation of hydrocarbons from carbon monoxide and hydrogen,and said catalyst
EA000319B1 (ru) * 1995-06-16 1999-04-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Катализатор и способ получения углеводородов
US6162373A (en) * 1995-10-03 2000-12-19 Exxon Research And Engineering Company Removal of hydrogen cyanide from synthesis gas (Law322)
US6475943B1 (en) * 1995-11-08 2002-11-05 Shell Oil Company Catalyst activation process
EP1093852B1 (en) * 1998-06-09 2005-08-31 Idemitsu Kosan Company Limited Process for the autothermal reforming of hydrocarbon feedstock
WO2001039882A1 (en) * 1999-12-01 2001-06-07 Sasol Technology (Proprietary) Limited Cobalt catalysts
CA2416477A1 (en) * 2000-07-24 2002-01-31 Shell Internationale Research Maatschappij B.V. A shell metal catalyst and a precursor thereof, a process for their preparation and the use of the catalyst
US7163963B2 (en) * 2003-09-08 2007-01-16 Conocophillips Company Chemically and thermally stabilized alumina for Fischer-Tropsch catalysts
CN101080365A (zh) * 2004-11-29 2007-11-28 国际壳牌研究有限公司 氢氧化钴(ⅱ)转化成氧化氢氧化钴(ⅲ)的催化方法
JP2009519123A (ja) * 2005-12-16 2009-05-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭化水素合成触媒の製造方法
WO2010078360A2 (en) * 2008-12-29 2010-07-08 Chevron U.S.A. Inc. Preparation of cobalt-containing fischer-tropsch catalysts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102440A (ja) 1982-11-22 1984-06-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ フイツシヤ−トロプシユ触媒の製造法、そのようにして製造された触媒及び炭化水素の製造におけるかかる触媒の使用
JPS6135854A (ja) * 1984-07-20 1986-02-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 触媒の活性化方法
JPH04227847A (ja) 1990-05-04 1992-08-17 Shell Internatl Res Maatschappij Bv 合成ガスからの炭化水素の製造方法
JP2003519011A (ja) * 2000-01-04 2003-06-17 エクソン リサーチ アンド エンジニアリング カンパニー 水素およびアンモニアによる炭化水素合成触媒の増強
JP2011177626A (ja) * 2010-02-26 2011-09-15 Jx Nippon Oil & Energy Corp 活性化フィッシャー・トロプシュ合成触媒の製造方法及び炭化水素の製造方法
WO2011108347A1 (ja) * 2010-03-05 2011-09-09 Jx日鉱日石エネルギー株式会社 フィッシャー・トロプシュ合成触媒及びその製造方法、並びに炭化水素の製造方法
JP2012213678A (ja) * 2011-03-31 2012-11-08 Japan Oil Gas & Metals National Corp 活性化されたフィッシャー・トロプシュ合成反応用触媒および炭化水素の製造方法
WO2014046009A1 (ja) * 2012-09-21 2014-03-27 Jx日鉱日石エネルギー株式会社 フィッシャー・トロプシュ合成用触媒及びその製造方法、並びに炭化水素の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E.P. BARRETT; L.G JOYNER; P.H. HALENDA, J. AM. CHEM. SOC., vol. 73, 1951, pages 373
See also references of EP3072592A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170028392A1 (en) * 2015-07-31 2017-02-02 IFP Energies Nouvelles Process for the preparation of a catalyst intended for use in a fischer-tropsch reaction
WO2018221700A1 (ja) 2017-05-31 2018-12-06 古河電気工業株式会社 フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置
WO2020116474A1 (ja) 2018-12-03 2020-06-11 古河電気工業株式会社 低級オレフィン含有ガスの製造装置および低級オレフィン含有ガスの製造方法
WO2020116476A1 (ja) 2018-12-03 2020-06-11 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法
WO2020116475A1 (ja) 2018-12-03 2020-06-11 古河電気工業株式会社 触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法
WO2020116471A1 (ja) 2018-12-03 2020-06-11 国立大学法人北海道大学 機能性構造体の前駆体および機能性構造体
US11925930B2 (en) 2018-12-03 2024-03-12 Furukawa Electric Co., Ltd. Apparatus for producing lower olefin-containing gas and method for producing lower olefin-containing gas
US12070740B2 (en) 2018-12-03 2024-08-27 Furukawa Electric Co., Ltd. Catalyst structure and method for producing same, and method for producing hydrocarbon by use of catalyst structure
US12104124B2 (en) 2018-12-03 2024-10-01 Furukawa Electric Co., Ltd. Apparatus and method for producing hydrocarbons
CN111686722A (zh) * 2020-06-15 2020-09-22 中科合成油内蒙古有限公司 钌基费托合成催化剂及其制备方法和应用

Also Published As

Publication number Publication date
EP3072592A1 (en) 2016-09-28
US20160296913A1 (en) 2016-10-13
JP6007167B2 (ja) 2016-10-12
JP2015097980A (ja) 2015-05-28
EP3072592A4 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6007167B2 (ja) フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
AU777852B2 (en) Reducing Fischer-Tropsch catalyst attrition losses in high agitation reaction systems
JP5065255B2 (ja) 触媒の製造方法
CN108654638B (zh) 一种核壳型钴基费托合成催化剂及其制备方法
Ma et al. Propane dehydrogenation over Al2O3 supported Pt nanoparticles: Effect of cerium addition
US20120071571A1 (en) Cobalt catalysts
CA3028590A1 (en) A cobalt-containing catalyst composition
JP5698851B2 (ja) フィッシャー・トロプシュ合成用触媒及びその製造方法、並びに炭化水素の製造方法
JP5795483B2 (ja) 活性化されたフィッシャー・トロプシュ合成反応用触媒および炭化水素の製造方法
JP5937677B2 (ja) コバルト含有炭化水素合成触媒前駆体を調製する方法
JP2018508351A (ja) 分散した金およびパラジウムを含む触媒、および選択的水素化におけるそれの使用
JP6131370B1 (ja) 合成ガス製造触媒用担体及びその製造方法、合成ガス製造触媒及びその製造方法、並びに合成ガスの製造方法
JP5961694B2 (ja) コバルト含有のフィッシャー・トロプシュ触媒を調製する方法
JP5649849B2 (ja) 一酸化炭素還元触媒の製造方法および一酸化炭素還元触媒
Chang et al. Effect of the ZrO 2–Al 2 O 3 solid solution on the performance of Ni/ZrO 2–Al 2 O 3 catalysts for CO 2 methanation
JP6741694B2 (ja) フィッシャー・トロプシュ合成用触媒、フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
JP2023539407A (ja) 改質触媒担体及びその上に担持された触媒
WO2017131231A1 (ja) フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
JP2017217630A (ja) マグネシア系触媒担体及びその製造方法
CN106140164A (zh) 负载型金属催化剂及其在合成气制重质烃反应中的应用
CN115501905A (zh) 具有脱氢功能的催化剂及其制备方法和应用以及制备小分子烯烃的方法
JP2018187556A (ja) 合成ガスから炭化水素を製造する触媒の製造方法、合成ガスから炭化水素を製造する炭化水素の製造方法
JP2010082515A (ja) エチレンオキシド製造用触媒およびその触媒を用いたエチレンオキシドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862864

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15036882

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014862864

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014862864

Country of ref document: EP