WO2015072538A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents

合わせガラス用中間膜及び合わせガラス Download PDF

Info

Publication number
WO2015072538A1
WO2015072538A1 PCT/JP2014/080165 JP2014080165W WO2015072538A1 WO 2015072538 A1 WO2015072538 A1 WO 2015072538A1 JP 2014080165 W JP2014080165 W JP 2014080165W WO 2015072538 A1 WO2015072538 A1 WO 2015072538A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
laminated glass
intermediate film
gradation
light transmittance
Prior art date
Application number
PCT/JP2014/080165
Other languages
English (en)
French (fr)
Inventor
中山 和彦
山口 宏平
康之 伊豆
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201480062227.7A priority Critical patent/CN105722802A/zh
Priority to US15/036,722 priority patent/US9840068B2/en
Priority to EP14861616.2A priority patent/EP3070063B1/en
Priority to CN202111586839.4A priority patent/CN114211835A/zh
Priority to JP2014559028A priority patent/JP6355564B2/ja
Publication of WO2015072538A1 publication Critical patent/WO2015072538A1/ja
Priority to US15/816,676 priority patent/US10307998B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10623Whitening agents reflecting visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • B32B17/1066Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments imparting a tint in certain regions only, i.e. shade band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10678Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10688Adjustment of the adherence to the glass layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/142Variation across the area of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/145Variation across the thickness of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to an interlayer film for laminated glass having a gradation pattern. Moreover, this invention relates to the laminated glass using the said intermediate film for laminated glasses.
  • a laminated glass in which an interlayer film for laminated glass is sandwiched between a pair of glass plates is known.
  • This laminated glass is widely used in automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • a laminated glass having privacy protection has been demanded as a laminated glass for construction.
  • the laminated glass having privacy protection for example, light can be transmitted, but a person or an object located behind the laminated glass cannot be visually recognized.
  • Patent Document 1 discloses a laminated glass using a multilayer intermediate film having an opaque layer.
  • privacy protection is realized by the opaque layer that makes it impossible to visually recognize a person or an object located behind the laminated glass.
  • An object of the present invention is to provide an interlayer film for laminated glass capable of obtaining a laminated glass having a gradation pattern in which color unevenness is suppressed in addition to having excellent privacy protection, and the intermediate for laminated glass It is to provide a laminated glass using a film.
  • the first resin layer containing a thermoplastic resin and a plasticizer, and a second resin layer containing a thermoplastic resin, a plasticizer, and inorganic particles, the second resin layer is provided.
  • the first resin layer is disposed on the first surface side of the resin layer and a laminated glass is produced using two clear glasses in accordance with JIS R3202 (1996), the parallel light transmittance is obtained.
  • an interlayer film for laminated glass that is present and has a complex viscosity at 200 ° C. of the second resin layer of 0.7 to 2 times the complex viscosity at 200 ° C. of the first resin layer. .
  • the first resin layer is disposed on a second surface side opposite to the first surface side of the second resin layer.
  • the second resin layer is embedded in the first resin layer.
  • the second resin layer is disposed in a partial region in a direction orthogonal to the thickness direction of the interlayer film, and the thickness direction of the interlayer film is In a part of the region in the orthogonal direction, there is a region that is different from the gradation portion and in which the second resin layer does not exist.
  • the laminated glass member includes a first laminated glass member, a second laminated glass member, and the interlayer film for laminated glass described above, and the interlayer film for laminated glass is the first laminated glass.
  • a laminated glass is provided that is disposed between a member and the second laminated glass member.
  • An interlayer film for laminated glass according to the present invention includes a first resin layer containing a thermoplastic resin and a plasticizer, and a second resin layer containing a thermoplastic resin, a plasticizer, and inorganic particles.
  • first resin layer containing a thermoplastic resin and a plasticizer
  • second resin layer containing a thermoplastic resin, a plasticizer, and inorganic particles.
  • FIG. 1 is a cross-sectional view showing an interlayer film for laminated glass according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view showing an interlayer film for laminated glass according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an interlayer film for laminated glass according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an interlayer film for laminated glass according to the fourth embodiment of the present invention.
  • FIG. 5 is a sectional view showing an interlayer film for laminated glass according to a fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an interlayer film for laminated glass according to a sixth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an interlayer film for laminated glass according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view showing an interlayer film for laminated glass according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing an interlayer film for laminated glass according to a seventh embodiment of the present invention.
  • FIG. 8 is sectional drawing which shows the intermediate film for laminated glasses which concerns on the 8th Embodiment of this invention.
  • FIG. 9 is a cross-sectional view showing an interlayer film for laminated glass according to a ninth embodiment of the present invention.
  • FIG. 10 is sectional drawing which shows the intermediate film for laminated glasses which concerns on the 10th Embodiment of this invention.
  • FIG. 11 is a cross-sectional view for explaining another example of the boundary between the gradation portion and the transparent portion.
  • FIG. 12 is a cross-sectional view for explaining another example of the boundary between the dark portion and the gradation portion.
  • FIG. 13 is a cross-sectional view showing an example of a laminated glass using the laminated glass interlayer film shown in FIG. 14A and 14B are a cross-sectional view for showing defects generated at the interface between resin layers of the interlayer film for laminated glass, and a schematic diagram showing stripe-like color unevenness (color stripes) caused by the defects. It is.
  • the interlayer film for laminated glass according to the present invention includes a first resin layer and a second resin layer.
  • the first resin layer contains a thermoplastic resin and a plasticizer.
  • the second resin layer contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • the first resin layer is disposed on the first surface side of the second resin layer.
  • the parallel light transmittance is more than 30% and less than 60%.
  • the complex viscosity at 200 ° C. of the second resin layer is 0.7 to 2 times the complex viscosity at 200 ° C. of the first resin layer.
  • the complex viscosity at 200 ° C. of the second resin layer is 0.7 to 2 times the complex viscosity at 200 ° C. of the first resin layer, which suppresses uneven color in a gradation pattern. It greatly contributes to that. This is presumed to be due to the following reasons.
  • Conventionally, a multilayer intermediate film having a laminated structure of two or more layers is known, and in the case of such a multilayer intermediate film, the thickness of each layer is usually uniform.
  • the interlayer film for laminated glass according to the present invention has a region in which the thickness of the second resin layer continuously decreases in a direction orthogonal to the thickness direction. For this reason, the interlayer film for laminated glass according to the present invention has a more complicated structure. Further, since the second resin layer contains inorganic particles, the viscoelastic behavior is greatly different from that of the resin layer not containing inorganic particles. It is difficult to mold a multilayer intermediate film having such a complicated structure and a layer containing inorganic particles, and defects as shown in FIG. 14 (a) occur at the interface between resin layers. There is. In FIG. 14A, a colored portion indicates a resin layer containing inorganic particles, and a non-colored portion indicates another resin layer.
  • the present inventors have a structure in which the thickness continuously decreases in a direction orthogonal to the thickness direction, and even a multilayer intermediate film including a second resin layer containing inorganic particles is particularly 200 ° C.
  • a multilayer intermediate film including a second resin layer containing inorganic particles is particularly 200 ° C.
  • the complex viscosity at 200 ° C. of the second resin layer is preferably at least 0.8 times the complex viscosity at 200 ° C. of the first resin layer, more preferably at least 0.9 times. It is preferably 1.5 times or less, and more preferably 1.3 times or less.
  • the measuring method of the said complex viscosity is not specifically limited, For example, it can measure with the following method.
  • the first resin layer is taken out by peeling the first resin layer and the second resin layer.
  • 1 g of the peeled first resin layer is placed in a mold (length 2 cm ⁇ width 2 cm ⁇ thickness 0.76 mm) placed between two polyethylene terephthalate (PET) films, and the temperature is 150 ° C., press pressure After preheating at 0 kg / cm 2 for 10 minutes, press molding at 80 kg / cm 2 for 15 minutes.
  • PET polyethylene terephthalate
  • the 1st resin layer press-molded is arrange
  • a constant temperature and humidity chamber humidity 30% ( ⁇ 3%), temperature 23 ° C.
  • viscoelasticity is measured using ARES-G2 manufactured by TAINSTRUMENTS, and complex viscosity is measured.
  • a parallel plate having a diameter of 8 mm is used as a jig for measuring viscoelasticity. The viscoelasticity measurement is performed at a measurement temperature of 200 ° C.
  • the obtained complex viscosity is read as the value of the complex viscosity of the first resin layer at 200 ° C. Further, the complex viscosity of the second resin layer is measured by the same method.
  • the complex viscosity can be measured, for example, by the following method even after the laminated glass is produced.
  • the laminated glass member and the interlayer film for laminated glass are peeled off.
  • the peeled interlayer film for laminated glass is cut into a length of 10 cm and a width of 10 cm and left to stand in an environment of a temperature of 25 ° C. and a humidity of 30% for 2 hours.
  • the first resin layer is taken out by peeling the first resin layer and the second resin layer.
  • 1 g of the peeled first resin layer is placed in a mold (length 2 cm ⁇ width 2 cm ⁇ thickness 0.76 mm) placed between two polyethylene terephthalate (PET) films, and the temperature is 150 ° C., press pressure After preheating at 0 kg / cm 2 for 10 minutes, press molding at 80 kg / cm 2 for 15 minutes. Then, the 1st resin layer press-molded is arrange
  • the complex viscosity of the first resin layer can be lowered by increasing the content of the plasticizer contained in the first resin layer.
  • the complex viscosity of the second resin layer can be lowered by increasing the content of the plasticizer contained in the second resin layer.
  • the complex viscosity may be obtained by using a sample one hour after the laminated glass intermediate film, the first resin layer, or the second resin layer is formed using the components constituting the laminated glass intermediate film according to the present invention.
  • the first layer or the second resin layer contained in the interlayer film for laminated glass according to the present invention or the interlayer film for laminated glass according to the present invention can be obtained and measured.
  • One hour after obtaining the interlayer film for laminated glass, the first resin layer or the second resin layer using the components constituting the interlayer film for laminated glass according to the present invention, the measurement of the complex viscosity may be started. preferable.
  • the first resin layer is disposed on the second surface side opposite to the first surface side of the second resin layer. It is preferable that the second resin layer is embedded in the resin layer. In this case, since the content of inorganic particles on the surface of the intermediate film is reduced, the adhesion of the intermediate film to the laminated glass member can be further enhanced.
  • the first resin layer is disposed on the first surface side of the second resin layer, and the second resin layer of the first resin layer is provided.
  • the resin layer of the second resin layer may be disposed on the surface side opposite to the resin layer side. That is, the second resin layer is disposed on the first surface side of the first resin layer, and on the second surface side opposite to the first surface of the first resin layer.
  • the resin layer of the second resin layer may be disposed.
  • the second resin layer is disposed in a part of the region in the direction orthogonal to the thickness direction of the interlayer film, and one in the direction orthogonal to the thickness direction of the interlayer film. It is preferable that a region where the second resin layer does not exist is present in the region of the portion, unlike the gradation portion.
  • the region where the second resin layer is different from the gradation portion is preferably a transparent portion having a higher parallel light transmittance than the gradation portion, for example.
  • the interlayer film for laminated glass according to the present invention preferably has a dark portion having a parallel light transmittance of 30% or less.
  • the second resin layer is disposed in a part of the region in the direction orthogonal to the thickness direction of the interlayer film, and one in the direction orthogonal to the thickness direction of the interlayer film.
  • the thickness of the second resin layer may be substantially constant (substantially uniform).
  • the region where the second resin layer is different from the gradation portion is preferably a dark portion where the parallel light transmittance is lower than that of the gradation portion, for example.
  • a gradation part and a transparent part exist in the interlayer film for laminated glass.
  • a dark color portion and a gradation portion may exist in the interlayer film for laminated glass.
  • the intermediate film for laminated glass has a dark portion, a gradation portion, and a transparent portion because it can be suitably used for applications such as buildings and the appearance is further improved.
  • the privacy protection and transparency of the interlayer film for laminated glass according to the present invention can be evaluated based on the parallel light transmittance of the interlayer film for laminated glass or the laminated glass.
  • a lower parallel light transmittance indicates higher privacy protection and lower transparency
  • a higher parallel light transmittance indicates lower privacy protection and higher transparency.
  • the parallel light transmittance of the laminated glass is measured as follows, for example.
  • a laminated glass is produced using two clear glasses according to JIS R3202 (1996). An intermediate film is sandwiched between two pieces of clear glass.
  • the parallel light transmittance is measured according to JIS R3106 (1998). Specifically, using a spectrophotometer, only the transmitted parallel light is received by the integrating sphere so that it is parallel to the normal of the optical axis on the optical path between the light source and the integrating sphere and is 13 cm away from the integrating sphere. It is measured with the laminated glass installed at the point.
  • the parallel light transmittance means a visible light transmittance calculated from the spectral transmittance measured in this state. Examples of the spectrophotometer include “U-4100” manufactured by Hitachi High-Tech.
  • the parallel light transmittance in the dark part of the obtained laminated glass is 30% or less. It is preferable that the parallel light transmittance in the gradation part portion of the obtained laminated glass continuously increases from the dark color part side toward the transparent part side. It is preferable that the parallel light transmittance in the said transparent part site
  • the parallel light transmittance in the gradation portion portion of the laminated glass is opposite to the dark portion side of the gradation portion from the dark portion side. It is preferable to increase continuously toward the side.
  • the parallel light transmittance at the gradation portion portion of the laminated glass is directed from the end of the gradation portion opposite to the transparent portion to the transparent portion. It is preferable that it continuously increases.
  • the parallel light transmittance in the gradation portion portion of the laminated glass is continuously increased from the dark portion side toward the transparent portion side. It is preferable to increase.
  • FIG. 1 is a sectional view showing an interlayer film for laminated glass according to the first embodiment of the present invention.
  • the intermediate film 1 is used to obtain a laminated glass.
  • the intermediate film 1 is an intermediate film for laminated glass.
  • the intermediate film 1 includes a dark portion 11, a gradation portion 12, and a transparent portion 13.
  • the intermediate film 1 includes the dark portion 11, the gradation portion 12, and the transparent portion 13.
  • the intermediate film for laminated glass according to the present invention may not include the dark portion and the transparent portion.
  • the interlayer film for laminated glass according to the present invention preferably includes a dark portion 11, a gradation portion 12, and a transparent portion 13. In the intermediate film 1, the dark color portion 11, the gradation portion 12, and the transparent portion 13 are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1.
  • the second resin is included in the first resin layer.
  • the resin layer is embedded.
  • a laminated glass (hereinafter sometimes referred to as a laminated glass C) is produced using the intermediate film 1 and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass C is obtained by sandwiching the intermediate film 1 between two clear glasses.
  • the parallel light transmittance at the dark color portion 11 portion of the laminated glass C is 30% or less
  • the parallel light transmittance at the gradation portion 12 portion of the laminated glass C is from the dark color portion 11 side to the transparent portion 13. It increases continuously toward the side, and the parallel light transmittance at the transparent portion 13 portion of the laminated glass C is 60% or more.
  • a broken line X1 is a boundary indicating whether or not the parallel light transmittance is 30% or less.
  • a broken line X2 is a boundary indicating whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1 has a first resin layer 16 and a second resin layer 17.
  • Each of the dark color portion 11, the gradation portion 12, and the transparent portion 13 has a first resin layer 16.
  • the first resin layer 16 contains a thermoplastic resin and a plasticizer.
  • Each of the dark color portion 11 and the gradation portion 12 further includes a second resin layer 17.
  • the second resin layer 17 is embedded in the first resin layer 16 so that the first resin layer 16 is positioned on the surfaces on both sides of the second resin layer 17.
  • the second resin layer 17 contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • the second resin layer 17 is less transparent than the first resin layer 16.
  • the second resin in the gradation portion 12 so that the parallel light transmittance in the gradation portion 12 portion of the laminated glass C continuously increases from the dark color portion 11 side toward the transparent portion 13 side.
  • the first parallel light transmittance in the gradation portion 12 of the laminated glass C is increased in the gradation portion 12 so that the parallel light transmittance continuously increases from the dark color portion 11 side toward the transparent portion 13 side.
  • the total thickness of the resin layer 16 continuously increases from the dark color portion 11 side toward the transparent portion 13 side.
  • the dark portion 61 has the same shape as the dark portion 11
  • the gradation portion 62 has the same shape as the gradation portion 12
  • the transparent portion 63 has the same shape as the transparent portion 13.
  • the broken line X2 indicating the boundary where the parallel light transmittance is 60% or more indicates that the total thickness of the first resin layer 66 is the dark portion. You may be located in the middle which is increasing continuously toward the transparent part 63 side from 61 side.
  • the boundary between the gradation part 62 and the transparent part 63 is determined based on whether the parallel light transmittance is 60% or more.
  • FIG. 2 is a sectional view showing an interlayer film for laminated glass according to the second embodiment of the present invention.
  • the intermediate film 1A shown in FIG. 2 includes a dark portion 11A, a gradation portion 12A, and a transparent portion 13A.
  • the dark color portion 11A, the gradation portion 12A, and the transparent portion 13A are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1A.
  • a laminated glass (hereinafter may be referred to as a laminated glass CA) is produced using the interlayer film 1A and two clear glasses compliant with JIS R3202 (1996).
  • the laminated glass CA is obtained by sandwiching the intermediate film 1A between two sheets of clear glass.
  • the parallel light transmittance in the dark portion 11A portion of the laminated glass CA is 30% or less
  • the parallel light transmittance in the gradation portion 12A portion of the laminated glass CA is a transparent portion from the dark portion 11A side. It increases continuously toward the 13A side, and the parallel light transmittance at the transparent portion 13A portion of the laminated glass CA is 60% or more.
  • the broken line X1 is a boundary whether or not the parallel light transmittance is 30% or less.
  • the broken line X2 is a boundary indicating whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1A has a first resin layer 16A and a second resin layer 17A.
  • Each of the dark color portion 11A, the gradation portion 12A, and the transparent portion 13A has a first resin layer 16A.
  • the first resin layer 16A contains a thermoplastic resin and a plasticizer.
  • Each of the dark portion 11A and the gradation portion 12A further includes a second resin layer 17A.
  • the second resin layer 17A is embedded in the first resin layer 16A so that the first resin layer 16A is positioned on the surfaces on both sides of the second resin layer 17A.
  • the second resin layer 17A contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • the second resin layer 17A is less transparent than the first resin layer 16A.
  • the second resin in the gradation portion 12A is such that the parallel light transmittance at the gradation portion 12A portion of the laminated glass CA continuously increases from the dark color portion 11A side toward the transparent portion 13A side.
  • the thickness of the layer 17A continuously decreases from the dark portion 11A side toward the transparent portion 13A side.
  • the first parallel light transmittance in the gradation portion 12A portion of the laminated glass CA is increased in the gradation portion 12A so that the parallel light transmittance continuously increases from the dark color portion 11A side toward the transparent portion 13A side.
  • the total thickness of the resin layer 16A continuously increases from the dark portion 11A side toward the transparent portion 13A side.
  • the thickness of the second resin layer 17A in the dark color portion 11A decreases from the outer end side of the dark color portion 11A toward the transparent portion 13A side.
  • the intermediate film 1A in which the thickness of the second resin layer 17A in the dark color portion 11A is changing from the outer end side of the dark color portion 11A toward the transparent portion 13 side is also an aspect of the present invention. One.
  • the thickness of the second resin layer 17A in both the dark color portion 11A and the gradation portion 12A is such that the outer end portion of the dark color portion 11A or the dark color portion 11A side to the transparent portion 13A side.
  • the region where the parallel light transmittance in the laminated glass CA is 30% or less is defined as a dark portion 11A, and the region where the parallel light transmittance exceeds 30% is defined as a gradation portion 12A. To do.
  • FIG. 3 is a sectional view showing an interlayer film for laminated glass according to the third embodiment of the present invention.
  • the intermediate film 1B shown in FIG. 3 includes a dark portion 11B, a gradation portion 12B, and a transparent portion 13B.
  • the dark color portion 11B, the gradation portion 12B, and the transparent portion 13B are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1B.
  • a laminated glass (hereinafter sometimes referred to as a laminated glass CB) is produced using the intermediate film 1B and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass CB is obtained by sandwiching the intermediate film 1B between two clear glasses.
  • the parallel light transmittance in the dark portion 11B portion of the laminated glass CB is 30% or less
  • the parallel light transmittance in the gradation portion 12B portion of the laminated glass CB is transparent from the dark portion 11B side. It increases continuously toward the 13B side, and the parallel light transmittance at the transparent portion 13B portion of the laminated glass CB is 60% or more.
  • the broken line X1 is a boundary indicating whether or not the parallel light transmittance is 30% or less.
  • the broken line X2 is a boundary indicating whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1B has a first resin layer 16B and a second resin layer 17B.
  • the dark color portion 11B, the gradation portion 12B, and the transparent portion 13B each have a first resin layer 16B.
  • the first resin layer 16B contains a thermoplastic resin and a plasticizer.
  • Each of the dark color portion 11B, the gradation portion 12B, and the transparent portion 13B further includes a second resin layer 17B.
  • the second resin layer 17B is embedded in the first resin layer 16B so that the first resin layer 16B is located on the surfaces on both sides of the second resin layer 17B.
  • the second resin layer 17B contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • the second resin layer 17B is less transparent than the first resin layer 16B.
  • the second resin in the gradation portion 12B is such that the parallel light transmittance in the gradation portion 12B portion of the laminated glass CB continuously increases from the dark color portion 11B side toward the transparent portion 13B side.
  • the thickness of the layer 17B continuously decreases from the dark portion 11B side toward the transparent portion 13B side.
  • the first parallel light transmittance in the gradation portion 12B of the laminated glass CB is increased in the gradation portion 12B so that the parallel light transmittance continuously increases from the dark color portion 11B side toward the transparent portion 13B side.
  • the total thickness of the resin layer 16B continuously increases from the dark color portion 11B side toward the transparent portion 13B side.
  • the thickness of the second resin layer 17B in the dark color portion 11B decreases from the outer end side of the dark color portion 11B toward the transparent portion 13B. Furthermore, in the intermediate film 1B, the thickness of the second resin layer 17 in the transparent portion 13B decreases from the dark color portion 11B side toward the outer end portion side of the transparent portion 13B. Thus, the thickness of the second resin layer 17B in the dark color portion 11B and the transparent portion 13B is such that the outer end portion of the dark color portion 11B or the outer end portion of the transparent portion 13B or the transparent portion 13B from the dark color portion 11B side.
  • the intermediate film 1B changing toward the side is also one aspect of the present invention.
  • all the thickness of the 2nd resin layer 17B in the dark color part 11B, the gradation part 12B, and the transparent part 13B is from the edge part outside the dark color part 11B, or the dark color part 11B side.
  • the transparent portion 13B or the outer end portion of the transparent portion 13B continuously decreases, the region where the parallel light transmittance in the laminated glass CB is 30% or less is defined as a dark color portion 11B, and the parallel light A region where the transmittance exceeds 30% and less than 60% is defined as a gradation portion 12B, and a region where the parallel light transmittance is 60% or more is defined as a transparent portion 13B.
  • FIG. 4 is a sectional view showing an interlayer film for laminated glass according to a fourth embodiment of the present invention.
  • the intermediate film 1C shown in FIG. 4 includes a dark portion 11Ca and a dark portion 11Cb, a gradation portion 12Ca and a gradation portion 12Cb, and a transparent portion 13C.
  • the dark color portion 11Ca, the gradation portion 12Ca, and the transparent portion 13C are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1C.
  • the dark color portion 11Cb, the gradation portion 12Cb, and the transparent portion 13C are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1C.
  • the dark color portion 11Ca, the gradation portion 12Ca, and the transparent portion 13C are arranged side by side in the direction perpendicular to the thickness direction of the intermediate film 1C from both ends of the intermediate film 1C, and the dark color portion
  • An intermediate film 1C in which 11Cb, gradation part 12Cb, and transparent part 13C are arranged in a direction perpendicular to the thickness direction of the intermediate film 1C is also one aspect of the present invention.
  • a laminated glass (hereinafter may be referred to as a laminated glass CC) is produced using the intermediate film 1C and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass CC is obtained by sandwiching the intermediate film 1C between two sheets of clear glass. In this case, the parallel light transmittance in the dark portion 11Ca portion and the dark portion 11Cb portion of the laminated glass CC is 30% or less, and the parallel light transmission in the gradation portion 12Ca portion and the gradation portion 12Cb portion of the laminated glass CC.
  • the ratio is continuously increasing from the dark color portion 11Ca or the dark color portion 11Cb side toward the transparent portion 13C side, and the parallel light transmittance at the transparent portion 13C portion of the laminated glass CC is 60% or more.
  • the two broken lines X1 are boundaries that determine whether the parallel light transmittance is 30% or less.
  • the two broken lines X ⁇ b> 2 are boundaries that determine whether the parallel light transmittance is 60% or more.
  • the intermediate film 1C includes a first resin layer 16C and a second resin layer 17C.
  • Each of the dark color part 11Ca, the dark color part 11Cb, the gradation part 12Ca, the gradation part 12Cb, and the transparent part 13C includes a first resin layer 16C.
  • the first resin layer 16C contains a thermoplastic resin and a plasticizer.
  • Each of the dark color portion 11Ca, the dark color portion 11Cb, the gradation portion 12Ca, and the gradation portion 12Cb further includes a second resin layer 17C.
  • the second resin layer 17C is embedded in the first resin layer 16C so that the first resin layer 16C is located on the surfaces on both sides of the second resin layer 17C.
  • the second resin layer 17C contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • the second resin layer 17C is less transparent than the first resin layer 16C.
  • the second resin layer 17C on the dark color portion 11Ca side and the second resin layer 17C on the dark color portion 11Cb side may be the same or different.
  • the parallel light transmittance in the gradation portion 12Ca portion and the gradation portion 12Cb portion of the laminated glass CC continuously increases from the dark color portion 11Ca or dark color portion 11Cb side toward the transparent portion 13C side.
  • the thickness of the second resin layer 17C in the gradation portion 12Ca and the gradation portion 12Cb continuously decreases from the dark color portion 11Ca or dark color portion 11Cb side toward the transparent portion 13C side.
  • the parallel light transmittance in the gradation portion 12Ca portion and the gradation portion 12Cb portion of the laminated glass CC is continuously increased from the dark color portion 11Ca or the dark color portion 11Cb side toward the transparent portion 13C side.
  • the total thickness of the first resin layer 16C in the gradation portion 12Ca and the gradation portion 12Cb continuously increases from the dark color portion 11Ca or the dark color portion 11Cb side toward the transparent portion 13C side.
  • FIG. 5 is a sectional view showing an interlayer film for laminated glass according to a fifth embodiment of the present invention.
  • the intermediate film 1D shown in FIG. 5 includes a dark portion 11D, a gradation portion 12Da, a gradation portion 12Db, a transparent portion 13Da, and a transparent portion 13Db.
  • the dark color portion 11D, the gradation portion 12Da, and the transparent portion 13Da are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1D.
  • the dark color portion 11D, the gradation portion 12Db, and the transparent portion 13Db are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1D.
  • the dark color portion 11D, the gradation portion 12Da, and the transparent portion 13Da are arranged in a direction orthogonal to the thickness direction of the intermediate film 1D from the dark color portion 11D of the intermediate film 1D toward both ends.
  • the intermediate film 1D in which the dark color portion 11D, the gradation portion 12Db, and the transparent portion 13Db are arranged in a direction orthogonal to the thickness direction of the intermediate film 1D is also one aspect of the present invention.
  • a laminated glass (hereinafter, sometimes referred to as a laminated glass CD) is produced using the intermediate film 1D and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass CD is obtained by sandwiching the intermediate film 1D between two clear glasses. In this case, the parallel light transmittance in the dark portion 11D portion of the laminated glass CD is 30% or less, and the parallel light transmittance in the gradation portion 12Da portion and the gradation portion 12Db portion of the laminated glass CD is dark.
  • the parallel light transmittance at the transparent part 13Da part and the transparent part 13Db part of the laminated glass CD is 60% or more.
  • the two broken lines X1 are boundaries that determine whether the parallel light transmittance is 30% or less.
  • two broken lines X2 are boundaries that determine whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1D has a first resin layer 16D and a second resin layer 17D.
  • the dark color part 11D, gradation part 12Da, gradation part 12Db, transparent part 13Da, and transparent part 13Db each have a first resin layer 16D.
  • the first resin layer 16D contains a thermoplastic resin and a plasticizer.
  • Each of the dark color portion 11D, the gradation portion 12Da, and the gradation portion 12Db further includes a second resin layer 17D.
  • the second resin layer 17D is embedded in the first resin layer 16D so that the first resin layer 16D is positioned on the surfaces on both sides of the second resin layer 17D.
  • the second resin layer 17D contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • the second resin layer 17D is less transparent than the first resin layer 16D.
  • the parallel light transmittance in the gradation portion 12Da portion and the gradation portion 12Db portion of the laminated glass CD is continuously increased from the dark color portion 11D side toward the transparent portion 13Da or the transparent portion 13Db side.
  • the thickness of the second resin layer 17D in the gradation portion 12Da and the gradation portion 12Db continuously decreases from the dark color portion 11D side toward the transparent portion 13Da or the transparent portion 13Db side.
  • the parallel light transmittance in the gradation portion 12Da portion and the gradation portion 12Db portion of the laminated glass CD continuously increases from the dark color portion 11D side toward the transparent portion 13Da or the transparent portion 13Db side.
  • the total thickness of the first resin layer 16D in the gradation portion 12Da and the gradation portion 12Db continuously increases from the dark color portion 11D side toward the transparent portion 13Da or the transparent portion 13Db side.
  • FIG. 6 is a sectional view showing an interlayer film for laminated glass according to the sixth embodiment of the present invention.
  • the intermediate film 1E shown in FIG. 6 the intermediate film 1 shown in FIG. 1 and the third resin layer 18 are laminated in the thickness direction.
  • the intermediate film 1E including another resin layer other than the first resin layer and the second resin layer is also one aspect of the present invention.
  • a laminated glass (hereinafter sometimes referred to as a laminated glass CE) is produced using the intermediate film 1E and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass CE is obtained by sandwiching the intermediate film 1E between two clear glasses.
  • the parallel light transmittance at the dark portion 11E portion of the laminated glass CE is 30% or less
  • the parallel light transmittance at the gradation portion 12E portion of the laminated glass CE is from the dark portion 11E side to the transparent portion 13E. It increases continuously toward the side, and the parallel light transmittance at the transparent portion 13E portion of the laminated glass CE is 60% or more.
  • the broken line X1 is a boundary whether or not the parallel light transmittance is 30% or less.
  • the broken line X2 is a boundary indicating whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1 ⁇ / b> E has a first resin layer 16, a second resin layer 17, and a third resin layer 18.
  • the dark portion 11E, the gradation portion 12E, and the transparent portion 13E have a first resin layer 16 and a third resin layer 18, respectively.
  • the first resin layer 16 contains a thermoplastic resin and a plasticizer.
  • the third resin layer 18 preferably contains a thermoplastic resin and a plasticizer.
  • Each of the dark color portion 11E and the gradation portion 12E further includes a second resin layer 17.
  • the second resin layer 17 is embedded in the first resin layer 16 so that the first resin layer 16 is positioned on both surfaces in the thickness direction of the intermediate film 1E.
  • the second resin layer 17 contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • the second resin layer 17 is less transparent than the first resin layer 16.
  • the second resin in the gradation portion 12E is such that the parallel light transmittance at the gradation portion 12E portion of the laminated glass CE continuously increases from the dark color portion 11E side toward the transparent portion 13E side.
  • the thickness of the layer 17 continuously decreases from the dark color portion 11E side toward the transparent portion 13E side.
  • the first parallel light transmittance in the gradation portion 12E portion of the laminated glass CE is continuously increased from the dark color portion 11E side toward the transparent portion 13E side.
  • the total thickness of the resin layer 16 continuously increases from the dark portion 11E side toward the transparent portion 13E side.
  • the thickness of the third resin layer 18 is substantially constant in the entire region of the intermediate film 1E.
  • the thickness of the third resin layer may vary in a direction orthogonal to the thickness direction of the intermediate film.
  • the third resin layer may be disposed on both surfaces of the intermediate film 1. Further, the third resin layer may be disposed on one side or both sides of an intermediate film such as an intermediate film 1X, an intermediate film 1Y, and an intermediate film 1Z described later. Further, the intermediate film 1 ⁇ / b> E may be laminated with other resin layers other than the first resin layer 16, the second resin layer 17, and the third resin layer 18.
  • FIG. 7 is a sectional view showing an interlayer film for laminated glass according to a seventh embodiment of the present invention.
  • the 7 includes a deep color portion 11F, a gradation portion 12F, and a transparent portion 13F.
  • the dark color portion 11F, the gradation portion 12F, and the transparent portion 13F are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1F.
  • a laminated glass (hereinafter may be referred to as a laminated glass CF) is produced using the intermediate film 1F and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass CF is obtained by sandwiching the intermediate film 1F between two sheets of clear glass.
  • the parallel light transmittance at the dark color portion 11F portion of the laminated glass CF is 30% or less
  • the parallel light transmittance at the gradation portion 12F portion of the laminated glass CF is transparent from the dark color portion 11F side. It increases continuously toward the 13F side, and the parallel light transmittance at the transparent portion 13F portion of the laminated glass CF is 60% or more.
  • the broken line X1 is a boundary whether or not the parallel light transmittance is 30% or less.
  • the broken line X2 is a boundary indicating whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1F has a first resin layer 16F and a second resin layer 17F.
  • the dark color portion 11F, the gradation portion 12F, and the transparent portion 13F each have a first resin layer 16F.
  • the first resin layer 16F contains a thermoplastic resin and a plasticizer.
  • Each of the dark color portion 11F and the gradation portion 12F further includes a second resin layer 17F.
  • the second resin layer 17F contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • the second resin layer 17F is less transparent than the first resin layer 16F.
  • the first resin layer 16F is disposed on the first surface side of the second resin layer 17F.
  • the first resin layer is not disposed on the second surface side opposite to the first surface side of the second resin layer 17F.
  • the second resin layer 17F is not embedded in the first resin layer 16F.
  • Both the first resin layer 16F and the second resin layer 17F are surface layers. In this way, the first resin layer 16F is disposed only on one surface side of the second resin layer 17F, or the second resin layer 17F is not embedded in the first resin layer 16F.
  • the film 1F is also one aspect of the present invention.
  • the second resin in the gradation portion 12F is such that the parallel light transmittance at the gradation portion 12F portion of the laminated glass CF continuously increases from the dark color portion 11F side toward the transparent portion 13F side.
  • the thickness of the layer 17F continuously decreases from the dark color portion 11F side toward the transparent portion 13F side.
  • the first parallel light transmittance in the gradation portion 12F of the laminated glass CF is continuously increased from the dark color portion 11F side to the transparent portion 13F side.
  • the thickness of the resin layer 16F continuously increases from the dark color portion 11F side toward the transparent portion 13F side.
  • the thickness of the second resin layer 17F in the dark color portion 11F decreases from the outer end side of the dark color portion 11F toward the transparent portion 13F side.
  • FIG. 8 is a sectional view showing an interlayer film for laminated glass according to an eighth embodiment of the present invention.
  • the intermediate film 1X shown in FIG. 8 is used to obtain a laminated glass.
  • the intermediate film 1X is an intermediate film for laminated glass.
  • the intermediate film 1X includes a dark portion 11X, a gradation portion 12X, and a transparent portion 13X.
  • the dark color portion 11X, the gradation portion 12X, and the transparent portion 13X are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1X.
  • the first resin layer is embedded in the second resin layer.
  • a laminated glass (hereinafter sometimes referred to as a laminated glass CX) is prepared using an intermediate film 1X and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass CX is obtained by sandwiching the intermediate film 1X between two sheets of clear glass.
  • the parallel light transmittance at the dark portion 11X portion of the laminated glass CX is 30% or less
  • the parallel light transmittance at the gradation portion 12X portion of the laminated glass CX is transparent from the dark portion 11X side. It increases continuously toward the portion 13X side, and the parallel light transmittance at the transparent portion 13X portion of the laminated glass CX is 60% or more.
  • the broken line X1 is a boundary whether or not the parallel light transmittance is 30% or less.
  • the broken line X2 is a boundary indicating whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1X includes a first resin layer 16X and a second resin layer 17X.
  • Each of the dark portion 11X, the gradation portion 12X, and the transparent portion 13X includes a second resin layer 17X.
  • the second resin layer 17X contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • Each of the gradation portion 12X and the transparent portion 13X further includes a first resin layer 16X.
  • the first resin layer 16X is embedded in the second resin layer 17X so that the second resin layer 17X is positioned on the surfaces on both sides of the first resin layer 16X.
  • the first resin layer 16X contains a thermoplastic resin and a plasticizer.
  • the second resin layer 17X is less transparent than the first resin layer 16X.
  • the second resin in the gradation portion 12X is such that the parallel light transmittance at the gradation portion 12X portion of the laminated glass CX continuously increases from the dark color portion 11X side toward the transparent portion 13X side.
  • the total thickness of the layer 17X continuously decreases from the dark portion 11X side toward the transparent portion 13X side.
  • the first parallel light transmittance in the gradation portion 12X portion of the laminated glass CX is continuously increased from the dark color portion 11X side toward the transparent portion 13X side.
  • the thickness of the resin layer 16X continuously increases from the dark color portion 11X side toward the transparent portion 13X side.
  • the dark portion 61X has the same shape as the dark portion 11X
  • the gradation portion 62X has the same shape as the gradation portion 12X
  • the transparent portion 63X has the same shape as the transparent portion 13X.
  • the broken line X1 indicating the boundary where the parallel light transmittance is 30% or less is the total thickness of the second resin layer 67X
  • the boundary between the dark color portion 61X and the gradation portion 62X is determined based on whether the parallel light transmittance is 60% or more.
  • FIG. 9 is a sectional view showing an interlayer film for laminated glass according to a ninth embodiment of the present invention.
  • the intermediate film 1Y shown in FIG. 9 includes a dark portion 11Y, a gradation portion 12Y, and a transparent portion 13Y.
  • the dark color portion 11Y, the gradation portion 12Y, and the transparent portion 13Y are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1Y.
  • a laminated glass (hereinafter may be referred to as a laminated glass CY) is produced using the intermediate film 1Y and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass CY is obtained by sandwiching the intermediate film 1Y between two clear glasses.
  • the parallel light transmittance at the dark portion 11Y portion of the laminated glass CY is 30% or less
  • the parallel light transmittance at the gradation portion 12Y portion of the laminated glass CY is a transparent portion from the dark portion 11Y side. It increases continuously toward the 13Y side
  • the parallel light transmittance at the transparent portion 13Y portion of the laminated glass CY is 60% or more.
  • the broken line X1 is a boundary indicating whether or not the parallel light transmittance is 30% or less.
  • the broken line X2 is a boundary indicating whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1Y has a first resin layer 16Y and a second resin layer 17Y.
  • Each of the dark color portion 11Y, the gradation portion 12Y, and the transparent portion 13Y has a second resin layer 17Y.
  • the second resin layer 17Y contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • Each of the gradation portion 12Y and the transparent portion 13Y further includes a first resin layer 16Y.
  • the first resin layer 16Y is embedded in the second resin layer 17Y so that the second resin layer 17Y is positioned on the surfaces on both sides of the first resin layer 16Y.
  • the first resin layer 16Y contains a thermoplastic resin and a plasticizer.
  • the second resin layer 17Y is less transparent than the first resin layer 16Y.
  • the second resin in the gradation portion 12Y is such that the parallel light transmittance at the gradation portion 12Y portion of the laminated glass CY continuously increases from the dark color portion 11Y side toward the transparent portion 13Y side.
  • the total thickness of the layer 17Y continuously decreases from the dark portion 11Y side toward the transparent portion 13Y side.
  • the first parallel light transmittance in the gradation portion 12Y portion of the laminated glass CY is increased in the gradation portion 12Y so as to continuously increase from the dark color portion 11Y side toward the transparent portion 13Y side.
  • the thickness of the resin layer 16Y continuously increases from the dark color portion 11Y side toward the transparent portion 13Y side.
  • the total thickness of the second resin layer 17Y in the transparent portion 13Y decreases from the dark color portion 11Y side toward the outer end portion side of the transparent portion 13Y.
  • the intermediate film 1Y in which the total thickness of the second resin layer 17Y in the dark color portion 11Y changes from the dark color portion 11Y side toward the outer end side of the transparent portion 13Y is also the present invention. This is one of the embodiments.
  • the total thickness of the second resin layer 17Y in both the transparent portion 13Y and the gradation portion 12Y is continuous from the dark color portion 11Y side toward the outer end portion side of the transparent portion 13Y.
  • the region where the parallel light transmittance in the laminated glass CY is 60% or more is defined as a transparent portion 13Y, and the region where the parallel light transmittance is less than 60% is defined as a gradation portion 12Y.
  • FIG. 10 is a sectional view showing an interlayer film for laminated glass according to a tenth embodiment of the present invention.
  • the intermediate film 1Z shown in FIG. 10 includes a dark portion 11Z, a gradation portion 12Z, and a transparent portion 13Z.
  • the dark color portion 11Z, the gradation portion 12Z, and the transparent portion 13Z are arranged in this order in a direction orthogonal to the thickness direction of the intermediate film 1Z.
  • a laminated glass (hereinafter may be referred to as a laminated glass CZ) is produced using the intermediate film 1Z and two clear glasses compliant with JIS R3202 (1996). Specifically, the laminated glass CZ is obtained by sandwiching the intermediate film 1Z between two clear glasses.
  • the parallel light transmittance in the dark color portion 11Z portion of the laminated glass CZ is 30% or less
  • the parallel light transmittance in the gradation portion 12Z portion of the laminated glass CZ is a transparent portion from the dark color portion 11Z side. It increases continuously toward the 13Z side, and the parallel light transmittance at the transparent portion 13Z portion of the laminated glass CZ is 60% or more.
  • the broken line X1 is a boundary indicating whether or not the parallel light transmittance is 30% or less.
  • the broken line X2 is a boundary indicating whether or not the parallel light transmittance is 60% or more.
  • the intermediate film 1Z includes a first resin layer 16Z and a second resin layer 17Z.
  • the dark color portion 11Z, the gradation portion 12Z, and the transparent portion 13Z each have a second resin layer 17Z.
  • the second resin layer 17Z contains a thermoplastic resin, a plasticizer, and inorganic particles.
  • Each of the gradation portion 12Z and the transparent portion 13Z has a first resin layer 16Z.
  • the first resin layer 16Z contains a thermoplastic resin and a plasticizer.
  • the second resin layer 17Z is less transparent than the first resin layer 16Z.
  • the second resin layer 17Z is disposed on the first surface side of the first resin layer 16Z.
  • the second resin layer 17Z is not disposed on the second surface side opposite to the first surface side of the first resin layer 16Z.
  • the first resin layer 16Z is not embedded in the second resin layer 17Z.
  • Both the first resin layer 16Z and the second resin layer 17Z are surface layers.
  • the second resin layer 17Z is disposed only on one surface side of the first resin layer 16Z, or the first resin layer 16Z is not embedded in the second resin layer 17Z.
  • the film 1Z is also one aspect of the present invention.
  • the second resin in the gradation portion 12Z is such that the parallel light transmittance at the gradation portion 12Z portion of the laminated glass CZ continuously increases from the dark color portion 11Z side toward the transparent portion 13Z side.
  • the total thickness of the layer 17Z continuously decreases from the dark portion 11Z side toward the transparent portion 13Z side.
  • the first parallel light transmittance in the gradation portion 12Z of the laminated glass CZ is continuously increased from the dark color portion 11Z side toward the transparent portion 13Z side.
  • the thickness of the resin layer 16Z continuously increases from the dark color portion 11Z side toward the transparent portion 13Z side.
  • the total thickness of the second resin layer 17Z in the transparent portion 13Z decreases from the dark color portion 11Z side toward the outer end portion side of the transparent portion 13Z.
  • Intermediate film 1 intermediate film 51, intermediate film 1A, intermediate film 1B, intermediate film 1C, intermediate film 1D, intermediate film 1E, intermediate film F, intermediate film 1X, intermediate film 51X, intermediate film 1Y, intermediate film as described above
  • 1Z in addition to having excellent privacy protection properties, a laminated glass having a gradation pattern with suppressed color unevenness can be obtained.
  • the intermediate film 1, the intermediate film 51, the intermediate film 1A, the intermediate film 1B, the intermediate film 1C, the intermediate film 1D, the intermediate film 1E, the intermediate film F, the intermediate film 1X, the intermediate film 51X, the intermediate film 1Y, and the intermediate film 1Z were used.
  • the laminated glass light can be transmitted, but a person or an object located behind can have an area that cannot be seen.
  • the maximum value of the parallel light transmittance in the transparent portion of the laminated glass is preferably 70% or more, more preferably 78% or more. When the maximum value of the parallel light transmittance in the transparent part is equal to or more than the above lower limit, a laminated glass that is more excellent in daylighting properties is obtained.
  • the minimum value of the parallel light transmittance in the dark color part of the laminated glass is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less, and most preferably 2% or less.
  • the minimum value of the parallel light transmittance in the dark color portion is not more than the above upper limit, a laminated glass that is more excellent in privacy protection can be obtained.
  • the maximum value of the total light transmittance in the transparent part of the laminated glass is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, and most preferably 85% or more. When the maximum value of the total light transmittance in the transparent part is equal to or more than the above lower limit, a laminated glass that is more excellent in daylighting properties can be obtained.
  • the minimum value of the total light transmittance in the dark color part of the laminated glass is preferably 5% or more, more preferably 50% or more, still more preferably 60% or more, and particularly preferably 75% or more.
  • the minimum value of the total light transmittance in the dark color part is equal to or more than the lower limit, a laminated glass that is more excellent in daylighting properties can be obtained. Further, the diffuse light transmittance is obtained from the difference between the total light transmittance and the parallel light transmittance.
  • the total light transmittance is measured according to JIS R3106 (1998). Specifically, using a spectrophotometer, the obtained laminated glass is brought into close contact in parallel with the opening of the integrating sphere so that all the transmitted light rays are received by the integrating sphere, and the spectral transmittance is measured.
  • the total light transmittance means a visible light transmittance calculated from the spectral transmittance measured in this state. Examples of the spectrophotometer include “U-4100” manufactured by Hitachi High-Tech.
  • the minimum value of the parallel light transmittance is more than 20% and not more than 30% in the dark color part of the laminated glass, it is preferable that the minimum value of the total light transmittance is 75% or more.
  • the minimum value of the light transmittance exceeds 5% and is 20% or less, the minimum value of the total light transmittance is preferably 65% or more, and the minimum value of the parallel light transmittance is 5% or less.
  • the minimum value of the total light transmittance is preferably 50% or more.
  • the minimum value of parallel light transmittance is 30% or less and the minimum value of total light transmittance is 75% or more, and the minimum value of parallel light transmittance is 20%.
  • the minimum value of the total light transmittance is preferably 65% or more, the minimum value of the parallel light transmittance is preferably 5% or less, and the minimum value of the total light transmittance is preferably 40% or more.
  • the minimum value of the parallel light transmittance is 0.5% or more in the dark color portion of the laminated glass, it is preferable that the minimum value of the total light transmittance is 45% or more.
  • the average value of the thickness (T) of the intermediate film is not particularly limited. From the viewpoint of practical use, the average value of the thickness (T) of the interlayer film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more preferably 1.5 mm or less.
  • the penetration resistance of a laminated glass becomes it high that the average value of the thickness (T) of the said intermediate film is more than the said minimum.
  • the maximum value and the minimum value of the total thickness (T1 + T2) (see FIGS. 1 to 6 and 11) of the first resin layer are not particularly limited in the entire color portion, the gradation portion, and the transparent portion. From the practical point of view, the minimum value of the total thickness (T1 + T2) of the first resin layer is preferably 0.08 mm in the dark portion, the gradation portion and the transparent portion. As mentioned above, More preferably, it is 0.12 mm or more, Preferably it is 3 mm or less, More preferably, it is 1.5 mm or less.
  • the maximum value of the total thickness (T1 + T2) of the first resin layer is preferably 0.1 mm or more, and more preferably 0.25 mm, in the dark portion, the gradation portion, and the transparent portion. As mentioned above, Preferably it is 3 mm or less, More preferably, it is 1.5 mm or less.
  • the minimum value and the maximum value of the total thickness (T1 + T2) of the first resin layer are equal to or more than the lower limit, the penetration resistance of the laminated glass is further increased.
  • the minimum value and the maximum value of the total thickness (T1 + T2) of the first resin layer are equal to or less than the upper limit, a laminated glass that is more excellent in terms of lighting performance can be obtained.
  • the minimum value and the maximum value of the total thickness (T1 + T2) of the first resin layer indicate the total thickness of the two first resin layers on both sides.
  • the minimum value and the maximum value of the total thickness (T1 + T2) of the resin layer indicate the thickness of the transparent portion itself.
  • the minimum value of the total thickness (T1 + T2) of the first resin layer is generally in the dark portion or at the end of the gradation portion on the dark portion side.
  • the maximum value of the total thickness (T1 + T2) of the first resin layer is generally in the transparent part or at the end of the gradation part on the transparent part side.
  • the thickness (T1) of one said 1st resin layer and The thickness (T2) of the other first resin layer may be the same or different.
  • the maximum value of the thickness (T3) (see FIGS. 1 to 6 and 11) of the second resin layer in the entire dark color portion and the gradation portion is not particularly limited.
  • the maximum value of the thickness (T3) of the second resin layer in the dark color part and the gradation part as a whole is preferably 0.001 mm or more, preferably 0.8 mm or less, more preferably 0.3 mm or less.
  • the parallel light transmittance at the dark portion of the laminated glass is further reduced, and a laminated glass that is more excellent in privacy protection can be obtained. .
  • the maximum value of the thickness of the second resin layer is not more than the above upper limit, a laminated glass that is more excellent in daylighting properties can be obtained.
  • the maximum value of the thickness (T3) of the second resin layer is generally in the dark portion or at the end of the gradation portion on the dark portion side.
  • the total thickness (T1 + T2) of the first resin layer in the dark portion is substantially constant.
  • the ratio of the maximum value of the total thickness (T1 + T2) of the first resin layer in the dark portion to the minimum value of the total thickness (T1 + T2) of the first resin layer in the dark portion is 1 or more. Preferably it is 5 or less, More preferably, it is 2 or less.
  • the thickness (T7) (see FIG. 6) of the third resin layer is not particularly limited.
  • the thickness (T7) of the third resin layer is preferably 0.03 mm or more, more preferably 0.05 mm or more, preferably 0.3 mm or less, more preferably 0.15 mm or less.
  • the thickness of the third resin layer is equal to or greater than the lower limit, the penetration resistance and sound insulation of the laminated glass are further enhanced.
  • the thickness of the third resin layer is not more than the above upper limit, a laminated glass that is more excellent in daylighting properties can be obtained.
  • the thickness (T7) of the third resin layer indicates the total thickness of the third resin layer.
  • the first resin layer is disposed only on the surface of one side of the second resin layer, and the thickness of the second resin layer in the gradation portion is continuously increased from the dark color portion side toward the transparent portion side.
  • the maximum value of the thickness (T8) of the first resin layer (see FIG. 7) and The minimum value is not particularly limited. From the viewpoint of practical use, the minimum value of the thickness (T8) of the first resin layer is preferably 0.08 mm or more in the entire dark portion, gradation portion and transparent portion. More preferably, it is 0.12 mm or more, preferably 3 mm or less, more preferably 1.5 mm or less.
  • the maximum thickness (T8) of the first resin layer is preferably 0.1 mm or more, more preferably 0.25 mm or more, Preferably it is 3 mm or less, More preferably, it is 1.5 mm or less.
  • the minimum value and the maximum value of the thickness (T8) of the first resin layer are equal to or more than the lower limit, the penetration resistance of the laminated glass is further increased.
  • the minimum value and the maximum value of the thickness (T8) of the first resin layer are equal to or less than the upper limit, a laminated glass that is more excellent in daylighting properties can be obtained.
  • the minimum value of the thickness (T8) of the first resin layer is generally in the dark portion or at the end of the gradation portion on the dark portion side.
  • the maximum value of the thickness (T8) of the first resin layer is generally in the transparent part or at the end of the gradation part on the transparent part side.
  • the maximum value of the thickness (T9) (see FIG. 7) of the second resin layer in the dark color part and the gradation part as a whole is not particularly limited.
  • the maximum value of the thickness (T9) of the second resin layer in the dark color portion and the gradation portion as a whole is preferably 0.001 mm or more, preferably 0.8 mm or less, more preferably 0.3 mm or less.
  • the parallel light transmittance at the dark portion of the laminated glass is further reduced, and a laminated glass that is more excellent in privacy protection can be obtained. .
  • the maximum value of the thickness of the second resin layer is not more than the above upper limit, a laminated glass that is more excellent in daylighting properties can be obtained.
  • the maximum value of the thickness (T9) of the second resin layer is generally in the dark portion or at the end of the gradation portion on the dark portion side.
  • the thickness (T8) of the first resin layer in the dark portion is substantially constant.
  • the ratio of the maximum value of the thickness (T8) of the first resin layer in the dark portion to the minimum value of the thickness (T8) of the first resin layer in the dark portion is 1 or more, preferably 5 or less. More preferably, it is 2 or less.
  • the maximum value and the minimum value of the total thickness (T4 + T5) (see FIGS. 8, 9, and 12) of the second resin layer are not particularly limited in the entire color portion, the gradation portion, and the transparent portion. From a practical point of view, the minimum value of the total thickness (T4 + T5) of the second resin layer is preferably 0.05 mm in the dark portion, the gradation portion, and the transparent portion. As mentioned above, More preferably, it is 0.1 mm or more, Preferably it is 3 mm or less, More preferably, it is 1.5 mm or less.
  • the maximum value of the total thickness (T4 + T5) of the second resin layer is preferably 0.3 mm or more, more preferably 0.45 mm, in the entire dark color part, gradation part, and transparent part. As mentioned above, Preferably it is 3 mm or less, More preferably, it is 1.5 mm or less.
  • the minimum value and the maximum value of the total thickness (T4 + T5) of the second resin layer are equal to or higher than the lower limit, the penetration resistance of the laminated glass is further increased.
  • the minimum value and the maximum value of the total thickness (T4 + T5) of the second resin layer are not more than the above upper limit, a laminated glass that is more excellent in terms of daylighting can be obtained.
  • the minimum value and the maximum value of the total thickness (T4 + T5) of the second resin layer indicate the total thickness of the two second resin layers on both sides.
  • the minimum value and the maximum value of the total thickness (T4 + T5) of the second resin layer in the dark portion are the dark portion itself. The thickness of is shown.
  • the maximum value of the total thickness (T4 + T5) of the second resin layer is generally in the dark portion or at the end of the gradation portion on the dark portion side.
  • the minimum value of the total thickness (T4 + T5) of the second resin layer is generally in the transparent part or at the end of the gradation part on the transparent part side.
  • the thickness (T4) of one of the second resin layers may be the same or different.
  • the maximum value of the thickness (T6) of the first resin layer (see FIGS. 8, 9, and 12) in the entire transparent portion and gradation portion is not particularly limited.
  • the maximum value of the thickness (T6) of the first resin layer in the whole of the transparent part and the gradation part is preferably 0.2 mm or more, more preferably 0.4 mm or more, preferably 0.75 mm or less, more preferably 0.58 mm or less.
  • the parallel light transmittance at the transparent portion of the laminated glass is further increased, and a laminated glass that is more excellent in lighting performance is obtained.
  • the maximum value of the thickness of the first resin layer is not more than the above upper limit, a laminated glass more excellent in privacy protection can be obtained.
  • the maximum value of the thickness (T6) of the first resin layer is generally in the transparent part or at the end of the gradation part on the transparent part side.
  • the thickness (T6) of the first resin layer in the transparent part is preferably substantially constant.
  • the ratio of the maximum value of the thickness (T6) of the first resin layer in the transparent part to the minimum value of the thickness (T6) of the first resin layer in the transparent part is 1 or more, preferably 5 or less. Preferably it is 2 or less.
  • the second resin layer is disposed only on the surface of one side of the first resin layer, and the thickness of the first resin layer in the gradation portion is continuously increased from the dark color portion side toward the transparent portion side.
  • the fourth interlayer film for laminated glass in the whole of the dark portion, the gradation portion and the transparent portion,
  • the maximum value and the minimum value of the thickness (T10) (see FIG. 10) of the second resin layer are not particularly limited. From the viewpoint of practical use, the minimum value of the thickness (T10) of the second resin layer is preferably 0.08 mm or more in the whole of the dark portion, the gradation portion and the transparent portion.
  • the maximum thickness (T10) of the second resin layer is preferably 0.1 mm or more, more preferably 0.25 mm or more. Preferably it is 3 mm or less, More preferably, it is 1.5 mm or less.
  • the minimum value and the maximum value of the thickness (T10) of the second resin layer are equal to or higher than the lower limit, the penetration resistance of the laminated glass is further enhanced.
  • the minimum value and the maximum value of the thickness (T10) of the second resin layer are equal to or less than the upper limit, a laminated glass that is more excellent in daylighting properties can be obtained.
  • the maximum value of the thickness (T10) of the second resin layer is generally in the dark portion or at the end of the gradation portion on the dark portion side.
  • the minimum value of the thickness (T10) of the second resin layer is generally at the transparent portion or at the end of the gradation portion on the transparent portion side.
  • the maximum value of the thickness (T11) (see FIG. 10) of the first resin layer in the entire transparent portion and the gradation portion is not particularly limited.
  • the maximum value of the thickness (T11) of the first resin layer in the entire transparent part and gradation part is preferably 0.001 mm or more, preferably 0.8 mm or less, more preferably 0.3 mm or less.
  • the maximum value of the thickness of the first resin layer is equal to or more than the lower limit, the parallel light transmittance at the transparent portion of the laminated glass is further increased, and a laminated glass that is more excellent in lighting performance is obtained.
  • the maximum value of the thickness of the first resin layer is not more than the above upper limit, a laminated glass more excellent in privacy protection can be obtained.
  • the maximum value of the thickness (T11) of the first resin layer is generally in the transparent part or at the end of the gradation part on the transparent part side.
  • the thickness (T11) of the first resin layer in the transparent part is preferably substantially constant.
  • the ratio of the maximum value of the thickness (T11) of the first resin layer in the transparent portion to the minimum value of the thickness (T11) of the first resin layer in the transparent portion is 1 or more, preferably 5 or less. Preferably it is 2 or less.
  • the thickness of the said intermediate film and each layer is measured as follows.
  • a sharp leather blade exposes the cross section (the cross section shown in FIGS. 1 to 12) of the dark color portion, the gradation portion, and the transparent portion in the stacking direction of the dark color portion, the gradation portion, and the transparent portion.
  • the intermediate film is cut. Thereafter, the exposed cross section of the intermediate film is observed with a digital microscope (“DSX500” manufactured by OLYMPUS), and the thickness of the intermediate film and each layer is measured with a micro gauge.
  • the length (L1) of the dark portion is preferably 25 mm or more, more preferably 100 mm or more, still more preferably 200 mm or more, particularly preferably 300 mm or more, preferably 2000 mm or less, more preferably It is 1500 mm or less, more preferably 1000 mm or less, particularly preferably 700 mm or less, and most preferably 500 mm or less.
  • the length (L1) of the dark color portion indicates the length per dark color portion.
  • the length (L2) of the gradation part is preferably 10 mm or more, preferably 1500 mm or less, more preferably 1000 mm or less, still more preferably 500 mm or less, and most preferably 300 mm or less.
  • the gradation portion length (L2) indicates a length per gradation portion.
  • the length (L3) of the transparent part is not particularly limited, and is appropriately adjusted according to the use of the interlayer film and the laminated glass. When there are a plurality of transparent portions, the length of the transparent portion (L3) indicates the length per transparent portion.
  • the lengths (L1, L2, L3) of the dark color part, the gradation part, and the transparent part mean lengths in the direction in which the dark color part, the gradation part, and the transparent part are arranged.
  • thermoplastic resin Each of the first resin layer and the second resin layer contains a thermoplastic resin.
  • the third resin layer preferably contains a thermoplastic resin.
  • the thermoplastic resin in the first resin layer, the thermoplastic resin in the second resin layer, and the thermoplastic resin in the third resin layer are not particularly limited.
  • a conventionally well-known thermoplastic resin can be used as said thermoplastic resin.
  • the said thermoplastic resin only 1 type may be used and 2 or more types may be used together.
  • the thermoplastic resin in the first resin layer, the thermoplastic resin in the second resin layer, and the thermoplastic resin in the third resin layer may be the same or different. Also good.
  • thermoplastic resin examples include polyvinyl acetal resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic copolymer resin, polyurethane resin, and polyvinyl alcohol resin. Thermoplastic resins other than these may be used.
  • the thermoplastic resin is preferably a polyvinyl acetal resin.
  • the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of the polyvinyl alcohol is generally in the range of 80 to 99.8 mol%.
  • the average degree of polymerization of the polyvinyl alcohol is preferably 200 or more, more preferably 500 or more, preferably 5000 or less, more preferably 3500 or less, and still more preferably 3000 or less.
  • the average degree of polymerization is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
  • the average degree of polymerization is not more than the above upper limit, the intermediate film can be easily molded.
  • the complex viscosity of the obtained polyvinyl acetal resin can be increased, and the complex viscosity of the first resin layer or the second resin layer can be increased.
  • the aldehyde is not particularly limited. In general, an aldehyde having 1 to 10 carbon atoms is preferably used as the aldehyde.
  • Examples of the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, n- Nonyl aldehyde, n-decyl aldehyde, benzaldehyde and the like can be mentioned.
  • propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferable
  • propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferable
  • n-butyraldehyde is still more preferable.
  • the aldehyde preferably has 3 or 4 carbon atoms, more preferably 4.
  • the said aldehyde only 1 type may be used and 2 or more types may be used together.
  • the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin is preferably 10 mol% or more, more preferably 15 mol% or more, still more preferably 18 mol% or more, preferably 40 mol% or less, more preferably 35 mol. % Or less.
  • the hydroxyl group content is at least the above lower limit, the adhesive strength of the interlayer film is further increased. Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
  • the complex viscosity of a polyvinyl acetal resin can be raised by making the content rate of the hydroxyl group of the said polyvinyl acetal resin high, and the complex viscosity of a 1st resin layer or a 2nd resin layer can be raised.
  • the hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the amount of ethylene group to which the hydroxyl group is bonded can be determined, for example, by measuring in accordance with JIS K6726 “Testing method for polyvinyl alcohol” or in accordance with ASTM D1396-92.
  • the degree of acetylation (acetyl group amount) of the polyvinyl acetal resin is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, still more preferably 0.5 mol% or more, preferably 30 mol% or less. More preferably, it is 25 mol% or less, More preferably, it is 20 mol% or less.
  • the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer is increased.
  • the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
  • the degree of acetylation is obtained by subtracting the amount of ethylene groups to which acetal groups are bonded and the amount of ethylene groups to which hydroxyl groups are bonded from the total amount of ethylene groups of the main chain, It is a value indicating the mole fraction obtained by dividing by the percentage.
  • the amount of ethylene group to which the acetal group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral” or according to ASTM D1396-92.
  • the degree of acetalization of the polyvinyl acetal resin is preferably 60 mol% or more, more preferably 63 mol% or more, preferably 85 mol% or less, more preferably 75 mol%. Hereinafter, it is 70 mol% or less more preferably.
  • the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
  • the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
  • the above-mentioned degree of acetalization is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which acetal groups are bonded by the total amount of ethylene groups in the main chain as a percentage.
  • the acetalization degree can be calculated by a method based on JIS K6728 “Testing methods for polyvinyl butyral” or a method based on ASTM D1396-92.
  • the hydroxyl group content (hydroxyl content), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the hydroxyl group content (hydroxyl content), the degree of acetalization (degree of butyralization) and the degree of acetylation are measured by a method according to JIS K6728 “Testing methods for polyvinyl butyral”. It is preferable to calculate from the obtained results.
  • the first resin layer and the second resin layer contains a plasticizer.
  • the third resin layer preferably contains a plasticizer.
  • the plasticizer in the first resin layer, the plasticizer in the second resin layer, and the plasticizer in the third resin layer are not particularly limited.
  • a conventionally known plasticizer can be used as the plasticizer.
  • the said plasticizer only 1 type may be used and 2 or more types may be used together.
  • the plasticizer in the first resin layer, the plasticizer in the second resin layer, and the plasticizer in the third resin layer may be the same or different.
  • plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphate plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers. . Of these, organic ester plasticizers are preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • the monobasic organic acid ester is not particularly limited, and examples thereof include a glycol ester obtained by a reaction between glycol and a monobasic organic acid.
  • examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
  • the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
  • the polybasic organic acid ester is not particularly limited, and examples thereof include an ester compound of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • Examples of the polybasic organic acid include adipic acid, sebacic acid, and azelaic acid.
  • the organic ester plasticizer is not particularly limited, and triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n- Octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethyl butyrate, 1,3-propylene glycol di -2-Ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl hexanoate, dipropylene glycol Rudi-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, te
  • the organic phosphate plasticizer is not particularly limited, and examples thereof include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
  • the plasticizer is preferably a diester plasticizer represented by the following formula (1).
  • R1 and R2 each represents an organic group having 5 to 10 carbon atoms
  • R3 represents an ethylene group, an isopropylene group or an n-propylene group
  • p represents an integer of 3 to 10
  • R1 and R2 in the above formula (1) are each preferably an organic group having 6 to 10 carbon atoms.
  • the plasticizer preferably contains at least one of triethylene glycol di-2-ethylhexanoate (3GO) and triethylene glycol di-2-ethylbutyrate (3GH). More preferably, it contains 2-ethylhexanoate.
  • the content of the plasticizer is not particularly limited.
  • the total content of the plasticizer in the intermediate film is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, preferably 100 parts by mass of the whole thermoplastic resin in the intermediate film. 60 parts by mass or less, more preferably 50 parts by mass or less.
  • the content of the plasticizer in the first resin layer is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin in the first resin layer. Preferably it is 60 mass parts or less, More preferably, it is 50 mass parts or less.
  • the content of the plasticizer in the second resin layer is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin in the second resin layer. Preferably it is 60 mass parts or less, More preferably, it is 50 mass parts or less.
  • the content of the plasticizer is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
  • the content of the plasticizer is not more than the above upper limit, the transparency of the interlayer film is further enhanced.
  • the content of the plasticizer in the third resin layer is preferably 40 parts by mass or more, more preferably 45 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin in the third resin layer. Preferably it is 80 mass parts or less, More preferably, it is 60 mass parts or less.
  • the content of the plasticizer is not less than the above lower limit, the penetration resistance and sound insulation of the laminated glass are further enhanced.
  • the content of the plasticizer is not more than the above upper limit, the transparency of the interlayer film is further enhanced.
  • the complex viscosity of the first resin layer or the second resin layer is increased. Can be reduced.
  • the plasticity of the first resin layer It is preferable that the content of the agent and the content of the plasticizer in the second resin layer satisfy the following relationship.
  • the above-mentioned in the first resin layer is 35 to 45 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and the thermoplastic in the second resin layer.
  • the content of the plasticizer in the second resin layer is preferably 30 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the resin.
  • the thermoplastic resin used for the first resin layer and the second resin layer is the same, the first resin with respect to 100 parts by mass of the thermoplastic resin in the first resin layer.
  • the content of the plasticizer in the layer is 35 parts by mass or more and 41 parts by mass or less, and in the second resin layer with respect to 100 parts by mass of the thermoplastic resin in the second resin layer. It is preferable that content of the said plasticizer is 31 mass parts or more and 44 mass parts or less. Further, in order to set the complex viscosity at 200 ° C. of the second resin layer to 0.7 times or more and 2 times or less of the complex viscosity at 200 ° C. of the first resin layer, The content of the plasticizer in the first resin layer with respect to 100 parts by mass of the thermoplastic resin and the above in the second resin layer with respect to 100 parts by mass of the thermoplastic resin in the second resin layer. The plasticizer content is preferably the same, or the absolute value of the difference is preferably 0.01 parts by mass or more and 40 parts by mass or less.
  • the second resin layer includes inorganic particles.
  • the inorganic particles are not particularly limited.
  • As the inorganic particles conventionally known inorganic particles can be used.
  • As for the said inorganic particle only 1 type may be used and 2 or more types may be used together.
  • examples of the inorganic particles include calcium carbonate particles, alumina particles, kaolin clay particles, calcium silicate particles, magnesium oxide particles, magnesium hydroxide particles, aluminum hydroxide particles, magnesium carbonate particles, talc particles, feldspar powder particles, mica particles. , Barite particles, barium carbonate particles, titanium oxide particles, silica particles, and glass beads.
  • the inorganic particles preferably include at least one selected from the group consisting of calcium carbonate particles, titanium oxide particles, and silica particles, and more preferably include calcium carbonate particles.
  • the average particle size of the inorganic particles is preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the average particle diameter indicates a weight average particle diameter.
  • the average particle diameter can be measured by a dynamic light scattering method using an Ar laser as a light source, using a light scattering measuring device. Examples of the light scattering measuring apparatus include “DLS-6000AL” manufactured by Otsuka Electronics Co., Ltd.
  • the parallel light transmittance in the dark color portion of the laminated glass is 30% or less, the laminated glass C, the laminated glass CA, the laminated glass CB, the laminated glass CC, the laminated glass CD, and the laminated glass CE.
  • the parallel light transmittance at the gradation portion of the laminated glass such as the laminated glass CF, the laminated glass CX, the laminated glass CY, and the laminated glass CZ is continuous from the dark color portion side toward the transparent portion side.
  • the content of the inorganic particles is preferably 0.3% by mass or more, more preferably 0.5% by mass or more, still more preferably 2% by mass or more, particularly preferably in 100% by mass of the entire second resin layer. It is 3% by mass or more, preferably 25% by mass or less, more preferably 5% by mass or less.
  • the content of the inorganic particles is not less than the above lower limit and not more than the above upper limit, an appropriately colored intermediate film is obtained, and the value of the parallel light transmittance of the laminated glass can be easily controlled within a suitable range.
  • the content of the inorganic particles is not less than the above lower limit, an interlayer film for laminated glass and laminated glass that are more excellent in privacy protection can be obtained. Moreover, when light is transmitted, it is possible to obtain a laminated glass that is less likely to cause uneven appearance and that is more excellent in appearance design. Moreover, the complex viscosity of the second resin layer can be increased by increasing the content of the inorganic particles in the second resin layer.
  • the surface density of the inorganic particles in the thickest part of the second resin layer is preferably 3 g / m 2 or more, more preferably. Is 15 g / m 2 or more, preferably 70 g / m 2 or less, more preferably 25 g / m 2 or less.
  • the method for measuring the surface density of the inorganic particles in the thickest part of the second resin layer includes the following methods. It is done.
  • the intermediate film is cut in the thickness direction so that the thickest part of the second resin layer is located at the center of the sample to obtain a sample having a rectangular planar shape.
  • the length of the short side is 1 cm
  • the thickness is the thickness of the intermediate film
  • the length of the long side is the length at which the mass of the sample is 1 g.
  • the longitudinal direction of the obtained sample is a direction orthogonal to the direction connecting the thickest portion of the second resin layer and the transparent portion located closest to the thickest portion of the second resin layer.
  • the thickest part of the second resin layer is located at or near the end of the second resin layer, so that the thickest part of the second resin layer is located at the center in the longitudinal direction of the sample.
  • the sample is obtained by aligning one end in the longitudinal direction of the sample with the end of the second resin layer.
  • the thickest part of the second resin layer is located at or near the end of the second resin layer, so that the thickest part of the second resin layer is positioned at the center in the short direction of the obtained sample.
  • the sample is obtained by aligning one end in the short direction of the sample with the end of the second resin layer.
  • the surface density of the inorganic particles in the portion where the total thickness of the second resin layer is the thickest is preferably 2 g / m 2 or more, more preferably 4 g / m 2 or more. , Preferably 23 g / m 2 or less, more preferably 9 g / m 2 or less.
  • the method for measuring the surface density of the inorganic particles in the portion where the total thickness of the second resin layer is the thickest includes the following methods.
  • the intermediate film is cut in the thickness direction so that the portion where the total thickness of the second resin layer is the thickest is located in the center of the sample to obtain a sample having a rectangular planar shape.
  • the length of the short side is 1 cm
  • the thickness is the thickness of the intermediate film
  • the length of the long side is the length at which the mass of the sample is 1 g.
  • the longitudinal direction of the obtained sample is a direction connecting a portion where the total thickness of the second resin layer is the thickest and a transparent portion located closest to the portion where the total thickness of the second resin layer is the thickest. The direction is orthogonal.
  • the sample in which the portion where the total thickness of the second resin layer is the thickest is located at or near the end of the second resin layer, so that the portion where the total thickness of the second resin layer is the thickest is obtained.
  • the sample cannot be obtained so as to be positioned at the center in the longitudinal direction, the sample is obtained by aligning one end in the longitudinal direction of the sample with the end of the second resin layer.
  • the short part of the sample from which the part where the total thickness of the 2nd resin layer is the thickest in the end part of the 2nd resin layer, or the end part, and the part where the total thickness of the 2nd resin layer is the thickest is obtained.
  • the sample is obtained by aligning one end in the short direction of the sample with the end of the second resin layer.
  • the surface density of the inorganic particles in the portion where the total thickness of the second resin layer is the thinnest is preferably 0.5 g / m 2 or more, more preferably 1.5 g. / M 2 or more, preferably 2.5 g / m 2 or less, more preferably 2.0 g / m 2 or less.
  • the method for measuring the surface density of the inorganic particles in the portion where the total thickness of the second resin layer is the thinnest includes the following methods.
  • the intermediate film is cut in the thickness direction so that the portion where the total thickness of the second resin layer is the smallest is located at the center of the sample, and a sample having a rectangular planar shape is obtained.
  • the length of the short side is 1 cm
  • the thickness is the thickness of the intermediate film
  • the length of the long side is the length at which the mass of the sample is 1 g.
  • the longitudinal direction of the obtained sample is a direction connecting the portion where the total thickness of the second resin layer is the thinnest and the dark portion located closest to the portion where the total thickness of the second resin layer is the thinnest.
  • the direction is orthogonal to However, the sample in which the portion where the total thickness of the second resin layer is the thinnest is located at or near the end of the second resin layer, so that the portion where the total thickness of the second resin layer is the thinnest is obtained.
  • the sample cannot be obtained so as to be positioned at the center in the longitudinal direction, the sample is obtained by aligning one end in the longitudinal direction of the sample with the end of the second resin layer.
  • the short part of the sample from which the part where the total thickness of the second resin layer is the thinnest is located at or near the end of the second resin layer, so that the part where the total thickness of the second resin layer is the thickest is obtained.
  • the sample cannot be obtained so as to be positioned in the center in the hand direction, the sample is obtained by aligning one end in the short direction of the sample with the end of the second resin layer.
  • the test solution is obtained by constant volume using ultrapure water having a specific resistance of 18.2 M ⁇ ⁇ cm at 25 ° C.
  • the metal element or silicon constituting the inorganic particles in the test solution was quantitatively analyzed with a high frequency inductively coupled plasma emission spectrometer (“ICPE-9000” manufactured by Shimadzu Corporation). From the content, the surface density of the inorganic particles is calculated.
  • the first resin layer preferably does not contain inorganic particles. However, as long as the relationship of the parallel light transmittance of the laminated glass C is satisfied, the first resin layer may contain inorganic particles.
  • the content of inorganic particles in 100% by mass of the first resin layer is preferably smaller than the content of inorganic particles in 100% by mass of the second resin layer.
  • the content of inorganic particles in 100% by mass of the first resin layer is preferably less than 3% by mass, more preferably less than 2% by mass, still more preferably less than 0.5% by mass, and particularly preferably 0.3% by mass. Is less than.
  • the smaller the content of inorganic particles in the 100% by mass of the first resin layer the smaller the amount of inorganic particles present on the surface side of the interlayer film, so that the interlayer film and the laminated glass member are more firmly bonded. .
  • the intermediate film, the first resin layer, and the second resin layer are respectively provided with a heat shielding particle, a light shielding agent, a colorant, an ultraviolet absorber, an antioxidant, an adhesive force adjusting agent, and a light stability, as necessary.
  • Additives such as an agent, a flame retardant, an antistatic agent, a moisture resistant agent, a heat ray reflective agent, and a heat ray absorbent may be included. As for the said additive, only 1 type may be used and 2 or more types may be used together.
  • the said heat shielding particle means the particle
  • Specific examples of the heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
  • Aluminum-doped zinc oxide particles (AZO particles), niobium-doped titanium oxide particles, tungsten oxide particles, tin-doped indium oxide particles (ITO particles), metal oxide particles such as tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and Examples thereof include lanthanum hexaboride (LaB 6 ) particles.
  • zinc antimonate, cerium hexaboride, gold powder, silver powder, platinum powder, aluminum powder, or the like may be used as the heat shielding particles.
  • Examples of the light shielding agent include carbon black and red iron oxide.
  • the colorant examples include pigments and dyes.
  • the colorant is preferably a pigment.
  • a black pigment carbon black, a red pigment (CI Pigment red), a blue pigment (CI Pigment blue), and a yellow pigment (CI Pigment yellow) were mixed. Examples include dark reddish brown mixed pigments.
  • ultraviolet absorber examples include malonic acid ester compounds, oxalic acid anilide compounds, benzotriazole compounds, benzophenone compounds, triazine compounds, benzoate compounds and hindered amine compounds. Of these, benzotriazole compounds are preferred.
  • antioxidants examples include t-butylhydroxytoluene and tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane.
  • Examples of the adhesive strength adjusting agent include alkali metal salts of organic and inorganic acids, alkaline earth metal salts of organic and inorganic acids, silane coupling agents, and modified silicone oils.
  • the manufacturing method of the interlayer film for laminated glass according to the present invention is not particularly limited.
  • a conventionally known method can be employed as the method for manufacturing the intermediate film.
  • Examples of the method for producing the intermediate film include a method for producing the intermediate film by kneading the components described above. Since it is suitable for continuous production, an extrusion method is preferred.
  • each component (2nd resin composition for forming a 2nd resin layer) contained in the said 2nd resin layer is main extrusion.
  • Each component for forming the first resin layer (the first resin composition for forming the first resin layer) is supplied to a sub-extruder to the machine, and a main extruder, a sub-extruder, A method of coextrusion by attaching a multi-layer feed block to the tip of the substrate is preferred.
  • each component (1st resin composition for forming a 1st resin layer) contained in a said 1st resin layer is a main extruder.
  • each component for forming the second resin layer (second resin composition for forming the second resin layer) is supplied to the sub-extruder, and the main extruder and the sub-extruder A method of coextrusion by attaching a multi-layer feed block to the tip is preferred.
  • the production method using the multi-layer feed block further suppresses the occurrence of color streaks that may occur during the production of the intermediate film.
  • a dispersion liquid in which inorganic particles are dispersed in a plasticizer together with a dispersant as necessary is prepared, and the dispersion liquid is kneaded with other components (preferably a thermoplastic resin).
  • other components preferably a thermoplastic resin.
  • the method of kneading is not particularly limited. Examples of this method include a method using an extruder, a plastograph, a kneader, a Banbury mixer, a calendar roll, or the like. Especially, since it is suitable for continuous production, a method using an extruder is preferable, and a method using a twin screw extruder is more preferable.
  • FIG. 13 is a sectional view showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
  • a laminated glass 21 shown in FIG. 13 includes a first laminated glass member 22, a second laminated glass member 23, and an intermediate disposed between the first laminated glass member 22 and the second laminated glass member 23.
  • a membrane 1 The intermediate film 1 is sandwiched between the first laminated glass member 22 and the second laminated glass member 23.
  • a first laminated glass member 22 is laminated on the first surface (one surface) of the intermediate film 1.
  • a second laminated glass member 23 is laminated on a second surface (the other surface) opposite to the first surface of the intermediate film 1.
  • a first laminated glass member 22 is laminated on the outer surface of the first resin layer 16.
  • a second laminated glass member 23 is laminated on the outer surface of the first resin layer 16.
  • first and second laminated glass members include glass plates and PET (polyethylene terephthalate) films.
  • the laminated glass includes not only laminated glass in which an intermediate film is sandwiched between two glass plates, but also laminated glass in which an intermediate film is sandwiched between a glass plate and a PET film or the like.
  • Laminated glass is a laminated body provided with a glass plate, and preferably at least one glass plate is used.
  • Each of the first and second laminated glass members is preferably a glass plate or a PET film, and at least one of the first and second laminated glass members is preferably a glass plate.
  • the glass plate examples include inorganic glass and organic glass.
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, mesh plate glass, wire plate glass, and clear glass.
  • the organic glass is a synthetic resin glass substituted for inorganic glass.
  • the organic glass examples include polycarbonate plates and poly (meth) acrylic resin plates.
  • the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
  • the thickness of the laminated glass member is not particularly limited, but is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less. Further, when the laminated glass member is a glass plate, the thickness of the glass plate is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less. When the laminated glass member is a PET film, the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
  • the method for producing the laminated glass is not particularly limited.
  • the first laminated glass member and the intermediate film are sandwiched between the first and second laminated glass members, passed through a pressing roll, or put in a rubber bag and sucked under reduced pressure. And the air remaining between the second laminated glass member and the intermediate film are deaerated. Thereafter, it is pre-bonded at about 70 to 110 ° C. to obtain a laminate.
  • the laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained.
  • the interlayer film and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • the interlayer film is preferably an architectural or vehicle interlayer film.
  • the laminated glass is preferably laminated glass for buildings or vehicles.
  • Example 1 (Production of first resin composition for forming first resin layer A (first surface layer) and first resin layer B (second surface layer))
  • Polyvinyl butyral A acetylation degree 1 mol%, butyralization degree 69 mol%, hydroxyl group content 30 mol%) obtained by acetalizing polyvinyl alcohol (average polymerization degree 1700) with n-butyraldehyde is prepared did.
  • To 100 parts by mass of this polyvinyl butyral A 39 parts by mass of triethylene glycol-di-2-ethylhexanoate (plasticizer, 3GO) was added and kneaded thoroughly with a mixing roll to obtain a first resin composition. Obtained.
  • Second resin composition for forming second resin layer (intermediate layer)
  • polyvinyl butyral A With respect to 100 parts by mass of the polyvinyl butyral A, 40 parts by mass of triethylene glycol-di-2-ethylhexanoate (plasticizer, 3GO) and 5.9% by mass in 100% by mass of the resin composition obtained.
  • An amount of calcium carbonate particles (inorganic particles, weight average particle size 5.0 ⁇ m) was added and sufficiently kneaded with a mixing roll to obtain a second resin composition.
  • the second resin composition was supplied to the main extruder. Moreover, the said 1st resin composition was supplied to the subextruder. A multi-layer feed block is attached to the front ends of the main extruder and the sub-extruder and co-extruded to embed between the two first resin layers and the two first resin layers in the dark color portion and the gradation portion. An intermediate film having the second resin layer and having the first resin layer in the transparent part was obtained. In addition, the boundary between the dark color part and the gradation part of the obtained intermediate film is a boundary where the parallel light transmittance is 30% when a laminated glass described later is manufactured and the parallel light transmittance is measured.
  • a region where the parallel light transmittance was 30% or less was judged as a dark portion, and a region where the parallel light transmittance was more than 30% and less than 60% was judged as a gradation portion.
  • the thickness of each layer of the obtained intermediate film is shown in Table 1 below.
  • each layer of the intermediate film is a sharp leather blade, and the cross sections of the dark color portion, the gradation portion, and the transparent portion in the stacking direction of the dark color portion, the gradation portion, and the transparent portion are exposed.
  • the exposed cross section of the intermediate film was observed with a digital microscope (“DSX500” manufactured by OLYMPUS), and the thickness of each layer of the intermediate film was measured with a micro gauge. Further, the exposed cross-sectional shape of the intermediate film was a shape corresponding to FIG. 1 (similar shape to FIG. 1).
  • the surface density of the inorganic particles at the thickest part of the second resin layer of the intermediate film was measured as follows.
  • the intermediate film was cut in the thickness direction so that the thickest part of the second resin layer was obtained at the center of the sample, and a sample having a rectangular planar shape was obtained.
  • the length of the short side was 1 cm
  • the thickness was the thickness of the intermediate film
  • the length of the long side was the length at which the mass of the sample was 1 g.
  • the longitudinal direction of the obtained sample was perpendicular to the direction connecting the thickest part of the second resin layer and the transparent part located closest to the thickest part of the second resin layer.
  • nitric acid 70 mass% aqueous solution After adding 18 mL of nitric acid 70 mass% aqueous solution to the obtained sample and holding it at 200 ° C. for 30 minutes using a microwave sample pretreatment apparatus (“ETHOS One” manufactured by Milestone General Co.) and thermally decomposing it, The test solution was obtained under a constant volume using ultrapure water having a specific resistance of 18.2 M ⁇ ⁇ cm under the condition of 25 ° C. Next, quantitative analysis of calcium in the test solution was performed using a high frequency inductively coupled plasma emission spectrometer (“ICPE-9000” manufactured by Shimadzu Corporation), and the surface density of the calcium carbonate particles was determined from the obtained calcium content. Calculated.
  • ICPE-9000 high frequency inductively coupled plasma emission spectrometer
  • Example 2 At the time of producing the interlayer film, the contents of calcium carbonate particles and the plasticizer were set as shown in Table 1 below, and the length and thickness of each layer of the resulting interlayer film were set as shown in Table 1 below. Except for the above, an interlayer film and a laminated glass were produced in the same manner as in Example 1.
  • the boundary between the dark color part and the gradation part of the obtained intermediate film is a boundary where the parallel light transmittance is 30% when a laminated glass described later is manufactured and the parallel light transmittance is measured. A region where the parallel light transmittance was 30% or less was judged as a dark portion, and a region where the parallel light transmittance was more than 30% and less than 60% was judged as a gradation portion.
  • Example 11 (Production of first resin composition for forming first resin layer (first surface layer))
  • polyvinyl butyral A 39 parts by mass of triethylene glycol-di-2-ethylhexanoate (plasticizer, 3GO) was added and kneaded thoroughly with a mixing roll to obtain a first resin composition. Obtained.
  • Second resin composition for forming second resin layer (intermediate layer)
  • polyvinyl butyral A With respect to 100 parts by mass of the polyvinyl butyral A, 40 parts by mass of triethylene glycol-di-2-ethylhexanoate (plasticizer, 3GO) and 5.9% by mass in 100% by mass of the resin composition obtained.
  • An amount of calcium carbonate particles (inorganic particles, weight average particle size 5.0 ⁇ m) was added and sufficiently kneaded with a mixing roll to obtain a second resin composition.
  • the second resin composition was supplied to the main extruder. Moreover, the said 1st resin composition was supplied to the subextruder.
  • the first resin layer is arranged on the first surface side of the second resin layer in the dark color portion and the gradation portion by co-extrusion by attaching a multi-layer feed block to the tips of the main extruder and the sub-extruder.
  • An intermediate film was obtained.
  • the boundary between the dark color part and the gradation part of the obtained intermediate film is a boundary where the parallel light transmittance is 30% when a laminated glass described later is manufactured and the parallel light transmittance is measured.
  • a region where the parallel light transmittance was 30% or less was judged as a dark portion, and a region where the parallel light transmittance was more than 30% and less than 60% was judged as a gradation portion.
  • the thickness of each layer of the obtained intermediate film is shown in Table 2 below.
  • each layer of the intermediate film is a sharp leather blade, and the cross sections of the dark color portion, the gradation portion, and the transparent portion in the stacking direction of the dark color portion, the gradation portion, and the transparent portion are exposed.
  • the exposed cross section of the intermediate film was observed with a digital microscope (“DSX500” manufactured by OLYMPUS), and the thickness of each layer of the intermediate film was measured with a micro gauge. Further, the exposed cross-sectional shape of the intermediate film was a shape corresponding to FIG. 7 (similar shape to FIG. 7).
  • the surface density of the inorganic particles at the thickest part of the second resin layer of the intermediate film was measured as follows.
  • the intermediate film was cut in the thickness direction so that the thickest part of the second resin layer was obtained at the center of the sample, and a sample having a rectangular planar shape was obtained.
  • the length of the short side was 1 cm
  • the thickness was the thickness of the intermediate film
  • the length of the long side was the length at which the mass of the sample was 1 g.
  • the longitudinal direction of the obtained sample was perpendicular to the direction connecting the thickest part of the second resin layer and the transparent part located closest to the thickest part of the second resin layer.
  • nitric acid 70 mass% aqueous solution After adding 18 mL of nitric acid 70 mass% aqueous solution to the obtained sample and holding it at 200 ° C. for 30 minutes using a microwave sample pretreatment apparatus (“ETHOS One” manufactured by Milestone General Co.) and thermally decomposing it, The test solution was obtained under a constant volume using ultrapure water having a specific resistance of 18.2 M ⁇ ⁇ cm under the condition of 25 ° C. Next, quantitative analysis of calcium in the test solution was performed using a high frequency inductively coupled plasma emission spectrometer (“ICPE-9000” manufactured by Shimadzu Corporation), and the surface density of the calcium carbonate particles was determined from the obtained calcium content. Calculated.
  • ICPE-9000 high frequency inductively coupled plasma emission spectrometer
  • Example 11 to 15 and Comparative Examples 4 to 6 At the time of producing the interlayer film, the contents of calcium carbonate particles and plasticizer were set as shown in Table 2 below, and the length and thickness of each layer of the resulting interlayer film were set as shown in Table 2 below.
  • an interlayer film and a laminated glass were produced in the same manner as in Example 11 except that the polyvinyl butyral resin used for the second resin layer was set as shown in Table 2 below.
  • the boundary between the dark color part and the gradation part of the obtained intermediate film is a boundary where the parallel light transmittance is 30% when a laminated glass described later is manufactured and the parallel light transmittance is measured. A region where the parallel light transmittance was 30% or less was judged as a dark portion, and a region where the parallel light transmittance was more than 30% and less than 60% was judged as a gradation portion.
  • the parallel light transmittances of the laminated glasses obtained in Examples 1 to 15 were 30% or less in the dark part and 60% or more in the transparent part.
  • Tables 1 and 2 show the minimum value of the parallel light transmittance at the dark portion and the maximum value of the parallel light transmittance at the transparent portion.
  • TvD Total light transmittance
  • the total light transmittance (TvD) was measured in accordance with JIS R3106 (1998). Using a spectrophotometer ("U-4100" manufactured by Hitachi High-Tech Co., Ltd.), the resulting laminated glass is brought into close contact with the opening of the integrating sphere so that all the transmitted light is received by the integrating sphere. The rate was measured. The visible light transmittance calculated from the obtained spectral transmittance was defined as the total light transmittance.
  • Tables 1 and 2 show the minimum value of the total light transmittance in the dark portion and the maximum value of the total light transmittance in the transparent portion.
  • the obtained laminated glass was placed on a light table, and the fluorescent glass in the light table was irradiated with a fluorescent light, and visually observed on the gradation portion of the laminated glass from the opposite surface of the light source.
  • a gradation pattern was observed.
  • the laminated glass obtained by 10 persons by the above observation method was observed, and the color unevenness of the gradation by visual observation was determined according to the following criteria.
  • a white film printed with a 1 cm square lattice pattern is placed between the laminated glass and the light table, and the laminated glass is placed parallel to the film and placed 1.5 cm apart in the thickness direction of the glass.
  • the gradation pattern was observed in the state which irradiated the fluorescent lamp from the upper part of glass.
  • the complex viscosity of the first resin layer and the second resin layer of the obtained interlayer film for laminated glass was measured according to the following procedure.
  • the 1st resin layer was taken out by peeling the 1st resin layer and the 2nd resin layer 1 hour after forming into a film.
  • 1 g of the peeled first resin layer is placed in a mold (length 2 cm ⁇ width 2 cm ⁇ thickness 0.76 mm) placed between two polyethylene terephthalate (PET) films, and the temperature is 150 ° C., press pressure After preheating at 0 kg / cm 2 for 10 minutes, it was press-molded at 80 kg / cm 2 for 15 minutes.
  • PET polyethylene terephthalate
  • the press-molded first resin layer was placed in a hand press set in advance at 20 ° C. and cooled by pressing at 10 MPa for 10 minutes.
  • a hand press set in advance at 20 ° C. and cooled by pressing at 10 MPa for 10 minutes.
  • viscoelasticity was measured using ARES-G2 manufactured by TAINSTRUMENTS, and complex viscosity was measured.
  • a parallel plate having a diameter of 8 mm was used as a jig for measuring viscoelasticity. The viscoelasticity measurement was performed at a measurement temperature of 200 ° C.
  • the obtained complex viscosity was read as the value of the complex viscosity of the first resin layer at 200 ° C. Further, the complex viscosity of the second resin layer was measured by the same method.
  • PVB-A represents polyvinyl butyral A
  • PVB-B represents polyvinyl butyral B
  • the laminated glass obtained in Examples 1 to 15 was confirmed to have a sufficient color unevenness suppressing effect by visual evaluation.
  • the laminated glasses obtained in Comparative Examples 1 to 6 were not able to confirm a sufficient color unevenness suppressing effect by visual evaluation. This is because, in the transmittance measurement, the transmittance is measured at intervals of 1 cm, but in the visual evaluation, even color unevenness smaller than 1 cm can be confirmed. Therefore, the visual evaluation is a color unevenness evaluation that is more severe than the transmittance measurement.
  • Intermediate film 11,11A, 11B, 11Ca, 11Cb, 11D, 11E, 11F, 11X, 11Y, 11Z ...

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

 色むらが抑えられたグラデーション模様を有する合わせガラスを得ることができる合わせガラス用中間膜を提供する。 本発明に係る合わせガラス用中間膜は、熱可塑性樹脂及び可塑剤を含有する第1の樹脂層と、熱可塑性樹脂、可塑剤及び無機粒子を含有する第2の樹脂層とを備え、前記第2の樹脂層の第1の表面側に、前記第1の樹脂層が配置されており、合わせガラスを作製した際に、平行光透過率が30%を超え、60%未満である領域であってかつ上記第2の樹脂層の厚みが、中間膜の厚み方向と直交する方向に連続的に減少している領域であるグラデーション部が存在し、上記第2の樹脂層の200℃における複素粘度が、前記第1の樹脂層の200℃における複素粘度の0.7倍以上2倍以下である。

Description

合わせガラス用中間膜及び合わせガラス
 本発明は、グラデーション模様を有する合わせガラス用中間膜に関する。また、本発明は、上記合わせガラス用中間膜を用いた合わせガラスに関する。
 一対のガラス板の間に合わせガラス用中間膜が挟み込まれた合わせガラスが知られている。この合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に広く用いられている。近年、建築用の合わせガラスとして、プライバシー保護性を有する合わせガラスが求められている。プライバシー保護性を有する合わせガラスでは、例えば、光を透過させることができるが、合わせガラスの背後に位置する人又は物体を視認できない。
 プライバシー保護性を有する合わせガラスの一例として、下記の特許文献1には、不透明な層を有する多層中間膜を用いた合わせガラスが開示されている。この合わせガラスでは、合わせガラスの背後に位置する人又は物体を視認できなくする上記不透明な層によって、プライバシー保護性を実現している。
WO2006/082800A1
 建築用の合わせガラスの用途の多様化によって、プライバシー保護性に加え、色むらが抑えられたグラデーション模様の外観意匠性を有する合わせガラスが求められている。特許文献1に開示されている合わせガラスは、ガラスの全面で同じ色を有するため、外観意匠性が低いという問題がある。
 本発明の目的は、優れたプライバシー保護性を有することに加え、色むらが抑えられたグラデーション模様を有する合わせガラスを得ることができる合わせガラス用中間膜を提供すること、並びに該合わせガラス用中間膜を用いた合わせガラスを提供することである。
 本発明の広い局面によれば、熱可塑性樹脂及び可塑剤を含有する第1の樹脂層と、熱可塑性樹脂、可塑剤及び無機粒子を含有する第2の樹脂層とを備え、前記第2の樹脂層の第1の表面側に、前記第1の樹脂層が配置されており、JIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラスを作製した際に、平行光透過率が30%を超え、60%未満である領域であって、かつ前記第2の樹脂層の厚みが、中間膜の厚み方向と直交する方向に連続的に減少している領域であるグラデーション部が存在し、前記第2の樹脂層の200℃における複素粘度が、前記第1の樹脂層の200℃における複素粘度の0.7倍以上2倍以下である、合わせガラス用中間膜が提供される。
 本発明に係る合わせガラス用中間膜のある特定の局面では、前記第2の樹脂層の前記第1の表面側とは反対の第2の表面側に、前記第1の樹脂層が配置されており、前記第1の樹脂層中に、前記第2の樹脂層が埋め込まれている。
 本発明に係る合わせガラス用中間膜のある特定の局面では、中間膜の厚み方向と直交する方向において一部の領域に、前記第2の樹脂層が配置されており、中間膜の厚み方向と直交する方向において一部の領域に、前記グラデーション部とは異なり、かつ前記第2の樹脂層が存在しない領域が存在する。
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した合わせガラス用中間膜とを備え、前記合わせガラス用中間膜が、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置されている、合わせガラスが提供される。
 本発明に係る合わせガラス用中間膜は、熱可塑性樹脂及び可塑剤を含有する第1の樹脂層と、熱可塑性樹脂、可塑剤及び無機粒子を含有する第2の樹脂層とを備え、上記第2の樹脂層の第1の表面側に、上記第1の樹脂層が配置されており、JIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラスを作製した際に、平行光透過率が30%を超え、60%未満である領域であって、かつ上記第2の樹脂層の厚みが、中間膜の厚み方向と直交する方向に連続的に減少している領域であるグラデーション部が存在し、上記第2の樹脂層の200℃における複素粘度が、上記第1の樹脂層の200℃における複素粘度の0.7倍以上2倍以下であるので、優れたプライバシー保護性を有することに加え、色むらが抑えられたグラデーション模様を有する合わせガラスを得ることができる。
図1は、本発明の第1の実施形態に係る合わせガラス用中間膜を示す断面図である。 図2は、本発明の第2の実施形態に係る合わせガラス用中間膜を示す断面図である。 図3は、本発明の第3の実施形態に係る合わせガラス用中間膜を示す断面図である。 図4は、本発明の第4の実施形態に係る合わせガラス用中間膜を示す断面図である。 図5は、本発明の第5の実施形態に係る合わせガラス用中間膜を示す断面図である。 図6は、本発明の第6の実施形態に係る合わせガラス用中間膜を示す断面図である。 図7は、本発明の第7の実施形態に係る合わせガラス用中間膜を示す断面図である。 図8は、本発明の第8の実施形態に係る合わせガラス用中間膜を示す断面図である。 図9は、本発明の第9の実施形態に係る合わせガラス用中間膜を示す断面図である。 図10は、本発明の第10の実施形態に係る合わせガラス用中間膜を示す断面図である。 図11は、グラデーション部と透明部との境界の他の例を説明するための断面図である。 図12は、濃色部とグラデーション部との境界の他の例を説明するための断面図である。 図13は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を示す断面図である。 図14(a)及び(b)は、合わせガラス用中間膜の樹脂層間の界面に生じる欠陥を示すための断面図、及び、欠陥によって生じたすじ状の色むら(色すじ)を示す模式図である。
 以下、本発明を詳細に説明する。
 本発明に係る合わせガラス用中間膜は、第1の樹脂層と、第2の樹脂層とを備える。上記第1の樹脂層は、熱可塑性樹脂及び可塑剤を含有する。上記第2の樹脂層は、熱可塑性樹脂、可塑剤及び無機粒子を含有する。本発明に係る合わせガラス用中間膜では、上記第2の樹脂層の第1の表面側に、上記第1の樹脂層が配置されている。本発明に係る合わせガラス用中間膜では、JIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラスを作製した際に、平行光透過率が30%を超え、60%未満である領域であって、かつ上記第2の樹脂層の厚みが、中間膜の厚み方向と直交する方向に連続的に減少している領域であるグラデーション部が存在する。本発明に係る合わせガラス用中間膜では、上記第2の樹脂層の200℃における複素粘度が、上記第1の樹脂層の200℃における複素粘度の0.7倍以上2倍以下である。
 本発明に係る合わせガラス用中間膜の上述した構成の採用によって、優れたプライバシー保護性を有することに加え、色むらが抑えられたグラデーション模様を有する合わせガラスを得ることができる。特に、上記第2の樹脂層の200℃における複素粘度が、上記第1の樹脂層の200℃における複素粘度の0.7倍以上2倍以下であることは、グラデーション模様において、色むらを抑えることに大きく寄与する。これは、以下のような理由によると推察される。従来、2層以上の積層構造を有する多層中間膜が知られ、このような多層中間膜の場合は通常、各層の厚みは均一である。これに対して、本発明に係る合わせガラス用中間膜は、上記第2の樹脂層の厚みが厚み方向と直交する方向に連続的に減少している領域を有する。このため、本発明に係る合わせガラス用中間膜は、より一層複雑な構造を有する。また、上記第2の樹脂層は無機粒子を含有するため、無機粒子を含有しない樹脂層に比較して、粘弾性的挙動は大きく異なる。このような複雑な構造を有し、かつ、無機粒子を含有する層を含む多層中間膜を成形することは困難であり、樹脂層間の界面で図14(a)に示すような欠陥が生じることがある。なお、図14(a)において、着色された部位が無機粒子を含有する樹脂層を示し、着色されていない部分が他の樹脂層を示す。図14(a)に示すような欠陥が生じた場合、図14(b)に示すようにグラデーション模様が変化する途中で、すじ状の色むら(以下、色すじと呼ぶことがある)が発生することがある。本発明者らは、厚みが厚み方向と直交する方向に連続的に減少する構造を有し、かつ、無機粒子を含有する第2の樹脂層を含む多層中間膜であっても、特に200℃の高温において、上記第2の樹脂層の複素粘度を、上記第1の樹脂層の複素粘度の0.7倍以上2倍以下とすることで、図14(a)に示すような欠陥を抑制することができ、色むらを抑制することができることを見出した。中間膜を押出成形する際の温度においても、欠陥を抑制することができ、色むらを抑制することができる。
 上記第2の樹脂層の200℃における複素粘度が、上記第1の樹脂層の200℃における複素粘度の0.8倍以上であることが好ましく、0.9倍以上であることがより好ましく、1.5倍以下であることが好ましく、1.3倍以下であることがより好ましい。上記第1の樹脂層と上記第2の樹脂層との複素粘度が上記の関係を満足すると、色むらがより一層抑えられ、外観意匠性により一層優れた合わせガラスを得ることができる。
 上記複素粘度の測定方法は、特に限定されないが、例えば、以下の方法によって測定することができる。本発明に係る合わせガラス用中間膜において、第1の樹脂層と第2の樹脂層とを剥離することにより、第1の樹脂層を取り出す。2枚のポリエチレンテレフタレート(PET)フィルムの間に配置された型枠(縦2cm×横2cm×厚み0.76mm)内に、剥離された第1の樹脂層1gを置き、温度150℃、プレス圧0kg/cmで10分間予熱した後、80kg/cmで15分間プレス成型する。その後、予め20℃に設定したハンドプレス機に、プレス成型された第1の樹脂層を配置し、10MPaで10分間プレスすることにより冷却する。次いで、2枚のPETフィルムの間に配置された型枠から、1枚のPETフィルムを剥離し、恒温恒湿室(湿度30%(±3%)、温度23℃)で24時間保管した後、JIS K7244-10(ISO 6721-10)に準拠し、TAINSTRUMENTS社製のARES-G2を用いて粘弾性を測定し、複素粘度を測定する。粘弾性測定時の治具として直径8mmのパラレルプレートを用いる。また、粘弾性測定は、測定温度200℃にて、周波数1Hz及び歪8%の条件で行なう。得られた複素粘度を、200℃における第1の樹脂層の複素粘度の値として読み取る。また、同様の方法により、第2の樹脂層の複素粘度を測定する。
 また、上記複素粘度は、合わせガラス作製後であっても、例えば、以下の方法によって測定することができる。合わせガラスを液体チッソにより冷却することで、合わせガラス部材と合わせガラス用中間膜とを引き剥がす。引き剥がした合わせガラス用中間膜を、縦10cm×横10cmに切り出し、温度25℃、湿度30%の環境下で2時間静置する。その後、第1の樹脂層と第2の樹脂層とを剥離することにより、第1の樹脂層を取り出す。2枚のポリエチレンテレフタレート(PET)フィルムの間に配置された型枠(縦2cm×横2cm×厚み0.76mm)内に、剥離された第1の樹脂層1gを置き、温度150℃、プレス圧0kg/cmで10分間予熱した後、80kg/cmで15分間プレス成型する。その後、予め20℃に設定したハンドプレス機に、プレス成型された第1の樹脂層を配置し、10MPaで10分間プレスすることにより冷却する。次いで、2枚のPETフィルムの間に配置された型枠から、1枚のPETフィルムを剥離し、恒温恒湿室(湿度30%(±3%)、温度23℃)で24時間保管した後、JIS K7244-10(ISO 6721-10)に準拠し、TAINSTRUMENTS社製のARES-G2を用いて粘弾性を測定し、複素粘度を測定する。粘弾性測定時の治具として直径8mmのパラレルプレートを用いる。また、粘弾性測定は、測定温度200℃にて、周波数1Hz及び歪8%の条件で行なう。得られた複素粘度を200℃における第1の樹脂層の複素粘度の値として読み取る。また、同様の方法により、第2の樹脂層の複素粘度を測定する。
 上記第1の樹脂層の複素粘度は、上記第1の樹脂層が含有する可塑剤の含有量を増加させることで、低下させることができる。また、上記第2の樹脂層の複素粘度は、上記第2の樹脂層が含有する可塑剤の含有量を増加させることで、低下させることができる。
 上記複素粘度は、本発明に係る合わせガラス用中間膜を構成する成分を用いて合わせガラス用中間膜、第1の樹脂層又は第2の樹脂層を成膜した1時間後の試料を用いたり、本発明に係る合わせガラス用中間膜又は本発明に係る合わせガラス用中間膜に含まれる第1の層又は第2の樹脂層を入手したりして測定することができる。本発明に係る合わせガラス用中間膜を構成する成分を用いて合わせガラス用中間膜、第1の樹脂層又は第2の樹脂層を得た1時間後に、上記複素粘度の測定を開始することが好ましい。
 本発明に係る合わせガラス用中間膜では、上記第2の樹脂層の上記第1の表面側とは反対の第2の表面側に、上記第1の樹脂層が配置されており、上記第1の樹脂層中に、上記第2の樹脂層が埋め込まれていることが好ましい。この場合には、中間膜の表面における無機粒子の含有量が少なくなることから、中間膜の合わせガラス部材に対する接着性をより一層高めることができる。
 なお、本発明に係る合わせガラス用中間膜では、上記第2の樹脂層の第1の表面側に、上記第1の樹脂層が配置されており、上記第1の樹脂層の上記第2の樹脂層側とは反対の表面側に上記第2の樹脂層の樹脂層が配置されていてもよい。すなわち、上記第1の樹脂層の第1の表面側に、上記第2の樹脂層が配置されており、上記第1の樹脂層の上記第1の表面とは反対の第2の表面側に上記第2の樹脂層の樹脂層が配置されていてもよい。
 本発明に係る合わせガラス用中間膜では、上記平行光透過率が60%以上である透明部が存在することが好ましい。本発明に係る合わせガラス用中間膜では、中間膜の厚み方向と直交する方向において一部の領域に、上記第2の樹脂層が配置されており、中間膜の厚み方向と直交する方向において一部の領域に、上記グラデーション部とは異なり、かつ上記第2の樹脂層が存在しない領域が存在することが好ましい。上記グラデーション部とは異なり、かつ上記第2の樹脂層が存在しない領域は、例えば、上記グラデーション部よりも上記平行光透過率が高い透明部であることが好ましい。
 本発明に係る合わせガラス用中間膜では、上記平行光透過率が30%以下である濃色部を有することが好ましい。本発明に係る合わせガラス用中間膜では、中間膜の厚み方向と直交する方向において一部の領域に、上記第2の樹脂層が配置されており、中間膜の厚み方向と直交する方向において一部の領域に、上記グラデーション部とは異なり、かつ上記第2の樹脂層が存在する領域が存在していてもよい。上記グラデーション部とは異なりかつ上記第2の樹脂層が存在する領域では、上記第2の樹脂層の厚みは、ほぼ一定(略均一)であってもよい。上記グラデーション部とは異なりかつ上記第2の樹脂層が存在する領域は、例えば、上記グラデーション部よりも上記平行光透過率が低い濃色部であることが好ましい。
 建築物等の用途に好適に使用可能になることから、合わせガラス用中間膜において、グラデーション部と透明部とが存在することが好ましい。合わせガラス用中間膜において、濃色部とグラデーション部とが存在していてもよい。建築物等の用途に好適に使用可能になり、かつ外観がより一層良好になることから、合わせガラス用中間膜において、濃色部とグラデーション部と透明部とが存在することが特に好ましい。
 本発明に係る合わせガラス用中間膜のプライバシー保護性及び透明性は、合わせガラス用中間膜又は合わせガラスの平行光透過率の大小により評価することができる。平行光透過率が低いほど、プライバシー保護性が高く、透明性が低いことを示し、平行光透過率が高いほど、プライバシー保護性が低く、透明性が高いことを示す。
 上記合わせガラスの平行光透過率は例えば、以下のようにして測定される。
 JIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラスを作製する。2枚のクリアガラスの間に中間膜を挟み込む。上記平行光透過率は、JIS R3106(1998)に準拠して測定される。具体的には、分光光度計を用いて、透過した平行光のみ積分球へ受光するように、光源と積分球との光路上で光軸の法線に平行に、かつ積分球から13cm離れた地点に、上記合わせガラスを設置した状態で測定される。上記平行光透過率は、この状態で測定された分光透過率から算出された可視光線透過率を意味する。上記分光光度計としては、例えば、日立ハイテク社製「U-4100」等が挙げられる。
 得られた合わせガラスの上記濃色部部位における平行光透過率が30%以下であることが好ましい。得られた合わせガラスの上記グラデーション部部位における平行光透過率が上記濃色部側から上記透明部側に向かって連続的に増加していることが好ましい。上記合わせガラスの上記透明部部位における平行光透過率が60%以上であることが好ましい。
 上記濃色部と上記グラデーション部とが存在する場合に、上記合わせガラスの上記グラデーション部部位における平行光透過率が、上記濃色部側から上記グラデーション部の濃色部側とは反対の端部側に向かって連続的に増加していることが好ましい。上記グラデーション部と上記透明部とが存在する場合に、上記合わせガラスの上記グラデーション部部位における平行光透過率が、上記グラデーション部の上記透明部側とは反対の端部側から透明部側に向かって連続的に増加していることが好ましい。上記濃色部と上記グラデーション部と上記透明部とが存在する場合に、上記合わせガラスの上記グラデーション部部位における平行光透過率が、上記濃色部側から上記透明部側に向かって連続的に増加していることが好ましい。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1に、本発明の第1の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図1に示す中間膜1は、合わせガラスを得るために用いられる。中間膜1は、合わせガラス用中間膜である。中間膜1は、濃色部11とグラデーション部12と透明部13とを備える。なお、上述のように中間膜1は濃色部11とグラデーション部12と透明部13とを備えるが、本発明に係る合わせガラス用中間膜は、濃色部及び透明部を備えなくともよい。本発明に係る合わせガラス用中間膜は、濃色部11とグラデーション部12と透明部13とを備えることが好ましい。中間膜1では、濃色部11とグラデーション部12と透明部13とは、この順で中間膜1の厚み方向と直交する方向に並んで配置されている。中間膜1と後述する中間膜51、中間膜1A、中間膜1B、中間膜1C、中間膜1D、中間膜1E、中間膜1X及び中間膜1Yでは、上記第1の樹脂層中に上記第2の樹脂層が埋め込まれている。
 中間膜1とJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1を挟み込むことで、上記合わせガラスCを得る。この場合に、上記合わせガラスCの濃色部11部位における平行光透過率が30%以下であり、上記合わせガラスCのグラデーション部12部位における平行光透過率が濃色部11側から透明部13側に向かって連続的に増加しており、上記合わせガラスCの透明部13部位における平行光透過率が60%以上である。中間膜1では、破線X1が、上記平行光透過率が30%以下であるか否かの境界である。中間膜1では、破線X2が、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1は、第1の樹脂層16と第2の樹脂層17とを有する。濃色部11とグラデーション部12と透明部13とはそれぞれ、第1の樹脂層16を有する。第1の樹脂層16は、熱可塑性樹脂及び可塑剤を含有する。濃色部11とグラデーション部12とはそれぞれ、第2の樹脂層17をさらに有する。第2の樹脂層17の両側の表面上に第1の樹脂層16が位置するように、第2の樹脂層17は、第1の樹脂層16中に埋め込まれている。第2の樹脂層17は、熱可塑性樹脂、可塑剤及び無機粒子を含有する。第1の樹脂層16よりも、第2の樹脂層17の方が、透明性が低い。
 中間膜1では、上記合わせガラスCのグラデーション部12部位における平行光透過率が、濃色部11側から透明部13側に向かって連続的に増加するように、グラデーション部12における第2の樹脂層17の厚みが、濃色部11側から透明部13側に向かって連続的に減少している。また、中間膜1では、上記合わせガラスCのグラデーション部12部位における平行光透過率が、濃色部11側から透明部13側に向かって連続的に増加するように、グラデーション部12における第1の樹脂層16の合計の厚みが、濃色部11側から透明部13側に向かって連続的に増加している。
 なお、図11に示すように、濃色部11と同じ形状の濃色部61を有し、グラデーション部12と同じ形状のグラデーション部62を有し、透明部13と同じ形状の透明部63を有し、結果として中間膜1と同じ形状の中間膜51において、上記平行光透過率が60%以上である境界を示す破線X2が、第1の樹脂層66の合計の厚みが、濃色部61側から透明部63側に向かって連続的に増加している途中に位置してもよい。グラデーション部62と透明部63との境界は、上記平行光透過率が60%以上であるか否かにより判断される。
 図2に、本発明の第2の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図2に示す中間膜1Aは、濃色部11Aと、グラデーション部12Aと、透明部13Aとを備える。中間膜1Aでは、濃色部11Aと、グラデーション部12Aと、透明部13Aとが、この順で中間膜1Aの厚み方向と直交する方向に並んで配置されている。
 中間膜1AとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCAと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Aを挟み込むことで、上記合わせガラスCAを得る。この場合に、上記合わせガラスCAの濃色部11A部位における平行光透過率が30%以下であり、上記合わせガラスCAのグラデーション部12A部位における平行光透過率が、濃色部11A側から透明部13A側に向かって連続的に増加しており、上記合わせガラスCAの透明部13A部位における平行光透過率が60%以上である。中間膜1Aでは、破線X1が、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Aでは、破線X2が、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Aは、第1の樹脂層16Aと第2の樹脂層17Aとを有する。濃色部11A、グラデーション部12A及び透明部13Aはそれぞれ、第1の樹脂層16Aを有する。第1の樹脂層16Aは、熱可塑性樹脂及び可塑剤を含有する。濃色部11A及びグラデーション部12Aはそれぞれ、第2の樹脂層17Aをさらに有する。第2の樹脂層17Aの両側の表面上に第1の樹脂層16Aが位置するように、第2の樹脂層17Aは、第1の樹脂層16A中に埋め込まれている。第2の樹脂層17Aは、熱可塑性樹脂、可塑剤及び無機粒子を含有する。第1の樹脂層16Aよりも、第2の樹脂層17Aの方が、透明性が低い。
 中間膜1Aでは、上記合わせガラスCAのグラデーション部12A部位における平行光透過率が、濃色部11A側から透明部13A側に向かって連続的に増加するように、グラデーション部12Aにおける第2の樹脂層17Aの厚みが、濃色部11A側から透明部13A側に向かって連続的に減少している。また、中間膜1Aでは、上記合わせガラスCAのグラデーション部12A部位における平行光透過率が、濃色部11A側から透明部13A側に向かって連続的に増加するように、グラデーション部12Aにおける第1の樹脂層16Aの合計の厚みが、濃色部11A側から透明部13A側に向かって連続的に増加している。また、中間膜1Aでは、濃色部11Aにおける第2の樹脂層17Aの厚みが、濃色部11Aの外側の端部側から透明部13A側に向かって減少している。このように濃色部11Aにおける第2の樹脂層17Aの厚みが、濃色部11Aの外側の端部側から透明部13側に向かって変化している中間膜1Aも、本発明の態様の一つである。
 なお、図2に示すように、濃色部11A及びグラデーション部12Aの両方における第2の樹脂層17Aの厚みが、濃色部11Aの外側の端部又は濃色部11A側から透明部13A側に向かって連続的に減少している場合、上記合わせガラスCAにおける平行光透過率が30%以下である領域を濃色部11Aとし、平行光透過率が30%を超える領域をグラデーション部12Aとする。
 図3に、本発明の第3の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図3に示す中間膜1Bは、濃色部11Bと、グラデーション部12Bと、透明部13Bとを備える。中間膜1Bでは、濃色部11Bと、グラデーション部12Bと、透明部13Bとが、この順で中間膜1Bの厚み方向と直交する方向に並んで配置されている。
 中間膜1BとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCBと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Bを挟み込むことで、上記合わせガラスCBを得る。この場合に、上記合わせガラスCBの濃色部11B部位における平行光透過率が30%以下であり、上記合わせガラスCBのグラデーション部12B部位における平行光透過率が、濃色部11B側から透明部13B側に向かって連続的に増加しており、上記合わせガラスCBの透明部13B部位における平行光透過率が60%以上である。中間膜1Bでは、破線X1が、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Bでは、破線X2が、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Bは、第1の樹脂層16Bと第2の樹脂層17Bとを有する。濃色部11B、グラデーション部12B及び透明部13Bはそれぞれ、第1の樹脂層16Bを有する。第1の樹脂層16Bは、熱可塑性樹脂及び可塑剤を含有する。濃色部11B、グラデーション部12B及び透明部13Bはそれぞれ、第2の樹脂層17Bをさらに有する。第2の樹脂層17Bの両側の表面上に第1の樹脂層16Bが位置するように、第2の樹脂層17Bは、第1の樹脂層16B中に埋め込まれている。第2の樹脂層17Bは、熱可塑性樹脂、可塑剤及び無機粒子を含有する。第1の樹脂層16Bよりも、第2の樹脂層17Bの方が、透明性が低い。
 中間膜1Bでは、上記合わせガラスCBのグラデーション部12B部位における平行光透過率が、濃色部11B側から透明部13B側に向かって連続的に増加するように、グラデーション部12Bにおける第2の樹脂層17Bの厚みが、濃色部11B側から透明部13B側に向かって連続的に減少している。また、中間膜1Bでは、上記合わせガラスCBのグラデーション部12B部位における平行光透過率が、濃色部11B側から透明部13B側に向かって連続的に増加するように、グラデーション部12Bにおける第1の樹脂層16Bの合計の厚みが、濃色部11B側から透明部13B側に向かって連続的に増加している。また、中間膜1Bでは、濃色部11Bにおける第2の樹脂層17Bの厚みが、濃色部11Bの外側の端部側から透明部13B側に向かって減少している。更に、中間膜1Bでは、透明部13Bにおける第2の樹脂層17の厚みが、濃色部11B側から透明部13Bの外側の端部側に向かって減少している。このように濃色部11B及び透明部13Bにおける第2の樹脂層17Bの厚みが、濃色部11Bの外側の端部又は濃色部11B側から透明部13B又は透明部13Bの外側の端部側に向かって変化している中間膜1Bも、本発明の態様の一つである。
 なお、図3に示すように、濃色部11B、グラデーション部12B及び透明部13Bにおける第2の樹脂層17Bの厚みの全てが、濃色部11Bの外側の端部又は濃色部11B側から透明部13B又は透明部13Bの外側の端部側に向かって連続的に減少している場合、上記合わせガラスCBにおける平行光透過率が30%以下である領域を濃色部11Bとし、平行光透過率が30%を超え、かつ、60%未満である領域をグラデーション部12Bとし、平行光透過率が60%以上である領域を透明部13Bとする。
 図4に、本発明の第4の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図4に示す中間膜1Cは、濃色部11Ca及び濃色部11Cbと、グラデーション部12Ca及びグラデーション部12Cbと、透明部13Cとを備える。中間膜1Cでは、濃色部11Caと、グラデーション部12Caと、透明部13Cとが、この順で中間膜1Cの厚み方向と直交する方向に並んで配置されている。更に、中間膜1Cでは、濃色部11Cbと、グラデーション部12Cbと、透明部13Cとが、この順で中間膜1Cの厚み方向と直交する方向に並んで配置されている。このように、中間膜1Cの両端からそれぞれ、濃色部11Caとグラデーション部12Caと透明部13Cとが、中間膜1Cの厚み方向と直交する方向に並んで配置されており、かつ、濃色部11Cbとグラデーション部12Cbと透明部13Cとが、中間膜1Cの厚み方向と直交する方向に並んで配置されている中間膜1Cも、本発明の態様の一つである。
 中間膜1CとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCCと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Cを挟み込むことで、上記合わせガラスCCを得る。この場合に、上記合わせガラスCCの濃色部11Ca部位及び濃色部11Cb部位における平行光透過率が30%以下であり、上記合わせガラスCCのグラデーション部12Ca部位及びグラデーション部12Cb部位における平行光透過率が、それぞれ濃色部11Ca又は濃色部11Cb側から透明部13C側に向かって連続的に増加しており、上記合わせガラスCCの透明部13C部位における平行光透過率が60%以上である。中間膜1Cでは、2つの破線X1がそれぞれ、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Cでは、2つの破線X2がそれぞれ、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Cは、第1の樹脂層16Cと第2の樹脂層17Cとを有する。濃色部11Ca、濃色部11Cb、グラデーション部12Ca、グラデーション部12Cb及び透明部13Cはそれぞれ、第1の樹脂層16Cを有する。第1の樹脂層16Cは、熱可塑性樹脂及び可塑剤を含有する。濃色部11Ca、濃色部11Cb、グラデーション部12Ca及びグラデーション部12Cbはそれぞれ、第2の樹脂層17Cをさらに有する。第2の樹脂層17Cの両側の表面上に第1の樹脂層16Cが位置するように、第2の樹脂層17Cは、第1の樹脂層16C中に埋め込まれている。第2の樹脂層17Cは、熱可塑性樹脂、可塑剤及び無機粒子を含有する。第1の樹脂層16Cよりも、第2の樹脂層17Cの方が、透明性が低い。濃色部11Ca側の第2の樹脂層17Cと、濃色部11Cb側の第2の樹脂層17Cとは同一であってもよく、異なっていてもよい。
 中間膜1Cでは、上記合わせガラスCCのグラデーション部12Ca部位及びグラデーション部12Cb部位における平行光透過率が、それぞれ濃色部11Ca又は濃色部11Cb側から透明部13C側に向かって連続的に増加するように、グラデーション部12Ca及びグラデーション部12Cbにおける第2の樹脂層17Cの厚みが、それぞれ濃色部11Ca又は濃色部11Cb側から透明部13C側に向かって連続的に減少している。また、中間膜1Cでは、上記合わせガラスCCのグラデーション部12Ca部位及びグラデーション部12Cb部位における平行光透過率が、それぞれ濃色部11Ca又は濃色部11Cb側から透明部13C側に向かって連続的に増加するように、グラデーション部12Ca及びグラデーション部12Cbにおける第1の樹脂層16Cの合計の厚みが、それぞれ濃色部11Ca又は濃色部11Cb側から透明部13C側に向かって連続的に増加している。
 図5に、本発明の第5の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図5に示す中間膜1Dは、濃色部11Dと、グラデーション部12Da及びグラデーション部12Dbと、透明部13Daと、透明部13Dbとを備える。中間膜1Dでは、濃色部11Dと、グラデーション部12Daと、透明部13Daとが、この順で中間膜1Dの厚み方向と直交する方向に並んで配置されている。更に、中間膜1Dでは、濃色部11Dと、グラデーション部12Dbと、透明部13Dbとが、この順で中間膜1Dの厚み方向と直交する方向に並んで配置されている。このように、中間膜1Dの濃色部11Dから両端に向かって、濃色部11Dとグラデーション部12Daと透明部13Daとが、中間膜1Dの厚み方向と直交する方向に並んで配置されており、かつ、濃色部11Dとグラデーション部12Dbと透明部13Dbとが、中間膜1Dの厚み方向と直交する方向に並んで配置されている中間膜1Dも、本発明の態様の一つである。
 中間膜1DとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCDと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Dを挟み込むことで、上記合わせガラスCDを得る。この場合に、上記合わせガラスCDの濃色部11D部位における平行光透過率が30%以下であり、上記合わせガラスCDのグラデーション部12Da部位及びグラデーション部12Db部位における平行光透過率が、それぞれ濃色部11D側から両端の透明部13Da及び透明部13Db側に向かって連続的に増加しており、上記合わせガラスCDの透明部13Da部位及び透明部13Db部位における平行光透過率が60%以上である。中間膜1Dでは、2つの破線X1がそれぞれ、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Dでは、2つの破線X2がそれぞれ、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Dは、第1の樹脂層16Dと第2の樹脂層17Dとを有する。濃色部11D、グラデーション部12Da、グラデーション部12Db、透明部13Da及び透明部13Dbはそれぞれ、第1の樹脂層16Dを有する。第1の樹脂層16Dは、熱可塑性樹脂及び可塑剤を含有する。濃色部11D、グラデーション部12Da及びグラデーション部12Dbはそれぞれ、第2の樹脂層17Dをさらに有する。第2の樹脂層17Dの両側の表面上に第1の樹脂層16Dが位置するように、第2の樹脂層17Dは、第1の樹脂層16D中に埋め込まれている。第2の樹脂層17Dは、熱可塑性樹脂、可塑剤及び無機粒子を含有する。第1の樹脂層16Dよりも、第2の樹脂層17Dの方が、透明性が低い。
 中間膜1Dでは、上記合わせガラスCDのグラデーション部12Da部位及びグラデーション部12Db部位における平行光透過率が、それぞれ濃色部11D側から透明部13Da又は透明部13Db側に向かって連続的に増加するように、グラデーション部12Da及びグラデーション部12Dbにおける第2の樹脂層17Dの厚みが、それぞれ濃色部11D側から透明部13Da又は透明部13Db側に向かって連続的に減少している。また、中間膜1Dでは、上記合わせガラスCDのグラデーション部12Da部位及びグラデーション部12Db部位における平行光透過率が、それぞれ濃色部11D側から透明部13Da又は透明部13Db側に向かって連続的に増加するように、グラデーション部12Da及びグラデーション部12Dbにおける第1の樹脂層16Dの合計の厚みが、それぞれ濃色部11D側から透明部13Da又は透明部13Db側に向かって連続的に増加している。
 図6に、本発明の第6の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図6に示す中間膜1Eは、厚み方向に図1に示す中間膜1と、第3の樹脂層18とが積層されている。このように、第1の樹脂層及び第2の樹脂層以外の、他の樹脂層を含む中間膜1Eも、本発明の態様の一つである。
 中間膜1EとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCEと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Eを挟み込むことで、上記合わせガラスCEを得る。この場合に、上記合わせガラスCEの濃色部11E部位における平行光透過率が30%以下であり、上記合わせガラスCEのグラデーション部12E部位における平行光透過率が濃色部11E側から透明部13E側に向かって連続的に増加しており、上記合わせガラスCEの透明部13E部位における平行光透過率が60%以上である。中間膜1Eでは、破線X1が、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Eでは、破線X2が、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Eは、第1の樹脂層16と、第2の樹脂層17と、第3の樹脂層18とを有する。濃色部11Eとグラデーション部12Eと透明部13Eとはそれぞれ、第1の樹脂層16及び第3の樹脂層18を有する。第1の樹脂層16は、熱可塑性樹脂及び可塑剤を含有する。第3の樹脂層18は、熱可塑性樹脂及び可塑剤を含有することが好ましい。濃色部11Eとグラデーション部12Eとはそれぞれ、第2の樹脂層17をさらに有する。第2の樹脂層17は、中間膜1Eの厚み方向の両側の表面に第1の樹脂層16が位置するように、第1の樹脂層16中に埋め込まれている。第2の樹脂層17は、熱可塑性樹脂、可塑剤及び無機粒子を含有する。第1の樹脂層16よりも、第2の樹脂層17の方が、透明性が低い。
 中間膜1Eでは、上記合わせガラスCEのグラデーション部12E部位における平行光透過率が、濃色部11E側から透明部13E側に向かって連続的に増加するように、グラデーション部12Eにおける第2の樹脂層17の厚みが、濃色部11E側から透明部13E側に向かって連続的に減少している。また、中間膜1Eでは、上記合わせガラスCEのグラデーション部12E部位における平行光透過率が、濃色部11E側から透明部13E側に向かって連続的に増加するように、グラデーション部12Eにおける第1の樹脂層16の合計の厚みが、濃色部11E側から透明部13E側に向かって連続的に増加している。なお、第3の樹脂層18の厚みは、中間膜1Eの全領域でほぼ一定である。上記第3の樹脂層の厚みは、中間膜の厚み方向と直交する方向で変化していてもよい。
 また、中間膜1の両面に上記第3の樹脂層が配置されていてもよい。また、後述する中間膜1X、中間膜1Y及び中間膜1Zなどの中間膜の片面又は両面に、上記第3の樹脂層を配置してもよい。また、中間膜1Eは、第1の樹脂層16、第2の樹脂層17及び第3の樹脂層18以外の、他の樹脂層を積層していてもよい。
 図7に、本発明の第7の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図7に示す中間膜1Fは、濃色部11Fと、グラデーション部12Fと、透明部13Fとを備える。中間膜1Fでは、濃色部11Fと、グラデーション部12Fと、透明部13Fとが、この順で中間膜1Fの厚み方向と直交する方向に並んで配置されている。
 中間膜1FとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCFと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Fを挟み込むことで、上記合わせガラスCFを得る。この場合に、上記合わせガラスCFの濃色部11F部位における平行光透過率が30%以下であり、上記合わせガラスCFのグラデーション部12F部位における平行光透過率が、濃色部11F側から透明部13F側に向かって連続的に増加しており、上記合わせガラスCFの透明部13F部位における平行光透過率が60%以上である。中間膜1Fでは、破線X1が、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Fでは、破線X2が、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Fは、第1の樹脂層16Fと第2の樹脂層17Fとを有する。濃色部11F、グラデーション部12F及び透明部13Fはそれぞれ、第1の樹脂層16Fを有する。第1の樹脂層16Fは、熱可塑性樹脂及び可塑剤を含有する。濃色部11F及びグラデーション部12Fはそれぞれ、第2の樹脂層17Fをさらに有する。第2の樹脂層17Fは、熱可塑性樹脂、可塑剤及び無機粒子を含有する。第1の樹脂層16Fよりも、第2の樹脂層17Fの方が、透明性が低い。第2の樹脂層17Fの第1の表面側に第1の樹脂層16Fが配置されている。第2の樹脂層17Fの上記第1の表面側とは反対の第2の表面側に第1の樹脂層は配置されていない。このため、第2の樹脂層17Fは第1の樹脂層16Fに埋め込まれていない。第1の樹脂層16F及び第2の樹脂層17Fの双方が表面層である。このように、第2の樹脂層17Fの一方の表面側のみに第1の樹脂層16Fが配置されていたり、第2の樹脂層17Fが第1の樹脂層16Fに埋め込まれていなかったりする中間膜1Fも、本発明の態様の一つである。
 中間膜1Fでは、上記合わせガラスCFのグラデーション部12F部位における平行光透過率が、濃色部11F側から透明部13F側に向かって連続的に増加するように、グラデーション部12Fにおける第2の樹脂層17Fの厚みが、濃色部11F側から透明部13F側に向かって連続的に減少している。また、中間膜1Fでは、上記合わせガラスCFのグラデーション部12F部位における平行光透過率が、濃色部11F側から透明部13F側に向かって連続的に増加するように、グラデーション部12Fにおける第1の樹脂層16Fの厚みが、濃色部11F側から透明部13F側に向かって連続的に増加している。また、中間膜1Fでは、濃色部11Fにおける第2の樹脂層17Fの厚みが、濃色部11Fの外側の端部側から透明部13F側に向かって減少している。
 図8に、本発明の第8の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図8に示す中間膜1Xは、合わせガラスを得るために用いられる。中間膜1Xは、合わせガラス用中間膜である。中間膜1Xは、濃色部11Xと、グラデーション部12Xと、透明部13Xとを備える。中間膜1Xでは、濃色部11Xと、グラデーション部12Xと、透明部13Xとが、この順で中間膜1Xの厚み方向と直交する方向に並んで配置されている。中間膜1Xと後述する中間膜51X及び中間膜1Yでは、上記第2の樹脂層中に上記第1の樹脂層が埋め込まれている。
 中間膜1XとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCXと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Xを挟み込むことで、上記合わせガラスCXを得る。この場合に、上記合わせガラスCXの濃色部11X部位における平行光透過率が30%以下であり、上記合わせガラスCXのグラデーション部12X部位における平行光透過率が、それぞれ濃色部11X側から透明部13X側に向かって連続的に増加しており、上記合わせガラスCXの透明部13X部位における平行光透過率が60%以上である。中間膜1Xでは、破線X1が、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Xでは、破線X2が、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Xは、第1の樹脂層16Xと第2の樹脂層17Xとを有する。濃色部11X、グラデーション部12X及び透明部13Xはそれぞれ、第2の樹脂層17Xを有する。第2の樹脂層17Xは、熱可塑性樹脂、可塑剤及び無機粒子を含有する。グラデーション部12X及び透明部13Xはそれぞれ、第1の樹脂層16Xをさらに有する。第1の樹脂層16Xの両側の表面上に第2の樹脂層17Xが位置するように、第1の樹脂層16Xは、第2の樹脂層17X中に埋め込まれている。第1の樹脂層16Xは、熱可塑性樹脂及び可塑剤を含有する。第1の樹脂層16Xよりも、第2の樹脂層17Xの方が、透明性が低い。
 中間膜1Xでは、上記合わせガラスCXのグラデーション部12X部位における平行光透過率が、濃色部11X側から透明部13X側に向かって連続的に増加するように、グラデーション部12Xにおける第2の樹脂層17Xの合計の厚みが、濃色部11X側から透明部13X側に向かって連続的に減少している。また、中間膜1Xでは、上記合わせガラスCXのグラデーション部12X部位における平行光透過率が、濃色部11X側から透明部13X側に向かって連続的に増加するように、グラデーション部12Xにおける第1の樹脂層16Xの厚みが、濃色部11X側から透明部13X側に向かって連続的に増加している。このような中間膜1Xも、本発明の態様の一つである。
 なお、図12に示すように、濃色部11Xと同じ形状の濃色部61Xを有し、グラデーション部12Xと同じ形状のグラデーション部62Xを有し、透明部13Xと同じ形状の透明部63Xを有し、結果として中間膜1Xと同じ形状の中間膜51Xにおいて、上記平行光透過率が30%以下である境界を示す破線X1が、第2の樹脂層67Xの合計の厚みが、濃色部61X側から透明部63X側に向かって連続的に減少している途中に位置してもよい。濃色部61Xとグラデーション部62Xとの境界は、上記平行光透過率が60%以上であるか否かにより判断される。
 図9に、本発明の第9の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図9に示す中間膜1Yは、濃色部11Yと、グラデーション部12Yと、透明部13Yとを備える。中間膜1Yでは、濃色部11Yと、グラデーション部12Yと、透明部13Yとが、この順で中間膜1Yの厚み方向と直交する方向に並んで配置されている。
 中間膜1YとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCYと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Yを挟み込むことで、上記合わせガラスCYを得る。この場合に、上記合わせガラスCYの濃色部11Y部位における平行光透過率が30%以下であり、上記合わせガラスCYのグラデーション部12Y部位における平行光透過率が、濃色部11Y側から透明部13Y側に向かって連続的に増加しており、上記合わせガラスCYの透明部13Y部位における平行光透過率が60%以上である。中間膜1Yでは、破線X1が、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Yでは、破線X2が、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Yは、第1の樹脂層16Yと第2の樹脂層17Yとを有する。濃色部11Y、グラデーション部12Y及び透明部13Yはそれぞれ、第2の樹脂層17Yを有する。第2の樹脂層17Yは、熱可塑性樹脂、可塑剤及び無機粒子を含有する。グラデーション部12Y及び透明部13Yはそれぞれ、第1の樹脂層16Yをさらに有する。第1の樹脂層16Yの両側の表面上に第2の樹脂層17Yが位置するように、第1の樹脂層16Yは、第2の樹脂層17Y中に埋め込まれている。第1の樹脂層16Yは、熱可塑性樹脂及び可塑剤を含有する。第1の樹脂層16Yよりも、第2の樹脂層17Yの方が、透明性が低い。
 中間膜1Yでは、上記合わせガラスCYのグラデーション部12Y部位における平行光透過率が、濃色部11Y側から透明部13Y側に向かって連続的に増加するように、グラデーション部12Yにおける第2の樹脂層17Yの合計の厚みが、濃色部11Y側から透明部13Y側に向かって連続的に減少している。また、中間膜1Yでは、上記合わせガラスCYのグラデーション部12Y部位における平行光透過率が、濃色部11Y側から透明部13Y側に向かって連続的に増加するように、グラデーション部12Yにおける第1の樹脂層16Yの厚みが、濃色部11Y側から透明部13Y側に向かって連続的に増加している。また、中間膜1Yでは、透明部13Yにおける第2の樹脂層17Yの合計の厚みが、濃色部11Y側から透明部13Yの外側の端部側に向かって減少している。このように濃色部11Yにおける第2の樹脂層17Yの合計の厚みが、濃色部11Y側から透明部13Yの外側の端部側に向かって変化している中間膜1Yも、本発明の態様の一つである。
 なお、図9に示すように、透明部13Y及びグラデーション部12Yの両方における第2の樹脂層17Yの合計の厚みが、濃色部11Y側から透明部13Yの外側の端部側に向かって連続的に減少している場合、上記合わせガラスCYにおける平行光透過率が60%以上である領域を透明部13Yとし、平行光透過率が60%未満である領域をグラデーション部12Yとする。
 図10に、本発明の第10の実施形態に係る合わせガラス用中間膜を断面図で示す。
 図10に示す中間膜1Zは、濃色部11Zと、グラデーション部12Zと、透明部13Zとを備える。中間膜1Zでは、濃色部11Zと、グラデーション部12Zと、透明部13Zとが、この順で中間膜1Zの厚み方向と直交する方向に並んで配置されている。
 中間膜1ZとJIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラス(以下、合わせガラスCZと記載することがある)を作製する。具体的には、2枚のクリアガラスの間に、中間膜1Zを挟み込むことで、上記合わせガラスCZを得る。この場合に、上記合わせガラスCZの濃色部11Z部位における平行光透過率が30%以下であり、上記合わせガラスCZのグラデーション部12Z部位における平行光透過率が、濃色部11Z側から透明部13Z側に向かって連続的に増加しており、上記合わせガラスCZの透明部13Z部位における平行光透過率が60%以上である。中間膜1Zでは、破線X1が、上記平行光透過率が30%以下であるか否かの境界である。中間膜1Zでは、破線X2が、上記平行光透過率が60%以上であるか否かの境界である。
 中間膜1Zは、第1の樹脂層16Zと第2の樹脂層17Zとを有する。濃色部11Z、グラデーション部12Z及び透明部13Zはそれぞれ、第2の樹脂層17Zを有する。第2の樹脂層17Zは、熱可塑性樹脂、可塑剤及び無機粒子を含有する。グラデーション部12Z及び透明部13Zはそれぞれ、第1の樹脂層16Zを有する。第1の樹脂層16Zは、熱可塑性樹脂及び可塑剤を含有する。第1の樹脂層16Zよりも、第2の樹脂層17Zの方が、透明性が低い。第1の樹脂層16Zの第1の表面側に第2の樹脂層17Zが配置されている。第1の樹脂層16Zの上記第1の表面側とは反対の第2の表面側に第2の樹脂層17Zは配置されていない。このため、第1の樹脂層16Zは第2の樹脂層17Zに埋め込まれていない。第1の樹脂層16Z及び第2の樹脂層17Zの双方が表面層である。このように、第1の樹脂層16Zの一方の表面側のみに第2の樹脂層17Zが配置されていたり、第1の樹脂層16Zが第2の樹脂層17Zに埋め込まれていなかったりする中間膜1Zも、本発明の態様の一つである。
 中間膜1Zでは、上記合わせガラスCZのグラデーション部12Z部位における平行光透過率が、濃色部11Z側から透明部13Z側に向かって連続的に増加するように、グラデーション部12Zにおける第2の樹脂層17Zの合計の厚みが、濃色部11Z側から透明部13Z側に向かって連続的に減少している。また、中間膜1Zでは、上記合わせガラスCZのグラデーション部12Z部位における平行光透過率が、濃色部11Z側から透明部13Z側に向かって連続的に増加するように、グラデーション部12Zにおける第1の樹脂層16Zの厚みが、濃色部11Z側から透明部13Z側に向かって連続的に増加している。また、中間膜1Zでは、透明部13Zにおける第2の樹脂層17Zの合計の厚みが、濃色部11Z側から透明部13Zの外側の端部側に向かって減少している。
 上記のような中間膜1、中間膜51、中間膜1A、中間膜1B、中間膜1C、中間膜1D、中間膜1E、中間膜F、中間膜1X、中間膜51X、中間膜1Y、中間膜1Zを用いることで、優れたプライバシー保護性を有することに加え、色むらが抑えられたグラデーション模様を有する合わせガラスを得ることができる。中間膜1、中間膜51、中間膜1A、中間膜1B、中間膜1C、中間膜1D、中間膜1E、中間膜F、中間膜1X、中間膜51X、中間膜1Y、中間膜1Zを用いた合わせガラスにおいて、光を透過させるが、背後に位置する人又は物体は視認できない領域を有するようにすることができる。
 上記合わせガラスC、上記合わせガラスCA、上記合わせガラスCB、上記合わせガラスCC、上記合わせガラスCD、上記合わせガラスCE、上記合わせガラスCF、上記合わせガラスCX、上記合わせガラスCY及び上記合わせガラスCZなどの合わせガラスの上記透明部部位における平行光透過率の最大値は、好ましくは70%以上、より好ましくは78%以上である。上記透明部部位における平行光透過率の最大値が上記下限以上であると、採光性により一層優れた合わせガラスが得られる。上記合わせガラスの上記濃色部部位における平行光透過率の最小値は好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下、最も好ましくは2%以下である。上記濃色部部位における平行光透過率の最小値が上記上限以下であると、プライバシー保護性により一層優れた合わせガラスが得られる。
 上記合わせガラスC、上記合わせガラスCA、上記合わせガラスCB、上記合わせガラスCC、上記合わせガラスCD、上記合わせガラスCE、上記合わせガラスCF、上記合わせガラスCX、上記合わせガラスCY及び上記合わせガラスCZなどの合わせガラスの上記透明部部位における全光線透過率の最大値は、好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上、最も好ましくは85%以上である。上記透明部部位における全光線透過率の最大値が上記下限以上であると、採光性により一層優れた合わせガラスが得られる。上記合わせガラスの上記濃色部部位における全光線透過率の最小値は、好ましくは5%以上、より好ましくは50%以上、更に好ましくは60%以上、特に好ましくは75%以上である。上記濃色部部位における全光線透過率の最小値が上記下限以上であると、採光性により一層優れた合わせガラスが得られる。また、上記全光線透過率と平行光透過率との差から、拡散光透過率が求まる。
 上記全光線透過率は、JIS R3106(1998)に準拠して測定される。具体的には、分光光度計を用いて、透過した光線をすべて積分球に受光するよう積分球の開口部に、得られた合わせガラスを平行にかつ密着させ、分光透過率を測定する。上記全光線透過率は、この状態で測定された分光透過率から算出された可視光線透過率を意味する。上記分光光度計としては、例えば、日立ハイテク社製「U-4100」等が挙げられる。
 上記合わせガラスC、上記合わせガラスCA、上記合わせガラスCB、上記合わせガラスCC、上記合わせガラスCD、上記合わせガラスCE、上記合わせガラスCF、上記合わせガラスCX、上記合わせガラスCY及び上記合わせガラスCZなどの合わせガラスの上記濃色部部位において、平行光透過率の最小値が20%を超え、30%以下である場合には全光線透過率の最小値が75%以上であることが好ましく、平行光透過率の最小値が5%を超え、20%以下である場合には全光線透過率の最小値が65%以上であることが好ましく、平行光透過率の最小値が5%以下である場合には全光線透過率の最小値が50%以上であることが好ましい。上記合わせガラスC、上記合わせガラスCA、上記合わせガラスCB、上記合わせガラスCC、上記合わせガラスCD、上記合わせガラスCE、上記合わせガラスCF、上記合わせガラスCX、上記合わせガラスCY及び上記合わせガラスCZなどの合わせガラスの上記濃色部部位において、平行光透過率の最小値が30%以下かつ全光線透過率の最小値が75%以上であることが好ましく、平行光透過率の最小値が20%以下かつ全光線透過率の最小値が65%以上であることが好ましく、平行光透過率の最小値が5%以下かつ全光線透過率の最小値が40%以上であることが好ましい。上記合わせガラスC、上記合わせガラスCA、上記合わせガラスCB、上記合わせガラスCC、上記合わせガラスCD、上記合わせガラスCE、上記合わせガラスCF、上記合わせガラスCX、上記合わせガラスCY及び上記合わせガラスCZなどの合わせガラスの上記濃色部部位において、平行光透過率の最小値が0.5%以上である場合には全光線透過率の最小値が45%以上であることが好ましい。上記濃色部部位における平行光透過率の最小値と全光線透過率の最小値とが上述した関係を満足すると、合わせガラスにおいて、採光性を高く保ちつつ、プライバシー保護性をより一層高くすることができる。
 上記中間膜の厚み(T)(図1~12参照)の平均値は特に限定されない。実用面の観点からは、上記中間膜の厚み(T)の平均値は、好ましくは0.1mm以上、より好ましくは0.25mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記中間膜の厚み(T)の平均値が上記下限以上であると、合わせガラスの耐貫通性が高くなる。
 上記第2の樹脂層の両側の表面上に第1の樹脂層が配置されている合わせガラス用中間膜(以下、第1の合わせガラス用中間膜と記載することがある)に関しては、上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第1の樹脂層の合計の厚み(T1+T2)(図1~6,11参照)の最大値及び最小値は特に限定されない。実用面の観点からは、上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第1の樹脂層の合計の厚み(T1+T2)の最小値は、好ましくは、0.08mm以上、より好ましくは、0.12mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第1の樹脂層の合計の厚み(T1+T2)の最大値は、好ましくは0.1mm以上、より好ましくは0.25mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記第1の樹脂層の合計の厚み(T1+T2)の最小値及び最大値が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記第1の樹脂層の合計の厚み(T1+T2)の最小値及び最大値が上記上限以下であると、採光性により一層優れた合わせガラスが得られる。なお、上記濃色部部位及び上記グラデーション部部位では、上記第1の樹脂層の合計の厚み(T1+T2)の最小値及び最大値は、両側の2つの第1の樹脂層の合計の厚みを示す。図1,2,4,5,6,11に示す中間膜1、中間膜1A、中間膜1C、中間膜1D、中間膜1E、及び中間膜51では、上記透明部部位では、上記第1の樹脂層の合計の厚み(T1+T2)の最小値及び最大値は、透明部自体の厚みを示す。上記第1の樹脂層の合計の厚み(T1+T2)の最小値は一般に、濃色部にあるか、又はグラデーション部の濃色部側の端部にある。上記第1の樹脂層の合計の厚み(T1+T2)の最大値は一般に、透明部にあるか、又はグラデーション部の透明部側の端部にある。
 なお、上記濃色部部位及び上記グラデーション部部位における上記第2の樹脂層の両側の表面上に位置する2つの第1の樹脂層について、一方の上記第1の樹脂層の厚み(T1)と、他方の上記第1の樹脂層の厚み(T2)とは同一であってもよく、異なっていてもよい。
 上記濃色部及び上記グラデーション部の全体における上記第2の樹脂層の厚み(T3)(図1~6,11参照)の最大値は特に限定されない。上記濃色部及び上記グラデーション部の全体における上記第2の樹脂層の厚み(T3)の最大値は好ましくは0.001mm以上、好ましくは0.8mm以下、より好ましくは0.3mm以下である。上記第2の樹脂層の厚みの最大値が上記下限以上であると、上記合わせガラスの濃色部部位における平行光透過率がより一層低くなり、プライバシー保護性により一層優れた合わせガラスが得られる。上記第2の樹脂層の厚みの最大値が上記上限以下であると、採光性により一層優れた合わせガラスが得られる。上記第2の樹脂層の厚み(T3)の最大値は一般に、濃色部にあるか、又はグラデーション部の濃色部側の端部にある。
 上記濃色部における上記第1の樹脂層の合計の厚み(T1+T2)は、ほぼ一定であることが好ましい。上記濃色部における上記第1の樹脂層の合計の厚み(T1+T2)の最大値の上記濃色部における上記第1の樹脂層の合計の厚み(T1+T2)の最小値に対する比は、1以上、好ましくは5以下、より好ましくは2以下である。
 本発明に係る合わせガラス用中間膜が第3の樹脂層を備える場合、上記第3の樹脂層の厚み(T7)(図6参照)は特に限定されない。上記第3の樹脂層の厚み(T7)は、好ましくは0.03mm以上、より好ましくは0.05mm以上、好ましくは0.3mm以下、より好ましくは0.15mm以下である。上記第3の樹脂層の厚みが上記下限以上であると、合わせガラスの耐貫通性及び遮音性がより一層高くなる。上記第3の樹脂層の厚みが上記上限以下であると、採光性により一層優れた合わせガラスが得られる。なお、上記第3の樹脂層が複数ある場合に、上記第3の樹脂層の厚み(T7)は、上記第3の樹脂層の合計の厚みを示す。
 上記第2の樹脂層の片側の表面上のみに第1の樹脂層が配置されており、グラデーション部における第2の樹脂層の厚みが、濃色部側から透明部側に向かって連続的に減少している合わせガラス用中間膜(以下、第2の合わせガラス用中間膜と記載することがある)に関しては、上記第1の樹脂層の厚み(T8)(図7参照)の最大値及び最小値は特に限定されない。実用面の観点からは、上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第1の樹脂層の厚み(T8)の最小値は、好ましくは、0.08mm以上、より好ましくは、0.12mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第1の樹脂層の厚み(T8)の最大値は、好ましくは0.1mm以上、より好ましくは0.25mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記第1の樹脂層の厚み(T8)の最小値及び最大値が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記第1の樹脂層の厚み(T8)の最小値及び最大値が上記上限以下であると、採光性により一層優れた合わせガラスが得られる。上記第1の樹脂層の厚み(T8)の最小値は一般に、濃色部にあるか、又はグラデーション部の濃色部側の端部にある。上記第1の樹脂層の厚み(T8)の最大値は一般に、透明部にあるか、又はグラデーション部の透明部側の端部にある。
 上記濃色部及び上記グラデーション部の全体における上記第2の樹脂層の厚み(T9)(図7参照)の最大値は特に限定されない。上記濃色部及び上記グラデーション部の全体における上記第2の樹脂層の厚み(T9)の最大値は好ましくは0.001mm以上、好ましくは0.8mm以下、より好ましくは0.3mm以下である。上記第2の樹脂層の厚みの最大値が上記下限以上であると、上記合わせガラスの濃色部部位における平行光透過率がより一層低くなり、プライバシー保護性により一層優れた合わせガラスが得られる。上記第2の樹脂層の厚みの最大値が上記上限以下であると、採光性により一層優れた合わせガラスが得られる。上記第2の樹脂層の厚み(T9)の最大値は一般に、濃色部にあるか、又はグラデーション部の濃色部側の端部にある。
 上記濃色部における上記第1の樹脂層の厚み(T8)は、ほぼ一定であることが好ましい。上記濃色部における上記第1の樹脂層の厚み(T8)の最大値の上記濃色部における上記第1の樹脂層の厚み(T8)の最小値に対する比は、1以上、好ましくは5以下、より好ましくは2以下である。
 上記第1の樹脂層の両側の表面上に第2の樹脂層が配置されている合わせガラス用中間膜(以下、第3の合わせガラス用中間膜と記載することがある)に関しては、上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第2の樹脂層の合計の厚み(T4+T5)(図8,9,12参照)の最大値及び最小値は特に限定されない。実用面の観点からは、上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第2の樹脂層の合計の厚み(T4+T5)の最小値は、好ましくは、0.05mm以上、より好ましくは、0.1mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第2の樹脂層の合計の厚み(T4+T5)の最大値は、好ましくは0.3mm以上、より好ましくは0.45mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記第2の樹脂層の合計の厚み(T4+T5)の最小値及び最大値が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記第2の樹脂層の合計の厚み(T4+T5)の最小値及び最大値が上記上限以下であると、採光性により一層優れた合わせガラスが得られる。なお、上記透明部部位及び上記グラデーション部部位では、上記第2の樹脂層の合計の厚み(T4+T5)の最小値及び最大値は、両側の2つの第2の樹脂層の合計の厚みを示す。図8,9,12に示す中間膜1X,1Y及び51Xでは、上記濃色部部位では、上記第2の樹脂層の合計の厚み(T4+T5)の最小値及び最大値は、濃色部部位自体の厚みを示す。上記第2の樹脂層の合計の厚み(T4+T5)の最大値は一般に、濃色部にあるか、又はグラデーション部の濃色部側の端部にある。上記第2の樹脂層の合計の厚み(T4+T5)の最小値は一般に、透明部にあるか、又はグラデーション部の透明部側の端部にある。
 なお、上記透明部部位及び上記グラデーション部部位における上記第1の樹脂層の両側の表面上に位置する2つの第2の樹脂層について、一方の上記第2の樹脂層の厚み(T4)と、他方の上記第2の樹脂層の厚み(T5)とは同一であってもよく、異なっていてもよい。
 上記透明部及び上記グラデーション部の全体における上記第1の樹脂層の厚み(T6)(図8,9,12参照)の最大値は特に限定されない。上記透明部及び上記グラデーション部の全体における上記第1の樹脂層の厚み(T6)の最大値は好ましくは0.2mm以上、より好ましくは0.4mm以上、好ましくは0.75mm以下、より好ましくは0.58mm以下である。上記第1の樹脂層の厚みの最大値が上記下限以上であると、上記合わせガラスの透明部部位における平行光透過率がより一層高くなり、採光性により一層優れた合わせガラスが得られる。上記第1の樹脂層の厚みの最大値が上記上限以下であると、プライバシー保護性により一層優れた合わせガラスが得られる。上記第1の樹脂層の厚み(T6)の最大値は一般に、透明部にあるか、又はグラデーション部の透明部側の端部にある。
 上記透明部における上記第1の樹脂層の厚み(T6)は、ほぼ一定であることが好ましい。上記透明部における上記第1の樹脂層の厚み(T6)の最大値の上記透明部における上記第1の樹脂層の厚み(T6)の最小値に対する比は、1以上、好ましくは5以下、より好ましくは2以下である。
 上記第1の樹脂層の片側の表面上のみに第2の樹脂層が配置されており、グラデーション部における第1の樹脂層の厚みが、濃色部側から透明部側に向かって連続的に増加している合わせガラス用中間膜(以下、第4の合わせガラス用中間膜と記載することがある)に関しては、上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第2の樹脂層の厚み(T10)(図10参照)の最大値及び最小値は特に限定されない。実用面の観点からは、上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第2の樹脂層の厚み(T10)の最小値は、好ましくは、0.08mm以上、より好ましくは、0.12mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記濃色部部位、上記グラデーション部部位及び上記透明部部位の全体において、上記第2の樹脂層の厚み(T10)の最大値は、好ましくは0.1mm以上、より好ましくは0.25mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。上記第2の樹脂層の厚み(T10)の最小値及び最大値が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記第2の樹脂層の厚み(T10)の最小値及び最大値が上記上限以下であると、採光性により一層優れた合わせガラスが得られる。上記第2の樹脂層の厚み(T10)の最大値は一般に、濃色部にあるか、又はグラデーション部の濃色部側の端部にある。上記第2の樹脂層の厚み(T10)の最小値は一般に、透明部にあるか、又はグラデーション部の透明部側の端部にある。
 上記透明部及び上記グラデーション部の全体における上記第1の樹脂層の厚み(T11)(図10参照)の最大値は特に限定されない。上記透明部及び上記グラデーション部の全体における上記第1の樹脂層の厚み(T11)の最大値は好ましくは0.001mm以上、好ましくは0.8mm以下、より好ましくは0.3mm以下である。上記第1の樹脂層の厚みの最大値が上記下限以上であると、上記合わせガラスの透明部部位における平行光透過率がより一層高くなり、採光性により一層優れた合わせガラスが得られる。上記第1の樹脂層の厚みの最大値が上記上限以下であると、プライバシー保護性により一層優れた合わせガラスが得られる。上記第1の樹脂層の厚み(T11)の最大値は一般に、透明部にあるか、又はグラデーション部の透明部側の端部にある。
 上記透明部における上記第1の樹脂層の厚み(T11)は、ほぼ一定であることが好ましい。上記透明部における上記第1の樹脂層の厚み(T11)の最大値の上記透明部における上記第1の樹脂層の厚み(T11)の最小値に対する比は、1以上、好ましくは5以下、より好ましくは2以下である。
 なお、上記中間膜及び各層の厚みは、以下のようにして測定される。
 鋭利なレザー刃で、上記濃色部と上記グラデーション部と上記透明部との積層方向における上記濃色部と上記グラデーション部と上記透明部との断面(図1~12に示す断面)が露出するように、上記中間膜を切断する。その後、上記中間膜の露出した断面をデジタルマイクロスコープ(OLYMPUS社製「DSX500」)で観察して、マイクロゲージにより上記中間膜及び各層の厚みを測定する。
 上記濃色部の長さ(L1)(図1~12参照)は、好ましくは25mm以上、より好ましくは100mm以上、更に好ましくは200mm以上、特に好ましくは300mm以上、好ましくは2000mm以下、より好ましくは1500mm以下、更に好ましくは1000mm以下、特に好ましくは700mm以下、最も好ましくは500mm以下である。なお、濃色部が複数ある場合には、上記濃色部の長さ(L1)は、1つの濃色部当たりの長さを示す。
 上記グラデーション部の長さ(L2)(図1~12参照)は、好ましくは10mm以上、好ましくは1500mm以下、より好ましくは1000mm以下、更に好ましくは、500mm以下、最も好ましくは300mm以下である。なお、グラデーション部が複数ある場合には、上記グラデーション部の長さ(L2)は、1つのグラデーション部当たりの長さを示す。
 上記透明部の長さ(L3)(図1~12参照)は特に限定されず、中間膜及び合わせガラスの用途等に応じて適宜調整される。なお、透明部が複数ある場合には、上記透明部の長さ(L3)は、1つの透明部当たりの長さを示す。
 上記濃色部、上記グラデーション部及び上記透明部の長さ(L1,L2,L3)は、上記濃色部と上記グラデーション部と上記透明部とが並べられた方向における長さを意味する。
 以下、上記第1の樹脂層及び上記第2の樹脂層に用いられる各成分の詳細を説明する。
 (熱可塑性樹脂)
 上記第1の樹脂層と上記第2の樹脂層とはそれぞれ、熱可塑性樹脂を含有する。上記第3の樹脂層は熱可塑性樹脂を含有することが好ましい。上記第1の樹脂層中の熱可塑性樹脂、上記第2の樹脂層中の熱可塑性樹脂及び上記第3の樹脂層中の熱可塑性樹脂は特に限定されない。上記熱可塑性樹脂として、従来公知の熱可塑性樹脂を用いることができる。上記熱可塑性樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。上記第1の樹脂層中の熱可塑性樹脂と、上記第2の樹脂層中の熱可塑性樹脂と、上記第3の樹脂層中の熱可塑性樹脂とは、同一であってもよく、異なっていてもよい。
 上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレン-アクリル共重合体樹脂、ポリウレタン樹脂及びポリビニルアルコール樹脂等が挙げられる。これら以外の熱可塑性樹脂を用いてもよい。
 上記熱可塑性樹脂は、ポリビニルアセタール樹脂であることが好ましい。ポリビニルアセタール樹脂と可塑剤との併用により、合わせガラス部材に対する中間膜の接着力がより一層高くなる。
 上記ポリビニルアセタール樹脂は、例えば、ポリビニルアルコールをアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより得られる。上記ポリビニルアルコールのけん化度は、一般に80~99.8モル%の範囲内である。
 上記ポリビニルアルコールの平均重合度は、好ましくは200以上、より好ましくは500以上、好ましくは5000以下、より好ましくは3500以下、更に好ましくは3000以下である。上記平均重合度が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記平均重合度が上記上限以下であると、中間膜の成形が容易になる。また、上記ポリビニルアルコールの平均重合度を高くすることで、得られるポリビニルアセタール樹脂の複素粘度を高めることができ、第1の樹脂層又は第2の樹脂層の複素粘度を高めることができる。
 上記アルデヒドは特に限定されない。上記アルデヒドとして、一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、及びベンズアルデヒド等が挙げられる。なかでも、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドがより好ましく、n-ブチルアルデヒドが更に好ましい。上記アルデヒドの炭素数は3又は4であることが好ましく、4であることがより好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ポリビニルアセタール樹脂の水酸基の含有率(水酸基量)は、好ましくは10モル%以上、より好ましくは15モル%以上、更に好ましくは18モル%以上、好ましくは40モル%以下、より好ましくは35モル%以下である。上記水酸基の含有率が上記下限以上であると、中間膜の接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。また、上記ポリビニルアセタール樹脂の水酸基の含有率を高くすることで、ポリビニルアセタール樹脂の複素粘度を高めることができ、第1の樹脂層又は第2の樹脂層の複素粘度を高めることができる。
 上記ポリビニルアセタール樹脂の水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6726「ポリビニルアルコール試験方法」に準拠して又はASTM D1396-92に準拠して、測定することにより求めることができる。
 上記ポリビニルアセタール樹脂のアセチル化度(アセチル基量)は、好ましくは0.1モル%以上、より好ましくは0.3モル%以上、更に好ましくは0.5モル%以上、好ましくは30モル%以下、より好ましくは25モル%以下、更に好ましくは20モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、中間膜及び合わせガラスの耐湿性が高くなる。
 上記アセチル化度は、主鎖の全エチレン基量から、アセタール基が結合しているエチレン基量と、水酸基が結合しているエチレン基量とを差し引いた値を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセタール基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して又はASTM D1396-92に準拠して測定できる。
 上記ポリビニルアセタール樹脂のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは60モル%以上、より好ましくは63モル%以上、好ましくは85モル%以下、より好ましくは75モル%以下、更に好ましくは70モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。
 上記アセタール化度は、アセタール基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。
 上記アセタール化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法又はASTM D1396-92に準拠した方法により算出され得る。
 なお、上記水酸基の含有率(水酸基量)、アセタール化度(ブチラール化度)及びアセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出することが好ましい。ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合は、上記水酸基の含有率(水酸基量)、アセタール化度(ブチラール化度)及びアセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出することが好ましい。
 (可塑剤)
 上記第1の樹脂層と上記第2の樹脂層とはそれぞれ、可塑剤を含有する。上記第3の樹脂層は、可塑剤を含有することが好ましい。上記第1の樹脂層中の可塑剤、上記第2の樹脂層中の可塑剤及び上記第3の樹脂層中の可塑剤は特に限定されない。上記可塑剤として、従来公知の可塑剤を用いることができる。上記可塑剤は1種のみが用いられてもよく、2種以上が併用されてもよい。上記第1の樹脂層中の可塑剤と、上記第2の樹脂層中の可塑剤と、上記第3の樹脂層中の可塑剤とは、同一であってもよく、異なっていてもよい。
 上記可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、並びに有機リン酸可塑剤及び有機亜リン酸可塑剤などの有機リン酸可塑剤等が挙げられる。なかでも、有機エステル可塑剤が好ましい。上記可塑剤は液状可塑剤であることが好ましい。
 上記一塩基性有機酸エステルとしては、特に限定されず、例えば、グリコールと一塩基性有機酸との反応によって得られたグリコールエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸等が挙げられる。
 上記多塩基性有機酸エステルとしては、特に限定されず、例えば、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。
 上記有機エステル可塑剤としては、特に限定されず、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。これら以外の有機エステル可塑剤を用いてもよい。
 上記有機リン酸可塑剤としては、特に限定されず、例えば、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等が挙げられる。
 上記可塑剤は、下記式(1)で表されるジエステル可塑剤であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、R1及びR2はそれぞれ、炭素数5~10の有機基を表し、R3は、エチレン基、イソプロピレン基又はn-プロピレン基を表し、pは3~10の整数を表す。上記式(1)中のR1及びR2はそれぞれ、炭素数6~10の有機基であることが好ましい。
 上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)及びトリエチレングリコールジ-2-エチルブチレート(3GH)の内の少なくとも1種を含むことが好ましく、トリエチレングリコールジ-2-エチルヘキサノエートを含むことがより好ましい。
 上記可塑剤の含有量は特に限定されない。上記中間膜中の上記熱可塑性樹脂の全体100質量部に対して、上記中間膜中の上記可塑剤の全体の含有量は、好ましくは25質量部以上、より好ましくは30質量部以上、好ましくは60質量部以下、より好ましくは50質量部以下である。上記第1の樹脂層中の上記熱可塑性樹脂100質量部に対して、上記第1の樹脂層中の上記可塑剤の含有量は、好ましくは25質量部以上、より好ましくは30質量部以上、好ましくは60質量部以下、より好ましくは50質量部以下である。上記第2の樹脂層中の上記熱可塑性樹脂100質量部に対して、上記第2の樹脂層中の上記可塑剤の含有量は、好ましくは25質量部以上、より好ましくは30質量部以上、好ましくは60質量部以下、より好ましくは50質量部以下である。上記可塑剤の含有量が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記可塑剤の含有量が上記上限以下であると、中間膜の透明性がより一層高くなる。
 上記第3の樹脂層中の上記熱可塑性樹脂100質量部に対して、上記第3の樹脂層中の上記可塑剤の含有量は、好ましくは40質量部以上、より好ましくは45質量部以上、好ましくは80質量部以下、より好ましくは60質量部以下である。上記可塑剤の含有量が上記下限以上であると、合わせガラスの耐貫通性及び遮音性がより一層高くなる。上記可塑剤の含有量が上記上限以下であると、中間膜の透明性がより一層高くなる。
 また、上記第1の樹脂層中の可塑剤の含有量又は上記第2の樹脂層中の可塑剤の含有量を増やすことで、それぞれ第1の樹脂層又は第2の樹脂層の複素粘度を低下させることができる。
 上記第2の樹脂層の200℃における複素粘度を、上記第1の樹脂層の200℃における複素粘度の0.7倍以上、2倍以下とするためには、上記第1の樹脂層の可塑剤の含有量と、上記第2の樹脂層の可塑剤の含有量が以下の関係を満足することが好ましい。
 上記第2の樹脂層の200℃における複素粘度を、上記第1の樹脂層の200℃における複素粘度の0.7倍以上、2倍以下とするために、上記第1の樹脂層中の上記熱可塑性樹脂100質量部に対して、上記第1の樹脂層中の上記可塑剤の含有量が35質量部以上、45質量部以下であり、且つ、上記第2の樹脂層中の上記熱可塑性樹脂100質量部に対して、上記第2の樹脂層中の上記可塑剤の含有量が30質量部以上、50質量部以下であることが好ましい。特に、第1の樹脂層と第2の樹脂層に用いられる熱可塑性樹脂が同一である場合は、上記第1の樹脂層中の上記熱可塑性樹脂100質量部に対して、上記第1の樹脂層中の上記可塑剤の含有量が35質量部以上、41質量部以下であり、且つ、上記第2の樹脂層中の上記熱可塑性樹脂100質量部に対して、上記第2の樹脂層中の上記可塑剤の含有量が31質量部以上、44質量部以下であることが好ましい。また、上記第2の樹脂層の200℃における複素粘度を、上記第1の樹脂層の200℃における複素粘度の0.7倍以上、2倍以下とするために、上記第1の樹脂層中の上記熱可塑性樹脂100質量部に対する上記第1の樹脂層中の上記可塑剤の含有量と、上記第2の樹脂層中の上記熱可塑性樹脂100質量部に対する上記第2の樹脂層中の上記可塑剤の含有量とが、同一であるか、又は、差の絶対値が0.01質量部以上40質量部以下であることが好ましい。
 (無機粒子)
 上記第2の樹脂層は無機粒子を含む。上記無機粒子は特に限定されない。上記無機粒子として、従来公知の無機粒子を用いることができる。上記無機粒子は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記無機粒子としては、例えば、炭酸カルシウム粒子、アルミナ粒子、カオリンクレー粒子、珪酸カルシウム粒子、酸化マグネシウム粒子、水酸化マグネシウム粒子、水酸化アルミニウム粒子、炭酸マグネシウム粒子、タルク粒子、長石粉粒子、マイカ粒子、バライト粒子、炭酸バリウム粒子、酸化チタン粒子、シリカ粒子及びガラスビ-ズ等が挙げられる。
 上記無機粒子は、炭酸カルシウム粒子、酸化チタン粒子及びシリカ粒子からなる群から選択された少なくとも1種を含むことが好ましく、炭酸カルシウム粒子を含むことがより好ましい。これらの好ましい無機粒子の使用により、光が透過した際に、外観むらが抑えられ、外観意匠性により一層優れた合わせガラスが得られる。
 上記無機粒子の平均粒子径は好ましくは1μm以上、好ましくは100μm以下、より好ましくは50μm以下である。上記平均粒子径は、重量平均粒子径を示す。上記平均粒子径は、光散乱測定装置を用いて、Arレーザーを光源として動的光散乱法により測定できる。上記光散乱測定装置としては、例えば、大塚電子社製「DLS-6000AL」等が挙げられる。
 上記合わせガラスC、上記合わせガラスCA、上記合わせガラスCB、上記合わせガラスCC、上記合わせガラスCD、上記合わせガラスCE、上記合わせガラスCF、上記合わせガラスCX、上記合わせガラスCY及び上記合わせガラスCZなどの合わせガラスの上記濃色部部位における平行光透過率が30%以下であり、上記合わせガラスC、上記合わせガラスCA、上記合わせガラスCB、上記合わせガラスCC、上記合わせガラスCD、上記合わせガラスCE、上記合わせガラスCF、上記合わせガラスCX、上記合わせガラスCY及び上記合わせガラスCZなどの合わせガラスの上記グラデーション部部位における平行光透過率が上記濃色部側から上記透明部側に向かって連続的に増加するように、上記無機粒子の含有量は適宜調整されることが好ましい。上記第2の樹脂層の全体100質量%中、上記無機粒子の含有量は好ましくは0.3質量%以上、より好ましくは0.5質量%以上、更に好ましくは2質量%以上、特に好ましくは3質量%以上、好ましくは25質量%以下、より好ましくは5質量%以下である。上記無機粒子の含有量が上記下限以上及び上記上限以下であると、適度に着色した中間膜が得られ、上記合わせガラスの上記平行光透過率の値を好適な範囲に容易に制御できる。特に上記無機粒子の含有量が上記下限以上であれば、プライバシー保護性により一層優れた合わせガラス用中間膜及び合わせガラスが得られる。また、光が透過した際に、外観むらがより一層生じ難く、かつ外観意匠性により一層優れた合わせガラスが得られる。また、上記第2の樹脂層中の無機粒子の含有量を増やすことで、第2の樹脂層の複素粘度を高めることができる。
 上記第1の合わせガラス用中間膜及び上記第2の合わせガラス用中間膜に関しては、上記第2の樹脂層の最も厚い部位における無機粒子の面密度は、好ましくは3g/m以上、より好ましくは15g/m以上、好ましくは70g/m以下、より好ましくは25g/m以下である。上記第1の合わせガラス用中間膜及び上記第2の合わせガラス用中間膜に関しては、上記第2の樹脂層の最も厚い部位における無機粒子の面密度の測定方法としては、以下に示す方法が挙げられる。
 第2の樹脂層の最も厚い部位が得られる試料の中心に位置するように中間膜を厚み方向に切断して、平面形状が長方形である試料を得る。得られる試料において、短辺の長さは1cm、厚さは中間膜の厚さ、長辺の長さは試料の質量が1gとなる長さとする。得られる試料の長手方向は、第2の樹脂層の最も厚い部位と、該第2の樹脂層の最も厚い部位に最も近く位置する透明部部位とを結ぶ方向と直交する方向とする。但し、第2の樹脂層の最も厚い部位が第2の樹脂層の端部又は端部近傍にあることで、第2の樹脂層の最も厚い部位が得られる試料の長手方向の中心に位置するように試料を得ることができない場合には、試料の長手方向の一端を第2の樹脂層の端部に揃えて、試料を得る。第2の樹脂層の最も厚い部位が第2の樹脂層の端部又は端部近傍にあることで、第2の樹脂層の最も厚い部位が得られる試料の短手方向の中心に位置するように試料を得ることができない場合には、試料の短手方向の一端を第2の樹脂層の端部に揃えて、試料を得る。
 上記第3の合わせガラス用中間膜に関しては、上記第2の樹脂層の合計の厚みが最も厚い部位における無機粒子の面密度は、好ましくは2g/m以上、より好ましくは4g/m以上、好ましくは23g/m以下、より好ましくは9g/m以下である。上記第3の合わせガラス用中間膜に関しては、上記第2の樹脂層の合計の厚みが最も厚い部位における無機粒子の面密度の測定方法としては、以下に示す方法が挙げられる。
 第2の樹脂層の合計の厚みが最も厚い部位が得られる試料の中心に位置するように中間膜を厚み方向に切断して、平面形状が長方形である試料を得る。得られる試料において、短辺の長さは1cm、厚さは中間膜の厚さ、長辺の長さは試料の質量が1gとなる長さとする。得られる試料の長手方向は、第2の樹脂層の合計の厚みが最も厚い部位と、該第2の樹脂層の合計の厚みが最も厚い部位に最も近く位置する透明部部位とを結ぶ方向と直交する方向とする。但し、第2の樹脂層の合計の厚みが最も厚い部位が第2の樹脂層の端部又は端部近傍にあることで、第2の樹脂層の合計の厚みが最も厚い部位が得られる試料の長手方向の中心に位置するように試料を得ることができない場合には、試料の長手方向の一端を第2の樹脂層の端部に揃えて、試料を得る。第2の樹脂層の合計の厚みが最も厚い部位が第2の樹脂層の端部又は端部近傍にあることで、第2の樹脂層の合計の厚みが最も厚い部位が得られる試料の短手方向の中心に位置するように試料を得ることができない場合には、試料の短手方向の一端を第2の樹脂層の端部に揃えて、試料を得る。
 上記第3の合わせガラス用中間膜に関しては、上記第2の樹脂層の合計の厚みが最も薄い部位における無機粒子の面密度は、好ましくは0.5g/m以上、より好ましくは1.5g/m以上、好ましくは2.5g/m以下、より好ましくは2.0g/m以下である。上記第3の合わせガラス用中間膜に関しては、上記第2の樹脂層の合計の厚みが最も薄い部位における無機粒子の面密度の測定方法としては、以下に示す方法が挙げられる。
 第2の樹脂層の合計の厚みが最も薄い部位が得られる試料の中心に位置するように中間膜を厚み方向に切断して、平面形状が長方形である試料を得る。得られる試料において、短辺の長さは1cm、厚さは中間膜の厚さ、長辺の長さは試料の質量が1gとなる長さとする。得られる試料の長手方向は、第2の樹脂層の合計の厚みが最も薄い部位と、該第2の樹脂層の合計の厚みが最も薄い部位に最も近く位置する濃色部部位とを結ぶ方向と直交する方向とする。但し、第2の樹脂層の合計の厚みが最も薄い部位が第2の樹脂層の端部又は端部近傍にあることで、第2の樹脂層の合計の厚みが最も薄い部位が得られる試料の長手方向の中心に位置するように試料を得ることができない場合には、試料の長手方向の一端を第2の樹脂層の端部に揃えて、試料を得る。第2の樹脂層の合計の厚みが最も薄い部位が第2の樹脂層の端部又は端部近傍にあることで、第2の樹脂層の合計の厚みが最も厚い部位が得られる試料の短手方向の中心に位置するように試料を得ることができない場合には、試料の短手方向の一端を第2の樹脂層の端部に揃えて、試料を得る。
 得られた試料1gに硝酸質量70%水溶液18mLを添加し、マイクロ波試料前処理装置(マイルストーンゼネラル社製「ETHOS One」)を用いて、200℃で30分保持し、加熱分解させた後、25℃条件下で比抵抗18.2MΩ・cmの超純水を用いて定容し試験液を得る。次に、高周波誘導結合プラズマ発光分析装置(島津製作所社製「ICPE-9000」)により、試験液中の無機粒子を構成する金属元素又は珪素の定量分析を行い、得られた金属元素又は珪素の含有量から、無機粒子の面密度を算出する。
 上記第1の樹脂層は、無機粒子を含有しないことが好ましい。但し、上記合わせガラスCの平行光透過率の関係を満足すれば、上記第1の樹脂層は無機粒子を含有していてもよい。上記第1の樹脂層100質量%中の無機粒子の含有量は上記第2の樹脂層100質量%中の無機粒子の含有量よりも少ないことが好ましい。上記第1の樹脂層100質量%中の無機粒子の含有量は好ましくは3質量%未満、より好ましくは2質量%未満、更に好ましくは0.5質量%未満、特に好ましくは0.3質量%未満である。上記第1の樹脂層100質量%中の無機粒子の含有量が少ないほど、中間膜の表面側における無機粒子の存在量が少なくなるため、中間膜と合わせガラス部材とがより一層強固に接着する。
 (他の成分)
 上記中間膜、上記第1の樹脂層及び上記第2の樹脂層はそれぞれ、必要に応じて、遮熱粒子、遮光剤、着色剤、紫外線吸収剤、酸化防止剤、接着力調整剤、光安定剤、難燃剤、帯電防止剤、耐湿剤、熱線反射剤及び熱線吸収剤等の添加剤を含んでいてもよい。上記添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記遮熱粒子とは、赤外線を吸収可能である粒子を意味する。上記遮熱粒子の具体例としては、アルミニウムドープ酸化錫粒子、インジウムドープ酸化錫粒子、アンチモンドープ酸化錫粒子(ATO粒子)、ガリウムドープ酸化亜鉛粒子(GZO粒子)、インジウムドープ酸化亜鉛粒子(IZO粒子)、アルミニウムドープ酸化亜鉛粒子(AZO粒子)、ニオブドープ酸化チタン粒子、酸化タングステン粒子、錫ドープ酸化インジウム粒子(ITO粒子)、錫ドープ酸化亜鉛粒子及び珪素ドープ酸化亜鉛粒子等の金属酸化物粒子、並びに六ホウ化ランタン(LaB)粒子等が挙げられる。また、上記遮熱粒子として、アンチモン酸亜鉛、6ホウ化セリウム、金粉、銀粉、白金粉及びアルミニウム粉等を用いてもよい。
 上記遮光剤としては、カーボンブラック及び赤色酸化鉄等が挙げられる。
 上記着色剤としては、顔料及び染料等が挙げられる。上記着色剤は、顔料であることが好ましい。上記顔料としては、黒色顔料カーボンブラックと、赤色顔料(C.I.Pigment red)と、青色顔料(C.I.Pigment blue)と、黄色顔料(C.I.Pigment yellow)とが混合された暗赤褐色の混合顔料等が挙げられる。
 上記紫外線吸収剤としては、マロン酸エステル化合物、シュウ酸アニリド化合物、ベンゾトリアゾール化合物、ベンゾフェノン化合物、トリアジン化合物、ベンゾエート化合物及びヒンダードアミン化合物等が挙げられる。なかでも、ベンゾトリアゾール化合物が好ましい。
 上記酸化防止剤としては、t-ブチルヒドロキシトルエン、及びテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン等が挙げられる。
 上記接着力調整剤としては、有機酸及び無機酸のアルカリ金属塩、有機酸及び無機酸のアルカリ土類金属塩、シランカップリング剤並びに変性シリコーンオイル等が挙げられる。
 (合わせガラス用中間膜の他の詳細)
 本発明に係る合わせガラス用中間膜の製造方法は特に限定されない。上記中間膜の製造方法として、従来公知の方法を採用可能である。上記中間膜の製造方法としては、上述した各成分を混練し、中間膜を成形する製造方法等が挙げられる。連続的な生産に適しているため、押出成形する製造方法が好ましい。なかでも、上記第1の合わせガラス用中間膜を製造する場合、上記第2の樹脂層に含有される各成分(第2の樹脂層を形成するための第2の樹脂組成物)を主押出機に、上記第1の樹脂層を形成するための各成分(第1の樹脂層を形成するための第1の樹脂組成物)を副押出機に供給し、主押出機と副押出機との先端に多層用フィードブロックを取り付けて共押出する方法が好ましい。また、上記第2の合わせガラス用中間膜を製造する場合、上記第1の樹脂層に含有される各成分(第1の樹脂層を形成するための第1の樹脂組成物)を主押出機に、上記第2の樹脂層を形成するための各成分(第2の樹脂層を形成するための第2の樹脂組成物)を副押出機に供給し、主押出機と副押出機との先端に多層用フィードブロックを取り付けて共押出する方法が好ましい。上記多層用フィードブロックを用いた製造方法によって、中間膜の作製時に起こり得る色すじの発生がより一層抑えられる。
 また、上記中間膜を得る際に、無機粒子を必要に応じて分散剤等と共に、可塑剤に分散させた分散液を用意し、該分散液を他の成分(好ましくは熱可塑性樹脂)と混練し、中間膜を成形することが好ましい。このような分散液を用いることで、中間膜中での無機粒子の分散性が良好になり、無機粒子の添加効果が中間膜中でより一層均一に発現する。
 上記混練の方法は特に限定されない。この方法として、例えば、押出機、プラストグラフ、ニーダー、バンバリーミキサー又はカレンダーロール等を用いる方法が挙げられる。なかでも、連続的な生産に適しているため、押出機を用いる方法が好適であり、二軸押出機を用いる方法がより好適である。
 (合わせガラス)
 図13に、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を断面図で示す。
 図13に示す合わせガラス21は、第1の合わせガラス部材22と、第2の合わせガラス部材23と、第1の合わせガラス部材22と第2の合わせガラス部材23との間に配置された中間膜1とを備える。中間膜1は、第1の合わせガラス部材22と第2の合わせガラス部材23との間に挟み込まれている。中間膜1の第1の表面(一方の表面)に、第1の合わせガラス部材22が積層されている。中間膜1の第1の表面とは反対の第2の表面(他方の表面)に、第2の合わせガラス部材23が積層されている。第1の樹脂層16の外側の表面に、第1の合わせガラス部材22が積層されている。第1の樹脂層16の外側の表面に、第2の合わせガラス部材23が積層されている。
 上記第1,第2の合わせガラス部材としては、ガラス板及びPET(ポリエチレンテレフタレート)フィルム等が挙げられる。上記合わせガラスには、2枚のガラス板の間に中間膜が挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に中間膜が挟み込まれている合わせガラスも含まれる。合わせガラスは、ガラス板を備えた積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。上記第1,第2の合わせガラス部材はそれぞれ、ガラス板又はPETフィルムであり、上記第1,第2の合わせガラス部材の内の少なくとも一方がガラス板であることが好ましい。
 上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス及びクリアガラス等が挙げられる。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。
 上記合わせガラス部材の厚みは、特に限定されないが、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。また、合わせガラス部材がガラス板である場合に、該ガラス板の厚みは、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。合わせガラス部材がPETフィルムである場合に、該PETフィルムの厚みは、好ましくは0.03mm以上、好ましくは0.5mm以下である。
 上記合わせガラスの製造方法は特に限定されない。例えば、上記第1,第2の合わせガラス部材の間に、中間膜を挟んで、押圧ロールに通したり、又はゴムバッグに入れて減圧吸引したりして、第1の合わせガラス部材と中間膜との間及び第2の合わせガラス部材と中間膜との間に残留する空気を脱気する。その後、約70~110℃で予備接着して積層体を得る。次に、積層体をオートクレーブに入れたり、又はプレスしたりして、約120~150℃及び1~1.5MPaの圧力で圧着する。このようにして、合わせガラスを得ることができる。
 上記中間膜及び上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。上記中間膜は、建築用又は車両用の中間膜であることが好ましい。上記合わせガラスは、建築用又は車両用の合わせガラスであることが好ましい。
 以下、実施例を掲げて本発明を更に詳しく説明する。本発明は以下の実施例のみに限定されない。
 (実施例1)
 (第1の樹脂層A(第1の表面層)及び第1の樹脂層B(第2の表面層)を形成するための第1の樹脂組成物の作製)
 ポリビニルアルコール(平均重合度1700)をn-ブチルアルデヒドでアセタール化することにより得られたポリビニルブチラールA(アセチル化度1モル%、ブチラール化度69モル%、水酸基の含有率30モル%)を用意した。このポリビニルブチラールA100質量部に対して、トリエチレングリコール-ジ-2-エチルヘキサノエート(可塑剤、3GO)39質量部を添加し、ミキシングロールで充分に混練し、第1の樹脂組成物を得た。
 (第2の樹脂層(中間層)を形成するための第2の樹脂組成物の作製)
 上記ポリビニルブチラールA100質量部に対して、トリエチレングリコール-ジ-2-エチルヘキサノエート(可塑剤、3GO)40質量部と、得られる樹脂組成物100質量%中で5.9質量%となる量の炭酸カルシウム粒子(無機粒子、重量平均粒子径5.0μm)とを添加し、ミキシングロールで充分に混練し、第2の樹脂組成物を得た。
 (合わせガラス用中間膜の作製)
 主押出機に上記第2の樹脂組成物を供給した。また、副押出機に上記第1の樹脂組成物を供給した。主押出機と副押出機との先端に多層用フィードブロックを取り付けて共押出することにより、濃色部及びグラデーション部において2つの第1の樹脂層と2つの第1の樹脂層間に埋め込まれた第2の樹脂層を有し、かつ透明部において第1の樹脂層を有する中間膜を得た。なお、得られた中間膜の濃色部及びグラデーション部の境界は、後述の合わせガラスを作製し、平行光透過率を測定した際に、平行光透過率が30%である部位を境界として、平行光透過率が30%以下の領域を濃色部、平行光透過率が30%を超え、60%未満である領域をグラデーション部と判断した。得られた中間膜の各層の厚みを下記の表1に示した。
 なお、中間膜の各層の厚みは、鋭利なレザー刃で、上記濃色部と上記グラデーション部と上記透明部との積層方向における上記濃色部と上記グラデーション部と上記透明部との断面が露出するように、上記中間膜を切断した後、上記中間膜の露出した断面をデジタルマイクロスコープ(OLYMPUS社製「DSX500」)で観察して、マイクロゲージにより上記中間膜の各層の厚みを測定した。また、上記中間膜の露出した断面の形状は、図1に対応する形状(図1と類似の形状)であった。
 また、上記中間膜の上記第2の樹脂層の最も厚い部位における無機粒子の面密度は、以下のようにして測定した。
 第2の樹脂層の最も厚い部位が得られる試料の中心に位置するように中間膜を厚み方向に切断して、平面形状が長方形である試料を得た。得られる試料において、短辺の長さは1cm、厚さは中間膜の厚さ、長辺の長さは試料の質量が1gとなる長さとした。得られる試料の長手方向は、第2の樹脂層の最も厚い部位と、該第2の樹脂層の最も厚い部位に最も近く位置する透明部部位とを結ぶ方向と直交する方向とした。
 得られた試料に硝酸70質量%水溶液18mLを添加し、マイクロ波試料前処理装置(マイルストーンゼネラル社製「ETHOS One」)を用いて、200℃で30分保持し、加熱分解させた後、25℃条件下で比抵抗18.2MΩ・cmの超純水を用いて定容し試験液を得た。次に、高周波誘導結合プラズマ発光分析装置(島津製作所社製「ICPE-9000」)により、試験液中のカルシウムの定量分析を行い、得られたカルシウムの含有量から、炭酸カルシウム粒子の面密度を算出した。
 (合わせガラスの作製)
 JIS R3202(1996)に準拠した2枚のクリアガラス(縦100cm×横30cm×厚み2.5mm)を用意した。得られた上記中間膜を、その両端から2枚のクリアガラスで挟み込み、積層体を得た。この積層体をゴムバッグ内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着した。オートクレーブ中で135℃及び圧力1.2MPaの条件で、仮圧着された積層体を20分間圧着し、合わせガラスを得た。 
 (実施例2~10)
 中間膜の作製時に、炭酸カルシウム粒子及び可塑剤の含有量を下記の表1に示すように設定したこと、並びに得られる中間膜の各層の長さ及び厚みを下記の表1に示すように設定したこと以外は、実施例1と同様にして、中間膜及び合わせガラスを作製した。なお、得られた中間膜の濃色部及びグラデーション部の境界は、後述の合わせガラスを作製し、平行光透過率を測定した際に、平行光透過率が30%である部位を境界として、平行光透過率が30%以下の領域を濃色部、平行光透過率が30%を超え、60%未満である領域をグラデーション部と判断した。
 (比較例1)
 第2の樹脂層の作製時に、ポリビニルブチラールAを、ポリビニルアルコール(平均重合度2300)をn-ブチルアルデヒドでアセタール化することにより得られたポリビニルブチラールB(アセチル化度12モル%、ブチラール化度65モル%、水酸基の含有率23モル%)に変更し、第2の樹脂層が含有する可塑剤の含有量を60質量部に変更したこと、並びに得られる中間膜の各層の長さ及び厚みを下記の表1に示すように設定したこと以外は実施例1と同様にして、中間膜及び合わせガラスを作製した。
 (比較例2,3)
 中間膜の作製時に、炭酸カルシウム粒子及び可塑剤の含有量を下記の表1に示すように設定したこと、得られる中間膜の各層の長さ及び厚みを下記の表1に示すように設定したこと、並びに第2の樹脂層に用いられるポリビニルブチラール樹脂を下記の表1に示すように設定したこと以外は、実施例1と同様にして、中間膜及び合わせガラスを作製した。なお、得られた中間膜の濃色部及びグラデーション部の境界は、後述の合わせガラスを作製し、平行光透過率を測定した際に、平行光透過率が30%である部位を境界として、平行光透過率が30%以下の領域を濃色部、平行光透過率が30%を超え、60%未満である領域をグラデーション部と判断した。
 (実施例11)
 (第1の樹脂層(第1の表面層)を形成するための第1の樹脂組成物の作製)
 上記ポリビニルブチラールA100質量部に対して、トリエチレングリコール-ジ-2-エチルヘキサノエート(可塑剤、3GO)39質量部を添加し、ミキシングロールで充分に混練し、第1の樹脂組成物を得た。
 (第2の樹脂層(中間層)を形成するための第2の樹脂組成物の作製)
 上記ポリビニルブチラールA100質量部に対して、トリエチレングリコール-ジ-2-エチルヘキサノエート(可塑剤、3GO)40質量部と、得られる樹脂組成物100質量%中で5.9質量%となる量の炭酸カルシウム粒子(無機粒子、重量平均粒子径5.0μm)とを添加し、ミキシングロールで充分に混練し、第2の樹脂組成物を得た。
 (合わせガラス用中間膜の作製)
 主押出機に上記第2の樹脂組成物を供給した。また、副押出機に上記第1の樹脂組成物を供給した。主押出機と副押出機との先端に多層用フィードブロックを取り付けて共押出することにより、濃色部及びグラデーション部において第2の樹脂層の第1の表面側に第1の樹脂層が配置された中間膜を得た。なお、得られた中間膜の濃色部及びグラデーション部の境界は、後述の合わせガラスを作製し、平行光透過率を測定した際に、平行光透過率が30%である部位を境界として、平行光透過率が30%以下の領域を濃色部、平行光透過率が30%を超え、60%未満である領域をグラデーション部と判断した。得られた中間膜の各層の厚みを下記の表2に示した。
 なお、中間膜の各層の厚みは、鋭利なレザー刃で、上記濃色部と上記グラデーション部と上記透明部との積層方向における上記濃色部と上記グラデーション部と上記透明部との断面が露出するように、上記中間膜を切断した後、上記中間膜の露出した断面をデジタルマイクロスコープ(OLYMPUS社製「DSX500」)で観察して、マイクロゲージにより上記中間膜の各層の厚みを測定した。また、上記中間膜の露出した断面の形状は、図7に対応する形状(図7と類似の形状)であった。
 また、上記中間膜の上記第2の樹脂層の最も厚い部位における無機粒子の面密度は、以下のようにして測定した。
 第2の樹脂層の最も厚い部位が得られる試料の中心に位置するように中間膜を厚み方向に切断して、平面形状が長方形である試料を得た。得られる試料において、短辺の長さは1cm、厚さは中間膜の厚さ、長辺の長さは試料の質量が1gとなる長さとした。得られる試料の長手方向は、第2の樹脂層の最も厚い部位と、該第2の樹脂層の最も厚い部位に最も近く位置する透明部部位とを結ぶ方向と直交する方向とした。
 得られた試料に硝酸70質量%水溶液18mLを添加し、マイクロ波試料前処理装置(マイルストーンゼネラル社製「ETHOS One」)を用いて、200℃で30分保持し、加熱分解させた後、25℃条件下で比抵抗18.2MΩ・cmの超純水を用いて定容し試験液を得た。次に、高周波誘導結合プラズマ発光分析装置(島津製作所社製「ICPE-9000」)により、試験液中のカルシウムの定量分析を行い、得られたカルシウムの含有量から、炭酸カルシウム粒子の面密度を算出した。
 (合わせガラスの作製)
 JIS R3202(1996)に準拠した2枚のクリアガラス(縦100cm×横30cm×厚み2.5mm)を用意した。得られた上記中間膜を、その両端から2枚のクリアガラスで挟み込み、積層体を得た。この積層体をゴムバッグ内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着した。オートクレーブ中で135℃及び圧力1.2MPaの条件で、仮圧着された積層体を20分間圧着し、合わせガラスを得た。
 (実施例11~15及び比較例4~6)
 中間膜の作製時に、炭酸カルシウム粒子及び可塑剤の含有量を下記の表2に示すように設定したこと、得られる中間膜の各層の長さ及び厚みを下記の表2に示すように設定したこと、並びに第2の樹脂層に用いられるポリビニルブチラール樹脂を下記の表2に示すように設定したこと以外は、実施例11と同様にして、中間膜及び合わせガラスを作製した。なお、得られた中間膜の濃色部及びグラデーション部の境界は、後述の合わせガラスを作製し、平行光透過率を測定した際に、平行光透過率が30%である部位を境界として、平行光透過率が30%以下の領域を濃色部、平行光透過率が30%を超え、60%未満である領域をグラデーション部と判断した。
 (評価)
 (1)平行光透過率(Tv)
 JIS R3106(1998)に準拠して、平行光透過率(Tv)を測定した。分光光度計(日立ハイテク社製「U-4100」)を用いて、透過した平行光のみ積分球へ受光するように、光源と積分球との光路上で光軸の法線に平行に、かつ積分球から13cm離れた地点に、得られた合わせガラスを設置した。この状態で分光透過率を測定した。得られた上記分光透過率をから算出した可視光線透過率を、平行光透過率とした。実施例1~15で得られた合わせガラスの平行光透過率は、濃色部部位において30%以下であり、かつ、透明部部位において60%以上であった。得られた平行光透過率のうち、濃色部部位における平行光透過率の最小値、及び、透明部部位における平行光透過率の最大値を表1,2に示す。
 (2)全光線透過率(TvD)
 JIS R3106(1998)に準拠して、全光線透過率(TvD)を測定した。分光光度計(日立ハイテク社製「U-4100」)を用いて、透過した光線をすべて積分球に受光するよう積分球の開口部に、得られた合わせガラスを平行にかつ密着させ、分光透過率を測定した。得られた上記分光透過率から算出した可視光線透過率を、全光線透過率とした。得られた全光線透過率のうち、濃色部における全光線透過率の最小値及び透明部における全光線透過率の最大値を表1,2に示す。
 (3)グラデーションの色むら評価-目視
 得られた合わせガラスをライトテーブル上に設置し、ライトテーブル内の蛍光灯を照射した状態で光源の反対面から、目視によって上記合わせガラスのグラデーション部部位におけるグラデーション模様を観察した。上記の観察方法によって10人が得られた合わせガラスを観察し、目視によるグラデーションの色むらを下記の基準で判定した。更に1cm角の格子模様を印刷した白色のフィルムを合わせガラスとライトテーブルとの間に設置し、合わせガラスをフィルムと平行に合わせガラスの厚さ方向に1.5cm離した状態で設置し、合わせガラスの上部から蛍光灯を照射した状態で、グラデーション模様を観察した。
 [目視によるグラデーションの色むらの判定基準]
 ○○:色すじが無い:色すじがわずかにあると判断した者が2人以下
 ○:色すじがほとんど無い:色すじがわずかにあると判断した者が3人以上4人以下
 ×:色すじがある:色すじがわずかにあると判断した者が5人以上
 (4)グラデーションの色むら評価-透過率測定
 得られた合わせガラスの平行光透過率(Tv)及び全光線透過率(TvD)を、上記合わせガラスのグラデーション部部位において、濃色部側から透明部側に向けて、直線状に1cm間隔で測定した。透過率測定によるグラデーションの色むらを下記の基準で判定した。なお、実施例3、実施例12、比較例2及び比較例5に関しては、グラデーション部が15mmと短いため、グラデーション部の中心から前後1cmの透過率を測定した。
 [透過率測定によるグラデーションの色むらの判定基準]
 ○:濃色部側から透明部側に向けて、Tv値及びTvD値が連続して低下している
 ×:濃色部側から透明部側に向けて、Tv値及びTvD値が連続して低下していない
 (5)複素粘度の測定
 得られた合わせガラス用中間膜の第1の樹脂層及び第2の樹脂層の複素粘度を以下の手順に従って測定した。得られた合わせガラス用中間膜について、成膜した1時間後に、第1の樹脂層と第2の樹脂層とを剥離することにより、第1の樹脂層を取り出した。2枚のポリエチレンテレフタレート(PET)フィルムの間に配置された型枠(縦2cm×横2cm×厚み0.76mm)内に、剥離された第1の樹脂層1gを置き、温度150℃、プレス圧0kg/cmで10分間予熱した後、80kg/cmで15分間プレス成型した。その後、予め20℃に設定したハンドプレス機に、プレス成型された第1の樹脂層を配置し、10MPaで10分間プレスすることにより冷却した。次いで、2枚のPETフィルムの間に配置された型枠から、1枚のPETフィルムを剥離し、恒温恒湿室(湿度30%(±3%)、温度23℃)で24時間保管した後、JIS K7244-10(ISO 6721-10)に準拠し、TAINSTRUMENTS社製のARES-G2を用いて粘弾性を測定し、複素粘度を測定した。粘弾性測定時の治具として直径8mmのパラレルプレートを用いた。また、粘弾性測定は、測定温度200℃にて、周波数1Hz及び歪8%の条件で行なった。得られた複素粘度を200℃における第1の樹脂層の複素粘度の値として読み取った。また、同様の方法により、第2の樹脂層の複素粘度を測定した。
 結果を下記の表1,2に示す。なお、下記の表1,2中の、PVB-Aは、ポリビニルブチラールAを、PVB-Bは、ポリビニルブチラールBを示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~15で得られた合わせガラスは、目視評価で、十分な色むら抑制効果が確認された。一方、比較例1~6で得られた合わせガラスは、目視評価では十分な色むら抑制効果が確認できなかった。これは、透過率測定においては、1cm間隔で透過率を測定しているが、目視評価では1cmより小さな色むらであっても確認できることによる。従って、目視評価は透過率測定より、更に厳しい色むら評価である。
  1,1A,1B,1C,1D,1E,1F,1X,1Y,1Z…中間膜
  11,11A,11B,11Ca,11Cb,11D,11E,11F,11X,11Y,11Z…濃色部
  12,12A,12B,12Ca,12Cb,12Da,12Db,12E,12F,12X,12Y,12Z…グラデーション部
  13,13A,13B,13C,13Da,13Db,13E,13F,13X,13Y,13Z…透明部
  16,16A,16B,16C,16D,16F,16X,16Y,16Z…第1の樹脂層
  17,17A,17B,17C,17D,17F,17X,17Y,17Z…第2の樹脂層
  18…第3の樹脂層
  21…合わせガラス
  22…第1の合わせガラス部材
  23…第2の合わせガラス部材
  51,51X…中間膜
  61,61X…濃色部
  62,62X…グラデーション部
  63,63X…透明部
  66,66X…第1の樹脂層
  67,67X…第2の樹脂層

Claims (4)

  1.  熱可塑性樹脂及び可塑剤を含有する第1の樹脂層と、
     熱可塑性樹脂、可塑剤及び無機粒子を含有する第2の樹脂層とを備え、
     前記第2の樹脂層の第1の表面側に、前記第1の樹脂層が配置されており、
     JIS R3202(1996)に準拠した2枚のクリアガラスを用いて合わせガラスを作製した際に、平行光透過率が30%を超え、60%未満である領域であって、かつ前記第2の樹脂層の厚みが、中間膜の厚み方向と直交する方向に連続的に減少している領域であるグラデーション部が存在し、
     前記第2の樹脂層の200℃における複素粘度が、前記第1の樹脂層の200℃における複素粘度の0.7倍以上2倍以下である、合わせガラス用中間膜。
  2.  前記第2の樹脂層の前記第1の表面側とは反対の第2の表面側に、前記第1の樹脂層が配置されており、
     前記第1の樹脂層中に、前記第2の樹脂層が埋め込まれている、請求項1に記載の合わせガラス用中間膜。
  3.  中間膜の厚み方向と直交する方向において一部の領域に、前記第2の樹脂層が配置されており、
     中間膜の厚み方向と直交する方向において一部の領域に、前記グラデーション部とは異なり、かつ前記第2の樹脂層が存在しない領域が存在する、請求項1又は2に記載の合わせガラス用中間膜。
  4.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項1~3のいずれか1項に記載の合わせガラス用中間膜とを備え、
     前記合わせガラス用中間膜が、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置されている、合わせガラス。
PCT/JP2014/080165 2013-11-14 2014-11-14 合わせガラス用中間膜及び合わせガラス WO2015072538A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480062227.7A CN105722802A (zh) 2013-11-14 2014-11-14 夹层玻璃用中间膜及夹层玻璃
US15/036,722 US9840068B2 (en) 2013-11-14 2014-11-14 Intermediate film for laminated glass and laminated glass
EP14861616.2A EP3070063B1 (en) 2013-11-14 2014-11-14 Intermediate film for laminated glass and laminated glass
CN202111586839.4A CN114211835A (zh) 2013-11-14 2014-11-14 夹层玻璃用中间膜及夹层玻璃
JP2014559028A JP6355564B2 (ja) 2013-11-14 2014-11-14 合わせガラス用中間膜及び合わせガラス
US15/816,676 US10307998B2 (en) 2013-11-14 2017-11-17 Intermediate film for laminated glass and laminated glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-236228 2013-11-14
JP2013236228 2013-11-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/036,722 A-371-Of-International US9840068B2 (en) 2013-11-14 2014-11-14 Intermediate film for laminated glass and laminated glass
US15/816,676 Continuation US10307998B2 (en) 2013-11-14 2017-11-17 Intermediate film for laminated glass and laminated glass

Publications (1)

Publication Number Publication Date
WO2015072538A1 true WO2015072538A1 (ja) 2015-05-21

Family

ID=53057472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080165 WO2015072538A1 (ja) 2013-11-14 2014-11-14 合わせガラス用中間膜及び合わせガラス

Country Status (5)

Country Link
US (2) US9840068B2 (ja)
EP (1) EP3070063B1 (ja)
JP (2) JP6355564B2 (ja)
CN (2) CN105722802A (ja)
WO (1) WO2015072538A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180123975A (ko) * 2017-05-10 2018-11-20 쿠라라이 유럽 게엠베하 쉐이드 밴드를 갖는 중간층 막
JP2019527663A (ja) * 2016-07-18 2019-10-03 サン−ゴバン グラス フランス 乗り物複合ペインに取り付けられているセンサのための最適化された光線経路を有している乗り物複合ペイン
KR20190113454A (ko) * 2018-03-28 2019-10-08 에스케이씨 주식회사 광변색 밴드를 포함하는 중간막, 및 이를 포함하는 광투과적층체
KR20190113462A (ko) * 2018-03-28 2019-10-08 에스케이씨 주식회사 광변색 중간막, 및 이를 포함하는 광투과적층체
WO2019221218A1 (ja) 2018-05-16 2019-11-21 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス及び自動車
WO2020040115A1 (ja) 2018-08-20 2020-02-27 積水化学工業株式会社 合わせガラスセット及び合わせガラス構造体
WO2020040114A1 (ja) 2018-08-20 2020-02-27 積水化学工業株式会社 合わせガラス用中間膜、ロール体及び合わせガラスセットの製造方法
US20220184928A1 (en) * 2019-03-20 2022-06-16 Dow-Mitsui Polychemicals Co., Ltd. Resin composition for laminated glass interlayer, laminated glass interlayer, and laminated glass
WO2022260083A1 (ja) * 2021-06-11 2022-12-15 積水化学工業株式会社 樹脂フィルム、合わせガラス、及びスクリーン
WO2024117071A1 (ja) * 2022-12-02 2024-06-06 Agc株式会社 ガラス振動板、振動子付きガラス振動板、及びガラス振動板の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070063B1 (en) 2013-11-14 2022-10-19 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
BR112018006192B1 (pt) * 2015-09-30 2022-04-26 Sekisui Chemical Co., Ltd Película de intercamada para vidro laminado e vidro laminado
TWI812599B (zh) * 2016-10-12 2023-08-21 日商積水化學工業股份有限公司 層合玻璃用中間膜、捲繞體及層合玻璃
EP3434472B1 (en) * 2017-07-26 2021-06-23 Agc Inc. Laminated glass for vehicle
US10438575B2 (en) 2017-11-20 2019-10-08 Chang Chun Petrochemical Co., Ltd. Multilayer film, interlayer film comprising the multilayer film and laminated glass and sound-insulating glass laminate comprising the interlayer film
CN110315821B (zh) * 2018-03-28 2021-11-02 Skc株式会社 光致变色中间膜、透光性层叠体及汽车用摄像系统
CN111989304B (zh) * 2018-04-16 2023-03-07 积水化学工业株式会社 夹层玻璃用中间膜及汽车车顶用夹层玻璃
WO2020040305A1 (ja) 2018-08-23 2020-02-27 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス、及びガラス構成体
KR102156988B1 (ko) 2018-12-31 2020-09-16 에스케이씨 주식회사 유리접합용 필름, 이의 제조방법, 이를 포함하는 접합유리 및 이를 포함하는 이동수단
KR102127579B1 (ko) * 2018-12-31 2020-06-26 에스케이씨 주식회사 유리접합용 필름, 이를 포함하는 접합유리 및 이를 포함하는 이동수단
KR102211735B1 (ko) * 2019-01-10 2021-02-02 에스케이씨 주식회사 유리접합용 필름, 이를 포함하는 접합유리 및 이를 포함하는 이동수단
WO2020203278A1 (ja) * 2019-03-29 2020-10-08 積水化学工業株式会社 車両用合わせガラス及び車両
WO2022164631A1 (en) 2021-01-26 2022-08-04 Solutia Inc. Light systems having a diffusive pvb interlayer
WO2023031713A1 (en) * 2021-09-03 2023-03-09 3M Innovative Properties Company Film having spatially varying layer
CN114774005B (zh) * 2022-04-02 2023-03-21 建滔(佛冈)特种树脂有限公司 一种渐变色胶片及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206445A (ja) * 2003-08-22 2005-08-04 Sekisui Chem Co Ltd 合わせガラス及び合わせガラス用中間膜
WO2006082800A1 (ja) 2005-02-03 2006-08-10 Sekisui Chemical Co., Ltd. 合わせガラス用中間膜および合わせガラス
JP2008001535A (ja) * 2006-06-20 2008-01-10 Nippon Sheet Glass Co Ltd 合わせガラス
WO2011019062A1 (ja) * 2009-08-12 2011-02-17 旭硝子株式会社 車輌用合わせガラス
JP2011052100A (ja) * 2009-09-01 2011-03-17 Ricoh Co Ltd 感熱性粘着材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922456A (en) * 1973-04-27 1975-11-25 Monsanto Co Polyvinyl butyral composite interlayer for laminated safety glass
JPH0826785A (ja) * 1994-07-12 1996-01-30 Sekisui Chem Co Ltd 合わせガラス用中間膜及び該中間膜を用いた合わせガラス
EP1193048B2 (en) * 2000-09-29 2014-09-03 Asahi Glass Company, Limited Laminated glass and automobile employing it
JP2007223883A (ja) * 2005-12-26 2007-09-06 Asahi Glass Co Ltd 車両用合せガラス
US20080014414A1 (en) 2006-07-13 2008-01-17 Vincent James Yacovone Windshield Interlayer Having a Gradient Region Having a White Coloration
JP2008201667A (ja) * 2007-01-24 2008-09-04 Asahi Glass Co Ltd 車両用合わせガラス
US8152507B2 (en) * 2007-06-27 2012-04-10 Sekisui Chemical Co., Ltd. Apparatus and method for manufacturing multiplex interlayer for safety glass
CN101821213A (zh) 2007-10-12 2010-09-01 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
KR101757145B1 (ko) * 2009-12-25 2017-07-11 세키스이가가쿠 고교가부시키가이샤 합판 유리용 중간막, 합판 유리용 다층 중간막 및 합판 유리
EP2918563B1 (en) * 2010-09-01 2017-12-13 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass, and laminated glass
JP6169068B2 (ja) * 2012-11-14 2017-07-26 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
EP3070063B1 (en) * 2013-11-14 2022-10-19 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206445A (ja) * 2003-08-22 2005-08-04 Sekisui Chem Co Ltd 合わせガラス及び合わせガラス用中間膜
WO2006082800A1 (ja) 2005-02-03 2006-08-10 Sekisui Chemical Co., Ltd. 合わせガラス用中間膜および合わせガラス
JP2008001535A (ja) * 2006-06-20 2008-01-10 Nippon Sheet Glass Co Ltd 合わせガラス
WO2011019062A1 (ja) * 2009-08-12 2011-02-17 旭硝子株式会社 車輌用合わせガラス
JP2011052100A (ja) * 2009-09-01 2011-03-17 Ricoh Co Ltd 感熱性粘着材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070063A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527663A (ja) * 2016-07-18 2019-10-03 サン−ゴバン グラス フランス 乗り物複合ペインに取り付けられているセンサのための最適化された光線経路を有している乗り物複合ペイン
US10850477B2 (en) 2016-07-18 2020-12-01 Saint-Gobain Glass France Vehicle composite pane with optimised beam path for a sensor mounted thereon
JP7143113B2 (ja) 2017-05-10 2022-09-28 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング シェードバンドを有する中間膜フィルム
JP2018187929A (ja) * 2017-05-10 2018-11-29 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツングKuraray Europe GmbH シェードバンドを有する中間膜フィルム
KR102515496B1 (ko) * 2017-05-10 2023-03-28 쿠라라이 유럽 게엠베하 쉐이드 밴드를 갖는 중간층 막
KR20180123975A (ko) * 2017-05-10 2018-11-20 쿠라라이 유럽 게엠베하 쉐이드 밴드를 갖는 중간층 막
KR102068889B1 (ko) * 2018-03-28 2020-01-21 에스케이씨 주식회사 광변색 밴드를 포함하는 중간막, 및 이를 포함하는 광투과적층체
KR20190113454A (ko) * 2018-03-28 2019-10-08 에스케이씨 주식회사 광변색 밴드를 포함하는 중간막, 및 이를 포함하는 광투과적층체
KR20190113462A (ko) * 2018-03-28 2019-10-08 에스케이씨 주식회사 광변색 중간막, 및 이를 포함하는 광투과적층체
KR102068891B1 (ko) * 2018-03-28 2020-01-21 에스케이씨 주식회사 광변색 중간막, 및 이를 포함하는 광투과적층체
WO2019221218A1 (ja) 2018-05-16 2019-11-21 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス及び自動車
KR20210010844A (ko) 2018-05-16 2021-01-28 세키스이가가쿠 고교가부시키가이샤 접합 유리용 중간막, 접합 유리 및 자동차
JPWO2019221218A1 (ja) * 2018-05-16 2021-04-08 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス及び自動車
KR20210049080A (ko) 2018-08-20 2021-05-04 세키스이가가쿠 고교가부시키가이샤 접합 유리용 중간막, 롤체 및 접합 유리 세트의 제조 방법
WO2020040114A1 (ja) 2018-08-20 2020-02-27 積水化学工業株式会社 合わせガラス用中間膜、ロール体及び合わせガラスセットの製造方法
WO2020040115A1 (ja) 2018-08-20 2020-02-27 積水化学工業株式会社 合わせガラスセット及び合わせガラス構造体
US11945191B2 (en) 2018-08-20 2024-04-02 Sekisui Chemical Co., Ltd. Laminated glass set and laminated glass structure
US20220184928A1 (en) * 2019-03-20 2022-06-16 Dow-Mitsui Polychemicals Co., Ltd. Resin composition for laminated glass interlayer, laminated glass interlayer, and laminated glass
WO2022260083A1 (ja) * 2021-06-11 2022-12-15 積水化学工業株式会社 樹脂フィルム、合わせガラス、及びスクリーン
WO2024117071A1 (ja) * 2022-12-02 2024-06-06 Agc株式会社 ガラス振動板、振動子付きガラス振動板、及びガラス振動板の製造方法

Also Published As

Publication number Publication date
US20180117887A1 (en) 2018-05-03
US20160288465A1 (en) 2016-10-06
EP3070063A4 (en) 2017-07-12
JPWO2015072538A1 (ja) 2017-03-16
EP3070063A1 (en) 2016-09-21
EP3070063B1 (en) 2022-10-19
CN105722802A (zh) 2016-06-29
US9840068B2 (en) 2017-12-12
JP2018162209A (ja) 2018-10-18
CN114211835A (zh) 2022-03-22
US10307998B2 (en) 2019-06-04
JP6355564B2 (ja) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6355564B2 (ja) 合わせガラス用中間膜及び合わせガラス
US11117352B2 (en) Laminated-glass interlayer and laminated glass
US11648754B2 (en) Interlayer for laminated glass, and laminated glass
WO2017039004A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2017170728A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP6783855B2 (ja) 合わせガラス用中間膜、ロール体及び合わせガラス
JP6445824B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP7412173B2 (ja) 合わせガラス
WO2019131494A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP7100975B2 (ja) 合わせガラス
WO2017043624A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP7221690B2 (ja) 合わせガラス用中間膜
WO2021241592A1 (ja) 合わせガラス用中間膜及び合わせガラス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014559028

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861616

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014861616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15036722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE